2012-05-01 François Dumont <fdumont@gcc.gnu.org>
[official-gcc.git] / gcc / loop-unroll.c
blobf251f5dbacd0361b8b461a2177d8dd1e636435de
1 /* Loop unrolling and peeling.
2 Copyright (C) 2002, 2003, 2004, 2005, 2007, 2008, 2010, 2011
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "hard-reg-set.h"
27 #include "obstack.h"
28 #include "basic-block.h"
29 #include "cfgloop.h"
30 #include "cfglayout.h"
31 #include "params.h"
32 #include "output.h"
33 #include "expr.h"
34 #include "hashtab.h"
35 #include "recog.h"
36 #include "target.h"
38 /* This pass performs loop unrolling and peeling. We only perform these
39 optimizations on innermost loops (with single exception) because
40 the impact on performance is greatest here, and we want to avoid
41 unnecessary code size growth. The gain is caused by greater sequentiality
42 of code, better code to optimize for further passes and in some cases
43 by fewer testings of exit conditions. The main problem is code growth,
44 that impacts performance negatively due to effect of caches.
46 What we do:
48 -- complete peeling of once-rolling loops; this is the above mentioned
49 exception, as this causes loop to be cancelled completely and
50 does not cause code growth
51 -- complete peeling of loops that roll (small) constant times.
52 -- simple peeling of first iterations of loops that do not roll much
53 (according to profile feedback)
54 -- unrolling of loops that roll constant times; this is almost always
55 win, as we get rid of exit condition tests.
56 -- unrolling of loops that roll number of times that we can compute
57 in runtime; we also get rid of exit condition tests here, but there
58 is the extra expense for calculating the number of iterations
59 -- simple unrolling of remaining loops; this is performed only if we
60 are asked to, as the gain is questionable in this case and often
61 it may even slow down the code
62 For more detailed descriptions of each of those, see comments at
63 appropriate function below.
65 There is a lot of parameters (defined and described in params.def) that
66 control how much we unroll/peel.
68 ??? A great problem is that we don't have a good way how to determine
69 how many times we should unroll the loop; the experiments I have made
70 showed that this choice may affect performance in order of several %.
73 /* Information about induction variables to split. */
75 struct iv_to_split
77 rtx insn; /* The insn in that the induction variable occurs. */
78 rtx base_var; /* The variable on that the values in the further
79 iterations are based. */
80 rtx step; /* Step of the induction variable. */
81 struct iv_to_split *next; /* Next entry in walking order. */
82 unsigned n_loc;
83 unsigned loc[3]; /* Location where the definition of the induction
84 variable occurs in the insn. For example if
85 N_LOC is 2, the expression is located at
86 XEXP (XEXP (single_set, loc[0]), loc[1]). */
89 /* Information about accumulators to expand. */
91 struct var_to_expand
93 rtx insn; /* The insn in that the variable expansion occurs. */
94 rtx reg; /* The accumulator which is expanded. */
95 VEC(rtx,heap) *var_expansions; /* The copies of the accumulator which is expanded. */
96 struct var_to_expand *next; /* Next entry in walking order. */
97 enum rtx_code op; /* The type of the accumulation - addition, subtraction
98 or multiplication. */
99 int expansion_count; /* Count the number of expansions generated so far. */
100 int reuse_expansion; /* The expansion we intend to reuse to expand
101 the accumulator. If REUSE_EXPANSION is 0 reuse
102 the original accumulator. Else use
103 var_expansions[REUSE_EXPANSION - 1]. */
104 unsigned accum_pos; /* The position in which the accumulator is placed in
105 the insn src. For example in x = x + something
106 accum_pos is 0 while in x = something + x accum_pos
107 is 1. */
110 /* Information about optimization applied in
111 the unrolled loop. */
113 struct opt_info
115 htab_t insns_to_split; /* A hashtable of insns to split. */
116 struct iv_to_split *iv_to_split_head; /* The first iv to split. */
117 struct iv_to_split **iv_to_split_tail; /* Pointer to the tail of the list. */
118 htab_t insns_with_var_to_expand; /* A hashtable of insns with accumulators
119 to expand. */
120 struct var_to_expand *var_to_expand_head; /* The first var to expand. */
121 struct var_to_expand **var_to_expand_tail; /* Pointer to the tail of the list. */
122 unsigned first_new_block; /* The first basic block that was
123 duplicated. */
124 basic_block loop_exit; /* The loop exit basic block. */
125 basic_block loop_preheader; /* The loop preheader basic block. */
128 static void decide_unrolling_and_peeling (int);
129 static void peel_loops_completely (int);
130 static void decide_peel_simple (struct loop *, int);
131 static void decide_peel_once_rolling (struct loop *, int);
132 static void decide_peel_completely (struct loop *, int);
133 static void decide_unroll_stupid (struct loop *, int);
134 static void decide_unroll_constant_iterations (struct loop *, int);
135 static void decide_unroll_runtime_iterations (struct loop *, int);
136 static void peel_loop_simple (struct loop *);
137 static void peel_loop_completely (struct loop *);
138 static void unroll_loop_stupid (struct loop *);
139 static void unroll_loop_constant_iterations (struct loop *);
140 static void unroll_loop_runtime_iterations (struct loop *);
141 static struct opt_info *analyze_insns_in_loop (struct loop *);
142 static void opt_info_start_duplication (struct opt_info *);
143 static void apply_opt_in_copies (struct opt_info *, unsigned, bool, bool);
144 static void free_opt_info (struct opt_info *);
145 static struct var_to_expand *analyze_insn_to_expand_var (struct loop*, rtx);
146 static bool referenced_in_one_insn_in_loop_p (struct loop *, rtx, int *);
147 static struct iv_to_split *analyze_iv_to_split_insn (rtx);
148 static void expand_var_during_unrolling (struct var_to_expand *, rtx);
149 static void insert_var_expansion_initialization (struct var_to_expand *,
150 basic_block);
151 static void combine_var_copies_in_loop_exit (struct var_to_expand *,
152 basic_block);
153 static rtx get_expansion (struct var_to_expand *);
155 /* Unroll and/or peel (depending on FLAGS) LOOPS. */
156 void
157 unroll_and_peel_loops (int flags)
159 struct loop *loop;
160 bool check;
161 loop_iterator li;
163 /* First perform complete loop peeling (it is almost surely a win,
164 and affects parameters for further decision a lot). */
165 peel_loops_completely (flags);
167 /* Now decide rest of unrolling and peeling. */
168 decide_unrolling_and_peeling (flags);
170 /* Scan the loops, inner ones first. */
171 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
173 check = true;
174 /* And perform the appropriate transformations. */
175 switch (loop->lpt_decision.decision)
177 case LPT_PEEL_COMPLETELY:
178 /* Already done. */
179 gcc_unreachable ();
180 case LPT_PEEL_SIMPLE:
181 peel_loop_simple (loop);
182 break;
183 case LPT_UNROLL_CONSTANT:
184 unroll_loop_constant_iterations (loop);
185 break;
186 case LPT_UNROLL_RUNTIME:
187 unroll_loop_runtime_iterations (loop);
188 break;
189 case LPT_UNROLL_STUPID:
190 unroll_loop_stupid (loop);
191 break;
192 case LPT_NONE:
193 check = false;
194 break;
195 default:
196 gcc_unreachable ();
198 if (check)
200 #ifdef ENABLE_CHECKING
201 verify_loop_structure ();
202 #endif
206 iv_analysis_done ();
209 /* Check whether exit of the LOOP is at the end of loop body. */
211 static bool
212 loop_exit_at_end_p (struct loop *loop)
214 struct niter_desc *desc = get_simple_loop_desc (loop);
215 rtx insn;
217 if (desc->in_edge->dest != loop->latch)
218 return false;
220 /* Check that the latch is empty. */
221 FOR_BB_INSNS (loop->latch, insn)
223 if (INSN_P (insn))
224 return false;
227 return true;
230 /* Depending on FLAGS, check whether to peel loops completely and do so. */
231 static void
232 peel_loops_completely (int flags)
234 struct loop *loop;
235 loop_iterator li;
237 /* Scan the loops, the inner ones first. */
238 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
240 loop->lpt_decision.decision = LPT_NONE;
242 if (dump_file)
243 fprintf (dump_file,
244 "\n;; *** Considering loop %d for complete peeling ***\n",
245 loop->num);
247 loop->ninsns = num_loop_insns (loop);
249 decide_peel_once_rolling (loop, flags);
250 if (loop->lpt_decision.decision == LPT_NONE)
251 decide_peel_completely (loop, flags);
253 if (loop->lpt_decision.decision == LPT_PEEL_COMPLETELY)
255 peel_loop_completely (loop);
256 #ifdef ENABLE_CHECKING
257 verify_loop_structure ();
258 #endif
263 /* Decide whether unroll or peel loops (depending on FLAGS) and how much. */
264 static void
265 decide_unrolling_and_peeling (int flags)
267 struct loop *loop;
268 loop_iterator li;
270 /* Scan the loops, inner ones first. */
271 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
273 loop->lpt_decision.decision = LPT_NONE;
275 if (dump_file)
276 fprintf (dump_file, "\n;; *** Considering loop %d ***\n", loop->num);
278 /* Do not peel cold areas. */
279 if (optimize_loop_for_size_p (loop))
281 if (dump_file)
282 fprintf (dump_file, ";; Not considering loop, cold area\n");
283 continue;
286 /* Can the loop be manipulated? */
287 if (!can_duplicate_loop_p (loop))
289 if (dump_file)
290 fprintf (dump_file,
291 ";; Not considering loop, cannot duplicate\n");
292 continue;
295 /* Skip non-innermost loops. */
296 if (loop->inner)
298 if (dump_file)
299 fprintf (dump_file, ";; Not considering loop, is not innermost\n");
300 continue;
303 loop->ninsns = num_loop_insns (loop);
304 loop->av_ninsns = average_num_loop_insns (loop);
306 /* Try transformations one by one in decreasing order of
307 priority. */
309 decide_unroll_constant_iterations (loop, flags);
310 if (loop->lpt_decision.decision == LPT_NONE)
311 decide_unroll_runtime_iterations (loop, flags);
312 if (loop->lpt_decision.decision == LPT_NONE)
313 decide_unroll_stupid (loop, flags);
314 if (loop->lpt_decision.decision == LPT_NONE)
315 decide_peel_simple (loop, flags);
319 /* Decide whether the LOOP is once rolling and suitable for complete
320 peeling. */
321 static void
322 decide_peel_once_rolling (struct loop *loop, int flags ATTRIBUTE_UNUSED)
324 struct niter_desc *desc;
326 if (dump_file)
327 fprintf (dump_file, "\n;; Considering peeling once rolling loop\n");
329 /* Is the loop small enough? */
330 if ((unsigned) PARAM_VALUE (PARAM_MAX_ONCE_PEELED_INSNS) < loop->ninsns)
332 if (dump_file)
333 fprintf (dump_file, ";; Not considering loop, is too big\n");
334 return;
337 /* Check for simple loops. */
338 desc = get_simple_loop_desc (loop);
340 /* Check number of iterations. */
341 if (!desc->simple_p
342 || desc->assumptions
343 || desc->infinite
344 || !desc->const_iter
345 || desc->niter != 0)
347 if (dump_file)
348 fprintf (dump_file,
349 ";; Unable to prove that the loop rolls exactly once\n");
350 return;
353 /* Success. */
354 if (dump_file)
355 fprintf (dump_file, ";; Decided to peel exactly once rolling loop\n");
356 loop->lpt_decision.decision = LPT_PEEL_COMPLETELY;
359 /* Decide whether the LOOP is suitable for complete peeling. */
360 static void
361 decide_peel_completely (struct loop *loop, int flags ATTRIBUTE_UNUSED)
363 unsigned npeel;
364 struct niter_desc *desc;
366 if (dump_file)
367 fprintf (dump_file, "\n;; Considering peeling completely\n");
369 /* Skip non-innermost loops. */
370 if (loop->inner)
372 if (dump_file)
373 fprintf (dump_file, ";; Not considering loop, is not innermost\n");
374 return;
377 /* Do not peel cold areas. */
378 if (optimize_loop_for_size_p (loop))
380 if (dump_file)
381 fprintf (dump_file, ";; Not considering loop, cold area\n");
382 return;
385 /* Can the loop be manipulated? */
386 if (!can_duplicate_loop_p (loop))
388 if (dump_file)
389 fprintf (dump_file,
390 ";; Not considering loop, cannot duplicate\n");
391 return;
394 /* npeel = number of iterations to peel. */
395 npeel = PARAM_VALUE (PARAM_MAX_COMPLETELY_PEELED_INSNS) / loop->ninsns;
396 if (npeel > (unsigned) PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES))
397 npeel = PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES);
399 /* Is the loop small enough? */
400 if (!npeel)
402 if (dump_file)
403 fprintf (dump_file, ";; Not considering loop, is too big\n");
404 return;
407 /* Check for simple loops. */
408 desc = get_simple_loop_desc (loop);
410 /* Check number of iterations. */
411 if (!desc->simple_p
412 || desc->assumptions
413 || !desc->const_iter
414 || desc->infinite)
416 if (dump_file)
417 fprintf (dump_file,
418 ";; Unable to prove that the loop iterates constant times\n");
419 return;
422 if (desc->niter > npeel - 1)
424 if (dump_file)
426 fprintf (dump_file,
427 ";; Not peeling loop completely, rolls too much (");
428 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, desc->niter);
429 fprintf (dump_file, " iterations > %d [maximum peelings])\n", npeel);
431 return;
434 /* Success. */
435 if (dump_file)
436 fprintf (dump_file, ";; Decided to peel loop completely\n");
437 loop->lpt_decision.decision = LPT_PEEL_COMPLETELY;
440 /* Peel all iterations of LOOP, remove exit edges and cancel the loop
441 completely. The transformation done:
443 for (i = 0; i < 4; i++)
444 body;
448 i = 0;
449 body; i++;
450 body; i++;
451 body; i++;
452 body; i++;
454 static void
455 peel_loop_completely (struct loop *loop)
457 sbitmap wont_exit;
458 unsigned HOST_WIDE_INT npeel;
459 unsigned i;
460 VEC (edge, heap) *remove_edges;
461 edge ein;
462 struct niter_desc *desc = get_simple_loop_desc (loop);
463 struct opt_info *opt_info = NULL;
465 npeel = desc->niter;
467 if (npeel)
469 bool ok;
471 wont_exit = sbitmap_alloc (npeel + 1);
472 sbitmap_ones (wont_exit);
473 RESET_BIT (wont_exit, 0);
474 if (desc->noloop_assumptions)
475 RESET_BIT (wont_exit, 1);
477 remove_edges = NULL;
479 if (flag_split_ivs_in_unroller)
480 opt_info = analyze_insns_in_loop (loop);
482 opt_info_start_duplication (opt_info);
483 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
484 npeel,
485 wont_exit, desc->out_edge,
486 &remove_edges,
487 DLTHE_FLAG_UPDATE_FREQ
488 | DLTHE_FLAG_COMPLETTE_PEEL
489 | (opt_info
490 ? DLTHE_RECORD_COPY_NUMBER : 0));
491 gcc_assert (ok);
493 free (wont_exit);
495 if (opt_info)
497 apply_opt_in_copies (opt_info, npeel, false, true);
498 free_opt_info (opt_info);
501 /* Remove the exit edges. */
502 FOR_EACH_VEC_ELT (edge, remove_edges, i, ein)
503 remove_path (ein);
504 VEC_free (edge, heap, remove_edges);
507 ein = desc->in_edge;
508 free_simple_loop_desc (loop);
510 /* Now remove the unreachable part of the last iteration and cancel
511 the loop. */
512 remove_path (ein);
514 if (dump_file)
515 fprintf (dump_file, ";; Peeled loop completely, %d times\n", (int) npeel);
518 /* Decide whether to unroll LOOP iterating constant number of times
519 and how much. */
521 static void
522 decide_unroll_constant_iterations (struct loop *loop, int flags)
524 unsigned nunroll, nunroll_by_av, best_copies, best_unroll = 0, n_copies, i;
525 struct niter_desc *desc;
527 if (!(flags & UAP_UNROLL))
529 /* We were not asked to, just return back silently. */
530 return;
533 if (dump_file)
534 fprintf (dump_file,
535 "\n;; Considering unrolling loop with constant "
536 "number of iterations\n");
538 /* nunroll = total number of copies of the original loop body in
539 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
540 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
541 nunroll_by_av
542 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
543 if (nunroll > nunroll_by_av)
544 nunroll = nunroll_by_av;
545 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
546 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
548 /* Skip big loops. */
549 if (nunroll <= 1)
551 if (dump_file)
552 fprintf (dump_file, ";; Not considering loop, is too big\n");
553 return;
556 /* Check for simple loops. */
557 desc = get_simple_loop_desc (loop);
559 /* Check number of iterations. */
560 if (!desc->simple_p || !desc->const_iter || desc->assumptions)
562 if (dump_file)
563 fprintf (dump_file,
564 ";; Unable to prove that the loop iterates constant times\n");
565 return;
568 /* Check whether the loop rolls enough to consider. */
569 if (desc->niter < 2 * nunroll)
571 if (dump_file)
572 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
573 return;
576 /* Success; now compute number of iterations to unroll. We alter
577 nunroll so that as few as possible copies of loop body are
578 necessary, while still not decreasing the number of unrollings
579 too much (at most by 1). */
580 best_copies = 2 * nunroll + 10;
582 i = 2 * nunroll + 2;
583 if (i - 1 >= desc->niter)
584 i = desc->niter - 2;
586 for (; i >= nunroll - 1; i--)
588 unsigned exit_mod = desc->niter % (i + 1);
590 if (!loop_exit_at_end_p (loop))
591 n_copies = exit_mod + i + 1;
592 else if (exit_mod != (unsigned) i
593 || desc->noloop_assumptions != NULL_RTX)
594 n_copies = exit_mod + i + 2;
595 else
596 n_copies = i + 1;
598 if (n_copies < best_copies)
600 best_copies = n_copies;
601 best_unroll = i;
605 if (dump_file)
606 fprintf (dump_file, ";; max_unroll %d (%d copies, initial %d).\n",
607 best_unroll + 1, best_copies, nunroll);
609 loop->lpt_decision.decision = LPT_UNROLL_CONSTANT;
610 loop->lpt_decision.times = best_unroll;
612 if (dump_file)
613 fprintf (dump_file,
614 ";; Decided to unroll the constant times rolling loop, %d times.\n",
615 loop->lpt_decision.times);
618 /* Unroll LOOP with constant number of iterations LOOP->LPT_DECISION.TIMES + 1
619 times. The transformation does this:
621 for (i = 0; i < 102; i++)
622 body;
626 i = 0;
627 body; i++;
628 body; i++;
629 while (i < 102)
631 body; i++;
632 body; i++;
633 body; i++;
634 body; i++;
637 static void
638 unroll_loop_constant_iterations (struct loop *loop)
640 unsigned HOST_WIDE_INT niter;
641 unsigned exit_mod;
642 sbitmap wont_exit;
643 unsigned i;
644 VEC (edge, heap) *remove_edges;
645 edge e;
646 unsigned max_unroll = loop->lpt_decision.times;
647 struct niter_desc *desc = get_simple_loop_desc (loop);
648 bool exit_at_end = loop_exit_at_end_p (loop);
649 struct opt_info *opt_info = NULL;
650 bool ok;
652 niter = desc->niter;
654 /* Should not get here (such loop should be peeled instead). */
655 gcc_assert (niter > max_unroll + 1);
657 exit_mod = niter % (max_unroll + 1);
659 wont_exit = sbitmap_alloc (max_unroll + 1);
660 sbitmap_ones (wont_exit);
662 remove_edges = NULL;
663 if (flag_split_ivs_in_unroller
664 || flag_variable_expansion_in_unroller)
665 opt_info = analyze_insns_in_loop (loop);
667 if (!exit_at_end)
669 /* The exit is not at the end of the loop; leave exit test
670 in the first copy, so that the loops that start with test
671 of exit condition have continuous body after unrolling. */
673 if (dump_file)
674 fprintf (dump_file, ";; Condition on beginning of loop.\n");
676 /* Peel exit_mod iterations. */
677 RESET_BIT (wont_exit, 0);
678 if (desc->noloop_assumptions)
679 RESET_BIT (wont_exit, 1);
681 if (exit_mod)
683 opt_info_start_duplication (opt_info);
684 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
685 exit_mod,
686 wont_exit, desc->out_edge,
687 &remove_edges,
688 DLTHE_FLAG_UPDATE_FREQ
689 | (opt_info && exit_mod > 1
690 ? DLTHE_RECORD_COPY_NUMBER
691 : 0));
692 gcc_assert (ok);
694 if (opt_info && exit_mod > 1)
695 apply_opt_in_copies (opt_info, exit_mod, false, false);
697 desc->noloop_assumptions = NULL_RTX;
698 desc->niter -= exit_mod;
699 desc->niter_max -= exit_mod;
702 SET_BIT (wont_exit, 1);
704 else
706 /* Leave exit test in last copy, for the same reason as above if
707 the loop tests the condition at the end of loop body. */
709 if (dump_file)
710 fprintf (dump_file, ";; Condition on end of loop.\n");
712 /* We know that niter >= max_unroll + 2; so we do not need to care of
713 case when we would exit before reaching the loop. So just peel
714 exit_mod + 1 iterations. */
715 if (exit_mod != max_unroll
716 || desc->noloop_assumptions)
718 RESET_BIT (wont_exit, 0);
719 if (desc->noloop_assumptions)
720 RESET_BIT (wont_exit, 1);
722 opt_info_start_duplication (opt_info);
723 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
724 exit_mod + 1,
725 wont_exit, desc->out_edge,
726 &remove_edges,
727 DLTHE_FLAG_UPDATE_FREQ
728 | (opt_info && exit_mod > 0
729 ? DLTHE_RECORD_COPY_NUMBER
730 : 0));
731 gcc_assert (ok);
733 if (opt_info && exit_mod > 0)
734 apply_opt_in_copies (opt_info, exit_mod + 1, false, false);
736 desc->niter -= exit_mod + 1;
737 desc->niter_max -= exit_mod + 1;
738 desc->noloop_assumptions = NULL_RTX;
740 SET_BIT (wont_exit, 0);
741 SET_BIT (wont_exit, 1);
744 RESET_BIT (wont_exit, max_unroll);
747 /* Now unroll the loop. */
749 opt_info_start_duplication (opt_info);
750 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
751 max_unroll,
752 wont_exit, desc->out_edge,
753 &remove_edges,
754 DLTHE_FLAG_UPDATE_FREQ
755 | (opt_info
756 ? DLTHE_RECORD_COPY_NUMBER
757 : 0));
758 gcc_assert (ok);
760 if (opt_info)
762 apply_opt_in_copies (opt_info, max_unroll, true, true);
763 free_opt_info (opt_info);
766 free (wont_exit);
768 if (exit_at_end)
770 basic_block exit_block = get_bb_copy (desc->in_edge->src);
771 /* Find a new in and out edge; they are in the last copy we have made. */
773 if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
775 desc->out_edge = EDGE_SUCC (exit_block, 0);
776 desc->in_edge = EDGE_SUCC (exit_block, 1);
778 else
780 desc->out_edge = EDGE_SUCC (exit_block, 1);
781 desc->in_edge = EDGE_SUCC (exit_block, 0);
785 desc->niter /= max_unroll + 1;
786 desc->niter_max /= max_unroll + 1;
787 desc->niter_expr = GEN_INT (desc->niter);
789 /* Remove the edges. */
790 FOR_EACH_VEC_ELT (edge, remove_edges, i, e)
791 remove_path (e);
792 VEC_free (edge, heap, remove_edges);
794 if (dump_file)
795 fprintf (dump_file,
796 ";; Unrolled loop %d times, constant # of iterations %i insns\n",
797 max_unroll, num_loop_insns (loop));
800 /* Decide whether to unroll LOOP iterating runtime computable number of times
801 and how much. */
802 static void
803 decide_unroll_runtime_iterations (struct loop *loop, int flags)
805 unsigned nunroll, nunroll_by_av, i;
806 struct niter_desc *desc;
808 if (!(flags & UAP_UNROLL))
810 /* We were not asked to, just return back silently. */
811 return;
814 if (dump_file)
815 fprintf (dump_file,
816 "\n;; Considering unrolling loop with runtime "
817 "computable number of iterations\n");
819 /* nunroll = total number of copies of the original loop body in
820 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
821 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
822 nunroll_by_av = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
823 if (nunroll > nunroll_by_av)
824 nunroll = nunroll_by_av;
825 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
826 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
828 if (targetm.loop_unroll_adjust)
829 nunroll = targetm.loop_unroll_adjust (nunroll, loop);
831 /* Skip big loops. */
832 if (nunroll <= 1)
834 if (dump_file)
835 fprintf (dump_file, ";; Not considering loop, is too big\n");
836 return;
839 /* Check for simple loops. */
840 desc = get_simple_loop_desc (loop);
842 /* Check simpleness. */
843 if (!desc->simple_p || desc->assumptions)
845 if (dump_file)
846 fprintf (dump_file,
847 ";; Unable to prove that the number of iterations "
848 "can be counted in runtime\n");
849 return;
852 if (desc->const_iter)
854 if (dump_file)
855 fprintf (dump_file, ";; Loop iterates constant times\n");
856 return;
859 /* If we have profile feedback, check whether the loop rolls. */
860 if ((loop->header->count
861 && expected_loop_iterations (loop) < 2 * nunroll)
862 || desc->niter_max < 2 * nunroll)
864 if (dump_file)
865 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
866 return;
869 /* Success; now force nunroll to be power of 2, as we are unable to
870 cope with overflows in computation of number of iterations. */
871 for (i = 1; 2 * i <= nunroll; i *= 2)
872 continue;
874 loop->lpt_decision.decision = LPT_UNROLL_RUNTIME;
875 loop->lpt_decision.times = i - 1;
877 if (dump_file)
878 fprintf (dump_file,
879 ";; Decided to unroll the runtime computable "
880 "times rolling loop, %d times.\n",
881 loop->lpt_decision.times);
884 /* Splits edge E and inserts the sequence of instructions INSNS on it, and
885 returns the newly created block. If INSNS is NULL_RTX, nothing is changed
886 and NULL is returned instead. */
888 basic_block
889 split_edge_and_insert (edge e, rtx insns)
891 basic_block bb;
893 if (!insns)
894 return NULL;
895 bb = split_edge (e);
896 emit_insn_after (insns, BB_END (bb));
898 /* ??? We used to assume that INSNS can contain control flow insns, and
899 that we had to try to find sub basic blocks in BB to maintain a valid
900 CFG. For this purpose we used to set the BB_SUPERBLOCK flag on BB
901 and call break_superblocks when going out of cfglayout mode. But it
902 turns out that this never happens; and that if it does ever happen,
903 the TODO_verify_flow at the end of the RTL loop passes would fail.
905 There are two reasons why we expected we could have control flow insns
906 in INSNS. The first is when a comparison has to be done in parts, and
907 the second is when the number of iterations is computed for loops with
908 the number of iterations known at runtime. In both cases, test cases
909 to get control flow in INSNS appear to be impossible to construct:
911 * If do_compare_rtx_and_jump needs several branches to do comparison
912 in a mode that needs comparison by parts, we cannot analyze the
913 number of iterations of the loop, and we never get to unrolling it.
915 * The code in expand_divmod that was suspected to cause creation of
916 branching code seems to be only accessed for signed division. The
917 divisions used by # of iterations analysis are always unsigned.
918 Problems might arise on architectures that emits branching code
919 for some operations that may appear in the unroller (especially
920 for division), but we have no such architectures.
922 Considering all this, it was decided that we should for now assume
923 that INSNS can in theory contain control flow insns, but in practice
924 it never does. So we don't handle the theoretical case, and should
925 a real failure ever show up, we have a pretty good clue for how to
926 fix it. */
928 return bb;
931 /* Unroll LOOP for that we are able to count number of iterations in runtime
932 LOOP->LPT_DECISION.TIMES + 1 times. The transformation does this (with some
933 extra care for case n < 0):
935 for (i = 0; i < n; i++)
936 body;
940 i = 0;
941 mod = n % 4;
943 switch (mod)
945 case 3:
946 body; i++;
947 case 2:
948 body; i++;
949 case 1:
950 body; i++;
951 case 0: ;
954 while (i < n)
956 body; i++;
957 body; i++;
958 body; i++;
959 body; i++;
962 static void
963 unroll_loop_runtime_iterations (struct loop *loop)
965 rtx old_niter, niter, init_code, branch_code, tmp;
966 unsigned i, j, p;
967 basic_block preheader, *body, swtch, ezc_swtch;
968 VEC (basic_block, heap) *dom_bbs;
969 sbitmap wont_exit;
970 int may_exit_copy;
971 unsigned n_peel;
972 VEC (edge, heap) *remove_edges;
973 edge e;
974 bool extra_zero_check, last_may_exit;
975 unsigned max_unroll = loop->lpt_decision.times;
976 struct niter_desc *desc = get_simple_loop_desc (loop);
977 bool exit_at_end = loop_exit_at_end_p (loop);
978 struct opt_info *opt_info = NULL;
979 bool ok;
981 if (flag_split_ivs_in_unroller
982 || flag_variable_expansion_in_unroller)
983 opt_info = analyze_insns_in_loop (loop);
985 /* Remember blocks whose dominators will have to be updated. */
986 dom_bbs = NULL;
988 body = get_loop_body (loop);
989 for (i = 0; i < loop->num_nodes; i++)
991 VEC (basic_block, heap) *ldom;
992 basic_block bb;
994 ldom = get_dominated_by (CDI_DOMINATORS, body[i]);
995 FOR_EACH_VEC_ELT (basic_block, ldom, j, bb)
996 if (!flow_bb_inside_loop_p (loop, bb))
997 VEC_safe_push (basic_block, heap, dom_bbs, bb);
999 VEC_free (basic_block, heap, ldom);
1001 free (body);
1003 if (!exit_at_end)
1005 /* Leave exit in first copy (for explanation why see comment in
1006 unroll_loop_constant_iterations). */
1007 may_exit_copy = 0;
1008 n_peel = max_unroll - 1;
1009 extra_zero_check = true;
1010 last_may_exit = false;
1012 else
1014 /* Leave exit in last copy (for explanation why see comment in
1015 unroll_loop_constant_iterations). */
1016 may_exit_copy = max_unroll;
1017 n_peel = max_unroll;
1018 extra_zero_check = false;
1019 last_may_exit = true;
1022 /* Get expression for number of iterations. */
1023 start_sequence ();
1024 old_niter = niter = gen_reg_rtx (desc->mode);
1025 tmp = force_operand (copy_rtx (desc->niter_expr), niter);
1026 if (tmp != niter)
1027 emit_move_insn (niter, tmp);
1029 /* Count modulo by ANDing it with max_unroll; we use the fact that
1030 the number of unrollings is a power of two, and thus this is correct
1031 even if there is overflow in the computation. */
1032 niter = expand_simple_binop (desc->mode, AND,
1033 niter,
1034 GEN_INT (max_unroll),
1035 NULL_RTX, 0, OPTAB_LIB_WIDEN);
1037 init_code = get_insns ();
1038 end_sequence ();
1039 unshare_all_rtl_in_chain (init_code);
1041 /* Precondition the loop. */
1042 split_edge_and_insert (loop_preheader_edge (loop), init_code);
1044 remove_edges = NULL;
1046 wont_exit = sbitmap_alloc (max_unroll + 2);
1048 /* Peel the first copy of loop body (almost always we must leave exit test
1049 here; the only exception is when we have extra zero check and the number
1050 of iterations is reliable. Also record the place of (possible) extra
1051 zero check. */
1052 sbitmap_zero (wont_exit);
1053 if (extra_zero_check
1054 && !desc->noloop_assumptions)
1055 SET_BIT (wont_exit, 1);
1056 ezc_swtch = loop_preheader_edge (loop)->src;
1057 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1058 1, wont_exit, desc->out_edge,
1059 &remove_edges,
1060 DLTHE_FLAG_UPDATE_FREQ);
1061 gcc_assert (ok);
1063 /* Record the place where switch will be built for preconditioning. */
1064 swtch = split_edge (loop_preheader_edge (loop));
1066 for (i = 0; i < n_peel; i++)
1068 /* Peel the copy. */
1069 sbitmap_zero (wont_exit);
1070 if (i != n_peel - 1 || !last_may_exit)
1071 SET_BIT (wont_exit, 1);
1072 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1073 1, wont_exit, desc->out_edge,
1074 &remove_edges,
1075 DLTHE_FLAG_UPDATE_FREQ);
1076 gcc_assert (ok);
1078 /* Create item for switch. */
1079 j = n_peel - i - (extra_zero_check ? 0 : 1);
1080 p = REG_BR_PROB_BASE / (i + 2);
1082 preheader = split_edge (loop_preheader_edge (loop));
1083 branch_code = compare_and_jump_seq (copy_rtx (niter), GEN_INT (j), EQ,
1084 block_label (preheader), p,
1085 NULL_RTX);
1087 /* We rely on the fact that the compare and jump cannot be optimized out,
1088 and hence the cfg we create is correct. */
1089 gcc_assert (branch_code != NULL_RTX);
1091 swtch = split_edge_and_insert (single_pred_edge (swtch), branch_code);
1092 set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
1093 single_pred_edge (swtch)->probability = REG_BR_PROB_BASE - p;
1094 e = make_edge (swtch, preheader,
1095 single_succ_edge (swtch)->flags & EDGE_IRREDUCIBLE_LOOP);
1096 e->probability = p;
1099 if (extra_zero_check)
1101 /* Add branch for zero iterations. */
1102 p = REG_BR_PROB_BASE / (max_unroll + 1);
1103 swtch = ezc_swtch;
1104 preheader = split_edge (loop_preheader_edge (loop));
1105 branch_code = compare_and_jump_seq (copy_rtx (niter), const0_rtx, EQ,
1106 block_label (preheader), p,
1107 NULL_RTX);
1108 gcc_assert (branch_code != NULL_RTX);
1110 swtch = split_edge_and_insert (single_succ_edge (swtch), branch_code);
1111 set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
1112 single_succ_edge (swtch)->probability = REG_BR_PROB_BASE - p;
1113 e = make_edge (swtch, preheader,
1114 single_succ_edge (swtch)->flags & EDGE_IRREDUCIBLE_LOOP);
1115 e->probability = p;
1118 /* Recount dominators for outer blocks. */
1119 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
1121 /* And unroll loop. */
1123 sbitmap_ones (wont_exit);
1124 RESET_BIT (wont_exit, may_exit_copy);
1125 opt_info_start_duplication (opt_info);
1127 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
1128 max_unroll,
1129 wont_exit, desc->out_edge,
1130 &remove_edges,
1131 DLTHE_FLAG_UPDATE_FREQ
1132 | (opt_info
1133 ? DLTHE_RECORD_COPY_NUMBER
1134 : 0));
1135 gcc_assert (ok);
1137 if (opt_info)
1139 apply_opt_in_copies (opt_info, max_unroll, true, true);
1140 free_opt_info (opt_info);
1143 free (wont_exit);
1145 if (exit_at_end)
1147 basic_block exit_block = get_bb_copy (desc->in_edge->src);
1148 /* Find a new in and out edge; they are in the last copy we have
1149 made. */
1151 if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
1153 desc->out_edge = EDGE_SUCC (exit_block, 0);
1154 desc->in_edge = EDGE_SUCC (exit_block, 1);
1156 else
1158 desc->out_edge = EDGE_SUCC (exit_block, 1);
1159 desc->in_edge = EDGE_SUCC (exit_block, 0);
1163 /* Remove the edges. */
1164 FOR_EACH_VEC_ELT (edge, remove_edges, i, e)
1165 remove_path (e);
1166 VEC_free (edge, heap, remove_edges);
1168 /* We must be careful when updating the number of iterations due to
1169 preconditioning and the fact that the value must be valid at entry
1170 of the loop. After passing through the above code, we see that
1171 the correct new number of iterations is this: */
1172 gcc_assert (!desc->const_iter);
1173 desc->niter_expr =
1174 simplify_gen_binary (UDIV, desc->mode, old_niter,
1175 GEN_INT (max_unroll + 1));
1176 desc->niter_max /= max_unroll + 1;
1177 if (exit_at_end)
1179 desc->niter_expr =
1180 simplify_gen_binary (MINUS, desc->mode, desc->niter_expr, const1_rtx);
1181 desc->noloop_assumptions = NULL_RTX;
1182 desc->niter_max--;
1185 if (dump_file)
1186 fprintf (dump_file,
1187 ";; Unrolled loop %d times, counting # of iterations "
1188 "in runtime, %i insns\n",
1189 max_unroll, num_loop_insns (loop));
1191 VEC_free (basic_block, heap, dom_bbs);
1194 /* Decide whether to simply peel LOOP and how much. */
1195 static void
1196 decide_peel_simple (struct loop *loop, int flags)
1198 unsigned npeel;
1199 struct niter_desc *desc;
1201 if (!(flags & UAP_PEEL))
1203 /* We were not asked to, just return back silently. */
1204 return;
1207 if (dump_file)
1208 fprintf (dump_file, "\n;; Considering simply peeling loop\n");
1210 /* npeel = number of iterations to peel. */
1211 npeel = PARAM_VALUE (PARAM_MAX_PEELED_INSNS) / loop->ninsns;
1212 if (npeel > (unsigned) PARAM_VALUE (PARAM_MAX_PEEL_TIMES))
1213 npeel = PARAM_VALUE (PARAM_MAX_PEEL_TIMES);
1215 /* Skip big loops. */
1216 if (!npeel)
1218 if (dump_file)
1219 fprintf (dump_file, ";; Not considering loop, is too big\n");
1220 return;
1223 /* Check for simple loops. */
1224 desc = get_simple_loop_desc (loop);
1226 /* Check number of iterations. */
1227 if (desc->simple_p && !desc->assumptions && desc->const_iter)
1229 if (dump_file)
1230 fprintf (dump_file, ";; Loop iterates constant times\n");
1231 return;
1234 /* Do not simply peel loops with branches inside -- it increases number
1235 of mispredicts. */
1236 if (num_loop_branches (loop) > 1)
1238 if (dump_file)
1239 fprintf (dump_file, ";; Not peeling, contains branches\n");
1240 return;
1243 if (loop->header->count)
1245 unsigned niter = expected_loop_iterations (loop);
1246 if (niter + 1 > npeel)
1248 if (dump_file)
1250 fprintf (dump_file, ";; Not peeling loop, rolls too much (");
1251 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1252 (HOST_WIDEST_INT) (niter + 1));
1253 fprintf (dump_file, " iterations > %d [maximum peelings])\n",
1254 npeel);
1256 return;
1258 npeel = niter + 1;
1260 else
1262 /* For now we have no good heuristics to decide whether loop peeling
1263 will be effective, so disable it. */
1264 if (dump_file)
1265 fprintf (dump_file,
1266 ";; Not peeling loop, no evidence it will be profitable\n");
1267 return;
1270 /* Success. */
1271 loop->lpt_decision.decision = LPT_PEEL_SIMPLE;
1272 loop->lpt_decision.times = npeel;
1274 if (dump_file)
1275 fprintf (dump_file, ";; Decided to simply peel the loop, %d times.\n",
1276 loop->lpt_decision.times);
1279 /* Peel a LOOP LOOP->LPT_DECISION.TIMES times. The transformation:
1280 while (cond)
1281 body;
1285 if (!cond) goto end;
1286 body;
1287 if (!cond) goto end;
1288 body;
1289 while (cond)
1290 body;
1291 end: ;
1293 static void
1294 peel_loop_simple (struct loop *loop)
1296 sbitmap wont_exit;
1297 unsigned npeel = loop->lpt_decision.times;
1298 struct niter_desc *desc = get_simple_loop_desc (loop);
1299 struct opt_info *opt_info = NULL;
1300 bool ok;
1302 if (flag_split_ivs_in_unroller && npeel > 1)
1303 opt_info = analyze_insns_in_loop (loop);
1305 wont_exit = sbitmap_alloc (npeel + 1);
1306 sbitmap_zero (wont_exit);
1308 opt_info_start_duplication (opt_info);
1310 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1311 npeel, wont_exit, NULL,
1312 NULL, DLTHE_FLAG_UPDATE_FREQ
1313 | (opt_info
1314 ? DLTHE_RECORD_COPY_NUMBER
1315 : 0));
1316 gcc_assert (ok);
1318 free (wont_exit);
1320 if (opt_info)
1322 apply_opt_in_copies (opt_info, npeel, false, false);
1323 free_opt_info (opt_info);
1326 if (desc->simple_p)
1328 if (desc->const_iter)
1330 desc->niter -= npeel;
1331 desc->niter_expr = GEN_INT (desc->niter);
1332 desc->noloop_assumptions = NULL_RTX;
1334 else
1336 /* We cannot just update niter_expr, as its value might be clobbered
1337 inside loop. We could handle this by counting the number into
1338 temporary just like we do in runtime unrolling, but it does not
1339 seem worthwhile. */
1340 free_simple_loop_desc (loop);
1343 if (dump_file)
1344 fprintf (dump_file, ";; Peeling loop %d times\n", npeel);
1347 /* Decide whether to unroll LOOP stupidly and how much. */
1348 static void
1349 decide_unroll_stupid (struct loop *loop, int flags)
1351 unsigned nunroll, nunroll_by_av, i;
1352 struct niter_desc *desc;
1354 if (!(flags & UAP_UNROLL_ALL))
1356 /* We were not asked to, just return back silently. */
1357 return;
1360 if (dump_file)
1361 fprintf (dump_file, "\n;; Considering unrolling loop stupidly\n");
1363 /* nunroll = total number of copies of the original loop body in
1364 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
1365 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
1366 nunroll_by_av
1367 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
1368 if (nunroll > nunroll_by_av)
1369 nunroll = nunroll_by_av;
1370 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
1371 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
1373 if (targetm.loop_unroll_adjust)
1374 nunroll = targetm.loop_unroll_adjust (nunroll, loop);
1376 /* Skip big loops. */
1377 if (nunroll <= 1)
1379 if (dump_file)
1380 fprintf (dump_file, ";; Not considering loop, is too big\n");
1381 return;
1384 /* Check for simple loops. */
1385 desc = get_simple_loop_desc (loop);
1387 /* Check simpleness. */
1388 if (desc->simple_p && !desc->assumptions)
1390 if (dump_file)
1391 fprintf (dump_file, ";; The loop is simple\n");
1392 return;
1395 /* Do not unroll loops with branches inside -- it increases number
1396 of mispredicts. */
1397 if (num_loop_branches (loop) > 1)
1399 if (dump_file)
1400 fprintf (dump_file, ";; Not unrolling, contains branches\n");
1401 return;
1404 /* If we have profile feedback, check whether the loop rolls. */
1405 if ((loop->header->count
1406 && expected_loop_iterations (loop) < 2 * nunroll)
1407 || desc->niter_max < 2 * nunroll)
1409 if (dump_file)
1410 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
1411 return;
1414 /* Success. Now force nunroll to be power of 2, as it seems that this
1415 improves results (partially because of better alignments, partially
1416 because of some dark magic). */
1417 for (i = 1; 2 * i <= nunroll; i *= 2)
1418 continue;
1420 loop->lpt_decision.decision = LPT_UNROLL_STUPID;
1421 loop->lpt_decision.times = i - 1;
1423 if (dump_file)
1424 fprintf (dump_file,
1425 ";; Decided to unroll the loop stupidly, %d times.\n",
1426 loop->lpt_decision.times);
1429 /* Unroll a LOOP LOOP->LPT_DECISION.TIMES times. The transformation:
1430 while (cond)
1431 body;
1435 while (cond)
1437 body;
1438 if (!cond) break;
1439 body;
1440 if (!cond) break;
1441 body;
1442 if (!cond) break;
1443 body;
1446 static void
1447 unroll_loop_stupid (struct loop *loop)
1449 sbitmap wont_exit;
1450 unsigned nunroll = loop->lpt_decision.times;
1451 struct niter_desc *desc = get_simple_loop_desc (loop);
1452 struct opt_info *opt_info = NULL;
1453 bool ok;
1455 if (flag_split_ivs_in_unroller
1456 || flag_variable_expansion_in_unroller)
1457 opt_info = analyze_insns_in_loop (loop);
1460 wont_exit = sbitmap_alloc (nunroll + 1);
1461 sbitmap_zero (wont_exit);
1462 opt_info_start_duplication (opt_info);
1464 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
1465 nunroll, wont_exit,
1466 NULL, NULL,
1467 DLTHE_FLAG_UPDATE_FREQ
1468 | (opt_info
1469 ? DLTHE_RECORD_COPY_NUMBER
1470 : 0));
1471 gcc_assert (ok);
1473 if (opt_info)
1475 apply_opt_in_copies (opt_info, nunroll, true, true);
1476 free_opt_info (opt_info);
1479 free (wont_exit);
1481 if (desc->simple_p)
1483 /* We indeed may get here provided that there are nontrivial assumptions
1484 for a loop to be really simple. We could update the counts, but the
1485 problem is that we are unable to decide which exit will be taken
1486 (not really true in case the number of iterations is constant,
1487 but noone will do anything with this information, so we do not
1488 worry about it). */
1489 desc->simple_p = false;
1492 if (dump_file)
1493 fprintf (dump_file, ";; Unrolled loop %d times, %i insns\n",
1494 nunroll, num_loop_insns (loop));
1497 /* A hash function for information about insns to split. */
1499 static hashval_t
1500 si_info_hash (const void *ivts)
1502 return (hashval_t) INSN_UID (((const struct iv_to_split *) ivts)->insn);
1505 /* An equality functions for information about insns to split. */
1507 static int
1508 si_info_eq (const void *ivts1, const void *ivts2)
1510 const struct iv_to_split *const i1 = (const struct iv_to_split *) ivts1;
1511 const struct iv_to_split *const i2 = (const struct iv_to_split *) ivts2;
1513 return i1->insn == i2->insn;
1516 /* Return a hash for VES, which is really a "var_to_expand *". */
1518 static hashval_t
1519 ve_info_hash (const void *ves)
1521 return (hashval_t) INSN_UID (((const struct var_to_expand *) ves)->insn);
1524 /* Return true if IVTS1 and IVTS2 (which are really both of type
1525 "var_to_expand *") refer to the same instruction. */
1527 static int
1528 ve_info_eq (const void *ivts1, const void *ivts2)
1530 const struct var_to_expand *const i1 = (const struct var_to_expand *) ivts1;
1531 const struct var_to_expand *const i2 = (const struct var_to_expand *) ivts2;
1533 return i1->insn == i2->insn;
1536 /* Returns true if REG is referenced in one nondebug insn in LOOP.
1537 Set *DEBUG_USES to the number of debug insns that reference the
1538 variable. */
1540 bool
1541 referenced_in_one_insn_in_loop_p (struct loop *loop, rtx reg,
1542 int *debug_uses)
1544 basic_block *body, bb;
1545 unsigned i;
1546 int count_ref = 0;
1547 rtx insn;
1549 body = get_loop_body (loop);
1550 for (i = 0; i < loop->num_nodes; i++)
1552 bb = body[i];
1554 FOR_BB_INSNS (bb, insn)
1555 if (!rtx_referenced_p (reg, insn))
1556 continue;
1557 else if (DEBUG_INSN_P (insn))
1558 ++*debug_uses;
1559 else if (++count_ref > 1)
1560 break;
1562 free (body);
1563 return (count_ref == 1);
1566 /* Reset the DEBUG_USES debug insns in LOOP that reference REG. */
1568 static void
1569 reset_debug_uses_in_loop (struct loop *loop, rtx reg, int debug_uses)
1571 basic_block *body, bb;
1572 unsigned i;
1573 rtx insn;
1575 body = get_loop_body (loop);
1576 for (i = 0; debug_uses && i < loop->num_nodes; i++)
1578 bb = body[i];
1580 FOR_BB_INSNS (bb, insn)
1581 if (!DEBUG_INSN_P (insn) || !rtx_referenced_p (reg, insn))
1582 continue;
1583 else
1585 validate_change (insn, &INSN_VAR_LOCATION_LOC (insn),
1586 gen_rtx_UNKNOWN_VAR_LOC (), 0);
1587 if (!--debug_uses)
1588 break;
1591 free (body);
1594 /* Determine whether INSN contains an accumulator
1595 which can be expanded into separate copies,
1596 one for each copy of the LOOP body.
1598 for (i = 0 ; i < n; i++)
1599 sum += a[i];
1603 sum += a[i]
1604 ....
1605 i = i+1;
1606 sum1 += a[i]
1607 ....
1608 i = i+1
1609 sum2 += a[i];
1610 ....
1612 Return NULL if INSN contains no opportunity for expansion of accumulator.
1613 Otherwise, allocate a VAR_TO_EXPAND structure, fill it with the relevant
1614 information and return a pointer to it.
1617 static struct var_to_expand *
1618 analyze_insn_to_expand_var (struct loop *loop, rtx insn)
1620 rtx set, dest, src;
1621 struct var_to_expand *ves;
1622 unsigned accum_pos;
1623 enum rtx_code code;
1624 int debug_uses = 0;
1626 set = single_set (insn);
1627 if (!set)
1628 return NULL;
1630 dest = SET_DEST (set);
1631 src = SET_SRC (set);
1632 code = GET_CODE (src);
1634 if (code != PLUS && code != MINUS && code != MULT && code != FMA)
1635 return NULL;
1637 if (FLOAT_MODE_P (GET_MODE (dest)))
1639 if (!flag_associative_math)
1640 return NULL;
1641 /* In the case of FMA, we're also changing the rounding. */
1642 if (code == FMA && !flag_unsafe_math_optimizations)
1643 return NULL;
1646 /* Hmm, this is a bit paradoxical. We know that INSN is a valid insn
1647 in MD. But if there is no optab to generate the insn, we can not
1648 perform the variable expansion. This can happen if an MD provides
1649 an insn but not a named pattern to generate it, for example to avoid
1650 producing code that needs additional mode switches like for x87/mmx.
1652 So we check have_insn_for which looks for an optab for the operation
1653 in SRC. If it doesn't exist, we can't perform the expansion even
1654 though INSN is valid. */
1655 if (!have_insn_for (code, GET_MODE (src)))
1656 return NULL;
1658 if (!REG_P (dest)
1659 && !(GET_CODE (dest) == SUBREG
1660 && REG_P (SUBREG_REG (dest))))
1661 return NULL;
1663 /* Find the accumulator use within the operation. */
1664 if (code == FMA)
1666 /* We only support accumulation via FMA in the ADD position. */
1667 if (!rtx_equal_p (dest, XEXP (src, 2)))
1668 return NULL;
1669 accum_pos = 2;
1671 else if (rtx_equal_p (dest, XEXP (src, 0)))
1672 accum_pos = 0;
1673 else if (rtx_equal_p (dest, XEXP (src, 1)))
1675 /* The method of expansion that we are using; which includes the
1676 initialization of the expansions with zero and the summation of
1677 the expansions at the end of the computation will yield wrong
1678 results for (x = something - x) thus avoid using it in that case. */
1679 if (code == MINUS)
1680 return NULL;
1681 accum_pos = 1;
1683 else
1684 return NULL;
1686 /* It must not otherwise be used. */
1687 if (code == FMA)
1689 if (rtx_referenced_p (dest, XEXP (src, 0))
1690 || rtx_referenced_p (dest, XEXP (src, 1)))
1691 return NULL;
1693 else if (rtx_referenced_p (dest, XEXP (src, 1 - accum_pos)))
1694 return NULL;
1696 /* It must be used in exactly one insn. */
1697 if (!referenced_in_one_insn_in_loop_p (loop, dest, &debug_uses))
1698 return NULL;
1700 if (dump_file)
1702 fprintf (dump_file, "\n;; Expanding Accumulator ");
1703 print_rtl (dump_file, dest);
1704 fprintf (dump_file, "\n");
1707 if (debug_uses)
1708 /* Instead of resetting the debug insns, we could replace each
1709 debug use in the loop with the sum or product of all expanded
1710 accummulators. Since we'll only know of all expansions at the
1711 end, we'd have to keep track of which vars_to_expand a debug
1712 insn in the loop references, take note of each copy of the
1713 debug insn during unrolling, and when it's all done, compute
1714 the sum or product of each variable and adjust the original
1715 debug insn and each copy thereof. What a pain! */
1716 reset_debug_uses_in_loop (loop, dest, debug_uses);
1718 /* Record the accumulator to expand. */
1719 ves = XNEW (struct var_to_expand);
1720 ves->insn = insn;
1721 ves->reg = copy_rtx (dest);
1722 ves->var_expansions = VEC_alloc (rtx, heap, 1);
1723 ves->next = NULL;
1724 ves->op = GET_CODE (src);
1725 ves->expansion_count = 0;
1726 ves->reuse_expansion = 0;
1727 ves->accum_pos = accum_pos;
1728 return ves;
1731 /* Determine whether there is an induction variable in INSN that
1732 we would like to split during unrolling.
1734 I.e. replace
1736 i = i + 1;
1738 i = i + 1;
1740 i = i + 1;
1743 type chains by
1745 i0 = i + 1
1747 i = i0 + 1
1749 i = i0 + 2
1752 Return NULL if INSN contains no interesting IVs. Otherwise, allocate
1753 an IV_TO_SPLIT structure, fill it with the relevant information and return a
1754 pointer to it. */
1756 static struct iv_to_split *
1757 analyze_iv_to_split_insn (rtx insn)
1759 rtx set, dest;
1760 struct rtx_iv iv;
1761 struct iv_to_split *ivts;
1762 bool ok;
1764 /* For now we just split the basic induction variables. Later this may be
1765 extended for example by selecting also addresses of memory references. */
1766 set = single_set (insn);
1767 if (!set)
1768 return NULL;
1770 dest = SET_DEST (set);
1771 if (!REG_P (dest))
1772 return NULL;
1774 if (!biv_p (insn, dest))
1775 return NULL;
1777 ok = iv_analyze_result (insn, dest, &iv);
1779 /* This used to be an assert under the assumption that if biv_p returns
1780 true that iv_analyze_result must also return true. However, that
1781 assumption is not strictly correct as evidenced by pr25569.
1783 Returning NULL when iv_analyze_result returns false is safe and
1784 avoids the problems in pr25569 until the iv_analyze_* routines
1785 can be fixed, which is apparently hard and time consuming
1786 according to their author. */
1787 if (! ok)
1788 return NULL;
1790 if (iv.step == const0_rtx
1791 || iv.mode != iv.extend_mode)
1792 return NULL;
1794 /* Record the insn to split. */
1795 ivts = XNEW (struct iv_to_split);
1796 ivts->insn = insn;
1797 ivts->base_var = NULL_RTX;
1798 ivts->step = iv.step;
1799 ivts->next = NULL;
1800 ivts->n_loc = 1;
1801 ivts->loc[0] = 1;
1803 return ivts;
1806 /* Determines which of insns in LOOP can be optimized.
1807 Return a OPT_INFO struct with the relevant hash tables filled
1808 with all insns to be optimized. The FIRST_NEW_BLOCK field
1809 is undefined for the return value. */
1811 static struct opt_info *
1812 analyze_insns_in_loop (struct loop *loop)
1814 basic_block *body, bb;
1815 unsigned i;
1816 struct opt_info *opt_info = XCNEW (struct opt_info);
1817 rtx insn;
1818 struct iv_to_split *ivts = NULL;
1819 struct var_to_expand *ves = NULL;
1820 PTR *slot1;
1821 PTR *slot2;
1822 VEC (edge, heap) *edges = get_loop_exit_edges (loop);
1823 edge exit;
1824 bool can_apply = false;
1826 iv_analysis_loop_init (loop);
1828 body = get_loop_body (loop);
1830 if (flag_split_ivs_in_unroller)
1832 opt_info->insns_to_split = htab_create (5 * loop->num_nodes,
1833 si_info_hash, si_info_eq, free);
1834 opt_info->iv_to_split_head = NULL;
1835 opt_info->iv_to_split_tail = &opt_info->iv_to_split_head;
1838 /* Record the loop exit bb and loop preheader before the unrolling. */
1839 opt_info->loop_preheader = loop_preheader_edge (loop)->src;
1841 if (VEC_length (edge, edges) == 1)
1843 exit = VEC_index (edge, edges, 0);
1844 if (!(exit->flags & EDGE_COMPLEX))
1846 opt_info->loop_exit = split_edge (exit);
1847 can_apply = true;
1851 if (flag_variable_expansion_in_unroller
1852 && can_apply)
1854 opt_info->insns_with_var_to_expand = htab_create (5 * loop->num_nodes,
1855 ve_info_hash,
1856 ve_info_eq, free);
1857 opt_info->var_to_expand_head = NULL;
1858 opt_info->var_to_expand_tail = &opt_info->var_to_expand_head;
1861 for (i = 0; i < loop->num_nodes; i++)
1863 bb = body[i];
1864 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
1865 continue;
1867 FOR_BB_INSNS (bb, insn)
1869 if (!INSN_P (insn))
1870 continue;
1872 if (opt_info->insns_to_split)
1873 ivts = analyze_iv_to_split_insn (insn);
1875 if (ivts)
1877 slot1 = htab_find_slot (opt_info->insns_to_split, ivts, INSERT);
1878 gcc_assert (*slot1 == NULL);
1879 *slot1 = ivts;
1880 *opt_info->iv_to_split_tail = ivts;
1881 opt_info->iv_to_split_tail = &ivts->next;
1882 continue;
1885 if (opt_info->insns_with_var_to_expand)
1886 ves = analyze_insn_to_expand_var (loop, insn);
1888 if (ves)
1890 slot2 = htab_find_slot (opt_info->insns_with_var_to_expand, ves, INSERT);
1891 gcc_assert (*slot2 == NULL);
1892 *slot2 = ves;
1893 *opt_info->var_to_expand_tail = ves;
1894 opt_info->var_to_expand_tail = &ves->next;
1899 VEC_free (edge, heap, edges);
1900 free (body);
1901 return opt_info;
1904 /* Called just before loop duplication. Records start of duplicated area
1905 to OPT_INFO. */
1907 static void
1908 opt_info_start_duplication (struct opt_info *opt_info)
1910 if (opt_info)
1911 opt_info->first_new_block = last_basic_block;
1914 /* Determine the number of iterations between initialization of the base
1915 variable and the current copy (N_COPY). N_COPIES is the total number
1916 of newly created copies. UNROLLING is true if we are unrolling
1917 (not peeling) the loop. */
1919 static unsigned
1920 determine_split_iv_delta (unsigned n_copy, unsigned n_copies, bool unrolling)
1922 if (unrolling)
1924 /* If we are unrolling, initialization is done in the original loop
1925 body (number 0). */
1926 return n_copy;
1928 else
1930 /* If we are peeling, the copy in that the initialization occurs has
1931 number 1. The original loop (number 0) is the last. */
1932 if (n_copy)
1933 return n_copy - 1;
1934 else
1935 return n_copies;
1939 /* Locate in EXPR the expression corresponding to the location recorded
1940 in IVTS, and return a pointer to the RTX for this location. */
1942 static rtx *
1943 get_ivts_expr (rtx expr, struct iv_to_split *ivts)
1945 unsigned i;
1946 rtx *ret = &expr;
1948 for (i = 0; i < ivts->n_loc; i++)
1949 ret = &XEXP (*ret, ivts->loc[i]);
1951 return ret;
1954 /* Allocate basic variable for the induction variable chain. */
1956 static void
1957 allocate_basic_variable (struct iv_to_split *ivts)
1959 rtx expr = *get_ivts_expr (single_set (ivts->insn), ivts);
1961 ivts->base_var = gen_reg_rtx (GET_MODE (expr));
1964 /* Insert initialization of basic variable of IVTS before INSN, taking
1965 the initial value from INSN. */
1967 static void
1968 insert_base_initialization (struct iv_to_split *ivts, rtx insn)
1970 rtx expr = copy_rtx (*get_ivts_expr (single_set (insn), ivts));
1971 rtx seq;
1973 start_sequence ();
1974 expr = force_operand (expr, ivts->base_var);
1975 if (expr != ivts->base_var)
1976 emit_move_insn (ivts->base_var, expr);
1977 seq = get_insns ();
1978 end_sequence ();
1980 emit_insn_before (seq, insn);
1983 /* Replace the use of induction variable described in IVTS in INSN
1984 by base variable + DELTA * step. */
1986 static void
1987 split_iv (struct iv_to_split *ivts, rtx insn, unsigned delta)
1989 rtx expr, *loc, seq, incr, var;
1990 enum machine_mode mode = GET_MODE (ivts->base_var);
1991 rtx src, dest, set;
1993 /* Construct base + DELTA * step. */
1994 if (!delta)
1995 expr = ivts->base_var;
1996 else
1998 incr = simplify_gen_binary (MULT, mode,
1999 ivts->step, gen_int_mode (delta, mode));
2000 expr = simplify_gen_binary (PLUS, GET_MODE (ivts->base_var),
2001 ivts->base_var, incr);
2004 /* Figure out where to do the replacement. */
2005 loc = get_ivts_expr (single_set (insn), ivts);
2007 /* If we can make the replacement right away, we're done. */
2008 if (validate_change (insn, loc, expr, 0))
2009 return;
2011 /* Otherwise, force EXPR into a register and try again. */
2012 start_sequence ();
2013 var = gen_reg_rtx (mode);
2014 expr = force_operand (expr, var);
2015 if (expr != var)
2016 emit_move_insn (var, expr);
2017 seq = get_insns ();
2018 end_sequence ();
2019 emit_insn_before (seq, insn);
2021 if (validate_change (insn, loc, var, 0))
2022 return;
2024 /* The last chance. Try recreating the assignment in insn
2025 completely from scratch. */
2026 set = single_set (insn);
2027 gcc_assert (set);
2029 start_sequence ();
2030 *loc = var;
2031 src = copy_rtx (SET_SRC (set));
2032 dest = copy_rtx (SET_DEST (set));
2033 src = force_operand (src, dest);
2034 if (src != dest)
2035 emit_move_insn (dest, src);
2036 seq = get_insns ();
2037 end_sequence ();
2039 emit_insn_before (seq, insn);
2040 delete_insn (insn);
2044 /* Return one expansion of the accumulator recorded in struct VE. */
2046 static rtx
2047 get_expansion (struct var_to_expand *ve)
2049 rtx reg;
2051 if (ve->reuse_expansion == 0)
2052 reg = ve->reg;
2053 else
2054 reg = VEC_index (rtx, ve->var_expansions, ve->reuse_expansion - 1);
2056 if (VEC_length (rtx, ve->var_expansions) == (unsigned) ve->reuse_expansion)
2057 ve->reuse_expansion = 0;
2058 else
2059 ve->reuse_expansion++;
2061 return reg;
2065 /* Given INSN replace the uses of the accumulator recorded in VE
2066 with a new register. */
2068 static void
2069 expand_var_during_unrolling (struct var_to_expand *ve, rtx insn)
2071 rtx new_reg, set;
2072 bool really_new_expansion = false;
2074 set = single_set (insn);
2075 gcc_assert (set);
2077 /* Generate a new register only if the expansion limit has not been
2078 reached. Else reuse an already existing expansion. */
2079 if (PARAM_VALUE (PARAM_MAX_VARIABLE_EXPANSIONS) > ve->expansion_count)
2081 really_new_expansion = true;
2082 new_reg = gen_reg_rtx (GET_MODE (ve->reg));
2084 else
2085 new_reg = get_expansion (ve);
2087 validate_change (insn, &SET_DEST (set), new_reg, 1);
2088 validate_change (insn, &XEXP (SET_SRC (set), ve->accum_pos), new_reg, 1);
2090 if (apply_change_group ())
2091 if (really_new_expansion)
2093 VEC_safe_push (rtx, heap, ve->var_expansions, new_reg);
2094 ve->expansion_count++;
2098 /* Initialize the variable expansions in loop preheader. PLACE is the
2099 loop-preheader basic block where the initialization of the
2100 expansions should take place. The expansions are initialized with
2101 (-0) when the operation is plus or minus to honor sign zero. This
2102 way we can prevent cases where the sign of the final result is
2103 effected by the sign of the expansion. Here is an example to
2104 demonstrate this:
2106 for (i = 0 ; i < n; i++)
2107 sum += something;
2111 sum += something
2112 ....
2113 i = i+1;
2114 sum1 += something
2115 ....
2116 i = i+1
2117 sum2 += something;
2118 ....
2120 When SUM is initialized with -zero and SOMETHING is also -zero; the
2121 final result of sum should be -zero thus the expansions sum1 and sum2
2122 should be initialized with -zero as well (otherwise we will get +zero
2123 as the final result). */
2125 static void
2126 insert_var_expansion_initialization (struct var_to_expand *ve,
2127 basic_block place)
2129 rtx seq, var, zero_init, insn;
2130 unsigned i;
2131 enum machine_mode mode = GET_MODE (ve->reg);
2132 bool honor_signed_zero_p = HONOR_SIGNED_ZEROS (mode);
2134 if (VEC_length (rtx, ve->var_expansions) == 0)
2135 return;
2137 start_sequence ();
2138 switch (ve->op)
2140 case FMA:
2141 /* Note that we only accumulate FMA via the ADD operand. */
2142 case PLUS:
2143 case MINUS:
2144 FOR_EACH_VEC_ELT (rtx, ve->var_expansions, i, var)
2146 if (honor_signed_zero_p)
2147 zero_init = simplify_gen_unary (NEG, mode, CONST0_RTX (mode), mode);
2148 else
2149 zero_init = CONST0_RTX (mode);
2150 emit_move_insn (var, zero_init);
2152 break;
2154 case MULT:
2155 FOR_EACH_VEC_ELT (rtx, ve->var_expansions, i, var)
2157 zero_init = CONST1_RTX (GET_MODE (var));
2158 emit_move_insn (var, zero_init);
2160 break;
2162 default:
2163 gcc_unreachable ();
2166 seq = get_insns ();
2167 end_sequence ();
2169 insn = BB_HEAD (place);
2170 while (!NOTE_INSN_BASIC_BLOCK_P (insn))
2171 insn = NEXT_INSN (insn);
2173 emit_insn_after (seq, insn);
2176 /* Combine the variable expansions at the loop exit. PLACE is the
2177 loop exit basic block where the summation of the expansions should
2178 take place. */
2180 static void
2181 combine_var_copies_in_loop_exit (struct var_to_expand *ve, basic_block place)
2183 rtx sum = ve->reg;
2184 rtx expr, seq, var, insn;
2185 unsigned i;
2187 if (VEC_length (rtx, ve->var_expansions) == 0)
2188 return;
2190 start_sequence ();
2191 switch (ve->op)
2193 case FMA:
2194 /* Note that we only accumulate FMA via the ADD operand. */
2195 case PLUS:
2196 case MINUS:
2197 FOR_EACH_VEC_ELT (rtx, ve->var_expansions, i, var)
2198 sum = simplify_gen_binary (PLUS, GET_MODE (ve->reg), var, sum);
2199 break;
2201 case MULT:
2202 FOR_EACH_VEC_ELT (rtx, ve->var_expansions, i, var)
2203 sum = simplify_gen_binary (MULT, GET_MODE (ve->reg), var, sum);
2204 break;
2206 default:
2207 gcc_unreachable ();
2210 expr = force_operand (sum, ve->reg);
2211 if (expr != ve->reg)
2212 emit_move_insn (ve->reg, expr);
2213 seq = get_insns ();
2214 end_sequence ();
2216 insn = BB_HEAD (place);
2217 while (!NOTE_INSN_BASIC_BLOCK_P (insn))
2218 insn = NEXT_INSN (insn);
2220 emit_insn_after (seq, insn);
2223 /* Apply loop optimizations in loop copies using the
2224 data which gathered during the unrolling. Structure
2225 OPT_INFO record that data.
2227 UNROLLING is true if we unrolled (not peeled) the loop.
2228 REWRITE_ORIGINAL_BODY is true if we should also rewrite the original body of
2229 the loop (as it should happen in complete unrolling, but not in ordinary
2230 peeling of the loop). */
2232 static void
2233 apply_opt_in_copies (struct opt_info *opt_info,
2234 unsigned n_copies, bool unrolling,
2235 bool rewrite_original_loop)
2237 unsigned i, delta;
2238 basic_block bb, orig_bb;
2239 rtx insn, orig_insn, next;
2240 struct iv_to_split ivts_templ, *ivts;
2241 struct var_to_expand ve_templ, *ves;
2243 /* Sanity check -- we need to put initialization in the original loop
2244 body. */
2245 gcc_assert (!unrolling || rewrite_original_loop);
2247 /* Allocate the basic variables (i0). */
2248 if (opt_info->insns_to_split)
2249 for (ivts = opt_info->iv_to_split_head; ivts; ivts = ivts->next)
2250 allocate_basic_variable (ivts);
2252 for (i = opt_info->first_new_block; i < (unsigned) last_basic_block; i++)
2254 bb = BASIC_BLOCK (i);
2255 orig_bb = get_bb_original (bb);
2257 /* bb->aux holds position in copy sequence initialized by
2258 duplicate_loop_to_header_edge. */
2259 delta = determine_split_iv_delta ((size_t)bb->aux, n_copies,
2260 unrolling);
2261 bb->aux = 0;
2262 orig_insn = BB_HEAD (orig_bb);
2263 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
2265 next = NEXT_INSN (insn);
2266 if (!INSN_P (insn)
2267 || (DEBUG_INSN_P (insn)
2268 && TREE_CODE (INSN_VAR_LOCATION_DECL (insn)) == LABEL_DECL))
2269 continue;
2271 while (!INSN_P (orig_insn)
2272 || (DEBUG_INSN_P (orig_insn)
2273 && (TREE_CODE (INSN_VAR_LOCATION_DECL (orig_insn))
2274 == LABEL_DECL)))
2275 orig_insn = NEXT_INSN (orig_insn);
2277 ivts_templ.insn = orig_insn;
2278 ve_templ.insn = orig_insn;
2280 /* Apply splitting iv optimization. */
2281 if (opt_info->insns_to_split)
2283 ivts = (struct iv_to_split *)
2284 htab_find (opt_info->insns_to_split, &ivts_templ);
2286 if (ivts)
2288 gcc_assert (GET_CODE (PATTERN (insn))
2289 == GET_CODE (PATTERN (orig_insn)));
2291 if (!delta)
2292 insert_base_initialization (ivts, insn);
2293 split_iv (ivts, insn, delta);
2296 /* Apply variable expansion optimization. */
2297 if (unrolling && opt_info->insns_with_var_to_expand)
2299 ves = (struct var_to_expand *)
2300 htab_find (opt_info->insns_with_var_to_expand, &ve_templ);
2301 if (ves)
2303 gcc_assert (GET_CODE (PATTERN (insn))
2304 == GET_CODE (PATTERN (orig_insn)));
2305 expand_var_during_unrolling (ves, insn);
2308 orig_insn = NEXT_INSN (orig_insn);
2312 if (!rewrite_original_loop)
2313 return;
2315 /* Initialize the variable expansions in the loop preheader
2316 and take care of combining them at the loop exit. */
2317 if (opt_info->insns_with_var_to_expand)
2319 for (ves = opt_info->var_to_expand_head; ves; ves = ves->next)
2320 insert_var_expansion_initialization (ves, opt_info->loop_preheader);
2321 for (ves = opt_info->var_to_expand_head; ves; ves = ves->next)
2322 combine_var_copies_in_loop_exit (ves, opt_info->loop_exit);
2325 /* Rewrite also the original loop body. Find them as originals of the blocks
2326 in the last copied iteration, i.e. those that have
2327 get_bb_copy (get_bb_original (bb)) == bb. */
2328 for (i = opt_info->first_new_block; i < (unsigned) last_basic_block; i++)
2330 bb = BASIC_BLOCK (i);
2331 orig_bb = get_bb_original (bb);
2332 if (get_bb_copy (orig_bb) != bb)
2333 continue;
2335 delta = determine_split_iv_delta (0, n_copies, unrolling);
2336 for (orig_insn = BB_HEAD (orig_bb);
2337 orig_insn != NEXT_INSN (BB_END (bb));
2338 orig_insn = next)
2340 next = NEXT_INSN (orig_insn);
2342 if (!INSN_P (orig_insn))
2343 continue;
2345 ivts_templ.insn = orig_insn;
2346 if (opt_info->insns_to_split)
2348 ivts = (struct iv_to_split *)
2349 htab_find (opt_info->insns_to_split, &ivts_templ);
2350 if (ivts)
2352 if (!delta)
2353 insert_base_initialization (ivts, orig_insn);
2354 split_iv (ivts, orig_insn, delta);
2355 continue;
2363 /* Release OPT_INFO. */
2365 static void
2366 free_opt_info (struct opt_info *opt_info)
2368 if (opt_info->insns_to_split)
2369 htab_delete (opt_info->insns_to_split);
2370 if (opt_info->insns_with_var_to_expand)
2372 struct var_to_expand *ves;
2374 for (ves = opt_info->var_to_expand_head; ves; ves = ves->next)
2375 VEC_free (rtx, heap, ves->var_expansions);
2376 htab_delete (opt_info->insns_with_var_to_expand);
2378 free (opt_info);