2012-05-01 François Dumont <fdumont@gcc.gnu.org>
[official-gcc.git] / gcc / sched-deps.c
blob4a0212112f2044083bfef0f33a2aa1798186b4b7
1 /* Instruction scheduling pass. This file computes dependencies between
2 instructions.
3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
5 2011, 2012
6 Free Software Foundation, Inc.
7 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
8 and currently maintained by, Jim Wilson (wilson@cygnus.com)
10 This file is part of GCC.
12 GCC is free software; you can redistribute it and/or modify it under
13 the terms of the GNU General Public License as published by the Free
14 Software Foundation; either version 3, or (at your option) any later
15 version.
17 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
18 WARRANTY; without even the implied warranty of MERCHANTABILITY or
19 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
20 for more details.
22 You should have received a copy of the GNU General Public License
23 along with GCC; see the file COPYING3. If not see
24 <http://www.gnu.org/licenses/>. */
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "diagnostic-core.h"
31 #include "rtl.h"
32 #include "tm_p.h"
33 #include "hard-reg-set.h"
34 #include "regs.h"
35 #include "function.h"
36 #include "flags.h"
37 #include "insn-config.h"
38 #include "insn-attr.h"
39 #include "except.h"
40 #include "recog.h"
41 #include "sched-int.h"
42 #include "params.h"
43 #include "cselib.h"
44 #include "ira.h"
45 #include "target.h"
47 #ifdef INSN_SCHEDULING
49 #ifdef ENABLE_CHECKING
50 #define CHECK (true)
51 #else
52 #define CHECK (false)
53 #endif
55 /* Holds current parameters for the dependency analyzer. */
56 struct sched_deps_info_def *sched_deps_info;
58 /* The data is specific to the Haifa scheduler. */
59 VEC(haifa_deps_insn_data_def, heap) *h_d_i_d = NULL;
61 /* Return the major type present in the DS. */
62 enum reg_note
63 ds_to_dk (ds_t ds)
65 if (ds & DEP_TRUE)
66 return REG_DEP_TRUE;
68 if (ds & DEP_OUTPUT)
69 return REG_DEP_OUTPUT;
71 if (ds & DEP_CONTROL)
72 return REG_DEP_CONTROL;
74 gcc_assert (ds & DEP_ANTI);
76 return REG_DEP_ANTI;
79 /* Return equivalent dep_status. */
80 ds_t
81 dk_to_ds (enum reg_note dk)
83 switch (dk)
85 case REG_DEP_TRUE:
86 return DEP_TRUE;
88 case REG_DEP_OUTPUT:
89 return DEP_OUTPUT;
91 case REG_DEP_CONTROL:
92 return DEP_CONTROL;
94 default:
95 gcc_assert (dk == REG_DEP_ANTI);
96 return DEP_ANTI;
100 /* Functions to operate with dependence information container - dep_t. */
102 /* Init DEP with the arguments. */
103 void
104 init_dep_1 (dep_t dep, rtx pro, rtx con, enum reg_note type, ds_t ds)
106 DEP_PRO (dep) = pro;
107 DEP_CON (dep) = con;
108 DEP_TYPE (dep) = type;
109 DEP_STATUS (dep) = ds;
110 DEP_COST (dep) = UNKNOWN_DEP_COST;
113 /* Init DEP with the arguments.
114 While most of the scheduler (including targets) only need the major type
115 of the dependency, it is convenient to hide full dep_status from them. */
116 void
117 init_dep (dep_t dep, rtx pro, rtx con, enum reg_note kind)
119 ds_t ds;
121 if ((current_sched_info->flags & USE_DEPS_LIST))
122 ds = dk_to_ds (kind);
123 else
124 ds = 0;
126 init_dep_1 (dep, pro, con, kind, ds);
129 /* Make a copy of FROM in TO. */
130 static void
131 copy_dep (dep_t to, dep_t from)
133 memcpy (to, from, sizeof (*to));
136 static void dump_ds (FILE *, ds_t);
138 /* Define flags for dump_dep (). */
140 /* Dump producer of the dependence. */
141 #define DUMP_DEP_PRO (2)
143 /* Dump consumer of the dependence. */
144 #define DUMP_DEP_CON (4)
146 /* Dump type of the dependence. */
147 #define DUMP_DEP_TYPE (8)
149 /* Dump status of the dependence. */
150 #define DUMP_DEP_STATUS (16)
152 /* Dump all information about the dependence. */
153 #define DUMP_DEP_ALL (DUMP_DEP_PRO | DUMP_DEP_CON | DUMP_DEP_TYPE \
154 |DUMP_DEP_STATUS)
156 /* Dump DEP to DUMP.
157 FLAGS is a bit mask specifying what information about DEP needs
158 to be printed.
159 If FLAGS has the very first bit set, then dump all information about DEP
160 and propagate this bit into the callee dump functions. */
161 static void
162 dump_dep (FILE *dump, dep_t dep, int flags)
164 if (flags & 1)
165 flags |= DUMP_DEP_ALL;
167 fprintf (dump, "<");
169 if (flags & DUMP_DEP_PRO)
170 fprintf (dump, "%d; ", INSN_UID (DEP_PRO (dep)));
172 if (flags & DUMP_DEP_CON)
173 fprintf (dump, "%d; ", INSN_UID (DEP_CON (dep)));
175 if (flags & DUMP_DEP_TYPE)
177 char t;
178 enum reg_note type = DEP_TYPE (dep);
180 switch (type)
182 case REG_DEP_TRUE:
183 t = 't';
184 break;
186 case REG_DEP_OUTPUT:
187 t = 'o';
188 break;
190 case REG_DEP_CONTROL:
191 t = 'c';
192 break;
194 case REG_DEP_ANTI:
195 t = 'a';
196 break;
198 default:
199 gcc_unreachable ();
200 break;
203 fprintf (dump, "%c; ", t);
206 if (flags & DUMP_DEP_STATUS)
208 if (current_sched_info->flags & USE_DEPS_LIST)
209 dump_ds (dump, DEP_STATUS (dep));
212 fprintf (dump, ">");
215 /* Default flags for dump_dep (). */
216 static int dump_dep_flags = (DUMP_DEP_PRO | DUMP_DEP_CON);
218 /* Dump all fields of DEP to STDERR. */
219 void
220 sd_debug_dep (dep_t dep)
222 dump_dep (stderr, dep, 1);
223 fprintf (stderr, "\n");
226 /* Determine whether DEP is a dependency link of a non-debug insn on a
227 debug insn. */
229 static inline bool
230 depl_on_debug_p (dep_link_t dep)
232 return (DEBUG_INSN_P (DEP_LINK_PRO (dep))
233 && !DEBUG_INSN_P (DEP_LINK_CON (dep)));
236 /* Functions to operate with a single link from the dependencies lists -
237 dep_link_t. */
239 /* Attach L to appear after link X whose &DEP_LINK_NEXT (X) is given by
240 PREV_NEXT_P. */
241 static void
242 attach_dep_link (dep_link_t l, dep_link_t *prev_nextp)
244 dep_link_t next = *prev_nextp;
246 gcc_assert (DEP_LINK_PREV_NEXTP (l) == NULL
247 && DEP_LINK_NEXT (l) == NULL);
249 /* Init node being inserted. */
250 DEP_LINK_PREV_NEXTP (l) = prev_nextp;
251 DEP_LINK_NEXT (l) = next;
253 /* Fix next node. */
254 if (next != NULL)
256 gcc_assert (DEP_LINK_PREV_NEXTP (next) == prev_nextp);
258 DEP_LINK_PREV_NEXTP (next) = &DEP_LINK_NEXT (l);
261 /* Fix prev node. */
262 *prev_nextp = l;
265 /* Add dep_link LINK to deps_list L. */
266 static void
267 add_to_deps_list (dep_link_t link, deps_list_t l)
269 attach_dep_link (link, &DEPS_LIST_FIRST (l));
271 /* Don't count debug deps. */
272 if (!depl_on_debug_p (link))
273 ++DEPS_LIST_N_LINKS (l);
276 /* Detach dep_link L from the list. */
277 static void
278 detach_dep_link (dep_link_t l)
280 dep_link_t *prev_nextp = DEP_LINK_PREV_NEXTP (l);
281 dep_link_t next = DEP_LINK_NEXT (l);
283 *prev_nextp = next;
285 if (next != NULL)
286 DEP_LINK_PREV_NEXTP (next) = prev_nextp;
288 DEP_LINK_PREV_NEXTP (l) = NULL;
289 DEP_LINK_NEXT (l) = NULL;
292 /* Remove link LINK from list LIST. */
293 static void
294 remove_from_deps_list (dep_link_t link, deps_list_t list)
296 detach_dep_link (link);
298 /* Don't count debug deps. */
299 if (!depl_on_debug_p (link))
300 --DEPS_LIST_N_LINKS (list);
303 /* Move link LINK from list FROM to list TO. */
304 static void
305 move_dep_link (dep_link_t link, deps_list_t from, deps_list_t to)
307 remove_from_deps_list (link, from);
308 add_to_deps_list (link, to);
311 /* Return true of LINK is not attached to any list. */
312 static bool
313 dep_link_is_detached_p (dep_link_t link)
315 return DEP_LINK_PREV_NEXTP (link) == NULL;
318 /* Pool to hold all dependency nodes (dep_node_t). */
319 static alloc_pool dn_pool;
321 /* Number of dep_nodes out there. */
322 static int dn_pool_diff = 0;
324 /* Create a dep_node. */
325 static dep_node_t
326 create_dep_node (void)
328 dep_node_t n = (dep_node_t) pool_alloc (dn_pool);
329 dep_link_t back = DEP_NODE_BACK (n);
330 dep_link_t forw = DEP_NODE_FORW (n);
332 DEP_LINK_NODE (back) = n;
333 DEP_LINK_NEXT (back) = NULL;
334 DEP_LINK_PREV_NEXTP (back) = NULL;
336 DEP_LINK_NODE (forw) = n;
337 DEP_LINK_NEXT (forw) = NULL;
338 DEP_LINK_PREV_NEXTP (forw) = NULL;
340 ++dn_pool_diff;
342 return n;
345 /* Delete dep_node N. N must not be connected to any deps_list. */
346 static void
347 delete_dep_node (dep_node_t n)
349 gcc_assert (dep_link_is_detached_p (DEP_NODE_BACK (n))
350 && dep_link_is_detached_p (DEP_NODE_FORW (n)));
352 --dn_pool_diff;
354 pool_free (dn_pool, n);
357 /* Pool to hold dependencies lists (deps_list_t). */
358 static alloc_pool dl_pool;
360 /* Number of deps_lists out there. */
361 static int dl_pool_diff = 0;
363 /* Functions to operate with dependences lists - deps_list_t. */
365 /* Return true if list L is empty. */
366 static bool
367 deps_list_empty_p (deps_list_t l)
369 return DEPS_LIST_N_LINKS (l) == 0;
372 /* Create a new deps_list. */
373 static deps_list_t
374 create_deps_list (void)
376 deps_list_t l = (deps_list_t) pool_alloc (dl_pool);
378 DEPS_LIST_FIRST (l) = NULL;
379 DEPS_LIST_N_LINKS (l) = 0;
381 ++dl_pool_diff;
382 return l;
385 /* Free deps_list L. */
386 static void
387 free_deps_list (deps_list_t l)
389 gcc_assert (deps_list_empty_p (l));
391 --dl_pool_diff;
393 pool_free (dl_pool, l);
396 /* Return true if there is no dep_nodes and deps_lists out there.
397 After the region is scheduled all the dependency nodes and lists
398 should [generally] be returned to pool. */
399 bool
400 deps_pools_are_empty_p (void)
402 return dn_pool_diff == 0 && dl_pool_diff == 0;
405 /* Remove all elements from L. */
406 static void
407 clear_deps_list (deps_list_t l)
411 dep_link_t link = DEPS_LIST_FIRST (l);
413 if (link == NULL)
414 break;
416 remove_from_deps_list (link, l);
418 while (1);
421 /* Decide whether a dependency should be treated as a hard or a speculative
422 dependency. */
423 static bool
424 dep_spec_p (dep_t dep)
426 if (current_sched_info->flags & DO_SPECULATION)
428 if (DEP_STATUS (dep) & SPECULATIVE)
429 return true;
431 if (current_sched_info->flags & DO_PREDICATION)
433 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
434 return true;
436 return false;
439 static regset reg_pending_sets;
440 static regset reg_pending_clobbers;
441 static regset reg_pending_uses;
442 static regset reg_pending_control_uses;
443 static enum reg_pending_barrier_mode reg_pending_barrier;
445 /* Hard registers implicitly clobbered or used (or may be implicitly
446 clobbered or used) by the currently analyzed insn. For example,
447 insn in its constraint has one register class. Even if there is
448 currently no hard register in the insn, the particular hard
449 register will be in the insn after reload pass because the
450 constraint requires it. */
451 static HARD_REG_SET implicit_reg_pending_clobbers;
452 static HARD_REG_SET implicit_reg_pending_uses;
454 /* To speed up the test for duplicate dependency links we keep a
455 record of dependencies created by add_dependence when the average
456 number of instructions in a basic block is very large.
458 Studies have shown that there is typically around 5 instructions between
459 branches for typical C code. So we can make a guess that the average
460 basic block is approximately 5 instructions long; we will choose 100X
461 the average size as a very large basic block.
463 Each insn has associated bitmaps for its dependencies. Each bitmap
464 has enough entries to represent a dependency on any other insn in
465 the insn chain. All bitmap for true dependencies cache is
466 allocated then the rest two ones are also allocated. */
467 static bitmap_head *true_dependency_cache = NULL;
468 static bitmap_head *output_dependency_cache = NULL;
469 static bitmap_head *anti_dependency_cache = NULL;
470 static bitmap_head *control_dependency_cache = NULL;
471 static bitmap_head *spec_dependency_cache = NULL;
472 static int cache_size;
474 static int deps_may_trap_p (const_rtx);
475 static void add_dependence_1 (rtx, rtx, enum reg_note);
476 static void add_dependence_list (rtx, rtx, int, enum reg_note);
477 static void add_dependence_list_and_free (struct deps_desc *, rtx,
478 rtx *, int, enum reg_note);
479 static void delete_all_dependences (rtx);
480 static void chain_to_prev_insn (rtx);
482 static void flush_pending_lists (struct deps_desc *, rtx, int, int);
483 static void sched_analyze_1 (struct deps_desc *, rtx, rtx);
484 static void sched_analyze_2 (struct deps_desc *, rtx, rtx);
485 static void sched_analyze_insn (struct deps_desc *, rtx, rtx);
487 static bool sched_has_condition_p (const_rtx);
488 static int conditions_mutex_p (const_rtx, const_rtx, bool, bool);
490 static enum DEPS_ADJUST_RESULT maybe_add_or_update_dep_1 (dep_t, bool,
491 rtx, rtx);
492 static enum DEPS_ADJUST_RESULT add_or_update_dep_1 (dep_t, bool, rtx, rtx);
494 #ifdef ENABLE_CHECKING
495 static void check_dep (dep_t, bool);
496 #endif
498 /* Return nonzero if a load of the memory reference MEM can cause a trap. */
500 static int
501 deps_may_trap_p (const_rtx mem)
503 const_rtx addr = XEXP (mem, 0);
505 if (REG_P (addr) && REGNO (addr) >= FIRST_PSEUDO_REGISTER)
507 const_rtx t = get_reg_known_value (REGNO (addr));
508 if (t)
509 addr = t;
511 return rtx_addr_can_trap_p (addr);
515 /* Find the condition under which INSN is executed. If REV is not NULL,
516 it is set to TRUE when the returned comparison should be reversed
517 to get the actual condition. */
518 static rtx
519 sched_get_condition_with_rev_uncached (const_rtx insn, bool *rev)
521 rtx pat = PATTERN (insn);
522 rtx src;
524 if (rev)
525 *rev = false;
527 if (GET_CODE (pat) == COND_EXEC)
528 return COND_EXEC_TEST (pat);
530 if (!any_condjump_p (insn) || !onlyjump_p (insn))
531 return 0;
533 src = SET_SRC (pc_set (insn));
535 if (XEXP (src, 2) == pc_rtx)
536 return XEXP (src, 0);
537 else if (XEXP (src, 1) == pc_rtx)
539 rtx cond = XEXP (src, 0);
540 enum rtx_code revcode = reversed_comparison_code (cond, insn);
542 if (revcode == UNKNOWN)
543 return 0;
545 if (rev)
546 *rev = true;
547 return cond;
550 return 0;
553 /* Return the condition under which INSN does not execute (i.e. the
554 not-taken condition for a conditional branch), or NULL if we cannot
555 find such a condition. The caller should make a copy of the condition
556 before using it. */
558 sched_get_reverse_condition_uncached (const_rtx insn)
560 bool rev;
561 rtx cond = sched_get_condition_with_rev_uncached (insn, &rev);
562 if (cond == NULL_RTX)
563 return cond;
564 if (!rev)
566 enum rtx_code revcode = reversed_comparison_code (cond, insn);
567 cond = gen_rtx_fmt_ee (revcode, GET_MODE (cond),
568 XEXP (cond, 0),
569 XEXP (cond, 1));
571 return cond;
574 /* Caching variant of sched_get_condition_with_rev_uncached.
575 We only do actual work the first time we come here for an insn; the
576 results are cached in INSN_CACHED_COND and INSN_REVERSE_COND. */
577 static rtx
578 sched_get_condition_with_rev (const_rtx insn, bool *rev)
580 bool tmp;
582 if (INSN_LUID (insn) == 0)
583 return sched_get_condition_with_rev_uncached (insn, rev);
585 if (INSN_CACHED_COND (insn) == const_true_rtx)
586 return NULL_RTX;
588 if (INSN_CACHED_COND (insn) != NULL_RTX)
590 if (rev)
591 *rev = INSN_REVERSE_COND (insn);
592 return INSN_CACHED_COND (insn);
595 INSN_CACHED_COND (insn) = sched_get_condition_with_rev_uncached (insn, &tmp);
596 INSN_REVERSE_COND (insn) = tmp;
598 if (INSN_CACHED_COND (insn) == NULL_RTX)
600 INSN_CACHED_COND (insn) = const_true_rtx;
601 return NULL_RTX;
604 if (rev)
605 *rev = INSN_REVERSE_COND (insn);
606 return INSN_CACHED_COND (insn);
609 /* True when we can find a condition under which INSN is executed. */
610 static bool
611 sched_has_condition_p (const_rtx insn)
613 return !! sched_get_condition_with_rev (insn, NULL);
618 /* Return nonzero if conditions COND1 and COND2 can never be both true. */
619 static int
620 conditions_mutex_p (const_rtx cond1, const_rtx cond2, bool rev1, bool rev2)
622 if (COMPARISON_P (cond1)
623 && COMPARISON_P (cond2)
624 && GET_CODE (cond1) ==
625 (rev1==rev2
626 ? reversed_comparison_code (cond2, NULL)
627 : GET_CODE (cond2))
628 && rtx_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
629 && XEXP (cond1, 1) == XEXP (cond2, 1))
630 return 1;
631 return 0;
634 /* Return true if insn1 and insn2 can never depend on one another because
635 the conditions under which they are executed are mutually exclusive. */
636 bool
637 sched_insns_conditions_mutex_p (const_rtx insn1, const_rtx insn2)
639 rtx cond1, cond2;
640 bool rev1 = false, rev2 = false;
642 /* df doesn't handle conditional lifetimes entirely correctly;
643 calls mess up the conditional lifetimes. */
644 if (!CALL_P (insn1) && !CALL_P (insn2))
646 cond1 = sched_get_condition_with_rev (insn1, &rev1);
647 cond2 = sched_get_condition_with_rev (insn2, &rev2);
648 if (cond1 && cond2
649 && conditions_mutex_p (cond1, cond2, rev1, rev2)
650 /* Make sure first instruction doesn't affect condition of second
651 instruction if switched. */
652 && !modified_in_p (cond1, insn2)
653 /* Make sure second instruction doesn't affect condition of first
654 instruction if switched. */
655 && !modified_in_p (cond2, insn1))
656 return true;
658 return false;
662 /* Return true if INSN can potentially be speculated with type DS. */
663 bool
664 sched_insn_is_legitimate_for_speculation_p (const_rtx insn, ds_t ds)
666 if (HAS_INTERNAL_DEP (insn))
667 return false;
669 if (!NONJUMP_INSN_P (insn))
670 return false;
672 if (SCHED_GROUP_P (insn))
673 return false;
675 if (IS_SPECULATION_CHECK_P (CONST_CAST_RTX (insn)))
676 return false;
678 if (side_effects_p (PATTERN (insn)))
679 return false;
681 if (ds & BE_IN_SPEC)
682 /* The following instructions, which depend on a speculatively scheduled
683 instruction, cannot be speculatively scheduled along. */
685 if (may_trap_or_fault_p (PATTERN (insn)))
686 /* If instruction might fault, it cannot be speculatively scheduled.
687 For control speculation it's obvious why and for data speculation
688 it's because the insn might get wrong input if speculation
689 wasn't successful. */
690 return false;
692 if ((ds & BE_IN_DATA)
693 && sched_has_condition_p (insn))
694 /* If this is a predicated instruction, then it cannot be
695 speculatively scheduled. See PR35659. */
696 return false;
699 return true;
702 /* Initialize LIST_PTR to point to one of the lists present in TYPES_PTR,
703 initialize RESOLVED_P_PTR with true if that list consists of resolved deps,
704 and remove the type of returned [through LIST_PTR] list from TYPES_PTR.
705 This function is used to switch sd_iterator to the next list.
706 !!! For internal use only. Might consider moving it to sched-int.h. */
707 void
708 sd_next_list (const_rtx insn, sd_list_types_def *types_ptr,
709 deps_list_t *list_ptr, bool *resolved_p_ptr)
711 sd_list_types_def types = *types_ptr;
713 if (types & SD_LIST_HARD_BACK)
715 *list_ptr = INSN_HARD_BACK_DEPS (insn);
716 *resolved_p_ptr = false;
717 *types_ptr = types & ~SD_LIST_HARD_BACK;
719 else if (types & SD_LIST_SPEC_BACK)
721 *list_ptr = INSN_SPEC_BACK_DEPS (insn);
722 *resolved_p_ptr = false;
723 *types_ptr = types & ~SD_LIST_SPEC_BACK;
725 else if (types & SD_LIST_FORW)
727 *list_ptr = INSN_FORW_DEPS (insn);
728 *resolved_p_ptr = false;
729 *types_ptr = types & ~SD_LIST_FORW;
731 else if (types & SD_LIST_RES_BACK)
733 *list_ptr = INSN_RESOLVED_BACK_DEPS (insn);
734 *resolved_p_ptr = true;
735 *types_ptr = types & ~SD_LIST_RES_BACK;
737 else if (types & SD_LIST_RES_FORW)
739 *list_ptr = INSN_RESOLVED_FORW_DEPS (insn);
740 *resolved_p_ptr = true;
741 *types_ptr = types & ~SD_LIST_RES_FORW;
743 else
745 *list_ptr = NULL;
746 *resolved_p_ptr = false;
747 *types_ptr = SD_LIST_NONE;
751 /* Return the summary size of INSN's lists defined by LIST_TYPES. */
753 sd_lists_size (const_rtx insn, sd_list_types_def list_types)
755 int size = 0;
757 while (list_types != SD_LIST_NONE)
759 deps_list_t list;
760 bool resolved_p;
762 sd_next_list (insn, &list_types, &list, &resolved_p);
763 if (list)
764 size += DEPS_LIST_N_LINKS (list);
767 return size;
770 /* Return true if INSN's lists defined by LIST_TYPES are all empty. */
772 bool
773 sd_lists_empty_p (const_rtx insn, sd_list_types_def list_types)
775 while (list_types != SD_LIST_NONE)
777 deps_list_t list;
778 bool resolved_p;
780 sd_next_list (insn, &list_types, &list, &resolved_p);
781 if (!deps_list_empty_p (list))
782 return false;
785 return true;
788 /* Initialize data for INSN. */
789 void
790 sd_init_insn (rtx insn)
792 INSN_HARD_BACK_DEPS (insn) = create_deps_list ();
793 INSN_SPEC_BACK_DEPS (insn) = create_deps_list ();
794 INSN_RESOLVED_BACK_DEPS (insn) = create_deps_list ();
795 INSN_FORW_DEPS (insn) = create_deps_list ();
796 INSN_RESOLVED_FORW_DEPS (insn) = create_deps_list ();
798 /* ??? It would be nice to allocate dependency caches here. */
801 /* Free data for INSN. */
802 void
803 sd_finish_insn (rtx insn)
805 /* ??? It would be nice to deallocate dependency caches here. */
807 free_deps_list (INSN_HARD_BACK_DEPS (insn));
808 INSN_HARD_BACK_DEPS (insn) = NULL;
810 free_deps_list (INSN_SPEC_BACK_DEPS (insn));
811 INSN_SPEC_BACK_DEPS (insn) = NULL;
813 free_deps_list (INSN_RESOLVED_BACK_DEPS (insn));
814 INSN_RESOLVED_BACK_DEPS (insn) = NULL;
816 free_deps_list (INSN_FORW_DEPS (insn));
817 INSN_FORW_DEPS (insn) = NULL;
819 free_deps_list (INSN_RESOLVED_FORW_DEPS (insn));
820 INSN_RESOLVED_FORW_DEPS (insn) = NULL;
823 /* Find a dependency between producer PRO and consumer CON.
824 Search through resolved dependency lists if RESOLVED_P is true.
825 If no such dependency is found return NULL,
826 otherwise return the dependency and initialize SD_IT_PTR [if it is nonnull]
827 with an iterator pointing to it. */
828 static dep_t
829 sd_find_dep_between_no_cache (rtx pro, rtx con, bool resolved_p,
830 sd_iterator_def *sd_it_ptr)
832 sd_list_types_def pro_list_type;
833 sd_list_types_def con_list_type;
834 sd_iterator_def sd_it;
835 dep_t dep;
836 bool found_p = false;
838 if (resolved_p)
840 pro_list_type = SD_LIST_RES_FORW;
841 con_list_type = SD_LIST_RES_BACK;
843 else
845 pro_list_type = SD_LIST_FORW;
846 con_list_type = SD_LIST_BACK;
849 /* Walk through either back list of INSN or forw list of ELEM
850 depending on which one is shorter. */
851 if (sd_lists_size (con, con_list_type) < sd_lists_size (pro, pro_list_type))
853 /* Find the dep_link with producer PRO in consumer's back_deps. */
854 FOR_EACH_DEP (con, con_list_type, sd_it, dep)
855 if (DEP_PRO (dep) == pro)
857 found_p = true;
858 break;
861 else
863 /* Find the dep_link with consumer CON in producer's forw_deps. */
864 FOR_EACH_DEP (pro, pro_list_type, sd_it, dep)
865 if (DEP_CON (dep) == con)
867 found_p = true;
868 break;
872 if (found_p)
874 if (sd_it_ptr != NULL)
875 *sd_it_ptr = sd_it;
877 return dep;
880 return NULL;
883 /* Find a dependency between producer PRO and consumer CON.
884 Use dependency [if available] to check if dependency is present at all.
885 Search through resolved dependency lists if RESOLVED_P is true.
886 If the dependency or NULL if none found. */
887 dep_t
888 sd_find_dep_between (rtx pro, rtx con, bool resolved_p)
890 if (true_dependency_cache != NULL)
891 /* Avoiding the list walk below can cut compile times dramatically
892 for some code. */
894 int elem_luid = INSN_LUID (pro);
895 int insn_luid = INSN_LUID (con);
897 if (!bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid)
898 && !bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid)
899 && !bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid)
900 && !bitmap_bit_p (&control_dependency_cache[insn_luid], elem_luid))
901 return NULL;
904 return sd_find_dep_between_no_cache (pro, con, resolved_p, NULL);
907 /* Add or update a dependence described by DEP.
908 MEM1 and MEM2, if non-null, correspond to memory locations in case of
909 data speculation.
911 The function returns a value indicating if an old entry has been changed
912 or a new entry has been added to insn's backward deps.
914 This function merely checks if producer and consumer is the same insn
915 and doesn't create a dep in this case. Actual manipulation of
916 dependence data structures is performed in add_or_update_dep_1. */
917 static enum DEPS_ADJUST_RESULT
918 maybe_add_or_update_dep_1 (dep_t dep, bool resolved_p, rtx mem1, rtx mem2)
920 rtx elem = DEP_PRO (dep);
921 rtx insn = DEP_CON (dep);
923 gcc_assert (INSN_P (insn) && INSN_P (elem));
925 /* Don't depend an insn on itself. */
926 if (insn == elem)
928 if (sched_deps_info->generate_spec_deps)
929 /* INSN has an internal dependence, which we can't overcome. */
930 HAS_INTERNAL_DEP (insn) = 1;
932 return DEP_NODEP;
935 return add_or_update_dep_1 (dep, resolved_p, mem1, mem2);
938 /* Ask dependency caches what needs to be done for dependence DEP.
939 Return DEP_CREATED if new dependence should be created and there is no
940 need to try to find one searching the dependencies lists.
941 Return DEP_PRESENT if there already is a dependence described by DEP and
942 hence nothing is to be done.
943 Return DEP_CHANGED if there already is a dependence, but it should be
944 updated to incorporate additional information from DEP. */
945 static enum DEPS_ADJUST_RESULT
946 ask_dependency_caches (dep_t dep)
948 int elem_luid = INSN_LUID (DEP_PRO (dep));
949 int insn_luid = INSN_LUID (DEP_CON (dep));
951 gcc_assert (true_dependency_cache != NULL
952 && output_dependency_cache != NULL
953 && anti_dependency_cache != NULL
954 && control_dependency_cache != NULL);
956 if (!(current_sched_info->flags & USE_DEPS_LIST))
958 enum reg_note present_dep_type;
960 if (bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid))
961 present_dep_type = REG_DEP_TRUE;
962 else if (bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid))
963 present_dep_type = REG_DEP_OUTPUT;
964 else if (bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid))
965 present_dep_type = REG_DEP_ANTI;
966 else if (bitmap_bit_p (&control_dependency_cache[insn_luid], elem_luid))
967 present_dep_type = REG_DEP_CONTROL;
968 else
969 /* There is no existing dep so it should be created. */
970 return DEP_CREATED;
972 if ((int) DEP_TYPE (dep) >= (int) present_dep_type)
973 /* DEP does not add anything to the existing dependence. */
974 return DEP_PRESENT;
976 else
978 ds_t present_dep_types = 0;
980 if (bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid))
981 present_dep_types |= DEP_TRUE;
982 if (bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid))
983 present_dep_types |= DEP_OUTPUT;
984 if (bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid))
985 present_dep_types |= DEP_ANTI;
986 if (bitmap_bit_p (&control_dependency_cache[insn_luid], elem_luid))
987 present_dep_types |= DEP_CONTROL;
989 if (present_dep_types == 0)
990 /* There is no existing dep so it should be created. */
991 return DEP_CREATED;
993 if (!(current_sched_info->flags & DO_SPECULATION)
994 || !bitmap_bit_p (&spec_dependency_cache[insn_luid], elem_luid))
996 if ((present_dep_types | (DEP_STATUS (dep) & DEP_TYPES))
997 == present_dep_types)
998 /* DEP does not add anything to the existing dependence. */
999 return DEP_PRESENT;
1001 else
1003 /* Only true dependencies can be data speculative and
1004 only anti dependencies can be control speculative. */
1005 gcc_assert ((present_dep_types & (DEP_TRUE | DEP_ANTI))
1006 == present_dep_types);
1008 /* if (DEP is SPECULATIVE) then
1009 ..we should update DEP_STATUS
1010 else
1011 ..we should reset existing dep to non-speculative. */
1015 return DEP_CHANGED;
1018 /* Set dependency caches according to DEP. */
1019 static void
1020 set_dependency_caches (dep_t dep)
1022 int elem_luid = INSN_LUID (DEP_PRO (dep));
1023 int insn_luid = INSN_LUID (DEP_CON (dep));
1025 if (!(current_sched_info->flags & USE_DEPS_LIST))
1027 switch (DEP_TYPE (dep))
1029 case REG_DEP_TRUE:
1030 bitmap_set_bit (&true_dependency_cache[insn_luid], elem_luid);
1031 break;
1033 case REG_DEP_OUTPUT:
1034 bitmap_set_bit (&output_dependency_cache[insn_luid], elem_luid);
1035 break;
1037 case REG_DEP_ANTI:
1038 bitmap_set_bit (&anti_dependency_cache[insn_luid], elem_luid);
1039 break;
1041 case REG_DEP_CONTROL:
1042 bitmap_set_bit (&control_dependency_cache[insn_luid], elem_luid);
1043 break;
1045 default:
1046 gcc_unreachable ();
1049 else
1051 ds_t ds = DEP_STATUS (dep);
1053 if (ds & DEP_TRUE)
1054 bitmap_set_bit (&true_dependency_cache[insn_luid], elem_luid);
1055 if (ds & DEP_OUTPUT)
1056 bitmap_set_bit (&output_dependency_cache[insn_luid], elem_luid);
1057 if (ds & DEP_ANTI)
1058 bitmap_set_bit (&anti_dependency_cache[insn_luid], elem_luid);
1059 if (ds & DEP_CONTROL)
1060 bitmap_set_bit (&control_dependency_cache[insn_luid], elem_luid);
1062 if (ds & SPECULATIVE)
1064 gcc_assert (current_sched_info->flags & DO_SPECULATION);
1065 bitmap_set_bit (&spec_dependency_cache[insn_luid], elem_luid);
1070 /* Type of dependence DEP have changed from OLD_TYPE. Update dependency
1071 caches accordingly. */
1072 static void
1073 update_dependency_caches (dep_t dep, enum reg_note old_type)
1075 int elem_luid = INSN_LUID (DEP_PRO (dep));
1076 int insn_luid = INSN_LUID (DEP_CON (dep));
1078 /* Clear corresponding cache entry because type of the link
1079 may have changed. Keep them if we use_deps_list. */
1080 if (!(current_sched_info->flags & USE_DEPS_LIST))
1082 switch (old_type)
1084 case REG_DEP_OUTPUT:
1085 bitmap_clear_bit (&output_dependency_cache[insn_luid], elem_luid);
1086 break;
1088 case REG_DEP_ANTI:
1089 bitmap_clear_bit (&anti_dependency_cache[insn_luid], elem_luid);
1090 break;
1092 case REG_DEP_CONTROL:
1093 bitmap_clear_bit (&control_dependency_cache[insn_luid], elem_luid);
1094 break;
1096 default:
1097 gcc_unreachable ();
1101 set_dependency_caches (dep);
1104 /* Convert a dependence pointed to by SD_IT to be non-speculative. */
1105 static void
1106 change_spec_dep_to_hard (sd_iterator_def sd_it)
1108 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
1109 dep_link_t link = DEP_NODE_BACK (node);
1110 dep_t dep = DEP_NODE_DEP (node);
1111 rtx elem = DEP_PRO (dep);
1112 rtx insn = DEP_CON (dep);
1114 move_dep_link (link, INSN_SPEC_BACK_DEPS (insn), INSN_HARD_BACK_DEPS (insn));
1116 DEP_STATUS (dep) &= ~SPECULATIVE;
1118 if (true_dependency_cache != NULL)
1119 /* Clear the cache entry. */
1120 bitmap_clear_bit (&spec_dependency_cache[INSN_LUID (insn)],
1121 INSN_LUID (elem));
1124 /* Update DEP to incorporate information from NEW_DEP.
1125 SD_IT points to DEP in case it should be moved to another list.
1126 MEM1 and MEM2, if nonnull, correspond to memory locations in case if
1127 data-speculative dependence should be updated. */
1128 static enum DEPS_ADJUST_RESULT
1129 update_dep (dep_t dep, dep_t new_dep,
1130 sd_iterator_def sd_it ATTRIBUTE_UNUSED,
1131 rtx mem1 ATTRIBUTE_UNUSED,
1132 rtx mem2 ATTRIBUTE_UNUSED)
1134 enum DEPS_ADJUST_RESULT res = DEP_PRESENT;
1135 enum reg_note old_type = DEP_TYPE (dep);
1136 bool was_spec = dep_spec_p (dep);
1138 /* If this is a more restrictive type of dependence than the
1139 existing one, then change the existing dependence to this
1140 type. */
1141 if ((int) DEP_TYPE (new_dep) < (int) old_type)
1143 DEP_TYPE (dep) = DEP_TYPE (new_dep);
1144 res = DEP_CHANGED;
1147 if (current_sched_info->flags & USE_DEPS_LIST)
1148 /* Update DEP_STATUS. */
1150 ds_t dep_status = DEP_STATUS (dep);
1151 ds_t ds = DEP_STATUS (new_dep);
1152 ds_t new_status = ds | dep_status;
1154 if (new_status & SPECULATIVE)
1156 /* Either existing dep or a dep we're adding or both are
1157 speculative. */
1158 if (!(ds & SPECULATIVE)
1159 || !(dep_status & SPECULATIVE))
1160 /* The new dep can't be speculative. */
1161 new_status &= ~SPECULATIVE;
1162 else
1164 /* Both are speculative. Merge probabilities. */
1165 if (mem1 != NULL)
1167 dw_t dw;
1169 dw = estimate_dep_weak (mem1, mem2);
1170 ds = set_dep_weak (ds, BEGIN_DATA, dw);
1173 new_status = ds_merge (dep_status, ds);
1177 ds = new_status;
1179 if (dep_status != ds)
1181 DEP_STATUS (dep) = ds;
1182 res = DEP_CHANGED;
1186 if (was_spec && !dep_spec_p (dep))
1187 /* The old dep was speculative, but now it isn't. */
1188 change_spec_dep_to_hard (sd_it);
1190 if (true_dependency_cache != NULL
1191 && res == DEP_CHANGED)
1192 update_dependency_caches (dep, old_type);
1194 return res;
1197 /* Add or update a dependence described by DEP.
1198 MEM1 and MEM2, if non-null, correspond to memory locations in case of
1199 data speculation.
1201 The function returns a value indicating if an old entry has been changed
1202 or a new entry has been added to insn's backward deps or nothing has
1203 been updated at all. */
1204 static enum DEPS_ADJUST_RESULT
1205 add_or_update_dep_1 (dep_t new_dep, bool resolved_p,
1206 rtx mem1 ATTRIBUTE_UNUSED, rtx mem2 ATTRIBUTE_UNUSED)
1208 bool maybe_present_p = true;
1209 bool present_p = false;
1211 gcc_assert (INSN_P (DEP_PRO (new_dep)) && INSN_P (DEP_CON (new_dep))
1212 && DEP_PRO (new_dep) != DEP_CON (new_dep));
1214 #ifdef ENABLE_CHECKING
1215 check_dep (new_dep, mem1 != NULL);
1216 #endif
1218 if (true_dependency_cache != NULL)
1220 switch (ask_dependency_caches (new_dep))
1222 case DEP_PRESENT:
1223 return DEP_PRESENT;
1225 case DEP_CHANGED:
1226 maybe_present_p = true;
1227 present_p = true;
1228 break;
1230 case DEP_CREATED:
1231 maybe_present_p = false;
1232 present_p = false;
1233 break;
1235 default:
1236 gcc_unreachable ();
1237 break;
1241 /* Check that we don't already have this dependence. */
1242 if (maybe_present_p)
1244 dep_t present_dep;
1245 sd_iterator_def sd_it;
1247 gcc_assert (true_dependency_cache == NULL || present_p);
1249 present_dep = sd_find_dep_between_no_cache (DEP_PRO (new_dep),
1250 DEP_CON (new_dep),
1251 resolved_p, &sd_it);
1253 if (present_dep != NULL)
1254 /* We found an existing dependency between ELEM and INSN. */
1255 return update_dep (present_dep, new_dep, sd_it, mem1, mem2);
1256 else
1257 /* We didn't find a dep, it shouldn't present in the cache. */
1258 gcc_assert (!present_p);
1261 /* Might want to check one level of transitivity to save conses.
1262 This check should be done in maybe_add_or_update_dep_1.
1263 Since we made it to add_or_update_dep_1, we must create
1264 (or update) a link. */
1266 if (mem1 != NULL_RTX)
1268 gcc_assert (sched_deps_info->generate_spec_deps);
1269 DEP_STATUS (new_dep) = set_dep_weak (DEP_STATUS (new_dep), BEGIN_DATA,
1270 estimate_dep_weak (mem1, mem2));
1273 sd_add_dep (new_dep, resolved_p);
1275 return DEP_CREATED;
1278 /* Initialize BACK_LIST_PTR with consumer's backward list and
1279 FORW_LIST_PTR with producer's forward list. If RESOLVED_P is true
1280 initialize with lists that hold resolved deps. */
1281 static void
1282 get_back_and_forw_lists (dep_t dep, bool resolved_p,
1283 deps_list_t *back_list_ptr,
1284 deps_list_t *forw_list_ptr)
1286 rtx con = DEP_CON (dep);
1288 if (!resolved_p)
1290 if (dep_spec_p (dep))
1291 *back_list_ptr = INSN_SPEC_BACK_DEPS (con);
1292 else
1293 *back_list_ptr = INSN_HARD_BACK_DEPS (con);
1295 *forw_list_ptr = INSN_FORW_DEPS (DEP_PRO (dep));
1297 else
1299 *back_list_ptr = INSN_RESOLVED_BACK_DEPS (con);
1300 *forw_list_ptr = INSN_RESOLVED_FORW_DEPS (DEP_PRO (dep));
1304 /* Add dependence described by DEP.
1305 If RESOLVED_P is true treat the dependence as a resolved one. */
1306 void
1307 sd_add_dep (dep_t dep, bool resolved_p)
1309 dep_node_t n = create_dep_node ();
1310 deps_list_t con_back_deps;
1311 deps_list_t pro_forw_deps;
1312 rtx elem = DEP_PRO (dep);
1313 rtx insn = DEP_CON (dep);
1315 gcc_assert (INSN_P (insn) && INSN_P (elem) && insn != elem);
1317 if ((current_sched_info->flags & DO_SPECULATION) == 0
1318 || !sched_insn_is_legitimate_for_speculation_p (insn, DEP_STATUS (dep)))
1319 DEP_STATUS (dep) &= ~SPECULATIVE;
1321 copy_dep (DEP_NODE_DEP (n), dep);
1323 get_back_and_forw_lists (dep, resolved_p, &con_back_deps, &pro_forw_deps);
1325 add_to_deps_list (DEP_NODE_BACK (n), con_back_deps);
1327 #ifdef ENABLE_CHECKING
1328 check_dep (dep, false);
1329 #endif
1331 add_to_deps_list (DEP_NODE_FORW (n), pro_forw_deps);
1333 /* If we are adding a dependency to INSN's LOG_LINKs, then note that
1334 in the bitmap caches of dependency information. */
1335 if (true_dependency_cache != NULL)
1336 set_dependency_caches (dep);
1339 /* Add or update backward dependence between INSN and ELEM
1340 with given type DEP_TYPE and dep_status DS.
1341 This function is a convenience wrapper. */
1342 enum DEPS_ADJUST_RESULT
1343 sd_add_or_update_dep (dep_t dep, bool resolved_p)
1345 return add_or_update_dep_1 (dep, resolved_p, NULL_RTX, NULL_RTX);
1348 /* Resolved dependence pointed to by SD_IT.
1349 SD_IT will advance to the next element. */
1350 void
1351 sd_resolve_dep (sd_iterator_def sd_it)
1353 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
1354 dep_t dep = DEP_NODE_DEP (node);
1355 rtx pro = DEP_PRO (dep);
1356 rtx con = DEP_CON (dep);
1358 if (dep_spec_p (dep))
1359 move_dep_link (DEP_NODE_BACK (node), INSN_SPEC_BACK_DEPS (con),
1360 INSN_RESOLVED_BACK_DEPS (con));
1361 else
1362 move_dep_link (DEP_NODE_BACK (node), INSN_HARD_BACK_DEPS (con),
1363 INSN_RESOLVED_BACK_DEPS (con));
1365 move_dep_link (DEP_NODE_FORW (node), INSN_FORW_DEPS (pro),
1366 INSN_RESOLVED_FORW_DEPS (pro));
1369 /* Perform the inverse operation of sd_resolve_dep. Restore the dependence
1370 pointed to by SD_IT to unresolved state. */
1371 void
1372 sd_unresolve_dep (sd_iterator_def sd_it)
1374 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
1375 dep_t dep = DEP_NODE_DEP (node);
1376 rtx pro = DEP_PRO (dep);
1377 rtx con = DEP_CON (dep);
1379 if (dep_spec_p (dep))
1380 move_dep_link (DEP_NODE_BACK (node), INSN_RESOLVED_BACK_DEPS (con),
1381 INSN_SPEC_BACK_DEPS (con));
1382 else
1383 move_dep_link (DEP_NODE_BACK (node), INSN_RESOLVED_BACK_DEPS (con),
1384 INSN_HARD_BACK_DEPS (con));
1386 move_dep_link (DEP_NODE_FORW (node), INSN_RESOLVED_FORW_DEPS (pro),
1387 INSN_FORW_DEPS (pro));
1390 /* Make TO depend on all the FROM's producers.
1391 If RESOLVED_P is true add dependencies to the resolved lists. */
1392 void
1393 sd_copy_back_deps (rtx to, rtx from, bool resolved_p)
1395 sd_list_types_def list_type;
1396 sd_iterator_def sd_it;
1397 dep_t dep;
1399 list_type = resolved_p ? SD_LIST_RES_BACK : SD_LIST_BACK;
1401 FOR_EACH_DEP (from, list_type, sd_it, dep)
1403 dep_def _new_dep, *new_dep = &_new_dep;
1405 copy_dep (new_dep, dep);
1406 DEP_CON (new_dep) = to;
1407 sd_add_dep (new_dep, resolved_p);
1411 /* Remove a dependency referred to by SD_IT.
1412 SD_IT will point to the next dependence after removal. */
1413 void
1414 sd_delete_dep (sd_iterator_def sd_it)
1416 dep_node_t n = DEP_LINK_NODE (*sd_it.linkp);
1417 dep_t dep = DEP_NODE_DEP (n);
1418 rtx pro = DEP_PRO (dep);
1419 rtx con = DEP_CON (dep);
1420 deps_list_t con_back_deps;
1421 deps_list_t pro_forw_deps;
1423 if (true_dependency_cache != NULL)
1425 int elem_luid = INSN_LUID (pro);
1426 int insn_luid = INSN_LUID (con);
1428 bitmap_clear_bit (&true_dependency_cache[insn_luid], elem_luid);
1429 bitmap_clear_bit (&anti_dependency_cache[insn_luid], elem_luid);
1430 bitmap_clear_bit (&control_dependency_cache[insn_luid], elem_luid);
1431 bitmap_clear_bit (&output_dependency_cache[insn_luid], elem_luid);
1433 if (current_sched_info->flags & DO_SPECULATION)
1434 bitmap_clear_bit (&spec_dependency_cache[insn_luid], elem_luid);
1437 get_back_and_forw_lists (dep, sd_it.resolved_p,
1438 &con_back_deps, &pro_forw_deps);
1440 remove_from_deps_list (DEP_NODE_BACK (n), con_back_deps);
1441 remove_from_deps_list (DEP_NODE_FORW (n), pro_forw_deps);
1443 delete_dep_node (n);
1446 /* Dump size of the lists. */
1447 #define DUMP_LISTS_SIZE (2)
1449 /* Dump dependencies of the lists. */
1450 #define DUMP_LISTS_DEPS (4)
1452 /* Dump all information about the lists. */
1453 #define DUMP_LISTS_ALL (DUMP_LISTS_SIZE | DUMP_LISTS_DEPS)
1455 /* Dump deps_lists of INSN specified by TYPES to DUMP.
1456 FLAGS is a bit mask specifying what information about the lists needs
1457 to be printed.
1458 If FLAGS has the very first bit set, then dump all information about
1459 the lists and propagate this bit into the callee dump functions. */
1460 static void
1461 dump_lists (FILE *dump, rtx insn, sd_list_types_def types, int flags)
1463 sd_iterator_def sd_it;
1464 dep_t dep;
1465 int all;
1467 all = (flags & 1);
1469 if (all)
1470 flags |= DUMP_LISTS_ALL;
1472 fprintf (dump, "[");
1474 if (flags & DUMP_LISTS_SIZE)
1475 fprintf (dump, "%d; ", sd_lists_size (insn, types));
1477 if (flags & DUMP_LISTS_DEPS)
1479 FOR_EACH_DEP (insn, types, sd_it, dep)
1481 dump_dep (dump, dep, dump_dep_flags | all);
1482 fprintf (dump, " ");
1487 /* Dump all information about deps_lists of INSN specified by TYPES
1488 to STDERR. */
1489 void
1490 sd_debug_lists (rtx insn, sd_list_types_def types)
1492 dump_lists (stderr, insn, types, 1);
1493 fprintf (stderr, "\n");
1496 /* A wrapper around add_dependence_1, to add a dependence of CON on
1497 PRO, with type DEP_TYPE. This function implements special handling
1498 for REG_DEP_CONTROL dependencies. For these, we optionally promote
1499 the type to REG_DEP_ANTI if we can determine that predication is
1500 impossible; otherwise we add additional true dependencies on the
1501 INSN_COND_DEPS list of the jump (which PRO must be). */
1502 void
1503 add_dependence (rtx con, rtx pro, enum reg_note dep_type)
1505 if (dep_type == REG_DEP_CONTROL
1506 && !(current_sched_info->flags & DO_PREDICATION))
1507 dep_type = REG_DEP_ANTI;
1509 /* A REG_DEP_CONTROL dependence may be eliminated through predication,
1510 so we must also make the insn dependent on the setter of the
1511 condition. */
1512 if (dep_type == REG_DEP_CONTROL)
1514 rtx real_pro = pro;
1515 rtx other = real_insn_for_shadow (real_pro);
1516 rtx cond;
1518 if (other != NULL_RTX)
1519 real_pro = other;
1520 cond = sched_get_reverse_condition_uncached (real_pro);
1521 /* Verify that the insn does not use a different value in
1522 the condition register than the one that was present at
1523 the jump. */
1524 if (cond == NULL_RTX)
1525 dep_type = REG_DEP_ANTI;
1526 else if (INSN_CACHED_COND (real_pro) == const_true_rtx)
1528 HARD_REG_SET uses;
1529 CLEAR_HARD_REG_SET (uses);
1530 note_uses (&PATTERN (con), record_hard_reg_uses, &uses);
1531 if (TEST_HARD_REG_BIT (uses, REGNO (XEXP (cond, 0))))
1532 dep_type = REG_DEP_ANTI;
1534 if (dep_type == REG_DEP_CONTROL)
1536 if (sched_verbose >= 5)
1537 fprintf (sched_dump, "making DEP_CONTROL for %d\n",
1538 INSN_UID (real_pro));
1539 add_dependence_list (con, INSN_COND_DEPS (real_pro), 0,
1540 REG_DEP_TRUE);
1544 add_dependence_1 (con, pro, dep_type);
1547 /* A convenience wrapper to operate on an entire list. */
1549 static void
1550 add_dependence_list (rtx insn, rtx list, int uncond, enum reg_note dep_type)
1552 for (; list; list = XEXP (list, 1))
1554 if (uncond || ! sched_insns_conditions_mutex_p (insn, XEXP (list, 0)))
1555 add_dependence (insn, XEXP (list, 0), dep_type);
1559 /* Similar, but free *LISTP at the same time, when the context
1560 is not readonly. */
1562 static void
1563 add_dependence_list_and_free (struct deps_desc *deps, rtx insn, rtx *listp,
1564 int uncond, enum reg_note dep_type)
1566 rtx list, next;
1568 /* We don't want to short-circuit dependencies involving debug
1569 insns, because they may cause actual dependencies to be
1570 disregarded. */
1571 if (deps->readonly || DEBUG_INSN_P (insn))
1573 add_dependence_list (insn, *listp, uncond, dep_type);
1574 return;
1577 for (list = *listp, *listp = NULL; list ; list = next)
1579 next = XEXP (list, 1);
1580 if (uncond || ! sched_insns_conditions_mutex_p (insn, XEXP (list, 0)))
1581 add_dependence (insn, XEXP (list, 0), dep_type);
1582 free_INSN_LIST_node (list);
1586 /* Remove all occurences of INSN from LIST. Return the number of
1587 occurences removed. */
1589 static int
1590 remove_from_dependence_list (rtx insn, rtx* listp)
1592 int removed = 0;
1594 while (*listp)
1596 if (XEXP (*listp, 0) == insn)
1598 remove_free_INSN_LIST_node (listp);
1599 removed++;
1600 continue;
1603 listp = &XEXP (*listp, 1);
1606 return removed;
1609 /* Same as above, but process two lists at once. */
1610 static int
1611 remove_from_both_dependence_lists (rtx insn, rtx *listp, rtx *exprp)
1613 int removed = 0;
1615 while (*listp)
1617 if (XEXP (*listp, 0) == insn)
1619 remove_free_INSN_LIST_node (listp);
1620 remove_free_EXPR_LIST_node (exprp);
1621 removed++;
1622 continue;
1625 listp = &XEXP (*listp, 1);
1626 exprp = &XEXP (*exprp, 1);
1629 return removed;
1632 /* Clear all dependencies for an insn. */
1633 static void
1634 delete_all_dependences (rtx insn)
1636 sd_iterator_def sd_it;
1637 dep_t dep;
1639 /* The below cycle can be optimized to clear the caches and back_deps
1640 in one call but that would provoke duplication of code from
1641 delete_dep (). */
1643 for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
1644 sd_iterator_cond (&sd_it, &dep);)
1645 sd_delete_dep (sd_it);
1648 /* All insns in a scheduling group except the first should only have
1649 dependencies on the previous insn in the group. So we find the
1650 first instruction in the scheduling group by walking the dependence
1651 chains backwards. Then we add the dependencies for the group to
1652 the previous nonnote insn. */
1654 static void
1655 chain_to_prev_insn (rtx insn)
1657 sd_iterator_def sd_it;
1658 dep_t dep;
1659 rtx prev_nonnote;
1661 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
1663 rtx i = insn;
1664 rtx pro = DEP_PRO (dep);
1668 i = prev_nonnote_insn (i);
1670 if (pro == i)
1671 goto next_link;
1672 } while (SCHED_GROUP_P (i) || DEBUG_INSN_P (i));
1674 if (! sched_insns_conditions_mutex_p (i, pro))
1675 add_dependence (i, pro, DEP_TYPE (dep));
1676 next_link:;
1679 delete_all_dependences (insn);
1681 prev_nonnote = prev_nonnote_nondebug_insn (insn);
1682 if (BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (prev_nonnote)
1683 && ! sched_insns_conditions_mutex_p (insn, prev_nonnote))
1684 add_dependence (insn, prev_nonnote, REG_DEP_ANTI);
1687 /* Process an insn's memory dependencies. There are four kinds of
1688 dependencies:
1690 (0) read dependence: read follows read
1691 (1) true dependence: read follows write
1692 (2) output dependence: write follows write
1693 (3) anti dependence: write follows read
1695 We are careful to build only dependencies which actually exist, and
1696 use transitivity to avoid building too many links. */
1698 /* Add an INSN and MEM reference pair to a pending INSN_LIST and MEM_LIST.
1699 The MEM is a memory reference contained within INSN, which we are saving
1700 so that we can do memory aliasing on it. */
1702 static void
1703 add_insn_mem_dependence (struct deps_desc *deps, bool read_p,
1704 rtx insn, rtx mem)
1706 rtx *insn_list;
1707 rtx *mem_list;
1708 rtx link;
1710 gcc_assert (!deps->readonly);
1711 if (read_p)
1713 insn_list = &deps->pending_read_insns;
1714 mem_list = &deps->pending_read_mems;
1715 if (!DEBUG_INSN_P (insn))
1716 deps->pending_read_list_length++;
1718 else
1720 insn_list = &deps->pending_write_insns;
1721 mem_list = &deps->pending_write_mems;
1722 deps->pending_write_list_length++;
1725 link = alloc_INSN_LIST (insn, *insn_list);
1726 *insn_list = link;
1728 if (sched_deps_info->use_cselib)
1730 mem = shallow_copy_rtx (mem);
1731 XEXP (mem, 0) = cselib_subst_to_values_from_insn (XEXP (mem, 0),
1732 GET_MODE (mem), insn);
1734 link = alloc_EXPR_LIST (VOIDmode, canon_rtx (mem), *mem_list);
1735 *mem_list = link;
1738 /* Make a dependency between every memory reference on the pending lists
1739 and INSN, thus flushing the pending lists. FOR_READ is true if emitting
1740 dependencies for a read operation, similarly with FOR_WRITE. */
1742 static void
1743 flush_pending_lists (struct deps_desc *deps, rtx insn, int for_read,
1744 int for_write)
1746 if (for_write)
1748 add_dependence_list_and_free (deps, insn, &deps->pending_read_insns,
1749 1, REG_DEP_ANTI);
1750 if (!deps->readonly)
1752 free_EXPR_LIST_list (&deps->pending_read_mems);
1753 deps->pending_read_list_length = 0;
1757 add_dependence_list_and_free (deps, insn, &deps->pending_write_insns, 1,
1758 for_read ? REG_DEP_ANTI : REG_DEP_OUTPUT);
1760 add_dependence_list_and_free (deps, insn,
1761 &deps->last_pending_memory_flush, 1,
1762 for_read ? REG_DEP_ANTI : REG_DEP_OUTPUT);
1764 add_dependence_list_and_free (deps, insn, &deps->pending_jump_insns, 1,
1765 REG_DEP_ANTI);
1767 if (!deps->readonly)
1769 free_EXPR_LIST_list (&deps->pending_write_mems);
1770 deps->pending_write_list_length = 0;
1772 deps->last_pending_memory_flush = alloc_INSN_LIST (insn, NULL_RTX);
1773 deps->pending_flush_length = 1;
1777 /* Instruction which dependencies we are analyzing. */
1778 static rtx cur_insn = NULL_RTX;
1780 /* Implement hooks for haifa scheduler. */
1782 static void
1783 haifa_start_insn (rtx insn)
1785 gcc_assert (insn && !cur_insn);
1787 cur_insn = insn;
1790 static void
1791 haifa_finish_insn (void)
1793 cur_insn = NULL;
1796 void
1797 haifa_note_reg_set (int regno)
1799 SET_REGNO_REG_SET (reg_pending_sets, regno);
1802 void
1803 haifa_note_reg_clobber (int regno)
1805 SET_REGNO_REG_SET (reg_pending_clobbers, regno);
1808 void
1809 haifa_note_reg_use (int regno)
1811 SET_REGNO_REG_SET (reg_pending_uses, regno);
1814 static void
1815 haifa_note_mem_dep (rtx mem, rtx pending_mem, rtx pending_insn, ds_t ds)
1817 if (!(ds & SPECULATIVE))
1819 mem = NULL_RTX;
1820 pending_mem = NULL_RTX;
1822 else
1823 gcc_assert (ds & BEGIN_DATA);
1826 dep_def _dep, *dep = &_dep;
1828 init_dep_1 (dep, pending_insn, cur_insn, ds_to_dt (ds),
1829 current_sched_info->flags & USE_DEPS_LIST ? ds : 0);
1830 maybe_add_or_update_dep_1 (dep, false, pending_mem, mem);
1835 static void
1836 haifa_note_dep (rtx elem, ds_t ds)
1838 dep_def _dep;
1839 dep_t dep = &_dep;
1841 init_dep (dep, elem, cur_insn, ds_to_dt (ds));
1842 maybe_add_or_update_dep_1 (dep, false, NULL_RTX, NULL_RTX);
1845 static void
1846 note_reg_use (int r)
1848 if (sched_deps_info->note_reg_use)
1849 sched_deps_info->note_reg_use (r);
1852 static void
1853 note_reg_set (int r)
1855 if (sched_deps_info->note_reg_set)
1856 sched_deps_info->note_reg_set (r);
1859 static void
1860 note_reg_clobber (int r)
1862 if (sched_deps_info->note_reg_clobber)
1863 sched_deps_info->note_reg_clobber (r);
1866 static void
1867 note_mem_dep (rtx m1, rtx m2, rtx e, ds_t ds)
1869 if (sched_deps_info->note_mem_dep)
1870 sched_deps_info->note_mem_dep (m1, m2, e, ds);
1873 static void
1874 note_dep (rtx e, ds_t ds)
1876 if (sched_deps_info->note_dep)
1877 sched_deps_info->note_dep (e, ds);
1880 /* Return corresponding to DS reg_note. */
1881 enum reg_note
1882 ds_to_dt (ds_t ds)
1884 if (ds & DEP_TRUE)
1885 return REG_DEP_TRUE;
1886 else if (ds & DEP_OUTPUT)
1887 return REG_DEP_OUTPUT;
1888 else if (ds & DEP_ANTI)
1889 return REG_DEP_ANTI;
1890 else
1892 gcc_assert (ds & DEP_CONTROL);
1893 return REG_DEP_CONTROL;
1899 /* Functions for computation of info needed for register pressure
1900 sensitive insn scheduling. */
1903 /* Allocate and return reg_use_data structure for REGNO and INSN. */
1904 static struct reg_use_data *
1905 create_insn_reg_use (int regno, rtx insn)
1907 struct reg_use_data *use;
1909 use = (struct reg_use_data *) xmalloc (sizeof (struct reg_use_data));
1910 use->regno = regno;
1911 use->insn = insn;
1912 use->next_insn_use = INSN_REG_USE_LIST (insn);
1913 INSN_REG_USE_LIST (insn) = use;
1914 return use;
1917 /* Allocate and return reg_set_data structure for REGNO and INSN. */
1918 static struct reg_set_data *
1919 create_insn_reg_set (int regno, rtx insn)
1921 struct reg_set_data *set;
1923 set = (struct reg_set_data *) xmalloc (sizeof (struct reg_set_data));
1924 set->regno = regno;
1925 set->insn = insn;
1926 set->next_insn_set = INSN_REG_SET_LIST (insn);
1927 INSN_REG_SET_LIST (insn) = set;
1928 return set;
1931 /* Set up insn register uses for INSN and dependency context DEPS. */
1932 static void
1933 setup_insn_reg_uses (struct deps_desc *deps, rtx insn)
1935 unsigned i;
1936 reg_set_iterator rsi;
1937 rtx list;
1938 struct reg_use_data *use, *use2, *next;
1939 struct deps_reg *reg_last;
1941 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
1943 if (i < FIRST_PSEUDO_REGISTER
1944 && TEST_HARD_REG_BIT (ira_no_alloc_regs, i))
1945 continue;
1947 if (find_regno_note (insn, REG_DEAD, i) == NULL_RTX
1948 && ! REGNO_REG_SET_P (reg_pending_sets, i)
1949 && ! REGNO_REG_SET_P (reg_pending_clobbers, i))
1950 /* Ignore use which is not dying. */
1951 continue;
1953 use = create_insn_reg_use (i, insn);
1954 use->next_regno_use = use;
1955 reg_last = &deps->reg_last[i];
1957 /* Create the cycle list of uses. */
1958 for (list = reg_last->uses; list; list = XEXP (list, 1))
1960 use2 = create_insn_reg_use (i, XEXP (list, 0));
1961 next = use->next_regno_use;
1962 use->next_regno_use = use2;
1963 use2->next_regno_use = next;
1968 /* Register pressure info for the currently processed insn. */
1969 static struct reg_pressure_data reg_pressure_info[N_REG_CLASSES];
1971 /* Return TRUE if INSN has the use structure for REGNO. */
1972 static bool
1973 insn_use_p (rtx insn, int regno)
1975 struct reg_use_data *use;
1977 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
1978 if (use->regno == regno)
1979 return true;
1980 return false;
1983 /* Update the register pressure info after birth of pseudo register REGNO
1984 in INSN. Arguments CLOBBER_P and UNUSED_P say correspondingly that
1985 the register is in clobber or unused after the insn. */
1986 static void
1987 mark_insn_pseudo_birth (rtx insn, int regno, bool clobber_p, bool unused_p)
1989 int incr, new_incr;
1990 enum reg_class cl;
1992 gcc_assert (regno >= FIRST_PSEUDO_REGISTER);
1993 cl = sched_regno_pressure_class[regno];
1994 if (cl != NO_REGS)
1996 incr = ira_reg_class_max_nregs[cl][PSEUDO_REGNO_MODE (regno)];
1997 if (clobber_p)
1999 new_incr = reg_pressure_info[cl].clobber_increase + incr;
2000 reg_pressure_info[cl].clobber_increase = new_incr;
2002 else if (unused_p)
2004 new_incr = reg_pressure_info[cl].unused_set_increase + incr;
2005 reg_pressure_info[cl].unused_set_increase = new_incr;
2007 else
2009 new_incr = reg_pressure_info[cl].set_increase + incr;
2010 reg_pressure_info[cl].set_increase = new_incr;
2011 if (! insn_use_p (insn, regno))
2012 reg_pressure_info[cl].change += incr;
2013 create_insn_reg_set (regno, insn);
2015 gcc_assert (new_incr < (1 << INCREASE_BITS));
2019 /* Like mark_insn_pseudo_regno_birth except that NREGS saying how many
2020 hard registers involved in the birth. */
2021 static void
2022 mark_insn_hard_regno_birth (rtx insn, int regno, int nregs,
2023 bool clobber_p, bool unused_p)
2025 enum reg_class cl;
2026 int new_incr, last = regno + nregs;
2028 while (regno < last)
2030 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
2031 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
2033 cl = sched_regno_pressure_class[regno];
2034 if (cl != NO_REGS)
2036 if (clobber_p)
2038 new_incr = reg_pressure_info[cl].clobber_increase + 1;
2039 reg_pressure_info[cl].clobber_increase = new_incr;
2041 else if (unused_p)
2043 new_incr = reg_pressure_info[cl].unused_set_increase + 1;
2044 reg_pressure_info[cl].unused_set_increase = new_incr;
2046 else
2048 new_incr = reg_pressure_info[cl].set_increase + 1;
2049 reg_pressure_info[cl].set_increase = new_incr;
2050 if (! insn_use_p (insn, regno))
2051 reg_pressure_info[cl].change += 1;
2052 create_insn_reg_set (regno, insn);
2054 gcc_assert (new_incr < (1 << INCREASE_BITS));
2057 regno++;
2061 /* Update the register pressure info after birth of pseudo or hard
2062 register REG in INSN. Arguments CLOBBER_P and UNUSED_P say
2063 correspondingly that the register is in clobber or unused after the
2064 insn. */
2065 static void
2066 mark_insn_reg_birth (rtx insn, rtx reg, bool clobber_p, bool unused_p)
2068 int regno;
2070 if (GET_CODE (reg) == SUBREG)
2071 reg = SUBREG_REG (reg);
2073 if (! REG_P (reg))
2074 return;
2076 regno = REGNO (reg);
2077 if (regno < FIRST_PSEUDO_REGISTER)
2078 mark_insn_hard_regno_birth (insn, regno,
2079 hard_regno_nregs[regno][GET_MODE (reg)],
2080 clobber_p, unused_p);
2081 else
2082 mark_insn_pseudo_birth (insn, regno, clobber_p, unused_p);
2085 /* Update the register pressure info after death of pseudo register
2086 REGNO. */
2087 static void
2088 mark_pseudo_death (int regno)
2090 int incr;
2091 enum reg_class cl;
2093 gcc_assert (regno >= FIRST_PSEUDO_REGISTER);
2094 cl = sched_regno_pressure_class[regno];
2095 if (cl != NO_REGS)
2097 incr = ira_reg_class_max_nregs[cl][PSEUDO_REGNO_MODE (regno)];
2098 reg_pressure_info[cl].change -= incr;
2102 /* Like mark_pseudo_death except that NREGS saying how many hard
2103 registers involved in the death. */
2104 static void
2105 mark_hard_regno_death (int regno, int nregs)
2107 enum reg_class cl;
2108 int last = regno + nregs;
2110 while (regno < last)
2112 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
2113 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
2115 cl = sched_regno_pressure_class[regno];
2116 if (cl != NO_REGS)
2117 reg_pressure_info[cl].change -= 1;
2119 regno++;
2123 /* Update the register pressure info after death of pseudo or hard
2124 register REG. */
2125 static void
2126 mark_reg_death (rtx reg)
2128 int regno;
2130 if (GET_CODE (reg) == SUBREG)
2131 reg = SUBREG_REG (reg);
2133 if (! REG_P (reg))
2134 return;
2136 regno = REGNO (reg);
2137 if (regno < FIRST_PSEUDO_REGISTER)
2138 mark_hard_regno_death (regno, hard_regno_nregs[regno][GET_MODE (reg)]);
2139 else
2140 mark_pseudo_death (regno);
2143 /* Process SETTER of REG. DATA is an insn containing the setter. */
2144 static void
2145 mark_insn_reg_store (rtx reg, const_rtx setter, void *data)
2147 if (setter != NULL_RTX && GET_CODE (setter) != SET)
2148 return;
2149 mark_insn_reg_birth
2150 ((rtx) data, reg, false,
2151 find_reg_note ((const_rtx) data, REG_UNUSED, reg) != NULL_RTX);
2154 /* Like mark_insn_reg_store except notice just CLOBBERs; ignore SETs. */
2155 static void
2156 mark_insn_reg_clobber (rtx reg, const_rtx setter, void *data)
2158 if (GET_CODE (setter) == CLOBBER)
2159 mark_insn_reg_birth ((rtx) data, reg, true, false);
2162 /* Set up reg pressure info related to INSN. */
2163 void
2164 init_insn_reg_pressure_info (rtx insn)
2166 int i, len;
2167 enum reg_class cl;
2168 static struct reg_pressure_data *pressure_info;
2169 rtx link;
2171 gcc_assert (sched_pressure != SCHED_PRESSURE_NONE);
2173 if (! INSN_P (insn))
2174 return;
2176 for (i = 0; i < ira_pressure_classes_num; i++)
2178 cl = ira_pressure_classes[i];
2179 reg_pressure_info[cl].clobber_increase = 0;
2180 reg_pressure_info[cl].set_increase = 0;
2181 reg_pressure_info[cl].unused_set_increase = 0;
2182 reg_pressure_info[cl].change = 0;
2185 note_stores (PATTERN (insn), mark_insn_reg_clobber, insn);
2187 note_stores (PATTERN (insn), mark_insn_reg_store, insn);
2189 #ifdef AUTO_INC_DEC
2190 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2191 if (REG_NOTE_KIND (link) == REG_INC)
2192 mark_insn_reg_store (XEXP (link, 0), NULL_RTX, insn);
2193 #endif
2195 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2196 if (REG_NOTE_KIND (link) == REG_DEAD)
2197 mark_reg_death (XEXP (link, 0));
2199 len = sizeof (struct reg_pressure_data) * ira_pressure_classes_num;
2200 pressure_info
2201 = INSN_REG_PRESSURE (insn) = (struct reg_pressure_data *) xmalloc (len);
2202 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
2203 INSN_MAX_REG_PRESSURE (insn) = (int *) xcalloc (ira_pressure_classes_num
2204 * sizeof (int), 1);
2205 for (i = 0; i < ira_pressure_classes_num; i++)
2207 cl = ira_pressure_classes[i];
2208 pressure_info[i].clobber_increase
2209 = reg_pressure_info[cl].clobber_increase;
2210 pressure_info[i].set_increase = reg_pressure_info[cl].set_increase;
2211 pressure_info[i].unused_set_increase
2212 = reg_pressure_info[cl].unused_set_increase;
2213 pressure_info[i].change = reg_pressure_info[cl].change;
2220 /* Internal variable for sched_analyze_[12] () functions.
2221 If it is nonzero, this means that sched_analyze_[12] looks
2222 at the most toplevel SET. */
2223 static bool can_start_lhs_rhs_p;
2225 /* Extend reg info for the deps context DEPS given that
2226 we have just generated a register numbered REGNO. */
2227 static void
2228 extend_deps_reg_info (struct deps_desc *deps, int regno)
2230 int max_regno = regno + 1;
2232 gcc_assert (!reload_completed);
2234 /* In a readonly context, it would not hurt to extend info,
2235 but it should not be needed. */
2236 if (reload_completed && deps->readonly)
2238 deps->max_reg = max_regno;
2239 return;
2242 if (max_regno > deps->max_reg)
2244 deps->reg_last = XRESIZEVEC (struct deps_reg, deps->reg_last,
2245 max_regno);
2246 memset (&deps->reg_last[deps->max_reg],
2247 0, (max_regno - deps->max_reg)
2248 * sizeof (struct deps_reg));
2249 deps->max_reg = max_regno;
2253 /* Extends REG_INFO_P if needed. */
2254 void
2255 maybe_extend_reg_info_p (void)
2257 /* Extend REG_INFO_P, if needed. */
2258 if ((unsigned int)max_regno - 1 >= reg_info_p_size)
2260 size_t new_reg_info_p_size = max_regno + 128;
2262 gcc_assert (!reload_completed && sel_sched_p ());
2264 reg_info_p = (struct reg_info_t *) xrecalloc (reg_info_p,
2265 new_reg_info_p_size,
2266 reg_info_p_size,
2267 sizeof (*reg_info_p));
2268 reg_info_p_size = new_reg_info_p_size;
2272 /* Analyze a single reference to register (reg:MODE REGNO) in INSN.
2273 The type of the reference is specified by REF and can be SET,
2274 CLOBBER, PRE_DEC, POST_DEC, PRE_INC, POST_INC or USE. */
2276 static void
2277 sched_analyze_reg (struct deps_desc *deps, int regno, enum machine_mode mode,
2278 enum rtx_code ref, rtx insn)
2280 /* We could emit new pseudos in renaming. Extend the reg structures. */
2281 if (!reload_completed && sel_sched_p ()
2282 && (regno >= max_reg_num () - 1 || regno >= deps->max_reg))
2283 extend_deps_reg_info (deps, regno);
2285 maybe_extend_reg_info_p ();
2287 /* A hard reg in a wide mode may really be multiple registers.
2288 If so, mark all of them just like the first. */
2289 if (regno < FIRST_PSEUDO_REGISTER)
2291 int i = hard_regno_nregs[regno][mode];
2292 if (ref == SET)
2294 while (--i >= 0)
2295 note_reg_set (regno + i);
2297 else if (ref == USE)
2299 while (--i >= 0)
2300 note_reg_use (regno + i);
2302 else
2304 while (--i >= 0)
2305 note_reg_clobber (regno + i);
2309 /* ??? Reload sometimes emits USEs and CLOBBERs of pseudos that
2310 it does not reload. Ignore these as they have served their
2311 purpose already. */
2312 else if (regno >= deps->max_reg)
2314 enum rtx_code code = GET_CODE (PATTERN (insn));
2315 gcc_assert (code == USE || code == CLOBBER);
2318 else
2320 if (ref == SET)
2321 note_reg_set (regno);
2322 else if (ref == USE)
2323 note_reg_use (regno);
2324 else
2325 note_reg_clobber (regno);
2327 /* Pseudos that are REG_EQUIV to something may be replaced
2328 by that during reloading. We need only add dependencies for
2329 the address in the REG_EQUIV note. */
2330 if (!reload_completed && get_reg_known_equiv_p (regno))
2332 rtx t = get_reg_known_value (regno);
2333 if (MEM_P (t))
2334 sched_analyze_2 (deps, XEXP (t, 0), insn);
2337 /* Don't let it cross a call after scheduling if it doesn't
2338 already cross one. */
2339 if (REG_N_CALLS_CROSSED (regno) == 0)
2341 if (!deps->readonly && ref == USE && !DEBUG_INSN_P (insn))
2342 deps->sched_before_next_call
2343 = alloc_INSN_LIST (insn, deps->sched_before_next_call);
2344 else
2345 add_dependence_list (insn, deps->last_function_call, 1,
2346 REG_DEP_ANTI);
2351 /* Analyze a single SET, CLOBBER, PRE_DEC, POST_DEC, PRE_INC or POST_INC
2352 rtx, X, creating all dependencies generated by the write to the
2353 destination of X, and reads of everything mentioned. */
2355 static void
2356 sched_analyze_1 (struct deps_desc *deps, rtx x, rtx insn)
2358 rtx dest = XEXP (x, 0);
2359 enum rtx_code code = GET_CODE (x);
2360 bool cslr_p = can_start_lhs_rhs_p;
2362 can_start_lhs_rhs_p = false;
2364 gcc_assert (dest);
2365 if (dest == 0)
2366 return;
2368 if (cslr_p && sched_deps_info->start_lhs)
2369 sched_deps_info->start_lhs (dest);
2371 if (GET_CODE (dest) == PARALLEL)
2373 int i;
2375 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
2376 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
2377 sched_analyze_1 (deps,
2378 gen_rtx_CLOBBER (VOIDmode,
2379 XEXP (XVECEXP (dest, 0, i), 0)),
2380 insn);
2382 if (cslr_p && sched_deps_info->finish_lhs)
2383 sched_deps_info->finish_lhs ();
2385 if (code == SET)
2387 can_start_lhs_rhs_p = cslr_p;
2389 sched_analyze_2 (deps, SET_SRC (x), insn);
2391 can_start_lhs_rhs_p = false;
2394 return;
2397 while (GET_CODE (dest) == STRICT_LOW_PART || GET_CODE (dest) == SUBREG
2398 || GET_CODE (dest) == ZERO_EXTRACT)
2400 if (GET_CODE (dest) == STRICT_LOW_PART
2401 || GET_CODE (dest) == ZERO_EXTRACT
2402 || df_read_modify_subreg_p (dest))
2404 /* These both read and modify the result. We must handle
2405 them as writes to get proper dependencies for following
2406 instructions. We must handle them as reads to get proper
2407 dependencies from this to previous instructions.
2408 Thus we need to call sched_analyze_2. */
2410 sched_analyze_2 (deps, XEXP (dest, 0), insn);
2412 if (GET_CODE (dest) == ZERO_EXTRACT)
2414 /* The second and third arguments are values read by this insn. */
2415 sched_analyze_2 (deps, XEXP (dest, 1), insn);
2416 sched_analyze_2 (deps, XEXP (dest, 2), insn);
2418 dest = XEXP (dest, 0);
2421 if (REG_P (dest))
2423 int regno = REGNO (dest);
2424 enum machine_mode mode = GET_MODE (dest);
2426 sched_analyze_reg (deps, regno, mode, code, insn);
2428 #ifdef STACK_REGS
2429 /* Treat all writes to a stack register as modifying the TOS. */
2430 if (regno >= FIRST_STACK_REG && regno <= LAST_STACK_REG)
2432 /* Avoid analyzing the same register twice. */
2433 if (regno != FIRST_STACK_REG)
2434 sched_analyze_reg (deps, FIRST_STACK_REG, mode, code, insn);
2436 add_to_hard_reg_set (&implicit_reg_pending_uses, mode,
2437 FIRST_STACK_REG);
2439 #endif
2441 else if (MEM_P (dest))
2443 /* Writing memory. */
2444 rtx t = dest;
2446 if (sched_deps_info->use_cselib)
2448 enum machine_mode address_mode
2449 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (dest));
2451 t = shallow_copy_rtx (dest);
2452 cselib_lookup_from_insn (XEXP (t, 0), address_mode, 1,
2453 GET_MODE (t), insn);
2454 XEXP (t, 0)
2455 = cselib_subst_to_values_from_insn (XEXP (t, 0), GET_MODE (t),
2456 insn);
2458 t = canon_rtx (t);
2460 /* Pending lists can't get larger with a readonly context. */
2461 if (!deps->readonly
2462 && ((deps->pending_read_list_length + deps->pending_write_list_length)
2463 > MAX_PENDING_LIST_LENGTH))
2465 /* Flush all pending reads and writes to prevent the pending lists
2466 from getting any larger. Insn scheduling runs too slowly when
2467 these lists get long. When compiling GCC with itself,
2468 this flush occurs 8 times for sparc, and 10 times for m88k using
2469 the default value of 32. */
2470 flush_pending_lists (deps, insn, false, true);
2472 else
2474 rtx pending, pending_mem;
2476 pending = deps->pending_read_insns;
2477 pending_mem = deps->pending_read_mems;
2478 while (pending)
2480 if (anti_dependence (XEXP (pending_mem, 0), t)
2481 && ! sched_insns_conditions_mutex_p (insn, XEXP (pending, 0)))
2482 note_mem_dep (t, XEXP (pending_mem, 0), XEXP (pending, 0),
2483 DEP_ANTI);
2485 pending = XEXP (pending, 1);
2486 pending_mem = XEXP (pending_mem, 1);
2489 pending = deps->pending_write_insns;
2490 pending_mem = deps->pending_write_mems;
2491 while (pending)
2493 if (output_dependence (XEXP (pending_mem, 0), t)
2494 && ! sched_insns_conditions_mutex_p (insn, XEXP (pending, 0)))
2495 note_mem_dep (t, XEXP (pending_mem, 0), XEXP (pending, 0),
2496 DEP_OUTPUT);
2498 pending = XEXP (pending, 1);
2499 pending_mem = XEXP (pending_mem, 1);
2502 add_dependence_list (insn, deps->last_pending_memory_flush, 1,
2503 REG_DEP_ANTI);
2504 add_dependence_list (insn, deps->pending_jump_insns, 1,
2505 REG_DEP_CONTROL);
2507 if (!deps->readonly)
2508 add_insn_mem_dependence (deps, false, insn, dest);
2510 sched_analyze_2 (deps, XEXP (dest, 0), insn);
2513 if (cslr_p && sched_deps_info->finish_lhs)
2514 sched_deps_info->finish_lhs ();
2516 /* Analyze reads. */
2517 if (GET_CODE (x) == SET)
2519 can_start_lhs_rhs_p = cslr_p;
2521 sched_analyze_2 (deps, SET_SRC (x), insn);
2523 can_start_lhs_rhs_p = false;
2527 /* Analyze the uses of memory and registers in rtx X in INSN. */
2528 static void
2529 sched_analyze_2 (struct deps_desc *deps, rtx x, rtx insn)
2531 int i;
2532 int j;
2533 enum rtx_code code;
2534 const char *fmt;
2535 bool cslr_p = can_start_lhs_rhs_p;
2537 can_start_lhs_rhs_p = false;
2539 gcc_assert (x);
2540 if (x == 0)
2541 return;
2543 if (cslr_p && sched_deps_info->start_rhs)
2544 sched_deps_info->start_rhs (x);
2546 code = GET_CODE (x);
2548 switch (code)
2550 case CONST_INT:
2551 case CONST_DOUBLE:
2552 case CONST_FIXED:
2553 case CONST_VECTOR:
2554 case SYMBOL_REF:
2555 case CONST:
2556 case LABEL_REF:
2557 /* Ignore constants. */
2558 if (cslr_p && sched_deps_info->finish_rhs)
2559 sched_deps_info->finish_rhs ();
2561 return;
2563 #ifdef HAVE_cc0
2564 case CC0:
2565 /* User of CC0 depends on immediately preceding insn. */
2566 SCHED_GROUP_P (insn) = 1;
2567 /* Don't move CC0 setter to another block (it can set up the
2568 same flag for previous CC0 users which is safe). */
2569 CANT_MOVE (prev_nonnote_insn (insn)) = 1;
2571 if (cslr_p && sched_deps_info->finish_rhs)
2572 sched_deps_info->finish_rhs ();
2574 return;
2575 #endif
2577 case REG:
2579 int regno = REGNO (x);
2580 enum machine_mode mode = GET_MODE (x);
2582 sched_analyze_reg (deps, regno, mode, USE, insn);
2584 #ifdef STACK_REGS
2585 /* Treat all reads of a stack register as modifying the TOS. */
2586 if (regno >= FIRST_STACK_REG && regno <= LAST_STACK_REG)
2588 /* Avoid analyzing the same register twice. */
2589 if (regno != FIRST_STACK_REG)
2590 sched_analyze_reg (deps, FIRST_STACK_REG, mode, USE, insn);
2591 sched_analyze_reg (deps, FIRST_STACK_REG, mode, SET, insn);
2593 #endif
2595 if (cslr_p && sched_deps_info->finish_rhs)
2596 sched_deps_info->finish_rhs ();
2598 return;
2601 case MEM:
2603 /* Reading memory. */
2604 rtx u;
2605 rtx pending, pending_mem;
2606 rtx t = x;
2608 if (sched_deps_info->use_cselib)
2610 enum machine_mode address_mode
2611 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (t));
2613 t = shallow_copy_rtx (t);
2614 cselib_lookup_from_insn (XEXP (t, 0), address_mode, 1,
2615 GET_MODE (t), insn);
2616 XEXP (t, 0)
2617 = cselib_subst_to_values_from_insn (XEXP (t, 0), GET_MODE (t),
2618 insn);
2621 if (!DEBUG_INSN_P (insn))
2623 t = canon_rtx (t);
2624 pending = deps->pending_read_insns;
2625 pending_mem = deps->pending_read_mems;
2626 while (pending)
2628 if (read_dependence (XEXP (pending_mem, 0), t)
2629 && ! sched_insns_conditions_mutex_p (insn,
2630 XEXP (pending, 0)))
2631 note_mem_dep (t, XEXP (pending_mem, 0), XEXP (pending, 0),
2632 DEP_ANTI);
2634 pending = XEXP (pending, 1);
2635 pending_mem = XEXP (pending_mem, 1);
2638 pending = deps->pending_write_insns;
2639 pending_mem = deps->pending_write_mems;
2640 while (pending)
2642 if (true_dependence (XEXP (pending_mem, 0), VOIDmode, t)
2643 && ! sched_insns_conditions_mutex_p (insn,
2644 XEXP (pending, 0)))
2645 note_mem_dep (t, XEXP (pending_mem, 0), XEXP (pending, 0),
2646 sched_deps_info->generate_spec_deps
2647 ? BEGIN_DATA | DEP_TRUE : DEP_TRUE);
2649 pending = XEXP (pending, 1);
2650 pending_mem = XEXP (pending_mem, 1);
2653 for (u = deps->last_pending_memory_flush; u; u = XEXP (u, 1))
2654 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
2656 for (u = deps->pending_jump_insns; u; u = XEXP (u, 1))
2657 if (deps_may_trap_p (x))
2659 if ((sched_deps_info->generate_spec_deps)
2660 && sel_sched_p () && (spec_info->mask & BEGIN_CONTROL))
2662 ds_t ds = set_dep_weak (DEP_ANTI, BEGIN_CONTROL,
2663 MAX_DEP_WEAK);
2665 note_dep (XEXP (u, 0), ds);
2667 else
2668 add_dependence (insn, XEXP (u, 0), REG_DEP_CONTROL);
2672 /* Always add these dependencies to pending_reads, since
2673 this insn may be followed by a write. */
2674 if (!deps->readonly)
2675 add_insn_mem_dependence (deps, true, insn, x);
2677 sched_analyze_2 (deps, XEXP (x, 0), insn);
2679 if (cslr_p && sched_deps_info->finish_rhs)
2680 sched_deps_info->finish_rhs ();
2682 return;
2685 /* Force pending stores to memory in case a trap handler needs them. */
2686 case TRAP_IF:
2687 flush_pending_lists (deps, insn, true, false);
2688 break;
2690 case PREFETCH:
2691 if (PREFETCH_SCHEDULE_BARRIER_P (x))
2692 reg_pending_barrier = TRUE_BARRIER;
2693 break;
2695 case UNSPEC_VOLATILE:
2696 flush_pending_lists (deps, insn, true, true);
2697 /* FALLTHRU */
2699 case ASM_OPERANDS:
2700 case ASM_INPUT:
2702 /* Traditional and volatile asm instructions must be considered to use
2703 and clobber all hard registers, all pseudo-registers and all of
2704 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
2706 Consider for instance a volatile asm that changes the fpu rounding
2707 mode. An insn should not be moved across this even if it only uses
2708 pseudo-regs because it might give an incorrectly rounded result. */
2709 if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
2710 reg_pending_barrier = TRUE_BARRIER;
2712 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
2713 We can not just fall through here since then we would be confused
2714 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
2715 traditional asms unlike their normal usage. */
2717 if (code == ASM_OPERANDS)
2719 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
2720 sched_analyze_2 (deps, ASM_OPERANDS_INPUT (x, j), insn);
2722 if (cslr_p && sched_deps_info->finish_rhs)
2723 sched_deps_info->finish_rhs ();
2725 return;
2727 break;
2730 case PRE_DEC:
2731 case POST_DEC:
2732 case PRE_INC:
2733 case POST_INC:
2734 /* These both read and modify the result. We must handle them as writes
2735 to get proper dependencies for following instructions. We must handle
2736 them as reads to get proper dependencies from this to previous
2737 instructions. Thus we need to pass them to both sched_analyze_1
2738 and sched_analyze_2. We must call sched_analyze_2 first in order
2739 to get the proper antecedent for the read. */
2740 sched_analyze_2 (deps, XEXP (x, 0), insn);
2741 sched_analyze_1 (deps, x, insn);
2743 if (cslr_p && sched_deps_info->finish_rhs)
2744 sched_deps_info->finish_rhs ();
2746 return;
2748 case POST_MODIFY:
2749 case PRE_MODIFY:
2750 /* op0 = op0 + op1 */
2751 sched_analyze_2 (deps, XEXP (x, 0), insn);
2752 sched_analyze_2 (deps, XEXP (x, 1), insn);
2753 sched_analyze_1 (deps, x, insn);
2755 if (cslr_p && sched_deps_info->finish_rhs)
2756 sched_deps_info->finish_rhs ();
2758 return;
2760 default:
2761 break;
2764 /* Other cases: walk the insn. */
2765 fmt = GET_RTX_FORMAT (code);
2766 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2768 if (fmt[i] == 'e')
2769 sched_analyze_2 (deps, XEXP (x, i), insn);
2770 else if (fmt[i] == 'E')
2771 for (j = 0; j < XVECLEN (x, i); j++)
2772 sched_analyze_2 (deps, XVECEXP (x, i, j), insn);
2775 if (cslr_p && sched_deps_info->finish_rhs)
2776 sched_deps_info->finish_rhs ();
2779 /* Analyze an INSN with pattern X to find all dependencies. */
2780 static void
2781 sched_analyze_insn (struct deps_desc *deps, rtx x, rtx insn)
2783 RTX_CODE code = GET_CODE (x);
2784 rtx link;
2785 unsigned i;
2786 reg_set_iterator rsi;
2788 if (! reload_completed)
2790 HARD_REG_SET temp;
2792 extract_insn (insn);
2793 preprocess_constraints ();
2794 ira_implicitly_set_insn_hard_regs (&temp);
2795 AND_COMPL_HARD_REG_SET (temp, ira_no_alloc_regs);
2796 IOR_HARD_REG_SET (implicit_reg_pending_clobbers, temp);
2799 can_start_lhs_rhs_p = (NONJUMP_INSN_P (insn)
2800 && code == SET);
2802 if (may_trap_p (x))
2803 /* Avoid moving trapping instructions accross function calls that might
2804 not always return. */
2805 add_dependence_list (insn, deps->last_function_call_may_noreturn,
2806 1, REG_DEP_ANTI);
2808 /* We must avoid creating a situation in which two successors of the
2809 current block have different unwind info after scheduling. If at any
2810 point the two paths re-join this leads to incorrect unwind info. */
2811 /* ??? There are certain situations involving a forced frame pointer in
2812 which, with extra effort, we could fix up the unwind info at a later
2813 CFG join. However, it seems better to notice these cases earlier
2814 during prologue generation and avoid marking the frame pointer setup
2815 as frame-related at all. */
2816 if (RTX_FRAME_RELATED_P (insn))
2818 /* Make sure prologue insn is scheduled before next jump. */
2819 deps->sched_before_next_jump
2820 = alloc_INSN_LIST (insn, deps->sched_before_next_jump);
2822 /* Make sure epilogue insn is scheduled after preceding jumps. */
2823 add_dependence_list (insn, deps->pending_jump_insns, 1, REG_DEP_ANTI);
2826 if (code == COND_EXEC)
2828 sched_analyze_2 (deps, COND_EXEC_TEST (x), insn);
2830 /* ??? Should be recording conditions so we reduce the number of
2831 false dependencies. */
2832 x = COND_EXEC_CODE (x);
2833 code = GET_CODE (x);
2835 if (code == SET || code == CLOBBER)
2837 sched_analyze_1 (deps, x, insn);
2839 /* Bare clobber insns are used for letting life analysis, reg-stack
2840 and others know that a value is dead. Depend on the last call
2841 instruction so that reg-stack won't get confused. */
2842 if (code == CLOBBER)
2843 add_dependence_list (insn, deps->last_function_call, 1,
2844 REG_DEP_OUTPUT);
2846 else if (code == PARALLEL)
2848 for (i = XVECLEN (x, 0); i--;)
2850 rtx sub = XVECEXP (x, 0, i);
2851 code = GET_CODE (sub);
2853 if (code == COND_EXEC)
2855 sched_analyze_2 (deps, COND_EXEC_TEST (sub), insn);
2856 sub = COND_EXEC_CODE (sub);
2857 code = GET_CODE (sub);
2859 if (code == SET || code == CLOBBER)
2860 sched_analyze_1 (deps, sub, insn);
2861 else
2862 sched_analyze_2 (deps, sub, insn);
2865 else
2866 sched_analyze_2 (deps, x, insn);
2868 /* Mark registers CLOBBERED or used by called function. */
2869 if (CALL_P (insn))
2871 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
2873 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
2874 sched_analyze_1 (deps, XEXP (link, 0), insn);
2875 else
2876 sched_analyze_2 (deps, XEXP (link, 0), insn);
2878 /* Don't schedule anything after a tail call, tail call needs
2879 to use at least all call-saved registers. */
2880 if (SIBLING_CALL_P (insn))
2881 reg_pending_barrier = TRUE_BARRIER;
2882 else if (find_reg_note (insn, REG_SETJMP, NULL))
2883 reg_pending_barrier = MOVE_BARRIER;
2886 if (JUMP_P (insn))
2888 rtx next;
2889 next = next_nonnote_nondebug_insn (insn);
2890 if (next && BARRIER_P (next))
2891 reg_pending_barrier = MOVE_BARRIER;
2892 else
2894 rtx pending, pending_mem;
2896 if (sched_deps_info->compute_jump_reg_dependencies)
2898 (*sched_deps_info->compute_jump_reg_dependencies)
2899 (insn, reg_pending_control_uses);
2901 /* Make latency of jump equal to 0 by using anti-dependence. */
2902 EXECUTE_IF_SET_IN_REG_SET (reg_pending_control_uses, 0, i, rsi)
2904 struct deps_reg *reg_last = &deps->reg_last[i];
2905 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_ANTI);
2906 add_dependence_list (insn, reg_last->implicit_sets,
2907 0, REG_DEP_ANTI);
2908 add_dependence_list (insn, reg_last->clobbers, 0,
2909 REG_DEP_ANTI);
2913 /* All memory writes and volatile reads must happen before the
2914 jump. Non-volatile reads must happen before the jump iff
2915 the result is needed by the above register used mask. */
2917 pending = deps->pending_write_insns;
2918 pending_mem = deps->pending_write_mems;
2919 while (pending)
2921 if (! sched_insns_conditions_mutex_p (insn, XEXP (pending, 0)))
2922 add_dependence (insn, XEXP (pending, 0), REG_DEP_OUTPUT);
2923 pending = XEXP (pending, 1);
2924 pending_mem = XEXP (pending_mem, 1);
2927 pending = deps->pending_read_insns;
2928 pending_mem = deps->pending_read_mems;
2929 while (pending)
2931 if (MEM_VOLATILE_P (XEXP (pending_mem, 0))
2932 && ! sched_insns_conditions_mutex_p (insn, XEXP (pending, 0)))
2933 add_dependence (insn, XEXP (pending, 0), REG_DEP_OUTPUT);
2934 pending = XEXP (pending, 1);
2935 pending_mem = XEXP (pending_mem, 1);
2938 add_dependence_list (insn, deps->last_pending_memory_flush, 1,
2939 REG_DEP_ANTI);
2940 add_dependence_list (insn, deps->pending_jump_insns, 1,
2941 REG_DEP_ANTI);
2945 /* If this instruction can throw an exception, then moving it changes
2946 where block boundaries fall. This is mighty confusing elsewhere.
2947 Therefore, prevent such an instruction from being moved. Same for
2948 non-jump instructions that define block boundaries.
2949 ??? Unclear whether this is still necessary in EBB mode. If not,
2950 add_branch_dependences should be adjusted for RGN mode instead. */
2951 if (((CALL_P (insn) || JUMP_P (insn)) && can_throw_internal (insn))
2952 || (NONJUMP_INSN_P (insn) && control_flow_insn_p (insn)))
2953 reg_pending_barrier = MOVE_BARRIER;
2955 if (sched_pressure != SCHED_PRESSURE_NONE)
2957 setup_insn_reg_uses (deps, insn);
2958 init_insn_reg_pressure_info (insn);
2961 /* Add register dependencies for insn. */
2962 if (DEBUG_INSN_P (insn))
2964 rtx prev = deps->last_debug_insn;
2965 rtx u;
2967 if (!deps->readonly)
2968 deps->last_debug_insn = insn;
2970 if (prev)
2971 add_dependence (insn, prev, REG_DEP_ANTI);
2973 add_dependence_list (insn, deps->last_function_call, 1,
2974 REG_DEP_ANTI);
2976 for (u = deps->last_pending_memory_flush; u; u = XEXP (u, 1))
2977 if (!sel_sched_p ())
2978 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
2980 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
2982 struct deps_reg *reg_last = &deps->reg_last[i];
2983 add_dependence_list (insn, reg_last->sets, 1, REG_DEP_ANTI);
2984 /* There's no point in making REG_DEP_CONTROL dependencies for
2985 debug insns. */
2986 add_dependence_list (insn, reg_last->clobbers, 1, REG_DEP_ANTI);
2988 if (!deps->readonly)
2989 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
2991 CLEAR_REG_SET (reg_pending_uses);
2993 /* Quite often, a debug insn will refer to stuff in the
2994 previous instruction, but the reason we want this
2995 dependency here is to make sure the scheduler doesn't
2996 gratuitously move a debug insn ahead. This could dirty
2997 DF flags and cause additional analysis that wouldn't have
2998 occurred in compilation without debug insns, and such
2999 additional analysis can modify the generated code. */
3000 prev = PREV_INSN (insn);
3002 if (prev && NONDEBUG_INSN_P (prev))
3003 add_dependence (insn, prev, REG_DEP_ANTI);
3005 else
3007 regset_head set_or_clobbered;
3009 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
3011 struct deps_reg *reg_last = &deps->reg_last[i];
3012 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_TRUE);
3013 add_dependence_list (insn, reg_last->implicit_sets, 0, REG_DEP_ANTI);
3014 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_TRUE);
3016 if (!deps->readonly)
3018 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
3019 reg_last->uses_length++;
3023 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3024 if (TEST_HARD_REG_BIT (implicit_reg_pending_uses, i))
3026 struct deps_reg *reg_last = &deps->reg_last[i];
3027 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_TRUE);
3028 add_dependence_list (insn, reg_last->implicit_sets, 0,
3029 REG_DEP_ANTI);
3030 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_TRUE);
3032 if (!deps->readonly)
3034 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
3035 reg_last->uses_length++;
3039 if (targetm.sched.exposed_pipeline)
3041 INIT_REG_SET (&set_or_clobbered);
3042 bitmap_ior (&set_or_clobbered, reg_pending_clobbers,
3043 reg_pending_sets);
3044 EXECUTE_IF_SET_IN_REG_SET (&set_or_clobbered, 0, i, rsi)
3046 struct deps_reg *reg_last = &deps->reg_last[i];
3047 rtx list;
3048 for (list = reg_last->uses; list; list = XEXP (list, 1))
3050 rtx other = XEXP (list, 0);
3051 if (INSN_CACHED_COND (other) != const_true_rtx
3052 && refers_to_regno_p (i, i + 1, INSN_CACHED_COND (other), NULL))
3053 INSN_CACHED_COND (other) = const_true_rtx;
3058 /* If the current insn is conditional, we can't free any
3059 of the lists. */
3060 if (sched_has_condition_p (insn))
3062 EXECUTE_IF_SET_IN_REG_SET (reg_pending_clobbers, 0, i, rsi)
3064 struct deps_reg *reg_last = &deps->reg_last[i];
3065 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT);
3066 add_dependence_list (insn, reg_last->implicit_sets, 0,
3067 REG_DEP_ANTI);
3068 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI);
3069 add_dependence_list (insn, reg_last->control_uses, 0,
3070 REG_DEP_CONTROL);
3072 if (!deps->readonly)
3074 reg_last->clobbers
3075 = alloc_INSN_LIST (insn, reg_last->clobbers);
3076 reg_last->clobbers_length++;
3079 EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets, 0, i, rsi)
3081 struct deps_reg *reg_last = &deps->reg_last[i];
3082 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT);
3083 add_dependence_list (insn, reg_last->implicit_sets, 0,
3084 REG_DEP_ANTI);
3085 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_OUTPUT);
3086 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI);
3087 add_dependence_list (insn, reg_last->control_uses, 0,
3088 REG_DEP_CONTROL);
3090 if (!deps->readonly)
3091 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3094 else
3096 EXECUTE_IF_SET_IN_REG_SET (reg_pending_clobbers, 0, i, rsi)
3098 struct deps_reg *reg_last = &deps->reg_last[i];
3099 if (reg_last->uses_length > MAX_PENDING_LIST_LENGTH
3100 || reg_last->clobbers_length > MAX_PENDING_LIST_LENGTH)
3102 add_dependence_list_and_free (deps, insn, &reg_last->sets, 0,
3103 REG_DEP_OUTPUT);
3104 add_dependence_list_and_free (deps, insn,
3105 &reg_last->implicit_sets, 0,
3106 REG_DEP_ANTI);
3107 add_dependence_list_and_free (deps, insn, &reg_last->uses, 0,
3108 REG_DEP_ANTI);
3109 add_dependence_list_and_free (deps, insn,
3110 &reg_last->control_uses, 0,
3111 REG_DEP_ANTI);
3112 add_dependence_list_and_free
3113 (deps, insn, &reg_last->clobbers, 0, REG_DEP_OUTPUT);
3115 if (!deps->readonly)
3117 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3118 reg_last->clobbers_length = 0;
3119 reg_last->uses_length = 0;
3122 else
3124 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT);
3125 add_dependence_list (insn, reg_last->implicit_sets, 0,
3126 REG_DEP_ANTI);
3127 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI);
3128 add_dependence_list (insn, reg_last->control_uses, 0,
3129 REG_DEP_CONTROL);
3132 if (!deps->readonly)
3134 reg_last->clobbers_length++;
3135 reg_last->clobbers
3136 = alloc_INSN_LIST (insn, reg_last->clobbers);
3139 EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets, 0, i, rsi)
3141 struct deps_reg *reg_last = &deps->reg_last[i];
3143 add_dependence_list_and_free (deps, insn, &reg_last->sets, 0,
3144 REG_DEP_OUTPUT);
3145 add_dependence_list_and_free (deps, insn,
3146 &reg_last->implicit_sets,
3147 0, REG_DEP_ANTI);
3148 add_dependence_list_and_free (deps, insn, &reg_last->clobbers, 0,
3149 REG_DEP_OUTPUT);
3150 add_dependence_list_and_free (deps, insn, &reg_last->uses, 0,
3151 REG_DEP_ANTI);
3152 add_dependence_list (insn, reg_last->control_uses, 0,
3153 REG_DEP_CONTROL);
3155 if (!deps->readonly)
3157 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3158 reg_last->uses_length = 0;
3159 reg_last->clobbers_length = 0;
3163 if (!deps->readonly)
3165 EXECUTE_IF_SET_IN_REG_SET (reg_pending_control_uses, 0, i, rsi)
3167 struct deps_reg *reg_last = &deps->reg_last[i];
3168 reg_last->control_uses
3169 = alloc_INSN_LIST (insn, reg_last->control_uses);
3174 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3175 if (TEST_HARD_REG_BIT (implicit_reg_pending_clobbers, i))
3177 struct deps_reg *reg_last = &deps->reg_last[i];
3178 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_ANTI);
3179 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_ANTI);
3180 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI);
3181 add_dependence_list (insn, reg_last->control_uses, 0, REG_DEP_ANTI);
3183 if (!deps->readonly)
3184 reg_last->implicit_sets
3185 = alloc_INSN_LIST (insn, reg_last->implicit_sets);
3188 if (!deps->readonly)
3190 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_uses);
3191 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_clobbers);
3192 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_sets);
3193 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3194 if (TEST_HARD_REG_BIT (implicit_reg_pending_uses, i)
3195 || TEST_HARD_REG_BIT (implicit_reg_pending_clobbers, i))
3196 SET_REGNO_REG_SET (&deps->reg_last_in_use, i);
3198 /* Set up the pending barrier found. */
3199 deps->last_reg_pending_barrier = reg_pending_barrier;
3202 CLEAR_REG_SET (reg_pending_uses);
3203 CLEAR_REG_SET (reg_pending_clobbers);
3204 CLEAR_REG_SET (reg_pending_sets);
3205 CLEAR_REG_SET (reg_pending_control_uses);
3206 CLEAR_HARD_REG_SET (implicit_reg_pending_clobbers);
3207 CLEAR_HARD_REG_SET (implicit_reg_pending_uses);
3209 /* Add dependencies if a scheduling barrier was found. */
3210 if (reg_pending_barrier)
3212 /* In the case of barrier the most added dependencies are not
3213 real, so we use anti-dependence here. */
3214 if (sched_has_condition_p (insn))
3216 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3218 struct deps_reg *reg_last = &deps->reg_last[i];
3219 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI);
3220 add_dependence_list (insn, reg_last->sets, 0,
3221 reg_pending_barrier == TRUE_BARRIER
3222 ? REG_DEP_TRUE : REG_DEP_ANTI);
3223 add_dependence_list (insn, reg_last->implicit_sets, 0,
3224 REG_DEP_ANTI);
3225 add_dependence_list (insn, reg_last->clobbers, 0,
3226 reg_pending_barrier == TRUE_BARRIER
3227 ? REG_DEP_TRUE : REG_DEP_ANTI);
3230 else
3232 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3234 struct deps_reg *reg_last = &deps->reg_last[i];
3235 add_dependence_list_and_free (deps, insn, &reg_last->uses, 0,
3236 REG_DEP_ANTI);
3237 add_dependence_list_and_free (deps, insn,
3238 &reg_last->control_uses, 0,
3239 REG_DEP_CONTROL);
3240 add_dependence_list_and_free (deps, insn, &reg_last->sets, 0,
3241 reg_pending_barrier == TRUE_BARRIER
3242 ? REG_DEP_TRUE : REG_DEP_ANTI);
3243 add_dependence_list_and_free (deps, insn,
3244 &reg_last->implicit_sets, 0,
3245 REG_DEP_ANTI);
3246 add_dependence_list_and_free (deps, insn, &reg_last->clobbers, 0,
3247 reg_pending_barrier == TRUE_BARRIER
3248 ? REG_DEP_TRUE : REG_DEP_ANTI);
3250 if (!deps->readonly)
3252 reg_last->uses_length = 0;
3253 reg_last->clobbers_length = 0;
3258 if (!deps->readonly)
3259 for (i = 0; i < (unsigned)deps->max_reg; i++)
3261 struct deps_reg *reg_last = &deps->reg_last[i];
3262 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3263 SET_REGNO_REG_SET (&deps->reg_last_in_use, i);
3266 /* Flush pending lists on jumps, but not on speculative checks. */
3267 if (JUMP_P (insn) && !(sel_sched_p ()
3268 && sel_insn_is_speculation_check (insn)))
3269 flush_pending_lists (deps, insn, true, true);
3271 reg_pending_barrier = NOT_A_BARRIER;
3274 /* If a post-call group is still open, see if it should remain so.
3275 This insn must be a simple move of a hard reg to a pseudo or
3276 vice-versa.
3278 We must avoid moving these insns for correctness on targets
3279 with small register classes, and for special registers like
3280 PIC_OFFSET_TABLE_REGNUM. For simplicity, extend this to all
3281 hard regs for all targets. */
3283 if (deps->in_post_call_group_p)
3285 rtx tmp, set = single_set (insn);
3286 int src_regno, dest_regno;
3288 if (set == NULL)
3290 if (DEBUG_INSN_P (insn))
3291 /* We don't want to mark debug insns as part of the same
3292 sched group. We know they really aren't, but if we use
3293 debug insns to tell that a call group is over, we'll
3294 get different code if debug insns are not there and
3295 instructions that follow seem like they should be part
3296 of the call group.
3298 Also, if we did, chain_to_prev_insn would move the
3299 deps of the debug insn to the call insn, modifying
3300 non-debug post-dependency counts of the debug insn
3301 dependencies and otherwise messing with the scheduling
3302 order.
3304 Instead, let such debug insns be scheduled freely, but
3305 keep the call group open in case there are insns that
3306 should be part of it afterwards. Since we grant debug
3307 insns higher priority than even sched group insns, it
3308 will all turn out all right. */
3309 goto debug_dont_end_call_group;
3310 else
3311 goto end_call_group;
3314 tmp = SET_DEST (set);
3315 if (GET_CODE (tmp) == SUBREG)
3316 tmp = SUBREG_REG (tmp);
3317 if (REG_P (tmp))
3318 dest_regno = REGNO (tmp);
3319 else
3320 goto end_call_group;
3322 tmp = SET_SRC (set);
3323 if (GET_CODE (tmp) == SUBREG)
3324 tmp = SUBREG_REG (tmp);
3325 if ((GET_CODE (tmp) == PLUS
3326 || GET_CODE (tmp) == MINUS)
3327 && REG_P (XEXP (tmp, 0))
3328 && REGNO (XEXP (tmp, 0)) == STACK_POINTER_REGNUM
3329 && dest_regno == STACK_POINTER_REGNUM)
3330 src_regno = STACK_POINTER_REGNUM;
3331 else if (REG_P (tmp))
3332 src_regno = REGNO (tmp);
3333 else
3334 goto end_call_group;
3336 if (src_regno < FIRST_PSEUDO_REGISTER
3337 || dest_regno < FIRST_PSEUDO_REGISTER)
3339 if (!deps->readonly
3340 && deps->in_post_call_group_p == post_call_initial)
3341 deps->in_post_call_group_p = post_call;
3343 if (!sel_sched_p () || sched_emulate_haifa_p)
3345 SCHED_GROUP_P (insn) = 1;
3346 CANT_MOVE (insn) = 1;
3349 else
3351 end_call_group:
3352 if (!deps->readonly)
3353 deps->in_post_call_group_p = not_post_call;
3357 debug_dont_end_call_group:
3358 if ((current_sched_info->flags & DO_SPECULATION)
3359 && !sched_insn_is_legitimate_for_speculation_p (insn, 0))
3360 /* INSN has an internal dependency (e.g. r14 = [r14]) and thus cannot
3361 be speculated. */
3363 if (sel_sched_p ())
3364 sel_mark_hard_insn (insn);
3365 else
3367 sd_iterator_def sd_it;
3368 dep_t dep;
3370 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
3371 sd_iterator_cond (&sd_it, &dep);)
3372 change_spec_dep_to_hard (sd_it);
3377 /* Return TRUE if INSN might not always return normally (e.g. call exit,
3378 longjmp, loop forever, ...). */
3379 static bool
3380 call_may_noreturn_p (rtx insn)
3382 rtx call;
3384 /* const or pure calls that aren't looping will always return. */
3385 if (RTL_CONST_OR_PURE_CALL_P (insn)
3386 && !RTL_LOOPING_CONST_OR_PURE_CALL_P (insn))
3387 return false;
3389 call = PATTERN (insn);
3390 if (GET_CODE (call) == PARALLEL)
3391 call = XVECEXP (call, 0, 0);
3392 if (GET_CODE (call) == SET)
3393 call = SET_SRC (call);
3394 if (GET_CODE (call) == CALL
3395 && MEM_P (XEXP (call, 0))
3396 && GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
3398 rtx symbol = XEXP (XEXP (call, 0), 0);
3399 if (SYMBOL_REF_DECL (symbol)
3400 && TREE_CODE (SYMBOL_REF_DECL (symbol)) == FUNCTION_DECL)
3402 if (DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol))
3403 == BUILT_IN_NORMAL)
3404 switch (DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol)))
3406 case BUILT_IN_BCMP:
3407 case BUILT_IN_BCOPY:
3408 case BUILT_IN_BZERO:
3409 case BUILT_IN_INDEX:
3410 case BUILT_IN_MEMCHR:
3411 case BUILT_IN_MEMCMP:
3412 case BUILT_IN_MEMCPY:
3413 case BUILT_IN_MEMMOVE:
3414 case BUILT_IN_MEMPCPY:
3415 case BUILT_IN_MEMSET:
3416 case BUILT_IN_RINDEX:
3417 case BUILT_IN_STPCPY:
3418 case BUILT_IN_STPNCPY:
3419 case BUILT_IN_STRCAT:
3420 case BUILT_IN_STRCHR:
3421 case BUILT_IN_STRCMP:
3422 case BUILT_IN_STRCPY:
3423 case BUILT_IN_STRCSPN:
3424 case BUILT_IN_STRLEN:
3425 case BUILT_IN_STRNCAT:
3426 case BUILT_IN_STRNCMP:
3427 case BUILT_IN_STRNCPY:
3428 case BUILT_IN_STRPBRK:
3429 case BUILT_IN_STRRCHR:
3430 case BUILT_IN_STRSPN:
3431 case BUILT_IN_STRSTR:
3432 /* Assume certain string/memory builtins always return. */
3433 return false;
3434 default:
3435 break;
3440 /* For all other calls assume that they might not always return. */
3441 return true;
3444 /* Return true if INSN should be made dependent on the previous instruction
3445 group, and if all INSN's dependencies should be moved to the first
3446 instruction of that group. */
3448 static bool
3449 chain_to_prev_insn_p (rtx insn)
3451 rtx prev, x;
3453 /* INSN forms a group with the previous instruction. */
3454 if (SCHED_GROUP_P (insn))
3455 return true;
3457 /* If the previous instruction clobbers a register R and this one sets
3458 part of R, the clobber was added specifically to help us track the
3459 liveness of R. There's no point scheduling the clobber and leaving
3460 INSN behind, especially if we move the clobber to another block. */
3461 prev = prev_nonnote_nondebug_insn (insn);
3462 if (prev
3463 && INSN_P (prev)
3464 && BLOCK_FOR_INSN (prev) == BLOCK_FOR_INSN (insn)
3465 && GET_CODE (PATTERN (prev)) == CLOBBER)
3467 x = XEXP (PATTERN (prev), 0);
3468 if (set_of (x, insn))
3469 return true;
3472 return false;
3475 /* Analyze INSN with DEPS as a context. */
3476 void
3477 deps_analyze_insn (struct deps_desc *deps, rtx insn)
3479 if (sched_deps_info->start_insn)
3480 sched_deps_info->start_insn (insn);
3482 /* Record the condition for this insn. */
3483 if (NONDEBUG_INSN_P (insn))
3485 rtx t;
3486 sched_get_condition_with_rev (insn, NULL);
3487 t = INSN_CACHED_COND (insn);
3488 INSN_COND_DEPS (insn) = NULL_RTX;
3489 if (reload_completed
3490 && (current_sched_info->flags & DO_PREDICATION)
3491 && COMPARISON_P (t)
3492 && REG_P (XEXP (t, 0))
3493 && CONSTANT_P (XEXP (t, 1)))
3495 unsigned int regno;
3496 int nregs;
3497 t = XEXP (t, 0);
3498 regno = REGNO (t);
3499 nregs = hard_regno_nregs[regno][GET_MODE (t)];
3500 t = NULL_RTX;
3501 while (nregs-- > 0)
3503 struct deps_reg *reg_last = &deps->reg_last[regno + nregs];
3504 t = concat_INSN_LIST (reg_last->sets, t);
3505 t = concat_INSN_LIST (reg_last->clobbers, t);
3506 t = concat_INSN_LIST (reg_last->implicit_sets, t);
3508 INSN_COND_DEPS (insn) = t;
3512 if (JUMP_P (insn))
3514 /* Make each JUMP_INSN (but not a speculative check)
3515 a scheduling barrier for memory references. */
3516 if (!deps->readonly
3517 && !(sel_sched_p ()
3518 && sel_insn_is_speculation_check (insn)))
3520 /* Keep the list a reasonable size. */
3521 if (deps->pending_flush_length++ > MAX_PENDING_LIST_LENGTH)
3522 flush_pending_lists (deps, insn, true, true);
3523 else
3524 deps->pending_jump_insns
3525 = alloc_INSN_LIST (insn, deps->pending_jump_insns);
3528 /* For each insn which shouldn't cross a jump, add a dependence. */
3529 add_dependence_list_and_free (deps, insn,
3530 &deps->sched_before_next_jump, 1,
3531 REG_DEP_ANTI);
3533 sched_analyze_insn (deps, PATTERN (insn), insn);
3535 else if (NONJUMP_INSN_P (insn) || DEBUG_INSN_P (insn))
3537 sched_analyze_insn (deps, PATTERN (insn), insn);
3539 else if (CALL_P (insn))
3541 int i;
3543 CANT_MOVE (insn) = 1;
3545 if (find_reg_note (insn, REG_SETJMP, NULL))
3547 /* This is setjmp. Assume that all registers, not just
3548 hard registers, may be clobbered by this call. */
3549 reg_pending_barrier = MOVE_BARRIER;
3551 else
3553 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3554 /* A call may read and modify global register variables. */
3555 if (global_regs[i])
3557 SET_REGNO_REG_SET (reg_pending_sets, i);
3558 SET_HARD_REG_BIT (implicit_reg_pending_uses, i);
3560 /* Other call-clobbered hard regs may be clobbered.
3561 Since we only have a choice between 'might be clobbered'
3562 and 'definitely not clobbered', we must include all
3563 partly call-clobbered registers here. */
3564 else if (HARD_REGNO_CALL_PART_CLOBBERED (i, reg_raw_mode[i])
3565 || TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
3566 SET_REGNO_REG_SET (reg_pending_clobbers, i);
3567 /* We don't know what set of fixed registers might be used
3568 by the function, but it is certain that the stack pointer
3569 is among them, but be conservative. */
3570 else if (fixed_regs[i])
3571 SET_HARD_REG_BIT (implicit_reg_pending_uses, i);
3572 /* The frame pointer is normally not used by the function
3573 itself, but by the debugger. */
3574 /* ??? MIPS o32 is an exception. It uses the frame pointer
3575 in the macro expansion of jal but does not represent this
3576 fact in the call_insn rtl. */
3577 else if (i == FRAME_POINTER_REGNUM
3578 || (i == HARD_FRAME_POINTER_REGNUM
3579 && (! reload_completed || frame_pointer_needed)))
3580 SET_HARD_REG_BIT (implicit_reg_pending_uses, i);
3583 /* For each insn which shouldn't cross a call, add a dependence
3584 between that insn and this call insn. */
3585 add_dependence_list_and_free (deps, insn,
3586 &deps->sched_before_next_call, 1,
3587 REG_DEP_ANTI);
3589 sched_analyze_insn (deps, PATTERN (insn), insn);
3591 /* If CALL would be in a sched group, then this will violate
3592 convention that sched group insns have dependencies only on the
3593 previous instruction.
3595 Of course one can say: "Hey! What about head of the sched group?"
3596 And I will answer: "Basic principles (one dep per insn) are always
3597 the same." */
3598 gcc_assert (!SCHED_GROUP_P (insn));
3600 /* In the absence of interprocedural alias analysis, we must flush
3601 all pending reads and writes, and start new dependencies starting
3602 from here. But only flush writes for constant calls (which may
3603 be passed a pointer to something we haven't written yet). */
3604 flush_pending_lists (deps, insn, true, ! RTL_CONST_OR_PURE_CALL_P (insn));
3606 if (!deps->readonly)
3608 /* Remember the last function call for limiting lifetimes. */
3609 free_INSN_LIST_list (&deps->last_function_call);
3610 deps->last_function_call = alloc_INSN_LIST (insn, NULL_RTX);
3612 if (call_may_noreturn_p (insn))
3614 /* Remember the last function call that might not always return
3615 normally for limiting moves of trapping insns. */
3616 free_INSN_LIST_list (&deps->last_function_call_may_noreturn);
3617 deps->last_function_call_may_noreturn
3618 = alloc_INSN_LIST (insn, NULL_RTX);
3621 /* Before reload, begin a post-call group, so as to keep the
3622 lifetimes of hard registers correct. */
3623 if (! reload_completed)
3624 deps->in_post_call_group_p = post_call;
3628 if (sched_deps_info->use_cselib)
3629 cselib_process_insn (insn);
3631 /* EH_REGION insn notes can not appear until well after we complete
3632 scheduling. */
3633 if (NOTE_P (insn))
3634 gcc_assert (NOTE_KIND (insn) != NOTE_INSN_EH_REGION_BEG
3635 && NOTE_KIND (insn) != NOTE_INSN_EH_REGION_END);
3637 if (sched_deps_info->finish_insn)
3638 sched_deps_info->finish_insn ();
3640 /* Fixup the dependencies in the sched group. */
3641 if ((NONJUMP_INSN_P (insn) || JUMP_P (insn))
3642 && chain_to_prev_insn_p (insn)
3643 && !sel_sched_p ())
3644 chain_to_prev_insn (insn);
3647 /* Initialize DEPS for the new block beginning with HEAD. */
3648 void
3649 deps_start_bb (struct deps_desc *deps, rtx head)
3651 gcc_assert (!deps->readonly);
3653 /* Before reload, if the previous block ended in a call, show that
3654 we are inside a post-call group, so as to keep the lifetimes of
3655 hard registers correct. */
3656 if (! reload_completed && !LABEL_P (head))
3658 rtx insn = prev_nonnote_nondebug_insn (head);
3660 if (insn && CALL_P (insn))
3661 deps->in_post_call_group_p = post_call_initial;
3665 /* Analyze every insn between HEAD and TAIL inclusive, creating backward
3666 dependencies for each insn. */
3667 void
3668 sched_analyze (struct deps_desc *deps, rtx head, rtx tail)
3670 rtx insn;
3672 if (sched_deps_info->use_cselib)
3673 cselib_init (CSELIB_RECORD_MEMORY);
3675 deps_start_bb (deps, head);
3677 for (insn = head;; insn = NEXT_INSN (insn))
3680 if (INSN_P (insn))
3682 /* And initialize deps_lists. */
3683 sd_init_insn (insn);
3686 deps_analyze_insn (deps, insn);
3688 if (insn == tail)
3690 if (sched_deps_info->use_cselib)
3691 cselib_finish ();
3692 return;
3695 gcc_unreachable ();
3698 /* Helper for sched_free_deps ().
3699 Delete INSN's (RESOLVED_P) backward dependencies. */
3700 static void
3701 delete_dep_nodes_in_back_deps (rtx insn, bool resolved_p)
3703 sd_iterator_def sd_it;
3704 dep_t dep;
3705 sd_list_types_def types;
3707 if (resolved_p)
3708 types = SD_LIST_RES_BACK;
3709 else
3710 types = SD_LIST_BACK;
3712 for (sd_it = sd_iterator_start (insn, types);
3713 sd_iterator_cond (&sd_it, &dep);)
3715 dep_link_t link = *sd_it.linkp;
3716 dep_node_t node = DEP_LINK_NODE (link);
3717 deps_list_t back_list;
3718 deps_list_t forw_list;
3720 get_back_and_forw_lists (dep, resolved_p, &back_list, &forw_list);
3721 remove_from_deps_list (link, back_list);
3722 delete_dep_node (node);
3726 /* Delete (RESOLVED_P) dependencies between HEAD and TAIL together with
3727 deps_lists. */
3728 void
3729 sched_free_deps (rtx head, rtx tail, bool resolved_p)
3731 rtx insn;
3732 rtx next_tail = NEXT_INSN (tail);
3734 /* We make two passes since some insns may be scheduled before their
3735 dependencies are resolved. */
3736 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
3737 if (INSN_P (insn) && INSN_LUID (insn) > 0)
3739 /* Clear forward deps and leave the dep_nodes to the
3740 corresponding back_deps list. */
3741 if (resolved_p)
3742 clear_deps_list (INSN_RESOLVED_FORW_DEPS (insn));
3743 else
3744 clear_deps_list (INSN_FORW_DEPS (insn));
3746 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
3747 if (INSN_P (insn) && INSN_LUID (insn) > 0)
3749 /* Clear resolved back deps together with its dep_nodes. */
3750 delete_dep_nodes_in_back_deps (insn, resolved_p);
3752 sd_finish_insn (insn);
3756 /* Initialize variables for region data dependence analysis.
3757 When LAZY_REG_LAST is true, do not allocate reg_last array
3758 of struct deps_desc immediately. */
3760 void
3761 init_deps (struct deps_desc *deps, bool lazy_reg_last)
3763 int max_reg = (reload_completed ? FIRST_PSEUDO_REGISTER : max_reg_num ());
3765 deps->max_reg = max_reg;
3766 if (lazy_reg_last)
3767 deps->reg_last = NULL;
3768 else
3769 deps->reg_last = XCNEWVEC (struct deps_reg, max_reg);
3770 INIT_REG_SET (&deps->reg_last_in_use);
3772 deps->pending_read_insns = 0;
3773 deps->pending_read_mems = 0;
3774 deps->pending_write_insns = 0;
3775 deps->pending_write_mems = 0;
3776 deps->pending_jump_insns = 0;
3777 deps->pending_read_list_length = 0;
3778 deps->pending_write_list_length = 0;
3779 deps->pending_flush_length = 0;
3780 deps->last_pending_memory_flush = 0;
3781 deps->last_function_call = 0;
3782 deps->last_function_call_may_noreturn = 0;
3783 deps->sched_before_next_call = 0;
3784 deps->sched_before_next_jump = 0;
3785 deps->in_post_call_group_p = not_post_call;
3786 deps->last_debug_insn = 0;
3787 deps->last_reg_pending_barrier = NOT_A_BARRIER;
3788 deps->readonly = 0;
3791 /* Init only reg_last field of DEPS, which was not allocated before as
3792 we inited DEPS lazily. */
3793 void
3794 init_deps_reg_last (struct deps_desc *deps)
3796 gcc_assert (deps && deps->max_reg > 0);
3797 gcc_assert (deps->reg_last == NULL);
3799 deps->reg_last = XCNEWVEC (struct deps_reg, deps->max_reg);
3803 /* Free insn lists found in DEPS. */
3805 void
3806 free_deps (struct deps_desc *deps)
3808 unsigned i;
3809 reg_set_iterator rsi;
3811 /* We set max_reg to 0 when this context was already freed. */
3812 if (deps->max_reg == 0)
3814 gcc_assert (deps->reg_last == NULL);
3815 return;
3817 deps->max_reg = 0;
3819 free_INSN_LIST_list (&deps->pending_read_insns);
3820 free_EXPR_LIST_list (&deps->pending_read_mems);
3821 free_INSN_LIST_list (&deps->pending_write_insns);
3822 free_EXPR_LIST_list (&deps->pending_write_mems);
3823 free_INSN_LIST_list (&deps->last_pending_memory_flush);
3825 /* Without the EXECUTE_IF_SET, this loop is executed max_reg * nr_regions
3826 times. For a testcase with 42000 regs and 8000 small basic blocks,
3827 this loop accounted for nearly 60% (84 sec) of the total -O2 runtime. */
3828 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3830 struct deps_reg *reg_last = &deps->reg_last[i];
3831 if (reg_last->uses)
3832 free_INSN_LIST_list (&reg_last->uses);
3833 if (reg_last->sets)
3834 free_INSN_LIST_list (&reg_last->sets);
3835 if (reg_last->implicit_sets)
3836 free_INSN_LIST_list (&reg_last->implicit_sets);
3837 if (reg_last->control_uses)
3838 free_INSN_LIST_list (&reg_last->control_uses);
3839 if (reg_last->clobbers)
3840 free_INSN_LIST_list (&reg_last->clobbers);
3842 CLEAR_REG_SET (&deps->reg_last_in_use);
3844 /* As we initialize reg_last lazily, it is possible that we didn't allocate
3845 it at all. */
3846 free (deps->reg_last);
3847 deps->reg_last = NULL;
3849 deps = NULL;
3852 /* Remove INSN from dependence contexts DEPS. */
3853 void
3854 remove_from_deps (struct deps_desc *deps, rtx insn)
3856 int removed;
3857 unsigned i;
3858 reg_set_iterator rsi;
3860 removed = remove_from_both_dependence_lists (insn, &deps->pending_read_insns,
3861 &deps->pending_read_mems);
3862 if (!DEBUG_INSN_P (insn))
3863 deps->pending_read_list_length -= removed;
3864 removed = remove_from_both_dependence_lists (insn, &deps->pending_write_insns,
3865 &deps->pending_write_mems);
3866 deps->pending_write_list_length -= removed;
3868 removed = remove_from_dependence_list (insn, &deps->pending_jump_insns);
3869 deps->pending_flush_length -= removed;
3870 removed = remove_from_dependence_list (insn, &deps->last_pending_memory_flush);
3871 deps->pending_flush_length -= removed;
3873 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3875 struct deps_reg *reg_last = &deps->reg_last[i];
3876 if (reg_last->uses)
3877 remove_from_dependence_list (insn, &reg_last->uses);
3878 if (reg_last->sets)
3879 remove_from_dependence_list (insn, &reg_last->sets);
3880 if (reg_last->implicit_sets)
3881 remove_from_dependence_list (insn, &reg_last->implicit_sets);
3882 if (reg_last->clobbers)
3883 remove_from_dependence_list (insn, &reg_last->clobbers);
3884 if (!reg_last->uses && !reg_last->sets && !reg_last->implicit_sets
3885 && !reg_last->clobbers)
3886 CLEAR_REGNO_REG_SET (&deps->reg_last_in_use, i);
3889 if (CALL_P (insn))
3891 remove_from_dependence_list (insn, &deps->last_function_call);
3892 remove_from_dependence_list (insn,
3893 &deps->last_function_call_may_noreturn);
3895 remove_from_dependence_list (insn, &deps->sched_before_next_call);
3898 /* Init deps data vector. */
3899 static void
3900 init_deps_data_vector (void)
3902 int reserve = (sched_max_luid + 1
3903 - VEC_length (haifa_deps_insn_data_def, h_d_i_d));
3904 if (reserve > 0
3905 && ! VEC_space (haifa_deps_insn_data_def, h_d_i_d, reserve))
3906 VEC_safe_grow_cleared (haifa_deps_insn_data_def, heap, h_d_i_d,
3907 3 * sched_max_luid / 2);
3910 /* If it is profitable to use them, initialize or extend (depending on
3911 GLOBAL_P) dependency data. */
3912 void
3913 sched_deps_init (bool global_p)
3915 /* Average number of insns in the basic block.
3916 '+ 1' is used to make it nonzero. */
3917 int insns_in_block = sched_max_luid / n_basic_blocks + 1;
3919 init_deps_data_vector ();
3921 /* We use another caching mechanism for selective scheduling, so
3922 we don't use this one. */
3923 if (!sel_sched_p () && global_p && insns_in_block > 100 * 5)
3925 /* ?!? We could save some memory by computing a per-region luid mapping
3926 which could reduce both the number of vectors in the cache and the
3927 size of each vector. Instead we just avoid the cache entirely unless
3928 the average number of instructions in a basic block is very high. See
3929 the comment before the declaration of true_dependency_cache for
3930 what we consider "very high". */
3931 cache_size = 0;
3932 extend_dependency_caches (sched_max_luid, true);
3935 if (global_p)
3937 dl_pool = create_alloc_pool ("deps_list", sizeof (struct _deps_list),
3938 /* Allocate lists for one block at a time. */
3939 insns_in_block);
3940 dn_pool = create_alloc_pool ("dep_node", sizeof (struct _dep_node),
3941 /* Allocate nodes for one block at a time.
3942 We assume that average insn has
3943 5 producers. */
3944 5 * insns_in_block);
3949 /* Create or extend (depending on CREATE_P) dependency caches to
3950 size N. */
3951 void
3952 extend_dependency_caches (int n, bool create_p)
3954 if (create_p || true_dependency_cache)
3956 int i, luid = cache_size + n;
3958 true_dependency_cache = XRESIZEVEC (bitmap_head, true_dependency_cache,
3959 luid);
3960 output_dependency_cache = XRESIZEVEC (bitmap_head,
3961 output_dependency_cache, luid);
3962 anti_dependency_cache = XRESIZEVEC (bitmap_head, anti_dependency_cache,
3963 luid);
3964 control_dependency_cache = XRESIZEVEC (bitmap_head, control_dependency_cache,
3965 luid);
3967 if (current_sched_info->flags & DO_SPECULATION)
3968 spec_dependency_cache = XRESIZEVEC (bitmap_head, spec_dependency_cache,
3969 luid);
3971 for (i = cache_size; i < luid; i++)
3973 bitmap_initialize (&true_dependency_cache[i], 0);
3974 bitmap_initialize (&output_dependency_cache[i], 0);
3975 bitmap_initialize (&anti_dependency_cache[i], 0);
3976 bitmap_initialize (&control_dependency_cache[i], 0);
3978 if (current_sched_info->flags & DO_SPECULATION)
3979 bitmap_initialize (&spec_dependency_cache[i], 0);
3981 cache_size = luid;
3985 /* Finalize dependency information for the whole function. */
3986 void
3987 sched_deps_finish (void)
3989 gcc_assert (deps_pools_are_empty_p ());
3990 free_alloc_pool_if_empty (&dn_pool);
3991 free_alloc_pool_if_empty (&dl_pool);
3992 gcc_assert (dn_pool == NULL && dl_pool == NULL);
3994 VEC_free (haifa_deps_insn_data_def, heap, h_d_i_d);
3995 cache_size = 0;
3997 if (true_dependency_cache)
3999 int i;
4001 for (i = 0; i < cache_size; i++)
4003 bitmap_clear (&true_dependency_cache[i]);
4004 bitmap_clear (&output_dependency_cache[i]);
4005 bitmap_clear (&anti_dependency_cache[i]);
4006 bitmap_clear (&control_dependency_cache[i]);
4008 if (sched_deps_info->generate_spec_deps)
4009 bitmap_clear (&spec_dependency_cache[i]);
4011 free (true_dependency_cache);
4012 true_dependency_cache = NULL;
4013 free (output_dependency_cache);
4014 output_dependency_cache = NULL;
4015 free (anti_dependency_cache);
4016 anti_dependency_cache = NULL;
4017 free (control_dependency_cache);
4018 control_dependency_cache = NULL;
4020 if (sched_deps_info->generate_spec_deps)
4022 free (spec_dependency_cache);
4023 spec_dependency_cache = NULL;
4029 /* Initialize some global variables needed by the dependency analysis
4030 code. */
4032 void
4033 init_deps_global (void)
4035 CLEAR_HARD_REG_SET (implicit_reg_pending_clobbers);
4036 CLEAR_HARD_REG_SET (implicit_reg_pending_uses);
4037 reg_pending_sets = ALLOC_REG_SET (&reg_obstack);
4038 reg_pending_clobbers = ALLOC_REG_SET (&reg_obstack);
4039 reg_pending_uses = ALLOC_REG_SET (&reg_obstack);
4040 reg_pending_control_uses = ALLOC_REG_SET (&reg_obstack);
4041 reg_pending_barrier = NOT_A_BARRIER;
4043 if (!sel_sched_p () || sched_emulate_haifa_p)
4045 sched_deps_info->start_insn = haifa_start_insn;
4046 sched_deps_info->finish_insn = haifa_finish_insn;
4048 sched_deps_info->note_reg_set = haifa_note_reg_set;
4049 sched_deps_info->note_reg_clobber = haifa_note_reg_clobber;
4050 sched_deps_info->note_reg_use = haifa_note_reg_use;
4052 sched_deps_info->note_mem_dep = haifa_note_mem_dep;
4053 sched_deps_info->note_dep = haifa_note_dep;
4057 /* Free everything used by the dependency analysis code. */
4059 void
4060 finish_deps_global (void)
4062 FREE_REG_SET (reg_pending_sets);
4063 FREE_REG_SET (reg_pending_clobbers);
4064 FREE_REG_SET (reg_pending_uses);
4065 FREE_REG_SET (reg_pending_control_uses);
4068 /* Estimate the weakness of dependence between MEM1 and MEM2. */
4069 dw_t
4070 estimate_dep_weak (rtx mem1, rtx mem2)
4072 rtx r1, r2;
4074 if (mem1 == mem2)
4075 /* MEMs are the same - don't speculate. */
4076 return MIN_DEP_WEAK;
4078 r1 = XEXP (mem1, 0);
4079 r2 = XEXP (mem2, 0);
4081 if (r1 == r2
4082 || (REG_P (r1) && REG_P (r2)
4083 && REGNO (r1) == REGNO (r2)))
4084 /* Again, MEMs are the same. */
4085 return MIN_DEP_WEAK;
4086 else if ((REG_P (r1) && !REG_P (r2))
4087 || (!REG_P (r1) && REG_P (r2)))
4088 /* Different addressing modes - reason to be more speculative,
4089 than usual. */
4090 return NO_DEP_WEAK - (NO_DEP_WEAK - UNCERTAIN_DEP_WEAK) / 2;
4091 else
4092 /* We can't say anything about the dependence. */
4093 return UNCERTAIN_DEP_WEAK;
4096 /* Add or update backward dependence between INSN and ELEM with type DEP_TYPE.
4097 This function can handle same INSN and ELEM (INSN == ELEM).
4098 It is a convenience wrapper. */
4099 static void
4100 add_dependence_1 (rtx insn, rtx elem, enum reg_note dep_type)
4102 ds_t ds;
4103 bool internal;
4105 if (dep_type == REG_DEP_TRUE)
4106 ds = DEP_TRUE;
4107 else if (dep_type == REG_DEP_OUTPUT)
4108 ds = DEP_OUTPUT;
4109 else if (dep_type == REG_DEP_CONTROL)
4110 ds = DEP_CONTROL;
4111 else
4113 gcc_assert (dep_type == REG_DEP_ANTI);
4114 ds = DEP_ANTI;
4117 /* When add_dependence is called from inside sched-deps.c, we expect
4118 cur_insn to be non-null. */
4119 internal = cur_insn != NULL;
4120 if (internal)
4121 gcc_assert (insn == cur_insn);
4122 else
4123 cur_insn = insn;
4125 note_dep (elem, ds);
4126 if (!internal)
4127 cur_insn = NULL;
4130 /* Return weakness of speculative type TYPE in the dep_status DS. */
4131 dw_t
4132 get_dep_weak_1 (ds_t ds, ds_t type)
4134 ds = ds & type;
4136 switch (type)
4138 case BEGIN_DATA: ds >>= BEGIN_DATA_BITS_OFFSET; break;
4139 case BE_IN_DATA: ds >>= BE_IN_DATA_BITS_OFFSET; break;
4140 case BEGIN_CONTROL: ds >>= BEGIN_CONTROL_BITS_OFFSET; break;
4141 case BE_IN_CONTROL: ds >>= BE_IN_CONTROL_BITS_OFFSET; break;
4142 default: gcc_unreachable ();
4145 return (dw_t) ds;
4148 dw_t
4149 get_dep_weak (ds_t ds, ds_t type)
4151 dw_t dw = get_dep_weak_1 (ds, type);
4153 gcc_assert (MIN_DEP_WEAK <= dw && dw <= MAX_DEP_WEAK);
4154 return dw;
4157 /* Return the dep_status, which has the same parameters as DS, except for
4158 speculative type TYPE, that will have weakness DW. */
4159 ds_t
4160 set_dep_weak (ds_t ds, ds_t type, dw_t dw)
4162 gcc_assert (MIN_DEP_WEAK <= dw && dw <= MAX_DEP_WEAK);
4164 ds &= ~type;
4165 switch (type)
4167 case BEGIN_DATA: ds |= ((ds_t) dw) << BEGIN_DATA_BITS_OFFSET; break;
4168 case BE_IN_DATA: ds |= ((ds_t) dw) << BE_IN_DATA_BITS_OFFSET; break;
4169 case BEGIN_CONTROL: ds |= ((ds_t) dw) << BEGIN_CONTROL_BITS_OFFSET; break;
4170 case BE_IN_CONTROL: ds |= ((ds_t) dw) << BE_IN_CONTROL_BITS_OFFSET; break;
4171 default: gcc_unreachable ();
4173 return ds;
4176 /* Return the join of two dep_statuses DS1 and DS2.
4177 If MAX_P is true then choose the greater probability,
4178 otherwise multiply probabilities.
4179 This function assumes that both DS1 and DS2 contain speculative bits. */
4180 static ds_t
4181 ds_merge_1 (ds_t ds1, ds_t ds2, bool max_p)
4183 ds_t ds, t;
4185 gcc_assert ((ds1 & SPECULATIVE) && (ds2 & SPECULATIVE));
4187 ds = (ds1 & DEP_TYPES) | (ds2 & DEP_TYPES);
4189 t = FIRST_SPEC_TYPE;
4192 if ((ds1 & t) && !(ds2 & t))
4193 ds |= ds1 & t;
4194 else if (!(ds1 & t) && (ds2 & t))
4195 ds |= ds2 & t;
4196 else if ((ds1 & t) && (ds2 & t))
4198 dw_t dw1 = get_dep_weak (ds1, t);
4199 dw_t dw2 = get_dep_weak (ds2, t);
4200 ds_t dw;
4202 if (!max_p)
4204 dw = ((ds_t) dw1) * ((ds_t) dw2);
4205 dw /= MAX_DEP_WEAK;
4206 if (dw < MIN_DEP_WEAK)
4207 dw = MIN_DEP_WEAK;
4209 else
4211 if (dw1 >= dw2)
4212 dw = dw1;
4213 else
4214 dw = dw2;
4217 ds = set_dep_weak (ds, t, (dw_t) dw);
4220 if (t == LAST_SPEC_TYPE)
4221 break;
4222 t <<= SPEC_TYPE_SHIFT;
4224 while (1);
4226 return ds;
4229 /* Return the join of two dep_statuses DS1 and DS2.
4230 This function assumes that both DS1 and DS2 contain speculative bits. */
4231 ds_t
4232 ds_merge (ds_t ds1, ds_t ds2)
4234 return ds_merge_1 (ds1, ds2, false);
4237 /* Return the join of two dep_statuses DS1 and DS2. */
4238 ds_t
4239 ds_full_merge (ds_t ds, ds_t ds2, rtx mem1, rtx mem2)
4241 ds_t new_status = ds | ds2;
4243 if (new_status & SPECULATIVE)
4245 if ((ds && !(ds & SPECULATIVE))
4246 || (ds2 && !(ds2 & SPECULATIVE)))
4247 /* Then this dep can't be speculative. */
4248 new_status &= ~SPECULATIVE;
4249 else
4251 /* Both are speculative. Merging probabilities. */
4252 if (mem1)
4254 dw_t dw;
4256 dw = estimate_dep_weak (mem1, mem2);
4257 ds = set_dep_weak (ds, BEGIN_DATA, dw);
4260 if (!ds)
4261 new_status = ds2;
4262 else if (!ds2)
4263 new_status = ds;
4264 else
4265 new_status = ds_merge (ds2, ds);
4269 return new_status;
4272 /* Return the join of DS1 and DS2. Use maximum instead of multiplying
4273 probabilities. */
4274 ds_t
4275 ds_max_merge (ds_t ds1, ds_t ds2)
4277 if (ds1 == 0 && ds2 == 0)
4278 return 0;
4280 if (ds1 == 0 && ds2 != 0)
4281 return ds2;
4283 if (ds1 != 0 && ds2 == 0)
4284 return ds1;
4286 return ds_merge_1 (ds1, ds2, true);
4289 /* Return the probability of speculation success for the speculation
4290 status DS. */
4291 dw_t
4292 ds_weak (ds_t ds)
4294 ds_t res = 1, dt;
4295 int n = 0;
4297 dt = FIRST_SPEC_TYPE;
4300 if (ds & dt)
4302 res *= (ds_t) get_dep_weak (ds, dt);
4303 n++;
4306 if (dt == LAST_SPEC_TYPE)
4307 break;
4308 dt <<= SPEC_TYPE_SHIFT;
4310 while (1);
4312 gcc_assert (n);
4313 while (--n)
4314 res /= MAX_DEP_WEAK;
4316 if (res < MIN_DEP_WEAK)
4317 res = MIN_DEP_WEAK;
4319 gcc_assert (res <= MAX_DEP_WEAK);
4321 return (dw_t) res;
4324 /* Return a dep status that contains all speculation types of DS. */
4325 ds_t
4326 ds_get_speculation_types (ds_t ds)
4328 if (ds & BEGIN_DATA)
4329 ds |= BEGIN_DATA;
4330 if (ds & BE_IN_DATA)
4331 ds |= BE_IN_DATA;
4332 if (ds & BEGIN_CONTROL)
4333 ds |= BEGIN_CONTROL;
4334 if (ds & BE_IN_CONTROL)
4335 ds |= BE_IN_CONTROL;
4337 return ds & SPECULATIVE;
4340 /* Return a dep status that contains maximal weakness for each speculation
4341 type present in DS. */
4342 ds_t
4343 ds_get_max_dep_weak (ds_t ds)
4345 if (ds & BEGIN_DATA)
4346 ds = set_dep_weak (ds, BEGIN_DATA, MAX_DEP_WEAK);
4347 if (ds & BE_IN_DATA)
4348 ds = set_dep_weak (ds, BE_IN_DATA, MAX_DEP_WEAK);
4349 if (ds & BEGIN_CONTROL)
4350 ds = set_dep_weak (ds, BEGIN_CONTROL, MAX_DEP_WEAK);
4351 if (ds & BE_IN_CONTROL)
4352 ds = set_dep_weak (ds, BE_IN_CONTROL, MAX_DEP_WEAK);
4354 return ds;
4357 /* Dump information about the dependence status S. */
4358 static void
4359 dump_ds (FILE *f, ds_t s)
4361 fprintf (f, "{");
4363 if (s & BEGIN_DATA)
4364 fprintf (f, "BEGIN_DATA: %d; ", get_dep_weak_1 (s, BEGIN_DATA));
4365 if (s & BE_IN_DATA)
4366 fprintf (f, "BE_IN_DATA: %d; ", get_dep_weak_1 (s, BE_IN_DATA));
4367 if (s & BEGIN_CONTROL)
4368 fprintf (f, "BEGIN_CONTROL: %d; ", get_dep_weak_1 (s, BEGIN_CONTROL));
4369 if (s & BE_IN_CONTROL)
4370 fprintf (f, "BE_IN_CONTROL: %d; ", get_dep_weak_1 (s, BE_IN_CONTROL));
4372 if (s & HARD_DEP)
4373 fprintf (f, "HARD_DEP; ");
4375 if (s & DEP_TRUE)
4376 fprintf (f, "DEP_TRUE; ");
4377 if (s & DEP_OUTPUT)
4378 fprintf (f, "DEP_OUTPUT; ");
4379 if (s & DEP_ANTI)
4380 fprintf (f, "DEP_ANTI; ");
4381 if (s & DEP_CONTROL)
4382 fprintf (f, "DEP_CONTROL; ");
4384 fprintf (f, "}");
4387 DEBUG_FUNCTION void
4388 debug_ds (ds_t s)
4390 dump_ds (stderr, s);
4391 fprintf (stderr, "\n");
4394 #ifdef ENABLE_CHECKING
4395 /* Verify that dependence type and status are consistent.
4396 If RELAXED_P is true, then skip dep_weakness checks. */
4397 static void
4398 check_dep (dep_t dep, bool relaxed_p)
4400 enum reg_note dt = DEP_TYPE (dep);
4401 ds_t ds = DEP_STATUS (dep);
4403 gcc_assert (DEP_PRO (dep) != DEP_CON (dep));
4405 if (!(current_sched_info->flags & USE_DEPS_LIST))
4407 gcc_assert (ds == 0);
4408 return;
4411 /* Check that dependence type contains the same bits as the status. */
4412 if (dt == REG_DEP_TRUE)
4413 gcc_assert (ds & DEP_TRUE);
4414 else if (dt == REG_DEP_OUTPUT)
4415 gcc_assert ((ds & DEP_OUTPUT)
4416 && !(ds & DEP_TRUE));
4417 else if (dt == REG_DEP_ANTI)
4418 gcc_assert ((ds & DEP_ANTI)
4419 && !(ds & (DEP_OUTPUT | DEP_TRUE)));
4420 else
4421 gcc_assert (dt == REG_DEP_CONTROL
4422 && (ds & DEP_CONTROL)
4423 && !(ds & (DEP_OUTPUT | DEP_ANTI | DEP_TRUE)));
4425 /* HARD_DEP can not appear in dep_status of a link. */
4426 gcc_assert (!(ds & HARD_DEP));
4428 /* Check that dependence status is set correctly when speculation is not
4429 supported. */
4430 if (!sched_deps_info->generate_spec_deps)
4431 gcc_assert (!(ds & SPECULATIVE));
4432 else if (ds & SPECULATIVE)
4434 if (!relaxed_p)
4436 ds_t type = FIRST_SPEC_TYPE;
4438 /* Check that dependence weakness is in proper range. */
4441 if (ds & type)
4442 get_dep_weak (ds, type);
4444 if (type == LAST_SPEC_TYPE)
4445 break;
4446 type <<= SPEC_TYPE_SHIFT;
4448 while (1);
4451 if (ds & BEGIN_SPEC)
4453 /* Only true dependence can be data speculative. */
4454 if (ds & BEGIN_DATA)
4455 gcc_assert (ds & DEP_TRUE);
4457 /* Control dependencies in the insn scheduler are represented by
4458 anti-dependencies, therefore only anti dependence can be
4459 control speculative. */
4460 if (ds & BEGIN_CONTROL)
4461 gcc_assert (ds & DEP_ANTI);
4463 else
4465 /* Subsequent speculations should resolve true dependencies. */
4466 gcc_assert ((ds & DEP_TYPES) == DEP_TRUE);
4469 /* Check that true and anti dependencies can't have other speculative
4470 statuses. */
4471 if (ds & DEP_TRUE)
4472 gcc_assert (ds & (BEGIN_DATA | BE_IN_SPEC));
4473 /* An output dependence can't be speculative at all. */
4474 gcc_assert (!(ds & DEP_OUTPUT));
4475 if (ds & DEP_ANTI)
4476 gcc_assert (ds & BEGIN_CONTROL);
4479 #endif /* ENABLE_CHECKING */
4481 #endif /* INSN_SCHEDULING */