PR c/60784
[official-gcc.git] / gcc / tree-vrp.c
blob0dfbfca4a2a4b503b0258efd75b5cddc4469e0d0
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005-2014 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "flags.h"
26 #include "tree.h"
27 #include "stor-layout.h"
28 #include "calls.h"
29 #include "basic-block.h"
30 #include "tree-ssa-alias.h"
31 #include "internal-fn.h"
32 #include "gimple-fold.h"
33 #include "tree-eh.h"
34 #include "gimple-expr.h"
35 #include "is-a.h"
36 #include "gimple.h"
37 #include "gimple-iterator.h"
38 #include "gimple-walk.h"
39 #include "gimple-ssa.h"
40 #include "tree-cfg.h"
41 #include "tree-phinodes.h"
42 #include "ssa-iterators.h"
43 #include "stringpool.h"
44 #include "tree-ssanames.h"
45 #include "tree-ssa-loop-manip.h"
46 #include "tree-ssa-loop-niter.h"
47 #include "tree-ssa-loop.h"
48 #include "tree-into-ssa.h"
49 #include "tree-ssa.h"
50 #include "tree-pass.h"
51 #include "tree-dump.h"
52 #include "gimple-pretty-print.h"
53 #include "diagnostic-core.h"
54 #include "intl.h"
55 #include "cfgloop.h"
56 #include "tree-scalar-evolution.h"
57 #include "tree-ssa-propagate.h"
58 #include "tree-chrec.h"
59 #include "tree-ssa-threadupdate.h"
60 #include "expr.h"
61 #include "optabs.h"
62 #include "tree-ssa-threadedge.h"
66 /* Range of values that can be associated with an SSA_NAME after VRP
67 has executed. */
68 struct value_range_d
70 /* Lattice value represented by this range. */
71 enum value_range_type type;
73 /* Minimum and maximum values represented by this range. These
74 values should be interpreted as follows:
76 - If TYPE is VR_UNDEFINED or VR_VARYING then MIN and MAX must
77 be NULL.
79 - If TYPE == VR_RANGE then MIN holds the minimum value and
80 MAX holds the maximum value of the range [MIN, MAX].
82 - If TYPE == ANTI_RANGE the variable is known to NOT
83 take any values in the range [MIN, MAX]. */
84 tree min;
85 tree max;
87 /* Set of SSA names whose value ranges are equivalent to this one.
88 This set is only valid when TYPE is VR_RANGE or VR_ANTI_RANGE. */
89 bitmap equiv;
92 typedef struct value_range_d value_range_t;
94 #define VR_INITIALIZER { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL }
96 /* Set of SSA names found live during the RPO traversal of the function
97 for still active basic-blocks. */
98 static sbitmap *live;
100 /* Return true if the SSA name NAME is live on the edge E. */
102 static bool
103 live_on_edge (edge e, tree name)
105 return (live[e->dest->index]
106 && bitmap_bit_p (live[e->dest->index], SSA_NAME_VERSION (name)));
109 /* Local functions. */
110 static int compare_values (tree val1, tree val2);
111 static int compare_values_warnv (tree val1, tree val2, bool *);
112 static void vrp_meet (value_range_t *, value_range_t *);
113 static void vrp_intersect_ranges (value_range_t *, value_range_t *);
114 static tree vrp_evaluate_conditional_warnv_with_ops (enum tree_code,
115 tree, tree, bool, bool *,
116 bool *);
118 /* Location information for ASSERT_EXPRs. Each instance of this
119 structure describes an ASSERT_EXPR for an SSA name. Since a single
120 SSA name may have more than one assertion associated with it, these
121 locations are kept in a linked list attached to the corresponding
122 SSA name. */
123 struct assert_locus_d
125 /* Basic block where the assertion would be inserted. */
126 basic_block bb;
128 /* Some assertions need to be inserted on an edge (e.g., assertions
129 generated by COND_EXPRs). In those cases, BB will be NULL. */
130 edge e;
132 /* Pointer to the statement that generated this assertion. */
133 gimple_stmt_iterator si;
135 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
136 enum tree_code comp_code;
138 /* Value being compared against. */
139 tree val;
141 /* Expression to compare. */
142 tree expr;
144 /* Next node in the linked list. */
145 struct assert_locus_d *next;
148 typedef struct assert_locus_d *assert_locus_t;
150 /* If bit I is present, it means that SSA name N_i has a list of
151 assertions that should be inserted in the IL. */
152 static bitmap need_assert_for;
154 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
155 holds a list of ASSERT_LOCUS_T nodes that describe where
156 ASSERT_EXPRs for SSA name N_I should be inserted. */
157 static assert_locus_t *asserts_for;
159 /* Value range array. After propagation, VR_VALUE[I] holds the range
160 of values that SSA name N_I may take. */
161 static unsigned num_vr_values;
162 static value_range_t **vr_value;
163 static bool values_propagated;
165 /* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
166 number of executable edges we saw the last time we visited the
167 node. */
168 static int *vr_phi_edge_counts;
170 typedef struct {
171 gimple stmt;
172 tree vec;
173 } switch_update;
175 static vec<edge> to_remove_edges;
176 static vec<switch_update> to_update_switch_stmts;
179 /* Return the maximum value for TYPE. */
181 static inline tree
182 vrp_val_max (const_tree type)
184 if (!INTEGRAL_TYPE_P (type))
185 return NULL_TREE;
187 return TYPE_MAX_VALUE (type);
190 /* Return the minimum value for TYPE. */
192 static inline tree
193 vrp_val_min (const_tree type)
195 if (!INTEGRAL_TYPE_P (type))
196 return NULL_TREE;
198 return TYPE_MIN_VALUE (type);
201 /* Return whether VAL is equal to the maximum value of its type. This
202 will be true for a positive overflow infinity. We can't do a
203 simple equality comparison with TYPE_MAX_VALUE because C typedefs
204 and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
205 to the integer constant with the same value in the type. */
207 static inline bool
208 vrp_val_is_max (const_tree val)
210 tree type_max = vrp_val_max (TREE_TYPE (val));
211 return (val == type_max
212 || (type_max != NULL_TREE
213 && operand_equal_p (val, type_max, 0)));
216 /* Return whether VAL is equal to the minimum value of its type. This
217 will be true for a negative overflow infinity. */
219 static inline bool
220 vrp_val_is_min (const_tree val)
222 tree type_min = vrp_val_min (TREE_TYPE (val));
223 return (val == type_min
224 || (type_min != NULL_TREE
225 && operand_equal_p (val, type_min, 0)));
229 /* Return whether TYPE should use an overflow infinity distinct from
230 TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
231 represent a signed overflow during VRP computations. An infinity
232 is distinct from a half-range, which will go from some number to
233 TYPE_{MIN,MAX}_VALUE. */
235 static inline bool
236 needs_overflow_infinity (const_tree type)
238 return INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type);
241 /* Return whether TYPE can support our overflow infinity
242 representation: we use the TREE_OVERFLOW flag, which only exists
243 for constants. If TYPE doesn't support this, we don't optimize
244 cases which would require signed overflow--we drop them to
245 VARYING. */
247 static inline bool
248 supports_overflow_infinity (const_tree type)
250 tree min = vrp_val_min (type), max = vrp_val_max (type);
251 #ifdef ENABLE_CHECKING
252 gcc_assert (needs_overflow_infinity (type));
253 #endif
254 return (min != NULL_TREE
255 && CONSTANT_CLASS_P (min)
256 && max != NULL_TREE
257 && CONSTANT_CLASS_P (max));
260 /* VAL is the maximum or minimum value of a type. Return a
261 corresponding overflow infinity. */
263 static inline tree
264 make_overflow_infinity (tree val)
266 gcc_checking_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
267 val = copy_node (val);
268 TREE_OVERFLOW (val) = 1;
269 return val;
272 /* Return a negative overflow infinity for TYPE. */
274 static inline tree
275 negative_overflow_infinity (tree type)
277 gcc_checking_assert (supports_overflow_infinity (type));
278 return make_overflow_infinity (vrp_val_min (type));
281 /* Return a positive overflow infinity for TYPE. */
283 static inline tree
284 positive_overflow_infinity (tree type)
286 gcc_checking_assert (supports_overflow_infinity (type));
287 return make_overflow_infinity (vrp_val_max (type));
290 /* Return whether VAL is a negative overflow infinity. */
292 static inline bool
293 is_negative_overflow_infinity (const_tree val)
295 return (needs_overflow_infinity (TREE_TYPE (val))
296 && CONSTANT_CLASS_P (val)
297 && TREE_OVERFLOW (val)
298 && vrp_val_is_min (val));
301 /* Return whether VAL is a positive overflow infinity. */
303 static inline bool
304 is_positive_overflow_infinity (const_tree val)
306 return (needs_overflow_infinity (TREE_TYPE (val))
307 && CONSTANT_CLASS_P (val)
308 && TREE_OVERFLOW (val)
309 && vrp_val_is_max (val));
312 /* Return whether VAL is a positive or negative overflow infinity. */
314 static inline bool
315 is_overflow_infinity (const_tree val)
317 return (needs_overflow_infinity (TREE_TYPE (val))
318 && CONSTANT_CLASS_P (val)
319 && TREE_OVERFLOW (val)
320 && (vrp_val_is_min (val) || vrp_val_is_max (val)));
323 /* Return whether STMT has a constant rhs that is_overflow_infinity. */
325 static inline bool
326 stmt_overflow_infinity (gimple stmt)
328 if (is_gimple_assign (stmt)
329 && get_gimple_rhs_class (gimple_assign_rhs_code (stmt)) ==
330 GIMPLE_SINGLE_RHS)
331 return is_overflow_infinity (gimple_assign_rhs1 (stmt));
332 return false;
335 /* If VAL is now an overflow infinity, return VAL. Otherwise, return
336 the same value with TREE_OVERFLOW clear. This can be used to avoid
337 confusing a regular value with an overflow value. */
339 static inline tree
340 avoid_overflow_infinity (tree val)
342 if (!is_overflow_infinity (val))
343 return val;
345 if (vrp_val_is_max (val))
346 return vrp_val_max (TREE_TYPE (val));
347 else
349 gcc_checking_assert (vrp_val_is_min (val));
350 return vrp_val_min (TREE_TYPE (val));
355 /* Return true if ARG is marked with the nonnull attribute in the
356 current function signature. */
358 static bool
359 nonnull_arg_p (const_tree arg)
361 tree t, attrs, fntype;
362 unsigned HOST_WIDE_INT arg_num;
364 gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
366 /* The static chain decl is always non null. */
367 if (arg == cfun->static_chain_decl)
368 return true;
370 fntype = TREE_TYPE (current_function_decl);
371 for (attrs = TYPE_ATTRIBUTES (fntype); attrs; attrs = TREE_CHAIN (attrs))
373 attrs = lookup_attribute ("nonnull", attrs);
375 /* If "nonnull" wasn't specified, we know nothing about the argument. */
376 if (attrs == NULL_TREE)
377 return false;
379 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
380 if (TREE_VALUE (attrs) == NULL_TREE)
381 return true;
383 /* Get the position number for ARG in the function signature. */
384 for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
386 t = DECL_CHAIN (t), arg_num++)
388 if (t == arg)
389 break;
392 gcc_assert (t == arg);
394 /* Now see if ARG_NUM is mentioned in the nonnull list. */
395 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
397 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
398 return true;
402 return false;
406 /* Set value range VR to VR_UNDEFINED. */
408 static inline void
409 set_value_range_to_undefined (value_range_t *vr)
411 vr->type = VR_UNDEFINED;
412 vr->min = vr->max = NULL_TREE;
413 if (vr->equiv)
414 bitmap_clear (vr->equiv);
418 /* Set value range VR to VR_VARYING. */
420 static inline void
421 set_value_range_to_varying (value_range_t *vr)
423 vr->type = VR_VARYING;
424 vr->min = vr->max = NULL_TREE;
425 if (vr->equiv)
426 bitmap_clear (vr->equiv);
430 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
432 static void
433 set_value_range (value_range_t *vr, enum value_range_type t, tree min,
434 tree max, bitmap equiv)
436 #if defined ENABLE_CHECKING
437 /* Check the validity of the range. */
438 if (t == VR_RANGE || t == VR_ANTI_RANGE)
440 int cmp;
442 gcc_assert (min && max);
444 gcc_assert ((!TREE_OVERFLOW_P (min) || is_overflow_infinity (min))
445 && (!TREE_OVERFLOW_P (max) || is_overflow_infinity (max)));
447 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
448 gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max));
450 cmp = compare_values (min, max);
451 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
453 if (needs_overflow_infinity (TREE_TYPE (min)))
454 gcc_assert (!is_overflow_infinity (min)
455 || !is_overflow_infinity (max));
458 if (t == VR_UNDEFINED || t == VR_VARYING)
459 gcc_assert (min == NULL_TREE && max == NULL_TREE);
461 if (t == VR_UNDEFINED || t == VR_VARYING)
462 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
463 #endif
465 vr->type = t;
466 vr->min = min;
467 vr->max = max;
469 /* Since updating the equivalence set involves deep copying the
470 bitmaps, only do it if absolutely necessary. */
471 if (vr->equiv == NULL
472 && equiv != NULL)
473 vr->equiv = BITMAP_ALLOC (NULL);
475 if (equiv != vr->equiv)
477 if (equiv && !bitmap_empty_p (equiv))
478 bitmap_copy (vr->equiv, equiv);
479 else
480 bitmap_clear (vr->equiv);
485 /* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
486 This means adjusting T, MIN and MAX representing the case of a
487 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
488 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
489 In corner cases where MAX+1 or MIN-1 wraps this will fall back
490 to varying.
491 This routine exists to ease canonicalization in the case where we
492 extract ranges from var + CST op limit. */
494 static void
495 set_and_canonicalize_value_range (value_range_t *vr, enum value_range_type t,
496 tree min, tree max, bitmap equiv)
498 /* Use the canonical setters for VR_UNDEFINED and VR_VARYING. */
499 if (t == VR_UNDEFINED)
501 set_value_range_to_undefined (vr);
502 return;
504 else if (t == VR_VARYING)
506 set_value_range_to_varying (vr);
507 return;
510 /* Nothing to canonicalize for symbolic ranges. */
511 if (TREE_CODE (min) != INTEGER_CST
512 || TREE_CODE (max) != INTEGER_CST)
514 set_value_range (vr, t, min, max, equiv);
515 return;
518 /* Wrong order for min and max, to swap them and the VR type we need
519 to adjust them. */
520 if (tree_int_cst_lt (max, min))
522 tree one, tmp;
524 /* For one bit precision if max < min, then the swapped
525 range covers all values, so for VR_RANGE it is varying and
526 for VR_ANTI_RANGE empty range, so drop to varying as well. */
527 if (TYPE_PRECISION (TREE_TYPE (min)) == 1)
529 set_value_range_to_varying (vr);
530 return;
533 one = build_int_cst (TREE_TYPE (min), 1);
534 tmp = int_const_binop (PLUS_EXPR, max, one);
535 max = int_const_binop (MINUS_EXPR, min, one);
536 min = tmp;
538 /* There's one corner case, if we had [C+1, C] before we now have
539 that again. But this represents an empty value range, so drop
540 to varying in this case. */
541 if (tree_int_cst_lt (max, min))
543 set_value_range_to_varying (vr);
544 return;
547 t = t == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE;
550 /* Anti-ranges that can be represented as ranges should be so. */
551 if (t == VR_ANTI_RANGE)
553 bool is_min = vrp_val_is_min (min);
554 bool is_max = vrp_val_is_max (max);
556 if (is_min && is_max)
558 /* We cannot deal with empty ranges, drop to varying.
559 ??? This could be VR_UNDEFINED instead. */
560 set_value_range_to_varying (vr);
561 return;
563 else if (TYPE_PRECISION (TREE_TYPE (min)) == 1
564 && (is_min || is_max))
566 /* Non-empty boolean ranges can always be represented
567 as a singleton range. */
568 if (is_min)
569 min = max = vrp_val_max (TREE_TYPE (min));
570 else
571 min = max = vrp_val_min (TREE_TYPE (min));
572 t = VR_RANGE;
574 else if (is_min
575 /* As a special exception preserve non-null ranges. */
576 && !(TYPE_UNSIGNED (TREE_TYPE (min))
577 && integer_zerop (max)))
579 tree one = build_int_cst (TREE_TYPE (max), 1);
580 min = int_const_binop (PLUS_EXPR, max, one);
581 max = vrp_val_max (TREE_TYPE (max));
582 t = VR_RANGE;
584 else if (is_max)
586 tree one = build_int_cst (TREE_TYPE (min), 1);
587 max = int_const_binop (MINUS_EXPR, min, one);
588 min = vrp_val_min (TREE_TYPE (min));
589 t = VR_RANGE;
593 /* Drop [-INF(OVF), +INF(OVF)] to varying. */
594 if (needs_overflow_infinity (TREE_TYPE (min))
595 && is_overflow_infinity (min)
596 && is_overflow_infinity (max))
598 set_value_range_to_varying (vr);
599 return;
602 set_value_range (vr, t, min, max, equiv);
605 /* Copy value range FROM into value range TO. */
607 static inline void
608 copy_value_range (value_range_t *to, value_range_t *from)
610 set_value_range (to, from->type, from->min, from->max, from->equiv);
613 /* Set value range VR to a single value. This function is only called
614 with values we get from statements, and exists to clear the
615 TREE_OVERFLOW flag so that we don't think we have an overflow
616 infinity when we shouldn't. */
618 static inline void
619 set_value_range_to_value (value_range_t *vr, tree val, bitmap equiv)
621 gcc_assert (is_gimple_min_invariant (val));
622 if (TREE_OVERFLOW_P (val))
623 val = drop_tree_overflow (val);
624 set_value_range (vr, VR_RANGE, val, val, equiv);
627 /* Set value range VR to a non-negative range of type TYPE.
628 OVERFLOW_INFINITY indicates whether to use an overflow infinity
629 rather than TYPE_MAX_VALUE; this should be true if we determine
630 that the range is nonnegative based on the assumption that signed
631 overflow does not occur. */
633 static inline void
634 set_value_range_to_nonnegative (value_range_t *vr, tree type,
635 bool overflow_infinity)
637 tree zero;
639 if (overflow_infinity && !supports_overflow_infinity (type))
641 set_value_range_to_varying (vr);
642 return;
645 zero = build_int_cst (type, 0);
646 set_value_range (vr, VR_RANGE, zero,
647 (overflow_infinity
648 ? positive_overflow_infinity (type)
649 : TYPE_MAX_VALUE (type)),
650 vr->equiv);
653 /* Set value range VR to a non-NULL range of type TYPE. */
655 static inline void
656 set_value_range_to_nonnull (value_range_t *vr, tree type)
658 tree zero = build_int_cst (type, 0);
659 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
663 /* Set value range VR to a NULL range of type TYPE. */
665 static inline void
666 set_value_range_to_null (value_range_t *vr, tree type)
668 set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv);
672 /* Set value range VR to a range of a truthvalue of type TYPE. */
674 static inline void
675 set_value_range_to_truthvalue (value_range_t *vr, tree type)
677 if (TYPE_PRECISION (type) == 1)
678 set_value_range_to_varying (vr);
679 else
680 set_value_range (vr, VR_RANGE,
681 build_int_cst (type, 0), build_int_cst (type, 1),
682 vr->equiv);
686 /* If abs (min) < abs (max), set VR to [-max, max], if
687 abs (min) >= abs (max), set VR to [-min, min]. */
689 static void
690 abs_extent_range (value_range_t *vr, tree min, tree max)
692 int cmp;
694 gcc_assert (TREE_CODE (min) == INTEGER_CST);
695 gcc_assert (TREE_CODE (max) == INTEGER_CST);
696 gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (min)));
697 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (min)));
698 min = fold_unary (ABS_EXPR, TREE_TYPE (min), min);
699 max = fold_unary (ABS_EXPR, TREE_TYPE (max), max);
700 if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max))
702 set_value_range_to_varying (vr);
703 return;
705 cmp = compare_values (min, max);
706 if (cmp == -1)
707 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), max);
708 else if (cmp == 0 || cmp == 1)
710 max = min;
711 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), min);
713 else
715 set_value_range_to_varying (vr);
716 return;
718 set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
722 /* Return value range information for VAR.
724 If we have no values ranges recorded (ie, VRP is not running), then
725 return NULL. Otherwise create an empty range if none existed for VAR. */
727 static value_range_t *
728 get_value_range (const_tree var)
730 static const struct value_range_d vr_const_varying
731 = { VR_VARYING, NULL_TREE, NULL_TREE, NULL };
732 value_range_t *vr;
733 tree sym;
734 unsigned ver = SSA_NAME_VERSION (var);
736 /* If we have no recorded ranges, then return NULL. */
737 if (! vr_value)
738 return NULL;
740 /* If we query the range for a new SSA name return an unmodifiable VARYING.
741 We should get here at most from the substitute-and-fold stage which
742 will never try to change values. */
743 if (ver >= num_vr_values)
744 return CONST_CAST (value_range_t *, &vr_const_varying);
746 vr = vr_value[ver];
747 if (vr)
748 return vr;
750 /* After propagation finished do not allocate new value-ranges. */
751 if (values_propagated)
752 return CONST_CAST (value_range_t *, &vr_const_varying);
754 /* Create a default value range. */
755 vr_value[ver] = vr = XCNEW (value_range_t);
757 /* Defer allocating the equivalence set. */
758 vr->equiv = NULL;
760 /* If VAR is a default definition of a parameter, the variable can
761 take any value in VAR's type. */
762 if (SSA_NAME_IS_DEFAULT_DEF (var))
764 sym = SSA_NAME_VAR (var);
765 if (TREE_CODE (sym) == PARM_DECL)
767 /* Try to use the "nonnull" attribute to create ~[0, 0]
768 anti-ranges for pointers. Note that this is only valid with
769 default definitions of PARM_DECLs. */
770 if (POINTER_TYPE_P (TREE_TYPE (sym))
771 && nonnull_arg_p (sym))
772 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
773 else
774 set_value_range_to_varying (vr);
776 else if (TREE_CODE (sym) == RESULT_DECL
777 && DECL_BY_REFERENCE (sym))
778 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
781 return vr;
784 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
786 static inline bool
787 vrp_operand_equal_p (const_tree val1, const_tree val2)
789 if (val1 == val2)
790 return true;
791 if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
792 return false;
793 if (is_overflow_infinity (val1))
794 return is_overflow_infinity (val2);
795 return true;
798 /* Return true, if the bitmaps B1 and B2 are equal. */
800 static inline bool
801 vrp_bitmap_equal_p (const_bitmap b1, const_bitmap b2)
803 return (b1 == b2
804 || ((!b1 || bitmap_empty_p (b1))
805 && (!b2 || bitmap_empty_p (b2)))
806 || (b1 && b2
807 && bitmap_equal_p (b1, b2)));
810 /* Update the value range and equivalence set for variable VAR to
811 NEW_VR. Return true if NEW_VR is different from VAR's previous
812 value.
814 NOTE: This function assumes that NEW_VR is a temporary value range
815 object created for the sole purpose of updating VAR's range. The
816 storage used by the equivalence set from NEW_VR will be freed by
817 this function. Do not call update_value_range when NEW_VR
818 is the range object associated with another SSA name. */
820 static inline bool
821 update_value_range (const_tree var, value_range_t *new_vr)
823 value_range_t *old_vr;
824 bool is_new;
826 /* Update the value range, if necessary. */
827 old_vr = get_value_range (var);
828 is_new = old_vr->type != new_vr->type
829 || !vrp_operand_equal_p (old_vr->min, new_vr->min)
830 || !vrp_operand_equal_p (old_vr->max, new_vr->max)
831 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
833 if (is_new)
835 /* Do not allow transitions up the lattice. The following
836 is slightly more awkward than just new_vr->type < old_vr->type
837 because VR_RANGE and VR_ANTI_RANGE need to be considered
838 the same. We may not have is_new when transitioning to
839 UNDEFINED or from VARYING. */
840 if (new_vr->type == VR_UNDEFINED
841 || old_vr->type == VR_VARYING)
842 set_value_range_to_varying (old_vr);
843 else
844 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
845 new_vr->equiv);
848 BITMAP_FREE (new_vr->equiv);
850 return is_new;
854 /* Add VAR and VAR's equivalence set to EQUIV. This is the central
855 point where equivalence processing can be turned on/off. */
857 static void
858 add_equivalence (bitmap *equiv, const_tree var)
860 unsigned ver = SSA_NAME_VERSION (var);
861 value_range_t *vr = vr_value[ver];
863 if (*equiv == NULL)
864 *equiv = BITMAP_ALLOC (NULL);
865 bitmap_set_bit (*equiv, ver);
866 if (vr && vr->equiv)
867 bitmap_ior_into (*equiv, vr->equiv);
871 /* Return true if VR is ~[0, 0]. */
873 static inline bool
874 range_is_nonnull (value_range_t *vr)
876 return vr->type == VR_ANTI_RANGE
877 && integer_zerop (vr->min)
878 && integer_zerop (vr->max);
882 /* Return true if VR is [0, 0]. */
884 static inline bool
885 range_is_null (value_range_t *vr)
887 return vr->type == VR_RANGE
888 && integer_zerop (vr->min)
889 && integer_zerop (vr->max);
892 /* Return true if max and min of VR are INTEGER_CST. It's not necessary
893 a singleton. */
895 static inline bool
896 range_int_cst_p (value_range_t *vr)
898 return (vr->type == VR_RANGE
899 && TREE_CODE (vr->max) == INTEGER_CST
900 && TREE_CODE (vr->min) == INTEGER_CST);
903 /* Return true if VR is a INTEGER_CST singleton. */
905 static inline bool
906 range_int_cst_singleton_p (value_range_t *vr)
908 return (range_int_cst_p (vr)
909 && !is_overflow_infinity (vr->min)
910 && !is_overflow_infinity (vr->max)
911 && tree_int_cst_equal (vr->min, vr->max));
914 /* Return true if value range VR involves at least one symbol. */
916 static inline bool
917 symbolic_range_p (value_range_t *vr)
919 return (!is_gimple_min_invariant (vr->min)
920 || !is_gimple_min_invariant (vr->max));
923 /* Return true if value range VR uses an overflow infinity. */
925 static inline bool
926 overflow_infinity_range_p (value_range_t *vr)
928 return (vr->type == VR_RANGE
929 && (is_overflow_infinity (vr->min)
930 || is_overflow_infinity (vr->max)));
933 /* Return false if we can not make a valid comparison based on VR;
934 this will be the case if it uses an overflow infinity and overflow
935 is not undefined (i.e., -fno-strict-overflow is in effect).
936 Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
937 uses an overflow infinity. */
939 static bool
940 usable_range_p (value_range_t *vr, bool *strict_overflow_p)
942 gcc_assert (vr->type == VR_RANGE);
943 if (is_overflow_infinity (vr->min))
945 *strict_overflow_p = true;
946 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
947 return false;
949 if (is_overflow_infinity (vr->max))
951 *strict_overflow_p = true;
952 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
953 return false;
955 return true;
959 /* Return true if the result of assignment STMT is know to be non-negative.
960 If the return value is based on the assumption that signed overflow is
961 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
962 *STRICT_OVERFLOW_P.*/
964 static bool
965 gimple_assign_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
967 enum tree_code code = gimple_assign_rhs_code (stmt);
968 switch (get_gimple_rhs_class (code))
970 case GIMPLE_UNARY_RHS:
971 return tree_unary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
972 gimple_expr_type (stmt),
973 gimple_assign_rhs1 (stmt),
974 strict_overflow_p);
975 case GIMPLE_BINARY_RHS:
976 return tree_binary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
977 gimple_expr_type (stmt),
978 gimple_assign_rhs1 (stmt),
979 gimple_assign_rhs2 (stmt),
980 strict_overflow_p);
981 case GIMPLE_TERNARY_RHS:
982 return false;
983 case GIMPLE_SINGLE_RHS:
984 return tree_single_nonnegative_warnv_p (gimple_assign_rhs1 (stmt),
985 strict_overflow_p);
986 case GIMPLE_INVALID_RHS:
987 gcc_unreachable ();
988 default:
989 gcc_unreachable ();
993 /* Return true if return value of call STMT is know to be non-negative.
994 If the return value is based on the assumption that signed overflow is
995 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
996 *STRICT_OVERFLOW_P.*/
998 static bool
999 gimple_call_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
1001 tree arg0 = gimple_call_num_args (stmt) > 0 ?
1002 gimple_call_arg (stmt, 0) : NULL_TREE;
1003 tree arg1 = gimple_call_num_args (stmt) > 1 ?
1004 gimple_call_arg (stmt, 1) : NULL_TREE;
1006 return tree_call_nonnegative_warnv_p (gimple_expr_type (stmt),
1007 gimple_call_fndecl (stmt),
1008 arg0,
1009 arg1,
1010 strict_overflow_p);
1013 /* Return true if STMT is know to to compute a non-negative value.
1014 If the return value is based on the assumption that signed overflow is
1015 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1016 *STRICT_OVERFLOW_P.*/
1018 static bool
1019 gimple_stmt_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
1021 switch (gimple_code (stmt))
1023 case GIMPLE_ASSIGN:
1024 return gimple_assign_nonnegative_warnv_p (stmt, strict_overflow_p);
1025 case GIMPLE_CALL:
1026 return gimple_call_nonnegative_warnv_p (stmt, strict_overflow_p);
1027 default:
1028 gcc_unreachable ();
1032 /* Return true if the result of assignment STMT is know to be non-zero.
1033 If the return value is based on the assumption that signed overflow is
1034 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1035 *STRICT_OVERFLOW_P.*/
1037 static bool
1038 gimple_assign_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
1040 enum tree_code code = gimple_assign_rhs_code (stmt);
1041 switch (get_gimple_rhs_class (code))
1043 case GIMPLE_UNARY_RHS:
1044 return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
1045 gimple_expr_type (stmt),
1046 gimple_assign_rhs1 (stmt),
1047 strict_overflow_p);
1048 case GIMPLE_BINARY_RHS:
1049 return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
1050 gimple_expr_type (stmt),
1051 gimple_assign_rhs1 (stmt),
1052 gimple_assign_rhs2 (stmt),
1053 strict_overflow_p);
1054 case GIMPLE_TERNARY_RHS:
1055 return false;
1056 case GIMPLE_SINGLE_RHS:
1057 return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt),
1058 strict_overflow_p);
1059 case GIMPLE_INVALID_RHS:
1060 gcc_unreachable ();
1061 default:
1062 gcc_unreachable ();
1066 /* Return true if STMT is known to compute a non-zero value.
1067 If the return value is based on the assumption that signed overflow is
1068 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1069 *STRICT_OVERFLOW_P.*/
1071 static bool
1072 gimple_stmt_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
1074 switch (gimple_code (stmt))
1076 case GIMPLE_ASSIGN:
1077 return gimple_assign_nonzero_warnv_p (stmt, strict_overflow_p);
1078 case GIMPLE_CALL:
1080 tree fndecl = gimple_call_fndecl (stmt);
1081 if (!fndecl) return false;
1082 if (flag_delete_null_pointer_checks && !flag_check_new
1083 && DECL_IS_OPERATOR_NEW (fndecl)
1084 && !TREE_NOTHROW (fndecl))
1085 return true;
1086 if (flag_delete_null_pointer_checks &&
1087 lookup_attribute ("returns_nonnull",
1088 TYPE_ATTRIBUTES (gimple_call_fntype (stmt))))
1089 return true;
1090 return gimple_alloca_call_p (stmt);
1092 default:
1093 gcc_unreachable ();
1097 /* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
1098 obtained so far. */
1100 static bool
1101 vrp_stmt_computes_nonzero (gimple stmt, bool *strict_overflow_p)
1103 if (gimple_stmt_nonzero_warnv_p (stmt, strict_overflow_p))
1104 return true;
1106 /* If we have an expression of the form &X->a, then the expression
1107 is nonnull if X is nonnull. */
1108 if (is_gimple_assign (stmt)
1109 && gimple_assign_rhs_code (stmt) == ADDR_EXPR)
1111 tree expr = gimple_assign_rhs1 (stmt);
1112 tree base = get_base_address (TREE_OPERAND (expr, 0));
1114 if (base != NULL_TREE
1115 && TREE_CODE (base) == MEM_REF
1116 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
1118 value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
1119 if (range_is_nonnull (vr))
1120 return true;
1124 return false;
1127 /* Returns true if EXPR is a valid value (as expected by compare_values) --
1128 a gimple invariant, or SSA_NAME +- CST. */
1130 static bool
1131 valid_value_p (tree expr)
1133 if (TREE_CODE (expr) == SSA_NAME)
1134 return true;
1136 if (TREE_CODE (expr) == PLUS_EXPR
1137 || TREE_CODE (expr) == MINUS_EXPR)
1138 return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
1139 && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
1141 return is_gimple_min_invariant (expr);
1144 /* Return
1145 1 if VAL < VAL2
1146 0 if !(VAL < VAL2)
1147 -2 if those are incomparable. */
1148 static inline int
1149 operand_less_p (tree val, tree val2)
1151 /* LT is folded faster than GE and others. Inline the common case. */
1152 if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
1154 if (TYPE_UNSIGNED (TREE_TYPE (val)))
1155 return INT_CST_LT_UNSIGNED (val, val2);
1156 else
1158 if (INT_CST_LT (val, val2))
1159 return 1;
1162 else
1164 tree tcmp;
1166 fold_defer_overflow_warnings ();
1168 tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
1170 fold_undefer_and_ignore_overflow_warnings ();
1172 if (!tcmp
1173 || TREE_CODE (tcmp) != INTEGER_CST)
1174 return -2;
1176 if (!integer_zerop (tcmp))
1177 return 1;
1180 /* val >= val2, not considering overflow infinity. */
1181 if (is_negative_overflow_infinity (val))
1182 return is_negative_overflow_infinity (val2) ? 0 : 1;
1183 else if (is_positive_overflow_infinity (val2))
1184 return is_positive_overflow_infinity (val) ? 0 : 1;
1186 return 0;
1189 /* Compare two values VAL1 and VAL2. Return
1191 -2 if VAL1 and VAL2 cannot be compared at compile-time,
1192 -1 if VAL1 < VAL2,
1193 0 if VAL1 == VAL2,
1194 +1 if VAL1 > VAL2, and
1195 +2 if VAL1 != VAL2
1197 This is similar to tree_int_cst_compare but supports pointer values
1198 and values that cannot be compared at compile time.
1200 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
1201 true if the return value is only valid if we assume that signed
1202 overflow is undefined. */
1204 static int
1205 compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
1207 if (val1 == val2)
1208 return 0;
1210 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
1211 both integers. */
1212 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
1213 == POINTER_TYPE_P (TREE_TYPE (val2)));
1214 /* Convert the two values into the same type. This is needed because
1215 sizetype causes sign extension even for unsigned types. */
1216 val2 = fold_convert (TREE_TYPE (val1), val2);
1217 STRIP_USELESS_TYPE_CONVERSION (val2);
1219 if ((TREE_CODE (val1) == SSA_NAME
1220 || TREE_CODE (val1) == PLUS_EXPR
1221 || TREE_CODE (val1) == MINUS_EXPR)
1222 && (TREE_CODE (val2) == SSA_NAME
1223 || TREE_CODE (val2) == PLUS_EXPR
1224 || TREE_CODE (val2) == MINUS_EXPR))
1226 tree n1, c1, n2, c2;
1227 enum tree_code code1, code2;
1229 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
1230 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
1231 same name, return -2. */
1232 if (TREE_CODE (val1) == SSA_NAME)
1234 code1 = SSA_NAME;
1235 n1 = val1;
1236 c1 = NULL_TREE;
1238 else
1240 code1 = TREE_CODE (val1);
1241 n1 = TREE_OPERAND (val1, 0);
1242 c1 = TREE_OPERAND (val1, 1);
1243 if (tree_int_cst_sgn (c1) == -1)
1245 if (is_negative_overflow_infinity (c1))
1246 return -2;
1247 c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
1248 if (!c1)
1249 return -2;
1250 code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1254 if (TREE_CODE (val2) == SSA_NAME)
1256 code2 = SSA_NAME;
1257 n2 = val2;
1258 c2 = NULL_TREE;
1260 else
1262 code2 = TREE_CODE (val2);
1263 n2 = TREE_OPERAND (val2, 0);
1264 c2 = TREE_OPERAND (val2, 1);
1265 if (tree_int_cst_sgn (c2) == -1)
1267 if (is_negative_overflow_infinity (c2))
1268 return -2;
1269 c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
1270 if (!c2)
1271 return -2;
1272 code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1276 /* Both values must use the same name. */
1277 if (n1 != n2)
1278 return -2;
1280 if (code1 == SSA_NAME
1281 && code2 == SSA_NAME)
1282 /* NAME == NAME */
1283 return 0;
1285 /* If overflow is defined we cannot simplify more. */
1286 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)))
1287 return -2;
1289 if (strict_overflow_p != NULL
1290 && (code1 == SSA_NAME || !TREE_NO_WARNING (val1))
1291 && (code2 == SSA_NAME || !TREE_NO_WARNING (val2)))
1292 *strict_overflow_p = true;
1294 if (code1 == SSA_NAME)
1296 if (code2 == PLUS_EXPR)
1297 /* NAME < NAME + CST */
1298 return -1;
1299 else if (code2 == MINUS_EXPR)
1300 /* NAME > NAME - CST */
1301 return 1;
1303 else if (code1 == PLUS_EXPR)
1305 if (code2 == SSA_NAME)
1306 /* NAME + CST > NAME */
1307 return 1;
1308 else if (code2 == PLUS_EXPR)
1309 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
1310 return compare_values_warnv (c1, c2, strict_overflow_p);
1311 else if (code2 == MINUS_EXPR)
1312 /* NAME + CST1 > NAME - CST2 */
1313 return 1;
1315 else if (code1 == MINUS_EXPR)
1317 if (code2 == SSA_NAME)
1318 /* NAME - CST < NAME */
1319 return -1;
1320 else if (code2 == PLUS_EXPR)
1321 /* NAME - CST1 < NAME + CST2 */
1322 return -1;
1323 else if (code2 == MINUS_EXPR)
1324 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
1325 C1 and C2 are swapped in the call to compare_values. */
1326 return compare_values_warnv (c2, c1, strict_overflow_p);
1329 gcc_unreachable ();
1332 /* We cannot compare non-constants. */
1333 if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
1334 return -2;
1336 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
1338 /* We cannot compare overflowed values, except for overflow
1339 infinities. */
1340 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
1342 if (strict_overflow_p != NULL)
1343 *strict_overflow_p = true;
1344 if (is_negative_overflow_infinity (val1))
1345 return is_negative_overflow_infinity (val2) ? 0 : -1;
1346 else if (is_negative_overflow_infinity (val2))
1347 return 1;
1348 else if (is_positive_overflow_infinity (val1))
1349 return is_positive_overflow_infinity (val2) ? 0 : 1;
1350 else if (is_positive_overflow_infinity (val2))
1351 return -1;
1352 return -2;
1355 return tree_int_cst_compare (val1, val2);
1357 else
1359 tree t;
1361 /* First see if VAL1 and VAL2 are not the same. */
1362 if (val1 == val2 || operand_equal_p (val1, val2, 0))
1363 return 0;
1365 /* If VAL1 is a lower address than VAL2, return -1. */
1366 if (operand_less_p (val1, val2) == 1)
1367 return -1;
1369 /* If VAL1 is a higher address than VAL2, return +1. */
1370 if (operand_less_p (val2, val1) == 1)
1371 return 1;
1373 /* If VAL1 is different than VAL2, return +2.
1374 For integer constants we either have already returned -1 or 1
1375 or they are equivalent. We still might succeed in proving
1376 something about non-trivial operands. */
1377 if (TREE_CODE (val1) != INTEGER_CST
1378 || TREE_CODE (val2) != INTEGER_CST)
1380 t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
1381 if (t && integer_onep (t))
1382 return 2;
1385 return -2;
1389 /* Compare values like compare_values_warnv, but treat comparisons of
1390 nonconstants which rely on undefined overflow as incomparable. */
1392 static int
1393 compare_values (tree val1, tree val2)
1395 bool sop;
1396 int ret;
1398 sop = false;
1399 ret = compare_values_warnv (val1, val2, &sop);
1400 if (sop
1401 && (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
1402 ret = -2;
1403 return ret;
1407 /* Return 1 if VAL is inside value range MIN <= VAL <= MAX,
1408 0 if VAL is not inside [MIN, MAX],
1409 -2 if we cannot tell either way.
1411 Benchmark compile/20001226-1.c compilation time after changing this
1412 function. */
1414 static inline int
1415 value_inside_range (tree val, tree min, tree max)
1417 int cmp1, cmp2;
1419 cmp1 = operand_less_p (val, min);
1420 if (cmp1 == -2)
1421 return -2;
1422 if (cmp1 == 1)
1423 return 0;
1425 cmp2 = operand_less_p (max, val);
1426 if (cmp2 == -2)
1427 return -2;
1429 return !cmp2;
1433 /* Return true if value ranges VR0 and VR1 have a non-empty
1434 intersection.
1436 Benchmark compile/20001226-1.c compilation time after changing this
1437 function.
1440 static inline bool
1441 value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
1443 /* The value ranges do not intersect if the maximum of the first range is
1444 less than the minimum of the second range or vice versa.
1445 When those relations are unknown, we can't do any better. */
1446 if (operand_less_p (vr0->max, vr1->min) != 0)
1447 return false;
1448 if (operand_less_p (vr1->max, vr0->min) != 0)
1449 return false;
1450 return true;
1454 /* Return 1 if [MIN, MAX] includes the value zero, 0 if it does not
1455 include the value zero, -2 if we cannot tell. */
1457 static inline int
1458 range_includes_zero_p (tree min, tree max)
1460 tree zero = build_int_cst (TREE_TYPE (min), 0);
1461 return value_inside_range (zero, min, max);
1464 /* Return true if *VR is know to only contain nonnegative values. */
1466 static inline bool
1467 value_range_nonnegative_p (value_range_t *vr)
1469 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
1470 which would return a useful value should be encoded as a
1471 VR_RANGE. */
1472 if (vr->type == VR_RANGE)
1474 int result = compare_values (vr->min, integer_zero_node);
1475 return (result == 0 || result == 1);
1478 return false;
1481 /* If *VR has a value rante that is a single constant value return that,
1482 otherwise return NULL_TREE. */
1484 static tree
1485 value_range_constant_singleton (value_range_t *vr)
1487 if (vr->type == VR_RANGE
1488 && operand_equal_p (vr->min, vr->max, 0)
1489 && is_gimple_min_invariant (vr->min))
1490 return vr->min;
1492 return NULL_TREE;
1495 /* If OP has a value range with a single constant value return that,
1496 otherwise return NULL_TREE. This returns OP itself if OP is a
1497 constant. */
1499 static tree
1500 op_with_constant_singleton_value_range (tree op)
1502 if (is_gimple_min_invariant (op))
1503 return op;
1505 if (TREE_CODE (op) != SSA_NAME)
1506 return NULL_TREE;
1508 return value_range_constant_singleton (get_value_range (op));
1511 /* Return true if op is in a boolean [0, 1] value-range. */
1513 static bool
1514 op_with_boolean_value_range_p (tree op)
1516 value_range_t *vr;
1518 if (TYPE_PRECISION (TREE_TYPE (op)) == 1)
1519 return true;
1521 if (integer_zerop (op)
1522 || integer_onep (op))
1523 return true;
1525 if (TREE_CODE (op) != SSA_NAME)
1526 return false;
1528 vr = get_value_range (op);
1529 return (vr->type == VR_RANGE
1530 && integer_zerop (vr->min)
1531 && integer_onep (vr->max));
1534 /* Extract value range information from an ASSERT_EXPR EXPR and store
1535 it in *VR_P. */
1537 static void
1538 extract_range_from_assert (value_range_t *vr_p, tree expr)
1540 tree var, cond, limit, min, max, type;
1541 value_range_t *limit_vr;
1542 enum tree_code cond_code;
1544 var = ASSERT_EXPR_VAR (expr);
1545 cond = ASSERT_EXPR_COND (expr);
1547 gcc_assert (COMPARISON_CLASS_P (cond));
1549 /* Find VAR in the ASSERT_EXPR conditional. */
1550 if (var == TREE_OPERAND (cond, 0)
1551 || TREE_CODE (TREE_OPERAND (cond, 0)) == PLUS_EXPR
1552 || TREE_CODE (TREE_OPERAND (cond, 0)) == NOP_EXPR)
1554 /* If the predicate is of the form VAR COMP LIMIT, then we just
1555 take LIMIT from the RHS and use the same comparison code. */
1556 cond_code = TREE_CODE (cond);
1557 limit = TREE_OPERAND (cond, 1);
1558 cond = TREE_OPERAND (cond, 0);
1560 else
1562 /* If the predicate is of the form LIMIT COMP VAR, then we need
1563 to flip around the comparison code to create the proper range
1564 for VAR. */
1565 cond_code = swap_tree_comparison (TREE_CODE (cond));
1566 limit = TREE_OPERAND (cond, 0);
1567 cond = TREE_OPERAND (cond, 1);
1570 limit = avoid_overflow_infinity (limit);
1572 type = TREE_TYPE (var);
1573 gcc_assert (limit != var);
1575 /* For pointer arithmetic, we only keep track of pointer equality
1576 and inequality. */
1577 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
1579 set_value_range_to_varying (vr_p);
1580 return;
1583 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1584 try to use LIMIT's range to avoid creating symbolic ranges
1585 unnecessarily. */
1586 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
1588 /* LIMIT's range is only interesting if it has any useful information. */
1589 if (limit_vr
1590 && (limit_vr->type == VR_UNDEFINED
1591 || limit_vr->type == VR_VARYING
1592 || symbolic_range_p (limit_vr)))
1593 limit_vr = NULL;
1595 /* Initially, the new range has the same set of equivalences of
1596 VAR's range. This will be revised before returning the final
1597 value. Since assertions may be chained via mutually exclusive
1598 predicates, we will need to trim the set of equivalences before
1599 we are done. */
1600 gcc_assert (vr_p->equiv == NULL);
1601 add_equivalence (&vr_p->equiv, var);
1603 /* Extract a new range based on the asserted comparison for VAR and
1604 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1605 will only use it for equality comparisons (EQ_EXPR). For any
1606 other kind of assertion, we cannot derive a range from LIMIT's
1607 anti-range that can be used to describe the new range. For
1608 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1609 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1610 no single range for x_2 that could describe LE_EXPR, so we might
1611 as well build the range [b_4, +INF] for it.
1612 One special case we handle is extracting a range from a
1613 range test encoded as (unsigned)var + CST <= limit. */
1614 if (TREE_CODE (cond) == NOP_EXPR
1615 || TREE_CODE (cond) == PLUS_EXPR)
1617 if (TREE_CODE (cond) == PLUS_EXPR)
1619 min = fold_build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (cond, 1)),
1620 TREE_OPERAND (cond, 1));
1621 max = int_const_binop (PLUS_EXPR, limit, min);
1622 cond = TREE_OPERAND (cond, 0);
1624 else
1626 min = build_int_cst (TREE_TYPE (var), 0);
1627 max = limit;
1630 /* Make sure to not set TREE_OVERFLOW on the final type
1631 conversion. We are willingly interpreting large positive
1632 unsigned values as negative singed values here. */
1633 min = force_fit_type_double (TREE_TYPE (var), tree_to_double_int (min),
1634 0, false);
1635 max = force_fit_type_double (TREE_TYPE (var), tree_to_double_int (max),
1636 0, false);
1638 /* We can transform a max, min range to an anti-range or
1639 vice-versa. Use set_and_canonicalize_value_range which does
1640 this for us. */
1641 if (cond_code == LE_EXPR)
1642 set_and_canonicalize_value_range (vr_p, VR_RANGE,
1643 min, max, vr_p->equiv);
1644 else if (cond_code == GT_EXPR)
1645 set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1646 min, max, vr_p->equiv);
1647 else
1648 gcc_unreachable ();
1650 else if (cond_code == EQ_EXPR)
1652 enum value_range_type range_type;
1654 if (limit_vr)
1656 range_type = limit_vr->type;
1657 min = limit_vr->min;
1658 max = limit_vr->max;
1660 else
1662 range_type = VR_RANGE;
1663 min = limit;
1664 max = limit;
1667 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
1669 /* When asserting the equality VAR == LIMIT and LIMIT is another
1670 SSA name, the new range will also inherit the equivalence set
1671 from LIMIT. */
1672 if (TREE_CODE (limit) == SSA_NAME)
1673 add_equivalence (&vr_p->equiv, limit);
1675 else if (cond_code == NE_EXPR)
1677 /* As described above, when LIMIT's range is an anti-range and
1678 this assertion is an inequality (NE_EXPR), then we cannot
1679 derive anything from the anti-range. For instance, if
1680 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1681 not imply that VAR's range is [0, 0]. So, in the case of
1682 anti-ranges, we just assert the inequality using LIMIT and
1683 not its anti-range.
1685 If LIMIT_VR is a range, we can only use it to build a new
1686 anti-range if LIMIT_VR is a single-valued range. For
1687 instance, if LIMIT_VR is [0, 1], the predicate
1688 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1689 Rather, it means that for value 0 VAR should be ~[0, 0]
1690 and for value 1, VAR should be ~[1, 1]. We cannot
1691 represent these ranges.
1693 The only situation in which we can build a valid
1694 anti-range is when LIMIT_VR is a single-valued range
1695 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1696 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1697 if (limit_vr
1698 && limit_vr->type == VR_RANGE
1699 && compare_values (limit_vr->min, limit_vr->max) == 0)
1701 min = limit_vr->min;
1702 max = limit_vr->max;
1704 else
1706 /* In any other case, we cannot use LIMIT's range to build a
1707 valid anti-range. */
1708 min = max = limit;
1711 /* If MIN and MAX cover the whole range for their type, then
1712 just use the original LIMIT. */
1713 if (INTEGRAL_TYPE_P (type)
1714 && vrp_val_is_min (min)
1715 && vrp_val_is_max (max))
1716 min = max = limit;
1718 set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1719 min, max, vr_p->equiv);
1721 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
1723 min = TYPE_MIN_VALUE (type);
1725 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1726 max = limit;
1727 else
1729 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1730 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1731 LT_EXPR. */
1732 max = limit_vr->max;
1735 /* If the maximum value forces us to be out of bounds, simply punt.
1736 It would be pointless to try and do anything more since this
1737 all should be optimized away above us. */
1738 if ((cond_code == LT_EXPR
1739 && compare_values (max, min) == 0)
1740 || is_overflow_infinity (max))
1741 set_value_range_to_varying (vr_p);
1742 else
1744 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
1745 if (cond_code == LT_EXPR)
1747 if (TYPE_PRECISION (TREE_TYPE (max)) == 1
1748 && !TYPE_UNSIGNED (TREE_TYPE (max)))
1749 max = fold_build2 (PLUS_EXPR, TREE_TYPE (max), max,
1750 build_int_cst (TREE_TYPE (max), -1));
1751 else
1752 max = fold_build2 (MINUS_EXPR, TREE_TYPE (max), max,
1753 build_int_cst (TREE_TYPE (max), 1));
1754 if (EXPR_P (max))
1755 TREE_NO_WARNING (max) = 1;
1758 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1761 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
1763 max = TYPE_MAX_VALUE (type);
1765 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1766 min = limit;
1767 else
1769 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1770 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1771 GT_EXPR. */
1772 min = limit_vr->min;
1775 /* If the minimum value forces us to be out of bounds, simply punt.
1776 It would be pointless to try and do anything more since this
1777 all should be optimized away above us. */
1778 if ((cond_code == GT_EXPR
1779 && compare_values (min, max) == 0)
1780 || is_overflow_infinity (min))
1781 set_value_range_to_varying (vr_p);
1782 else
1784 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
1785 if (cond_code == GT_EXPR)
1787 if (TYPE_PRECISION (TREE_TYPE (min)) == 1
1788 && !TYPE_UNSIGNED (TREE_TYPE (min)))
1789 min = fold_build2 (MINUS_EXPR, TREE_TYPE (min), min,
1790 build_int_cst (TREE_TYPE (min), -1));
1791 else
1792 min = fold_build2 (PLUS_EXPR, TREE_TYPE (min), min,
1793 build_int_cst (TREE_TYPE (min), 1));
1794 if (EXPR_P (min))
1795 TREE_NO_WARNING (min) = 1;
1798 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1801 else
1802 gcc_unreachable ();
1804 /* Finally intersect the new range with what we already know about var. */
1805 vrp_intersect_ranges (vr_p, get_value_range (var));
1809 /* Extract range information from SSA name VAR and store it in VR. If
1810 VAR has an interesting range, use it. Otherwise, create the
1811 range [VAR, VAR] and return it. This is useful in situations where
1812 we may have conditionals testing values of VARYING names. For
1813 instance,
1815 x_3 = y_5;
1816 if (x_3 > y_5)
1819 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1820 always false. */
1822 static void
1823 extract_range_from_ssa_name (value_range_t *vr, tree var)
1825 value_range_t *var_vr = get_value_range (var);
1827 if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
1828 copy_value_range (vr, var_vr);
1829 else
1830 set_value_range (vr, VR_RANGE, var, var, NULL);
1832 add_equivalence (&vr->equiv, var);
1836 /* Wrapper around int_const_binop. If the operation overflows and we
1837 are not using wrapping arithmetic, then adjust the result to be
1838 -INF or +INF depending on CODE, VAL1 and VAL2. This can return
1839 NULL_TREE if we need to use an overflow infinity representation but
1840 the type does not support it. */
1842 static tree
1843 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1845 tree res;
1847 res = int_const_binop (code, val1, val2);
1849 /* If we are using unsigned arithmetic, operate symbolically
1850 on -INF and +INF as int_const_binop only handles signed overflow. */
1851 if (TYPE_UNSIGNED (TREE_TYPE (val1)))
1853 int checkz = compare_values (res, val1);
1854 bool overflow = false;
1856 /* Ensure that res = val1 [+*] val2 >= val1
1857 or that res = val1 - val2 <= val1. */
1858 if ((code == PLUS_EXPR
1859 && !(checkz == 1 || checkz == 0))
1860 || (code == MINUS_EXPR
1861 && !(checkz == 0 || checkz == -1)))
1863 overflow = true;
1865 /* Checking for multiplication overflow is done by dividing the
1866 output of the multiplication by the first input of the
1867 multiplication. If the result of that division operation is
1868 not equal to the second input of the multiplication, then the
1869 multiplication overflowed. */
1870 else if (code == MULT_EXPR && !integer_zerop (val1))
1872 tree tmp = int_const_binop (TRUNC_DIV_EXPR,
1873 res,
1874 val1);
1875 int check = compare_values (tmp, val2);
1877 if (check != 0)
1878 overflow = true;
1881 if (overflow)
1883 res = copy_node (res);
1884 TREE_OVERFLOW (res) = 1;
1888 else if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
1889 /* If the singed operation wraps then int_const_binop has done
1890 everything we want. */
1892 else if ((TREE_OVERFLOW (res)
1893 && !TREE_OVERFLOW (val1)
1894 && !TREE_OVERFLOW (val2))
1895 || is_overflow_infinity (val1)
1896 || is_overflow_infinity (val2))
1898 /* If the operation overflowed but neither VAL1 nor VAL2 are
1899 overflown, return -INF or +INF depending on the operation
1900 and the combination of signs of the operands. */
1901 int sgn1 = tree_int_cst_sgn (val1);
1902 int sgn2 = tree_int_cst_sgn (val2);
1904 if (needs_overflow_infinity (TREE_TYPE (res))
1905 && !supports_overflow_infinity (TREE_TYPE (res)))
1906 return NULL_TREE;
1908 /* We have to punt on adding infinities of different signs,
1909 since we can't tell what the sign of the result should be.
1910 Likewise for subtracting infinities of the same sign. */
1911 if (((code == PLUS_EXPR && sgn1 != sgn2)
1912 || (code == MINUS_EXPR && sgn1 == sgn2))
1913 && is_overflow_infinity (val1)
1914 && is_overflow_infinity (val2))
1915 return NULL_TREE;
1917 /* Don't try to handle division or shifting of infinities. */
1918 if ((code == TRUNC_DIV_EXPR
1919 || code == FLOOR_DIV_EXPR
1920 || code == CEIL_DIV_EXPR
1921 || code == EXACT_DIV_EXPR
1922 || code == ROUND_DIV_EXPR
1923 || code == RSHIFT_EXPR)
1924 && (is_overflow_infinity (val1)
1925 || is_overflow_infinity (val2)))
1926 return NULL_TREE;
1928 /* Notice that we only need to handle the restricted set of
1929 operations handled by extract_range_from_binary_expr.
1930 Among them, only multiplication, addition and subtraction
1931 can yield overflow without overflown operands because we
1932 are working with integral types only... except in the
1933 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1934 for division too. */
1936 /* For multiplication, the sign of the overflow is given
1937 by the comparison of the signs of the operands. */
1938 if ((code == MULT_EXPR && sgn1 == sgn2)
1939 /* For addition, the operands must be of the same sign
1940 to yield an overflow. Its sign is therefore that
1941 of one of the operands, for example the first. For
1942 infinite operands X + -INF is negative, not positive. */
1943 || (code == PLUS_EXPR
1944 && (sgn1 >= 0
1945 ? !is_negative_overflow_infinity (val2)
1946 : is_positive_overflow_infinity (val2)))
1947 /* For subtraction, non-infinite operands must be of
1948 different signs to yield an overflow. Its sign is
1949 therefore that of the first operand or the opposite of
1950 that of the second operand. A first operand of 0 counts
1951 as positive here, for the corner case 0 - (-INF), which
1952 overflows, but must yield +INF. For infinite operands 0
1953 - INF is negative, not positive. */
1954 || (code == MINUS_EXPR
1955 && (sgn1 >= 0
1956 ? !is_positive_overflow_infinity (val2)
1957 : is_negative_overflow_infinity (val2)))
1958 /* We only get in here with positive shift count, so the
1959 overflow direction is the same as the sign of val1.
1960 Actually rshift does not overflow at all, but we only
1961 handle the case of shifting overflowed -INF and +INF. */
1962 || (code == RSHIFT_EXPR
1963 && sgn1 >= 0)
1964 /* For division, the only case is -INF / -1 = +INF. */
1965 || code == TRUNC_DIV_EXPR
1966 || code == FLOOR_DIV_EXPR
1967 || code == CEIL_DIV_EXPR
1968 || code == EXACT_DIV_EXPR
1969 || code == ROUND_DIV_EXPR)
1970 return (needs_overflow_infinity (TREE_TYPE (res))
1971 ? positive_overflow_infinity (TREE_TYPE (res))
1972 : TYPE_MAX_VALUE (TREE_TYPE (res)));
1973 else
1974 return (needs_overflow_infinity (TREE_TYPE (res))
1975 ? negative_overflow_infinity (TREE_TYPE (res))
1976 : TYPE_MIN_VALUE (TREE_TYPE (res)));
1979 return res;
1983 /* For range VR compute two double_int bitmasks. In *MAY_BE_NONZERO
1984 bitmask if some bit is unset, it means for all numbers in the range
1985 the bit is 0, otherwise it might be 0 or 1. In *MUST_BE_NONZERO
1986 bitmask if some bit is set, it means for all numbers in the range
1987 the bit is 1, otherwise it might be 0 or 1. */
1989 static bool
1990 zero_nonzero_bits_from_vr (value_range_t *vr,
1991 double_int *may_be_nonzero,
1992 double_int *must_be_nonzero)
1994 *may_be_nonzero = double_int_minus_one;
1995 *must_be_nonzero = double_int_zero;
1996 if (!range_int_cst_p (vr)
1997 || is_overflow_infinity (vr->min)
1998 || is_overflow_infinity (vr->max))
1999 return false;
2001 if (range_int_cst_singleton_p (vr))
2003 *may_be_nonzero = tree_to_double_int (vr->min);
2004 *must_be_nonzero = *may_be_nonzero;
2006 else if (tree_int_cst_sgn (vr->min) >= 0
2007 || tree_int_cst_sgn (vr->max) < 0)
2009 double_int dmin = tree_to_double_int (vr->min);
2010 double_int dmax = tree_to_double_int (vr->max);
2011 double_int xor_mask = dmin ^ dmax;
2012 *may_be_nonzero = dmin | dmax;
2013 *must_be_nonzero = dmin & dmax;
2014 if (xor_mask.high != 0)
2016 unsigned HOST_WIDE_INT mask
2017 = ((unsigned HOST_WIDE_INT) 1
2018 << floor_log2 (xor_mask.high)) - 1;
2019 may_be_nonzero->low = ALL_ONES;
2020 may_be_nonzero->high |= mask;
2021 must_be_nonzero->low = 0;
2022 must_be_nonzero->high &= ~mask;
2024 else if (xor_mask.low != 0)
2026 unsigned HOST_WIDE_INT mask
2027 = ((unsigned HOST_WIDE_INT) 1
2028 << floor_log2 (xor_mask.low)) - 1;
2029 may_be_nonzero->low |= mask;
2030 must_be_nonzero->low &= ~mask;
2034 return true;
2037 /* Create two value-ranges in *VR0 and *VR1 from the anti-range *AR
2038 so that *VR0 U *VR1 == *AR. Returns true if that is possible,
2039 false otherwise. If *AR can be represented with a single range
2040 *VR1 will be VR_UNDEFINED. */
2042 static bool
2043 ranges_from_anti_range (value_range_t *ar,
2044 value_range_t *vr0, value_range_t *vr1)
2046 tree type = TREE_TYPE (ar->min);
2048 vr0->type = VR_UNDEFINED;
2049 vr1->type = VR_UNDEFINED;
2051 if (ar->type != VR_ANTI_RANGE
2052 || TREE_CODE (ar->min) != INTEGER_CST
2053 || TREE_CODE (ar->max) != INTEGER_CST
2054 || !vrp_val_min (type)
2055 || !vrp_val_max (type))
2056 return false;
2058 if (!vrp_val_is_min (ar->min))
2060 vr0->type = VR_RANGE;
2061 vr0->min = vrp_val_min (type);
2062 vr0->max
2063 = double_int_to_tree (type,
2064 tree_to_double_int (ar->min) - double_int_one);
2066 if (!vrp_val_is_max (ar->max))
2068 vr1->type = VR_RANGE;
2069 vr1->min
2070 = double_int_to_tree (type,
2071 tree_to_double_int (ar->max) + double_int_one);
2072 vr1->max = vrp_val_max (type);
2074 if (vr0->type == VR_UNDEFINED)
2076 *vr0 = *vr1;
2077 vr1->type = VR_UNDEFINED;
2080 return vr0->type != VR_UNDEFINED;
2083 /* Helper to extract a value-range *VR for a multiplicative operation
2084 *VR0 CODE *VR1. */
2086 static void
2087 extract_range_from_multiplicative_op_1 (value_range_t *vr,
2088 enum tree_code code,
2089 value_range_t *vr0, value_range_t *vr1)
2091 enum value_range_type type;
2092 tree val[4];
2093 size_t i;
2094 tree min, max;
2095 bool sop;
2096 int cmp;
2098 /* Multiplications, divisions and shifts are a bit tricky to handle,
2099 depending on the mix of signs we have in the two ranges, we
2100 need to operate on different values to get the minimum and
2101 maximum values for the new range. One approach is to figure
2102 out all the variations of range combinations and do the
2103 operations.
2105 However, this involves several calls to compare_values and it
2106 is pretty convoluted. It's simpler to do the 4 operations
2107 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
2108 MAX1) and then figure the smallest and largest values to form
2109 the new range. */
2110 gcc_assert (code == MULT_EXPR
2111 || code == TRUNC_DIV_EXPR
2112 || code == FLOOR_DIV_EXPR
2113 || code == CEIL_DIV_EXPR
2114 || code == EXACT_DIV_EXPR
2115 || code == ROUND_DIV_EXPR
2116 || code == RSHIFT_EXPR
2117 || code == LSHIFT_EXPR);
2118 gcc_assert ((vr0->type == VR_RANGE
2119 || (code == MULT_EXPR && vr0->type == VR_ANTI_RANGE))
2120 && vr0->type == vr1->type);
2122 type = vr0->type;
2124 /* Compute the 4 cross operations. */
2125 sop = false;
2126 val[0] = vrp_int_const_binop (code, vr0->min, vr1->min);
2127 if (val[0] == NULL_TREE)
2128 sop = true;
2130 if (vr1->max == vr1->min)
2131 val[1] = NULL_TREE;
2132 else
2134 val[1] = vrp_int_const_binop (code, vr0->min, vr1->max);
2135 if (val[1] == NULL_TREE)
2136 sop = true;
2139 if (vr0->max == vr0->min)
2140 val[2] = NULL_TREE;
2141 else
2143 val[2] = vrp_int_const_binop (code, vr0->max, vr1->min);
2144 if (val[2] == NULL_TREE)
2145 sop = true;
2148 if (vr0->min == vr0->max || vr1->min == vr1->max)
2149 val[3] = NULL_TREE;
2150 else
2152 val[3] = vrp_int_const_binop (code, vr0->max, vr1->max);
2153 if (val[3] == NULL_TREE)
2154 sop = true;
2157 if (sop)
2159 set_value_range_to_varying (vr);
2160 return;
2163 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
2164 of VAL[i]. */
2165 min = val[0];
2166 max = val[0];
2167 for (i = 1; i < 4; i++)
2169 if (!is_gimple_min_invariant (min)
2170 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2171 || !is_gimple_min_invariant (max)
2172 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2173 break;
2175 if (val[i])
2177 if (!is_gimple_min_invariant (val[i])
2178 || (TREE_OVERFLOW (val[i])
2179 && !is_overflow_infinity (val[i])))
2181 /* If we found an overflowed value, set MIN and MAX
2182 to it so that we set the resulting range to
2183 VARYING. */
2184 min = max = val[i];
2185 break;
2188 if (compare_values (val[i], min) == -1)
2189 min = val[i];
2191 if (compare_values (val[i], max) == 1)
2192 max = val[i];
2196 /* If either MIN or MAX overflowed, then set the resulting range to
2197 VARYING. But we do accept an overflow infinity
2198 representation. */
2199 if (min == NULL_TREE
2200 || !is_gimple_min_invariant (min)
2201 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2202 || max == NULL_TREE
2203 || !is_gimple_min_invariant (max)
2204 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2206 set_value_range_to_varying (vr);
2207 return;
2210 /* We punt if:
2211 1) [-INF, +INF]
2212 2) [-INF, +-INF(OVF)]
2213 3) [+-INF(OVF), +INF]
2214 4) [+-INF(OVF), +-INF(OVF)]
2215 We learn nothing when we have INF and INF(OVF) on both sides.
2216 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2217 overflow. */
2218 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
2219 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
2221 set_value_range_to_varying (vr);
2222 return;
2225 cmp = compare_values (min, max);
2226 if (cmp == -2 || cmp == 1)
2228 /* If the new range has its limits swapped around (MIN > MAX),
2229 then the operation caused one of them to wrap around, mark
2230 the new range VARYING. */
2231 set_value_range_to_varying (vr);
2233 else
2234 set_value_range (vr, type, min, max, NULL);
2237 /* Some quadruple precision helpers. */
2238 static int
2239 quad_int_cmp (double_int l0, double_int h0,
2240 double_int l1, double_int h1, bool uns)
2242 int c = h0.cmp (h1, uns);
2243 if (c != 0) return c;
2244 return l0.ucmp (l1);
2247 static void
2248 quad_int_pair_sort (double_int *l0, double_int *h0,
2249 double_int *l1, double_int *h1, bool uns)
2251 if (quad_int_cmp (*l0, *h0, *l1, *h1, uns) > 0)
2253 double_int tmp;
2254 tmp = *l0; *l0 = *l1; *l1 = tmp;
2255 tmp = *h0; *h0 = *h1; *h1 = tmp;
2259 /* Extract range information from a binary operation CODE based on
2260 the ranges of each of its operands, *VR0 and *VR1 with resulting
2261 type EXPR_TYPE. The resulting range is stored in *VR. */
2263 static void
2264 extract_range_from_binary_expr_1 (value_range_t *vr,
2265 enum tree_code code, tree expr_type,
2266 value_range_t *vr0_, value_range_t *vr1_)
2268 value_range_t vr0 = *vr0_, vr1 = *vr1_;
2269 value_range_t vrtem0 = VR_INITIALIZER, vrtem1 = VR_INITIALIZER;
2270 enum value_range_type type;
2271 tree min = NULL_TREE, max = NULL_TREE;
2272 int cmp;
2274 if (!INTEGRAL_TYPE_P (expr_type)
2275 && !POINTER_TYPE_P (expr_type))
2277 set_value_range_to_varying (vr);
2278 return;
2281 /* Not all binary expressions can be applied to ranges in a
2282 meaningful way. Handle only arithmetic operations. */
2283 if (code != PLUS_EXPR
2284 && code != MINUS_EXPR
2285 && code != POINTER_PLUS_EXPR
2286 && code != MULT_EXPR
2287 && code != TRUNC_DIV_EXPR
2288 && code != FLOOR_DIV_EXPR
2289 && code != CEIL_DIV_EXPR
2290 && code != EXACT_DIV_EXPR
2291 && code != ROUND_DIV_EXPR
2292 && code != TRUNC_MOD_EXPR
2293 && code != RSHIFT_EXPR
2294 && code != LSHIFT_EXPR
2295 && code != MIN_EXPR
2296 && code != MAX_EXPR
2297 && code != BIT_AND_EXPR
2298 && code != BIT_IOR_EXPR
2299 && code != BIT_XOR_EXPR)
2301 set_value_range_to_varying (vr);
2302 return;
2305 /* If both ranges are UNDEFINED, so is the result. */
2306 if (vr0.type == VR_UNDEFINED && vr1.type == VR_UNDEFINED)
2308 set_value_range_to_undefined (vr);
2309 return;
2311 /* If one of the ranges is UNDEFINED drop it to VARYING for the following
2312 code. At some point we may want to special-case operations that
2313 have UNDEFINED result for all or some value-ranges of the not UNDEFINED
2314 operand. */
2315 else if (vr0.type == VR_UNDEFINED)
2316 set_value_range_to_varying (&vr0);
2317 else if (vr1.type == VR_UNDEFINED)
2318 set_value_range_to_varying (&vr1);
2320 /* Now canonicalize anti-ranges to ranges when they are not symbolic
2321 and express ~[] op X as ([]' op X) U ([]'' op X). */
2322 if (vr0.type == VR_ANTI_RANGE
2323 && ranges_from_anti_range (&vr0, &vrtem0, &vrtem1))
2325 extract_range_from_binary_expr_1 (vr, code, expr_type, &vrtem0, vr1_);
2326 if (vrtem1.type != VR_UNDEFINED)
2328 value_range_t vrres = VR_INITIALIZER;
2329 extract_range_from_binary_expr_1 (&vrres, code, expr_type,
2330 &vrtem1, vr1_);
2331 vrp_meet (vr, &vrres);
2333 return;
2335 /* Likewise for X op ~[]. */
2336 if (vr1.type == VR_ANTI_RANGE
2337 && ranges_from_anti_range (&vr1, &vrtem0, &vrtem1))
2339 extract_range_from_binary_expr_1 (vr, code, expr_type, vr0_, &vrtem0);
2340 if (vrtem1.type != VR_UNDEFINED)
2342 value_range_t vrres = VR_INITIALIZER;
2343 extract_range_from_binary_expr_1 (&vrres, code, expr_type,
2344 vr0_, &vrtem1);
2345 vrp_meet (vr, &vrres);
2347 return;
2350 /* The type of the resulting value range defaults to VR0.TYPE. */
2351 type = vr0.type;
2353 /* Refuse to operate on VARYING ranges, ranges of different kinds
2354 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
2355 because we may be able to derive a useful range even if one of
2356 the operands is VR_VARYING or symbolic range. Similarly for
2357 divisions. TODO, we may be able to derive anti-ranges in
2358 some cases. */
2359 if (code != BIT_AND_EXPR
2360 && code != BIT_IOR_EXPR
2361 && code != TRUNC_DIV_EXPR
2362 && code != FLOOR_DIV_EXPR
2363 && code != CEIL_DIV_EXPR
2364 && code != EXACT_DIV_EXPR
2365 && code != ROUND_DIV_EXPR
2366 && code != TRUNC_MOD_EXPR
2367 && code != MIN_EXPR
2368 && code != MAX_EXPR
2369 && (vr0.type == VR_VARYING
2370 || vr1.type == VR_VARYING
2371 || vr0.type != vr1.type
2372 || symbolic_range_p (&vr0)
2373 || symbolic_range_p (&vr1)))
2375 set_value_range_to_varying (vr);
2376 return;
2379 /* Now evaluate the expression to determine the new range. */
2380 if (POINTER_TYPE_P (expr_type))
2382 if (code == MIN_EXPR || code == MAX_EXPR)
2384 /* For MIN/MAX expressions with pointers, we only care about
2385 nullness, if both are non null, then the result is nonnull.
2386 If both are null, then the result is null. Otherwise they
2387 are varying. */
2388 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2389 set_value_range_to_nonnull (vr, expr_type);
2390 else if (range_is_null (&vr0) && range_is_null (&vr1))
2391 set_value_range_to_null (vr, expr_type);
2392 else
2393 set_value_range_to_varying (vr);
2395 else if (code == POINTER_PLUS_EXPR)
2397 /* For pointer types, we are really only interested in asserting
2398 whether the expression evaluates to non-NULL. */
2399 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
2400 set_value_range_to_nonnull (vr, expr_type);
2401 else if (range_is_null (&vr0) && range_is_null (&vr1))
2402 set_value_range_to_null (vr, expr_type);
2403 else
2404 set_value_range_to_varying (vr);
2406 else if (code == BIT_AND_EXPR)
2408 /* For pointer types, we are really only interested in asserting
2409 whether the expression evaluates to non-NULL. */
2410 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2411 set_value_range_to_nonnull (vr, expr_type);
2412 else if (range_is_null (&vr0) || range_is_null (&vr1))
2413 set_value_range_to_null (vr, expr_type);
2414 else
2415 set_value_range_to_varying (vr);
2417 else
2418 set_value_range_to_varying (vr);
2420 return;
2423 /* For integer ranges, apply the operation to each end of the
2424 range and see what we end up with. */
2425 if (code == PLUS_EXPR || code == MINUS_EXPR)
2427 /* If we have a PLUS_EXPR with two VR_RANGE integer constant
2428 ranges compute the precise range for such case if possible. */
2429 if (range_int_cst_p (&vr0)
2430 && range_int_cst_p (&vr1)
2431 /* We need as many bits as the possibly unsigned inputs. */
2432 && TYPE_PRECISION (expr_type) <= HOST_BITS_PER_DOUBLE_INT)
2434 double_int min0 = tree_to_double_int (vr0.min);
2435 double_int max0 = tree_to_double_int (vr0.max);
2436 double_int min1 = tree_to_double_int (vr1.min);
2437 double_int max1 = tree_to_double_int (vr1.max);
2438 bool uns = TYPE_UNSIGNED (expr_type);
2439 double_int type_min
2440 = double_int::min_value (TYPE_PRECISION (expr_type), uns);
2441 double_int type_max
2442 = double_int::max_value (TYPE_PRECISION (expr_type), uns);
2443 double_int dmin, dmax;
2444 int min_ovf = 0;
2445 int max_ovf = 0;
2447 if (code == PLUS_EXPR)
2449 dmin = min0 + min1;
2450 dmax = max0 + max1;
2452 /* Check for overflow in double_int. */
2453 if (min1.cmp (double_int_zero, uns) != dmin.cmp (min0, uns))
2454 min_ovf = min0.cmp (dmin, uns);
2455 if (max1.cmp (double_int_zero, uns) != dmax.cmp (max0, uns))
2456 max_ovf = max0.cmp (dmax, uns);
2458 else /* if (code == MINUS_EXPR) */
2460 dmin = min0 - max1;
2461 dmax = max0 - min1;
2463 if (double_int_zero.cmp (max1, uns) != dmin.cmp (min0, uns))
2464 min_ovf = min0.cmp (max1, uns);
2465 if (double_int_zero.cmp (min1, uns) != dmax.cmp (max0, uns))
2466 max_ovf = max0.cmp (min1, uns);
2469 /* For non-wrapping arithmetic look at possibly smaller
2470 value-ranges of the type. */
2471 if (!TYPE_OVERFLOW_WRAPS (expr_type))
2473 if (vrp_val_min (expr_type))
2474 type_min = tree_to_double_int (vrp_val_min (expr_type));
2475 if (vrp_val_max (expr_type))
2476 type_max = tree_to_double_int (vrp_val_max (expr_type));
2479 /* Check for type overflow. */
2480 if (min_ovf == 0)
2482 if (dmin.cmp (type_min, uns) == -1)
2483 min_ovf = -1;
2484 else if (dmin.cmp (type_max, uns) == 1)
2485 min_ovf = 1;
2487 if (max_ovf == 0)
2489 if (dmax.cmp (type_min, uns) == -1)
2490 max_ovf = -1;
2491 else if (dmax.cmp (type_max, uns) == 1)
2492 max_ovf = 1;
2495 if (TYPE_OVERFLOW_WRAPS (expr_type))
2497 /* If overflow wraps, truncate the values and adjust the
2498 range kind and bounds appropriately. */
2499 double_int tmin
2500 = dmin.ext (TYPE_PRECISION (expr_type), uns);
2501 double_int tmax
2502 = dmax.ext (TYPE_PRECISION (expr_type), uns);
2503 if (min_ovf == max_ovf)
2505 /* No overflow or both overflow or underflow. The
2506 range kind stays VR_RANGE. */
2507 min = double_int_to_tree (expr_type, tmin);
2508 max = double_int_to_tree (expr_type, tmax);
2510 else if (min_ovf == -1
2511 && max_ovf == 1)
2513 /* Underflow and overflow, drop to VR_VARYING. */
2514 set_value_range_to_varying (vr);
2515 return;
2517 else
2519 /* Min underflow or max overflow. The range kind
2520 changes to VR_ANTI_RANGE. */
2521 bool covers = false;
2522 double_int tem = tmin;
2523 gcc_assert ((min_ovf == -1 && max_ovf == 0)
2524 || (max_ovf == 1 && min_ovf == 0));
2525 type = VR_ANTI_RANGE;
2526 tmin = tmax + double_int_one;
2527 if (tmin.cmp (tmax, uns) < 0)
2528 covers = true;
2529 tmax = tem + double_int_minus_one;
2530 if (tmax.cmp (tem, uns) > 0)
2531 covers = true;
2532 /* If the anti-range would cover nothing, drop to varying.
2533 Likewise if the anti-range bounds are outside of the
2534 types values. */
2535 if (covers || tmin.cmp (tmax, uns) > 0)
2537 set_value_range_to_varying (vr);
2538 return;
2540 min = double_int_to_tree (expr_type, tmin);
2541 max = double_int_to_tree (expr_type, tmax);
2544 else
2546 /* If overflow does not wrap, saturate to the types min/max
2547 value. */
2548 if (min_ovf == -1)
2550 if (needs_overflow_infinity (expr_type)
2551 && supports_overflow_infinity (expr_type))
2552 min = negative_overflow_infinity (expr_type);
2553 else
2554 min = double_int_to_tree (expr_type, type_min);
2556 else if (min_ovf == 1)
2558 if (needs_overflow_infinity (expr_type)
2559 && supports_overflow_infinity (expr_type))
2560 min = positive_overflow_infinity (expr_type);
2561 else
2562 min = double_int_to_tree (expr_type, type_max);
2564 else
2565 min = double_int_to_tree (expr_type, dmin);
2567 if (max_ovf == -1)
2569 if (needs_overflow_infinity (expr_type)
2570 && supports_overflow_infinity (expr_type))
2571 max = negative_overflow_infinity (expr_type);
2572 else
2573 max = double_int_to_tree (expr_type, type_min);
2575 else if (max_ovf == 1)
2577 if (needs_overflow_infinity (expr_type)
2578 && supports_overflow_infinity (expr_type))
2579 max = positive_overflow_infinity (expr_type);
2580 else
2581 max = double_int_to_tree (expr_type, type_max);
2583 else
2584 max = double_int_to_tree (expr_type, dmax);
2586 if (needs_overflow_infinity (expr_type)
2587 && supports_overflow_infinity (expr_type))
2589 if (is_negative_overflow_infinity (vr0.min)
2590 || (code == PLUS_EXPR
2591 ? is_negative_overflow_infinity (vr1.min)
2592 : is_positive_overflow_infinity (vr1.max)))
2593 min = negative_overflow_infinity (expr_type);
2594 if (is_positive_overflow_infinity (vr0.max)
2595 || (code == PLUS_EXPR
2596 ? is_positive_overflow_infinity (vr1.max)
2597 : is_negative_overflow_infinity (vr1.min)))
2598 max = positive_overflow_infinity (expr_type);
2601 else
2603 /* For other cases, for example if we have a PLUS_EXPR with two
2604 VR_ANTI_RANGEs, drop to VR_VARYING. It would take more effort
2605 to compute a precise range for such a case.
2606 ??? General even mixed range kind operations can be expressed
2607 by for example transforming ~[3, 5] + [1, 2] to range-only
2608 operations and a union primitive:
2609 [-INF, 2] + [1, 2] U [5, +INF] + [1, 2]
2610 [-INF+1, 4] U [6, +INF(OVF)]
2611 though usually the union is not exactly representable with
2612 a single range or anti-range as the above is
2613 [-INF+1, +INF(OVF)] intersected with ~[5, 5]
2614 but one could use a scheme similar to equivalences for this. */
2615 set_value_range_to_varying (vr);
2616 return;
2619 else if (code == MIN_EXPR
2620 || code == MAX_EXPR)
2622 if (vr0.type == VR_RANGE
2623 && !symbolic_range_p (&vr0))
2625 type = VR_RANGE;
2626 if (vr1.type == VR_RANGE
2627 && !symbolic_range_p (&vr1))
2629 /* For operations that make the resulting range directly
2630 proportional to the original ranges, apply the operation to
2631 the same end of each range. */
2632 min = vrp_int_const_binop (code, vr0.min, vr1.min);
2633 max = vrp_int_const_binop (code, vr0.max, vr1.max);
2635 else if (code == MIN_EXPR)
2637 min = vrp_val_min (expr_type);
2638 max = vr0.max;
2640 else if (code == MAX_EXPR)
2642 min = vr0.min;
2643 max = vrp_val_max (expr_type);
2646 else if (vr1.type == VR_RANGE
2647 && !symbolic_range_p (&vr1))
2649 type = VR_RANGE;
2650 if (code == MIN_EXPR)
2652 min = vrp_val_min (expr_type);
2653 max = vr1.max;
2655 else if (code == MAX_EXPR)
2657 min = vr1.min;
2658 max = vrp_val_max (expr_type);
2661 else
2663 set_value_range_to_varying (vr);
2664 return;
2667 else if (code == MULT_EXPR)
2669 /* Fancy code so that with unsigned, [-3,-1]*[-3,-1] does not
2670 drop to varying. */
2671 if (range_int_cst_p (&vr0)
2672 && range_int_cst_p (&vr1)
2673 && TYPE_OVERFLOW_WRAPS (expr_type))
2675 double_int min0, max0, min1, max1, sizem1, size;
2676 double_int prod0l, prod0h, prod1l, prod1h,
2677 prod2l, prod2h, prod3l, prod3h;
2678 bool uns0, uns1, uns;
2680 sizem1 = double_int::max_value (TYPE_PRECISION (expr_type), true);
2681 size = sizem1 + double_int_one;
2683 min0 = tree_to_double_int (vr0.min);
2684 max0 = tree_to_double_int (vr0.max);
2685 min1 = tree_to_double_int (vr1.min);
2686 max1 = tree_to_double_int (vr1.max);
2688 uns0 = TYPE_UNSIGNED (expr_type);
2689 uns1 = uns0;
2691 /* Canonicalize the intervals. */
2692 if (TYPE_UNSIGNED (expr_type))
2694 double_int min2 = size - min0;
2695 if (!min2.is_zero () && min2.cmp (max0, true) < 0)
2697 min0 = -min2;
2698 max0 -= size;
2699 uns0 = false;
2702 min2 = size - min1;
2703 if (!min2.is_zero () && min2.cmp (max1, true) < 0)
2705 min1 = -min2;
2706 max1 -= size;
2707 uns1 = false;
2710 uns = uns0 & uns1;
2712 bool overflow;
2713 prod0l = min0.wide_mul_with_sign (min1, true, &prod0h, &overflow);
2714 if (!uns0 && min0.is_negative ())
2715 prod0h -= min1;
2716 if (!uns1 && min1.is_negative ())
2717 prod0h -= min0;
2719 prod1l = min0.wide_mul_with_sign (max1, true, &prod1h, &overflow);
2720 if (!uns0 && min0.is_negative ())
2721 prod1h -= max1;
2722 if (!uns1 && max1.is_negative ())
2723 prod1h -= min0;
2725 prod2l = max0.wide_mul_with_sign (min1, true, &prod2h, &overflow);
2726 if (!uns0 && max0.is_negative ())
2727 prod2h -= min1;
2728 if (!uns1 && min1.is_negative ())
2729 prod2h -= max0;
2731 prod3l = max0.wide_mul_with_sign (max1, true, &prod3h, &overflow);
2732 if (!uns0 && max0.is_negative ())
2733 prod3h -= max1;
2734 if (!uns1 && max1.is_negative ())
2735 prod3h -= max0;
2737 /* Sort the 4 products. */
2738 quad_int_pair_sort (&prod0l, &prod0h, &prod3l, &prod3h, uns);
2739 quad_int_pair_sort (&prod1l, &prod1h, &prod2l, &prod2h, uns);
2740 quad_int_pair_sort (&prod0l, &prod0h, &prod1l, &prod1h, uns);
2741 quad_int_pair_sort (&prod2l, &prod2h, &prod3l, &prod3h, uns);
2743 /* Max - min. */
2744 if (prod0l.is_zero ())
2746 prod1l = double_int_zero;
2747 prod1h = -prod0h;
2749 else
2751 prod1l = -prod0l;
2752 prod1h = ~prod0h;
2754 prod2l = prod3l + prod1l;
2755 prod2h = prod3h + prod1h;
2756 if (prod2l.ult (prod3l))
2757 prod2h += double_int_one; /* carry */
2759 if (!prod2h.is_zero ()
2760 || prod2l.cmp (sizem1, true) >= 0)
2762 /* the range covers all values. */
2763 set_value_range_to_varying (vr);
2764 return;
2767 /* The following should handle the wrapping and selecting
2768 VR_ANTI_RANGE for us. */
2769 min = double_int_to_tree (expr_type, prod0l);
2770 max = double_int_to_tree (expr_type, prod3l);
2771 set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
2772 return;
2775 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
2776 drop to VR_VARYING. It would take more effort to compute a
2777 precise range for such a case. For example, if we have
2778 op0 == 65536 and op1 == 65536 with their ranges both being
2779 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
2780 we cannot claim that the product is in ~[0,0]. Note that we
2781 are guaranteed to have vr0.type == vr1.type at this
2782 point. */
2783 if (vr0.type == VR_ANTI_RANGE
2784 && !TYPE_OVERFLOW_UNDEFINED (expr_type))
2786 set_value_range_to_varying (vr);
2787 return;
2790 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2791 return;
2793 else if (code == RSHIFT_EXPR
2794 || code == LSHIFT_EXPR)
2796 /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
2797 then drop to VR_VARYING. Outside of this range we get undefined
2798 behavior from the shift operation. We cannot even trust
2799 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
2800 shifts, and the operation at the tree level may be widened. */
2801 if (range_int_cst_p (&vr1)
2802 && compare_tree_int (vr1.min, 0) >= 0
2803 && compare_tree_int (vr1.max, TYPE_PRECISION (expr_type)) == -1)
2805 if (code == RSHIFT_EXPR)
2807 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2808 return;
2810 /* We can map lshifts by constants to MULT_EXPR handling. */
2811 else if (code == LSHIFT_EXPR
2812 && range_int_cst_singleton_p (&vr1))
2814 bool saved_flag_wrapv;
2815 value_range_t vr1p = VR_INITIALIZER;
2816 vr1p.type = VR_RANGE;
2817 vr1p.min
2818 = double_int_to_tree (expr_type,
2819 double_int_one
2820 .llshift (TREE_INT_CST_LOW (vr1.min),
2821 TYPE_PRECISION (expr_type)));
2822 vr1p.max = vr1p.min;
2823 /* We have to use a wrapping multiply though as signed overflow
2824 on lshifts is implementation defined in C89. */
2825 saved_flag_wrapv = flag_wrapv;
2826 flag_wrapv = 1;
2827 extract_range_from_binary_expr_1 (vr, MULT_EXPR, expr_type,
2828 &vr0, &vr1p);
2829 flag_wrapv = saved_flag_wrapv;
2830 return;
2832 else if (code == LSHIFT_EXPR
2833 && range_int_cst_p (&vr0))
2835 int prec = TYPE_PRECISION (expr_type);
2836 int overflow_pos = prec;
2837 int bound_shift;
2838 double_int bound, complement, low_bound, high_bound;
2839 bool uns = TYPE_UNSIGNED (expr_type);
2840 bool in_bounds = false;
2842 if (!uns)
2843 overflow_pos -= 1;
2845 bound_shift = overflow_pos - TREE_INT_CST_LOW (vr1.max);
2846 /* If bound_shift == HOST_BITS_PER_DOUBLE_INT, the llshift can
2847 overflow. However, for that to happen, vr1.max needs to be
2848 zero, which means vr1 is a singleton range of zero, which
2849 means it should be handled by the previous LSHIFT_EXPR
2850 if-clause. */
2851 bound = double_int_one.llshift (bound_shift, prec);
2852 complement = ~(bound - double_int_one);
2854 if (uns)
2856 low_bound = bound.zext (prec);
2857 high_bound = complement.zext (prec);
2858 if (tree_to_double_int (vr0.max).ult (low_bound))
2860 /* [5, 6] << [1, 2] == [10, 24]. */
2861 /* We're shifting out only zeroes, the value increases
2862 monotonically. */
2863 in_bounds = true;
2865 else if (high_bound.ult (tree_to_double_int (vr0.min)))
2867 /* [0xffffff00, 0xffffffff] << [1, 2]
2868 == [0xfffffc00, 0xfffffffe]. */
2869 /* We're shifting out only ones, the value decreases
2870 monotonically. */
2871 in_bounds = true;
2874 else
2876 /* [-1, 1] << [1, 2] == [-4, 4]. */
2877 low_bound = complement.sext (prec);
2878 high_bound = bound;
2879 if (tree_to_double_int (vr0.max).slt (high_bound)
2880 && low_bound.slt (tree_to_double_int (vr0.min)))
2882 /* For non-negative numbers, we're shifting out only
2883 zeroes, the value increases monotonically.
2884 For negative numbers, we're shifting out only ones, the
2885 value decreases monotomically. */
2886 in_bounds = true;
2890 if (in_bounds)
2892 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2893 return;
2897 set_value_range_to_varying (vr);
2898 return;
2900 else if (code == TRUNC_DIV_EXPR
2901 || code == FLOOR_DIV_EXPR
2902 || code == CEIL_DIV_EXPR
2903 || code == EXACT_DIV_EXPR
2904 || code == ROUND_DIV_EXPR)
2906 if (vr0.type != VR_RANGE || symbolic_range_p (&vr0))
2908 /* For division, if op1 has VR_RANGE but op0 does not, something
2909 can be deduced just from that range. Say [min, max] / [4, max]
2910 gives [min / 4, max / 4] range. */
2911 if (vr1.type == VR_RANGE
2912 && !symbolic_range_p (&vr1)
2913 && range_includes_zero_p (vr1.min, vr1.max) == 0)
2915 vr0.type = type = VR_RANGE;
2916 vr0.min = vrp_val_min (expr_type);
2917 vr0.max = vrp_val_max (expr_type);
2919 else
2921 set_value_range_to_varying (vr);
2922 return;
2926 /* For divisions, if flag_non_call_exceptions is true, we must
2927 not eliminate a division by zero. */
2928 if (cfun->can_throw_non_call_exceptions
2929 && (vr1.type != VR_RANGE
2930 || range_includes_zero_p (vr1.min, vr1.max) != 0))
2932 set_value_range_to_varying (vr);
2933 return;
2936 /* For divisions, if op0 is VR_RANGE, we can deduce a range
2937 even if op1 is VR_VARYING, VR_ANTI_RANGE, symbolic or can
2938 include 0. */
2939 if (vr0.type == VR_RANGE
2940 && (vr1.type != VR_RANGE
2941 || range_includes_zero_p (vr1.min, vr1.max) != 0))
2943 tree zero = build_int_cst (TREE_TYPE (vr0.min), 0);
2944 int cmp;
2946 min = NULL_TREE;
2947 max = NULL_TREE;
2948 if (TYPE_UNSIGNED (expr_type)
2949 || value_range_nonnegative_p (&vr1))
2951 /* For unsigned division or when divisor is known
2952 to be non-negative, the range has to cover
2953 all numbers from 0 to max for positive max
2954 and all numbers from min to 0 for negative min. */
2955 cmp = compare_values (vr0.max, zero);
2956 if (cmp == -1)
2957 max = zero;
2958 else if (cmp == 0 || cmp == 1)
2959 max = vr0.max;
2960 else
2961 type = VR_VARYING;
2962 cmp = compare_values (vr0.min, zero);
2963 if (cmp == 1)
2964 min = zero;
2965 else if (cmp == 0 || cmp == -1)
2966 min = vr0.min;
2967 else
2968 type = VR_VARYING;
2970 else
2972 /* Otherwise the range is -max .. max or min .. -min
2973 depending on which bound is bigger in absolute value,
2974 as the division can change the sign. */
2975 abs_extent_range (vr, vr0.min, vr0.max);
2976 return;
2978 if (type == VR_VARYING)
2980 set_value_range_to_varying (vr);
2981 return;
2984 else
2986 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2987 return;
2990 else if (code == TRUNC_MOD_EXPR)
2992 if (vr1.type != VR_RANGE
2993 || range_includes_zero_p (vr1.min, vr1.max) != 0
2994 || vrp_val_is_min (vr1.min))
2996 set_value_range_to_varying (vr);
2997 return;
2999 type = VR_RANGE;
3000 /* Compute MAX <|vr1.min|, |vr1.max|> - 1. */
3001 max = fold_unary_to_constant (ABS_EXPR, expr_type, vr1.min);
3002 if (tree_int_cst_lt (max, vr1.max))
3003 max = vr1.max;
3004 max = int_const_binop (MINUS_EXPR, max, integer_one_node);
3005 /* If the dividend is non-negative the modulus will be
3006 non-negative as well. */
3007 if (TYPE_UNSIGNED (expr_type)
3008 || value_range_nonnegative_p (&vr0))
3009 min = build_int_cst (TREE_TYPE (max), 0);
3010 else
3011 min = fold_unary_to_constant (NEGATE_EXPR, expr_type, max);
3013 else if (code == BIT_AND_EXPR || code == BIT_IOR_EXPR || code == BIT_XOR_EXPR)
3015 bool int_cst_range0, int_cst_range1;
3016 double_int may_be_nonzero0, may_be_nonzero1;
3017 double_int must_be_nonzero0, must_be_nonzero1;
3019 int_cst_range0 = zero_nonzero_bits_from_vr (&vr0, &may_be_nonzero0,
3020 &must_be_nonzero0);
3021 int_cst_range1 = zero_nonzero_bits_from_vr (&vr1, &may_be_nonzero1,
3022 &must_be_nonzero1);
3024 type = VR_RANGE;
3025 if (code == BIT_AND_EXPR)
3027 double_int dmax;
3028 min = double_int_to_tree (expr_type,
3029 must_be_nonzero0 & must_be_nonzero1);
3030 dmax = may_be_nonzero0 & may_be_nonzero1;
3031 /* If both input ranges contain only negative values we can
3032 truncate the result range maximum to the minimum of the
3033 input range maxima. */
3034 if (int_cst_range0 && int_cst_range1
3035 && tree_int_cst_sgn (vr0.max) < 0
3036 && tree_int_cst_sgn (vr1.max) < 0)
3038 dmax = dmax.min (tree_to_double_int (vr0.max),
3039 TYPE_UNSIGNED (expr_type));
3040 dmax = dmax.min (tree_to_double_int (vr1.max),
3041 TYPE_UNSIGNED (expr_type));
3043 /* If either input range contains only non-negative values
3044 we can truncate the result range maximum to the respective
3045 maximum of the input range. */
3046 if (int_cst_range0 && tree_int_cst_sgn (vr0.min) >= 0)
3047 dmax = dmax.min (tree_to_double_int (vr0.max),
3048 TYPE_UNSIGNED (expr_type));
3049 if (int_cst_range1 && tree_int_cst_sgn (vr1.min) >= 0)
3050 dmax = dmax.min (tree_to_double_int (vr1.max),
3051 TYPE_UNSIGNED (expr_type));
3052 max = double_int_to_tree (expr_type, dmax);
3054 else if (code == BIT_IOR_EXPR)
3056 double_int dmin;
3057 max = double_int_to_tree (expr_type,
3058 may_be_nonzero0 | may_be_nonzero1);
3059 dmin = must_be_nonzero0 | must_be_nonzero1;
3060 /* If the input ranges contain only positive values we can
3061 truncate the minimum of the result range to the maximum
3062 of the input range minima. */
3063 if (int_cst_range0 && int_cst_range1
3064 && tree_int_cst_sgn (vr0.min) >= 0
3065 && tree_int_cst_sgn (vr1.min) >= 0)
3067 dmin = dmin.max (tree_to_double_int (vr0.min),
3068 TYPE_UNSIGNED (expr_type));
3069 dmin = dmin.max (tree_to_double_int (vr1.min),
3070 TYPE_UNSIGNED (expr_type));
3072 /* If either input range contains only negative values
3073 we can truncate the minimum of the result range to the
3074 respective minimum range. */
3075 if (int_cst_range0 && tree_int_cst_sgn (vr0.max) < 0)
3076 dmin = dmin.max (tree_to_double_int (vr0.min),
3077 TYPE_UNSIGNED (expr_type));
3078 if (int_cst_range1 && tree_int_cst_sgn (vr1.max) < 0)
3079 dmin = dmin.max (tree_to_double_int (vr1.min),
3080 TYPE_UNSIGNED (expr_type));
3081 min = double_int_to_tree (expr_type, dmin);
3083 else if (code == BIT_XOR_EXPR)
3085 double_int result_zero_bits, result_one_bits;
3086 result_zero_bits = (must_be_nonzero0 & must_be_nonzero1)
3087 | ~(may_be_nonzero0 | may_be_nonzero1);
3088 result_one_bits = must_be_nonzero0.and_not (may_be_nonzero1)
3089 | must_be_nonzero1.and_not (may_be_nonzero0);
3090 max = double_int_to_tree (expr_type, ~result_zero_bits);
3091 min = double_int_to_tree (expr_type, result_one_bits);
3092 /* If the range has all positive or all negative values the
3093 result is better than VARYING. */
3094 if (tree_int_cst_sgn (min) < 0
3095 || tree_int_cst_sgn (max) >= 0)
3097 else
3098 max = min = NULL_TREE;
3101 else
3102 gcc_unreachable ();
3104 /* If either MIN or MAX overflowed, then set the resulting range to
3105 VARYING. But we do accept an overflow infinity
3106 representation. */
3107 if (min == NULL_TREE
3108 || !is_gimple_min_invariant (min)
3109 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
3110 || max == NULL_TREE
3111 || !is_gimple_min_invariant (max)
3112 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
3114 set_value_range_to_varying (vr);
3115 return;
3118 /* We punt if:
3119 1) [-INF, +INF]
3120 2) [-INF, +-INF(OVF)]
3121 3) [+-INF(OVF), +INF]
3122 4) [+-INF(OVF), +-INF(OVF)]
3123 We learn nothing when we have INF and INF(OVF) on both sides.
3124 Note that we do accept [-INF, -INF] and [+INF, +INF] without
3125 overflow. */
3126 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
3127 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
3129 set_value_range_to_varying (vr);
3130 return;
3133 cmp = compare_values (min, max);
3134 if (cmp == -2 || cmp == 1)
3136 /* If the new range has its limits swapped around (MIN > MAX),
3137 then the operation caused one of them to wrap around, mark
3138 the new range VARYING. */
3139 set_value_range_to_varying (vr);
3141 else
3142 set_value_range (vr, type, min, max, NULL);
3145 /* Extract range information from a binary expression OP0 CODE OP1 based on
3146 the ranges of each of its operands with resulting type EXPR_TYPE.
3147 The resulting range is stored in *VR. */
3149 static void
3150 extract_range_from_binary_expr (value_range_t *vr,
3151 enum tree_code code,
3152 tree expr_type, tree op0, tree op1)
3154 value_range_t vr0 = VR_INITIALIZER;
3155 value_range_t vr1 = VR_INITIALIZER;
3157 /* Get value ranges for each operand. For constant operands, create
3158 a new value range with the operand to simplify processing. */
3159 if (TREE_CODE (op0) == SSA_NAME)
3160 vr0 = *(get_value_range (op0));
3161 else if (is_gimple_min_invariant (op0))
3162 set_value_range_to_value (&vr0, op0, NULL);
3163 else
3164 set_value_range_to_varying (&vr0);
3166 if (TREE_CODE (op1) == SSA_NAME)
3167 vr1 = *(get_value_range (op1));
3168 else if (is_gimple_min_invariant (op1))
3169 set_value_range_to_value (&vr1, op1, NULL);
3170 else
3171 set_value_range_to_varying (&vr1);
3173 extract_range_from_binary_expr_1 (vr, code, expr_type, &vr0, &vr1);
3176 /* Extract range information from a unary operation CODE based on
3177 the range of its operand *VR0 with type OP0_TYPE with resulting type TYPE.
3178 The The resulting range is stored in *VR. */
3180 static void
3181 extract_range_from_unary_expr_1 (value_range_t *vr,
3182 enum tree_code code, tree type,
3183 value_range_t *vr0_, tree op0_type)
3185 value_range_t vr0 = *vr0_, vrtem0 = VR_INITIALIZER, vrtem1 = VR_INITIALIZER;
3187 /* VRP only operates on integral and pointer types. */
3188 if (!(INTEGRAL_TYPE_P (op0_type)
3189 || POINTER_TYPE_P (op0_type))
3190 || !(INTEGRAL_TYPE_P (type)
3191 || POINTER_TYPE_P (type)))
3193 set_value_range_to_varying (vr);
3194 return;
3197 /* If VR0 is UNDEFINED, so is the result. */
3198 if (vr0.type == VR_UNDEFINED)
3200 set_value_range_to_undefined (vr);
3201 return;
3204 /* Handle operations that we express in terms of others. */
3205 if (code == PAREN_EXPR || code == OBJ_TYPE_REF)
3207 /* PAREN_EXPR and OBJ_TYPE_REF are simple copies. */
3208 copy_value_range (vr, &vr0);
3209 return;
3211 else if (code == NEGATE_EXPR)
3213 /* -X is simply 0 - X, so re-use existing code that also handles
3214 anti-ranges fine. */
3215 value_range_t zero = VR_INITIALIZER;
3216 set_value_range_to_value (&zero, build_int_cst (type, 0), NULL);
3217 extract_range_from_binary_expr_1 (vr, MINUS_EXPR, type, &zero, &vr0);
3218 return;
3220 else if (code == BIT_NOT_EXPR)
3222 /* ~X is simply -1 - X, so re-use existing code that also handles
3223 anti-ranges fine. */
3224 value_range_t minusone = VR_INITIALIZER;
3225 set_value_range_to_value (&minusone, build_int_cst (type, -1), NULL);
3226 extract_range_from_binary_expr_1 (vr, MINUS_EXPR,
3227 type, &minusone, &vr0);
3228 return;
3231 /* Now canonicalize anti-ranges to ranges when they are not symbolic
3232 and express op ~[] as (op []') U (op []''). */
3233 if (vr0.type == VR_ANTI_RANGE
3234 && ranges_from_anti_range (&vr0, &vrtem0, &vrtem1))
3236 extract_range_from_unary_expr_1 (vr, code, type, &vrtem0, op0_type);
3237 if (vrtem1.type != VR_UNDEFINED)
3239 value_range_t vrres = VR_INITIALIZER;
3240 extract_range_from_unary_expr_1 (&vrres, code, type,
3241 &vrtem1, op0_type);
3242 vrp_meet (vr, &vrres);
3244 return;
3247 if (CONVERT_EXPR_CODE_P (code))
3249 tree inner_type = op0_type;
3250 tree outer_type = type;
3252 /* If the expression evaluates to a pointer, we are only interested in
3253 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
3254 if (POINTER_TYPE_P (type))
3256 if (range_is_nonnull (&vr0))
3257 set_value_range_to_nonnull (vr, type);
3258 else if (range_is_null (&vr0))
3259 set_value_range_to_null (vr, type);
3260 else
3261 set_value_range_to_varying (vr);
3262 return;
3265 /* If VR0 is varying and we increase the type precision, assume
3266 a full range for the following transformation. */
3267 if (vr0.type == VR_VARYING
3268 && INTEGRAL_TYPE_P (inner_type)
3269 && TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type))
3271 vr0.type = VR_RANGE;
3272 vr0.min = TYPE_MIN_VALUE (inner_type);
3273 vr0.max = TYPE_MAX_VALUE (inner_type);
3276 /* If VR0 is a constant range or anti-range and the conversion is
3277 not truncating we can convert the min and max values and
3278 canonicalize the resulting range. Otherwise we can do the
3279 conversion if the size of the range is less than what the
3280 precision of the target type can represent and the range is
3281 not an anti-range. */
3282 if ((vr0.type == VR_RANGE
3283 || vr0.type == VR_ANTI_RANGE)
3284 && TREE_CODE (vr0.min) == INTEGER_CST
3285 && TREE_CODE (vr0.max) == INTEGER_CST
3286 && (!is_overflow_infinity (vr0.min)
3287 || (vr0.type == VR_RANGE
3288 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
3289 && needs_overflow_infinity (outer_type)
3290 && supports_overflow_infinity (outer_type)))
3291 && (!is_overflow_infinity (vr0.max)
3292 || (vr0.type == VR_RANGE
3293 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
3294 && needs_overflow_infinity (outer_type)
3295 && supports_overflow_infinity (outer_type)))
3296 && (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
3297 || (vr0.type == VR_RANGE
3298 && integer_zerop (int_const_binop (RSHIFT_EXPR,
3299 int_const_binop (MINUS_EXPR, vr0.max, vr0.min),
3300 size_int (TYPE_PRECISION (outer_type)))))))
3302 tree new_min, new_max;
3303 if (is_overflow_infinity (vr0.min))
3304 new_min = negative_overflow_infinity (outer_type);
3305 else
3306 new_min = force_fit_type_double (outer_type,
3307 tree_to_double_int (vr0.min),
3308 0, false);
3309 if (is_overflow_infinity (vr0.max))
3310 new_max = positive_overflow_infinity (outer_type);
3311 else
3312 new_max = force_fit_type_double (outer_type,
3313 tree_to_double_int (vr0.max),
3314 0, false);
3315 set_and_canonicalize_value_range (vr, vr0.type,
3316 new_min, new_max, NULL);
3317 return;
3320 set_value_range_to_varying (vr);
3321 return;
3323 else if (code == ABS_EXPR)
3325 tree min, max;
3326 int cmp;
3328 /* Pass through vr0 in the easy cases. */
3329 if (TYPE_UNSIGNED (type)
3330 || value_range_nonnegative_p (&vr0))
3332 copy_value_range (vr, &vr0);
3333 return;
3336 /* For the remaining varying or symbolic ranges we can't do anything
3337 useful. */
3338 if (vr0.type == VR_VARYING
3339 || symbolic_range_p (&vr0))
3341 set_value_range_to_varying (vr);
3342 return;
3345 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
3346 useful range. */
3347 if (!TYPE_OVERFLOW_UNDEFINED (type)
3348 && ((vr0.type == VR_RANGE
3349 && vrp_val_is_min (vr0.min))
3350 || (vr0.type == VR_ANTI_RANGE
3351 && !vrp_val_is_min (vr0.min))))
3353 set_value_range_to_varying (vr);
3354 return;
3357 /* ABS_EXPR may flip the range around, if the original range
3358 included negative values. */
3359 if (is_overflow_infinity (vr0.min))
3360 min = positive_overflow_infinity (type);
3361 else if (!vrp_val_is_min (vr0.min))
3362 min = fold_unary_to_constant (code, type, vr0.min);
3363 else if (!needs_overflow_infinity (type))
3364 min = TYPE_MAX_VALUE (type);
3365 else if (supports_overflow_infinity (type))
3366 min = positive_overflow_infinity (type);
3367 else
3369 set_value_range_to_varying (vr);
3370 return;
3373 if (is_overflow_infinity (vr0.max))
3374 max = positive_overflow_infinity (type);
3375 else if (!vrp_val_is_min (vr0.max))
3376 max = fold_unary_to_constant (code, type, vr0.max);
3377 else if (!needs_overflow_infinity (type))
3378 max = TYPE_MAX_VALUE (type);
3379 else if (supports_overflow_infinity (type)
3380 /* We shouldn't generate [+INF, +INF] as set_value_range
3381 doesn't like this and ICEs. */
3382 && !is_positive_overflow_infinity (min))
3383 max = positive_overflow_infinity (type);
3384 else
3386 set_value_range_to_varying (vr);
3387 return;
3390 cmp = compare_values (min, max);
3392 /* If a VR_ANTI_RANGEs contains zero, then we have
3393 ~[-INF, min(MIN, MAX)]. */
3394 if (vr0.type == VR_ANTI_RANGE)
3396 if (range_includes_zero_p (vr0.min, vr0.max) == 1)
3398 /* Take the lower of the two values. */
3399 if (cmp != 1)
3400 max = min;
3402 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
3403 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
3404 flag_wrapv is set and the original anti-range doesn't include
3405 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
3406 if (TYPE_OVERFLOW_WRAPS (type))
3408 tree type_min_value = TYPE_MIN_VALUE (type);
3410 min = (vr0.min != type_min_value
3411 ? int_const_binop (PLUS_EXPR, type_min_value,
3412 integer_one_node)
3413 : type_min_value);
3415 else
3417 if (overflow_infinity_range_p (&vr0))
3418 min = negative_overflow_infinity (type);
3419 else
3420 min = TYPE_MIN_VALUE (type);
3423 else
3425 /* All else has failed, so create the range [0, INF], even for
3426 flag_wrapv since TYPE_MIN_VALUE is in the original
3427 anti-range. */
3428 vr0.type = VR_RANGE;
3429 min = build_int_cst (type, 0);
3430 if (needs_overflow_infinity (type))
3432 if (supports_overflow_infinity (type))
3433 max = positive_overflow_infinity (type);
3434 else
3436 set_value_range_to_varying (vr);
3437 return;
3440 else
3441 max = TYPE_MAX_VALUE (type);
3445 /* If the range contains zero then we know that the minimum value in the
3446 range will be zero. */
3447 else if (range_includes_zero_p (vr0.min, vr0.max) == 1)
3449 if (cmp == 1)
3450 max = min;
3451 min = build_int_cst (type, 0);
3453 else
3455 /* If the range was reversed, swap MIN and MAX. */
3456 if (cmp == 1)
3458 tree t = min;
3459 min = max;
3460 max = t;
3464 cmp = compare_values (min, max);
3465 if (cmp == -2 || cmp == 1)
3467 /* If the new range has its limits swapped around (MIN > MAX),
3468 then the operation caused one of them to wrap around, mark
3469 the new range VARYING. */
3470 set_value_range_to_varying (vr);
3472 else
3473 set_value_range (vr, vr0.type, min, max, NULL);
3474 return;
3477 /* For unhandled operations fall back to varying. */
3478 set_value_range_to_varying (vr);
3479 return;
3483 /* Extract range information from a unary expression CODE OP0 based on
3484 the range of its operand with resulting type TYPE.
3485 The resulting range is stored in *VR. */
3487 static void
3488 extract_range_from_unary_expr (value_range_t *vr, enum tree_code code,
3489 tree type, tree op0)
3491 value_range_t vr0 = VR_INITIALIZER;
3493 /* Get value ranges for the operand. For constant operands, create
3494 a new value range with the operand to simplify processing. */
3495 if (TREE_CODE (op0) == SSA_NAME)
3496 vr0 = *(get_value_range (op0));
3497 else if (is_gimple_min_invariant (op0))
3498 set_value_range_to_value (&vr0, op0, NULL);
3499 else
3500 set_value_range_to_varying (&vr0);
3502 extract_range_from_unary_expr_1 (vr, code, type, &vr0, TREE_TYPE (op0));
3506 /* Extract range information from a conditional expression STMT based on
3507 the ranges of each of its operands and the expression code. */
3509 static void
3510 extract_range_from_cond_expr (value_range_t *vr, gimple stmt)
3512 tree op0, op1;
3513 value_range_t vr0 = VR_INITIALIZER;
3514 value_range_t vr1 = VR_INITIALIZER;
3516 /* Get value ranges for each operand. For constant operands, create
3517 a new value range with the operand to simplify processing. */
3518 op0 = gimple_assign_rhs2 (stmt);
3519 if (TREE_CODE (op0) == SSA_NAME)
3520 vr0 = *(get_value_range (op0));
3521 else if (is_gimple_min_invariant (op0))
3522 set_value_range_to_value (&vr0, op0, NULL);
3523 else
3524 set_value_range_to_varying (&vr0);
3526 op1 = gimple_assign_rhs3 (stmt);
3527 if (TREE_CODE (op1) == SSA_NAME)
3528 vr1 = *(get_value_range (op1));
3529 else if (is_gimple_min_invariant (op1))
3530 set_value_range_to_value (&vr1, op1, NULL);
3531 else
3532 set_value_range_to_varying (&vr1);
3534 /* The resulting value range is the union of the operand ranges */
3535 copy_value_range (vr, &vr0);
3536 vrp_meet (vr, &vr1);
3540 /* Extract range information from a comparison expression EXPR based
3541 on the range of its operand and the expression code. */
3543 static void
3544 extract_range_from_comparison (value_range_t *vr, enum tree_code code,
3545 tree type, tree op0, tree op1)
3547 bool sop = false;
3548 tree val;
3550 val = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, false, &sop,
3551 NULL);
3553 /* A disadvantage of using a special infinity as an overflow
3554 representation is that we lose the ability to record overflow
3555 when we don't have an infinity. So we have to ignore a result
3556 which relies on overflow. */
3558 if (val && !is_overflow_infinity (val) && !sop)
3560 /* Since this expression was found on the RHS of an assignment,
3561 its type may be different from _Bool. Convert VAL to EXPR's
3562 type. */
3563 val = fold_convert (type, val);
3564 if (is_gimple_min_invariant (val))
3565 set_value_range_to_value (vr, val, vr->equiv);
3566 else
3567 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
3569 else
3570 /* The result of a comparison is always true or false. */
3571 set_value_range_to_truthvalue (vr, type);
3574 /* Try to derive a nonnegative or nonzero range out of STMT relying
3575 primarily on generic routines in fold in conjunction with range data.
3576 Store the result in *VR */
3578 static void
3579 extract_range_basic (value_range_t *vr, gimple stmt)
3581 bool sop = false;
3582 tree type = gimple_expr_type (stmt);
3584 if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
3586 tree fndecl = gimple_call_fndecl (stmt), arg;
3587 int mini, maxi, zerov = 0, prec;
3589 switch (DECL_FUNCTION_CODE (fndecl))
3591 case BUILT_IN_CONSTANT_P:
3592 /* If the call is __builtin_constant_p and the argument is a
3593 function parameter resolve it to false. This avoids bogus
3594 array bound warnings.
3595 ??? We could do this as early as inlining is finished. */
3596 arg = gimple_call_arg (stmt, 0);
3597 if (TREE_CODE (arg) == SSA_NAME
3598 && SSA_NAME_IS_DEFAULT_DEF (arg)
3599 && TREE_CODE (SSA_NAME_VAR (arg)) == PARM_DECL)
3601 set_value_range_to_null (vr, type);
3602 return;
3604 break;
3605 /* Both __builtin_ffs* and __builtin_popcount return
3606 [0, prec]. */
3607 CASE_INT_FN (BUILT_IN_FFS):
3608 CASE_INT_FN (BUILT_IN_POPCOUNT):
3609 arg = gimple_call_arg (stmt, 0);
3610 prec = TYPE_PRECISION (TREE_TYPE (arg));
3611 mini = 0;
3612 maxi = prec;
3613 if (TREE_CODE (arg) == SSA_NAME)
3615 value_range_t *vr0 = get_value_range (arg);
3616 /* If arg is non-zero, then ffs or popcount
3617 are non-zero. */
3618 if (((vr0->type == VR_RANGE
3619 && integer_nonzerop (vr0->min))
3620 || (vr0->type == VR_ANTI_RANGE
3621 && integer_zerop (vr0->min)))
3622 && !is_overflow_infinity (vr0->min))
3623 mini = 1;
3624 /* If some high bits are known to be zero,
3625 we can decrease the maximum. */
3626 if (vr0->type == VR_RANGE
3627 && TREE_CODE (vr0->max) == INTEGER_CST
3628 && !is_overflow_infinity (vr0->max))
3629 maxi = tree_floor_log2 (vr0->max) + 1;
3631 goto bitop_builtin;
3632 /* __builtin_parity* returns [0, 1]. */
3633 CASE_INT_FN (BUILT_IN_PARITY):
3634 mini = 0;
3635 maxi = 1;
3636 goto bitop_builtin;
3637 /* __builtin_c[lt]z* return [0, prec-1], except for
3638 when the argument is 0, but that is undefined behavior.
3639 On many targets where the CLZ RTL or optab value is defined
3640 for 0 the value is prec, so include that in the range
3641 by default. */
3642 CASE_INT_FN (BUILT_IN_CLZ):
3643 arg = gimple_call_arg (stmt, 0);
3644 prec = TYPE_PRECISION (TREE_TYPE (arg));
3645 mini = 0;
3646 maxi = prec;
3647 if (optab_handler (clz_optab, TYPE_MODE (TREE_TYPE (arg)))
3648 != CODE_FOR_nothing
3649 && CLZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (TREE_TYPE (arg)),
3650 zerov)
3651 /* Handle only the single common value. */
3652 && zerov != prec)
3653 /* Magic value to give up, unless vr0 proves
3654 arg is non-zero. */
3655 mini = -2;
3656 if (TREE_CODE (arg) == SSA_NAME)
3658 value_range_t *vr0 = get_value_range (arg);
3659 /* From clz of VR_RANGE minimum we can compute
3660 result maximum. */
3661 if (vr0->type == VR_RANGE
3662 && TREE_CODE (vr0->min) == INTEGER_CST
3663 && !is_overflow_infinity (vr0->min))
3665 maxi = prec - 1 - tree_floor_log2 (vr0->min);
3666 if (maxi != prec)
3667 mini = 0;
3669 else if (vr0->type == VR_ANTI_RANGE
3670 && integer_zerop (vr0->min)
3671 && !is_overflow_infinity (vr0->min))
3673 maxi = prec - 1;
3674 mini = 0;
3676 if (mini == -2)
3677 break;
3678 /* From clz of VR_RANGE maximum we can compute
3679 result minimum. */
3680 if (vr0->type == VR_RANGE
3681 && TREE_CODE (vr0->max) == INTEGER_CST
3682 && !is_overflow_infinity (vr0->max))
3684 mini = prec - 1 - tree_floor_log2 (vr0->max);
3685 if (mini == prec)
3686 break;
3689 if (mini == -2)
3690 break;
3691 goto bitop_builtin;
3692 /* __builtin_ctz* return [0, prec-1], except for
3693 when the argument is 0, but that is undefined behavior.
3694 If there is a ctz optab for this mode and
3695 CTZ_DEFINED_VALUE_AT_ZERO, include that in the range,
3696 otherwise just assume 0 won't be seen. */
3697 CASE_INT_FN (BUILT_IN_CTZ):
3698 arg = gimple_call_arg (stmt, 0);
3699 prec = TYPE_PRECISION (TREE_TYPE (arg));
3700 mini = 0;
3701 maxi = prec - 1;
3702 if (optab_handler (ctz_optab, TYPE_MODE (TREE_TYPE (arg)))
3703 != CODE_FOR_nothing
3704 && CTZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (TREE_TYPE (arg)),
3705 zerov))
3707 /* Handle only the two common values. */
3708 if (zerov == -1)
3709 mini = -1;
3710 else if (zerov == prec)
3711 maxi = prec;
3712 else
3713 /* Magic value to give up, unless vr0 proves
3714 arg is non-zero. */
3715 mini = -2;
3717 if (TREE_CODE (arg) == SSA_NAME)
3719 value_range_t *vr0 = get_value_range (arg);
3720 /* If arg is non-zero, then use [0, prec - 1]. */
3721 if (((vr0->type == VR_RANGE
3722 && integer_nonzerop (vr0->min))
3723 || (vr0->type == VR_ANTI_RANGE
3724 && integer_zerop (vr0->min)))
3725 && !is_overflow_infinity (vr0->min))
3727 mini = 0;
3728 maxi = prec - 1;
3730 /* If some high bits are known to be zero,
3731 we can decrease the result maximum. */
3732 if (vr0->type == VR_RANGE
3733 && TREE_CODE (vr0->max) == INTEGER_CST
3734 && !is_overflow_infinity (vr0->max))
3736 maxi = tree_floor_log2 (vr0->max);
3737 /* For vr0 [0, 0] give up. */
3738 if (maxi == -1)
3739 break;
3742 if (mini == -2)
3743 break;
3744 goto bitop_builtin;
3745 /* __builtin_clrsb* returns [0, prec-1]. */
3746 CASE_INT_FN (BUILT_IN_CLRSB):
3747 arg = gimple_call_arg (stmt, 0);
3748 prec = TYPE_PRECISION (TREE_TYPE (arg));
3749 mini = 0;
3750 maxi = prec - 1;
3751 goto bitop_builtin;
3752 bitop_builtin:
3753 set_value_range (vr, VR_RANGE, build_int_cst (type, mini),
3754 build_int_cst (type, maxi), NULL);
3755 return;
3756 default:
3757 break;
3760 else if (is_gimple_call (stmt)
3761 && gimple_call_internal_p (stmt))
3763 enum tree_code subcode = ERROR_MARK;
3764 switch (gimple_call_internal_fn (stmt))
3766 case IFN_UBSAN_CHECK_ADD:
3767 subcode = PLUS_EXPR;
3768 break;
3769 case IFN_UBSAN_CHECK_SUB:
3770 subcode = MINUS_EXPR;
3771 break;
3772 case IFN_UBSAN_CHECK_MUL:
3773 subcode = MULT_EXPR;
3774 break;
3775 default:
3776 break;
3778 if (subcode != ERROR_MARK)
3780 bool saved_flag_wrapv = flag_wrapv;
3781 /* Pretend the arithmetics is wrapping. If there is
3782 any overflow, we'll complain, but will actually do
3783 wrapping operation. */
3784 flag_wrapv = 1;
3785 extract_range_from_binary_expr (vr, subcode, type,
3786 gimple_call_arg (stmt, 0),
3787 gimple_call_arg (stmt, 1));
3788 flag_wrapv = saved_flag_wrapv;
3790 /* If for both arguments vrp_valueize returned non-NULL,
3791 this should have been already folded and if not, it
3792 wasn't folded because of overflow. Avoid removing the
3793 UBSAN_CHECK_* calls in that case. */
3794 if (vr->type == VR_RANGE
3795 && (vr->min == vr->max
3796 || operand_equal_p (vr->min, vr->max, 0)))
3797 set_value_range_to_varying (vr);
3798 return;
3801 if (INTEGRAL_TYPE_P (type)
3802 && gimple_stmt_nonnegative_warnv_p (stmt, &sop))
3803 set_value_range_to_nonnegative (vr, type,
3804 sop || stmt_overflow_infinity (stmt));
3805 else if (vrp_stmt_computes_nonzero (stmt, &sop)
3806 && !sop)
3807 set_value_range_to_nonnull (vr, type);
3808 else
3809 set_value_range_to_varying (vr);
3813 /* Try to compute a useful range out of assignment STMT and store it
3814 in *VR. */
3816 static void
3817 extract_range_from_assignment (value_range_t *vr, gimple stmt)
3819 enum tree_code code = gimple_assign_rhs_code (stmt);
3821 if (code == ASSERT_EXPR)
3822 extract_range_from_assert (vr, gimple_assign_rhs1 (stmt));
3823 else if (code == SSA_NAME)
3824 extract_range_from_ssa_name (vr, gimple_assign_rhs1 (stmt));
3825 else if (TREE_CODE_CLASS (code) == tcc_binary)
3826 extract_range_from_binary_expr (vr, gimple_assign_rhs_code (stmt),
3827 gimple_expr_type (stmt),
3828 gimple_assign_rhs1 (stmt),
3829 gimple_assign_rhs2 (stmt));
3830 else if (TREE_CODE_CLASS (code) == tcc_unary)
3831 extract_range_from_unary_expr (vr, gimple_assign_rhs_code (stmt),
3832 gimple_expr_type (stmt),
3833 gimple_assign_rhs1 (stmt));
3834 else if (code == COND_EXPR)
3835 extract_range_from_cond_expr (vr, stmt);
3836 else if (TREE_CODE_CLASS (code) == tcc_comparison)
3837 extract_range_from_comparison (vr, gimple_assign_rhs_code (stmt),
3838 gimple_expr_type (stmt),
3839 gimple_assign_rhs1 (stmt),
3840 gimple_assign_rhs2 (stmt));
3841 else if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
3842 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
3843 set_value_range_to_value (vr, gimple_assign_rhs1 (stmt), NULL);
3844 else
3845 set_value_range_to_varying (vr);
3847 if (vr->type == VR_VARYING)
3848 extract_range_basic (vr, stmt);
3851 /* Given a range VR, a LOOP and a variable VAR, determine whether it
3852 would be profitable to adjust VR using scalar evolution information
3853 for VAR. If so, update VR with the new limits. */
3855 static void
3856 adjust_range_with_scev (value_range_t *vr, struct loop *loop,
3857 gimple stmt, tree var)
3859 tree init, step, chrec, tmin, tmax, min, max, type, tem;
3860 enum ev_direction dir;
3862 /* TODO. Don't adjust anti-ranges. An anti-range may provide
3863 better opportunities than a regular range, but I'm not sure. */
3864 if (vr->type == VR_ANTI_RANGE)
3865 return;
3867 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
3869 /* Like in PR19590, scev can return a constant function. */
3870 if (is_gimple_min_invariant (chrec))
3872 set_value_range_to_value (vr, chrec, vr->equiv);
3873 return;
3876 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
3877 return;
3879 init = initial_condition_in_loop_num (chrec, loop->num);
3880 tem = op_with_constant_singleton_value_range (init);
3881 if (tem)
3882 init = tem;
3883 step = evolution_part_in_loop_num (chrec, loop->num);
3884 tem = op_with_constant_singleton_value_range (step);
3885 if (tem)
3886 step = tem;
3888 /* If STEP is symbolic, we can't know whether INIT will be the
3889 minimum or maximum value in the range. Also, unless INIT is
3890 a simple expression, compare_values and possibly other functions
3891 in tree-vrp won't be able to handle it. */
3892 if (step == NULL_TREE
3893 || !is_gimple_min_invariant (step)
3894 || !valid_value_p (init))
3895 return;
3897 dir = scev_direction (chrec);
3898 if (/* Do not adjust ranges if we do not know whether the iv increases
3899 or decreases, ... */
3900 dir == EV_DIR_UNKNOWN
3901 /* ... or if it may wrap. */
3902 || scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
3903 true))
3904 return;
3906 /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
3907 negative_overflow_infinity and positive_overflow_infinity,
3908 because we have concluded that the loop probably does not
3909 wrap. */
3911 type = TREE_TYPE (var);
3912 if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
3913 tmin = lower_bound_in_type (type, type);
3914 else
3915 tmin = TYPE_MIN_VALUE (type);
3916 if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
3917 tmax = upper_bound_in_type (type, type);
3918 else
3919 tmax = TYPE_MAX_VALUE (type);
3921 /* Try to use estimated number of iterations for the loop to constrain the
3922 final value in the evolution. */
3923 if (TREE_CODE (step) == INTEGER_CST
3924 && is_gimple_val (init)
3925 && (TREE_CODE (init) != SSA_NAME
3926 || get_value_range (init)->type == VR_RANGE))
3928 double_int nit;
3930 /* We are only entering here for loop header PHI nodes, so using
3931 the number of latch executions is the correct thing to use. */
3932 if (max_loop_iterations (loop, &nit))
3934 value_range_t maxvr = VR_INITIALIZER;
3935 double_int dtmp;
3936 bool unsigned_p = TYPE_UNSIGNED (TREE_TYPE (step));
3937 bool overflow = false;
3939 dtmp = tree_to_double_int (step)
3940 .mul_with_sign (nit, unsigned_p, &overflow);
3941 /* If the multiplication overflowed we can't do a meaningful
3942 adjustment. Likewise if the result doesn't fit in the type
3943 of the induction variable. For a signed type we have to
3944 check whether the result has the expected signedness which
3945 is that of the step as number of iterations is unsigned. */
3946 if (!overflow
3947 && double_int_fits_to_tree_p (TREE_TYPE (init), dtmp)
3948 && (unsigned_p
3949 || ((dtmp.high ^ TREE_INT_CST_HIGH (step)) >= 0)))
3951 tem = double_int_to_tree (TREE_TYPE (init), dtmp);
3952 extract_range_from_binary_expr (&maxvr, PLUS_EXPR,
3953 TREE_TYPE (init), init, tem);
3954 /* Likewise if the addition did. */
3955 if (maxvr.type == VR_RANGE)
3957 tmin = maxvr.min;
3958 tmax = maxvr.max;
3964 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
3966 min = tmin;
3967 max = tmax;
3969 /* For VARYING or UNDEFINED ranges, just about anything we get
3970 from scalar evolutions should be better. */
3972 if (dir == EV_DIR_DECREASES)
3973 max = init;
3974 else
3975 min = init;
3977 /* If we would create an invalid range, then just assume we
3978 know absolutely nothing. This may be over-conservative,
3979 but it's clearly safe, and should happen only in unreachable
3980 parts of code, or for invalid programs. */
3981 if (compare_values (min, max) == 1)
3982 return;
3984 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
3986 else if (vr->type == VR_RANGE)
3988 min = vr->min;
3989 max = vr->max;
3991 if (dir == EV_DIR_DECREASES)
3993 /* INIT is the maximum value. If INIT is lower than VR->MAX
3994 but no smaller than VR->MIN, set VR->MAX to INIT. */
3995 if (compare_values (init, max) == -1)
3996 max = init;
3998 /* According to the loop information, the variable does not
3999 overflow. If we think it does, probably because of an
4000 overflow due to arithmetic on a different INF value,
4001 reset now. */
4002 if (is_negative_overflow_infinity (min)
4003 || compare_values (min, tmin) == -1)
4004 min = tmin;
4007 else
4009 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
4010 if (compare_values (init, min) == 1)
4011 min = init;
4013 if (is_positive_overflow_infinity (max)
4014 || compare_values (tmax, max) == -1)
4015 max = tmax;
4018 /* If we just created an invalid range with the minimum
4019 greater than the maximum, we fail conservatively.
4020 This should happen only in unreachable
4021 parts of code, or for invalid programs. */
4022 if (compare_values (min, max) == 1)
4023 return;
4025 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
4030 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
4032 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
4033 all the values in the ranges.
4035 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
4037 - Return NULL_TREE if it is not always possible to determine the
4038 value of the comparison.
4040 Also set *STRICT_OVERFLOW_P to indicate whether a range with an
4041 overflow infinity was used in the test. */
4044 static tree
4045 compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1,
4046 bool *strict_overflow_p)
4048 /* VARYING or UNDEFINED ranges cannot be compared. */
4049 if (vr0->type == VR_VARYING
4050 || vr0->type == VR_UNDEFINED
4051 || vr1->type == VR_VARYING
4052 || vr1->type == VR_UNDEFINED)
4053 return NULL_TREE;
4055 /* Anti-ranges need to be handled separately. */
4056 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
4058 /* If both are anti-ranges, then we cannot compute any
4059 comparison. */
4060 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
4061 return NULL_TREE;
4063 /* These comparisons are never statically computable. */
4064 if (comp == GT_EXPR
4065 || comp == GE_EXPR
4066 || comp == LT_EXPR
4067 || comp == LE_EXPR)
4068 return NULL_TREE;
4070 /* Equality can be computed only between a range and an
4071 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
4072 if (vr0->type == VR_RANGE)
4074 /* To simplify processing, make VR0 the anti-range. */
4075 value_range_t *tmp = vr0;
4076 vr0 = vr1;
4077 vr1 = tmp;
4080 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
4082 if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
4083 && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
4084 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
4086 return NULL_TREE;
4089 if (!usable_range_p (vr0, strict_overflow_p)
4090 || !usable_range_p (vr1, strict_overflow_p))
4091 return NULL_TREE;
4093 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
4094 operands around and change the comparison code. */
4095 if (comp == GT_EXPR || comp == GE_EXPR)
4097 value_range_t *tmp;
4098 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
4099 tmp = vr0;
4100 vr0 = vr1;
4101 vr1 = tmp;
4104 if (comp == EQ_EXPR)
4106 /* Equality may only be computed if both ranges represent
4107 exactly one value. */
4108 if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
4109 && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
4111 int cmp_min = compare_values_warnv (vr0->min, vr1->min,
4112 strict_overflow_p);
4113 int cmp_max = compare_values_warnv (vr0->max, vr1->max,
4114 strict_overflow_p);
4115 if (cmp_min == 0 && cmp_max == 0)
4116 return boolean_true_node;
4117 else if (cmp_min != -2 && cmp_max != -2)
4118 return boolean_false_node;
4120 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
4121 else if (compare_values_warnv (vr0->min, vr1->max,
4122 strict_overflow_p) == 1
4123 || compare_values_warnv (vr1->min, vr0->max,
4124 strict_overflow_p) == 1)
4125 return boolean_false_node;
4127 return NULL_TREE;
4129 else if (comp == NE_EXPR)
4131 int cmp1, cmp2;
4133 /* If VR0 is completely to the left or completely to the right
4134 of VR1, they are always different. Notice that we need to
4135 make sure that both comparisons yield similar results to
4136 avoid comparing values that cannot be compared at
4137 compile-time. */
4138 cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
4139 cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
4140 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
4141 return boolean_true_node;
4143 /* If VR0 and VR1 represent a single value and are identical,
4144 return false. */
4145 else if (compare_values_warnv (vr0->min, vr0->max,
4146 strict_overflow_p) == 0
4147 && compare_values_warnv (vr1->min, vr1->max,
4148 strict_overflow_p) == 0
4149 && compare_values_warnv (vr0->min, vr1->min,
4150 strict_overflow_p) == 0
4151 && compare_values_warnv (vr0->max, vr1->max,
4152 strict_overflow_p) == 0)
4153 return boolean_false_node;
4155 /* Otherwise, they may or may not be different. */
4156 else
4157 return NULL_TREE;
4159 else if (comp == LT_EXPR || comp == LE_EXPR)
4161 int tst;
4163 /* If VR0 is to the left of VR1, return true. */
4164 tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
4165 if ((comp == LT_EXPR && tst == -1)
4166 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
4168 if (overflow_infinity_range_p (vr0)
4169 || overflow_infinity_range_p (vr1))
4170 *strict_overflow_p = true;
4171 return boolean_true_node;
4174 /* If VR0 is to the right of VR1, return false. */
4175 tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
4176 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
4177 || (comp == LE_EXPR && tst == 1))
4179 if (overflow_infinity_range_p (vr0)
4180 || overflow_infinity_range_p (vr1))
4181 *strict_overflow_p = true;
4182 return boolean_false_node;
4185 /* Otherwise, we don't know. */
4186 return NULL_TREE;
4189 gcc_unreachable ();
4193 /* Given a value range VR, a value VAL and a comparison code COMP, return
4194 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
4195 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
4196 always returns false. Return NULL_TREE if it is not always
4197 possible to determine the value of the comparison. Also set
4198 *STRICT_OVERFLOW_P to indicate whether a range with an overflow
4199 infinity was used in the test. */
4201 static tree
4202 compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val,
4203 bool *strict_overflow_p)
4205 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
4206 return NULL_TREE;
4208 /* Anti-ranges need to be handled separately. */
4209 if (vr->type == VR_ANTI_RANGE)
4211 /* For anti-ranges, the only predicates that we can compute at
4212 compile time are equality and inequality. */
4213 if (comp == GT_EXPR
4214 || comp == GE_EXPR
4215 || comp == LT_EXPR
4216 || comp == LE_EXPR)
4217 return NULL_TREE;
4219 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
4220 if (value_inside_range (val, vr->min, vr->max) == 1)
4221 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
4223 return NULL_TREE;
4226 if (!usable_range_p (vr, strict_overflow_p))
4227 return NULL_TREE;
4229 if (comp == EQ_EXPR)
4231 /* EQ_EXPR may only be computed if VR represents exactly
4232 one value. */
4233 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
4235 int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
4236 if (cmp == 0)
4237 return boolean_true_node;
4238 else if (cmp == -1 || cmp == 1 || cmp == 2)
4239 return boolean_false_node;
4241 else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
4242 || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
4243 return boolean_false_node;
4245 return NULL_TREE;
4247 else if (comp == NE_EXPR)
4249 /* If VAL is not inside VR, then they are always different. */
4250 if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
4251 || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
4252 return boolean_true_node;
4254 /* If VR represents exactly one value equal to VAL, then return
4255 false. */
4256 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
4257 && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
4258 return boolean_false_node;
4260 /* Otherwise, they may or may not be different. */
4261 return NULL_TREE;
4263 else if (comp == LT_EXPR || comp == LE_EXPR)
4265 int tst;
4267 /* If VR is to the left of VAL, return true. */
4268 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
4269 if ((comp == LT_EXPR && tst == -1)
4270 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
4272 if (overflow_infinity_range_p (vr))
4273 *strict_overflow_p = true;
4274 return boolean_true_node;
4277 /* If VR is to the right of VAL, return false. */
4278 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
4279 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
4280 || (comp == LE_EXPR && tst == 1))
4282 if (overflow_infinity_range_p (vr))
4283 *strict_overflow_p = true;
4284 return boolean_false_node;
4287 /* Otherwise, we don't know. */
4288 return NULL_TREE;
4290 else if (comp == GT_EXPR || comp == GE_EXPR)
4292 int tst;
4294 /* If VR is to the right of VAL, return true. */
4295 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
4296 if ((comp == GT_EXPR && tst == 1)
4297 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
4299 if (overflow_infinity_range_p (vr))
4300 *strict_overflow_p = true;
4301 return boolean_true_node;
4304 /* If VR is to the left of VAL, return false. */
4305 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
4306 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
4307 || (comp == GE_EXPR && tst == -1))
4309 if (overflow_infinity_range_p (vr))
4310 *strict_overflow_p = true;
4311 return boolean_false_node;
4314 /* Otherwise, we don't know. */
4315 return NULL_TREE;
4318 gcc_unreachable ();
4322 /* Debugging dumps. */
4324 void dump_value_range (FILE *, value_range_t *);
4325 void debug_value_range (value_range_t *);
4326 void dump_all_value_ranges (FILE *);
4327 void debug_all_value_ranges (void);
4328 void dump_vr_equiv (FILE *, bitmap);
4329 void debug_vr_equiv (bitmap);
4332 /* Dump value range VR to FILE. */
4334 void
4335 dump_value_range (FILE *file, value_range_t *vr)
4337 if (vr == NULL)
4338 fprintf (file, "[]");
4339 else if (vr->type == VR_UNDEFINED)
4340 fprintf (file, "UNDEFINED");
4341 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
4343 tree type = TREE_TYPE (vr->min);
4345 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
4347 if (is_negative_overflow_infinity (vr->min))
4348 fprintf (file, "-INF(OVF)");
4349 else if (INTEGRAL_TYPE_P (type)
4350 && !TYPE_UNSIGNED (type)
4351 && vrp_val_is_min (vr->min))
4352 fprintf (file, "-INF");
4353 else
4354 print_generic_expr (file, vr->min, 0);
4356 fprintf (file, ", ");
4358 if (is_positive_overflow_infinity (vr->max))
4359 fprintf (file, "+INF(OVF)");
4360 else if (INTEGRAL_TYPE_P (type)
4361 && vrp_val_is_max (vr->max))
4362 fprintf (file, "+INF");
4363 else
4364 print_generic_expr (file, vr->max, 0);
4366 fprintf (file, "]");
4368 if (vr->equiv)
4370 bitmap_iterator bi;
4371 unsigned i, c = 0;
4373 fprintf (file, " EQUIVALENCES: { ");
4375 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
4377 print_generic_expr (file, ssa_name (i), 0);
4378 fprintf (file, " ");
4379 c++;
4382 fprintf (file, "} (%u elements)", c);
4385 else if (vr->type == VR_VARYING)
4386 fprintf (file, "VARYING");
4387 else
4388 fprintf (file, "INVALID RANGE");
4392 /* Dump value range VR to stderr. */
4394 DEBUG_FUNCTION void
4395 debug_value_range (value_range_t *vr)
4397 dump_value_range (stderr, vr);
4398 fprintf (stderr, "\n");
4402 /* Dump value ranges of all SSA_NAMEs to FILE. */
4404 void
4405 dump_all_value_ranges (FILE *file)
4407 size_t i;
4409 for (i = 0; i < num_vr_values; i++)
4411 if (vr_value[i])
4413 print_generic_expr (file, ssa_name (i), 0);
4414 fprintf (file, ": ");
4415 dump_value_range (file, vr_value[i]);
4416 fprintf (file, "\n");
4420 fprintf (file, "\n");
4424 /* Dump all value ranges to stderr. */
4426 DEBUG_FUNCTION void
4427 debug_all_value_ranges (void)
4429 dump_all_value_ranges (stderr);
4433 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
4434 create a new SSA name N and return the assertion assignment
4435 'N = ASSERT_EXPR <V, V OP W>'. */
4437 static gimple
4438 build_assert_expr_for (tree cond, tree v)
4440 tree a;
4441 gimple assertion;
4443 gcc_assert (TREE_CODE (v) == SSA_NAME
4444 && COMPARISON_CLASS_P (cond));
4446 a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
4447 assertion = gimple_build_assign (NULL_TREE, a);
4449 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
4450 operand of the ASSERT_EXPR. Create it so the new name and the old one
4451 are registered in the replacement table so that we can fix the SSA web
4452 after adding all the ASSERT_EXPRs. */
4453 create_new_def_for (v, assertion, NULL);
4455 return assertion;
4459 /* Return false if EXPR is a predicate expression involving floating
4460 point values. */
4462 static inline bool
4463 fp_predicate (gimple stmt)
4465 GIMPLE_CHECK (stmt, GIMPLE_COND);
4467 return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)));
4470 /* If the range of values taken by OP can be inferred after STMT executes,
4471 return the comparison code (COMP_CODE_P) and value (VAL_P) that
4472 describes the inferred range. Return true if a range could be
4473 inferred. */
4475 static bool
4476 infer_value_range (gimple stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
4478 *val_p = NULL_TREE;
4479 *comp_code_p = ERROR_MARK;
4481 /* Do not attempt to infer anything in names that flow through
4482 abnormal edges. */
4483 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
4484 return false;
4486 /* Similarly, don't infer anything from statements that may throw
4487 exceptions. ??? Relax this requirement? */
4488 if (stmt_could_throw_p (stmt))
4489 return false;
4491 /* If STMT is the last statement of a basic block with no normal
4492 successors, there is no point inferring anything about any of its
4493 operands. We would not be able to find a proper insertion point
4494 for the assertion, anyway. */
4495 if (stmt_ends_bb_p (stmt))
4497 edge_iterator ei;
4498 edge e;
4500 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
4501 if (!(e->flags & EDGE_ABNORMAL))
4502 break;
4503 if (e == NULL)
4504 return false;
4507 if (infer_nonnull_range (stmt, op, true, true))
4509 *val_p = build_int_cst (TREE_TYPE (op), 0);
4510 *comp_code_p = NE_EXPR;
4511 return true;
4514 return false;
4518 void dump_asserts_for (FILE *, tree);
4519 void debug_asserts_for (tree);
4520 void dump_all_asserts (FILE *);
4521 void debug_all_asserts (void);
4523 /* Dump all the registered assertions for NAME to FILE. */
4525 void
4526 dump_asserts_for (FILE *file, tree name)
4528 assert_locus_t loc;
4530 fprintf (file, "Assertions to be inserted for ");
4531 print_generic_expr (file, name, 0);
4532 fprintf (file, "\n");
4534 loc = asserts_for[SSA_NAME_VERSION (name)];
4535 while (loc)
4537 fprintf (file, "\t");
4538 print_gimple_stmt (file, gsi_stmt (loc->si), 0, 0);
4539 fprintf (file, "\n\tBB #%d", loc->bb->index);
4540 if (loc->e)
4542 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
4543 loc->e->dest->index);
4544 dump_edge_info (file, loc->e, dump_flags, 0);
4546 fprintf (file, "\n\tPREDICATE: ");
4547 print_generic_expr (file, name, 0);
4548 fprintf (file, " %s ", get_tree_code_name (loc->comp_code));
4549 print_generic_expr (file, loc->val, 0);
4550 fprintf (file, "\n\n");
4551 loc = loc->next;
4554 fprintf (file, "\n");
4558 /* Dump all the registered assertions for NAME to stderr. */
4560 DEBUG_FUNCTION void
4561 debug_asserts_for (tree name)
4563 dump_asserts_for (stderr, name);
4567 /* Dump all the registered assertions for all the names to FILE. */
4569 void
4570 dump_all_asserts (FILE *file)
4572 unsigned i;
4573 bitmap_iterator bi;
4575 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
4576 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
4577 dump_asserts_for (file, ssa_name (i));
4578 fprintf (file, "\n");
4582 /* Dump all the registered assertions for all the names to stderr. */
4584 DEBUG_FUNCTION void
4585 debug_all_asserts (void)
4587 dump_all_asserts (stderr);
4591 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
4592 'EXPR COMP_CODE VAL' at a location that dominates block BB or
4593 E->DEST, then register this location as a possible insertion point
4594 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
4596 BB, E and SI provide the exact insertion point for the new
4597 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
4598 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
4599 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
4600 must not be NULL. */
4602 static void
4603 register_new_assert_for (tree name, tree expr,
4604 enum tree_code comp_code,
4605 tree val,
4606 basic_block bb,
4607 edge e,
4608 gimple_stmt_iterator si)
4610 assert_locus_t n, loc, last_loc;
4611 basic_block dest_bb;
4613 gcc_checking_assert (bb == NULL || e == NULL);
4615 if (e == NULL)
4616 gcc_checking_assert (gimple_code (gsi_stmt (si)) != GIMPLE_COND
4617 && gimple_code (gsi_stmt (si)) != GIMPLE_SWITCH);
4619 /* Never build an assert comparing against an integer constant with
4620 TREE_OVERFLOW set. This confuses our undefined overflow warning
4621 machinery. */
4622 if (TREE_OVERFLOW_P (val))
4623 val = drop_tree_overflow (val);
4625 /* The new assertion A will be inserted at BB or E. We need to
4626 determine if the new location is dominated by a previously
4627 registered location for A. If we are doing an edge insertion,
4628 assume that A will be inserted at E->DEST. Note that this is not
4629 necessarily true.
4631 If E is a critical edge, it will be split. But even if E is
4632 split, the new block will dominate the same set of blocks that
4633 E->DEST dominates.
4635 The reverse, however, is not true, blocks dominated by E->DEST
4636 will not be dominated by the new block created to split E. So,
4637 if the insertion location is on a critical edge, we will not use
4638 the new location to move another assertion previously registered
4639 at a block dominated by E->DEST. */
4640 dest_bb = (bb) ? bb : e->dest;
4642 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
4643 VAL at a block dominating DEST_BB, then we don't need to insert a new
4644 one. Similarly, if the same assertion already exists at a block
4645 dominated by DEST_BB and the new location is not on a critical
4646 edge, then update the existing location for the assertion (i.e.,
4647 move the assertion up in the dominance tree).
4649 Note, this is implemented as a simple linked list because there
4650 should not be more than a handful of assertions registered per
4651 name. If this becomes a performance problem, a table hashed by
4652 COMP_CODE and VAL could be implemented. */
4653 loc = asserts_for[SSA_NAME_VERSION (name)];
4654 last_loc = loc;
4655 while (loc)
4657 if (loc->comp_code == comp_code
4658 && (loc->val == val
4659 || operand_equal_p (loc->val, val, 0))
4660 && (loc->expr == expr
4661 || operand_equal_p (loc->expr, expr, 0)))
4663 /* If E is not a critical edge and DEST_BB
4664 dominates the existing location for the assertion, move
4665 the assertion up in the dominance tree by updating its
4666 location information. */
4667 if ((e == NULL || !EDGE_CRITICAL_P (e))
4668 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
4670 loc->bb = dest_bb;
4671 loc->e = e;
4672 loc->si = si;
4673 return;
4677 /* Update the last node of the list and move to the next one. */
4678 last_loc = loc;
4679 loc = loc->next;
4682 /* If we didn't find an assertion already registered for
4683 NAME COMP_CODE VAL, add a new one at the end of the list of
4684 assertions associated with NAME. */
4685 n = XNEW (struct assert_locus_d);
4686 n->bb = dest_bb;
4687 n->e = e;
4688 n->si = si;
4689 n->comp_code = comp_code;
4690 n->val = val;
4691 n->expr = expr;
4692 n->next = NULL;
4694 if (last_loc)
4695 last_loc->next = n;
4696 else
4697 asserts_for[SSA_NAME_VERSION (name)] = n;
4699 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
4702 /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
4703 Extract a suitable test code and value and store them into *CODE_P and
4704 *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
4706 If no extraction was possible, return FALSE, otherwise return TRUE.
4708 If INVERT is true, then we invert the result stored into *CODE_P. */
4710 static bool
4711 extract_code_and_val_from_cond_with_ops (tree name, enum tree_code cond_code,
4712 tree cond_op0, tree cond_op1,
4713 bool invert, enum tree_code *code_p,
4714 tree *val_p)
4716 enum tree_code comp_code;
4717 tree val;
4719 /* Otherwise, we have a comparison of the form NAME COMP VAL
4720 or VAL COMP NAME. */
4721 if (name == cond_op1)
4723 /* If the predicate is of the form VAL COMP NAME, flip
4724 COMP around because we need to register NAME as the
4725 first operand in the predicate. */
4726 comp_code = swap_tree_comparison (cond_code);
4727 val = cond_op0;
4729 else
4731 /* The comparison is of the form NAME COMP VAL, so the
4732 comparison code remains unchanged. */
4733 comp_code = cond_code;
4734 val = cond_op1;
4737 /* Invert the comparison code as necessary. */
4738 if (invert)
4739 comp_code = invert_tree_comparison (comp_code, 0);
4741 /* VRP does not handle float types. */
4742 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val)))
4743 return false;
4745 /* Do not register always-false predicates.
4746 FIXME: this works around a limitation in fold() when dealing with
4747 enumerations. Given 'enum { N1, N2 } x;', fold will not
4748 fold 'if (x > N2)' to 'if (0)'. */
4749 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
4750 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
4752 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
4753 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
4755 if (comp_code == GT_EXPR
4756 && (!max
4757 || compare_values (val, max) == 0))
4758 return false;
4760 if (comp_code == LT_EXPR
4761 && (!min
4762 || compare_values (val, min) == 0))
4763 return false;
4765 *code_p = comp_code;
4766 *val_p = val;
4767 return true;
4770 /* Find out smallest RES where RES > VAL && (RES & MASK) == RES, if any
4771 (otherwise return VAL). VAL and MASK must be zero-extended for
4772 precision PREC. If SGNBIT is non-zero, first xor VAL with SGNBIT
4773 (to transform signed values into unsigned) and at the end xor
4774 SGNBIT back. */
4776 static double_int
4777 masked_increment (double_int val, double_int mask, double_int sgnbit,
4778 unsigned int prec)
4780 double_int bit = double_int_one, res;
4781 unsigned int i;
4783 val ^= sgnbit;
4784 for (i = 0; i < prec; i++, bit += bit)
4786 res = mask;
4787 if ((res & bit).is_zero ())
4788 continue;
4789 res = bit - double_int_one;
4790 res = (val + bit).and_not (res);
4791 res &= mask;
4792 if (res.ugt (val))
4793 return res ^ sgnbit;
4795 return val ^ sgnbit;
4798 /* Try to register an edge assertion for SSA name NAME on edge E for
4799 the condition COND contributing to the conditional jump pointed to by BSI.
4800 Invert the condition COND if INVERT is true.
4801 Return true if an assertion for NAME could be registered. */
4803 static bool
4804 register_edge_assert_for_2 (tree name, edge e, gimple_stmt_iterator bsi,
4805 enum tree_code cond_code,
4806 tree cond_op0, tree cond_op1, bool invert)
4808 tree val;
4809 enum tree_code comp_code;
4810 bool retval = false;
4812 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
4813 cond_op0,
4814 cond_op1,
4815 invert, &comp_code, &val))
4816 return false;
4818 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
4819 reachable from E. */
4820 if (live_on_edge (e, name)
4821 && !has_single_use (name))
4823 register_new_assert_for (name, name, comp_code, val, NULL, e, bsi);
4824 retval = true;
4827 /* In the case of NAME <= CST and NAME being defined as
4828 NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
4829 and NAME2 <= CST - CST2. We can do the same for NAME > CST.
4830 This catches range and anti-range tests. */
4831 if ((comp_code == LE_EXPR
4832 || comp_code == GT_EXPR)
4833 && TREE_CODE (val) == INTEGER_CST
4834 && TYPE_UNSIGNED (TREE_TYPE (val)))
4836 gimple def_stmt = SSA_NAME_DEF_STMT (name);
4837 tree cst2 = NULL_TREE, name2 = NULL_TREE, name3 = NULL_TREE;
4839 /* Extract CST2 from the (optional) addition. */
4840 if (is_gimple_assign (def_stmt)
4841 && gimple_assign_rhs_code (def_stmt) == PLUS_EXPR)
4843 name2 = gimple_assign_rhs1 (def_stmt);
4844 cst2 = gimple_assign_rhs2 (def_stmt);
4845 if (TREE_CODE (name2) == SSA_NAME
4846 && TREE_CODE (cst2) == INTEGER_CST)
4847 def_stmt = SSA_NAME_DEF_STMT (name2);
4850 /* Extract NAME2 from the (optional) sign-changing cast. */
4851 if (gimple_assign_cast_p (def_stmt))
4853 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))
4854 && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
4855 && (TYPE_PRECISION (gimple_expr_type (def_stmt))
4856 == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))))
4857 name3 = gimple_assign_rhs1 (def_stmt);
4860 /* If name3 is used later, create an ASSERT_EXPR for it. */
4861 if (name3 != NULL_TREE
4862 && TREE_CODE (name3) == SSA_NAME
4863 && (cst2 == NULL_TREE
4864 || TREE_CODE (cst2) == INTEGER_CST)
4865 && INTEGRAL_TYPE_P (TREE_TYPE (name3))
4866 && live_on_edge (e, name3)
4867 && !has_single_use (name3))
4869 tree tmp;
4871 /* Build an expression for the range test. */
4872 tmp = build1 (NOP_EXPR, TREE_TYPE (name), name3);
4873 if (cst2 != NULL_TREE)
4874 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
4876 if (dump_file)
4878 fprintf (dump_file, "Adding assert for ");
4879 print_generic_expr (dump_file, name3, 0);
4880 fprintf (dump_file, " from ");
4881 print_generic_expr (dump_file, tmp, 0);
4882 fprintf (dump_file, "\n");
4885 register_new_assert_for (name3, tmp, comp_code, val, NULL, e, bsi);
4887 retval = true;
4890 /* If name2 is used later, create an ASSERT_EXPR for it. */
4891 if (name2 != NULL_TREE
4892 && TREE_CODE (name2) == SSA_NAME
4893 && TREE_CODE (cst2) == INTEGER_CST
4894 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
4895 && live_on_edge (e, name2)
4896 && !has_single_use (name2))
4898 tree tmp;
4900 /* Build an expression for the range test. */
4901 tmp = name2;
4902 if (TREE_TYPE (name) != TREE_TYPE (name2))
4903 tmp = build1 (NOP_EXPR, TREE_TYPE (name), tmp);
4904 if (cst2 != NULL_TREE)
4905 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
4907 if (dump_file)
4909 fprintf (dump_file, "Adding assert for ");
4910 print_generic_expr (dump_file, name2, 0);
4911 fprintf (dump_file, " from ");
4912 print_generic_expr (dump_file, tmp, 0);
4913 fprintf (dump_file, "\n");
4916 register_new_assert_for (name2, tmp, comp_code, val, NULL, e, bsi);
4918 retval = true;
4922 /* In the case of post-in/decrement tests like if (i++) ... and uses
4923 of the in/decremented value on the edge the extra name we want to
4924 assert for is not on the def chain of the name compared. Instead
4925 it is in the set of use stmts. */
4926 if ((comp_code == NE_EXPR
4927 || comp_code == EQ_EXPR)
4928 && TREE_CODE (val) == INTEGER_CST)
4930 imm_use_iterator ui;
4931 gimple use_stmt;
4932 FOR_EACH_IMM_USE_STMT (use_stmt, ui, name)
4934 /* Cut off to use-stmts that are in the predecessor. */
4935 if (gimple_bb (use_stmt) != e->src)
4936 continue;
4938 if (!is_gimple_assign (use_stmt))
4939 continue;
4941 enum tree_code code = gimple_assign_rhs_code (use_stmt);
4942 if (code != PLUS_EXPR
4943 && code != MINUS_EXPR)
4944 continue;
4946 tree cst = gimple_assign_rhs2 (use_stmt);
4947 if (TREE_CODE (cst) != INTEGER_CST)
4948 continue;
4950 tree name2 = gimple_assign_lhs (use_stmt);
4951 if (live_on_edge (e, name2))
4953 cst = int_const_binop (code, val, cst);
4954 register_new_assert_for (name2, name2, comp_code, cst,
4955 NULL, e, bsi);
4956 retval = true;
4961 if (TREE_CODE_CLASS (comp_code) == tcc_comparison
4962 && TREE_CODE (val) == INTEGER_CST)
4964 gimple def_stmt = SSA_NAME_DEF_STMT (name);
4965 tree name2 = NULL_TREE, names[2], cst2 = NULL_TREE;
4966 tree val2 = NULL_TREE;
4967 double_int mask = double_int_zero;
4968 unsigned int prec = TYPE_PRECISION (TREE_TYPE (val));
4969 unsigned int nprec = prec;
4970 enum tree_code rhs_code = ERROR_MARK;
4972 if (is_gimple_assign (def_stmt))
4973 rhs_code = gimple_assign_rhs_code (def_stmt);
4975 /* Add asserts for NAME cmp CST and NAME being defined
4976 as NAME = (int) NAME2. */
4977 if (!TYPE_UNSIGNED (TREE_TYPE (val))
4978 && (comp_code == LE_EXPR || comp_code == LT_EXPR
4979 || comp_code == GT_EXPR || comp_code == GE_EXPR)
4980 && gimple_assign_cast_p (def_stmt))
4982 name2 = gimple_assign_rhs1 (def_stmt);
4983 if (CONVERT_EXPR_CODE_P (rhs_code)
4984 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
4985 && TYPE_UNSIGNED (TREE_TYPE (name2))
4986 && prec == TYPE_PRECISION (TREE_TYPE (name2))
4987 && (comp_code == LE_EXPR || comp_code == GT_EXPR
4988 || !tree_int_cst_equal (val,
4989 TYPE_MIN_VALUE (TREE_TYPE (val))))
4990 && live_on_edge (e, name2)
4991 && !has_single_use (name2))
4993 tree tmp, cst;
4994 enum tree_code new_comp_code = comp_code;
4996 cst = fold_convert (TREE_TYPE (name2),
4997 TYPE_MIN_VALUE (TREE_TYPE (val)));
4998 /* Build an expression for the range test. */
4999 tmp = build2 (PLUS_EXPR, TREE_TYPE (name2), name2, cst);
5000 cst = fold_build2 (PLUS_EXPR, TREE_TYPE (name2), cst,
5001 fold_convert (TREE_TYPE (name2), val));
5002 if (comp_code == LT_EXPR || comp_code == GE_EXPR)
5004 new_comp_code = comp_code == LT_EXPR ? LE_EXPR : GT_EXPR;
5005 cst = fold_build2 (MINUS_EXPR, TREE_TYPE (name2), cst,
5006 build_int_cst (TREE_TYPE (name2), 1));
5009 if (dump_file)
5011 fprintf (dump_file, "Adding assert for ");
5012 print_generic_expr (dump_file, name2, 0);
5013 fprintf (dump_file, " from ");
5014 print_generic_expr (dump_file, tmp, 0);
5015 fprintf (dump_file, "\n");
5018 register_new_assert_for (name2, tmp, new_comp_code, cst, NULL,
5019 e, bsi);
5021 retval = true;
5025 /* Add asserts for NAME cmp CST and NAME being defined as
5026 NAME = NAME2 >> CST2.
5028 Extract CST2 from the right shift. */
5029 if (rhs_code == RSHIFT_EXPR)
5031 name2 = gimple_assign_rhs1 (def_stmt);
5032 cst2 = gimple_assign_rhs2 (def_stmt);
5033 if (TREE_CODE (name2) == SSA_NAME
5034 && tree_fits_uhwi_p (cst2)
5035 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5036 && IN_RANGE (tree_to_uhwi (cst2), 1, prec - 1)
5037 && prec <= HOST_BITS_PER_DOUBLE_INT
5038 && prec == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (val)))
5039 && live_on_edge (e, name2)
5040 && !has_single_use (name2))
5042 mask = double_int::mask (tree_to_uhwi (cst2));
5043 val2 = fold_binary (LSHIFT_EXPR, TREE_TYPE (val), val, cst2);
5046 if (val2 != NULL_TREE
5047 && TREE_CODE (val2) == INTEGER_CST
5048 && simple_cst_equal (fold_build2 (RSHIFT_EXPR,
5049 TREE_TYPE (val),
5050 val2, cst2), val))
5052 enum tree_code new_comp_code = comp_code;
5053 tree tmp, new_val;
5055 tmp = name2;
5056 if (comp_code == EQ_EXPR || comp_code == NE_EXPR)
5058 if (!TYPE_UNSIGNED (TREE_TYPE (val)))
5060 tree type = build_nonstandard_integer_type (prec, 1);
5061 tmp = build1 (NOP_EXPR, type, name2);
5062 val2 = fold_convert (type, val2);
5064 tmp = fold_build2 (MINUS_EXPR, TREE_TYPE (tmp), tmp, val2);
5065 new_val = double_int_to_tree (TREE_TYPE (tmp), mask);
5066 new_comp_code = comp_code == EQ_EXPR ? LE_EXPR : GT_EXPR;
5068 else if (comp_code == LT_EXPR || comp_code == GE_EXPR)
5070 double_int minval
5071 = double_int::min_value (prec, TYPE_UNSIGNED (TREE_TYPE (val)));
5072 new_val = val2;
5073 if (minval == tree_to_double_int (new_val))
5074 new_val = NULL_TREE;
5076 else
5078 double_int maxval
5079 = double_int::max_value (prec, TYPE_UNSIGNED (TREE_TYPE (val)));
5080 mask |= tree_to_double_int (val2);
5081 if (mask == maxval)
5082 new_val = NULL_TREE;
5083 else
5084 new_val = double_int_to_tree (TREE_TYPE (val2), mask);
5087 if (new_val)
5089 if (dump_file)
5091 fprintf (dump_file, "Adding assert for ");
5092 print_generic_expr (dump_file, name2, 0);
5093 fprintf (dump_file, " from ");
5094 print_generic_expr (dump_file, tmp, 0);
5095 fprintf (dump_file, "\n");
5098 register_new_assert_for (name2, tmp, new_comp_code, new_val,
5099 NULL, e, bsi);
5100 retval = true;
5104 /* Add asserts for NAME cmp CST and NAME being defined as
5105 NAME = NAME2 & CST2.
5107 Extract CST2 from the and.
5109 Also handle
5110 NAME = (unsigned) NAME2;
5111 casts where NAME's type is unsigned and has smaller precision
5112 than NAME2's type as if it was NAME = NAME2 & MASK. */
5113 names[0] = NULL_TREE;
5114 names[1] = NULL_TREE;
5115 cst2 = NULL_TREE;
5116 if (rhs_code == BIT_AND_EXPR
5117 || (CONVERT_EXPR_CODE_P (rhs_code)
5118 && TREE_CODE (TREE_TYPE (val)) == INTEGER_TYPE
5119 && TYPE_UNSIGNED (TREE_TYPE (val))
5120 && TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
5121 > prec
5122 && !retval))
5124 name2 = gimple_assign_rhs1 (def_stmt);
5125 if (rhs_code == BIT_AND_EXPR)
5126 cst2 = gimple_assign_rhs2 (def_stmt);
5127 else
5129 cst2 = TYPE_MAX_VALUE (TREE_TYPE (val));
5130 nprec = TYPE_PRECISION (TREE_TYPE (name2));
5132 if (TREE_CODE (name2) == SSA_NAME
5133 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5134 && TREE_CODE (cst2) == INTEGER_CST
5135 && !integer_zerop (cst2)
5136 && nprec <= HOST_BITS_PER_DOUBLE_INT
5137 && (nprec > 1
5138 || TYPE_UNSIGNED (TREE_TYPE (val))))
5140 gimple def_stmt2 = SSA_NAME_DEF_STMT (name2);
5141 if (gimple_assign_cast_p (def_stmt2))
5143 names[1] = gimple_assign_rhs1 (def_stmt2);
5144 if (!CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt2))
5145 || !INTEGRAL_TYPE_P (TREE_TYPE (names[1]))
5146 || (TYPE_PRECISION (TREE_TYPE (name2))
5147 != TYPE_PRECISION (TREE_TYPE (names[1])))
5148 || !live_on_edge (e, names[1])
5149 || has_single_use (names[1]))
5150 names[1] = NULL_TREE;
5152 if (live_on_edge (e, name2)
5153 && !has_single_use (name2))
5154 names[0] = name2;
5157 if (names[0] || names[1])
5159 double_int minv, maxv = double_int_zero, valv, cst2v;
5160 double_int tem, sgnbit;
5161 bool valid_p = false, valn = false, cst2n = false;
5162 enum tree_code ccode = comp_code;
5164 valv = tree_to_double_int (val).zext (nprec);
5165 cst2v = tree_to_double_int (cst2).zext (nprec);
5166 if (!TYPE_UNSIGNED (TREE_TYPE (val)))
5168 valn = valv.sext (nprec).is_negative ();
5169 cst2n = cst2v.sext (nprec).is_negative ();
5171 /* If CST2 doesn't have most significant bit set,
5172 but VAL is negative, we have comparison like
5173 if ((x & 0x123) > -4) (always true). Just give up. */
5174 if (!cst2n && valn)
5175 ccode = ERROR_MARK;
5176 if (cst2n)
5177 sgnbit = double_int_one.llshift (nprec - 1, nprec).zext (nprec);
5178 else
5179 sgnbit = double_int_zero;
5180 minv = valv & cst2v;
5181 switch (ccode)
5183 case EQ_EXPR:
5184 /* Minimum unsigned value for equality is VAL & CST2
5185 (should be equal to VAL, otherwise we probably should
5186 have folded the comparison into false) and
5187 maximum unsigned value is VAL | ~CST2. */
5188 maxv = valv | ~cst2v;
5189 maxv = maxv.zext (nprec);
5190 valid_p = true;
5191 break;
5192 case NE_EXPR:
5193 tem = valv | ~cst2v;
5194 tem = tem.zext (nprec);
5195 /* If VAL is 0, handle (X & CST2) != 0 as (X & CST2) > 0U. */
5196 if (valv.is_zero ())
5198 cst2n = false;
5199 sgnbit = double_int_zero;
5200 goto gt_expr;
5202 /* If (VAL | ~CST2) is all ones, handle it as
5203 (X & CST2) < VAL. */
5204 if (tem == double_int::mask (nprec))
5206 cst2n = false;
5207 valn = false;
5208 sgnbit = double_int_zero;
5209 goto lt_expr;
5211 if (!cst2n
5212 && cst2v.sext (nprec).is_negative ())
5213 sgnbit
5214 = double_int_one.llshift (nprec - 1, nprec).zext (nprec);
5215 if (!sgnbit.is_zero ())
5217 if (valv == sgnbit)
5219 cst2n = true;
5220 valn = true;
5221 goto gt_expr;
5223 if (tem == double_int::mask (nprec - 1))
5225 cst2n = true;
5226 goto lt_expr;
5228 if (!cst2n)
5229 sgnbit = double_int_zero;
5231 break;
5232 case GE_EXPR:
5233 /* Minimum unsigned value for >= if (VAL & CST2) == VAL
5234 is VAL and maximum unsigned value is ~0. For signed
5235 comparison, if CST2 doesn't have most significant bit
5236 set, handle it similarly. If CST2 has MSB set,
5237 the minimum is the same, and maximum is ~0U/2. */
5238 if (minv != valv)
5240 /* If (VAL & CST2) != VAL, X & CST2 can't be equal to
5241 VAL. */
5242 minv = masked_increment (valv, cst2v, sgnbit, nprec);
5243 if (minv == valv)
5244 break;
5246 maxv = double_int::mask (nprec - (cst2n ? 1 : 0));
5247 valid_p = true;
5248 break;
5249 case GT_EXPR:
5250 gt_expr:
5251 /* Find out smallest MINV where MINV > VAL
5252 && (MINV & CST2) == MINV, if any. If VAL is signed and
5253 CST2 has MSB set, compute it biased by 1 << (nprec - 1). */
5254 minv = masked_increment (valv, cst2v, sgnbit, nprec);
5255 if (minv == valv)
5256 break;
5257 maxv = double_int::mask (nprec - (cst2n ? 1 : 0));
5258 valid_p = true;
5259 break;
5260 case LE_EXPR:
5261 /* Minimum unsigned value for <= is 0 and maximum
5262 unsigned value is VAL | ~CST2 if (VAL & CST2) == VAL.
5263 Otherwise, find smallest VAL2 where VAL2 > VAL
5264 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
5265 as maximum.
5266 For signed comparison, if CST2 doesn't have most
5267 significant bit set, handle it similarly. If CST2 has
5268 MSB set, the maximum is the same and minimum is INT_MIN. */
5269 if (minv == valv)
5270 maxv = valv;
5271 else
5273 maxv = masked_increment (valv, cst2v, sgnbit, nprec);
5274 if (maxv == valv)
5275 break;
5276 maxv -= double_int_one;
5278 maxv |= ~cst2v;
5279 maxv = maxv.zext (nprec);
5280 minv = sgnbit;
5281 valid_p = true;
5282 break;
5283 case LT_EXPR:
5284 lt_expr:
5285 /* Minimum unsigned value for < is 0 and maximum
5286 unsigned value is (VAL-1) | ~CST2 if (VAL & CST2) == VAL.
5287 Otherwise, find smallest VAL2 where VAL2 > VAL
5288 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
5289 as maximum.
5290 For signed comparison, if CST2 doesn't have most
5291 significant bit set, handle it similarly. If CST2 has
5292 MSB set, the maximum is the same and minimum is INT_MIN. */
5293 if (minv == valv)
5295 if (valv == sgnbit)
5296 break;
5297 maxv = valv;
5299 else
5301 maxv = masked_increment (valv, cst2v, sgnbit, nprec);
5302 if (maxv == valv)
5303 break;
5305 maxv -= double_int_one;
5306 maxv |= ~cst2v;
5307 maxv = maxv.zext (nprec);
5308 minv = sgnbit;
5309 valid_p = true;
5310 break;
5311 default:
5312 break;
5314 if (valid_p
5315 && (maxv - minv).zext (nprec) != double_int::mask (nprec))
5317 tree tmp, new_val, type;
5318 int i;
5320 for (i = 0; i < 2; i++)
5321 if (names[i])
5323 double_int maxv2 = maxv;
5324 tmp = names[i];
5325 type = TREE_TYPE (names[i]);
5326 if (!TYPE_UNSIGNED (type))
5328 type = build_nonstandard_integer_type (nprec, 1);
5329 tmp = build1 (NOP_EXPR, type, names[i]);
5331 if (!minv.is_zero ())
5333 tmp = build2 (PLUS_EXPR, type, tmp,
5334 double_int_to_tree (type, -minv));
5335 maxv2 = maxv - minv;
5337 new_val = double_int_to_tree (type, maxv2);
5339 if (dump_file)
5341 fprintf (dump_file, "Adding assert for ");
5342 print_generic_expr (dump_file, names[i], 0);
5343 fprintf (dump_file, " from ");
5344 print_generic_expr (dump_file, tmp, 0);
5345 fprintf (dump_file, "\n");
5348 register_new_assert_for (names[i], tmp, LE_EXPR,
5349 new_val, NULL, e, bsi);
5350 retval = true;
5356 return retval;
5359 /* OP is an operand of a truth value expression which is known to have
5360 a particular value. Register any asserts for OP and for any
5361 operands in OP's defining statement.
5363 If CODE is EQ_EXPR, then we want to register OP is zero (false),
5364 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
5366 static bool
5367 register_edge_assert_for_1 (tree op, enum tree_code code,
5368 edge e, gimple_stmt_iterator bsi)
5370 bool retval = false;
5371 gimple op_def;
5372 tree val;
5373 enum tree_code rhs_code;
5375 /* We only care about SSA_NAMEs. */
5376 if (TREE_CODE (op) != SSA_NAME)
5377 return false;
5379 /* We know that OP will have a zero or nonzero value. If OP is used
5380 more than once go ahead and register an assert for OP. */
5381 if (live_on_edge (e, op)
5382 && !has_single_use (op))
5384 val = build_int_cst (TREE_TYPE (op), 0);
5385 register_new_assert_for (op, op, code, val, NULL, e, bsi);
5386 retval = true;
5389 /* Now look at how OP is set. If it's set from a comparison,
5390 a truth operation or some bit operations, then we may be able
5391 to register information about the operands of that assignment. */
5392 op_def = SSA_NAME_DEF_STMT (op);
5393 if (gimple_code (op_def) != GIMPLE_ASSIGN)
5394 return retval;
5396 rhs_code = gimple_assign_rhs_code (op_def);
5398 if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
5400 bool invert = (code == EQ_EXPR ? true : false);
5401 tree op0 = gimple_assign_rhs1 (op_def);
5402 tree op1 = gimple_assign_rhs2 (op_def);
5404 if (TREE_CODE (op0) == SSA_NAME)
5405 retval |= register_edge_assert_for_2 (op0, e, bsi, rhs_code, op0, op1,
5406 invert);
5407 if (TREE_CODE (op1) == SSA_NAME)
5408 retval |= register_edge_assert_for_2 (op1, e, bsi, rhs_code, op0, op1,
5409 invert);
5411 else if ((code == NE_EXPR
5412 && gimple_assign_rhs_code (op_def) == BIT_AND_EXPR)
5413 || (code == EQ_EXPR
5414 && gimple_assign_rhs_code (op_def) == BIT_IOR_EXPR))
5416 /* Recurse on each operand. */
5417 tree op0 = gimple_assign_rhs1 (op_def);
5418 tree op1 = gimple_assign_rhs2 (op_def);
5419 if (TREE_CODE (op0) == SSA_NAME
5420 && has_single_use (op0))
5421 retval |= register_edge_assert_for_1 (op0, code, e, bsi);
5422 if (TREE_CODE (op1) == SSA_NAME
5423 && has_single_use (op1))
5424 retval |= register_edge_assert_for_1 (op1, code, e, bsi);
5426 else if (gimple_assign_rhs_code (op_def) == BIT_NOT_EXPR
5427 && TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (op_def))) == 1)
5429 /* Recurse, flipping CODE. */
5430 code = invert_tree_comparison (code, false);
5431 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
5432 code, e, bsi);
5434 else if (gimple_assign_rhs_code (op_def) == SSA_NAME)
5436 /* Recurse through the copy. */
5437 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
5438 code, e, bsi);
5440 else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def)))
5442 /* Recurse through the type conversion, unless it is a narrowing
5443 conversion or conversion from non-integral type. */
5444 tree rhs = gimple_assign_rhs1 (op_def);
5445 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs))
5446 && (TYPE_PRECISION (TREE_TYPE (rhs))
5447 <= TYPE_PRECISION (TREE_TYPE (op))))
5448 retval |= register_edge_assert_for_1 (rhs, code, e, bsi);
5451 return retval;
5454 /* Try to register an edge assertion for SSA name NAME on edge E for
5455 the condition COND contributing to the conditional jump pointed to by SI.
5456 Return true if an assertion for NAME could be registered. */
5458 static bool
5459 register_edge_assert_for (tree name, edge e, gimple_stmt_iterator si,
5460 enum tree_code cond_code, tree cond_op0,
5461 tree cond_op1)
5463 tree val;
5464 enum tree_code comp_code;
5465 bool retval = false;
5466 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
5468 /* Do not attempt to infer anything in names that flow through
5469 abnormal edges. */
5470 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
5471 return false;
5473 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
5474 cond_op0, cond_op1,
5475 is_else_edge,
5476 &comp_code, &val))
5477 return false;
5479 /* Register ASSERT_EXPRs for name. */
5480 retval |= register_edge_assert_for_2 (name, e, si, cond_code, cond_op0,
5481 cond_op1, is_else_edge);
5484 /* If COND is effectively an equality test of an SSA_NAME against
5485 the value zero or one, then we may be able to assert values
5486 for SSA_NAMEs which flow into COND. */
5488 /* In the case of NAME == 1 or NAME != 0, for BIT_AND_EXPR defining
5489 statement of NAME we can assert both operands of the BIT_AND_EXPR
5490 have nonzero value. */
5491 if (((comp_code == EQ_EXPR && integer_onep (val))
5492 || (comp_code == NE_EXPR && integer_zerop (val))))
5494 gimple def_stmt = SSA_NAME_DEF_STMT (name);
5496 if (is_gimple_assign (def_stmt)
5497 && gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR)
5499 tree op0 = gimple_assign_rhs1 (def_stmt);
5500 tree op1 = gimple_assign_rhs2 (def_stmt);
5501 retval |= register_edge_assert_for_1 (op0, NE_EXPR, e, si);
5502 retval |= register_edge_assert_for_1 (op1, NE_EXPR, e, si);
5506 /* In the case of NAME == 0 or NAME != 1, for BIT_IOR_EXPR defining
5507 statement of NAME we can assert both operands of the BIT_IOR_EXPR
5508 have zero value. */
5509 if (((comp_code == EQ_EXPR && integer_zerop (val))
5510 || (comp_code == NE_EXPR && integer_onep (val))))
5512 gimple def_stmt = SSA_NAME_DEF_STMT (name);
5514 /* For BIT_IOR_EXPR only if NAME == 0 both operands have
5515 necessarily zero value, or if type-precision is one. */
5516 if (is_gimple_assign (def_stmt)
5517 && (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR
5518 && (TYPE_PRECISION (TREE_TYPE (name)) == 1
5519 || comp_code == EQ_EXPR)))
5521 tree op0 = gimple_assign_rhs1 (def_stmt);
5522 tree op1 = gimple_assign_rhs2 (def_stmt);
5523 retval |= register_edge_assert_for_1 (op0, EQ_EXPR, e, si);
5524 retval |= register_edge_assert_for_1 (op1, EQ_EXPR, e, si);
5528 return retval;
5532 /* Determine whether the outgoing edges of BB should receive an
5533 ASSERT_EXPR for each of the operands of BB's LAST statement.
5534 The last statement of BB must be a COND_EXPR.
5536 If any of the sub-graphs rooted at BB have an interesting use of
5537 the predicate operands, an assert location node is added to the
5538 list of assertions for the corresponding operands. */
5540 static bool
5541 find_conditional_asserts (basic_block bb, gimple last)
5543 bool need_assert;
5544 gimple_stmt_iterator bsi;
5545 tree op;
5546 edge_iterator ei;
5547 edge e;
5548 ssa_op_iter iter;
5550 need_assert = false;
5551 bsi = gsi_for_stmt (last);
5553 /* Look for uses of the operands in each of the sub-graphs
5554 rooted at BB. We need to check each of the outgoing edges
5555 separately, so that we know what kind of ASSERT_EXPR to
5556 insert. */
5557 FOR_EACH_EDGE (e, ei, bb->succs)
5559 if (e->dest == bb)
5560 continue;
5562 /* Register the necessary assertions for each operand in the
5563 conditional predicate. */
5564 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
5566 need_assert |= register_edge_assert_for (op, e, bsi,
5567 gimple_cond_code (last),
5568 gimple_cond_lhs (last),
5569 gimple_cond_rhs (last));
5573 return need_assert;
5576 struct case_info
5578 tree expr;
5579 basic_block bb;
5582 /* Compare two case labels sorting first by the destination bb index
5583 and then by the case value. */
5585 static int
5586 compare_case_labels (const void *p1, const void *p2)
5588 const struct case_info *ci1 = (const struct case_info *) p1;
5589 const struct case_info *ci2 = (const struct case_info *) p2;
5590 int idx1 = ci1->bb->index;
5591 int idx2 = ci2->bb->index;
5593 if (idx1 < idx2)
5594 return -1;
5595 else if (idx1 == idx2)
5597 /* Make sure the default label is first in a group. */
5598 if (!CASE_LOW (ci1->expr))
5599 return -1;
5600 else if (!CASE_LOW (ci2->expr))
5601 return 1;
5602 else
5603 return tree_int_cst_compare (CASE_LOW (ci1->expr),
5604 CASE_LOW (ci2->expr));
5606 else
5607 return 1;
5610 /* Determine whether the outgoing edges of BB should receive an
5611 ASSERT_EXPR for each of the operands of BB's LAST statement.
5612 The last statement of BB must be a SWITCH_EXPR.
5614 If any of the sub-graphs rooted at BB have an interesting use of
5615 the predicate operands, an assert location node is added to the
5616 list of assertions for the corresponding operands. */
5618 static bool
5619 find_switch_asserts (basic_block bb, gimple last)
5621 bool need_assert;
5622 gimple_stmt_iterator bsi;
5623 tree op;
5624 edge e;
5625 struct case_info *ci;
5626 size_t n = gimple_switch_num_labels (last);
5627 #if GCC_VERSION >= 4000
5628 unsigned int idx;
5629 #else
5630 /* Work around GCC 3.4 bug (PR 37086). */
5631 volatile unsigned int idx;
5632 #endif
5634 need_assert = false;
5635 bsi = gsi_for_stmt (last);
5636 op = gimple_switch_index (last);
5637 if (TREE_CODE (op) != SSA_NAME)
5638 return false;
5640 /* Build a vector of case labels sorted by destination label. */
5641 ci = XNEWVEC (struct case_info, n);
5642 for (idx = 0; idx < n; ++idx)
5644 ci[idx].expr = gimple_switch_label (last, idx);
5645 ci[idx].bb = label_to_block (CASE_LABEL (ci[idx].expr));
5647 qsort (ci, n, sizeof (struct case_info), compare_case_labels);
5649 for (idx = 0; idx < n; ++idx)
5651 tree min, max;
5652 tree cl = ci[idx].expr;
5653 basic_block cbb = ci[idx].bb;
5655 min = CASE_LOW (cl);
5656 max = CASE_HIGH (cl);
5658 /* If there are multiple case labels with the same destination
5659 we need to combine them to a single value range for the edge. */
5660 if (idx + 1 < n && cbb == ci[idx + 1].bb)
5662 /* Skip labels until the last of the group. */
5663 do {
5664 ++idx;
5665 } while (idx < n && cbb == ci[idx].bb);
5666 --idx;
5668 /* Pick up the maximum of the case label range. */
5669 if (CASE_HIGH (ci[idx].expr))
5670 max = CASE_HIGH (ci[idx].expr);
5671 else
5672 max = CASE_LOW (ci[idx].expr);
5675 /* Nothing to do if the range includes the default label until we
5676 can register anti-ranges. */
5677 if (min == NULL_TREE)
5678 continue;
5680 /* Find the edge to register the assert expr on. */
5681 e = find_edge (bb, cbb);
5683 /* Register the necessary assertions for the operand in the
5684 SWITCH_EXPR. */
5685 need_assert |= register_edge_assert_for (op, e, bsi,
5686 max ? GE_EXPR : EQ_EXPR,
5688 fold_convert (TREE_TYPE (op),
5689 min));
5690 if (max)
5692 need_assert |= register_edge_assert_for (op, e, bsi, LE_EXPR,
5694 fold_convert (TREE_TYPE (op),
5695 max));
5699 XDELETEVEC (ci);
5700 return need_assert;
5704 /* Traverse all the statements in block BB looking for statements that
5705 may generate useful assertions for the SSA names in their operand.
5706 If a statement produces a useful assertion A for name N_i, then the
5707 list of assertions already generated for N_i is scanned to
5708 determine if A is actually needed.
5710 If N_i already had the assertion A at a location dominating the
5711 current location, then nothing needs to be done. Otherwise, the
5712 new location for A is recorded instead.
5714 1- For every statement S in BB, all the variables used by S are
5715 added to bitmap FOUND_IN_SUBGRAPH.
5717 2- If statement S uses an operand N in a way that exposes a known
5718 value range for N, then if N was not already generated by an
5719 ASSERT_EXPR, create a new assert location for N. For instance,
5720 if N is a pointer and the statement dereferences it, we can
5721 assume that N is not NULL.
5723 3- COND_EXPRs are a special case of #2. We can derive range
5724 information from the predicate but need to insert different
5725 ASSERT_EXPRs for each of the sub-graphs rooted at the
5726 conditional block. If the last statement of BB is a conditional
5727 expression of the form 'X op Y', then
5729 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
5731 b) If the conditional is the only entry point to the sub-graph
5732 corresponding to the THEN_CLAUSE, recurse into it. On
5733 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
5734 an ASSERT_EXPR is added for the corresponding variable.
5736 c) Repeat step (b) on the ELSE_CLAUSE.
5738 d) Mark X and Y in FOUND_IN_SUBGRAPH.
5740 For instance,
5742 if (a == 9)
5743 b = a;
5744 else
5745 b = c + 1;
5747 In this case, an assertion on the THEN clause is useful to
5748 determine that 'a' is always 9 on that edge. However, an assertion
5749 on the ELSE clause would be unnecessary.
5751 4- If BB does not end in a conditional expression, then we recurse
5752 into BB's dominator children.
5754 At the end of the recursive traversal, every SSA name will have a
5755 list of locations where ASSERT_EXPRs should be added. When a new
5756 location for name N is found, it is registered by calling
5757 register_new_assert_for. That function keeps track of all the
5758 registered assertions to prevent adding unnecessary assertions.
5759 For instance, if a pointer P_4 is dereferenced more than once in a
5760 dominator tree, only the location dominating all the dereference of
5761 P_4 will receive an ASSERT_EXPR.
5763 If this function returns true, then it means that there are names
5764 for which we need to generate ASSERT_EXPRs. Those assertions are
5765 inserted by process_assert_insertions. */
5767 static bool
5768 find_assert_locations_1 (basic_block bb, sbitmap live)
5770 gimple_stmt_iterator si;
5771 gimple last;
5772 bool need_assert;
5774 need_assert = false;
5775 last = last_stmt (bb);
5777 /* If BB's last statement is a conditional statement involving integer
5778 operands, determine if we need to add ASSERT_EXPRs. */
5779 if (last
5780 && gimple_code (last) == GIMPLE_COND
5781 && !fp_predicate (last)
5782 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
5783 need_assert |= find_conditional_asserts (bb, last);
5785 /* If BB's last statement is a switch statement involving integer
5786 operands, determine if we need to add ASSERT_EXPRs. */
5787 if (last
5788 && gimple_code (last) == GIMPLE_SWITCH
5789 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
5790 need_assert |= find_switch_asserts (bb, last);
5792 /* Traverse all the statements in BB marking used names and looking
5793 for statements that may infer assertions for their used operands. */
5794 for (si = gsi_last_bb (bb); !gsi_end_p (si); gsi_prev (&si))
5796 gimple stmt;
5797 tree op;
5798 ssa_op_iter i;
5800 stmt = gsi_stmt (si);
5802 if (is_gimple_debug (stmt))
5803 continue;
5805 /* See if we can derive an assertion for any of STMT's operands. */
5806 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
5808 tree value;
5809 enum tree_code comp_code;
5811 /* If op is not live beyond this stmt, do not bother to insert
5812 asserts for it. */
5813 if (!bitmap_bit_p (live, SSA_NAME_VERSION (op)))
5814 continue;
5816 /* If OP is used in such a way that we can infer a value
5817 range for it, and we don't find a previous assertion for
5818 it, create a new assertion location node for OP. */
5819 if (infer_value_range (stmt, op, &comp_code, &value))
5821 /* If we are able to infer a nonzero value range for OP,
5822 then walk backwards through the use-def chain to see if OP
5823 was set via a typecast.
5825 If so, then we can also infer a nonzero value range
5826 for the operand of the NOP_EXPR. */
5827 if (comp_code == NE_EXPR && integer_zerop (value))
5829 tree t = op;
5830 gimple def_stmt = SSA_NAME_DEF_STMT (t);
5832 while (is_gimple_assign (def_stmt)
5833 && gimple_assign_rhs_code (def_stmt) == NOP_EXPR
5834 && TREE_CODE
5835 (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
5836 && POINTER_TYPE_P
5837 (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
5839 t = gimple_assign_rhs1 (def_stmt);
5840 def_stmt = SSA_NAME_DEF_STMT (t);
5842 /* Note we want to register the assert for the
5843 operand of the NOP_EXPR after SI, not after the
5844 conversion. */
5845 if (! has_single_use (t))
5847 register_new_assert_for (t, t, comp_code, value,
5848 bb, NULL, si);
5849 need_assert = true;
5854 register_new_assert_for (op, op, comp_code, value, bb, NULL, si);
5855 need_assert = true;
5859 /* Update live. */
5860 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
5861 bitmap_set_bit (live, SSA_NAME_VERSION (op));
5862 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_DEF)
5863 bitmap_clear_bit (live, SSA_NAME_VERSION (op));
5866 /* Traverse all PHI nodes in BB, updating live. */
5867 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
5869 use_operand_p arg_p;
5870 ssa_op_iter i;
5871 gimple phi = gsi_stmt (si);
5872 tree res = gimple_phi_result (phi);
5874 if (virtual_operand_p (res))
5875 continue;
5877 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
5879 tree arg = USE_FROM_PTR (arg_p);
5880 if (TREE_CODE (arg) == SSA_NAME)
5881 bitmap_set_bit (live, SSA_NAME_VERSION (arg));
5884 bitmap_clear_bit (live, SSA_NAME_VERSION (res));
5887 return need_assert;
5890 /* Do an RPO walk over the function computing SSA name liveness
5891 on-the-fly and deciding on assert expressions to insert.
5892 Returns true if there are assert expressions to be inserted. */
5894 static bool
5895 find_assert_locations (void)
5897 int *rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
5898 int *bb_rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
5899 int *last_rpo = XCNEWVEC (int, last_basic_block_for_fn (cfun));
5900 int rpo_cnt, i;
5901 bool need_asserts;
5903 live = XCNEWVEC (sbitmap, last_basic_block_for_fn (cfun));
5904 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
5905 for (i = 0; i < rpo_cnt; ++i)
5906 bb_rpo[rpo[i]] = i;
5908 /* Pre-seed loop latch liveness from loop header PHI nodes. Due to
5909 the order we compute liveness and insert asserts we otherwise
5910 fail to insert asserts into the loop latch. */
5911 loop_p loop;
5912 FOR_EACH_LOOP (loop, 0)
5914 i = loop->latch->index;
5915 unsigned int j = single_succ_edge (loop->latch)->dest_idx;
5916 for (gimple_stmt_iterator gsi = gsi_start_phis (loop->header);
5917 !gsi_end_p (gsi); gsi_next (&gsi))
5919 gimple phi = gsi_stmt (gsi);
5920 if (virtual_operand_p (gimple_phi_result (phi)))
5921 continue;
5922 tree arg = gimple_phi_arg_def (phi, j);
5923 if (TREE_CODE (arg) == SSA_NAME)
5925 if (live[i] == NULL)
5927 live[i] = sbitmap_alloc (num_ssa_names);
5928 bitmap_clear (live[i]);
5930 bitmap_set_bit (live[i], SSA_NAME_VERSION (arg));
5935 need_asserts = false;
5936 for (i = rpo_cnt - 1; i >= 0; --i)
5938 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
5939 edge e;
5940 edge_iterator ei;
5942 if (!live[rpo[i]])
5944 live[rpo[i]] = sbitmap_alloc (num_ssa_names);
5945 bitmap_clear (live[rpo[i]]);
5948 /* Process BB and update the live information with uses in
5949 this block. */
5950 need_asserts |= find_assert_locations_1 (bb, live[rpo[i]]);
5952 /* Merge liveness into the predecessor blocks and free it. */
5953 if (!bitmap_empty_p (live[rpo[i]]))
5955 int pred_rpo = i;
5956 FOR_EACH_EDGE (e, ei, bb->preds)
5958 int pred = e->src->index;
5959 if ((e->flags & EDGE_DFS_BACK) || pred == ENTRY_BLOCK)
5960 continue;
5962 if (!live[pred])
5964 live[pred] = sbitmap_alloc (num_ssa_names);
5965 bitmap_clear (live[pred]);
5967 bitmap_ior (live[pred], live[pred], live[rpo[i]]);
5969 if (bb_rpo[pred] < pred_rpo)
5970 pred_rpo = bb_rpo[pred];
5973 /* Record the RPO number of the last visited block that needs
5974 live information from this block. */
5975 last_rpo[rpo[i]] = pred_rpo;
5977 else
5979 sbitmap_free (live[rpo[i]]);
5980 live[rpo[i]] = NULL;
5983 /* We can free all successors live bitmaps if all their
5984 predecessors have been visited already. */
5985 FOR_EACH_EDGE (e, ei, bb->succs)
5986 if (last_rpo[e->dest->index] == i
5987 && live[e->dest->index])
5989 sbitmap_free (live[e->dest->index]);
5990 live[e->dest->index] = NULL;
5994 XDELETEVEC (rpo);
5995 XDELETEVEC (bb_rpo);
5996 XDELETEVEC (last_rpo);
5997 for (i = 0; i < last_basic_block_for_fn (cfun); ++i)
5998 if (live[i])
5999 sbitmap_free (live[i]);
6000 XDELETEVEC (live);
6002 return need_asserts;
6005 /* Create an ASSERT_EXPR for NAME and insert it in the location
6006 indicated by LOC. Return true if we made any edge insertions. */
6008 static bool
6009 process_assert_insertions_for (tree name, assert_locus_t loc)
6011 /* Build the comparison expression NAME_i COMP_CODE VAL. */
6012 gimple stmt;
6013 tree cond;
6014 gimple assert_stmt;
6015 edge_iterator ei;
6016 edge e;
6018 /* If we have X <=> X do not insert an assert expr for that. */
6019 if (loc->expr == loc->val)
6020 return false;
6022 cond = build2 (loc->comp_code, boolean_type_node, loc->expr, loc->val);
6023 assert_stmt = build_assert_expr_for (cond, name);
6024 if (loc->e)
6026 /* We have been asked to insert the assertion on an edge. This
6027 is used only by COND_EXPR and SWITCH_EXPR assertions. */
6028 gcc_checking_assert (gimple_code (gsi_stmt (loc->si)) == GIMPLE_COND
6029 || (gimple_code (gsi_stmt (loc->si))
6030 == GIMPLE_SWITCH));
6032 gsi_insert_on_edge (loc->e, assert_stmt);
6033 return true;
6036 /* Otherwise, we can insert right after LOC->SI iff the
6037 statement must not be the last statement in the block. */
6038 stmt = gsi_stmt (loc->si);
6039 if (!stmt_ends_bb_p (stmt))
6041 gsi_insert_after (&loc->si, assert_stmt, GSI_SAME_STMT);
6042 return false;
6045 /* If STMT must be the last statement in BB, we can only insert new
6046 assertions on the non-abnormal edge out of BB. Note that since
6047 STMT is not control flow, there may only be one non-abnormal edge
6048 out of BB. */
6049 FOR_EACH_EDGE (e, ei, loc->bb->succs)
6050 if (!(e->flags & EDGE_ABNORMAL))
6052 gsi_insert_on_edge (e, assert_stmt);
6053 return true;
6056 gcc_unreachable ();
6060 /* Process all the insertions registered for every name N_i registered
6061 in NEED_ASSERT_FOR. The list of assertions to be inserted are
6062 found in ASSERTS_FOR[i]. */
6064 static void
6065 process_assert_insertions (void)
6067 unsigned i;
6068 bitmap_iterator bi;
6069 bool update_edges_p = false;
6070 int num_asserts = 0;
6072 if (dump_file && (dump_flags & TDF_DETAILS))
6073 dump_all_asserts (dump_file);
6075 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
6077 assert_locus_t loc = asserts_for[i];
6078 gcc_assert (loc);
6080 while (loc)
6082 assert_locus_t next = loc->next;
6083 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
6084 free (loc);
6085 loc = next;
6086 num_asserts++;
6090 if (update_edges_p)
6091 gsi_commit_edge_inserts ();
6093 statistics_counter_event (cfun, "Number of ASSERT_EXPR expressions inserted",
6094 num_asserts);
6098 /* Traverse the flowgraph looking for conditional jumps to insert range
6099 expressions. These range expressions are meant to provide information
6100 to optimizations that need to reason in terms of value ranges. They
6101 will not be expanded into RTL. For instance, given:
6103 x = ...
6104 y = ...
6105 if (x < y)
6106 y = x - 2;
6107 else
6108 x = y + 3;
6110 this pass will transform the code into:
6112 x = ...
6113 y = ...
6114 if (x < y)
6116 x = ASSERT_EXPR <x, x < y>
6117 y = x - 2
6119 else
6121 y = ASSERT_EXPR <y, x >= y>
6122 x = y + 3
6125 The idea is that once copy and constant propagation have run, other
6126 optimizations will be able to determine what ranges of values can 'x'
6127 take in different paths of the code, simply by checking the reaching
6128 definition of 'x'. */
6130 static void
6131 insert_range_assertions (void)
6133 need_assert_for = BITMAP_ALLOC (NULL);
6134 asserts_for = XCNEWVEC (assert_locus_t, num_ssa_names);
6136 calculate_dominance_info (CDI_DOMINATORS);
6138 if (find_assert_locations ())
6140 process_assert_insertions ();
6141 update_ssa (TODO_update_ssa_no_phi);
6144 if (dump_file && (dump_flags & TDF_DETAILS))
6146 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
6147 dump_function_to_file (current_function_decl, dump_file, dump_flags);
6150 free (asserts_for);
6151 BITMAP_FREE (need_assert_for);
6154 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
6155 and "struct" hacks. If VRP can determine that the
6156 array subscript is a constant, check if it is outside valid
6157 range. If the array subscript is a RANGE, warn if it is
6158 non-overlapping with valid range.
6159 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
6161 static void
6162 check_array_ref (location_t location, tree ref, bool ignore_off_by_one)
6164 value_range_t* vr = NULL;
6165 tree low_sub, up_sub;
6166 tree low_bound, up_bound, up_bound_p1;
6167 tree base;
6169 if (TREE_NO_WARNING (ref))
6170 return;
6172 low_sub = up_sub = TREE_OPERAND (ref, 1);
6173 up_bound = array_ref_up_bound (ref);
6175 /* Can not check flexible arrays. */
6176 if (!up_bound
6177 || TREE_CODE (up_bound) != INTEGER_CST)
6178 return;
6180 /* Accesses to trailing arrays via pointers may access storage
6181 beyond the types array bounds. */
6182 base = get_base_address (ref);
6183 if (base && TREE_CODE (base) == MEM_REF)
6185 tree cref, next = NULL_TREE;
6187 if (TREE_CODE (TREE_OPERAND (ref, 0)) != COMPONENT_REF)
6188 return;
6190 cref = TREE_OPERAND (ref, 0);
6191 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (cref, 0))) == RECORD_TYPE)
6192 for (next = DECL_CHAIN (TREE_OPERAND (cref, 1));
6193 next && TREE_CODE (next) != FIELD_DECL;
6194 next = DECL_CHAIN (next))
6197 /* If this is the last field in a struct type or a field in a
6198 union type do not warn. */
6199 if (!next)
6200 return;
6203 low_bound = array_ref_low_bound (ref);
6204 up_bound_p1 = int_const_binop (PLUS_EXPR, up_bound, integer_one_node);
6206 if (TREE_CODE (low_sub) == SSA_NAME)
6208 vr = get_value_range (low_sub);
6209 if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
6211 low_sub = vr->type == VR_RANGE ? vr->max : vr->min;
6212 up_sub = vr->type == VR_RANGE ? vr->min : vr->max;
6216 if (vr && vr->type == VR_ANTI_RANGE)
6218 if (TREE_CODE (up_sub) == INTEGER_CST
6219 && tree_int_cst_lt (up_bound, up_sub)
6220 && TREE_CODE (low_sub) == INTEGER_CST
6221 && tree_int_cst_lt (low_sub, low_bound))
6223 warning_at (location, OPT_Warray_bounds,
6224 "array subscript is outside array bounds");
6225 TREE_NO_WARNING (ref) = 1;
6228 else if (TREE_CODE (up_sub) == INTEGER_CST
6229 && (ignore_off_by_one
6230 ? (tree_int_cst_lt (up_bound, up_sub)
6231 && !tree_int_cst_equal (up_bound_p1, up_sub))
6232 : (tree_int_cst_lt (up_bound, up_sub)
6233 || tree_int_cst_equal (up_bound_p1, up_sub))))
6235 if (dump_file && (dump_flags & TDF_DETAILS))
6237 fprintf (dump_file, "Array bound warning for ");
6238 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
6239 fprintf (dump_file, "\n");
6241 warning_at (location, OPT_Warray_bounds,
6242 "array subscript is above array bounds");
6243 TREE_NO_WARNING (ref) = 1;
6245 else if (TREE_CODE (low_sub) == INTEGER_CST
6246 && tree_int_cst_lt (low_sub, low_bound))
6248 if (dump_file && (dump_flags & TDF_DETAILS))
6250 fprintf (dump_file, "Array bound warning for ");
6251 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
6252 fprintf (dump_file, "\n");
6254 warning_at (location, OPT_Warray_bounds,
6255 "array subscript is below array bounds");
6256 TREE_NO_WARNING (ref) = 1;
6260 /* Searches if the expr T, located at LOCATION computes
6261 address of an ARRAY_REF, and call check_array_ref on it. */
6263 static void
6264 search_for_addr_array (tree t, location_t location)
6266 while (TREE_CODE (t) == SSA_NAME)
6268 gimple g = SSA_NAME_DEF_STMT (t);
6270 if (gimple_code (g) != GIMPLE_ASSIGN)
6271 return;
6273 if (get_gimple_rhs_class (gimple_assign_rhs_code (g))
6274 != GIMPLE_SINGLE_RHS)
6275 return;
6277 t = gimple_assign_rhs1 (g);
6281 /* We are only interested in addresses of ARRAY_REF's. */
6282 if (TREE_CODE (t) != ADDR_EXPR)
6283 return;
6285 /* Check each ARRAY_REFs in the reference chain. */
6288 if (TREE_CODE (t) == ARRAY_REF)
6289 check_array_ref (location, t, true /*ignore_off_by_one*/);
6291 t = TREE_OPERAND (t, 0);
6293 while (handled_component_p (t));
6295 if (TREE_CODE (t) == MEM_REF
6296 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR
6297 && !TREE_NO_WARNING (t))
6299 tree tem = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
6300 tree low_bound, up_bound, el_sz;
6301 double_int idx;
6302 if (TREE_CODE (TREE_TYPE (tem)) != ARRAY_TYPE
6303 || TREE_CODE (TREE_TYPE (TREE_TYPE (tem))) == ARRAY_TYPE
6304 || !TYPE_DOMAIN (TREE_TYPE (tem)))
6305 return;
6307 low_bound = TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
6308 up_bound = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
6309 el_sz = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (tem)));
6310 if (!low_bound
6311 || TREE_CODE (low_bound) != INTEGER_CST
6312 || !up_bound
6313 || TREE_CODE (up_bound) != INTEGER_CST
6314 || !el_sz
6315 || TREE_CODE (el_sz) != INTEGER_CST)
6316 return;
6318 idx = mem_ref_offset (t);
6319 idx = idx.sdiv (tree_to_double_int (el_sz), TRUNC_DIV_EXPR);
6320 if (idx.slt (double_int_zero))
6322 if (dump_file && (dump_flags & TDF_DETAILS))
6324 fprintf (dump_file, "Array bound warning for ");
6325 dump_generic_expr (MSG_NOTE, TDF_SLIM, t);
6326 fprintf (dump_file, "\n");
6328 warning_at (location, OPT_Warray_bounds,
6329 "array subscript is below array bounds");
6330 TREE_NO_WARNING (t) = 1;
6332 else if (idx.sgt (tree_to_double_int (up_bound)
6333 - tree_to_double_int (low_bound)
6334 + double_int_one))
6336 if (dump_file && (dump_flags & TDF_DETAILS))
6338 fprintf (dump_file, "Array bound warning for ");
6339 dump_generic_expr (MSG_NOTE, TDF_SLIM, t);
6340 fprintf (dump_file, "\n");
6342 warning_at (location, OPT_Warray_bounds,
6343 "array subscript is above array bounds");
6344 TREE_NO_WARNING (t) = 1;
6349 /* walk_tree() callback that checks if *TP is
6350 an ARRAY_REF inside an ADDR_EXPR (in which an array
6351 subscript one outside the valid range is allowed). Call
6352 check_array_ref for each ARRAY_REF found. The location is
6353 passed in DATA. */
6355 static tree
6356 check_array_bounds (tree *tp, int *walk_subtree, void *data)
6358 tree t = *tp;
6359 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
6360 location_t location;
6362 if (EXPR_HAS_LOCATION (t))
6363 location = EXPR_LOCATION (t);
6364 else
6366 location_t *locp = (location_t *) wi->info;
6367 location = *locp;
6370 *walk_subtree = TRUE;
6372 if (TREE_CODE (t) == ARRAY_REF)
6373 check_array_ref (location, t, false /*ignore_off_by_one*/);
6375 if (TREE_CODE (t) == MEM_REF
6376 || (TREE_CODE (t) == RETURN_EXPR && TREE_OPERAND (t, 0)))
6377 search_for_addr_array (TREE_OPERAND (t, 0), location);
6379 if (TREE_CODE (t) == ADDR_EXPR)
6380 *walk_subtree = FALSE;
6382 return NULL_TREE;
6385 /* Walk over all statements of all reachable BBs and call check_array_bounds
6386 on them. */
6388 static void
6389 check_all_array_refs (void)
6391 basic_block bb;
6392 gimple_stmt_iterator si;
6394 FOR_EACH_BB_FN (bb, cfun)
6396 edge_iterator ei;
6397 edge e;
6398 bool executable = false;
6400 /* Skip blocks that were found to be unreachable. */
6401 FOR_EACH_EDGE (e, ei, bb->preds)
6402 executable |= !!(e->flags & EDGE_EXECUTABLE);
6403 if (!executable)
6404 continue;
6406 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6408 gimple stmt = gsi_stmt (si);
6409 struct walk_stmt_info wi;
6410 if (!gimple_has_location (stmt))
6411 continue;
6413 if (is_gimple_call (stmt))
6415 size_t i;
6416 size_t n = gimple_call_num_args (stmt);
6417 for (i = 0; i < n; i++)
6419 tree arg = gimple_call_arg (stmt, i);
6420 search_for_addr_array (arg, gimple_location (stmt));
6423 else
6425 memset (&wi, 0, sizeof (wi));
6426 wi.info = CONST_CAST (void *, (const void *)
6427 gimple_location_ptr (stmt));
6429 walk_gimple_op (gsi_stmt (si),
6430 check_array_bounds,
6431 &wi);
6437 /* Return true if all imm uses of VAR are either in STMT, or
6438 feed (optionally through a chain of single imm uses) GIMPLE_COND
6439 in basic block COND_BB. */
6441 static bool
6442 all_imm_uses_in_stmt_or_feed_cond (tree var, gimple stmt, basic_block cond_bb)
6444 use_operand_p use_p, use2_p;
6445 imm_use_iterator iter;
6447 FOR_EACH_IMM_USE_FAST (use_p, iter, var)
6448 if (USE_STMT (use_p) != stmt)
6450 gimple use_stmt = USE_STMT (use_p), use_stmt2;
6451 if (is_gimple_debug (use_stmt))
6452 continue;
6453 while (is_gimple_assign (use_stmt)
6454 && TREE_CODE (gimple_assign_lhs (use_stmt)) == SSA_NAME
6455 && single_imm_use (gimple_assign_lhs (use_stmt),
6456 &use2_p, &use_stmt2))
6457 use_stmt = use_stmt2;
6458 if (gimple_code (use_stmt) != GIMPLE_COND
6459 || gimple_bb (use_stmt) != cond_bb)
6460 return false;
6462 return true;
6465 /* Handle
6466 _4 = x_3 & 31;
6467 if (_4 != 0)
6468 goto <bb 6>;
6469 else
6470 goto <bb 7>;
6471 <bb 6>:
6472 __builtin_unreachable ();
6473 <bb 7>:
6474 x_5 = ASSERT_EXPR <x_3, ...>;
6475 If x_3 has no other immediate uses (checked by caller),
6476 var is the x_3 var from ASSERT_EXPR, we can clear low 5 bits
6477 from the non-zero bitmask. */
6479 static void
6480 maybe_set_nonzero_bits (basic_block bb, tree var)
6482 edge e = single_pred_edge (bb);
6483 basic_block cond_bb = e->src;
6484 gimple stmt = last_stmt (cond_bb);
6485 tree cst;
6487 if (stmt == NULL
6488 || gimple_code (stmt) != GIMPLE_COND
6489 || gimple_cond_code (stmt) != ((e->flags & EDGE_TRUE_VALUE)
6490 ? EQ_EXPR : NE_EXPR)
6491 || TREE_CODE (gimple_cond_lhs (stmt)) != SSA_NAME
6492 || !integer_zerop (gimple_cond_rhs (stmt)))
6493 return;
6495 stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (stmt));
6496 if (!is_gimple_assign (stmt)
6497 || gimple_assign_rhs_code (stmt) != BIT_AND_EXPR
6498 || TREE_CODE (gimple_assign_rhs2 (stmt)) != INTEGER_CST)
6499 return;
6500 if (gimple_assign_rhs1 (stmt) != var)
6502 gimple stmt2;
6504 if (TREE_CODE (gimple_assign_rhs1 (stmt)) != SSA_NAME)
6505 return;
6506 stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
6507 if (!gimple_assign_cast_p (stmt2)
6508 || gimple_assign_rhs1 (stmt2) != var
6509 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt2))
6510 || (TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (stmt)))
6511 != TYPE_PRECISION (TREE_TYPE (var))))
6512 return;
6514 cst = gimple_assign_rhs2 (stmt);
6515 set_nonzero_bits (var, (get_nonzero_bits (var)
6516 & ~tree_to_double_int (cst)));
6519 /* Convert range assertion expressions into the implied copies and
6520 copy propagate away the copies. Doing the trivial copy propagation
6521 here avoids the need to run the full copy propagation pass after
6522 VRP.
6524 FIXME, this will eventually lead to copy propagation removing the
6525 names that had useful range information attached to them. For
6526 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
6527 then N_i will have the range [3, +INF].
6529 However, by converting the assertion into the implied copy
6530 operation N_i = N_j, we will then copy-propagate N_j into the uses
6531 of N_i and lose the range information. We may want to hold on to
6532 ASSERT_EXPRs a little while longer as the ranges could be used in
6533 things like jump threading.
6535 The problem with keeping ASSERT_EXPRs around is that passes after
6536 VRP need to handle them appropriately.
6538 Another approach would be to make the range information a first
6539 class property of the SSA_NAME so that it can be queried from
6540 any pass. This is made somewhat more complex by the need for
6541 multiple ranges to be associated with one SSA_NAME. */
6543 static void
6544 remove_range_assertions (void)
6546 basic_block bb;
6547 gimple_stmt_iterator si;
6548 /* 1 if looking at ASSERT_EXPRs immediately at the beginning of
6549 a basic block preceeded by GIMPLE_COND branching to it and
6550 __builtin_trap, -1 if not yet checked, 0 otherwise. */
6551 int is_unreachable;
6553 /* Note that the BSI iterator bump happens at the bottom of the
6554 loop and no bump is necessary if we're removing the statement
6555 referenced by the current BSI. */
6556 FOR_EACH_BB_FN (bb, cfun)
6557 for (si = gsi_after_labels (bb), is_unreachable = -1; !gsi_end_p (si);)
6559 gimple stmt = gsi_stmt (si);
6560 gimple use_stmt;
6562 if (is_gimple_assign (stmt)
6563 && gimple_assign_rhs_code (stmt) == ASSERT_EXPR)
6565 tree lhs = gimple_assign_lhs (stmt);
6566 tree rhs = gimple_assign_rhs1 (stmt);
6567 tree var;
6568 tree cond = fold (ASSERT_EXPR_COND (rhs));
6569 use_operand_p use_p;
6570 imm_use_iterator iter;
6572 gcc_assert (cond != boolean_false_node);
6574 var = ASSERT_EXPR_VAR (rhs);
6575 gcc_assert (TREE_CODE (var) == SSA_NAME);
6577 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
6578 && SSA_NAME_RANGE_INFO (lhs))
6580 if (is_unreachable == -1)
6582 is_unreachable = 0;
6583 if (single_pred_p (bb)
6584 && assert_unreachable_fallthru_edge_p
6585 (single_pred_edge (bb)))
6586 is_unreachable = 1;
6588 /* Handle
6589 if (x_7 >= 10 && x_7 < 20)
6590 __builtin_unreachable ();
6591 x_8 = ASSERT_EXPR <x_7, ...>;
6592 if the only uses of x_7 are in the ASSERT_EXPR and
6593 in the condition. In that case, we can copy the
6594 range info from x_8 computed in this pass also
6595 for x_7. */
6596 if (is_unreachable
6597 && all_imm_uses_in_stmt_or_feed_cond (var, stmt,
6598 single_pred (bb)))
6600 set_range_info (var, SSA_NAME_RANGE_TYPE (lhs),
6601 SSA_NAME_RANGE_INFO (lhs)->min,
6602 SSA_NAME_RANGE_INFO (lhs)->max);
6603 maybe_set_nonzero_bits (bb, var);
6607 /* Propagate the RHS into every use of the LHS. */
6608 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
6609 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
6610 SET_USE (use_p, var);
6612 /* And finally, remove the copy, it is not needed. */
6613 gsi_remove (&si, true);
6614 release_defs (stmt);
6616 else
6618 gsi_next (&si);
6619 is_unreachable = 0;
6625 /* Return true if STMT is interesting for VRP. */
6627 static bool
6628 stmt_interesting_for_vrp (gimple stmt)
6630 if (gimple_code (stmt) == GIMPLE_PHI)
6632 tree res = gimple_phi_result (stmt);
6633 return (!virtual_operand_p (res)
6634 && (INTEGRAL_TYPE_P (TREE_TYPE (res))
6635 || POINTER_TYPE_P (TREE_TYPE (res))));
6637 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
6639 tree lhs = gimple_get_lhs (stmt);
6641 /* In general, assignments with virtual operands are not useful
6642 for deriving ranges, with the obvious exception of calls to
6643 builtin functions. */
6644 if (lhs && TREE_CODE (lhs) == SSA_NAME
6645 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
6646 || POINTER_TYPE_P (TREE_TYPE (lhs)))
6647 && (is_gimple_call (stmt)
6648 || !gimple_vuse (stmt)))
6649 return true;
6651 else if (gimple_code (stmt) == GIMPLE_COND
6652 || gimple_code (stmt) == GIMPLE_SWITCH)
6653 return true;
6655 return false;
6659 /* Initialize local data structures for VRP. */
6661 static void
6662 vrp_initialize (void)
6664 basic_block bb;
6666 values_propagated = false;
6667 num_vr_values = num_ssa_names;
6668 vr_value = XCNEWVEC (value_range_t *, num_vr_values);
6669 vr_phi_edge_counts = XCNEWVEC (int, num_ssa_names);
6671 FOR_EACH_BB_FN (bb, cfun)
6673 gimple_stmt_iterator si;
6675 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
6677 gimple phi = gsi_stmt (si);
6678 if (!stmt_interesting_for_vrp (phi))
6680 tree lhs = PHI_RESULT (phi);
6681 set_value_range_to_varying (get_value_range (lhs));
6682 prop_set_simulate_again (phi, false);
6684 else
6685 prop_set_simulate_again (phi, true);
6688 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6690 gimple stmt = gsi_stmt (si);
6692 /* If the statement is a control insn, then we do not
6693 want to avoid simulating the statement once. Failure
6694 to do so means that those edges will never get added. */
6695 if (stmt_ends_bb_p (stmt))
6696 prop_set_simulate_again (stmt, true);
6697 else if (!stmt_interesting_for_vrp (stmt))
6699 ssa_op_iter i;
6700 tree def;
6701 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
6702 set_value_range_to_varying (get_value_range (def));
6703 prop_set_simulate_again (stmt, false);
6705 else
6706 prop_set_simulate_again (stmt, true);
6711 /* Return the singleton value-range for NAME or NAME. */
6713 static inline tree
6714 vrp_valueize (tree name)
6716 if (TREE_CODE (name) == SSA_NAME)
6718 value_range_t *vr = get_value_range (name);
6719 if (vr->type == VR_RANGE
6720 && (vr->min == vr->max
6721 || operand_equal_p (vr->min, vr->max, 0)))
6722 return vr->min;
6724 return name;
6727 /* Visit assignment STMT. If it produces an interesting range, record
6728 the SSA name in *OUTPUT_P. */
6730 static enum ssa_prop_result
6731 vrp_visit_assignment_or_call (gimple stmt, tree *output_p)
6733 tree def, lhs;
6734 ssa_op_iter iter;
6735 enum gimple_code code = gimple_code (stmt);
6736 lhs = gimple_get_lhs (stmt);
6738 /* We only keep track of ranges in integral and pointer types. */
6739 if (TREE_CODE (lhs) == SSA_NAME
6740 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
6741 /* It is valid to have NULL MIN/MAX values on a type. See
6742 build_range_type. */
6743 && TYPE_MIN_VALUE (TREE_TYPE (lhs))
6744 && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
6745 || POINTER_TYPE_P (TREE_TYPE (lhs))))
6747 value_range_t new_vr = VR_INITIALIZER;
6749 /* Try folding the statement to a constant first. */
6750 tree tem = gimple_fold_stmt_to_constant (stmt, vrp_valueize);
6751 if (tem)
6752 set_value_range_to_value (&new_vr, tem, NULL);
6753 /* Then dispatch to value-range extracting functions. */
6754 else if (code == GIMPLE_CALL)
6755 extract_range_basic (&new_vr, stmt);
6756 else
6757 extract_range_from_assignment (&new_vr, stmt);
6759 if (update_value_range (lhs, &new_vr))
6761 *output_p = lhs;
6763 if (dump_file && (dump_flags & TDF_DETAILS))
6765 fprintf (dump_file, "Found new range for ");
6766 print_generic_expr (dump_file, lhs, 0);
6767 fprintf (dump_file, ": ");
6768 dump_value_range (dump_file, &new_vr);
6769 fprintf (dump_file, "\n\n");
6772 if (new_vr.type == VR_VARYING)
6773 return SSA_PROP_VARYING;
6775 return SSA_PROP_INTERESTING;
6778 return SSA_PROP_NOT_INTERESTING;
6781 /* Every other statement produces no useful ranges. */
6782 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
6783 set_value_range_to_varying (get_value_range (def));
6785 return SSA_PROP_VARYING;
6788 /* Helper that gets the value range of the SSA_NAME with version I
6789 or a symbolic range containing the SSA_NAME only if the value range
6790 is varying or undefined. */
6792 static inline value_range_t
6793 get_vr_for_comparison (int i)
6795 value_range_t vr = *get_value_range (ssa_name (i));
6797 /* If name N_i does not have a valid range, use N_i as its own
6798 range. This allows us to compare against names that may
6799 have N_i in their ranges. */
6800 if (vr.type == VR_VARYING || vr.type == VR_UNDEFINED)
6802 vr.type = VR_RANGE;
6803 vr.min = ssa_name (i);
6804 vr.max = ssa_name (i);
6807 return vr;
6810 /* Compare all the value ranges for names equivalent to VAR with VAL
6811 using comparison code COMP. Return the same value returned by
6812 compare_range_with_value, including the setting of
6813 *STRICT_OVERFLOW_P. */
6815 static tree
6816 compare_name_with_value (enum tree_code comp, tree var, tree val,
6817 bool *strict_overflow_p)
6819 bitmap_iterator bi;
6820 unsigned i;
6821 bitmap e;
6822 tree retval, t;
6823 int used_strict_overflow;
6824 bool sop;
6825 value_range_t equiv_vr;
6827 /* Get the set of equivalences for VAR. */
6828 e = get_value_range (var)->equiv;
6830 /* Start at -1. Set it to 0 if we do a comparison without relying
6831 on overflow, or 1 if all comparisons rely on overflow. */
6832 used_strict_overflow = -1;
6834 /* Compare vars' value range with val. */
6835 equiv_vr = get_vr_for_comparison (SSA_NAME_VERSION (var));
6836 sop = false;
6837 retval = compare_range_with_value (comp, &equiv_vr, val, &sop);
6838 if (retval)
6839 used_strict_overflow = sop ? 1 : 0;
6841 /* If the equiv set is empty we have done all work we need to do. */
6842 if (e == NULL)
6844 if (retval
6845 && used_strict_overflow > 0)
6846 *strict_overflow_p = true;
6847 return retval;
6850 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
6852 equiv_vr = get_vr_for_comparison (i);
6853 sop = false;
6854 t = compare_range_with_value (comp, &equiv_vr, val, &sop);
6855 if (t)
6857 /* If we get different answers from different members
6858 of the equivalence set this check must be in a dead
6859 code region. Folding it to a trap representation
6860 would be correct here. For now just return don't-know. */
6861 if (retval != NULL
6862 && t != retval)
6864 retval = NULL_TREE;
6865 break;
6867 retval = t;
6869 if (!sop)
6870 used_strict_overflow = 0;
6871 else if (used_strict_overflow < 0)
6872 used_strict_overflow = 1;
6876 if (retval
6877 && used_strict_overflow > 0)
6878 *strict_overflow_p = true;
6880 return retval;
6884 /* Given a comparison code COMP and names N1 and N2, compare all the
6885 ranges equivalent to N1 against all the ranges equivalent to N2
6886 to determine the value of N1 COMP N2. Return the same value
6887 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
6888 whether we relied on an overflow infinity in the comparison. */
6891 static tree
6892 compare_names (enum tree_code comp, tree n1, tree n2,
6893 bool *strict_overflow_p)
6895 tree t, retval;
6896 bitmap e1, e2;
6897 bitmap_iterator bi1, bi2;
6898 unsigned i1, i2;
6899 int used_strict_overflow;
6900 static bitmap_obstack *s_obstack = NULL;
6901 static bitmap s_e1 = NULL, s_e2 = NULL;
6903 /* Compare the ranges of every name equivalent to N1 against the
6904 ranges of every name equivalent to N2. */
6905 e1 = get_value_range (n1)->equiv;
6906 e2 = get_value_range (n2)->equiv;
6908 /* Use the fake bitmaps if e1 or e2 are not available. */
6909 if (s_obstack == NULL)
6911 s_obstack = XNEW (bitmap_obstack);
6912 bitmap_obstack_initialize (s_obstack);
6913 s_e1 = BITMAP_ALLOC (s_obstack);
6914 s_e2 = BITMAP_ALLOC (s_obstack);
6916 if (e1 == NULL)
6917 e1 = s_e1;
6918 if (e2 == NULL)
6919 e2 = s_e2;
6921 /* Add N1 and N2 to their own set of equivalences to avoid
6922 duplicating the body of the loop just to check N1 and N2
6923 ranges. */
6924 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
6925 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
6927 /* If the equivalence sets have a common intersection, then the two
6928 names can be compared without checking their ranges. */
6929 if (bitmap_intersect_p (e1, e2))
6931 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
6932 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
6934 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
6935 ? boolean_true_node
6936 : boolean_false_node;
6939 /* Start at -1. Set it to 0 if we do a comparison without relying
6940 on overflow, or 1 if all comparisons rely on overflow. */
6941 used_strict_overflow = -1;
6943 /* Otherwise, compare all the equivalent ranges. First, add N1 and
6944 N2 to their own set of equivalences to avoid duplicating the body
6945 of the loop just to check N1 and N2 ranges. */
6946 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
6948 value_range_t vr1 = get_vr_for_comparison (i1);
6950 t = retval = NULL_TREE;
6951 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
6953 bool sop = false;
6955 value_range_t vr2 = get_vr_for_comparison (i2);
6957 t = compare_ranges (comp, &vr1, &vr2, &sop);
6958 if (t)
6960 /* If we get different answers from different members
6961 of the equivalence set this check must be in a dead
6962 code region. Folding it to a trap representation
6963 would be correct here. For now just return don't-know. */
6964 if (retval != NULL
6965 && t != retval)
6967 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
6968 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
6969 return NULL_TREE;
6971 retval = t;
6973 if (!sop)
6974 used_strict_overflow = 0;
6975 else if (used_strict_overflow < 0)
6976 used_strict_overflow = 1;
6980 if (retval)
6982 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
6983 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
6984 if (used_strict_overflow > 0)
6985 *strict_overflow_p = true;
6986 return retval;
6990 /* None of the equivalent ranges are useful in computing this
6991 comparison. */
6992 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
6993 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
6994 return NULL_TREE;
6997 /* Helper function for vrp_evaluate_conditional_warnv. */
6999 static tree
7000 vrp_evaluate_conditional_warnv_with_ops_using_ranges (enum tree_code code,
7001 tree op0, tree op1,
7002 bool * strict_overflow_p)
7004 value_range_t *vr0, *vr1;
7006 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
7007 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
7009 if (vr0 && vr1)
7010 return compare_ranges (code, vr0, vr1, strict_overflow_p);
7011 else if (vr0 && vr1 == NULL)
7012 return compare_range_with_value (code, vr0, op1, strict_overflow_p);
7013 else if (vr0 == NULL && vr1)
7014 return (compare_range_with_value
7015 (swap_tree_comparison (code), vr1, op0, strict_overflow_p));
7016 return NULL;
7019 /* Helper function for vrp_evaluate_conditional_warnv. */
7021 static tree
7022 vrp_evaluate_conditional_warnv_with_ops (enum tree_code code, tree op0,
7023 tree op1, bool use_equiv_p,
7024 bool *strict_overflow_p, bool *only_ranges)
7026 tree ret;
7027 if (only_ranges)
7028 *only_ranges = true;
7030 /* We only deal with integral and pointer types. */
7031 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
7032 && !POINTER_TYPE_P (TREE_TYPE (op0)))
7033 return NULL_TREE;
7035 if (use_equiv_p)
7037 if (only_ranges
7038 && (ret = vrp_evaluate_conditional_warnv_with_ops_using_ranges
7039 (code, op0, op1, strict_overflow_p)))
7040 return ret;
7041 *only_ranges = false;
7042 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
7043 return compare_names (code, op0, op1, strict_overflow_p);
7044 else if (TREE_CODE (op0) == SSA_NAME)
7045 return compare_name_with_value (code, op0, op1, strict_overflow_p);
7046 else if (TREE_CODE (op1) == SSA_NAME)
7047 return (compare_name_with_value
7048 (swap_tree_comparison (code), op1, op0, strict_overflow_p));
7050 else
7051 return vrp_evaluate_conditional_warnv_with_ops_using_ranges (code, op0, op1,
7052 strict_overflow_p);
7053 return NULL_TREE;
7056 /* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
7057 information. Return NULL if the conditional can not be evaluated.
7058 The ranges of all the names equivalent with the operands in COND
7059 will be used when trying to compute the value. If the result is
7060 based on undefined signed overflow, issue a warning if
7061 appropriate. */
7063 static tree
7064 vrp_evaluate_conditional (enum tree_code code, tree op0, tree op1, gimple stmt)
7066 bool sop;
7067 tree ret;
7068 bool only_ranges;
7070 /* Some passes and foldings leak constants with overflow flag set
7071 into the IL. Avoid doing wrong things with these and bail out. */
7072 if ((TREE_CODE (op0) == INTEGER_CST
7073 && TREE_OVERFLOW (op0))
7074 || (TREE_CODE (op1) == INTEGER_CST
7075 && TREE_OVERFLOW (op1)))
7076 return NULL_TREE;
7078 sop = false;
7079 ret = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, true, &sop,
7080 &only_ranges);
7082 if (ret && sop)
7084 enum warn_strict_overflow_code wc;
7085 const char* warnmsg;
7087 if (is_gimple_min_invariant (ret))
7089 wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
7090 warnmsg = G_("assuming signed overflow does not occur when "
7091 "simplifying conditional to constant");
7093 else
7095 wc = WARN_STRICT_OVERFLOW_COMPARISON;
7096 warnmsg = G_("assuming signed overflow does not occur when "
7097 "simplifying conditional");
7100 if (issue_strict_overflow_warning (wc))
7102 location_t location;
7104 if (!gimple_has_location (stmt))
7105 location = input_location;
7106 else
7107 location = gimple_location (stmt);
7108 warning_at (location, OPT_Wstrict_overflow, "%s", warnmsg);
7112 if (warn_type_limits
7113 && ret && only_ranges
7114 && TREE_CODE_CLASS (code) == tcc_comparison
7115 && TREE_CODE (op0) == SSA_NAME)
7117 /* If the comparison is being folded and the operand on the LHS
7118 is being compared against a constant value that is outside of
7119 the natural range of OP0's type, then the predicate will
7120 always fold regardless of the value of OP0. If -Wtype-limits
7121 was specified, emit a warning. */
7122 tree type = TREE_TYPE (op0);
7123 value_range_t *vr0 = get_value_range (op0);
7125 if (vr0->type != VR_VARYING
7126 && INTEGRAL_TYPE_P (type)
7127 && vrp_val_is_min (vr0->min)
7128 && vrp_val_is_max (vr0->max)
7129 && is_gimple_min_invariant (op1))
7131 location_t location;
7133 if (!gimple_has_location (stmt))
7134 location = input_location;
7135 else
7136 location = gimple_location (stmt);
7138 warning_at (location, OPT_Wtype_limits,
7139 integer_zerop (ret)
7140 ? G_("comparison always false "
7141 "due to limited range of data type")
7142 : G_("comparison always true "
7143 "due to limited range of data type"));
7147 return ret;
7151 /* Visit conditional statement STMT. If we can determine which edge
7152 will be taken out of STMT's basic block, record it in
7153 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
7154 SSA_PROP_VARYING. */
7156 static enum ssa_prop_result
7157 vrp_visit_cond_stmt (gimple stmt, edge *taken_edge_p)
7159 tree val;
7160 bool sop;
7162 *taken_edge_p = NULL;
7164 if (dump_file && (dump_flags & TDF_DETAILS))
7166 tree use;
7167 ssa_op_iter i;
7169 fprintf (dump_file, "\nVisiting conditional with predicate: ");
7170 print_gimple_stmt (dump_file, stmt, 0, 0);
7171 fprintf (dump_file, "\nWith known ranges\n");
7173 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
7175 fprintf (dump_file, "\t");
7176 print_generic_expr (dump_file, use, 0);
7177 fprintf (dump_file, ": ");
7178 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
7181 fprintf (dump_file, "\n");
7184 /* Compute the value of the predicate COND by checking the known
7185 ranges of each of its operands.
7187 Note that we cannot evaluate all the equivalent ranges here
7188 because those ranges may not yet be final and with the current
7189 propagation strategy, we cannot determine when the value ranges
7190 of the names in the equivalence set have changed.
7192 For instance, given the following code fragment
7194 i_5 = PHI <8, i_13>
7196 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
7197 if (i_14 == 1)
7200 Assume that on the first visit to i_14, i_5 has the temporary
7201 range [8, 8] because the second argument to the PHI function is
7202 not yet executable. We derive the range ~[0, 0] for i_14 and the
7203 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
7204 the first time, since i_14 is equivalent to the range [8, 8], we
7205 determine that the predicate is always false.
7207 On the next round of propagation, i_13 is determined to be
7208 VARYING, which causes i_5 to drop down to VARYING. So, another
7209 visit to i_14 is scheduled. In this second visit, we compute the
7210 exact same range and equivalence set for i_14, namely ~[0, 0] and
7211 { i_5 }. But we did not have the previous range for i_5
7212 registered, so vrp_visit_assignment thinks that the range for
7213 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
7214 is not visited again, which stops propagation from visiting
7215 statements in the THEN clause of that if().
7217 To properly fix this we would need to keep the previous range
7218 value for the names in the equivalence set. This way we would've
7219 discovered that from one visit to the other i_5 changed from
7220 range [8, 8] to VR_VARYING.
7222 However, fixing this apparent limitation may not be worth the
7223 additional checking. Testing on several code bases (GCC, DLV,
7224 MICO, TRAMP3D and SPEC2000) showed that doing this results in
7225 4 more predicates folded in SPEC. */
7226 sop = false;
7228 val = vrp_evaluate_conditional_warnv_with_ops (gimple_cond_code (stmt),
7229 gimple_cond_lhs (stmt),
7230 gimple_cond_rhs (stmt),
7231 false, &sop, NULL);
7232 if (val)
7234 if (!sop)
7235 *taken_edge_p = find_taken_edge (gimple_bb (stmt), val);
7236 else
7238 if (dump_file && (dump_flags & TDF_DETAILS))
7239 fprintf (dump_file,
7240 "\nIgnoring predicate evaluation because "
7241 "it assumes that signed overflow is undefined");
7242 val = NULL_TREE;
7246 if (dump_file && (dump_flags & TDF_DETAILS))
7248 fprintf (dump_file, "\nPredicate evaluates to: ");
7249 if (val == NULL_TREE)
7250 fprintf (dump_file, "DON'T KNOW\n");
7251 else
7252 print_generic_stmt (dump_file, val, 0);
7255 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
7258 /* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
7259 that includes the value VAL. The search is restricted to the range
7260 [START_IDX, n - 1] where n is the size of VEC.
7262 If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
7263 returned.
7265 If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
7266 it is placed in IDX and false is returned.
7268 If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
7269 returned. */
7271 static bool
7272 find_case_label_index (gimple stmt, size_t start_idx, tree val, size_t *idx)
7274 size_t n = gimple_switch_num_labels (stmt);
7275 size_t low, high;
7277 /* Find case label for minimum of the value range or the next one.
7278 At each iteration we are searching in [low, high - 1]. */
7280 for (low = start_idx, high = n; high != low; )
7282 tree t;
7283 int cmp;
7284 /* Note that i != high, so we never ask for n. */
7285 size_t i = (high + low) / 2;
7286 t = gimple_switch_label (stmt, i);
7288 /* Cache the result of comparing CASE_LOW and val. */
7289 cmp = tree_int_cst_compare (CASE_LOW (t), val);
7291 if (cmp == 0)
7293 /* Ranges cannot be empty. */
7294 *idx = i;
7295 return true;
7297 else if (cmp > 0)
7298 high = i;
7299 else
7301 low = i + 1;
7302 if (CASE_HIGH (t) != NULL
7303 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
7305 *idx = i;
7306 return true;
7311 *idx = high;
7312 return false;
7315 /* Searches the case label vector VEC for the range of CASE_LABELs that is used
7316 for values between MIN and MAX. The first index is placed in MIN_IDX. The
7317 last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
7318 then MAX_IDX < MIN_IDX.
7319 Returns true if the default label is not needed. */
7321 static bool
7322 find_case_label_range (gimple stmt, tree min, tree max, size_t *min_idx,
7323 size_t *max_idx)
7325 size_t i, j;
7326 bool min_take_default = !find_case_label_index (stmt, 1, min, &i);
7327 bool max_take_default = !find_case_label_index (stmt, i, max, &j);
7329 if (i == j
7330 && min_take_default
7331 && max_take_default)
7333 /* Only the default case label reached.
7334 Return an empty range. */
7335 *min_idx = 1;
7336 *max_idx = 0;
7337 return false;
7339 else
7341 bool take_default = min_take_default || max_take_default;
7342 tree low, high;
7343 size_t k;
7345 if (max_take_default)
7346 j--;
7348 /* If the case label range is continuous, we do not need
7349 the default case label. Verify that. */
7350 high = CASE_LOW (gimple_switch_label (stmt, i));
7351 if (CASE_HIGH (gimple_switch_label (stmt, i)))
7352 high = CASE_HIGH (gimple_switch_label (stmt, i));
7353 for (k = i + 1; k <= j; ++k)
7355 low = CASE_LOW (gimple_switch_label (stmt, k));
7356 if (!integer_onep (int_const_binop (MINUS_EXPR, low, high)))
7358 take_default = true;
7359 break;
7361 high = low;
7362 if (CASE_HIGH (gimple_switch_label (stmt, k)))
7363 high = CASE_HIGH (gimple_switch_label (stmt, k));
7366 *min_idx = i;
7367 *max_idx = j;
7368 return !take_default;
7372 /* Searches the case label vector VEC for the ranges of CASE_LABELs that are
7373 used in range VR. The indices are placed in MIN_IDX1, MAX_IDX, MIN_IDX2 and
7374 MAX_IDX2. If the ranges of CASE_LABELs are empty then MAX_IDX1 < MIN_IDX1.
7375 Returns true if the default label is not needed. */
7377 static bool
7378 find_case_label_ranges (gimple stmt, value_range_t *vr, size_t *min_idx1,
7379 size_t *max_idx1, size_t *min_idx2,
7380 size_t *max_idx2)
7382 size_t i, j, k, l;
7383 unsigned int n = gimple_switch_num_labels (stmt);
7384 bool take_default;
7385 tree case_low, case_high;
7386 tree min = vr->min, max = vr->max;
7388 gcc_checking_assert (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE);
7390 take_default = !find_case_label_range (stmt, min, max, &i, &j);
7392 /* Set second range to emtpy. */
7393 *min_idx2 = 1;
7394 *max_idx2 = 0;
7396 if (vr->type == VR_RANGE)
7398 *min_idx1 = i;
7399 *max_idx1 = j;
7400 return !take_default;
7403 /* Set first range to all case labels. */
7404 *min_idx1 = 1;
7405 *max_idx1 = n - 1;
7407 if (i > j)
7408 return false;
7410 /* Make sure all the values of case labels [i , j] are contained in
7411 range [MIN, MAX]. */
7412 case_low = CASE_LOW (gimple_switch_label (stmt, i));
7413 case_high = CASE_HIGH (gimple_switch_label (stmt, j));
7414 if (tree_int_cst_compare (case_low, min) < 0)
7415 i += 1;
7416 if (case_high != NULL_TREE
7417 && tree_int_cst_compare (max, case_high) < 0)
7418 j -= 1;
7420 if (i > j)
7421 return false;
7423 /* If the range spans case labels [i, j], the corresponding anti-range spans
7424 the labels [1, i - 1] and [j + 1, n - 1]. */
7425 k = j + 1;
7426 l = n - 1;
7427 if (k > l)
7429 k = 1;
7430 l = 0;
7433 j = i - 1;
7434 i = 1;
7435 if (i > j)
7437 i = k;
7438 j = l;
7439 k = 1;
7440 l = 0;
7443 *min_idx1 = i;
7444 *max_idx1 = j;
7445 *min_idx2 = k;
7446 *max_idx2 = l;
7447 return false;
7450 /* Visit switch statement STMT. If we can determine which edge
7451 will be taken out of STMT's basic block, record it in
7452 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
7453 SSA_PROP_VARYING. */
7455 static enum ssa_prop_result
7456 vrp_visit_switch_stmt (gimple stmt, edge *taken_edge_p)
7458 tree op, val;
7459 value_range_t *vr;
7460 size_t i = 0, j = 0, k, l;
7461 bool take_default;
7463 *taken_edge_p = NULL;
7464 op = gimple_switch_index (stmt);
7465 if (TREE_CODE (op) != SSA_NAME)
7466 return SSA_PROP_VARYING;
7468 vr = get_value_range (op);
7469 if (dump_file && (dump_flags & TDF_DETAILS))
7471 fprintf (dump_file, "\nVisiting switch expression with operand ");
7472 print_generic_expr (dump_file, op, 0);
7473 fprintf (dump_file, " with known range ");
7474 dump_value_range (dump_file, vr);
7475 fprintf (dump_file, "\n");
7478 if ((vr->type != VR_RANGE
7479 && vr->type != VR_ANTI_RANGE)
7480 || symbolic_range_p (vr))
7481 return SSA_PROP_VARYING;
7483 /* Find the single edge that is taken from the switch expression. */
7484 take_default = !find_case_label_ranges (stmt, vr, &i, &j, &k, &l);
7486 /* Check if the range spans no CASE_LABEL. If so, we only reach the default
7487 label */
7488 if (j < i)
7490 gcc_assert (take_default);
7491 val = gimple_switch_default_label (stmt);
7493 else
7495 /* Check if labels with index i to j and maybe the default label
7496 are all reaching the same label. */
7498 val = gimple_switch_label (stmt, i);
7499 if (take_default
7500 && CASE_LABEL (gimple_switch_default_label (stmt))
7501 != CASE_LABEL (val))
7503 if (dump_file && (dump_flags & TDF_DETAILS))
7504 fprintf (dump_file, " not a single destination for this "
7505 "range\n");
7506 return SSA_PROP_VARYING;
7508 for (++i; i <= j; ++i)
7510 if (CASE_LABEL (gimple_switch_label (stmt, i)) != CASE_LABEL (val))
7512 if (dump_file && (dump_flags & TDF_DETAILS))
7513 fprintf (dump_file, " not a single destination for this "
7514 "range\n");
7515 return SSA_PROP_VARYING;
7518 for (; k <= l; ++k)
7520 if (CASE_LABEL (gimple_switch_label (stmt, k)) != CASE_LABEL (val))
7522 if (dump_file && (dump_flags & TDF_DETAILS))
7523 fprintf (dump_file, " not a single destination for this "
7524 "range\n");
7525 return SSA_PROP_VARYING;
7530 *taken_edge_p = find_edge (gimple_bb (stmt),
7531 label_to_block (CASE_LABEL (val)));
7533 if (dump_file && (dump_flags & TDF_DETAILS))
7535 fprintf (dump_file, " will take edge to ");
7536 print_generic_stmt (dump_file, CASE_LABEL (val), 0);
7539 return SSA_PROP_INTERESTING;
7543 /* Evaluate statement STMT. If the statement produces a useful range,
7544 return SSA_PROP_INTERESTING and record the SSA name with the
7545 interesting range into *OUTPUT_P.
7547 If STMT is a conditional branch and we can determine its truth
7548 value, the taken edge is recorded in *TAKEN_EDGE_P.
7550 If STMT produces a varying value, return SSA_PROP_VARYING. */
7552 static enum ssa_prop_result
7553 vrp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
7555 tree def;
7556 ssa_op_iter iter;
7558 if (dump_file && (dump_flags & TDF_DETAILS))
7560 fprintf (dump_file, "\nVisiting statement:\n");
7561 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
7562 fprintf (dump_file, "\n");
7565 if (!stmt_interesting_for_vrp (stmt))
7566 gcc_assert (stmt_ends_bb_p (stmt));
7567 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
7568 return vrp_visit_assignment_or_call (stmt, output_p);
7569 else if (gimple_code (stmt) == GIMPLE_COND)
7570 return vrp_visit_cond_stmt (stmt, taken_edge_p);
7571 else if (gimple_code (stmt) == GIMPLE_SWITCH)
7572 return vrp_visit_switch_stmt (stmt, taken_edge_p);
7574 /* All other statements produce nothing of interest for VRP, so mark
7575 their outputs varying and prevent further simulation. */
7576 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
7577 set_value_range_to_varying (get_value_range (def));
7579 return SSA_PROP_VARYING;
7582 /* Union the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
7583 { VR1TYPE, VR0MIN, VR0MAX } and store the result
7584 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
7585 possible such range. The resulting range is not canonicalized. */
7587 static void
7588 union_ranges (enum value_range_type *vr0type,
7589 tree *vr0min, tree *vr0max,
7590 enum value_range_type vr1type,
7591 tree vr1min, tree vr1max)
7593 bool mineq = operand_equal_p (*vr0min, vr1min, 0);
7594 bool maxeq = operand_equal_p (*vr0max, vr1max, 0);
7596 /* [] is vr0, () is vr1 in the following classification comments. */
7597 if (mineq && maxeq)
7599 /* [( )] */
7600 if (*vr0type == vr1type)
7601 /* Nothing to do for equal ranges. */
7603 else if ((*vr0type == VR_RANGE
7604 && vr1type == VR_ANTI_RANGE)
7605 || (*vr0type == VR_ANTI_RANGE
7606 && vr1type == VR_RANGE))
7608 /* For anti-range with range union the result is varying. */
7609 goto give_up;
7611 else
7612 gcc_unreachable ();
7614 else if (operand_less_p (*vr0max, vr1min) == 1
7615 || operand_less_p (vr1max, *vr0min) == 1)
7617 /* [ ] ( ) or ( ) [ ]
7618 If the ranges have an empty intersection, result of the union
7619 operation is the anti-range or if both are anti-ranges
7620 it covers all. */
7621 if (*vr0type == VR_ANTI_RANGE
7622 && vr1type == VR_ANTI_RANGE)
7623 goto give_up;
7624 else if (*vr0type == VR_ANTI_RANGE
7625 && vr1type == VR_RANGE)
7627 else if (*vr0type == VR_RANGE
7628 && vr1type == VR_ANTI_RANGE)
7630 *vr0type = vr1type;
7631 *vr0min = vr1min;
7632 *vr0max = vr1max;
7634 else if (*vr0type == VR_RANGE
7635 && vr1type == VR_RANGE)
7637 /* The result is the convex hull of both ranges. */
7638 if (operand_less_p (*vr0max, vr1min) == 1)
7640 /* If the result can be an anti-range, create one. */
7641 if (TREE_CODE (*vr0max) == INTEGER_CST
7642 && TREE_CODE (vr1min) == INTEGER_CST
7643 && vrp_val_is_min (*vr0min)
7644 && vrp_val_is_max (vr1max))
7646 tree min = int_const_binop (PLUS_EXPR,
7647 *vr0max, integer_one_node);
7648 tree max = int_const_binop (MINUS_EXPR,
7649 vr1min, integer_one_node);
7650 if (!operand_less_p (max, min))
7652 *vr0type = VR_ANTI_RANGE;
7653 *vr0min = min;
7654 *vr0max = max;
7656 else
7657 *vr0max = vr1max;
7659 else
7660 *vr0max = vr1max;
7662 else
7664 /* If the result can be an anti-range, create one. */
7665 if (TREE_CODE (vr1max) == INTEGER_CST
7666 && TREE_CODE (*vr0min) == INTEGER_CST
7667 && vrp_val_is_min (vr1min)
7668 && vrp_val_is_max (*vr0max))
7670 tree min = int_const_binop (PLUS_EXPR,
7671 vr1max, integer_one_node);
7672 tree max = int_const_binop (MINUS_EXPR,
7673 *vr0min, integer_one_node);
7674 if (!operand_less_p (max, min))
7676 *vr0type = VR_ANTI_RANGE;
7677 *vr0min = min;
7678 *vr0max = max;
7680 else
7681 *vr0min = vr1min;
7683 else
7684 *vr0min = vr1min;
7687 else
7688 gcc_unreachable ();
7690 else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1)
7691 && (mineq || operand_less_p (*vr0min, vr1min) == 1))
7693 /* [ ( ) ] or [( ) ] or [ ( )] */
7694 if (*vr0type == VR_RANGE
7695 && vr1type == VR_RANGE)
7697 else if (*vr0type == VR_ANTI_RANGE
7698 && vr1type == VR_ANTI_RANGE)
7700 *vr0type = vr1type;
7701 *vr0min = vr1min;
7702 *vr0max = vr1max;
7704 else if (*vr0type == VR_ANTI_RANGE
7705 && vr1type == VR_RANGE)
7707 /* Arbitrarily choose the right or left gap. */
7708 if (!mineq && TREE_CODE (vr1min) == INTEGER_CST)
7709 *vr0max = int_const_binop (MINUS_EXPR, vr1min, integer_one_node);
7710 else if (!maxeq && TREE_CODE (vr1max) == INTEGER_CST)
7711 *vr0min = int_const_binop (PLUS_EXPR, vr1max, integer_one_node);
7712 else
7713 goto give_up;
7715 else if (*vr0type == VR_RANGE
7716 && vr1type == VR_ANTI_RANGE)
7717 /* The result covers everything. */
7718 goto give_up;
7719 else
7720 gcc_unreachable ();
7722 else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1)
7723 && (mineq || operand_less_p (vr1min, *vr0min) == 1))
7725 /* ( [ ] ) or ([ ] ) or ( [ ]) */
7726 if (*vr0type == VR_RANGE
7727 && vr1type == VR_RANGE)
7729 *vr0type = vr1type;
7730 *vr0min = vr1min;
7731 *vr0max = vr1max;
7733 else if (*vr0type == VR_ANTI_RANGE
7734 && vr1type == VR_ANTI_RANGE)
7736 else if (*vr0type == VR_RANGE
7737 && vr1type == VR_ANTI_RANGE)
7739 *vr0type = VR_ANTI_RANGE;
7740 if (!mineq && TREE_CODE (*vr0min) == INTEGER_CST)
7742 *vr0max = int_const_binop (MINUS_EXPR, *vr0min, integer_one_node);
7743 *vr0min = vr1min;
7745 else if (!maxeq && TREE_CODE (*vr0max) == INTEGER_CST)
7747 *vr0min = int_const_binop (PLUS_EXPR, *vr0max, integer_one_node);
7748 *vr0max = vr1max;
7750 else
7751 goto give_up;
7753 else if (*vr0type == VR_ANTI_RANGE
7754 && vr1type == VR_RANGE)
7755 /* The result covers everything. */
7756 goto give_up;
7757 else
7758 gcc_unreachable ();
7760 else if ((operand_less_p (vr1min, *vr0max) == 1
7761 || operand_equal_p (vr1min, *vr0max, 0))
7762 && operand_less_p (*vr0min, vr1min) == 1
7763 && operand_less_p (*vr0max, vr1max) == 1)
7765 /* [ ( ] ) or [ ]( ) */
7766 if (*vr0type == VR_RANGE
7767 && vr1type == VR_RANGE)
7768 *vr0max = vr1max;
7769 else if (*vr0type == VR_ANTI_RANGE
7770 && vr1type == VR_ANTI_RANGE)
7771 *vr0min = vr1min;
7772 else if (*vr0type == VR_ANTI_RANGE
7773 && vr1type == VR_RANGE)
7775 if (TREE_CODE (vr1min) == INTEGER_CST)
7776 *vr0max = int_const_binop (MINUS_EXPR, vr1min, integer_one_node);
7777 else
7778 goto give_up;
7780 else if (*vr0type == VR_RANGE
7781 && vr1type == VR_ANTI_RANGE)
7783 if (TREE_CODE (*vr0max) == INTEGER_CST)
7785 *vr0type = vr1type;
7786 *vr0min = int_const_binop (PLUS_EXPR, *vr0max, integer_one_node);
7787 *vr0max = vr1max;
7789 else
7790 goto give_up;
7792 else
7793 gcc_unreachable ();
7795 else if ((operand_less_p (*vr0min, vr1max) == 1
7796 || operand_equal_p (*vr0min, vr1max, 0))
7797 && operand_less_p (vr1min, *vr0min) == 1
7798 && operand_less_p (vr1max, *vr0max) == 1)
7800 /* ( [ ) ] or ( )[ ] */
7801 if (*vr0type == VR_RANGE
7802 && vr1type == VR_RANGE)
7803 *vr0min = vr1min;
7804 else if (*vr0type == VR_ANTI_RANGE
7805 && vr1type == VR_ANTI_RANGE)
7806 *vr0max = vr1max;
7807 else if (*vr0type == VR_ANTI_RANGE
7808 && vr1type == VR_RANGE)
7810 if (TREE_CODE (vr1max) == INTEGER_CST)
7811 *vr0min = int_const_binop (PLUS_EXPR, vr1max, integer_one_node);
7812 else
7813 goto give_up;
7815 else if (*vr0type == VR_RANGE
7816 && vr1type == VR_ANTI_RANGE)
7818 if (TREE_CODE (*vr0min) == INTEGER_CST)
7820 *vr0type = vr1type;
7821 *vr0min = vr1min;
7822 *vr0max = int_const_binop (MINUS_EXPR, *vr0min, integer_one_node);
7824 else
7825 goto give_up;
7827 else
7828 gcc_unreachable ();
7830 else
7831 goto give_up;
7833 return;
7835 give_up:
7836 *vr0type = VR_VARYING;
7837 *vr0min = NULL_TREE;
7838 *vr0max = NULL_TREE;
7841 /* Intersect the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
7842 { VR1TYPE, VR0MIN, VR0MAX } and store the result
7843 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
7844 possible such range. The resulting range is not canonicalized. */
7846 static void
7847 intersect_ranges (enum value_range_type *vr0type,
7848 tree *vr0min, tree *vr0max,
7849 enum value_range_type vr1type,
7850 tree vr1min, tree vr1max)
7852 bool mineq = operand_equal_p (*vr0min, vr1min, 0);
7853 bool maxeq = operand_equal_p (*vr0max, vr1max, 0);
7855 /* [] is vr0, () is vr1 in the following classification comments. */
7856 if (mineq && maxeq)
7858 /* [( )] */
7859 if (*vr0type == vr1type)
7860 /* Nothing to do for equal ranges. */
7862 else if ((*vr0type == VR_RANGE
7863 && vr1type == VR_ANTI_RANGE)
7864 || (*vr0type == VR_ANTI_RANGE
7865 && vr1type == VR_RANGE))
7867 /* For anti-range with range intersection the result is empty. */
7868 *vr0type = VR_UNDEFINED;
7869 *vr0min = NULL_TREE;
7870 *vr0max = NULL_TREE;
7872 else
7873 gcc_unreachable ();
7875 else if (operand_less_p (*vr0max, vr1min) == 1
7876 || operand_less_p (vr1max, *vr0min) == 1)
7878 /* [ ] ( ) or ( ) [ ]
7879 If the ranges have an empty intersection, the result of the
7880 intersect operation is the range for intersecting an
7881 anti-range with a range or empty when intersecting two ranges. */
7882 if (*vr0type == VR_RANGE
7883 && vr1type == VR_ANTI_RANGE)
7885 else if (*vr0type == VR_ANTI_RANGE
7886 && vr1type == VR_RANGE)
7888 *vr0type = vr1type;
7889 *vr0min = vr1min;
7890 *vr0max = vr1max;
7892 else if (*vr0type == VR_RANGE
7893 && vr1type == VR_RANGE)
7895 *vr0type = VR_UNDEFINED;
7896 *vr0min = NULL_TREE;
7897 *vr0max = NULL_TREE;
7899 else if (*vr0type == VR_ANTI_RANGE
7900 && vr1type == VR_ANTI_RANGE)
7902 /* If the anti-ranges are adjacent to each other merge them. */
7903 if (TREE_CODE (*vr0max) == INTEGER_CST
7904 && TREE_CODE (vr1min) == INTEGER_CST
7905 && operand_less_p (*vr0max, vr1min) == 1
7906 && integer_onep (int_const_binop (MINUS_EXPR,
7907 vr1min, *vr0max)))
7908 *vr0max = vr1max;
7909 else if (TREE_CODE (vr1max) == INTEGER_CST
7910 && TREE_CODE (*vr0min) == INTEGER_CST
7911 && operand_less_p (vr1max, *vr0min) == 1
7912 && integer_onep (int_const_binop (MINUS_EXPR,
7913 *vr0min, vr1max)))
7914 *vr0min = vr1min;
7915 /* Else arbitrarily take VR0. */
7918 else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1)
7919 && (mineq || operand_less_p (*vr0min, vr1min) == 1))
7921 /* [ ( ) ] or [( ) ] or [ ( )] */
7922 if (*vr0type == VR_RANGE
7923 && vr1type == VR_RANGE)
7925 /* If both are ranges the result is the inner one. */
7926 *vr0type = vr1type;
7927 *vr0min = vr1min;
7928 *vr0max = vr1max;
7930 else if (*vr0type == VR_RANGE
7931 && vr1type == VR_ANTI_RANGE)
7933 /* Choose the right gap if the left one is empty. */
7934 if (mineq)
7936 if (TREE_CODE (vr1max) == INTEGER_CST)
7937 *vr0min = int_const_binop (PLUS_EXPR, vr1max, integer_one_node);
7938 else
7939 *vr0min = vr1max;
7941 /* Choose the left gap if the right one is empty. */
7942 else if (maxeq)
7944 if (TREE_CODE (vr1min) == INTEGER_CST)
7945 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
7946 integer_one_node);
7947 else
7948 *vr0max = vr1min;
7950 /* Choose the anti-range if the range is effectively varying. */
7951 else if (vrp_val_is_min (*vr0min)
7952 && vrp_val_is_max (*vr0max))
7954 *vr0type = vr1type;
7955 *vr0min = vr1min;
7956 *vr0max = vr1max;
7958 /* Else choose the range. */
7960 else if (*vr0type == VR_ANTI_RANGE
7961 && vr1type == VR_ANTI_RANGE)
7962 /* If both are anti-ranges the result is the outer one. */
7964 else if (*vr0type == VR_ANTI_RANGE
7965 && vr1type == VR_RANGE)
7967 /* The intersection is empty. */
7968 *vr0type = VR_UNDEFINED;
7969 *vr0min = NULL_TREE;
7970 *vr0max = NULL_TREE;
7972 else
7973 gcc_unreachable ();
7975 else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1)
7976 && (mineq || operand_less_p (vr1min, *vr0min) == 1))
7978 /* ( [ ] ) or ([ ] ) or ( [ ]) */
7979 if (*vr0type == VR_RANGE
7980 && vr1type == VR_RANGE)
7981 /* Choose the inner range. */
7983 else if (*vr0type == VR_ANTI_RANGE
7984 && vr1type == VR_RANGE)
7986 /* Choose the right gap if the left is empty. */
7987 if (mineq)
7989 *vr0type = VR_RANGE;
7990 if (TREE_CODE (*vr0max) == INTEGER_CST)
7991 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
7992 integer_one_node);
7993 else
7994 *vr0min = *vr0max;
7995 *vr0max = vr1max;
7997 /* Choose the left gap if the right is empty. */
7998 else if (maxeq)
8000 *vr0type = VR_RANGE;
8001 if (TREE_CODE (*vr0min) == INTEGER_CST)
8002 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
8003 integer_one_node);
8004 else
8005 *vr0max = *vr0min;
8006 *vr0min = vr1min;
8008 /* Choose the anti-range if the range is effectively varying. */
8009 else if (vrp_val_is_min (vr1min)
8010 && vrp_val_is_max (vr1max))
8012 /* Else choose the range. */
8013 else
8015 *vr0type = vr1type;
8016 *vr0min = vr1min;
8017 *vr0max = vr1max;
8020 else if (*vr0type == VR_ANTI_RANGE
8021 && vr1type == VR_ANTI_RANGE)
8023 /* If both are anti-ranges the result is the outer one. */
8024 *vr0type = vr1type;
8025 *vr0min = vr1min;
8026 *vr0max = vr1max;
8028 else if (vr1type == VR_ANTI_RANGE
8029 && *vr0type == VR_RANGE)
8031 /* The intersection is empty. */
8032 *vr0type = VR_UNDEFINED;
8033 *vr0min = NULL_TREE;
8034 *vr0max = NULL_TREE;
8036 else
8037 gcc_unreachable ();
8039 else if ((operand_less_p (vr1min, *vr0max) == 1
8040 || operand_equal_p (vr1min, *vr0max, 0))
8041 && operand_less_p (*vr0min, vr1min) == 1)
8043 /* [ ( ] ) or [ ]( ) */
8044 if (*vr0type == VR_ANTI_RANGE
8045 && vr1type == VR_ANTI_RANGE)
8046 *vr0max = vr1max;
8047 else if (*vr0type == VR_RANGE
8048 && vr1type == VR_RANGE)
8049 *vr0min = vr1min;
8050 else if (*vr0type == VR_RANGE
8051 && vr1type == VR_ANTI_RANGE)
8053 if (TREE_CODE (vr1min) == INTEGER_CST)
8054 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
8055 integer_one_node);
8056 else
8057 *vr0max = vr1min;
8059 else if (*vr0type == VR_ANTI_RANGE
8060 && vr1type == VR_RANGE)
8062 *vr0type = VR_RANGE;
8063 if (TREE_CODE (*vr0max) == INTEGER_CST)
8064 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
8065 integer_one_node);
8066 else
8067 *vr0min = *vr0max;
8068 *vr0max = vr1max;
8070 else
8071 gcc_unreachable ();
8073 else if ((operand_less_p (*vr0min, vr1max) == 1
8074 || operand_equal_p (*vr0min, vr1max, 0))
8075 && operand_less_p (vr1min, *vr0min) == 1)
8077 /* ( [ ) ] or ( )[ ] */
8078 if (*vr0type == VR_ANTI_RANGE
8079 && vr1type == VR_ANTI_RANGE)
8080 *vr0min = vr1min;
8081 else if (*vr0type == VR_RANGE
8082 && vr1type == VR_RANGE)
8083 *vr0max = vr1max;
8084 else if (*vr0type == VR_RANGE
8085 && vr1type == VR_ANTI_RANGE)
8087 if (TREE_CODE (vr1max) == INTEGER_CST)
8088 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
8089 integer_one_node);
8090 else
8091 *vr0min = vr1max;
8093 else if (*vr0type == VR_ANTI_RANGE
8094 && vr1type == VR_RANGE)
8096 *vr0type = VR_RANGE;
8097 if (TREE_CODE (*vr0min) == INTEGER_CST)
8098 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
8099 integer_one_node);
8100 else
8101 *vr0max = *vr0min;
8102 *vr0min = vr1min;
8104 else
8105 gcc_unreachable ();
8108 /* As a fallback simply use { *VRTYPE, *VR0MIN, *VR0MAX } as
8109 result for the intersection. That's always a conservative
8110 correct estimate. */
8112 return;
8116 /* Intersect the two value-ranges *VR0 and *VR1 and store the result
8117 in *VR0. This may not be the smallest possible such range. */
8119 static void
8120 vrp_intersect_ranges_1 (value_range_t *vr0, value_range_t *vr1)
8122 value_range_t saved;
8124 /* If either range is VR_VARYING the other one wins. */
8125 if (vr1->type == VR_VARYING)
8126 return;
8127 if (vr0->type == VR_VARYING)
8129 copy_value_range (vr0, vr1);
8130 return;
8133 /* When either range is VR_UNDEFINED the resulting range is
8134 VR_UNDEFINED, too. */
8135 if (vr0->type == VR_UNDEFINED)
8136 return;
8137 if (vr1->type == VR_UNDEFINED)
8139 set_value_range_to_undefined (vr0);
8140 return;
8143 /* Save the original vr0 so we can return it as conservative intersection
8144 result when our worker turns things to varying. */
8145 saved = *vr0;
8146 intersect_ranges (&vr0->type, &vr0->min, &vr0->max,
8147 vr1->type, vr1->min, vr1->max);
8148 /* Make sure to canonicalize the result though as the inversion of a
8149 VR_RANGE can still be a VR_RANGE. */
8150 set_and_canonicalize_value_range (vr0, vr0->type,
8151 vr0->min, vr0->max, vr0->equiv);
8152 /* If that failed, use the saved original VR0. */
8153 if (vr0->type == VR_VARYING)
8155 *vr0 = saved;
8156 return;
8158 /* If the result is VR_UNDEFINED there is no need to mess with
8159 the equivalencies. */
8160 if (vr0->type == VR_UNDEFINED)
8161 return;
8163 /* The resulting set of equivalences for range intersection is the union of
8164 the two sets. */
8165 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
8166 bitmap_ior_into (vr0->equiv, vr1->equiv);
8167 else if (vr1->equiv && !vr0->equiv)
8168 bitmap_copy (vr0->equiv, vr1->equiv);
8171 static void
8172 vrp_intersect_ranges (value_range_t *vr0, value_range_t *vr1)
8174 if (dump_file && (dump_flags & TDF_DETAILS))
8176 fprintf (dump_file, "Intersecting\n ");
8177 dump_value_range (dump_file, vr0);
8178 fprintf (dump_file, "\nand\n ");
8179 dump_value_range (dump_file, vr1);
8180 fprintf (dump_file, "\n");
8182 vrp_intersect_ranges_1 (vr0, vr1);
8183 if (dump_file && (dump_flags & TDF_DETAILS))
8185 fprintf (dump_file, "to\n ");
8186 dump_value_range (dump_file, vr0);
8187 fprintf (dump_file, "\n");
8191 /* Meet operation for value ranges. Given two value ranges VR0 and
8192 VR1, store in VR0 a range that contains both VR0 and VR1. This
8193 may not be the smallest possible such range. */
8195 static void
8196 vrp_meet_1 (value_range_t *vr0, value_range_t *vr1)
8198 value_range_t saved;
8200 if (vr0->type == VR_UNDEFINED)
8202 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr1->equiv);
8203 return;
8206 if (vr1->type == VR_UNDEFINED)
8208 /* VR0 already has the resulting range. */
8209 return;
8212 if (vr0->type == VR_VARYING)
8214 /* Nothing to do. VR0 already has the resulting range. */
8215 return;
8218 if (vr1->type == VR_VARYING)
8220 set_value_range_to_varying (vr0);
8221 return;
8224 saved = *vr0;
8225 union_ranges (&vr0->type, &vr0->min, &vr0->max,
8226 vr1->type, vr1->min, vr1->max);
8227 if (vr0->type == VR_VARYING)
8229 /* Failed to find an efficient meet. Before giving up and setting
8230 the result to VARYING, see if we can at least derive a useful
8231 anti-range. FIXME, all this nonsense about distinguishing
8232 anti-ranges from ranges is necessary because of the odd
8233 semantics of range_includes_zero_p and friends. */
8234 if (((saved.type == VR_RANGE
8235 && range_includes_zero_p (saved.min, saved.max) == 0)
8236 || (saved.type == VR_ANTI_RANGE
8237 && range_includes_zero_p (saved.min, saved.max) == 1))
8238 && ((vr1->type == VR_RANGE
8239 && range_includes_zero_p (vr1->min, vr1->max) == 0)
8240 || (vr1->type == VR_ANTI_RANGE
8241 && range_includes_zero_p (vr1->min, vr1->max) == 1)))
8243 set_value_range_to_nonnull (vr0, TREE_TYPE (saved.min));
8245 /* Since this meet operation did not result from the meeting of
8246 two equivalent names, VR0 cannot have any equivalences. */
8247 if (vr0->equiv)
8248 bitmap_clear (vr0->equiv);
8249 return;
8252 set_value_range_to_varying (vr0);
8253 return;
8255 set_and_canonicalize_value_range (vr0, vr0->type, vr0->min, vr0->max,
8256 vr0->equiv);
8257 if (vr0->type == VR_VARYING)
8258 return;
8260 /* The resulting set of equivalences is always the intersection of
8261 the two sets. */
8262 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
8263 bitmap_and_into (vr0->equiv, vr1->equiv);
8264 else if (vr0->equiv && !vr1->equiv)
8265 bitmap_clear (vr0->equiv);
8268 static void
8269 vrp_meet (value_range_t *vr0, value_range_t *vr1)
8271 if (dump_file && (dump_flags & TDF_DETAILS))
8273 fprintf (dump_file, "Meeting\n ");
8274 dump_value_range (dump_file, vr0);
8275 fprintf (dump_file, "\nand\n ");
8276 dump_value_range (dump_file, vr1);
8277 fprintf (dump_file, "\n");
8279 vrp_meet_1 (vr0, vr1);
8280 if (dump_file && (dump_flags & TDF_DETAILS))
8282 fprintf (dump_file, "to\n ");
8283 dump_value_range (dump_file, vr0);
8284 fprintf (dump_file, "\n");
8289 /* Visit all arguments for PHI node PHI that flow through executable
8290 edges. If a valid value range can be derived from all the incoming
8291 value ranges, set a new range for the LHS of PHI. */
8293 static enum ssa_prop_result
8294 vrp_visit_phi_node (gimple phi)
8296 size_t i;
8297 tree lhs = PHI_RESULT (phi);
8298 value_range_t *lhs_vr = get_value_range (lhs);
8299 value_range_t vr_result = VR_INITIALIZER;
8300 bool first = true;
8301 int edges, old_edges;
8302 struct loop *l;
8304 if (dump_file && (dump_flags & TDF_DETAILS))
8306 fprintf (dump_file, "\nVisiting PHI node: ");
8307 print_gimple_stmt (dump_file, phi, 0, dump_flags);
8310 edges = 0;
8311 for (i = 0; i < gimple_phi_num_args (phi); i++)
8313 edge e = gimple_phi_arg_edge (phi, i);
8315 if (dump_file && (dump_flags & TDF_DETAILS))
8317 fprintf (dump_file,
8318 "\n Argument #%d (%d -> %d %sexecutable)\n",
8319 (int) i, e->src->index, e->dest->index,
8320 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
8323 if (e->flags & EDGE_EXECUTABLE)
8325 tree arg = PHI_ARG_DEF (phi, i);
8326 value_range_t vr_arg;
8328 ++edges;
8330 if (TREE_CODE (arg) == SSA_NAME)
8332 vr_arg = *(get_value_range (arg));
8333 /* Do not allow equivalences or symbolic ranges to leak in from
8334 backedges. That creates invalid equivalencies.
8335 See PR53465 and PR54767. */
8336 if (e->flags & EDGE_DFS_BACK
8337 && (vr_arg.type == VR_RANGE
8338 || vr_arg.type == VR_ANTI_RANGE))
8340 vr_arg.equiv = NULL;
8341 if (symbolic_range_p (&vr_arg))
8343 vr_arg.type = VR_VARYING;
8344 vr_arg.min = NULL_TREE;
8345 vr_arg.max = NULL_TREE;
8349 else
8351 if (TREE_OVERFLOW_P (arg))
8352 arg = drop_tree_overflow (arg);
8354 vr_arg.type = VR_RANGE;
8355 vr_arg.min = arg;
8356 vr_arg.max = arg;
8357 vr_arg.equiv = NULL;
8360 if (dump_file && (dump_flags & TDF_DETAILS))
8362 fprintf (dump_file, "\t");
8363 print_generic_expr (dump_file, arg, dump_flags);
8364 fprintf (dump_file, "\n\tValue: ");
8365 dump_value_range (dump_file, &vr_arg);
8366 fprintf (dump_file, "\n");
8369 if (first)
8370 copy_value_range (&vr_result, &vr_arg);
8371 else
8372 vrp_meet (&vr_result, &vr_arg);
8373 first = false;
8375 if (vr_result.type == VR_VARYING)
8376 break;
8380 if (vr_result.type == VR_VARYING)
8381 goto varying;
8382 else if (vr_result.type == VR_UNDEFINED)
8383 goto update_range;
8385 old_edges = vr_phi_edge_counts[SSA_NAME_VERSION (lhs)];
8386 vr_phi_edge_counts[SSA_NAME_VERSION (lhs)] = edges;
8388 /* To prevent infinite iterations in the algorithm, derive ranges
8389 when the new value is slightly bigger or smaller than the
8390 previous one. We don't do this if we have seen a new executable
8391 edge; this helps us avoid an overflow infinity for conditionals
8392 which are not in a loop. If the old value-range was VR_UNDEFINED
8393 use the updated range and iterate one more time. */
8394 if (edges > 0
8395 && gimple_phi_num_args (phi) > 1
8396 && edges == old_edges
8397 && lhs_vr->type != VR_UNDEFINED)
8399 int cmp_min = compare_values (lhs_vr->min, vr_result.min);
8400 int cmp_max = compare_values (lhs_vr->max, vr_result.max);
8402 /* For non VR_RANGE or for pointers fall back to varying if
8403 the range changed. */
8404 if ((lhs_vr->type != VR_RANGE || vr_result.type != VR_RANGE
8405 || POINTER_TYPE_P (TREE_TYPE (lhs)))
8406 && (cmp_min != 0 || cmp_max != 0))
8407 goto varying;
8409 /* If the new minimum is larger than than the previous one
8410 retain the old value. If the new minimum value is smaller
8411 than the previous one and not -INF go all the way to -INF + 1.
8412 In the first case, to avoid infinite bouncing between different
8413 minimums, and in the other case to avoid iterating millions of
8414 times to reach -INF. Going to -INF + 1 also lets the following
8415 iteration compute whether there will be any overflow, at the
8416 expense of one additional iteration. */
8417 if (cmp_min < 0)
8418 vr_result.min = lhs_vr->min;
8419 else if (cmp_min > 0
8420 && !vrp_val_is_min (vr_result.min))
8421 vr_result.min
8422 = int_const_binop (PLUS_EXPR,
8423 vrp_val_min (TREE_TYPE (vr_result.min)),
8424 build_int_cst (TREE_TYPE (vr_result.min), 1));
8426 /* Similarly for the maximum value. */
8427 if (cmp_max > 0)
8428 vr_result.max = lhs_vr->max;
8429 else if (cmp_max < 0
8430 && !vrp_val_is_max (vr_result.max))
8431 vr_result.max
8432 = int_const_binop (MINUS_EXPR,
8433 vrp_val_max (TREE_TYPE (vr_result.min)),
8434 build_int_cst (TREE_TYPE (vr_result.min), 1));
8436 /* If we dropped either bound to +-INF then if this is a loop
8437 PHI node SCEV may known more about its value-range. */
8438 if ((cmp_min > 0 || cmp_min < 0
8439 || cmp_max < 0 || cmp_max > 0)
8440 && current_loops
8441 && (l = loop_containing_stmt (phi))
8442 && l->header == gimple_bb (phi))
8443 adjust_range_with_scev (&vr_result, l, phi, lhs);
8445 /* If we will end up with a (-INF, +INF) range, set it to
8446 VARYING. Same if the previous max value was invalid for
8447 the type and we end up with vr_result.min > vr_result.max. */
8448 if ((vrp_val_is_max (vr_result.max)
8449 && vrp_val_is_min (vr_result.min))
8450 || compare_values (vr_result.min,
8451 vr_result.max) > 0)
8452 goto varying;
8455 /* If the new range is different than the previous value, keep
8456 iterating. */
8457 update_range:
8458 if (update_value_range (lhs, &vr_result))
8460 if (dump_file && (dump_flags & TDF_DETAILS))
8462 fprintf (dump_file, "Found new range for ");
8463 print_generic_expr (dump_file, lhs, 0);
8464 fprintf (dump_file, ": ");
8465 dump_value_range (dump_file, &vr_result);
8466 fprintf (dump_file, "\n\n");
8469 return SSA_PROP_INTERESTING;
8472 /* Nothing changed, don't add outgoing edges. */
8473 return SSA_PROP_NOT_INTERESTING;
8475 /* No match found. Set the LHS to VARYING. */
8476 varying:
8477 set_value_range_to_varying (lhs_vr);
8478 return SSA_PROP_VARYING;
8481 /* Simplify boolean operations if the source is known
8482 to be already a boolean. */
8483 static bool
8484 simplify_truth_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
8486 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
8487 tree lhs, op0, op1;
8488 bool need_conversion;
8490 /* We handle only !=/== case here. */
8491 gcc_assert (rhs_code == EQ_EXPR || rhs_code == NE_EXPR);
8493 op0 = gimple_assign_rhs1 (stmt);
8494 if (!op_with_boolean_value_range_p (op0))
8495 return false;
8497 op1 = gimple_assign_rhs2 (stmt);
8498 if (!op_with_boolean_value_range_p (op1))
8499 return false;
8501 /* Reduce number of cases to handle to NE_EXPR. As there is no
8502 BIT_XNOR_EXPR we cannot replace A == B with a single statement. */
8503 if (rhs_code == EQ_EXPR)
8505 if (TREE_CODE (op1) == INTEGER_CST)
8506 op1 = int_const_binop (BIT_XOR_EXPR, op1, integer_one_node);
8507 else
8508 return false;
8511 lhs = gimple_assign_lhs (stmt);
8512 need_conversion
8513 = !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (op0));
8515 /* Make sure to not sign-extend a 1-bit 1 when converting the result. */
8516 if (need_conversion
8517 && !TYPE_UNSIGNED (TREE_TYPE (op0))
8518 && TYPE_PRECISION (TREE_TYPE (op0)) == 1
8519 && TYPE_PRECISION (TREE_TYPE (lhs)) > 1)
8520 return false;
8522 /* For A != 0 we can substitute A itself. */
8523 if (integer_zerop (op1))
8524 gimple_assign_set_rhs_with_ops (gsi,
8525 need_conversion
8526 ? NOP_EXPR : TREE_CODE (op0),
8527 op0, NULL_TREE);
8528 /* For A != B we substitute A ^ B. Either with conversion. */
8529 else if (need_conversion)
8531 tree tem = make_ssa_name (TREE_TYPE (op0), NULL);
8532 gimple newop = gimple_build_assign_with_ops (BIT_XOR_EXPR, tem, op0, op1);
8533 gsi_insert_before (gsi, newop, GSI_SAME_STMT);
8534 gimple_assign_set_rhs_with_ops (gsi, NOP_EXPR, tem, NULL_TREE);
8536 /* Or without. */
8537 else
8538 gimple_assign_set_rhs_with_ops (gsi, BIT_XOR_EXPR, op0, op1);
8539 update_stmt (gsi_stmt (*gsi));
8541 return true;
8544 /* Simplify a division or modulo operator to a right shift or
8545 bitwise and if the first operand is unsigned or is greater
8546 than zero and the second operand is an exact power of two. */
8548 static bool
8549 simplify_div_or_mod_using_ranges (gimple stmt)
8551 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
8552 tree val = NULL;
8553 tree op0 = gimple_assign_rhs1 (stmt);
8554 tree op1 = gimple_assign_rhs2 (stmt);
8555 value_range_t *vr = get_value_range (gimple_assign_rhs1 (stmt));
8557 if (TYPE_UNSIGNED (TREE_TYPE (op0)))
8559 val = integer_one_node;
8561 else
8563 bool sop = false;
8565 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
8567 if (val
8568 && sop
8569 && integer_onep (val)
8570 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
8572 location_t location;
8574 if (!gimple_has_location (stmt))
8575 location = input_location;
8576 else
8577 location = gimple_location (stmt);
8578 warning_at (location, OPT_Wstrict_overflow,
8579 "assuming signed overflow does not occur when "
8580 "simplifying %</%> or %<%%%> to %<>>%> or %<&%>");
8584 if (val && integer_onep (val))
8586 tree t;
8588 if (rhs_code == TRUNC_DIV_EXPR)
8590 t = build_int_cst (integer_type_node, tree_log2 (op1));
8591 gimple_assign_set_rhs_code (stmt, RSHIFT_EXPR);
8592 gimple_assign_set_rhs1 (stmt, op0);
8593 gimple_assign_set_rhs2 (stmt, t);
8595 else
8597 t = build_int_cst (TREE_TYPE (op1), 1);
8598 t = int_const_binop (MINUS_EXPR, op1, t);
8599 t = fold_convert (TREE_TYPE (op0), t);
8601 gimple_assign_set_rhs_code (stmt, BIT_AND_EXPR);
8602 gimple_assign_set_rhs1 (stmt, op0);
8603 gimple_assign_set_rhs2 (stmt, t);
8606 update_stmt (stmt);
8607 return true;
8610 return false;
8613 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
8614 ABS_EXPR. If the operand is <= 0, then simplify the
8615 ABS_EXPR into a NEGATE_EXPR. */
8617 static bool
8618 simplify_abs_using_ranges (gimple stmt)
8620 tree val = NULL;
8621 tree op = gimple_assign_rhs1 (stmt);
8622 tree type = TREE_TYPE (op);
8623 value_range_t *vr = get_value_range (op);
8625 if (TYPE_UNSIGNED (type))
8627 val = integer_zero_node;
8629 else if (vr)
8631 bool sop = false;
8633 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
8634 if (!val)
8636 sop = false;
8637 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node,
8638 &sop);
8640 if (val)
8642 if (integer_zerop (val))
8643 val = integer_one_node;
8644 else if (integer_onep (val))
8645 val = integer_zero_node;
8649 if (val
8650 && (integer_onep (val) || integer_zerop (val)))
8652 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
8654 location_t location;
8656 if (!gimple_has_location (stmt))
8657 location = input_location;
8658 else
8659 location = gimple_location (stmt);
8660 warning_at (location, OPT_Wstrict_overflow,
8661 "assuming signed overflow does not occur when "
8662 "simplifying %<abs (X)%> to %<X%> or %<-X%>");
8665 gimple_assign_set_rhs1 (stmt, op);
8666 if (integer_onep (val))
8667 gimple_assign_set_rhs_code (stmt, NEGATE_EXPR);
8668 else
8669 gimple_assign_set_rhs_code (stmt, SSA_NAME);
8670 update_stmt (stmt);
8671 return true;
8675 return false;
8678 /* Optimize away redundant BIT_AND_EXPR and BIT_IOR_EXPR.
8679 If all the bits that are being cleared by & are already
8680 known to be zero from VR, or all the bits that are being
8681 set by | are already known to be one from VR, the bit
8682 operation is redundant. */
8684 static bool
8685 simplify_bit_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
8687 tree op0 = gimple_assign_rhs1 (stmt);
8688 tree op1 = gimple_assign_rhs2 (stmt);
8689 tree op = NULL_TREE;
8690 value_range_t vr0 = VR_INITIALIZER;
8691 value_range_t vr1 = VR_INITIALIZER;
8692 double_int may_be_nonzero0, may_be_nonzero1;
8693 double_int must_be_nonzero0, must_be_nonzero1;
8694 double_int mask;
8696 if (TREE_CODE (op0) == SSA_NAME)
8697 vr0 = *(get_value_range (op0));
8698 else if (is_gimple_min_invariant (op0))
8699 set_value_range_to_value (&vr0, op0, NULL);
8700 else
8701 return false;
8703 if (TREE_CODE (op1) == SSA_NAME)
8704 vr1 = *(get_value_range (op1));
8705 else if (is_gimple_min_invariant (op1))
8706 set_value_range_to_value (&vr1, op1, NULL);
8707 else
8708 return false;
8710 if (!zero_nonzero_bits_from_vr (&vr0, &may_be_nonzero0, &must_be_nonzero0))
8711 return false;
8712 if (!zero_nonzero_bits_from_vr (&vr1, &may_be_nonzero1, &must_be_nonzero1))
8713 return false;
8715 switch (gimple_assign_rhs_code (stmt))
8717 case BIT_AND_EXPR:
8718 mask = may_be_nonzero0.and_not (must_be_nonzero1);
8719 if (mask.is_zero ())
8721 op = op0;
8722 break;
8724 mask = may_be_nonzero1.and_not (must_be_nonzero0);
8725 if (mask.is_zero ())
8727 op = op1;
8728 break;
8730 break;
8731 case BIT_IOR_EXPR:
8732 mask = may_be_nonzero0.and_not (must_be_nonzero1);
8733 if (mask.is_zero ())
8735 op = op1;
8736 break;
8738 mask = may_be_nonzero1.and_not (must_be_nonzero0);
8739 if (mask.is_zero ())
8741 op = op0;
8742 break;
8744 break;
8745 default:
8746 gcc_unreachable ();
8749 if (op == NULL_TREE)
8750 return false;
8752 gimple_assign_set_rhs_with_ops (gsi, TREE_CODE (op), op, NULL);
8753 update_stmt (gsi_stmt (*gsi));
8754 return true;
8757 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
8758 a known value range VR.
8760 If there is one and only one value which will satisfy the
8761 conditional, then return that value. Else return NULL. */
8763 static tree
8764 test_for_singularity (enum tree_code cond_code, tree op0,
8765 tree op1, value_range_t *vr)
8767 tree min = NULL;
8768 tree max = NULL;
8770 /* Extract minimum/maximum values which satisfy the
8771 the conditional as it was written. */
8772 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
8774 /* This should not be negative infinity; there is no overflow
8775 here. */
8776 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
8778 max = op1;
8779 if (cond_code == LT_EXPR && !is_overflow_infinity (max))
8781 tree one = build_int_cst (TREE_TYPE (op0), 1);
8782 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
8783 if (EXPR_P (max))
8784 TREE_NO_WARNING (max) = 1;
8787 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
8789 /* This should not be positive infinity; there is no overflow
8790 here. */
8791 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
8793 min = op1;
8794 if (cond_code == GT_EXPR && !is_overflow_infinity (min))
8796 tree one = build_int_cst (TREE_TYPE (op0), 1);
8797 min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
8798 if (EXPR_P (min))
8799 TREE_NO_WARNING (min) = 1;
8803 /* Now refine the minimum and maximum values using any
8804 value range information we have for op0. */
8805 if (min && max)
8807 if (compare_values (vr->min, min) == 1)
8808 min = vr->min;
8809 if (compare_values (vr->max, max) == -1)
8810 max = vr->max;
8812 /* If the new min/max values have converged to a single value,
8813 then there is only one value which can satisfy the condition,
8814 return that value. */
8815 if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
8816 return min;
8818 return NULL;
8821 /* Return whether the value range *VR fits in an integer type specified
8822 by PRECISION and UNSIGNED_P. */
8824 static bool
8825 range_fits_type_p (value_range_t *vr, unsigned precision, bool unsigned_p)
8827 tree src_type;
8828 unsigned src_precision;
8829 double_int tem;
8831 /* We can only handle integral and pointer types. */
8832 src_type = TREE_TYPE (vr->min);
8833 if (!INTEGRAL_TYPE_P (src_type)
8834 && !POINTER_TYPE_P (src_type))
8835 return false;
8837 /* An extension is fine unless VR is signed and unsigned_p,
8838 and so is an identity transform. */
8839 src_precision = TYPE_PRECISION (TREE_TYPE (vr->min));
8840 if ((src_precision < precision
8841 && !(unsigned_p && !TYPE_UNSIGNED (src_type)))
8842 || (src_precision == precision
8843 && TYPE_UNSIGNED (src_type) == unsigned_p))
8844 return true;
8846 /* Now we can only handle ranges with constant bounds. */
8847 if (vr->type != VR_RANGE
8848 || TREE_CODE (vr->min) != INTEGER_CST
8849 || TREE_CODE (vr->max) != INTEGER_CST)
8850 return false;
8852 /* For sign changes, the MSB of the double_int has to be clear.
8853 An unsigned value with its MSB set cannot be represented by
8854 a signed double_int, while a negative value cannot be represented
8855 by an unsigned double_int. */
8856 if (TYPE_UNSIGNED (src_type) != unsigned_p
8857 && (TREE_INT_CST_HIGH (vr->min) | TREE_INT_CST_HIGH (vr->max)) < 0)
8858 return false;
8860 /* Then we can perform the conversion on both ends and compare
8861 the result for equality. */
8862 tem = tree_to_double_int (vr->min).ext (precision, unsigned_p);
8863 if (tree_to_double_int (vr->min) != tem)
8864 return false;
8865 tem = tree_to_double_int (vr->max).ext (precision, unsigned_p);
8866 if (tree_to_double_int (vr->max) != tem)
8867 return false;
8869 return true;
8872 /* Simplify a conditional using a relational operator to an equality
8873 test if the range information indicates only one value can satisfy
8874 the original conditional. */
8876 static bool
8877 simplify_cond_using_ranges (gimple stmt)
8879 tree op0 = gimple_cond_lhs (stmt);
8880 tree op1 = gimple_cond_rhs (stmt);
8881 enum tree_code cond_code = gimple_cond_code (stmt);
8883 if (cond_code != NE_EXPR
8884 && cond_code != EQ_EXPR
8885 && TREE_CODE (op0) == SSA_NAME
8886 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
8887 && is_gimple_min_invariant (op1))
8889 value_range_t *vr = get_value_range (op0);
8891 /* If we have range information for OP0, then we might be
8892 able to simplify this conditional. */
8893 if (vr->type == VR_RANGE)
8895 tree new_tree = test_for_singularity (cond_code, op0, op1, vr);
8897 if (new_tree)
8899 if (dump_file)
8901 fprintf (dump_file, "Simplified relational ");
8902 print_gimple_stmt (dump_file, stmt, 0, 0);
8903 fprintf (dump_file, " into ");
8906 gimple_cond_set_code (stmt, EQ_EXPR);
8907 gimple_cond_set_lhs (stmt, op0);
8908 gimple_cond_set_rhs (stmt, new_tree);
8910 update_stmt (stmt);
8912 if (dump_file)
8914 print_gimple_stmt (dump_file, stmt, 0, 0);
8915 fprintf (dump_file, "\n");
8918 return true;
8921 /* Try again after inverting the condition. We only deal
8922 with integral types here, so no need to worry about
8923 issues with inverting FP comparisons. */
8924 cond_code = invert_tree_comparison (cond_code, false);
8925 new_tree = test_for_singularity (cond_code, op0, op1, vr);
8927 if (new_tree)
8929 if (dump_file)
8931 fprintf (dump_file, "Simplified relational ");
8932 print_gimple_stmt (dump_file, stmt, 0, 0);
8933 fprintf (dump_file, " into ");
8936 gimple_cond_set_code (stmt, NE_EXPR);
8937 gimple_cond_set_lhs (stmt, op0);
8938 gimple_cond_set_rhs (stmt, new_tree);
8940 update_stmt (stmt);
8942 if (dump_file)
8944 print_gimple_stmt (dump_file, stmt, 0, 0);
8945 fprintf (dump_file, "\n");
8948 return true;
8953 /* If we have a comparison of an SSA_NAME (OP0) against a constant,
8954 see if OP0 was set by a type conversion where the source of
8955 the conversion is another SSA_NAME with a range that fits
8956 into the range of OP0's type.
8958 If so, the conversion is redundant as the earlier SSA_NAME can be
8959 used for the comparison directly if we just massage the constant in the
8960 comparison. */
8961 if (TREE_CODE (op0) == SSA_NAME
8962 && TREE_CODE (op1) == INTEGER_CST)
8964 gimple def_stmt = SSA_NAME_DEF_STMT (op0);
8965 tree innerop;
8967 if (!is_gimple_assign (def_stmt)
8968 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
8969 return false;
8971 innerop = gimple_assign_rhs1 (def_stmt);
8973 if (TREE_CODE (innerop) == SSA_NAME
8974 && !POINTER_TYPE_P (TREE_TYPE (innerop)))
8976 value_range_t *vr = get_value_range (innerop);
8978 if (range_int_cst_p (vr)
8979 && range_fits_type_p (vr,
8980 TYPE_PRECISION (TREE_TYPE (op0)),
8981 TYPE_UNSIGNED (TREE_TYPE (op0)))
8982 && int_fits_type_p (op1, TREE_TYPE (innerop))
8983 /* The range must not have overflowed, or if it did overflow
8984 we must not be wrapping/trapping overflow and optimizing
8985 with strict overflow semantics. */
8986 && ((!is_negative_overflow_infinity (vr->min)
8987 && !is_positive_overflow_infinity (vr->max))
8988 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (innerop))))
8990 /* If the range overflowed and the user has asked for warnings
8991 when strict overflow semantics were used to optimize code,
8992 issue an appropriate warning. */
8993 if ((is_negative_overflow_infinity (vr->min)
8994 || is_positive_overflow_infinity (vr->max))
8995 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_CONDITIONAL))
8997 location_t location;
8999 if (!gimple_has_location (stmt))
9000 location = input_location;
9001 else
9002 location = gimple_location (stmt);
9003 warning_at (location, OPT_Wstrict_overflow,
9004 "assuming signed overflow does not occur when "
9005 "simplifying conditional");
9008 tree newconst = fold_convert (TREE_TYPE (innerop), op1);
9009 gimple_cond_set_lhs (stmt, innerop);
9010 gimple_cond_set_rhs (stmt, newconst);
9011 return true;
9016 return false;
9019 /* Simplify a switch statement using the value range of the switch
9020 argument. */
9022 static bool
9023 simplify_switch_using_ranges (gimple stmt)
9025 tree op = gimple_switch_index (stmt);
9026 value_range_t *vr;
9027 bool take_default;
9028 edge e;
9029 edge_iterator ei;
9030 size_t i = 0, j = 0, n, n2;
9031 tree vec2;
9032 switch_update su;
9033 size_t k = 1, l = 0;
9035 if (TREE_CODE (op) == SSA_NAME)
9037 vr = get_value_range (op);
9039 /* We can only handle integer ranges. */
9040 if ((vr->type != VR_RANGE
9041 && vr->type != VR_ANTI_RANGE)
9042 || symbolic_range_p (vr))
9043 return false;
9045 /* Find case label for min/max of the value range. */
9046 take_default = !find_case_label_ranges (stmt, vr, &i, &j, &k, &l);
9048 else if (TREE_CODE (op) == INTEGER_CST)
9050 take_default = !find_case_label_index (stmt, 1, op, &i);
9051 if (take_default)
9053 i = 1;
9054 j = 0;
9056 else
9058 j = i;
9061 else
9062 return false;
9064 n = gimple_switch_num_labels (stmt);
9066 /* Bail out if this is just all edges taken. */
9067 if (i == 1
9068 && j == n - 1
9069 && take_default)
9070 return false;
9072 /* Build a new vector of taken case labels. */
9073 vec2 = make_tree_vec (j - i + 1 + l - k + 1 + (int)take_default);
9074 n2 = 0;
9076 /* Add the default edge, if necessary. */
9077 if (take_default)
9078 TREE_VEC_ELT (vec2, n2++) = gimple_switch_default_label (stmt);
9080 for (; i <= j; ++i, ++n2)
9081 TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, i);
9083 for (; k <= l; ++k, ++n2)
9084 TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, k);
9086 /* Mark needed edges. */
9087 for (i = 0; i < n2; ++i)
9089 e = find_edge (gimple_bb (stmt),
9090 label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2, i))));
9091 e->aux = (void *)-1;
9094 /* Queue not needed edges for later removal. */
9095 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
9097 if (e->aux == (void *)-1)
9099 e->aux = NULL;
9100 continue;
9103 if (dump_file && (dump_flags & TDF_DETAILS))
9105 fprintf (dump_file, "removing unreachable case label\n");
9107 to_remove_edges.safe_push (e);
9108 e->flags &= ~EDGE_EXECUTABLE;
9111 /* And queue an update for the stmt. */
9112 su.stmt = stmt;
9113 su.vec = vec2;
9114 to_update_switch_stmts.safe_push (su);
9115 return false;
9118 /* Simplify an integral conversion from an SSA name in STMT. */
9120 static bool
9121 simplify_conversion_using_ranges (gimple stmt)
9123 tree innerop, middleop, finaltype;
9124 gimple def_stmt;
9125 value_range_t *innervr;
9126 bool inner_unsigned_p, middle_unsigned_p, final_unsigned_p;
9127 unsigned inner_prec, middle_prec, final_prec;
9128 double_int innermin, innermed, innermax, middlemin, middlemed, middlemax;
9130 finaltype = TREE_TYPE (gimple_assign_lhs (stmt));
9131 if (!INTEGRAL_TYPE_P (finaltype))
9132 return false;
9133 middleop = gimple_assign_rhs1 (stmt);
9134 def_stmt = SSA_NAME_DEF_STMT (middleop);
9135 if (!is_gimple_assign (def_stmt)
9136 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
9137 return false;
9138 innerop = gimple_assign_rhs1 (def_stmt);
9139 if (TREE_CODE (innerop) != SSA_NAME
9140 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (innerop))
9141 return false;
9143 /* Get the value-range of the inner operand. */
9144 innervr = get_value_range (innerop);
9145 if (innervr->type != VR_RANGE
9146 || TREE_CODE (innervr->min) != INTEGER_CST
9147 || TREE_CODE (innervr->max) != INTEGER_CST)
9148 return false;
9150 /* Simulate the conversion chain to check if the result is equal if
9151 the middle conversion is removed. */
9152 innermin = tree_to_double_int (innervr->min);
9153 innermax = tree_to_double_int (innervr->max);
9155 inner_prec = TYPE_PRECISION (TREE_TYPE (innerop));
9156 middle_prec = TYPE_PRECISION (TREE_TYPE (middleop));
9157 final_prec = TYPE_PRECISION (finaltype);
9159 /* If the first conversion is not injective, the second must not
9160 be widening. */
9161 if ((innermax - innermin).ugt (double_int::mask (middle_prec))
9162 && middle_prec < final_prec)
9163 return false;
9164 /* We also want a medium value so that we can track the effect that
9165 narrowing conversions with sign change have. */
9166 inner_unsigned_p = TYPE_UNSIGNED (TREE_TYPE (innerop));
9167 if (inner_unsigned_p)
9168 innermed = double_int::mask (inner_prec).lrshift (1, inner_prec);
9169 else
9170 innermed = double_int_zero;
9171 if (innermin.cmp (innermed, inner_unsigned_p) >= 0
9172 || innermed.cmp (innermax, inner_unsigned_p) >= 0)
9173 innermed = innermin;
9175 middle_unsigned_p = TYPE_UNSIGNED (TREE_TYPE (middleop));
9176 middlemin = innermin.ext (middle_prec, middle_unsigned_p);
9177 middlemed = innermed.ext (middle_prec, middle_unsigned_p);
9178 middlemax = innermax.ext (middle_prec, middle_unsigned_p);
9180 /* Require that the final conversion applied to both the original
9181 and the intermediate range produces the same result. */
9182 final_unsigned_p = TYPE_UNSIGNED (finaltype);
9183 if (middlemin.ext (final_prec, final_unsigned_p)
9184 != innermin.ext (final_prec, final_unsigned_p)
9185 || middlemed.ext (final_prec, final_unsigned_p)
9186 != innermed.ext (final_prec, final_unsigned_p)
9187 || middlemax.ext (final_prec, final_unsigned_p)
9188 != innermax.ext (final_prec, final_unsigned_p))
9189 return false;
9191 gimple_assign_set_rhs1 (stmt, innerop);
9192 update_stmt (stmt);
9193 return true;
9196 /* Simplify a conversion from integral SSA name to float in STMT. */
9198 static bool
9199 simplify_float_conversion_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
9201 tree rhs1 = gimple_assign_rhs1 (stmt);
9202 value_range_t *vr = get_value_range (rhs1);
9203 enum machine_mode fltmode = TYPE_MODE (TREE_TYPE (gimple_assign_lhs (stmt)));
9204 enum machine_mode mode;
9205 tree tem;
9206 gimple conv;
9208 /* We can only handle constant ranges. */
9209 if (vr->type != VR_RANGE
9210 || TREE_CODE (vr->min) != INTEGER_CST
9211 || TREE_CODE (vr->max) != INTEGER_CST)
9212 return false;
9214 /* First check if we can use a signed type in place of an unsigned. */
9215 if (TYPE_UNSIGNED (TREE_TYPE (rhs1))
9216 && (can_float_p (fltmode, TYPE_MODE (TREE_TYPE (rhs1)), 0)
9217 != CODE_FOR_nothing)
9218 && range_fits_type_p (vr, GET_MODE_PRECISION
9219 (TYPE_MODE (TREE_TYPE (rhs1))), 0))
9220 mode = TYPE_MODE (TREE_TYPE (rhs1));
9221 /* If we can do the conversion in the current input mode do nothing. */
9222 else if (can_float_p (fltmode, TYPE_MODE (TREE_TYPE (rhs1)),
9223 TYPE_UNSIGNED (TREE_TYPE (rhs1))) != CODE_FOR_nothing)
9224 return false;
9225 /* Otherwise search for a mode we can use, starting from the narrowest
9226 integer mode available. */
9227 else
9229 mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
9232 /* If we cannot do a signed conversion to float from mode
9233 or if the value-range does not fit in the signed type
9234 try with a wider mode. */
9235 if (can_float_p (fltmode, mode, 0) != CODE_FOR_nothing
9236 && range_fits_type_p (vr, GET_MODE_PRECISION (mode), 0))
9237 break;
9239 mode = GET_MODE_WIDER_MODE (mode);
9240 /* But do not widen the input. Instead leave that to the
9241 optabs expansion code. */
9242 if (GET_MODE_PRECISION (mode) > TYPE_PRECISION (TREE_TYPE (rhs1)))
9243 return false;
9245 while (mode != VOIDmode);
9246 if (mode == VOIDmode)
9247 return false;
9250 /* It works, insert a truncation or sign-change before the
9251 float conversion. */
9252 tem = make_ssa_name (build_nonstandard_integer_type
9253 (GET_MODE_PRECISION (mode), 0), NULL);
9254 conv = gimple_build_assign_with_ops (NOP_EXPR, tem, rhs1, NULL_TREE);
9255 gsi_insert_before (gsi, conv, GSI_SAME_STMT);
9256 gimple_assign_set_rhs1 (stmt, tem);
9257 update_stmt (stmt);
9259 return true;
9262 /* Simplify an internal fn call using ranges if possible. */
9264 static bool
9265 simplify_internal_call_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
9267 enum tree_code subcode;
9268 switch (gimple_call_internal_fn (stmt))
9270 case IFN_UBSAN_CHECK_ADD:
9271 subcode = PLUS_EXPR;
9272 break;
9273 case IFN_UBSAN_CHECK_SUB:
9274 subcode = MINUS_EXPR;
9275 break;
9276 case IFN_UBSAN_CHECK_MUL:
9277 subcode = MULT_EXPR;
9278 break;
9279 default:
9280 return false;
9283 value_range_t vr0 = VR_INITIALIZER;
9284 value_range_t vr1 = VR_INITIALIZER;
9285 tree op0 = gimple_call_arg (stmt, 0);
9286 tree op1 = gimple_call_arg (stmt, 1);
9288 if (TREE_CODE (op0) == SSA_NAME)
9289 vr0 = *get_value_range (op0);
9290 else if (TREE_CODE (op0) == INTEGER_CST)
9291 set_value_range_to_value (&vr0, op0, NULL);
9292 else
9293 set_value_range_to_varying (&vr0);
9295 if (TREE_CODE (op1) == SSA_NAME)
9296 vr1 = *get_value_range (op1);
9297 else if (TREE_CODE (op1) == INTEGER_CST)
9298 set_value_range_to_value (&vr1, op1, NULL);
9299 else
9300 set_value_range_to_varying (&vr1);
9302 if (!range_int_cst_p (&vr0))
9304 /* If one range is VR_ANTI_RANGE, VR_VARYING etc.,
9305 optimize at least x = y + 0; x = y - 0; x = y * 0;
9306 and x = y * 1; which never overflow. */
9307 if (!range_int_cst_p (&vr1))
9308 return false;
9309 if (tree_int_cst_sgn (vr1.min) == -1)
9310 return false;
9311 if (compare_tree_int (vr1.max, subcode == MULT_EXPR) == 1)
9312 return false;
9314 else if (!range_int_cst_p (&vr1))
9316 /* If one range is VR_ANTI_RANGE, VR_VARYING etc.,
9317 optimize at least x = 0 + y; x = 0 * y; and x = 1 * y;
9318 which never overflow. */
9319 if (subcode == MINUS_EXPR)
9320 return false;
9321 if (!range_int_cst_p (&vr0))
9322 return false;
9323 if (tree_int_cst_sgn (vr0.min) == -1)
9324 return false;
9325 if (compare_tree_int (vr0.max, subcode == MULT_EXPR) == 1)
9326 return false;
9328 else
9330 tree r1 = int_const_binop (subcode, vr0.min, vr1.min);
9331 tree r2 = int_const_binop (subcode, vr0.max, vr1.max);
9332 if (r1 == NULL_TREE || TREE_OVERFLOW (r1)
9333 || r2 == NULL_TREE || TREE_OVERFLOW (r2))
9334 return false;
9335 if (subcode == MULT_EXPR)
9337 tree r3 = int_const_binop (subcode, vr0.min, vr1.max);
9338 tree r4 = int_const_binop (subcode, vr0.max, vr1.min);
9339 if (r3 == NULL_TREE || TREE_OVERFLOW (r3)
9340 || r4 == NULL_TREE || TREE_OVERFLOW (r4))
9341 return false;
9345 gimple g = gimple_build_assign_with_ops (subcode, gimple_call_lhs (stmt),
9346 op0, op1);
9347 gsi_replace (gsi, g, false);
9348 return true;
9351 /* Simplify STMT using ranges if possible. */
9353 static bool
9354 simplify_stmt_using_ranges (gimple_stmt_iterator *gsi)
9356 gimple stmt = gsi_stmt (*gsi);
9357 if (is_gimple_assign (stmt))
9359 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
9360 tree rhs1 = gimple_assign_rhs1 (stmt);
9362 switch (rhs_code)
9364 case EQ_EXPR:
9365 case NE_EXPR:
9366 /* Transform EQ_EXPR, NE_EXPR into BIT_XOR_EXPR or identity
9367 if the RHS is zero or one, and the LHS are known to be boolean
9368 values. */
9369 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9370 return simplify_truth_ops_using_ranges (gsi, stmt);
9371 break;
9373 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
9374 and BIT_AND_EXPR respectively if the first operand is greater
9375 than zero and the second operand is an exact power of two. */
9376 case TRUNC_DIV_EXPR:
9377 case TRUNC_MOD_EXPR:
9378 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
9379 && integer_pow2p (gimple_assign_rhs2 (stmt)))
9380 return simplify_div_or_mod_using_ranges (stmt);
9381 break;
9383 /* Transform ABS (X) into X or -X as appropriate. */
9384 case ABS_EXPR:
9385 if (TREE_CODE (rhs1) == SSA_NAME
9386 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9387 return simplify_abs_using_ranges (stmt);
9388 break;
9390 case BIT_AND_EXPR:
9391 case BIT_IOR_EXPR:
9392 /* Optimize away BIT_AND_EXPR and BIT_IOR_EXPR
9393 if all the bits being cleared are already cleared or
9394 all the bits being set are already set. */
9395 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9396 return simplify_bit_ops_using_ranges (gsi, stmt);
9397 break;
9399 CASE_CONVERT:
9400 if (TREE_CODE (rhs1) == SSA_NAME
9401 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9402 return simplify_conversion_using_ranges (stmt);
9403 break;
9405 case FLOAT_EXPR:
9406 if (TREE_CODE (rhs1) == SSA_NAME
9407 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9408 return simplify_float_conversion_using_ranges (gsi, stmt);
9409 break;
9411 default:
9412 break;
9415 else if (gimple_code (stmt) == GIMPLE_COND)
9416 return simplify_cond_using_ranges (stmt);
9417 else if (gimple_code (stmt) == GIMPLE_SWITCH)
9418 return simplify_switch_using_ranges (stmt);
9419 else if (is_gimple_call (stmt)
9420 && gimple_call_internal_p (stmt))
9421 return simplify_internal_call_using_ranges (gsi, stmt);
9423 return false;
9426 /* If the statement pointed by SI has a predicate whose value can be
9427 computed using the value range information computed by VRP, compute
9428 its value and return true. Otherwise, return false. */
9430 static bool
9431 fold_predicate_in (gimple_stmt_iterator *si)
9433 bool assignment_p = false;
9434 tree val;
9435 gimple stmt = gsi_stmt (*si);
9437 if (is_gimple_assign (stmt)
9438 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison)
9440 assignment_p = true;
9441 val = vrp_evaluate_conditional (gimple_assign_rhs_code (stmt),
9442 gimple_assign_rhs1 (stmt),
9443 gimple_assign_rhs2 (stmt),
9444 stmt);
9446 else if (gimple_code (stmt) == GIMPLE_COND)
9447 val = vrp_evaluate_conditional (gimple_cond_code (stmt),
9448 gimple_cond_lhs (stmt),
9449 gimple_cond_rhs (stmt),
9450 stmt);
9451 else
9452 return false;
9454 if (val)
9456 if (assignment_p)
9457 val = fold_convert (gimple_expr_type (stmt), val);
9459 if (dump_file)
9461 fprintf (dump_file, "Folding predicate ");
9462 print_gimple_expr (dump_file, stmt, 0, 0);
9463 fprintf (dump_file, " to ");
9464 print_generic_expr (dump_file, val, 0);
9465 fprintf (dump_file, "\n");
9468 if (is_gimple_assign (stmt))
9469 gimple_assign_set_rhs_from_tree (si, val);
9470 else
9472 gcc_assert (gimple_code (stmt) == GIMPLE_COND);
9473 if (integer_zerop (val))
9474 gimple_cond_make_false (stmt);
9475 else if (integer_onep (val))
9476 gimple_cond_make_true (stmt);
9477 else
9478 gcc_unreachable ();
9481 return true;
9484 return false;
9487 /* Callback for substitute_and_fold folding the stmt at *SI. */
9489 static bool
9490 vrp_fold_stmt (gimple_stmt_iterator *si)
9492 if (fold_predicate_in (si))
9493 return true;
9495 return simplify_stmt_using_ranges (si);
9498 /* Stack of dest,src equivalency pairs that need to be restored after
9499 each attempt to thread a block's incoming edge to an outgoing edge.
9501 A NULL entry is used to mark the end of pairs which need to be
9502 restored. */
9503 static vec<tree> equiv_stack;
9505 /* A trivial wrapper so that we can present the generic jump threading
9506 code with a simple API for simplifying statements. STMT is the
9507 statement we want to simplify, WITHIN_STMT provides the location
9508 for any overflow warnings. */
9510 static tree
9511 simplify_stmt_for_jump_threading (gimple stmt, gimple within_stmt)
9513 if (gimple_code (stmt) == GIMPLE_COND)
9514 return vrp_evaluate_conditional (gimple_cond_code (stmt),
9515 gimple_cond_lhs (stmt),
9516 gimple_cond_rhs (stmt), within_stmt);
9518 if (gimple_code (stmt) == GIMPLE_ASSIGN)
9520 value_range_t new_vr = VR_INITIALIZER;
9521 tree lhs = gimple_assign_lhs (stmt);
9523 if (TREE_CODE (lhs) == SSA_NAME
9524 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
9525 || POINTER_TYPE_P (TREE_TYPE (lhs))))
9527 extract_range_from_assignment (&new_vr, stmt);
9528 if (range_int_cst_singleton_p (&new_vr))
9529 return new_vr.min;
9533 return NULL_TREE;
9536 /* Blocks which have more than one predecessor and more than
9537 one successor present jump threading opportunities, i.e.,
9538 when the block is reached from a specific predecessor, we
9539 may be able to determine which of the outgoing edges will
9540 be traversed. When this optimization applies, we are able
9541 to avoid conditionals at runtime and we may expose secondary
9542 optimization opportunities.
9544 This routine is effectively a driver for the generic jump
9545 threading code. It basically just presents the generic code
9546 with edges that may be suitable for jump threading.
9548 Unlike DOM, we do not iterate VRP if jump threading was successful.
9549 While iterating may expose new opportunities for VRP, it is expected
9550 those opportunities would be very limited and the compile time cost
9551 to expose those opportunities would be significant.
9553 As jump threading opportunities are discovered, they are registered
9554 for later realization. */
9556 static void
9557 identify_jump_threads (void)
9559 basic_block bb;
9560 gimple dummy;
9561 int i;
9562 edge e;
9564 /* Ugh. When substituting values earlier in this pass we can
9565 wipe the dominance information. So rebuild the dominator
9566 information as we need it within the jump threading code. */
9567 calculate_dominance_info (CDI_DOMINATORS);
9569 /* We do not allow VRP information to be used for jump threading
9570 across a back edge in the CFG. Otherwise it becomes too
9571 difficult to avoid eliminating loop exit tests. Of course
9572 EDGE_DFS_BACK is not accurate at this time so we have to
9573 recompute it. */
9574 mark_dfs_back_edges ();
9576 /* Do not thread across edges we are about to remove. Just marking
9577 them as EDGE_DFS_BACK will do. */
9578 FOR_EACH_VEC_ELT (to_remove_edges, i, e)
9579 e->flags |= EDGE_DFS_BACK;
9581 /* Allocate our unwinder stack to unwind any temporary equivalences
9582 that might be recorded. */
9583 equiv_stack.create (20);
9585 /* To avoid lots of silly node creation, we create a single
9586 conditional and just modify it in-place when attempting to
9587 thread jumps. */
9588 dummy = gimple_build_cond (EQ_EXPR,
9589 integer_zero_node, integer_zero_node,
9590 NULL, NULL);
9592 /* Walk through all the blocks finding those which present a
9593 potential jump threading opportunity. We could set this up
9594 as a dominator walker and record data during the walk, but
9595 I doubt it's worth the effort for the classes of jump
9596 threading opportunities we are trying to identify at this
9597 point in compilation. */
9598 FOR_EACH_BB_FN (bb, cfun)
9600 gimple last;
9602 /* If the generic jump threading code does not find this block
9603 interesting, then there is nothing to do. */
9604 if (! potentially_threadable_block (bb))
9605 continue;
9607 /* We only care about blocks ending in a COND_EXPR. While there
9608 may be some value in handling SWITCH_EXPR here, I doubt it's
9609 terribly important. */
9610 last = gsi_stmt (gsi_last_bb (bb));
9612 /* We're basically looking for a switch or any kind of conditional with
9613 integral or pointer type arguments. Note the type of the second
9614 argument will be the same as the first argument, so no need to
9615 check it explicitly. */
9616 if (gimple_code (last) == GIMPLE_SWITCH
9617 || (gimple_code (last) == GIMPLE_COND
9618 && TREE_CODE (gimple_cond_lhs (last)) == SSA_NAME
9619 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (last)))
9620 || POINTER_TYPE_P (TREE_TYPE (gimple_cond_lhs (last))))
9621 && (TREE_CODE (gimple_cond_rhs (last)) == SSA_NAME
9622 || is_gimple_min_invariant (gimple_cond_rhs (last)))))
9624 edge_iterator ei;
9626 /* We've got a block with multiple predecessors and multiple
9627 successors which also ends in a suitable conditional or
9628 switch statement. For each predecessor, see if we can thread
9629 it to a specific successor. */
9630 FOR_EACH_EDGE (e, ei, bb->preds)
9632 /* Do not thread across back edges or abnormal edges
9633 in the CFG. */
9634 if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
9635 continue;
9637 thread_across_edge (dummy, e, true, &equiv_stack,
9638 simplify_stmt_for_jump_threading);
9643 /* We do not actually update the CFG or SSA graphs at this point as
9644 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
9645 handle ASSERT_EXPRs gracefully. */
9648 /* We identified all the jump threading opportunities earlier, but could
9649 not transform the CFG at that time. This routine transforms the
9650 CFG and arranges for the dominator tree to be rebuilt if necessary.
9652 Note the SSA graph update will occur during the normal TODO
9653 processing by the pass manager. */
9654 static void
9655 finalize_jump_threads (void)
9657 thread_through_all_blocks (false);
9658 equiv_stack.release ();
9662 /* Traverse all the blocks folding conditionals with known ranges. */
9664 static void
9665 vrp_finalize (void)
9667 size_t i;
9669 values_propagated = true;
9671 if (dump_file)
9673 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
9674 dump_all_value_ranges (dump_file);
9675 fprintf (dump_file, "\n");
9678 substitute_and_fold (op_with_constant_singleton_value_range,
9679 vrp_fold_stmt, false);
9681 if (warn_array_bounds)
9682 check_all_array_refs ();
9684 /* We must identify jump threading opportunities before we release
9685 the datastructures built by VRP. */
9686 identify_jump_threads ();
9688 /* Set value range to non pointer SSA_NAMEs. */
9689 for (i = 0; i < num_vr_values; i++)
9690 if (vr_value[i])
9692 tree name = ssa_name (i);
9694 if (!name
9695 || POINTER_TYPE_P (TREE_TYPE (name))
9696 || (vr_value[i]->type == VR_VARYING)
9697 || (vr_value[i]->type == VR_UNDEFINED))
9698 continue;
9700 if ((TREE_CODE (vr_value[i]->min) == INTEGER_CST)
9701 && (TREE_CODE (vr_value[i]->max) == INTEGER_CST)
9702 && (vr_value[i]->type == VR_RANGE
9703 || vr_value[i]->type == VR_ANTI_RANGE))
9704 set_range_info (name, vr_value[i]->type,
9705 tree_to_double_int (vr_value[i]->min),
9706 tree_to_double_int (vr_value[i]->max));
9709 /* Free allocated memory. */
9710 for (i = 0; i < num_vr_values; i++)
9711 if (vr_value[i])
9713 BITMAP_FREE (vr_value[i]->equiv);
9714 free (vr_value[i]);
9717 free (vr_value);
9718 free (vr_phi_edge_counts);
9720 /* So that we can distinguish between VRP data being available
9721 and not available. */
9722 vr_value = NULL;
9723 vr_phi_edge_counts = NULL;
9727 /* Main entry point to VRP (Value Range Propagation). This pass is
9728 loosely based on J. R. C. Patterson, ``Accurate Static Branch
9729 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
9730 Programming Language Design and Implementation, pp. 67-78, 1995.
9731 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
9733 This is essentially an SSA-CCP pass modified to deal with ranges
9734 instead of constants.
9736 While propagating ranges, we may find that two or more SSA name
9737 have equivalent, though distinct ranges. For instance,
9739 1 x_9 = p_3->a;
9740 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
9741 3 if (p_4 == q_2)
9742 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
9743 5 endif
9744 6 if (q_2)
9746 In the code above, pointer p_5 has range [q_2, q_2], but from the
9747 code we can also determine that p_5 cannot be NULL and, if q_2 had
9748 a non-varying range, p_5's range should also be compatible with it.
9750 These equivalences are created by two expressions: ASSERT_EXPR and
9751 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
9752 result of another assertion, then we can use the fact that p_5 and
9753 p_4 are equivalent when evaluating p_5's range.
9755 Together with value ranges, we also propagate these equivalences
9756 between names so that we can take advantage of information from
9757 multiple ranges when doing final replacement. Note that this
9758 equivalency relation is transitive but not symmetric.
9760 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
9761 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
9762 in contexts where that assertion does not hold (e.g., in line 6).
9764 TODO, the main difference between this pass and Patterson's is that
9765 we do not propagate edge probabilities. We only compute whether
9766 edges can be taken or not. That is, instead of having a spectrum
9767 of jump probabilities between 0 and 1, we only deal with 0, 1 and
9768 DON'T KNOW. In the future, it may be worthwhile to propagate
9769 probabilities to aid branch prediction. */
9771 static unsigned int
9772 execute_vrp (void)
9774 int i;
9775 edge e;
9776 switch_update *su;
9778 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
9779 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
9780 scev_initialize ();
9782 /* ??? This ends up using stale EDGE_DFS_BACK for liveness computation.
9783 Inserting assertions may split edges which will invalidate
9784 EDGE_DFS_BACK. */
9785 insert_range_assertions ();
9787 to_remove_edges.create (10);
9788 to_update_switch_stmts.create (5);
9789 threadedge_initialize_values ();
9791 /* For visiting PHI nodes we need EDGE_DFS_BACK computed. */
9792 mark_dfs_back_edges ();
9794 vrp_initialize ();
9795 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
9796 vrp_finalize ();
9798 free_numbers_of_iterations_estimates ();
9800 /* ASSERT_EXPRs must be removed before finalizing jump threads
9801 as finalizing jump threads calls the CFG cleanup code which
9802 does not properly handle ASSERT_EXPRs. */
9803 remove_range_assertions ();
9805 /* If we exposed any new variables, go ahead and put them into
9806 SSA form now, before we handle jump threading. This simplifies
9807 interactions between rewriting of _DECL nodes into SSA form
9808 and rewriting SSA_NAME nodes into SSA form after block
9809 duplication and CFG manipulation. */
9810 update_ssa (TODO_update_ssa);
9812 finalize_jump_threads ();
9814 /* Remove dead edges from SWITCH_EXPR optimization. This leaves the
9815 CFG in a broken state and requires a cfg_cleanup run. */
9816 FOR_EACH_VEC_ELT (to_remove_edges, i, e)
9817 remove_edge (e);
9818 /* Update SWITCH_EXPR case label vector. */
9819 FOR_EACH_VEC_ELT (to_update_switch_stmts, i, su)
9821 size_t j;
9822 size_t n = TREE_VEC_LENGTH (su->vec);
9823 tree label;
9824 gimple_switch_set_num_labels (su->stmt, n);
9825 for (j = 0; j < n; j++)
9826 gimple_switch_set_label (su->stmt, j, TREE_VEC_ELT (su->vec, j));
9827 /* As we may have replaced the default label with a regular one
9828 make sure to make it a real default label again. This ensures
9829 optimal expansion. */
9830 label = gimple_switch_label (su->stmt, 0);
9831 CASE_LOW (label) = NULL_TREE;
9832 CASE_HIGH (label) = NULL_TREE;
9835 if (to_remove_edges.length () > 0)
9837 free_dominance_info (CDI_DOMINATORS);
9838 if (current_loops)
9839 loops_state_set (LOOPS_NEED_FIXUP);
9842 to_remove_edges.release ();
9843 to_update_switch_stmts.release ();
9844 threadedge_finalize_values ();
9846 scev_finalize ();
9847 loop_optimizer_finalize ();
9848 return 0;
9851 namespace {
9853 const pass_data pass_data_vrp =
9855 GIMPLE_PASS, /* type */
9856 "vrp", /* name */
9857 OPTGROUP_NONE, /* optinfo_flags */
9858 true, /* has_execute */
9859 TV_TREE_VRP, /* tv_id */
9860 PROP_ssa, /* properties_required */
9861 0, /* properties_provided */
9862 0, /* properties_destroyed */
9863 0, /* todo_flags_start */
9864 ( TODO_cleanup_cfg | TODO_update_ssa
9865 | TODO_verify_ssa
9866 | TODO_verify_flow ), /* todo_flags_finish */
9869 class pass_vrp : public gimple_opt_pass
9871 public:
9872 pass_vrp (gcc::context *ctxt)
9873 : gimple_opt_pass (pass_data_vrp, ctxt)
9876 /* opt_pass methods: */
9877 opt_pass * clone () { return new pass_vrp (m_ctxt); }
9878 virtual bool gate (function *) { return flag_tree_vrp != 0; }
9879 virtual unsigned int execute (function *) { return execute_vrp (); }
9881 }; // class pass_vrp
9883 } // anon namespace
9885 gimple_opt_pass *
9886 make_pass_vrp (gcc::context *ctxt)
9888 return new pass_vrp (ctxt);