/cp
[official-gcc.git] / gcc / tree-parloops.c
blobec708c67ac97306265061b739ae47722d7290112
1 /* Loop autoparallelization.
2 Copyright (C) 2006-2015 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
4 Zdenek Dvorak <dvorakz@suse.cz> and Razya Ladelsky <razya@il.ibm.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "alias.h"
26 #include "symtab.h"
27 #include "options.h"
28 #include "tree.h"
29 #include "fold-const.h"
30 #include "predict.h"
31 #include "tm.h"
32 #include "hard-reg-set.h"
33 #include "function.h"
34 #include "dominance.h"
35 #include "cfg.h"
36 #include "basic-block.h"
37 #include "tree-ssa-alias.h"
38 #include "internal-fn.h"
39 #include "gimple-expr.h"
40 #include "gimple.h"
41 #include "gimplify.h"
42 #include "gimple-iterator.h"
43 #include "gimplify-me.h"
44 #include "gimple-walk.h"
45 #include "stor-layout.h"
46 #include "tree-nested.h"
47 #include "gimple-ssa.h"
48 #include "tree-cfg.h"
49 #include "tree-phinodes.h"
50 #include "ssa-iterators.h"
51 #include "stringpool.h"
52 #include "tree-ssanames.h"
53 #include "tree-ssa-loop-ivopts.h"
54 #include "tree-ssa-loop-manip.h"
55 #include "tree-ssa-loop-niter.h"
56 #include "tree-ssa-loop.h"
57 #include "tree-into-ssa.h"
58 #include "cfgloop.h"
59 #include "tree-data-ref.h"
60 #include "tree-scalar-evolution.h"
61 #include "gimple-pretty-print.h"
62 #include "tree-pass.h"
63 #include "langhooks.h"
64 #include "tree-vectorizer.h"
65 #include "tree-hasher.h"
66 #include "tree-parloops.h"
67 #include "omp-low.h"
68 #include "tree-nested.h"
69 #include "cgraph.h"
70 #include "tree-ssa.h"
72 /* This pass tries to distribute iterations of loops into several threads.
73 The implementation is straightforward -- for each loop we test whether its
74 iterations are independent, and if it is the case (and some additional
75 conditions regarding profitability and correctness are satisfied), we
76 add GIMPLE_OMP_PARALLEL and GIMPLE_OMP_FOR codes and let omp expansion
77 machinery do its job.
79 The most of the complexity is in bringing the code into shape expected
80 by the omp expanders:
81 -- for GIMPLE_OMP_FOR, ensuring that the loop has only one induction
82 variable and that the exit test is at the start of the loop body
83 -- for GIMPLE_OMP_PARALLEL, replacing the references to local addressable
84 variables by accesses through pointers, and breaking up ssa chains
85 by storing the values incoming to the parallelized loop to a structure
86 passed to the new function as an argument (something similar is done
87 in omp gimplification, unfortunately only a small part of the code
88 can be shared).
90 TODO:
91 -- if there are several parallelizable loops in a function, it may be
92 possible to generate the threads just once (using synchronization to
93 ensure that cross-loop dependences are obeyed).
94 -- handling of common reduction patterns for outer loops.
96 More info can also be found at http://gcc.gnu.org/wiki/AutoParInGCC */
98 Reduction handling:
99 currently we use vect_force_simple_reduction() to detect reduction patterns.
100 The code transformation will be introduced by an example.
103 parloop
105 int sum=1;
107 for (i = 0; i < N; i++)
109 x[i] = i + 3;
110 sum+=x[i];
114 gimple-like code:
115 header_bb:
117 # sum_29 = PHI <sum_11(5), 1(3)>
118 # i_28 = PHI <i_12(5), 0(3)>
119 D.1795_8 = i_28 + 3;
120 x[i_28] = D.1795_8;
121 sum_11 = D.1795_8 + sum_29;
122 i_12 = i_28 + 1;
123 if (N_6(D) > i_12)
124 goto header_bb;
127 exit_bb:
129 # sum_21 = PHI <sum_11(4)>
130 printf (&"%d"[0], sum_21);
133 after reduction transformation (only relevant parts):
135 parloop
138 ....
141 # Storing the initial value given by the user. #
143 .paral_data_store.32.sum.27 = 1;
145 #pragma omp parallel num_threads(4)
147 #pragma omp for schedule(static)
149 # The neutral element corresponding to the particular
150 reduction's operation, e.g. 0 for PLUS_EXPR,
151 1 for MULT_EXPR, etc. replaces the user's initial value. #
153 # sum.27_29 = PHI <sum.27_11, 0>
155 sum.27_11 = D.1827_8 + sum.27_29;
157 GIMPLE_OMP_CONTINUE
159 # Adding this reduction phi is done at create_phi_for_local_result() #
160 # sum.27_56 = PHI <sum.27_11, 0>
161 GIMPLE_OMP_RETURN
163 # Creating the atomic operation is done at
164 create_call_for_reduction_1() #
166 #pragma omp atomic_load
167 D.1839_59 = *&.paral_data_load.33_51->reduction.23;
168 D.1840_60 = sum.27_56 + D.1839_59;
169 #pragma omp atomic_store (D.1840_60);
171 GIMPLE_OMP_RETURN
173 # collecting the result after the join of the threads is done at
174 create_loads_for_reductions().
175 The value computed by the threads is loaded from the
176 shared struct. #
179 .paral_data_load.33_52 = &.paral_data_store.32;
180 sum_37 = .paral_data_load.33_52->sum.27;
181 sum_43 = D.1795_41 + sum_37;
183 exit bb:
184 # sum_21 = PHI <sum_43, sum_26>
185 printf (&"%d"[0], sum_21);
193 /* Minimal number of iterations of a loop that should be executed in each
194 thread. */
195 #define MIN_PER_THREAD 100
197 /* Element of the hashtable, representing a
198 reduction in the current loop. */
199 struct reduction_info
201 gimple reduc_stmt; /* reduction statement. */
202 gimple reduc_phi; /* The phi node defining the reduction. */
203 enum tree_code reduction_code;/* code for the reduction operation. */
204 unsigned reduc_version; /* SSA_NAME_VERSION of original reduc_phi
205 result. */
206 gphi *keep_res; /* The PHI_RESULT of this phi is the resulting value
207 of the reduction variable when existing the loop. */
208 tree initial_value; /* The initial value of the reduction var before entering the loop. */
209 tree field; /* the name of the field in the parloop data structure intended for reduction. */
210 tree init; /* reduction initialization value. */
211 gphi *new_phi; /* (helper field) Newly created phi node whose result
212 will be passed to the atomic operation. Represents
213 the local result each thread computed for the reduction
214 operation. */
217 /* Reduction info hashtable helpers. */
219 struct reduction_hasher : free_ptr_hash <reduction_info>
221 static inline hashval_t hash (const reduction_info *);
222 static inline bool equal (const reduction_info *, const reduction_info *);
225 /* Equality and hash functions for hashtab code. */
227 inline bool
228 reduction_hasher::equal (const reduction_info *a, const reduction_info *b)
230 return (a->reduc_phi == b->reduc_phi);
233 inline hashval_t
234 reduction_hasher::hash (const reduction_info *a)
236 return a->reduc_version;
239 typedef hash_table<reduction_hasher> reduction_info_table_type;
242 static struct reduction_info *
243 reduction_phi (reduction_info_table_type *reduction_list, gimple phi)
245 struct reduction_info tmpred, *red;
247 if (reduction_list->elements () == 0 || phi == NULL)
248 return NULL;
250 tmpred.reduc_phi = phi;
251 tmpred.reduc_version = gimple_uid (phi);
252 red = reduction_list->find (&tmpred);
254 return red;
257 /* Element of hashtable of names to copy. */
259 struct name_to_copy_elt
261 unsigned version; /* The version of the name to copy. */
262 tree new_name; /* The new name used in the copy. */
263 tree field; /* The field of the structure used to pass the
264 value. */
267 /* Name copies hashtable helpers. */
269 struct name_to_copy_hasher : free_ptr_hash <name_to_copy_elt>
271 static inline hashval_t hash (const name_to_copy_elt *);
272 static inline bool equal (const name_to_copy_elt *, const name_to_copy_elt *);
275 /* Equality and hash functions for hashtab code. */
277 inline bool
278 name_to_copy_hasher::equal (const name_to_copy_elt *a, const name_to_copy_elt *b)
280 return a->version == b->version;
283 inline hashval_t
284 name_to_copy_hasher::hash (const name_to_copy_elt *a)
286 return (hashval_t) a->version;
289 typedef hash_table<name_to_copy_hasher> name_to_copy_table_type;
291 /* A transformation matrix, which is a self-contained ROWSIZE x COLSIZE
292 matrix. Rather than use floats, we simply keep a single DENOMINATOR that
293 represents the denominator for every element in the matrix. */
294 typedef struct lambda_trans_matrix_s
296 lambda_matrix matrix;
297 int rowsize;
298 int colsize;
299 int denominator;
300 } *lambda_trans_matrix;
301 #define LTM_MATRIX(T) ((T)->matrix)
302 #define LTM_ROWSIZE(T) ((T)->rowsize)
303 #define LTM_COLSIZE(T) ((T)->colsize)
304 #define LTM_DENOMINATOR(T) ((T)->denominator)
306 /* Allocate a new transformation matrix. */
308 static lambda_trans_matrix
309 lambda_trans_matrix_new (int colsize, int rowsize,
310 struct obstack * lambda_obstack)
312 lambda_trans_matrix ret;
314 ret = (lambda_trans_matrix)
315 obstack_alloc (lambda_obstack, sizeof (struct lambda_trans_matrix_s));
316 LTM_MATRIX (ret) = lambda_matrix_new (rowsize, colsize, lambda_obstack);
317 LTM_ROWSIZE (ret) = rowsize;
318 LTM_COLSIZE (ret) = colsize;
319 LTM_DENOMINATOR (ret) = 1;
320 return ret;
323 /* Multiply a vector VEC by a matrix MAT.
324 MAT is an M*N matrix, and VEC is a vector with length N. The result
325 is stored in DEST which must be a vector of length M. */
327 static void
328 lambda_matrix_vector_mult (lambda_matrix matrix, int m, int n,
329 lambda_vector vec, lambda_vector dest)
331 int i, j;
333 lambda_vector_clear (dest, m);
334 for (i = 0; i < m; i++)
335 for (j = 0; j < n; j++)
336 dest[i] += matrix[i][j] * vec[j];
339 /* Return true if TRANS is a legal transformation matrix that respects
340 the dependence vectors in DISTS and DIRS. The conservative answer
341 is false.
343 "Wolfe proves that a unimodular transformation represented by the
344 matrix T is legal when applied to a loop nest with a set of
345 lexicographically non-negative distance vectors RDG if and only if
346 for each vector d in RDG, (T.d >= 0) is lexicographically positive.
347 i.e.: if and only if it transforms the lexicographically positive
348 distance vectors to lexicographically positive vectors. Note that
349 a unimodular matrix must transform the zero vector (and only it) to
350 the zero vector." S.Muchnick. */
352 static bool
353 lambda_transform_legal_p (lambda_trans_matrix trans,
354 int nb_loops,
355 vec<ddr_p> dependence_relations)
357 unsigned int i, j;
358 lambda_vector distres;
359 struct data_dependence_relation *ddr;
361 gcc_assert (LTM_COLSIZE (trans) == nb_loops
362 && LTM_ROWSIZE (trans) == nb_loops);
364 /* When there are no dependences, the transformation is correct. */
365 if (dependence_relations.length () == 0)
366 return true;
368 ddr = dependence_relations[0];
369 if (ddr == NULL)
370 return true;
372 /* When there is an unknown relation in the dependence_relations, we
373 know that it is no worth looking at this loop nest: give up. */
374 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
375 return false;
377 distres = lambda_vector_new (nb_loops);
379 /* For each distance vector in the dependence graph. */
380 FOR_EACH_VEC_ELT (dependence_relations, i, ddr)
382 /* Don't care about relations for which we know that there is no
383 dependence, nor about read-read (aka. output-dependences):
384 these data accesses can happen in any order. */
385 if (DDR_ARE_DEPENDENT (ddr) == chrec_known
386 || (DR_IS_READ (DDR_A (ddr)) && DR_IS_READ (DDR_B (ddr))))
387 continue;
389 /* Conservatively answer: "this transformation is not valid". */
390 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
391 return false;
393 /* If the dependence could not be captured by a distance vector,
394 conservatively answer that the transform is not valid. */
395 if (DDR_NUM_DIST_VECTS (ddr) == 0)
396 return false;
398 /* Compute trans.dist_vect */
399 for (j = 0; j < DDR_NUM_DIST_VECTS (ddr); j++)
401 lambda_matrix_vector_mult (LTM_MATRIX (trans), nb_loops, nb_loops,
402 DDR_DIST_VECT (ddr, j), distres);
404 if (!lambda_vector_lexico_pos (distres, nb_loops))
405 return false;
408 return true;
411 /* Data dependency analysis. Returns true if the iterations of LOOP
412 are independent on each other (that is, if we can execute them
413 in parallel). */
415 static bool
416 loop_parallel_p (struct loop *loop, struct obstack * parloop_obstack)
418 vec<ddr_p> dependence_relations;
419 vec<data_reference_p> datarefs;
420 lambda_trans_matrix trans;
421 bool ret = false;
423 if (dump_file && (dump_flags & TDF_DETAILS))
425 fprintf (dump_file, "Considering loop %d\n", loop->num);
426 if (!loop->inner)
427 fprintf (dump_file, "loop is innermost\n");
428 else
429 fprintf (dump_file, "loop NOT innermost\n");
432 /* Check for problems with dependences. If the loop can be reversed,
433 the iterations are independent. */
434 auto_vec<loop_p, 3> loop_nest;
435 datarefs.create (10);
436 dependence_relations.create (100);
437 if (! compute_data_dependences_for_loop (loop, true, &loop_nest, &datarefs,
438 &dependence_relations))
440 if (dump_file && (dump_flags & TDF_DETAILS))
441 fprintf (dump_file, " FAILED: cannot analyze data dependencies\n");
442 ret = false;
443 goto end;
445 if (dump_file && (dump_flags & TDF_DETAILS))
446 dump_data_dependence_relations (dump_file, dependence_relations);
448 trans = lambda_trans_matrix_new (1, 1, parloop_obstack);
449 LTM_MATRIX (trans)[0][0] = -1;
451 if (lambda_transform_legal_p (trans, 1, dependence_relations))
453 ret = true;
454 if (dump_file && (dump_flags & TDF_DETAILS))
455 fprintf (dump_file, " SUCCESS: may be parallelized\n");
457 else if (dump_file && (dump_flags & TDF_DETAILS))
458 fprintf (dump_file,
459 " FAILED: data dependencies exist across iterations\n");
461 end:
462 free_dependence_relations (dependence_relations);
463 free_data_refs (datarefs);
465 return ret;
468 /* Return true when LOOP contains basic blocks marked with the
469 BB_IRREDUCIBLE_LOOP flag. */
471 static inline bool
472 loop_has_blocks_with_irreducible_flag (struct loop *loop)
474 unsigned i;
475 basic_block *bbs = get_loop_body_in_dom_order (loop);
476 bool res = true;
478 for (i = 0; i < loop->num_nodes; i++)
479 if (bbs[i]->flags & BB_IRREDUCIBLE_LOOP)
480 goto end;
482 res = false;
483 end:
484 free (bbs);
485 return res;
488 /* Assigns the address of OBJ in TYPE to an ssa name, and returns this name.
489 The assignment statement is placed on edge ENTRY. DECL_ADDRESS maps decls
490 to their addresses that can be reused. The address of OBJ is known to
491 be invariant in the whole function. Other needed statements are placed
492 right before GSI. */
494 static tree
495 take_address_of (tree obj, tree type, edge entry,
496 int_tree_htab_type *decl_address, gimple_stmt_iterator *gsi)
498 int uid;
499 tree *var_p, name, addr;
500 gassign *stmt;
501 gimple_seq stmts;
503 /* Since the address of OBJ is invariant, the trees may be shared.
504 Avoid rewriting unrelated parts of the code. */
505 obj = unshare_expr (obj);
506 for (var_p = &obj;
507 handled_component_p (*var_p);
508 var_p = &TREE_OPERAND (*var_p, 0))
509 continue;
511 /* Canonicalize the access to base on a MEM_REF. */
512 if (DECL_P (*var_p))
513 *var_p = build_simple_mem_ref (build_fold_addr_expr (*var_p));
515 /* Assign a canonical SSA name to the address of the base decl used
516 in the address and share it for all accesses and addresses based
517 on it. */
518 uid = DECL_UID (TREE_OPERAND (TREE_OPERAND (*var_p, 0), 0));
519 int_tree_map elt;
520 elt.uid = uid;
521 int_tree_map *slot = decl_address->find_slot (elt, INSERT);
522 if (!slot->to)
524 if (gsi == NULL)
525 return NULL;
526 addr = TREE_OPERAND (*var_p, 0);
527 const char *obj_name
528 = get_name (TREE_OPERAND (TREE_OPERAND (*var_p, 0), 0));
529 if (obj_name)
530 name = make_temp_ssa_name (TREE_TYPE (addr), NULL, obj_name);
531 else
532 name = make_ssa_name (TREE_TYPE (addr));
533 stmt = gimple_build_assign (name, addr);
534 gsi_insert_on_edge_immediate (entry, stmt);
536 slot->uid = uid;
537 slot->to = name;
539 else
540 name = slot->to;
542 /* Express the address in terms of the canonical SSA name. */
543 TREE_OPERAND (*var_p, 0) = name;
544 if (gsi == NULL)
545 return build_fold_addr_expr_with_type (obj, type);
547 name = force_gimple_operand (build_addr (obj, current_function_decl),
548 &stmts, true, NULL_TREE);
549 if (!gimple_seq_empty_p (stmts))
550 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
552 if (!useless_type_conversion_p (type, TREE_TYPE (name)))
554 name = force_gimple_operand (fold_convert (type, name), &stmts, true,
555 NULL_TREE);
556 if (!gimple_seq_empty_p (stmts))
557 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
560 return name;
563 /* Callback for htab_traverse. Create the initialization statement
564 for reduction described in SLOT, and place it at the preheader of
565 the loop described in DATA. */
568 initialize_reductions (reduction_info **slot, struct loop *loop)
570 tree init, c;
571 tree bvar, type, arg;
572 edge e;
574 struct reduction_info *const reduc = *slot;
576 /* Create initialization in preheader:
577 reduction_variable = initialization value of reduction. */
579 /* In the phi node at the header, replace the argument coming
580 from the preheader with the reduction initialization value. */
582 /* Create a new variable to initialize the reduction. */
583 type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi));
584 bvar = create_tmp_var (type, "reduction");
586 c = build_omp_clause (gimple_location (reduc->reduc_stmt),
587 OMP_CLAUSE_REDUCTION);
588 OMP_CLAUSE_REDUCTION_CODE (c) = reduc->reduction_code;
589 OMP_CLAUSE_DECL (c) = SSA_NAME_VAR (gimple_assign_lhs (reduc->reduc_stmt));
591 init = omp_reduction_init (c, TREE_TYPE (bvar));
592 reduc->init = init;
594 /* Replace the argument representing the initialization value
595 with the initialization value for the reduction (neutral
596 element for the particular operation, e.g. 0 for PLUS_EXPR,
597 1 for MULT_EXPR, etc).
598 Keep the old value in a new variable "reduction_initial",
599 that will be taken in consideration after the parallel
600 computing is done. */
602 e = loop_preheader_edge (loop);
603 arg = PHI_ARG_DEF_FROM_EDGE (reduc->reduc_phi, e);
604 /* Create new variable to hold the initial value. */
606 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE
607 (reduc->reduc_phi, loop_preheader_edge (loop)), init);
608 reduc->initial_value = arg;
609 return 1;
612 struct elv_data
614 struct walk_stmt_info info;
615 edge entry;
616 int_tree_htab_type *decl_address;
617 gimple_stmt_iterator *gsi;
618 bool changed;
619 bool reset;
622 /* Eliminates references to local variables in *TP out of the single
623 entry single exit region starting at DTA->ENTRY.
624 DECL_ADDRESS contains addresses of the references that had their
625 address taken already. If the expression is changed, CHANGED is
626 set to true. Callback for walk_tree. */
628 static tree
629 eliminate_local_variables_1 (tree *tp, int *walk_subtrees, void *data)
631 struct elv_data *const dta = (struct elv_data *) data;
632 tree t = *tp, var, addr, addr_type, type, obj;
634 if (DECL_P (t))
636 *walk_subtrees = 0;
638 if (!SSA_VAR_P (t) || DECL_EXTERNAL (t))
639 return NULL_TREE;
641 type = TREE_TYPE (t);
642 addr_type = build_pointer_type (type);
643 addr = take_address_of (t, addr_type, dta->entry, dta->decl_address,
644 dta->gsi);
645 if (dta->gsi == NULL && addr == NULL_TREE)
647 dta->reset = true;
648 return NULL_TREE;
651 *tp = build_simple_mem_ref (addr);
653 dta->changed = true;
654 return NULL_TREE;
657 if (TREE_CODE (t) == ADDR_EXPR)
659 /* ADDR_EXPR may appear in two contexts:
660 -- as a gimple operand, when the address taken is a function invariant
661 -- as gimple rhs, when the resulting address in not a function
662 invariant
663 We do not need to do anything special in the latter case (the base of
664 the memory reference whose address is taken may be replaced in the
665 DECL_P case). The former case is more complicated, as we need to
666 ensure that the new address is still a gimple operand. Thus, it
667 is not sufficient to replace just the base of the memory reference --
668 we need to move the whole computation of the address out of the
669 loop. */
670 if (!is_gimple_val (t))
671 return NULL_TREE;
673 *walk_subtrees = 0;
674 obj = TREE_OPERAND (t, 0);
675 var = get_base_address (obj);
676 if (!var || !SSA_VAR_P (var) || DECL_EXTERNAL (var))
677 return NULL_TREE;
679 addr_type = TREE_TYPE (t);
680 addr = take_address_of (obj, addr_type, dta->entry, dta->decl_address,
681 dta->gsi);
682 if (dta->gsi == NULL && addr == NULL_TREE)
684 dta->reset = true;
685 return NULL_TREE;
687 *tp = addr;
689 dta->changed = true;
690 return NULL_TREE;
693 if (!EXPR_P (t))
694 *walk_subtrees = 0;
696 return NULL_TREE;
699 /* Moves the references to local variables in STMT at *GSI out of the single
700 entry single exit region starting at ENTRY. DECL_ADDRESS contains
701 addresses of the references that had their address taken
702 already. */
704 static void
705 eliminate_local_variables_stmt (edge entry, gimple_stmt_iterator *gsi,
706 int_tree_htab_type *decl_address)
708 struct elv_data dta;
709 gimple stmt = gsi_stmt (*gsi);
711 memset (&dta.info, '\0', sizeof (dta.info));
712 dta.entry = entry;
713 dta.decl_address = decl_address;
714 dta.changed = false;
715 dta.reset = false;
717 if (gimple_debug_bind_p (stmt))
719 dta.gsi = NULL;
720 walk_tree (gimple_debug_bind_get_value_ptr (stmt),
721 eliminate_local_variables_1, &dta.info, NULL);
722 if (dta.reset)
724 gimple_debug_bind_reset_value (stmt);
725 dta.changed = true;
728 else if (gimple_clobber_p (stmt))
730 stmt = gimple_build_nop ();
731 gsi_replace (gsi, stmt, false);
732 dta.changed = true;
734 else
736 dta.gsi = gsi;
737 walk_gimple_op (stmt, eliminate_local_variables_1, &dta.info);
740 if (dta.changed)
741 update_stmt (stmt);
744 /* Eliminates the references to local variables from the single entry
745 single exit region between the ENTRY and EXIT edges.
747 This includes:
748 1) Taking address of a local variable -- these are moved out of the
749 region (and temporary variable is created to hold the address if
750 necessary).
752 2) Dereferencing a local variable -- these are replaced with indirect
753 references. */
755 static void
756 eliminate_local_variables (edge entry, edge exit)
758 basic_block bb;
759 auto_vec<basic_block, 3> body;
760 unsigned i;
761 gimple_stmt_iterator gsi;
762 bool has_debug_stmt = false;
763 int_tree_htab_type decl_address (10);
764 basic_block entry_bb = entry->src;
765 basic_block exit_bb = exit->dest;
767 gather_blocks_in_sese_region (entry_bb, exit_bb, &body);
769 FOR_EACH_VEC_ELT (body, i, bb)
770 if (bb != entry_bb && bb != exit_bb)
771 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
772 if (is_gimple_debug (gsi_stmt (gsi)))
774 if (gimple_debug_bind_p (gsi_stmt (gsi)))
775 has_debug_stmt = true;
777 else
778 eliminate_local_variables_stmt (entry, &gsi, &decl_address);
780 if (has_debug_stmt)
781 FOR_EACH_VEC_ELT (body, i, bb)
782 if (bb != entry_bb && bb != exit_bb)
783 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
784 if (gimple_debug_bind_p (gsi_stmt (gsi)))
785 eliminate_local_variables_stmt (entry, &gsi, &decl_address);
788 /* Returns true if expression EXPR is not defined between ENTRY and
789 EXIT, i.e. if all its operands are defined outside of the region. */
791 static bool
792 expr_invariant_in_region_p (edge entry, edge exit, tree expr)
794 basic_block entry_bb = entry->src;
795 basic_block exit_bb = exit->dest;
796 basic_block def_bb;
798 if (is_gimple_min_invariant (expr))
799 return true;
801 if (TREE_CODE (expr) == SSA_NAME)
803 def_bb = gimple_bb (SSA_NAME_DEF_STMT (expr));
804 if (def_bb
805 && dominated_by_p (CDI_DOMINATORS, def_bb, entry_bb)
806 && !dominated_by_p (CDI_DOMINATORS, def_bb, exit_bb))
807 return false;
809 return true;
812 return false;
815 /* If COPY_NAME_P is true, creates and returns a duplicate of NAME.
816 The copies are stored to NAME_COPIES, if NAME was already duplicated,
817 its duplicate stored in NAME_COPIES is returned.
819 Regardless of COPY_NAME_P, the decl used as a base of the ssa name is also
820 duplicated, storing the copies in DECL_COPIES. */
822 static tree
823 separate_decls_in_region_name (tree name, name_to_copy_table_type *name_copies,
824 int_tree_htab_type *decl_copies,
825 bool copy_name_p)
827 tree copy, var, var_copy;
828 unsigned idx, uid, nuid;
829 struct int_tree_map ielt;
830 struct name_to_copy_elt elt, *nelt;
831 name_to_copy_elt **slot;
832 int_tree_map *dslot;
834 if (TREE_CODE (name) != SSA_NAME)
835 return name;
837 idx = SSA_NAME_VERSION (name);
838 elt.version = idx;
839 slot = name_copies->find_slot_with_hash (&elt, idx,
840 copy_name_p ? INSERT : NO_INSERT);
841 if (slot && *slot)
842 return (*slot)->new_name;
844 if (copy_name_p)
846 copy = duplicate_ssa_name (name, NULL);
847 nelt = XNEW (struct name_to_copy_elt);
848 nelt->version = idx;
849 nelt->new_name = copy;
850 nelt->field = NULL_TREE;
851 *slot = nelt;
853 else
855 gcc_assert (!slot);
856 copy = name;
859 var = SSA_NAME_VAR (name);
860 if (!var)
861 return copy;
863 uid = DECL_UID (var);
864 ielt.uid = uid;
865 dslot = decl_copies->find_slot_with_hash (ielt, uid, INSERT);
866 if (!dslot->to)
868 var_copy = create_tmp_var (TREE_TYPE (var), get_name (var));
869 DECL_GIMPLE_REG_P (var_copy) = DECL_GIMPLE_REG_P (var);
870 dslot->uid = uid;
871 dslot->to = var_copy;
873 /* Ensure that when we meet this decl next time, we won't duplicate
874 it again. */
875 nuid = DECL_UID (var_copy);
876 ielt.uid = nuid;
877 dslot = decl_copies->find_slot_with_hash (ielt, nuid, INSERT);
878 gcc_assert (!dslot->to);
879 dslot->uid = nuid;
880 dslot->to = var_copy;
882 else
883 var_copy = dslot->to;
885 replace_ssa_name_symbol (copy, var_copy);
886 return copy;
889 /* Finds the ssa names used in STMT that are defined outside the
890 region between ENTRY and EXIT and replaces such ssa names with
891 their duplicates. The duplicates are stored to NAME_COPIES. Base
892 decls of all ssa names used in STMT (including those defined in
893 LOOP) are replaced with the new temporary variables; the
894 replacement decls are stored in DECL_COPIES. */
896 static void
897 separate_decls_in_region_stmt (edge entry, edge exit, gimple stmt,
898 name_to_copy_table_type *name_copies,
899 int_tree_htab_type *decl_copies)
901 use_operand_p use;
902 def_operand_p def;
903 ssa_op_iter oi;
904 tree name, copy;
905 bool copy_name_p;
907 FOR_EACH_PHI_OR_STMT_DEF (def, stmt, oi, SSA_OP_DEF)
909 name = DEF_FROM_PTR (def);
910 gcc_assert (TREE_CODE (name) == SSA_NAME);
911 copy = separate_decls_in_region_name (name, name_copies, decl_copies,
912 false);
913 gcc_assert (copy == name);
916 FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE)
918 name = USE_FROM_PTR (use);
919 if (TREE_CODE (name) != SSA_NAME)
920 continue;
922 copy_name_p = expr_invariant_in_region_p (entry, exit, name);
923 copy = separate_decls_in_region_name (name, name_copies, decl_copies,
924 copy_name_p);
925 SET_USE (use, copy);
929 /* Finds the ssa names used in STMT that are defined outside the
930 region between ENTRY and EXIT and replaces such ssa names with
931 their duplicates. The duplicates are stored to NAME_COPIES. Base
932 decls of all ssa names used in STMT (including those defined in
933 LOOP) are replaced with the new temporary variables; the
934 replacement decls are stored in DECL_COPIES. */
936 static bool
937 separate_decls_in_region_debug (gimple stmt,
938 name_to_copy_table_type *name_copies,
939 int_tree_htab_type *decl_copies)
941 use_operand_p use;
942 ssa_op_iter oi;
943 tree var, name;
944 struct int_tree_map ielt;
945 struct name_to_copy_elt elt;
946 name_to_copy_elt **slot;
947 int_tree_map *dslot;
949 if (gimple_debug_bind_p (stmt))
950 var = gimple_debug_bind_get_var (stmt);
951 else if (gimple_debug_source_bind_p (stmt))
952 var = gimple_debug_source_bind_get_var (stmt);
953 else
954 return true;
955 if (TREE_CODE (var) == DEBUG_EXPR_DECL || TREE_CODE (var) == LABEL_DECL)
956 return true;
957 gcc_assert (DECL_P (var) && SSA_VAR_P (var));
958 ielt.uid = DECL_UID (var);
959 dslot = decl_copies->find_slot_with_hash (ielt, ielt.uid, NO_INSERT);
960 if (!dslot)
961 return true;
962 if (gimple_debug_bind_p (stmt))
963 gimple_debug_bind_set_var (stmt, dslot->to);
964 else if (gimple_debug_source_bind_p (stmt))
965 gimple_debug_source_bind_set_var (stmt, dslot->to);
967 FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE)
969 name = USE_FROM_PTR (use);
970 if (TREE_CODE (name) != SSA_NAME)
971 continue;
973 elt.version = SSA_NAME_VERSION (name);
974 slot = name_copies->find_slot_with_hash (&elt, elt.version, NO_INSERT);
975 if (!slot)
977 gimple_debug_bind_reset_value (stmt);
978 update_stmt (stmt);
979 break;
982 SET_USE (use, (*slot)->new_name);
985 return false;
988 /* Callback for htab_traverse. Adds a field corresponding to the reduction
989 specified in SLOT. The type is passed in DATA. */
992 add_field_for_reduction (reduction_info **slot, tree type)
995 struct reduction_info *const red = *slot;
996 tree var = gimple_assign_lhs (red->reduc_stmt);
997 tree field = build_decl (gimple_location (red->reduc_stmt), FIELD_DECL,
998 SSA_NAME_IDENTIFIER (var), TREE_TYPE (var));
1000 insert_field_into_struct (type, field);
1002 red->field = field;
1004 return 1;
1007 /* Callback for htab_traverse. Adds a field corresponding to a ssa name
1008 described in SLOT. The type is passed in DATA. */
1011 add_field_for_name (name_to_copy_elt **slot, tree type)
1013 struct name_to_copy_elt *const elt = *slot;
1014 tree name = ssa_name (elt->version);
1015 tree field = build_decl (UNKNOWN_LOCATION,
1016 FIELD_DECL, SSA_NAME_IDENTIFIER (name),
1017 TREE_TYPE (name));
1019 insert_field_into_struct (type, field);
1020 elt->field = field;
1022 return 1;
1025 /* Callback for htab_traverse. A local result is the intermediate result
1026 computed by a single
1027 thread, or the initial value in case no iteration was executed.
1028 This function creates a phi node reflecting these values.
1029 The phi's result will be stored in NEW_PHI field of the
1030 reduction's data structure. */
1033 create_phi_for_local_result (reduction_info **slot, struct loop *loop)
1035 struct reduction_info *const reduc = *slot;
1036 edge e;
1037 gphi *new_phi;
1038 basic_block store_bb;
1039 tree local_res;
1040 source_location locus;
1042 /* STORE_BB is the block where the phi
1043 should be stored. It is the destination of the loop exit.
1044 (Find the fallthru edge from GIMPLE_OMP_CONTINUE). */
1045 store_bb = FALLTHRU_EDGE (loop->latch)->dest;
1047 /* STORE_BB has two predecessors. One coming from the loop
1048 (the reduction's result is computed at the loop),
1049 and another coming from a block preceding the loop,
1050 when no iterations
1051 are executed (the initial value should be taken). */
1052 if (EDGE_PRED (store_bb, 0) == FALLTHRU_EDGE (loop->latch))
1053 e = EDGE_PRED (store_bb, 1);
1054 else
1055 e = EDGE_PRED (store_bb, 0);
1056 local_res = copy_ssa_name (gimple_assign_lhs (reduc->reduc_stmt));
1057 locus = gimple_location (reduc->reduc_stmt);
1058 new_phi = create_phi_node (local_res, store_bb);
1059 add_phi_arg (new_phi, reduc->init, e, locus);
1060 add_phi_arg (new_phi, gimple_assign_lhs (reduc->reduc_stmt),
1061 FALLTHRU_EDGE (loop->latch), locus);
1062 reduc->new_phi = new_phi;
1064 return 1;
1067 struct clsn_data
1069 tree store;
1070 tree load;
1072 basic_block store_bb;
1073 basic_block load_bb;
1076 /* Callback for htab_traverse. Create an atomic instruction for the
1077 reduction described in SLOT.
1078 DATA annotates the place in memory the atomic operation relates to,
1079 and the basic block it needs to be generated in. */
1082 create_call_for_reduction_1 (reduction_info **slot, struct clsn_data *clsn_data)
1084 struct reduction_info *const reduc = *slot;
1085 gimple_stmt_iterator gsi;
1086 tree type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi));
1087 tree load_struct;
1088 basic_block bb;
1089 basic_block new_bb;
1090 edge e;
1091 tree t, addr, ref, x;
1092 tree tmp_load, name;
1093 gimple load;
1095 load_struct = build_simple_mem_ref (clsn_data->load);
1096 t = build3 (COMPONENT_REF, type, load_struct, reduc->field, NULL_TREE);
1098 addr = build_addr (t, current_function_decl);
1100 /* Create phi node. */
1101 bb = clsn_data->load_bb;
1103 gsi = gsi_last_bb (bb);
1104 e = split_block (bb, gsi_stmt (gsi));
1105 new_bb = e->dest;
1107 tmp_load = create_tmp_var (TREE_TYPE (TREE_TYPE (addr)));
1108 tmp_load = make_ssa_name (tmp_load);
1109 load = gimple_build_omp_atomic_load (tmp_load, addr);
1110 SSA_NAME_DEF_STMT (tmp_load) = load;
1111 gsi = gsi_start_bb (new_bb);
1112 gsi_insert_after (&gsi, load, GSI_NEW_STMT);
1114 e = split_block (new_bb, load);
1115 new_bb = e->dest;
1116 gsi = gsi_start_bb (new_bb);
1117 ref = tmp_load;
1118 x = fold_build2 (reduc->reduction_code,
1119 TREE_TYPE (PHI_RESULT (reduc->new_phi)), ref,
1120 PHI_RESULT (reduc->new_phi));
1122 name = force_gimple_operand_gsi (&gsi, x, true, NULL_TREE, true,
1123 GSI_CONTINUE_LINKING);
1125 gsi_insert_after (&gsi, gimple_build_omp_atomic_store (name), GSI_NEW_STMT);
1126 return 1;
1129 /* Create the atomic operation at the join point of the threads.
1130 REDUCTION_LIST describes the reductions in the LOOP.
1131 LD_ST_DATA describes the shared data structure where
1132 shared data is stored in and loaded from. */
1133 static void
1134 create_call_for_reduction (struct loop *loop,
1135 reduction_info_table_type *reduction_list,
1136 struct clsn_data *ld_st_data)
1138 reduction_list->traverse <struct loop *, create_phi_for_local_result> (loop);
1139 /* Find the fallthru edge from GIMPLE_OMP_CONTINUE. */
1140 ld_st_data->load_bb = FALLTHRU_EDGE (loop->latch)->dest;
1141 reduction_list
1142 ->traverse <struct clsn_data *, create_call_for_reduction_1> (ld_st_data);
1145 /* Callback for htab_traverse. Loads the final reduction value at the
1146 join point of all threads, and inserts it in the right place. */
1149 create_loads_for_reductions (reduction_info **slot, struct clsn_data *clsn_data)
1151 struct reduction_info *const red = *slot;
1152 gimple stmt;
1153 gimple_stmt_iterator gsi;
1154 tree type = TREE_TYPE (gimple_assign_lhs (red->reduc_stmt));
1155 tree load_struct;
1156 tree name;
1157 tree x;
1159 gsi = gsi_after_labels (clsn_data->load_bb);
1160 load_struct = build_simple_mem_ref (clsn_data->load);
1161 load_struct = build3 (COMPONENT_REF, type, load_struct, red->field,
1162 NULL_TREE);
1164 x = load_struct;
1165 name = PHI_RESULT (red->keep_res);
1166 stmt = gimple_build_assign (name, x);
1168 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1170 for (gsi = gsi_start_phis (gimple_bb (red->keep_res));
1171 !gsi_end_p (gsi); gsi_next (&gsi))
1172 if (gsi_stmt (gsi) == red->keep_res)
1174 remove_phi_node (&gsi, false);
1175 return 1;
1177 gcc_unreachable ();
1180 /* Load the reduction result that was stored in LD_ST_DATA.
1181 REDUCTION_LIST describes the list of reductions that the
1182 loads should be generated for. */
1183 static void
1184 create_final_loads_for_reduction (reduction_info_table_type *reduction_list,
1185 struct clsn_data *ld_st_data)
1187 gimple_stmt_iterator gsi;
1188 tree t;
1189 gimple stmt;
1191 gsi = gsi_after_labels (ld_st_data->load_bb);
1192 t = build_fold_addr_expr (ld_st_data->store);
1193 stmt = gimple_build_assign (ld_st_data->load, t);
1195 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1197 reduction_list
1198 ->traverse <struct clsn_data *, create_loads_for_reductions> (ld_st_data);
1202 /* Callback for htab_traverse. Store the neutral value for the
1203 particular reduction's operation, e.g. 0 for PLUS_EXPR,
1204 1 for MULT_EXPR, etc. into the reduction field.
1205 The reduction is specified in SLOT. The store information is
1206 passed in DATA. */
1209 create_stores_for_reduction (reduction_info **slot, struct clsn_data *clsn_data)
1211 struct reduction_info *const red = *slot;
1212 tree t;
1213 gimple stmt;
1214 gimple_stmt_iterator gsi;
1215 tree type = TREE_TYPE (gimple_assign_lhs (red->reduc_stmt));
1217 gsi = gsi_last_bb (clsn_data->store_bb);
1218 t = build3 (COMPONENT_REF, type, clsn_data->store, red->field, NULL_TREE);
1219 stmt = gimple_build_assign (t, red->initial_value);
1220 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1222 return 1;
1225 /* Callback for htab_traverse. Creates loads to a field of LOAD in LOAD_BB and
1226 store to a field of STORE in STORE_BB for the ssa name and its duplicate
1227 specified in SLOT. */
1230 create_loads_and_stores_for_name (name_to_copy_elt **slot,
1231 struct clsn_data *clsn_data)
1233 struct name_to_copy_elt *const elt = *slot;
1234 tree t;
1235 gimple stmt;
1236 gimple_stmt_iterator gsi;
1237 tree type = TREE_TYPE (elt->new_name);
1238 tree load_struct;
1240 gsi = gsi_last_bb (clsn_data->store_bb);
1241 t = build3 (COMPONENT_REF, type, clsn_data->store, elt->field, NULL_TREE);
1242 stmt = gimple_build_assign (t, ssa_name (elt->version));
1243 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1245 gsi = gsi_last_bb (clsn_data->load_bb);
1246 load_struct = build_simple_mem_ref (clsn_data->load);
1247 t = build3 (COMPONENT_REF, type, load_struct, elt->field, NULL_TREE);
1248 stmt = gimple_build_assign (elt->new_name, t);
1249 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1251 return 1;
1254 /* Moves all the variables used in LOOP and defined outside of it (including
1255 the initial values of loop phi nodes, and *PER_THREAD if it is a ssa
1256 name) to a structure created for this purpose. The code
1258 while (1)
1260 use (a);
1261 use (b);
1264 is transformed this way:
1266 bb0:
1267 old.a = a;
1268 old.b = b;
1270 bb1:
1271 a' = new->a;
1272 b' = new->b;
1273 while (1)
1275 use (a');
1276 use (b');
1279 `old' is stored to *ARG_STRUCT and `new' is stored to NEW_ARG_STRUCT. The
1280 pointer `new' is intentionally not initialized (the loop will be split to a
1281 separate function later, and `new' will be initialized from its arguments).
1282 LD_ST_DATA holds information about the shared data structure used to pass
1283 information among the threads. It is initialized here, and
1284 gen_parallel_loop will pass it to create_call_for_reduction that
1285 needs this information. REDUCTION_LIST describes the reductions
1286 in LOOP. */
1288 static void
1289 separate_decls_in_region (edge entry, edge exit,
1290 reduction_info_table_type *reduction_list,
1291 tree *arg_struct, tree *new_arg_struct,
1292 struct clsn_data *ld_st_data)
1295 basic_block bb1 = split_edge (entry);
1296 basic_block bb0 = single_pred (bb1);
1297 name_to_copy_table_type name_copies (10);
1298 int_tree_htab_type decl_copies (10);
1299 unsigned i;
1300 tree type, type_name, nvar;
1301 gimple_stmt_iterator gsi;
1302 struct clsn_data clsn_data;
1303 auto_vec<basic_block, 3> body;
1304 basic_block bb;
1305 basic_block entry_bb = bb1;
1306 basic_block exit_bb = exit->dest;
1307 bool has_debug_stmt = false;
1309 entry = single_succ_edge (entry_bb);
1310 gather_blocks_in_sese_region (entry_bb, exit_bb, &body);
1312 FOR_EACH_VEC_ELT (body, i, bb)
1314 if (bb != entry_bb && bb != exit_bb)
1316 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1317 separate_decls_in_region_stmt (entry, exit, gsi_stmt (gsi),
1318 &name_copies, &decl_copies);
1320 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1322 gimple stmt = gsi_stmt (gsi);
1324 if (is_gimple_debug (stmt))
1325 has_debug_stmt = true;
1326 else
1327 separate_decls_in_region_stmt (entry, exit, stmt,
1328 &name_copies, &decl_copies);
1333 /* Now process debug bind stmts. We must not create decls while
1334 processing debug stmts, so we defer their processing so as to
1335 make sure we will have debug info for as many variables as
1336 possible (all of those that were dealt with in the loop above),
1337 and discard those for which we know there's nothing we can
1338 do. */
1339 if (has_debug_stmt)
1340 FOR_EACH_VEC_ELT (body, i, bb)
1341 if (bb != entry_bb && bb != exit_bb)
1343 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
1345 gimple stmt = gsi_stmt (gsi);
1347 if (is_gimple_debug (stmt))
1349 if (separate_decls_in_region_debug (stmt, &name_copies,
1350 &decl_copies))
1352 gsi_remove (&gsi, true);
1353 continue;
1357 gsi_next (&gsi);
1361 if (name_copies.elements () == 0 && reduction_list->elements () == 0)
1363 /* It may happen that there is nothing to copy (if there are only
1364 loop carried and external variables in the loop). */
1365 *arg_struct = NULL;
1366 *new_arg_struct = NULL;
1368 else
1370 /* Create the type for the structure to store the ssa names to. */
1371 type = lang_hooks.types.make_type (RECORD_TYPE);
1372 type_name = build_decl (UNKNOWN_LOCATION,
1373 TYPE_DECL, create_tmp_var_name (".paral_data"),
1374 type);
1375 TYPE_NAME (type) = type_name;
1377 name_copies.traverse <tree, add_field_for_name> (type);
1378 if (reduction_list && reduction_list->elements () > 0)
1380 /* Create the fields for reductions. */
1381 reduction_list->traverse <tree, add_field_for_reduction> (type);
1383 layout_type (type);
1385 /* Create the loads and stores. */
1386 *arg_struct = create_tmp_var (type, ".paral_data_store");
1387 nvar = create_tmp_var (build_pointer_type (type), ".paral_data_load");
1388 *new_arg_struct = make_ssa_name (nvar);
1390 ld_st_data->store = *arg_struct;
1391 ld_st_data->load = *new_arg_struct;
1392 ld_st_data->store_bb = bb0;
1393 ld_st_data->load_bb = bb1;
1395 name_copies
1396 .traverse <struct clsn_data *, create_loads_and_stores_for_name>
1397 (ld_st_data);
1399 /* Load the calculation from memory (after the join of the threads). */
1401 if (reduction_list && reduction_list->elements () > 0)
1403 reduction_list
1404 ->traverse <struct clsn_data *, create_stores_for_reduction>
1405 (ld_st_data);
1406 clsn_data.load = make_ssa_name (nvar);
1407 clsn_data.load_bb = exit->dest;
1408 clsn_data.store = ld_st_data->store;
1409 create_final_loads_for_reduction (reduction_list, &clsn_data);
1414 /* Returns true if FN was created to run in parallel. */
1416 bool
1417 parallelized_function_p (tree fndecl)
1419 cgraph_node *node = cgraph_node::get (fndecl);
1420 gcc_assert (node != NULL);
1421 return node->parallelized_function;
1424 /* Creates and returns an empty function that will receive the body of
1425 a parallelized loop. */
1427 static tree
1428 create_loop_fn (location_t loc)
1430 char buf[100];
1431 char *tname;
1432 tree decl, type, name, t;
1433 struct function *act_cfun = cfun;
1434 static unsigned loopfn_num;
1436 loc = LOCATION_LOCUS (loc);
1437 snprintf (buf, 100, "%s.$loopfn", current_function_name ());
1438 ASM_FORMAT_PRIVATE_NAME (tname, buf, loopfn_num++);
1439 clean_symbol_name (tname);
1440 name = get_identifier (tname);
1441 type = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
1443 decl = build_decl (loc, FUNCTION_DECL, name, type);
1444 TREE_STATIC (decl) = 1;
1445 TREE_USED (decl) = 1;
1446 DECL_ARTIFICIAL (decl) = 1;
1447 DECL_IGNORED_P (decl) = 0;
1448 TREE_PUBLIC (decl) = 0;
1449 DECL_UNINLINABLE (decl) = 1;
1450 DECL_EXTERNAL (decl) = 0;
1451 DECL_CONTEXT (decl) = NULL_TREE;
1452 DECL_INITIAL (decl) = make_node (BLOCK);
1454 t = build_decl (loc, RESULT_DECL, NULL_TREE, void_type_node);
1455 DECL_ARTIFICIAL (t) = 1;
1456 DECL_IGNORED_P (t) = 1;
1457 DECL_RESULT (decl) = t;
1459 t = build_decl (loc, PARM_DECL, get_identifier (".paral_data_param"),
1460 ptr_type_node);
1461 DECL_ARTIFICIAL (t) = 1;
1462 DECL_ARG_TYPE (t) = ptr_type_node;
1463 DECL_CONTEXT (t) = decl;
1464 TREE_USED (t) = 1;
1465 DECL_ARGUMENTS (decl) = t;
1467 allocate_struct_function (decl, false);
1469 /* The call to allocate_struct_function clobbers CFUN, so we need to restore
1470 it. */
1471 set_cfun (act_cfun);
1473 return decl;
1476 /* Replace uses of NAME by VAL in block BB. */
1478 static void
1479 replace_uses_in_bb_by (tree name, tree val, basic_block bb)
1481 gimple use_stmt;
1482 imm_use_iterator imm_iter;
1484 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, name)
1486 if (gimple_bb (use_stmt) != bb)
1487 continue;
1489 use_operand_p use_p;
1490 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
1491 SET_USE (use_p, val);
1495 /* Replace uses of NAME by VAL in blocks BBS. */
1497 static void
1498 replace_uses_in_bbs_by (tree name, tree val, bitmap bbs)
1500 gimple use_stmt;
1501 imm_use_iterator imm_iter;
1503 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, name)
1505 if (!bitmap_bit_p (bbs, gimple_bb (use_stmt)->index))
1506 continue;
1508 use_operand_p use_p;
1509 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
1510 SET_USE (use_p, val);
1514 /* Do transformation from:
1516 <bb preheader>:
1518 goto <bb header>
1520 <bb header>:
1521 ivtmp_a = PHI <ivtmp_init (preheader), ivtmp_b (latch)>
1522 sum_a = PHI <sum_init (preheader), sum_b (latch)>
1524 use (ivtmp_a)
1526 sum_b = sum_a + sum_update
1528 if (ivtmp_a < n)
1529 goto <bb latch>;
1530 else
1531 goto <bb exit>;
1533 <bb latch>:
1534 ivtmp_b = ivtmp_a + 1;
1535 goto <bb header>
1537 <bb exit>:
1538 sum_z = PHI <sum_b (cond[1])>
1540 [1] Where <bb cond> is single_pred (bb latch); In the simplest case,
1541 that's <bb header>.
1545 <bb preheader>:
1547 goto <bb newheader>
1549 <bb header>:
1550 ivtmp_a = PHI <ivtmp_c (latch)>
1551 sum_a = PHI <sum_c (latch)>
1553 use (ivtmp_a)
1555 sum_b = sum_a + sum_update
1557 goto <bb latch>;
1559 <bb newheader>:
1560 ivtmp_c = PHI <ivtmp_init (preheader), ivtmp_b (latch)>
1561 sum_c = PHI <sum_init (preheader), sum_b (latch)>
1562 if (ivtmp_c < n + 1)
1563 goto <bb header>;
1564 else
1565 goto <bb exit>;
1567 <bb latch>:
1568 ivtmp_b = ivtmp_a + 1;
1569 goto <bb newheader>
1571 <bb exit>:
1572 sum_z = PHI <sum_c (newheader)>
1575 In unified diff format:
1577 <bb preheader>:
1579 - goto <bb header>
1580 + goto <bb newheader>
1582 <bb header>:
1583 - ivtmp_a = PHI <ivtmp_init (preheader), ivtmp_b (latch)>
1584 - sum_a = PHI <sum_init (preheader), sum_b (latch)>
1585 + ivtmp_a = PHI <ivtmp_c (latch)>
1586 + sum_a = PHI <sum_c (latch)>
1588 use (ivtmp_a)
1590 sum_b = sum_a + sum_update
1592 - if (ivtmp_a < n)
1593 - goto <bb latch>;
1594 + goto <bb latch>;
1596 + <bb newheader>:
1597 + ivtmp_c = PHI <ivtmp_init (preheader), ivtmp_b (latch)>
1598 + sum_c = PHI <sum_init (preheader), sum_b (latch)>
1599 + if (ivtmp_c < n + 1)
1600 + goto <bb header>;
1601 else
1602 goto <bb exit>;
1604 <bb latch>:
1605 ivtmp_b = ivtmp_a + 1;
1606 - goto <bb header>
1607 + goto <bb newheader>
1609 <bb exit>:
1610 - sum_z = PHI <sum_b (cond[1])>
1611 + sum_z = PHI <sum_c (newheader)>
1613 Note: the example does not show any virtual phis, but these are handled more
1614 or less as reductions.
1617 Moves the exit condition of LOOP to the beginning of its header.
1618 REDUCTION_LIST describes the reductions in LOOP. BOUND is the new loop
1619 bound. */
1621 static void
1622 transform_to_exit_first_loop_alt (struct loop *loop,
1623 reduction_info_table_type *reduction_list,
1624 tree bound)
1626 basic_block header = loop->header;
1627 basic_block latch = loop->latch;
1628 edge exit = single_dom_exit (loop);
1629 basic_block exit_block = exit->dest;
1630 gcond *cond_stmt = as_a <gcond *> (last_stmt (exit->src));
1631 tree control = gimple_cond_lhs (cond_stmt);
1632 edge e;
1634 /* Gather the bbs dominated by the exit block. */
1635 bitmap exit_dominated = BITMAP_ALLOC (NULL);
1636 bitmap_set_bit (exit_dominated, exit_block->index);
1637 vec<basic_block> exit_dominated_vec
1638 = get_dominated_by (CDI_DOMINATORS, exit_block);
1640 int i;
1641 basic_block dom_bb;
1642 FOR_EACH_VEC_ELT (exit_dominated_vec, i, dom_bb)
1643 bitmap_set_bit (exit_dominated, dom_bb->index);
1645 exit_dominated_vec.release ();
1647 /* Create the new_header block. */
1648 basic_block new_header = split_block_before_cond_jump (exit->src);
1649 edge split_edge = single_pred_edge (new_header);
1651 /* Redirect entry edge to new_header. */
1652 edge entry = loop_preheader_edge (loop);
1653 e = redirect_edge_and_branch (entry, new_header);
1654 gcc_assert (e == entry);
1656 /* Redirect post_inc_edge to new_header. */
1657 edge post_inc_edge = single_succ_edge (latch);
1658 e = redirect_edge_and_branch (post_inc_edge, new_header);
1659 gcc_assert (e == post_inc_edge);
1661 /* Redirect post_cond_edge to header. */
1662 edge post_cond_edge = single_pred_edge (latch);
1663 e = redirect_edge_and_branch (post_cond_edge, header);
1664 gcc_assert (e == post_cond_edge);
1666 /* Redirect split_edge to latch. */
1667 e = redirect_edge_and_branch (split_edge, latch);
1668 gcc_assert (e == split_edge);
1670 /* Set the new loop bound. */
1671 gimple_cond_set_rhs (cond_stmt, bound);
1672 update_stmt (cond_stmt);
1674 /* Repair the ssa. */
1675 vec<edge_var_map> *v = redirect_edge_var_map_vector (post_inc_edge);
1676 edge_var_map *vm;
1677 gphi_iterator gsi;
1678 for (gsi = gsi_start_phis (header), i = 0;
1679 !gsi_end_p (gsi) && v->iterate (i, &vm);
1680 gsi_next (&gsi), i++)
1682 gphi *phi = gsi.phi ();
1683 tree res_a = PHI_RESULT (phi);
1685 /* Create new phi. */
1686 tree res_c = copy_ssa_name (res_a, phi);
1687 gphi *nphi = create_phi_node (res_c, new_header);
1689 /* Replace ivtmp_a with ivtmp_c in condition 'if (ivtmp_a < n)'. */
1690 replace_uses_in_bb_by (res_a, res_c, new_header);
1692 /* Replace ivtmp/sum_b with ivtmp/sum_c in header phi. */
1693 add_phi_arg (phi, res_c, post_cond_edge, UNKNOWN_LOCATION);
1695 /* Replace sum_b with sum_c in exit phi. Loop-closed ssa does not hold
1696 for virtuals, so we cannot get away with exit_block only. */
1697 tree res_b = redirect_edge_var_map_def (vm);
1698 replace_uses_in_bbs_by (res_b, res_c, exit_dominated);
1700 struct reduction_info *red = reduction_phi (reduction_list, phi);
1701 gcc_assert (virtual_operand_p (res_a)
1702 || res_a == control
1703 || red != NULL);
1705 if (red)
1707 /* Register the new reduction phi. */
1708 red->reduc_phi = nphi;
1709 gimple_set_uid (red->reduc_phi, red->reduc_version);
1712 gcc_assert (gsi_end_p (gsi) && !v->iterate (i, &vm));
1713 BITMAP_FREE (exit_dominated);
1715 /* Set the preheader argument of the new phis to ivtmp/sum_init. */
1716 flush_pending_stmts (entry);
1718 /* Set the latch arguments of the new phis to ivtmp/sum_b. */
1719 flush_pending_stmts (post_inc_edge);
1721 /* Register the reduction exit phis. */
1722 for (gphi_iterator gsi = gsi_start_phis (exit_block);
1723 !gsi_end_p (gsi);
1724 gsi_next (&gsi))
1726 gphi *phi = gsi.phi ();
1727 tree res_z = PHI_RESULT (phi);
1728 if (virtual_operand_p (res_z))
1729 continue;
1731 tree res_c = PHI_ARG_DEF_FROM_EDGE (phi, exit);
1732 gimple reduc_phi = SSA_NAME_DEF_STMT (res_c);
1733 struct reduction_info *red = reduction_phi (reduction_list, reduc_phi);
1734 if (red != NULL)
1735 red->keep_res = phi;
1738 /* We're going to cancel the loop at the end of gen_parallel_loop, but until
1739 then we're still using some fields, so only bother about fields that are
1740 still used: header and latch.
1741 The loop has a new header bb, so we update it. The latch bb stays the
1742 same. */
1743 loop->header = new_header;
1745 /* Recalculate dominance info. */
1746 free_dominance_info (CDI_DOMINATORS);
1747 calculate_dominance_info (CDI_DOMINATORS);
1750 /* Tries to moves the exit condition of LOOP to the beginning of its header
1751 without duplication of the loop body. NIT is the number of iterations of the
1752 loop. REDUCTION_LIST describes the reductions in LOOP. Return true if
1753 transformation is successful. */
1755 static bool
1756 try_transform_to_exit_first_loop_alt (struct loop *loop,
1757 reduction_info_table_type *reduction_list,
1758 tree nit)
1760 /* Check whether the latch contains a single statement. */
1761 if (!gimple_seq_nondebug_singleton_p (bb_seq (loop->latch)))
1762 return false;
1764 /* Check whether the latch contains the loop iv increment. */
1765 edge back = single_succ_edge (loop->latch);
1766 edge exit = single_dom_exit (loop);
1767 gcond *cond_stmt = as_a <gcond *> (last_stmt (exit->src));
1768 tree control = gimple_cond_lhs (cond_stmt);
1769 gphi *phi = as_a <gphi *> (SSA_NAME_DEF_STMT (control));
1770 tree inc_res = gimple_phi_arg_def (phi, back->dest_idx);
1771 if (gimple_bb (SSA_NAME_DEF_STMT (inc_res)) != loop->latch)
1772 return false;
1774 /* Check whether there's no code between the loop condition and the latch. */
1775 if (!single_pred_p (loop->latch)
1776 || single_pred (loop->latch) != exit->src)
1777 return false;
1779 tree alt_bound = NULL_TREE;
1780 tree nit_type = TREE_TYPE (nit);
1782 /* Figure out whether nit + 1 overflows. */
1783 if (TREE_CODE (nit) == INTEGER_CST)
1785 if (!tree_int_cst_equal (nit, TYPE_MAXVAL (nit_type)))
1787 alt_bound = fold_build2_loc (UNKNOWN_LOCATION, PLUS_EXPR, nit_type,
1788 nit, build_one_cst (nit_type));
1790 gcc_assert (TREE_CODE (alt_bound) == INTEGER_CST);
1791 transform_to_exit_first_loop_alt (loop, reduction_list, alt_bound);
1792 return true;
1794 else
1796 /* Todo: Figure out if we can trigger this, if it's worth to handle
1797 optimally, and if we can handle it optimally. */
1798 return false;
1802 gcc_assert (TREE_CODE (nit) == SSA_NAME);
1804 gimple def = SSA_NAME_DEF_STMT (nit);
1806 if (def
1807 && is_gimple_assign (def)
1808 && gimple_assign_rhs_code (def) == PLUS_EXPR)
1810 tree op1 = gimple_assign_rhs1 (def);
1811 tree op2 = gimple_assign_rhs2 (def);
1812 if (integer_minus_onep (op1))
1813 alt_bound = op2;
1814 else if (integer_minus_onep (op2))
1815 alt_bound = op1;
1818 if (alt_bound == NULL_TREE)
1819 return false;
1821 transform_to_exit_first_loop_alt (loop, reduction_list, alt_bound);
1822 return true;
1825 /* Moves the exit condition of LOOP to the beginning of its header. NIT is the
1826 number of iterations of the loop. REDUCTION_LIST describes the reductions in
1827 LOOP. */
1829 static void
1830 transform_to_exit_first_loop (struct loop *loop,
1831 reduction_info_table_type *reduction_list,
1832 tree nit)
1834 basic_block *bbs, *nbbs, ex_bb, orig_header;
1835 unsigned n;
1836 bool ok;
1837 edge exit = single_dom_exit (loop), hpred;
1838 tree control, control_name, res, t;
1839 gphi *phi, *nphi;
1840 gassign *stmt;
1841 gcond *cond_stmt, *cond_nit;
1842 tree nit_1;
1844 split_block_after_labels (loop->header);
1845 orig_header = single_succ (loop->header);
1846 hpred = single_succ_edge (loop->header);
1848 cond_stmt = as_a <gcond *> (last_stmt (exit->src));
1849 control = gimple_cond_lhs (cond_stmt);
1850 gcc_assert (gimple_cond_rhs (cond_stmt) == nit);
1852 /* Make sure that we have phi nodes on exit for all loop header phis
1853 (create_parallel_loop requires that). */
1854 for (gphi_iterator gsi = gsi_start_phis (loop->header);
1855 !gsi_end_p (gsi);
1856 gsi_next (&gsi))
1858 phi = gsi.phi ();
1859 res = PHI_RESULT (phi);
1860 t = copy_ssa_name (res, phi);
1861 SET_PHI_RESULT (phi, t);
1862 nphi = create_phi_node (res, orig_header);
1863 add_phi_arg (nphi, t, hpred, UNKNOWN_LOCATION);
1865 if (res == control)
1867 gimple_cond_set_lhs (cond_stmt, t);
1868 update_stmt (cond_stmt);
1869 control = t;
1873 bbs = get_loop_body_in_dom_order (loop);
1875 for (n = 0; bbs[n] != exit->src; n++)
1876 continue;
1877 nbbs = XNEWVEC (basic_block, n);
1878 ok = gimple_duplicate_sese_tail (single_succ_edge (loop->header), exit,
1879 bbs + 1, n, nbbs);
1880 gcc_assert (ok);
1881 free (bbs);
1882 ex_bb = nbbs[0];
1883 free (nbbs);
1885 /* Other than reductions, the only gimple reg that should be copied
1886 out of the loop is the control variable. */
1887 exit = single_dom_exit (loop);
1888 control_name = NULL_TREE;
1889 for (gphi_iterator gsi = gsi_start_phis (ex_bb);
1890 !gsi_end_p (gsi); )
1892 phi = gsi.phi ();
1893 res = PHI_RESULT (phi);
1894 if (virtual_operand_p (res))
1896 gsi_next (&gsi);
1897 continue;
1900 /* Check if it is a part of reduction. If it is,
1901 keep the phi at the reduction's keep_res field. The
1902 PHI_RESULT of this phi is the resulting value of the reduction
1903 variable when exiting the loop. */
1905 if (reduction_list->elements () > 0)
1907 struct reduction_info *red;
1909 tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit);
1910 red = reduction_phi (reduction_list, SSA_NAME_DEF_STMT (val));
1911 if (red)
1913 red->keep_res = phi;
1914 gsi_next (&gsi);
1915 continue;
1918 gcc_assert (control_name == NULL_TREE
1919 && SSA_NAME_VAR (res) == SSA_NAME_VAR (control));
1920 control_name = res;
1921 remove_phi_node (&gsi, false);
1923 gcc_assert (control_name != NULL_TREE);
1925 /* Initialize the control variable to number of iterations
1926 according to the rhs of the exit condition. */
1927 gimple_stmt_iterator gsi = gsi_after_labels (ex_bb);
1928 cond_nit = as_a <gcond *> (last_stmt (exit->src));
1929 nit_1 = gimple_cond_rhs (cond_nit);
1930 nit_1 = force_gimple_operand_gsi (&gsi,
1931 fold_convert (TREE_TYPE (control_name), nit_1),
1932 false, NULL_TREE, false, GSI_SAME_STMT);
1933 stmt = gimple_build_assign (control_name, nit_1);
1934 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1937 /* Create the parallel constructs for LOOP as described in gen_parallel_loop.
1938 LOOP_FN and DATA are the arguments of GIMPLE_OMP_PARALLEL.
1939 NEW_DATA is the variable that should be initialized from the argument
1940 of LOOP_FN. N_THREADS is the requested number of threads. Returns the
1941 basic block containing GIMPLE_OMP_PARALLEL tree. */
1943 static basic_block
1944 create_parallel_loop (struct loop *loop, tree loop_fn, tree data,
1945 tree new_data, unsigned n_threads, location_t loc)
1947 gimple_stmt_iterator gsi;
1948 basic_block bb, paral_bb, for_bb, ex_bb;
1949 tree t, param;
1950 gomp_parallel *omp_par_stmt;
1951 gimple omp_return_stmt1, omp_return_stmt2;
1952 gimple phi;
1953 gcond *cond_stmt;
1954 gomp_for *for_stmt;
1955 gomp_continue *omp_cont_stmt;
1956 tree cvar, cvar_init, initvar, cvar_next, cvar_base, type;
1957 edge exit, nexit, guard, end, e;
1959 /* Prepare the GIMPLE_OMP_PARALLEL statement. */
1960 bb = loop_preheader_edge (loop)->src;
1961 paral_bb = single_pred (bb);
1962 gsi = gsi_last_bb (paral_bb);
1964 t = build_omp_clause (loc, OMP_CLAUSE_NUM_THREADS);
1965 OMP_CLAUSE_NUM_THREADS_EXPR (t)
1966 = build_int_cst (integer_type_node, n_threads);
1967 omp_par_stmt = gimple_build_omp_parallel (NULL, t, loop_fn, data);
1968 gimple_set_location (omp_par_stmt, loc);
1970 gsi_insert_after (&gsi, omp_par_stmt, GSI_NEW_STMT);
1972 /* Initialize NEW_DATA. */
1973 if (data)
1975 gassign *assign_stmt;
1977 gsi = gsi_after_labels (bb);
1979 param = make_ssa_name (DECL_ARGUMENTS (loop_fn));
1980 assign_stmt = gimple_build_assign (param, build_fold_addr_expr (data));
1981 gsi_insert_before (&gsi, assign_stmt, GSI_SAME_STMT);
1983 assign_stmt = gimple_build_assign (new_data,
1984 fold_convert (TREE_TYPE (new_data), param));
1985 gsi_insert_before (&gsi, assign_stmt, GSI_SAME_STMT);
1988 /* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_PARALLEL. */
1989 bb = split_loop_exit_edge (single_dom_exit (loop));
1990 gsi = gsi_last_bb (bb);
1991 omp_return_stmt1 = gimple_build_omp_return (false);
1992 gimple_set_location (omp_return_stmt1, loc);
1993 gsi_insert_after (&gsi, omp_return_stmt1, GSI_NEW_STMT);
1995 /* Extract data for GIMPLE_OMP_FOR. */
1996 gcc_assert (loop->header == single_dom_exit (loop)->src);
1997 cond_stmt = as_a <gcond *> (last_stmt (loop->header));
1999 cvar = gimple_cond_lhs (cond_stmt);
2000 cvar_base = SSA_NAME_VAR (cvar);
2001 phi = SSA_NAME_DEF_STMT (cvar);
2002 cvar_init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
2003 initvar = copy_ssa_name (cvar);
2004 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (phi, loop_preheader_edge (loop)),
2005 initvar);
2006 cvar_next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
2008 gsi = gsi_last_nondebug_bb (loop->latch);
2009 gcc_assert (gsi_stmt (gsi) == SSA_NAME_DEF_STMT (cvar_next));
2010 gsi_remove (&gsi, true);
2012 /* Prepare cfg. */
2013 for_bb = split_edge (loop_preheader_edge (loop));
2014 ex_bb = split_loop_exit_edge (single_dom_exit (loop));
2015 extract_true_false_edges_from_block (loop->header, &nexit, &exit);
2016 gcc_assert (exit == single_dom_exit (loop));
2018 guard = make_edge (for_bb, ex_bb, 0);
2019 single_succ_edge (loop->latch)->flags = 0;
2020 end = make_edge (loop->latch, ex_bb, EDGE_FALLTHRU);
2021 for (gphi_iterator gpi = gsi_start_phis (ex_bb);
2022 !gsi_end_p (gpi); gsi_next (&gpi))
2024 source_location locus;
2025 tree def;
2026 gphi *phi = gpi.phi ();
2027 gphi *stmt;
2029 stmt = as_a <gphi *> (
2030 SSA_NAME_DEF_STMT (PHI_ARG_DEF_FROM_EDGE (phi, exit)));
2032 def = PHI_ARG_DEF_FROM_EDGE (stmt, loop_preheader_edge (loop));
2033 locus = gimple_phi_arg_location_from_edge (stmt,
2034 loop_preheader_edge (loop));
2035 add_phi_arg (phi, def, guard, locus);
2037 def = PHI_ARG_DEF_FROM_EDGE (stmt, loop_latch_edge (loop));
2038 locus = gimple_phi_arg_location_from_edge (stmt, loop_latch_edge (loop));
2039 add_phi_arg (phi, def, end, locus);
2041 e = redirect_edge_and_branch (exit, nexit->dest);
2042 PENDING_STMT (e) = NULL;
2044 /* Emit GIMPLE_OMP_FOR. */
2045 gimple_cond_set_lhs (cond_stmt, cvar_base);
2046 type = TREE_TYPE (cvar);
2047 t = build_omp_clause (loc, OMP_CLAUSE_SCHEDULE);
2048 OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_STATIC;
2050 for_stmt = gimple_build_omp_for (NULL, GF_OMP_FOR_KIND_FOR, t, 1, NULL);
2051 gimple_set_location (for_stmt, loc);
2052 gimple_omp_for_set_index (for_stmt, 0, initvar);
2053 gimple_omp_for_set_initial (for_stmt, 0, cvar_init);
2054 gimple_omp_for_set_final (for_stmt, 0, gimple_cond_rhs (cond_stmt));
2055 gimple_omp_for_set_cond (for_stmt, 0, gimple_cond_code (cond_stmt));
2056 gimple_omp_for_set_incr (for_stmt, 0, build2 (PLUS_EXPR, type,
2057 cvar_base,
2058 build_int_cst (type, 1)));
2060 gsi = gsi_last_bb (for_bb);
2061 gsi_insert_after (&gsi, for_stmt, GSI_NEW_STMT);
2062 SSA_NAME_DEF_STMT (initvar) = for_stmt;
2064 /* Emit GIMPLE_OMP_CONTINUE. */
2065 gsi = gsi_last_bb (loop->latch);
2066 omp_cont_stmt = gimple_build_omp_continue (cvar_next, cvar);
2067 gimple_set_location (omp_cont_stmt, loc);
2068 gsi_insert_after (&gsi, omp_cont_stmt, GSI_NEW_STMT);
2069 SSA_NAME_DEF_STMT (cvar_next) = omp_cont_stmt;
2071 /* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_FOR. */
2072 gsi = gsi_last_bb (ex_bb);
2073 omp_return_stmt2 = gimple_build_omp_return (true);
2074 gimple_set_location (omp_return_stmt2, loc);
2075 gsi_insert_after (&gsi, omp_return_stmt2, GSI_NEW_STMT);
2077 /* After the above dom info is hosed. Re-compute it. */
2078 free_dominance_info (CDI_DOMINATORS);
2079 calculate_dominance_info (CDI_DOMINATORS);
2081 return paral_bb;
2084 /* Generates code to execute the iterations of LOOP in N_THREADS
2085 threads in parallel.
2087 NITER describes number of iterations of LOOP.
2088 REDUCTION_LIST describes the reductions existent in the LOOP. */
2090 static void
2091 gen_parallel_loop (struct loop *loop,
2092 reduction_info_table_type *reduction_list,
2093 unsigned n_threads, struct tree_niter_desc *niter)
2095 tree many_iterations_cond, type, nit;
2096 tree arg_struct, new_arg_struct;
2097 gimple_seq stmts;
2098 edge entry, exit;
2099 struct clsn_data clsn_data;
2100 unsigned prob;
2101 location_t loc;
2102 gimple cond_stmt;
2103 unsigned int m_p_thread=2;
2105 /* From
2107 ---------------------------------------------------------------------
2108 loop
2110 IV = phi (INIT, IV + STEP)
2111 BODY1;
2112 if (COND)
2113 break;
2114 BODY2;
2116 ---------------------------------------------------------------------
2118 with # of iterations NITER (possibly with MAY_BE_ZERO assumption),
2119 we generate the following code:
2121 ---------------------------------------------------------------------
2123 if (MAY_BE_ZERO
2124 || NITER < MIN_PER_THREAD * N_THREADS)
2125 goto original;
2127 BODY1;
2128 store all local loop-invariant variables used in body of the loop to DATA.
2129 GIMPLE_OMP_PARALLEL (OMP_CLAUSE_NUM_THREADS (N_THREADS), LOOPFN, DATA);
2130 load the variables from DATA.
2131 GIMPLE_OMP_FOR (IV = INIT; COND; IV += STEP) (OMP_CLAUSE_SCHEDULE (static))
2132 BODY2;
2133 BODY1;
2134 GIMPLE_OMP_CONTINUE;
2135 GIMPLE_OMP_RETURN -- GIMPLE_OMP_FOR
2136 GIMPLE_OMP_RETURN -- GIMPLE_OMP_PARALLEL
2137 goto end;
2139 original:
2140 loop
2142 IV = phi (INIT, IV + STEP)
2143 BODY1;
2144 if (COND)
2145 break;
2146 BODY2;
2149 end:
2153 /* Create two versions of the loop -- in the old one, we know that the
2154 number of iterations is large enough, and we will transform it into the
2155 loop that will be split to loop_fn, the new one will be used for the
2156 remaining iterations. */
2158 /* We should compute a better number-of-iterations value for outer loops.
2159 That is, if we have
2161 for (i = 0; i < n; ++i)
2162 for (j = 0; j < m; ++j)
2165 we should compute nit = n * m, not nit = n.
2166 Also may_be_zero handling would need to be adjusted. */
2168 type = TREE_TYPE (niter->niter);
2169 nit = force_gimple_operand (unshare_expr (niter->niter), &stmts, true,
2170 NULL_TREE);
2171 if (stmts)
2172 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
2174 if (loop->inner)
2175 m_p_thread=2;
2176 else
2177 m_p_thread=MIN_PER_THREAD;
2179 many_iterations_cond =
2180 fold_build2 (GE_EXPR, boolean_type_node,
2181 nit, build_int_cst (type, m_p_thread * n_threads));
2183 many_iterations_cond
2184 = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2185 invert_truthvalue (unshare_expr (niter->may_be_zero)),
2186 many_iterations_cond);
2187 many_iterations_cond
2188 = force_gimple_operand (many_iterations_cond, &stmts, false, NULL_TREE);
2189 if (stmts)
2190 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
2191 if (!is_gimple_condexpr (many_iterations_cond))
2193 many_iterations_cond
2194 = force_gimple_operand (many_iterations_cond, &stmts,
2195 true, NULL_TREE);
2196 if (stmts)
2197 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
2200 initialize_original_copy_tables ();
2202 /* We assume that the loop usually iterates a lot. */
2203 prob = 4 * REG_BR_PROB_BASE / 5;
2204 loop_version (loop, many_iterations_cond, NULL,
2205 prob, prob, REG_BR_PROB_BASE - prob, true);
2206 update_ssa (TODO_update_ssa);
2207 free_original_copy_tables ();
2209 /* Base all the induction variables in LOOP on a single control one. */
2210 canonicalize_loop_ivs (loop, &nit, true);
2212 /* Ensure that the exit condition is the first statement in the loop.
2213 The common case is that latch of the loop is empty (apart from the
2214 increment) and immediately follows the loop exit test. Attempt to move the
2215 entry of the loop directly before the exit check and increase the number of
2216 iterations of the loop by one. */
2217 if (!try_transform_to_exit_first_loop_alt (loop, reduction_list, nit))
2219 /* Fall back on the method that handles more cases, but duplicates the
2220 loop body: move the exit condition of LOOP to the beginning of its
2221 header, and duplicate the part of the last iteration that gets disabled
2222 to the exit of the loop. */
2223 transform_to_exit_first_loop (loop, reduction_list, nit);
2226 /* Generate initializations for reductions. */
2227 if (reduction_list->elements () > 0)
2228 reduction_list->traverse <struct loop *, initialize_reductions> (loop);
2230 /* Eliminate the references to local variables from the loop. */
2231 gcc_assert (single_exit (loop));
2232 entry = loop_preheader_edge (loop);
2233 exit = single_dom_exit (loop);
2235 eliminate_local_variables (entry, exit);
2236 /* In the old loop, move all variables non-local to the loop to a structure
2237 and back, and create separate decls for the variables used in loop. */
2238 separate_decls_in_region (entry, exit, reduction_list, &arg_struct,
2239 &new_arg_struct, &clsn_data);
2241 /* Create the parallel constructs. */
2242 loc = UNKNOWN_LOCATION;
2243 cond_stmt = last_stmt (loop->header);
2244 if (cond_stmt)
2245 loc = gimple_location (cond_stmt);
2246 create_parallel_loop (loop, create_loop_fn (loc), arg_struct,
2247 new_arg_struct, n_threads, loc);
2248 if (reduction_list->elements () > 0)
2249 create_call_for_reduction (loop, reduction_list, &clsn_data);
2251 scev_reset ();
2253 /* Cancel the loop (it is simpler to do it here rather than to teach the
2254 expander to do it). */
2255 cancel_loop_tree (loop);
2257 /* Free loop bound estimations that could contain references to
2258 removed statements. */
2259 FOR_EACH_LOOP (loop, 0)
2260 free_numbers_of_iterations_estimates_loop (loop);
2263 /* Returns true when LOOP contains vector phi nodes. */
2265 static bool
2266 loop_has_vector_phi_nodes (struct loop *loop ATTRIBUTE_UNUSED)
2268 unsigned i;
2269 basic_block *bbs = get_loop_body_in_dom_order (loop);
2270 gphi_iterator gsi;
2271 bool res = true;
2273 for (i = 0; i < loop->num_nodes; i++)
2274 for (gsi = gsi_start_phis (bbs[i]); !gsi_end_p (gsi); gsi_next (&gsi))
2275 if (TREE_CODE (TREE_TYPE (PHI_RESULT (gsi.phi ()))) == VECTOR_TYPE)
2276 goto end;
2278 res = false;
2279 end:
2280 free (bbs);
2281 return res;
2284 /* Create a reduction_info struct, initialize it with REDUC_STMT
2285 and PHI, insert it to the REDUCTION_LIST. */
2287 static void
2288 build_new_reduction (reduction_info_table_type *reduction_list,
2289 gimple reduc_stmt, gphi *phi)
2291 reduction_info **slot;
2292 struct reduction_info *new_reduction;
2294 gcc_assert (reduc_stmt);
2296 if (dump_file && (dump_flags & TDF_DETAILS))
2298 fprintf (dump_file,
2299 "Detected reduction. reduction stmt is: \n");
2300 print_gimple_stmt (dump_file, reduc_stmt, 0, 0);
2301 fprintf (dump_file, "\n");
2304 new_reduction = XCNEW (struct reduction_info);
2306 new_reduction->reduc_stmt = reduc_stmt;
2307 new_reduction->reduc_phi = phi;
2308 new_reduction->reduc_version = SSA_NAME_VERSION (gimple_phi_result (phi));
2309 new_reduction->reduction_code = gimple_assign_rhs_code (reduc_stmt);
2310 slot = reduction_list->find_slot (new_reduction, INSERT);
2311 *slot = new_reduction;
2314 /* Callback for htab_traverse. Sets gimple_uid of reduc_phi stmts. */
2317 set_reduc_phi_uids (reduction_info **slot, void *data ATTRIBUTE_UNUSED)
2319 struct reduction_info *const red = *slot;
2320 gimple_set_uid (red->reduc_phi, red->reduc_version);
2321 return 1;
2324 /* Detect all reductions in the LOOP, insert them into REDUCTION_LIST. */
2326 static void
2327 gather_scalar_reductions (loop_p loop, reduction_info_table_type *reduction_list)
2329 gphi_iterator gsi;
2330 loop_vec_info simple_loop_info;
2332 simple_loop_info = vect_analyze_loop_form (loop);
2334 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
2336 gphi *phi = gsi.phi ();
2337 affine_iv iv;
2338 tree res = PHI_RESULT (phi);
2339 bool double_reduc;
2341 if (virtual_operand_p (res))
2342 continue;
2344 if (!simple_iv (loop, loop, res, &iv, true)
2345 && simple_loop_info)
2347 gimple reduc_stmt = vect_force_simple_reduction (simple_loop_info,
2348 phi, true,
2349 &double_reduc);
2350 if (reduc_stmt && !double_reduc)
2351 build_new_reduction (reduction_list, reduc_stmt, phi);
2354 destroy_loop_vec_info (simple_loop_info, true);
2356 /* As gimple_uid is used by the vectorizer in between vect_analyze_loop_form
2357 and destroy_loop_vec_info, we can set gimple_uid of reduc_phi stmts
2358 only now. */
2359 reduction_list->traverse <void *, set_reduc_phi_uids> (NULL);
2362 /* Try to initialize NITER for code generation part. */
2364 static bool
2365 try_get_loop_niter (loop_p loop, struct tree_niter_desc *niter)
2367 edge exit = single_dom_exit (loop);
2369 gcc_assert (exit);
2371 /* We need to know # of iterations, and there should be no uses of values
2372 defined inside loop outside of it, unless the values are invariants of
2373 the loop. */
2374 if (!number_of_iterations_exit (loop, exit, niter, false))
2376 if (dump_file && (dump_flags & TDF_DETAILS))
2377 fprintf (dump_file, " FAILED: number of iterations not known\n");
2378 return false;
2381 return true;
2384 /* Try to initialize REDUCTION_LIST for code generation part.
2385 REDUCTION_LIST describes the reductions. */
2387 static bool
2388 try_create_reduction_list (loop_p loop,
2389 reduction_info_table_type *reduction_list)
2391 edge exit = single_dom_exit (loop);
2392 gphi_iterator gsi;
2394 gcc_assert (exit);
2396 gather_scalar_reductions (loop, reduction_list);
2399 for (gsi = gsi_start_phis (exit->dest); !gsi_end_p (gsi); gsi_next (&gsi))
2401 gphi *phi = gsi.phi ();
2402 struct reduction_info *red;
2403 imm_use_iterator imm_iter;
2404 use_operand_p use_p;
2405 gimple reduc_phi;
2406 tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit);
2408 if (!virtual_operand_p (val))
2410 if (dump_file && (dump_flags & TDF_DETAILS))
2412 fprintf (dump_file, "phi is ");
2413 print_gimple_stmt (dump_file, phi, 0, 0);
2414 fprintf (dump_file, "arg of phi to exit: value ");
2415 print_generic_expr (dump_file, val, 0);
2416 fprintf (dump_file, " used outside loop\n");
2417 fprintf (dump_file,
2418 " checking if it a part of reduction pattern: \n");
2420 if (reduction_list->elements () == 0)
2422 if (dump_file && (dump_flags & TDF_DETAILS))
2423 fprintf (dump_file,
2424 " FAILED: it is not a part of reduction.\n");
2425 return false;
2427 reduc_phi = NULL;
2428 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, val)
2430 if (!gimple_debug_bind_p (USE_STMT (use_p))
2431 && flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
2433 reduc_phi = USE_STMT (use_p);
2434 break;
2437 red = reduction_phi (reduction_list, reduc_phi);
2438 if (red == NULL)
2440 if (dump_file && (dump_flags & TDF_DETAILS))
2441 fprintf (dump_file,
2442 " FAILED: it is not a part of reduction.\n");
2443 return false;
2445 if (dump_file && (dump_flags & TDF_DETAILS))
2447 fprintf (dump_file, "reduction phi is ");
2448 print_gimple_stmt (dump_file, red->reduc_phi, 0, 0);
2449 fprintf (dump_file, "reduction stmt is ");
2450 print_gimple_stmt (dump_file, red->reduc_stmt, 0, 0);
2455 /* The iterations of the loop may communicate only through bivs whose
2456 iteration space can be distributed efficiently. */
2457 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
2459 gphi *phi = gsi.phi ();
2460 tree def = PHI_RESULT (phi);
2461 affine_iv iv;
2463 if (!virtual_operand_p (def) && !simple_iv (loop, loop, def, &iv, true))
2465 struct reduction_info *red;
2467 red = reduction_phi (reduction_list, phi);
2468 if (red == NULL)
2470 if (dump_file && (dump_flags & TDF_DETAILS))
2471 fprintf (dump_file,
2472 " FAILED: scalar dependency between iterations\n");
2473 return false;
2479 return true;
2482 /* Detect parallel loops and generate parallel code using libgomp
2483 primitives. Returns true if some loop was parallelized, false
2484 otherwise. */
2486 static bool
2487 parallelize_loops (void)
2489 unsigned n_threads = flag_tree_parallelize_loops;
2490 bool changed = false;
2491 struct loop *loop;
2492 struct tree_niter_desc niter_desc;
2493 struct obstack parloop_obstack;
2494 HOST_WIDE_INT estimated;
2495 source_location loop_loc;
2497 /* Do not parallelize loops in the functions created by parallelization. */
2498 if (parallelized_function_p (cfun->decl))
2499 return false;
2500 if (cfun->has_nonlocal_label)
2501 return false;
2503 gcc_obstack_init (&parloop_obstack);
2504 reduction_info_table_type reduction_list (10);
2505 init_stmt_vec_info_vec ();
2507 FOR_EACH_LOOP (loop, 0)
2509 reduction_list.empty ();
2510 if (dump_file && (dump_flags & TDF_DETAILS))
2512 fprintf (dump_file, "Trying loop %d as candidate\n",loop->num);
2513 if (loop->inner)
2514 fprintf (dump_file, "loop %d is not innermost\n",loop->num);
2515 else
2516 fprintf (dump_file, "loop %d is innermost\n",loop->num);
2519 /* If we use autopar in graphite pass, we use its marked dependency
2520 checking results. */
2521 if (flag_loop_parallelize_all && !loop->can_be_parallel)
2523 if (dump_file && (dump_flags & TDF_DETAILS))
2524 fprintf (dump_file, "loop is not parallel according to graphite\n");
2525 continue;
2528 if (!single_dom_exit (loop))
2531 if (dump_file && (dump_flags & TDF_DETAILS))
2532 fprintf (dump_file, "loop is !single_dom_exit\n");
2534 continue;
2537 if (/* And of course, the loop must be parallelizable. */
2538 !can_duplicate_loop_p (loop)
2539 || loop_has_blocks_with_irreducible_flag (loop)
2540 || (loop_preheader_edge (loop)->src->flags & BB_IRREDUCIBLE_LOOP)
2541 /* FIXME: the check for vector phi nodes could be removed. */
2542 || loop_has_vector_phi_nodes (loop))
2543 continue;
2545 estimated = estimated_stmt_executions_int (loop);
2546 if (estimated == -1)
2547 estimated = max_stmt_executions_int (loop);
2548 /* FIXME: Bypass this check as graphite doesn't update the
2549 count and frequency correctly now. */
2550 if (!flag_loop_parallelize_all
2551 && ((estimated != -1
2552 && estimated <= (HOST_WIDE_INT) n_threads * MIN_PER_THREAD)
2553 /* Do not bother with loops in cold areas. */
2554 || optimize_loop_nest_for_size_p (loop)))
2555 continue;
2557 if (!try_get_loop_niter (loop, &niter_desc))
2558 continue;
2560 if (!try_create_reduction_list (loop, &reduction_list))
2561 continue;
2563 if (!flag_loop_parallelize_all
2564 && !loop_parallel_p (loop, &parloop_obstack))
2565 continue;
2567 changed = true;
2568 if (dump_file && (dump_flags & TDF_DETAILS))
2570 if (loop->inner)
2571 fprintf (dump_file, "parallelizing outer loop %d\n",loop->header->index);
2572 else
2573 fprintf (dump_file, "parallelizing inner loop %d\n",loop->header->index);
2574 loop_loc = find_loop_location (loop);
2575 if (loop_loc != UNKNOWN_LOCATION)
2576 fprintf (dump_file, "\nloop at %s:%d: ",
2577 LOCATION_FILE (loop_loc), LOCATION_LINE (loop_loc));
2579 gen_parallel_loop (loop, &reduction_list,
2580 n_threads, &niter_desc);
2583 free_stmt_vec_info_vec ();
2584 obstack_free (&parloop_obstack, NULL);
2586 /* Parallelization will cause new function calls to be inserted through
2587 which local variables will escape. Reset the points-to solution
2588 for ESCAPED. */
2589 if (changed)
2590 pt_solution_reset (&cfun->gimple_df->escaped);
2592 return changed;
2595 /* Parallelization. */
2597 namespace {
2599 const pass_data pass_data_parallelize_loops =
2601 GIMPLE_PASS, /* type */
2602 "parloops", /* name */
2603 OPTGROUP_LOOP, /* optinfo_flags */
2604 TV_TREE_PARALLELIZE_LOOPS, /* tv_id */
2605 ( PROP_cfg | PROP_ssa ), /* properties_required */
2606 0, /* properties_provided */
2607 0, /* properties_destroyed */
2608 0, /* todo_flags_start */
2609 0, /* todo_flags_finish */
2612 class pass_parallelize_loops : public gimple_opt_pass
2614 public:
2615 pass_parallelize_loops (gcc::context *ctxt)
2616 : gimple_opt_pass (pass_data_parallelize_loops, ctxt)
2619 /* opt_pass methods: */
2620 virtual bool gate (function *) { return flag_tree_parallelize_loops > 1; }
2621 virtual unsigned int execute (function *);
2623 }; // class pass_parallelize_loops
2625 unsigned
2626 pass_parallelize_loops::execute (function *fun)
2628 if (number_of_loops (fun) <= 1)
2629 return 0;
2631 if (parallelize_loops ())
2633 fun->curr_properties &= ~(PROP_gimple_eomp);
2634 return TODO_update_ssa;
2637 return 0;
2640 } // anon namespace
2642 gimple_opt_pass *
2643 make_pass_parallelize_loops (gcc::context *ctxt)
2645 return new pass_parallelize_loops (ctxt);