2012-05-01 François Dumont <fdumont@gcc.gnu.org>
[official-gcc.git] / gcc / emit-rtl.c
blob9da585c35a77a0780be3df4a104f1aa283ebceaa
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
4 2010, 2011
5 Free Software Foundation, Inc.
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
24 /* Middle-to-low level generation of rtx code and insns.
26 This file contains support functions for creating rtl expressions
27 and manipulating them in the doubly-linked chain of insns.
29 The patterns of the insns are created by machine-dependent
30 routines in insn-emit.c, which is generated automatically from
31 the machine description. These routines make the individual rtx's
32 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
33 which are automatically generated from rtl.def; what is machine
34 dependent is the kind of rtx's they make and what arguments they
35 use. */
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "diagnostic-core.h"
42 #include "rtl.h"
43 #include "tree.h"
44 #include "tm_p.h"
45 #include "flags.h"
46 #include "function.h"
47 #include "expr.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "hashtab.h"
51 #include "insn-config.h"
52 #include "recog.h"
53 #include "bitmap.h"
54 #include "basic-block.h"
55 #include "ggc.h"
56 #include "debug.h"
57 #include "langhooks.h"
58 #include "tree-pass.h"
59 #include "df.h"
60 #include "params.h"
61 #include "target.h"
62 #include "tree-flow.h"
64 struct target_rtl default_target_rtl;
65 #if SWITCHABLE_TARGET
66 struct target_rtl *this_target_rtl = &default_target_rtl;
67 #endif
69 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
71 /* Commonly used modes. */
73 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
74 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
75 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
76 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
78 /* Datastructures maintained for currently processed function in RTL form. */
80 struct rtl_data x_rtl;
82 /* Indexed by pseudo register number, gives the rtx for that pseudo.
83 Allocated in parallel with regno_pointer_align.
84 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
85 with length attribute nested in top level structures. */
87 rtx * regno_reg_rtx;
89 /* This is *not* reset after each function. It gives each CODE_LABEL
90 in the entire compilation a unique label number. */
92 static GTY(()) int label_num = 1;
94 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
95 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
96 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
97 is set only for MODE_INT and MODE_VECTOR_INT modes. */
99 rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
101 rtx const_true_rtx;
103 REAL_VALUE_TYPE dconst0;
104 REAL_VALUE_TYPE dconst1;
105 REAL_VALUE_TYPE dconst2;
106 REAL_VALUE_TYPE dconstm1;
107 REAL_VALUE_TYPE dconsthalf;
109 /* Record fixed-point constant 0 and 1. */
110 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
111 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
113 /* We make one copy of (const_int C) where C is in
114 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
115 to save space during the compilation and simplify comparisons of
116 integers. */
118 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
120 /* Standard pieces of rtx, to be substituted directly into things. */
121 rtx pc_rtx;
122 rtx ret_rtx;
123 rtx simple_return_rtx;
124 rtx cc0_rtx;
126 /* A hash table storing CONST_INTs whose absolute value is greater
127 than MAX_SAVED_CONST_INT. */
129 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
130 htab_t const_int_htab;
132 /* A hash table storing memory attribute structures. */
133 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
134 htab_t mem_attrs_htab;
136 /* A hash table storing register attribute structures. */
137 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
138 htab_t reg_attrs_htab;
140 /* A hash table storing all CONST_DOUBLEs. */
141 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
142 htab_t const_double_htab;
144 /* A hash table storing all CONST_FIXEDs. */
145 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
146 htab_t const_fixed_htab;
148 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
149 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
150 #define last_location (crtl->emit.x_last_location)
151 #define first_label_num (crtl->emit.x_first_label_num)
153 static rtx make_call_insn_raw (rtx);
154 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
155 static void set_used_decls (tree);
156 static void mark_label_nuses (rtx);
157 static hashval_t const_int_htab_hash (const void *);
158 static int const_int_htab_eq (const void *, const void *);
159 static hashval_t const_double_htab_hash (const void *);
160 static int const_double_htab_eq (const void *, const void *);
161 static rtx lookup_const_double (rtx);
162 static hashval_t const_fixed_htab_hash (const void *);
163 static int const_fixed_htab_eq (const void *, const void *);
164 static rtx lookup_const_fixed (rtx);
165 static hashval_t mem_attrs_htab_hash (const void *);
166 static int mem_attrs_htab_eq (const void *, const void *);
167 static hashval_t reg_attrs_htab_hash (const void *);
168 static int reg_attrs_htab_eq (const void *, const void *);
169 static reg_attrs *get_reg_attrs (tree, int);
170 static rtx gen_const_vector (enum machine_mode, int);
171 static void copy_rtx_if_shared_1 (rtx *orig);
173 /* Probability of the conditional branch currently proceeded by try_split.
174 Set to -1 otherwise. */
175 int split_branch_probability = -1;
177 /* Returns a hash code for X (which is a really a CONST_INT). */
179 static hashval_t
180 const_int_htab_hash (const void *x)
182 return (hashval_t) INTVAL ((const_rtx) x);
185 /* Returns nonzero if the value represented by X (which is really a
186 CONST_INT) is the same as that given by Y (which is really a
187 HOST_WIDE_INT *). */
189 static int
190 const_int_htab_eq (const void *x, const void *y)
192 return (INTVAL ((const_rtx) x) == *((const HOST_WIDE_INT *) y));
195 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
196 static hashval_t
197 const_double_htab_hash (const void *x)
199 const_rtx const value = (const_rtx) x;
200 hashval_t h;
202 if (GET_MODE (value) == VOIDmode)
203 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
204 else
206 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
207 /* MODE is used in the comparison, so it should be in the hash. */
208 h ^= GET_MODE (value);
210 return h;
213 /* Returns nonzero if the value represented by X (really a ...)
214 is the same as that represented by Y (really a ...) */
215 static int
216 const_double_htab_eq (const void *x, const void *y)
218 const_rtx const a = (const_rtx)x, b = (const_rtx)y;
220 if (GET_MODE (a) != GET_MODE (b))
221 return 0;
222 if (GET_MODE (a) == VOIDmode)
223 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
224 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
225 else
226 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
227 CONST_DOUBLE_REAL_VALUE (b));
230 /* Returns a hash code for X (which is really a CONST_FIXED). */
232 static hashval_t
233 const_fixed_htab_hash (const void *x)
235 const_rtx const value = (const_rtx) x;
236 hashval_t h;
238 h = fixed_hash (CONST_FIXED_VALUE (value));
239 /* MODE is used in the comparison, so it should be in the hash. */
240 h ^= GET_MODE (value);
241 return h;
244 /* Returns nonzero if the value represented by X (really a ...)
245 is the same as that represented by Y (really a ...). */
247 static int
248 const_fixed_htab_eq (const void *x, const void *y)
250 const_rtx const a = (const_rtx) x, b = (const_rtx) y;
252 if (GET_MODE (a) != GET_MODE (b))
253 return 0;
254 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
257 /* Returns a hash code for X (which is a really a mem_attrs *). */
259 static hashval_t
260 mem_attrs_htab_hash (const void *x)
262 const mem_attrs *const p = (const mem_attrs *) x;
264 return (p->alias ^ (p->align * 1000)
265 ^ (p->addrspace * 4000)
266 ^ ((p->offset_known_p ? p->offset : 0) * 50000)
267 ^ ((p->size_known_p ? p->size : 0) * 2500000)
268 ^ (size_t) iterative_hash_expr (p->expr, 0));
271 /* Return true if the given memory attributes are equal. */
273 static bool
274 mem_attrs_eq_p (const struct mem_attrs *p, const struct mem_attrs *q)
276 return (p->alias == q->alias
277 && p->offset_known_p == q->offset_known_p
278 && (!p->offset_known_p || p->offset == q->offset)
279 && p->size_known_p == q->size_known_p
280 && (!p->size_known_p || p->size == q->size)
281 && p->align == q->align
282 && p->addrspace == q->addrspace
283 && (p->expr == q->expr
284 || (p->expr != NULL_TREE && q->expr != NULL_TREE
285 && operand_equal_p (p->expr, q->expr, 0))));
288 /* Returns nonzero if the value represented by X (which is really a
289 mem_attrs *) is the same as that given by Y (which is also really a
290 mem_attrs *). */
292 static int
293 mem_attrs_htab_eq (const void *x, const void *y)
295 return mem_attrs_eq_p ((const mem_attrs *) x, (const mem_attrs *) y);
298 /* Set MEM's memory attributes so that they are the same as ATTRS. */
300 static void
301 set_mem_attrs (rtx mem, mem_attrs *attrs)
303 void **slot;
305 /* If everything is the default, we can just clear the attributes. */
306 if (mem_attrs_eq_p (attrs, mode_mem_attrs[(int) GET_MODE (mem)]))
308 MEM_ATTRS (mem) = 0;
309 return;
312 slot = htab_find_slot (mem_attrs_htab, attrs, INSERT);
313 if (*slot == 0)
315 *slot = ggc_alloc_mem_attrs ();
316 memcpy (*slot, attrs, sizeof (mem_attrs));
319 MEM_ATTRS (mem) = (mem_attrs *) *slot;
322 /* Returns a hash code for X (which is a really a reg_attrs *). */
324 static hashval_t
325 reg_attrs_htab_hash (const void *x)
327 const reg_attrs *const p = (const reg_attrs *) x;
329 return ((p->offset * 1000) ^ (intptr_t) p->decl);
332 /* Returns nonzero if the value represented by X (which is really a
333 reg_attrs *) is the same as that given by Y (which is also really a
334 reg_attrs *). */
336 static int
337 reg_attrs_htab_eq (const void *x, const void *y)
339 const reg_attrs *const p = (const reg_attrs *) x;
340 const reg_attrs *const q = (const reg_attrs *) y;
342 return (p->decl == q->decl && p->offset == q->offset);
344 /* Allocate a new reg_attrs structure and insert it into the hash table if
345 one identical to it is not already in the table. We are doing this for
346 MEM of mode MODE. */
348 static reg_attrs *
349 get_reg_attrs (tree decl, int offset)
351 reg_attrs attrs;
352 void **slot;
354 /* If everything is the default, we can just return zero. */
355 if (decl == 0 && offset == 0)
356 return 0;
358 attrs.decl = decl;
359 attrs.offset = offset;
361 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
362 if (*slot == 0)
364 *slot = ggc_alloc_reg_attrs ();
365 memcpy (*slot, &attrs, sizeof (reg_attrs));
368 return (reg_attrs *) *slot;
372 #if !HAVE_blockage
373 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule
374 across this insn. */
377 gen_blockage (void)
379 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
380 MEM_VOLATILE_P (x) = true;
381 return x;
383 #endif
386 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
387 don't attempt to share with the various global pieces of rtl (such as
388 frame_pointer_rtx). */
391 gen_raw_REG (enum machine_mode mode, int regno)
393 rtx x = gen_rtx_raw_REG (mode, regno);
394 ORIGINAL_REGNO (x) = regno;
395 return x;
398 /* There are some RTL codes that require special attention; the generation
399 functions do the raw handling. If you add to this list, modify
400 special_rtx in gengenrtl.c as well. */
403 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
405 void **slot;
407 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
408 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
410 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
411 if (const_true_rtx && arg == STORE_FLAG_VALUE)
412 return const_true_rtx;
413 #endif
415 /* Look up the CONST_INT in the hash table. */
416 slot = htab_find_slot_with_hash (const_int_htab, &arg,
417 (hashval_t) arg, INSERT);
418 if (*slot == 0)
419 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
421 return (rtx) *slot;
425 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
427 return GEN_INT (trunc_int_for_mode (c, mode));
430 /* CONST_DOUBLEs might be created from pairs of integers, or from
431 REAL_VALUE_TYPEs. Also, their length is known only at run time,
432 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
434 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
435 hash table. If so, return its counterpart; otherwise add it
436 to the hash table and return it. */
437 static rtx
438 lookup_const_double (rtx real)
440 void **slot = htab_find_slot (const_double_htab, real, INSERT);
441 if (*slot == 0)
442 *slot = real;
444 return (rtx) *slot;
447 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
448 VALUE in mode MODE. */
450 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
452 rtx real = rtx_alloc (CONST_DOUBLE);
453 PUT_MODE (real, mode);
455 real->u.rv = value;
457 return lookup_const_double (real);
460 /* Determine whether FIXED, a CONST_FIXED, already exists in the
461 hash table. If so, return its counterpart; otherwise add it
462 to the hash table and return it. */
464 static rtx
465 lookup_const_fixed (rtx fixed)
467 void **slot = htab_find_slot (const_fixed_htab, fixed, INSERT);
468 if (*slot == 0)
469 *slot = fixed;
471 return (rtx) *slot;
474 /* Return a CONST_FIXED rtx for a fixed-point value specified by
475 VALUE in mode MODE. */
478 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, enum machine_mode mode)
480 rtx fixed = rtx_alloc (CONST_FIXED);
481 PUT_MODE (fixed, mode);
483 fixed->u.fv = value;
485 return lookup_const_fixed (fixed);
488 /* Constructs double_int from rtx CST. */
490 double_int
491 rtx_to_double_int (const_rtx cst)
493 double_int r;
495 if (CONST_INT_P (cst))
496 r = shwi_to_double_int (INTVAL (cst));
497 else if (CONST_DOUBLE_P (cst) && GET_MODE (cst) == VOIDmode)
499 r.low = CONST_DOUBLE_LOW (cst);
500 r.high = CONST_DOUBLE_HIGH (cst);
502 else
503 gcc_unreachable ();
505 return r;
509 /* Return a CONST_DOUBLE or CONST_INT for a value specified as
510 a double_int. */
513 immed_double_int_const (double_int i, enum machine_mode mode)
515 return immed_double_const (i.low, i.high, mode);
518 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
519 of ints: I0 is the low-order word and I1 is the high-order word.
520 For values that are larger than 2*HOST_BITS_PER_WIDE_INT, the
521 implied upper bits are copies of the high bit of i1. The value
522 itself is neither signed nor unsigned. Do not use this routine for
523 non-integer modes; convert to REAL_VALUE_TYPE and use
524 CONST_DOUBLE_FROM_REAL_VALUE. */
527 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
529 rtx value;
530 unsigned int i;
532 /* There are the following cases (note that there are no modes with
533 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < 2 * HOST_BITS_PER_WIDE_INT):
535 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
536 gen_int_mode.
537 2) If the value of the integer fits into HOST_WIDE_INT anyway
538 (i.e., i1 consists only from copies of the sign bit, and sign
539 of i0 and i1 are the same), then we return a CONST_INT for i0.
540 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
541 if (mode != VOIDmode)
543 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
544 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
545 /* We can get a 0 for an error mark. */
546 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
547 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
549 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
550 return gen_int_mode (i0, mode);
553 /* If this integer fits in one word, return a CONST_INT. */
554 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
555 return GEN_INT (i0);
557 /* We use VOIDmode for integers. */
558 value = rtx_alloc (CONST_DOUBLE);
559 PUT_MODE (value, VOIDmode);
561 CONST_DOUBLE_LOW (value) = i0;
562 CONST_DOUBLE_HIGH (value) = i1;
564 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
565 XWINT (value, i) = 0;
567 return lookup_const_double (value);
571 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
573 /* In case the MD file explicitly references the frame pointer, have
574 all such references point to the same frame pointer. This is
575 used during frame pointer elimination to distinguish the explicit
576 references to these registers from pseudos that happened to be
577 assigned to them.
579 If we have eliminated the frame pointer or arg pointer, we will
580 be using it as a normal register, for example as a spill
581 register. In such cases, we might be accessing it in a mode that
582 is not Pmode and therefore cannot use the pre-allocated rtx.
584 Also don't do this when we are making new REGs in reload, since
585 we don't want to get confused with the real pointers. */
587 if (mode == Pmode && !reload_in_progress)
589 if (regno == FRAME_POINTER_REGNUM
590 && (!reload_completed || frame_pointer_needed))
591 return frame_pointer_rtx;
592 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
593 if (regno == HARD_FRAME_POINTER_REGNUM
594 && (!reload_completed || frame_pointer_needed))
595 return hard_frame_pointer_rtx;
596 #endif
597 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && !HARD_FRAME_POINTER_IS_ARG_POINTER
598 if (regno == ARG_POINTER_REGNUM)
599 return arg_pointer_rtx;
600 #endif
601 #ifdef RETURN_ADDRESS_POINTER_REGNUM
602 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
603 return return_address_pointer_rtx;
604 #endif
605 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
606 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
607 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
608 return pic_offset_table_rtx;
609 if (regno == STACK_POINTER_REGNUM)
610 return stack_pointer_rtx;
613 #if 0
614 /* If the per-function register table has been set up, try to re-use
615 an existing entry in that table to avoid useless generation of RTL.
617 This code is disabled for now until we can fix the various backends
618 which depend on having non-shared hard registers in some cases. Long
619 term we want to re-enable this code as it can significantly cut down
620 on the amount of useless RTL that gets generated.
622 We'll also need to fix some code that runs after reload that wants to
623 set ORIGINAL_REGNO. */
625 if (cfun
626 && cfun->emit
627 && regno_reg_rtx
628 && regno < FIRST_PSEUDO_REGISTER
629 && reg_raw_mode[regno] == mode)
630 return regno_reg_rtx[regno];
631 #endif
633 return gen_raw_REG (mode, regno);
637 gen_rtx_MEM (enum machine_mode mode, rtx addr)
639 rtx rt = gen_rtx_raw_MEM (mode, addr);
641 /* This field is not cleared by the mere allocation of the rtx, so
642 we clear it here. */
643 MEM_ATTRS (rt) = 0;
645 return rt;
648 /* Generate a memory referring to non-trapping constant memory. */
651 gen_const_mem (enum machine_mode mode, rtx addr)
653 rtx mem = gen_rtx_MEM (mode, addr);
654 MEM_READONLY_P (mem) = 1;
655 MEM_NOTRAP_P (mem) = 1;
656 return mem;
659 /* Generate a MEM referring to fixed portions of the frame, e.g., register
660 save areas. */
663 gen_frame_mem (enum machine_mode mode, rtx addr)
665 rtx mem = gen_rtx_MEM (mode, addr);
666 MEM_NOTRAP_P (mem) = 1;
667 set_mem_alias_set (mem, get_frame_alias_set ());
668 return mem;
671 /* Generate a MEM referring to a temporary use of the stack, not part
672 of the fixed stack frame. For example, something which is pushed
673 by a target splitter. */
675 gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
677 rtx mem = gen_rtx_MEM (mode, addr);
678 MEM_NOTRAP_P (mem) = 1;
679 if (!cfun->calls_alloca)
680 set_mem_alias_set (mem, get_frame_alias_set ());
681 return mem;
684 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
685 this construct would be valid, and false otherwise. */
687 bool
688 validate_subreg (enum machine_mode omode, enum machine_mode imode,
689 const_rtx reg, unsigned int offset)
691 unsigned int isize = GET_MODE_SIZE (imode);
692 unsigned int osize = GET_MODE_SIZE (omode);
694 /* All subregs must be aligned. */
695 if (offset % osize != 0)
696 return false;
698 /* The subreg offset cannot be outside the inner object. */
699 if (offset >= isize)
700 return false;
702 /* ??? This should not be here. Temporarily continue to allow word_mode
703 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
704 Generally, backends are doing something sketchy but it'll take time to
705 fix them all. */
706 if (omode == word_mode)
708 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
709 is the culprit here, and not the backends. */
710 else if (osize >= UNITS_PER_WORD && isize >= osize)
712 /* Allow component subregs of complex and vector. Though given the below
713 extraction rules, it's not always clear what that means. */
714 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
715 && GET_MODE_INNER (imode) == omode)
717 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
718 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
719 represent this. It's questionable if this ought to be represented at
720 all -- why can't this all be hidden in post-reload splitters that make
721 arbitrarily mode changes to the registers themselves. */
722 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
724 /* Subregs involving floating point modes are not allowed to
725 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
726 (subreg:SI (reg:DF) 0) isn't. */
727 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
729 if (isize != osize)
730 return false;
733 /* Paradoxical subregs must have offset zero. */
734 if (osize > isize)
735 return offset == 0;
737 /* This is a normal subreg. Verify that the offset is representable. */
739 /* For hard registers, we already have most of these rules collected in
740 subreg_offset_representable_p. */
741 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
743 unsigned int regno = REGNO (reg);
745 #ifdef CANNOT_CHANGE_MODE_CLASS
746 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
747 && GET_MODE_INNER (imode) == omode)
749 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
750 return false;
751 #endif
753 return subreg_offset_representable_p (regno, imode, offset, omode);
756 /* For pseudo registers, we want most of the same checks. Namely:
757 If the register no larger than a word, the subreg must be lowpart.
758 If the register is larger than a word, the subreg must be the lowpart
759 of a subword. A subreg does *not* perform arbitrary bit extraction.
760 Given that we've already checked mode/offset alignment, we only have
761 to check subword subregs here. */
762 if (osize < UNITS_PER_WORD)
764 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
765 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
766 if (offset % UNITS_PER_WORD != low_off)
767 return false;
769 return true;
773 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
775 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
776 return gen_rtx_raw_SUBREG (mode, reg, offset);
779 /* Generate a SUBREG representing the least-significant part of REG if MODE
780 is smaller than mode of REG, otherwise paradoxical SUBREG. */
783 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
785 enum machine_mode inmode;
787 inmode = GET_MODE (reg);
788 if (inmode == VOIDmode)
789 inmode = mode;
790 return gen_rtx_SUBREG (mode, reg,
791 subreg_lowpart_offset (mode, inmode));
795 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
797 rtvec
798 gen_rtvec (int n, ...)
800 int i;
801 rtvec rt_val;
802 va_list p;
804 va_start (p, n);
806 /* Don't allocate an empty rtvec... */
807 if (n == 0)
809 va_end (p);
810 return NULL_RTVEC;
813 rt_val = rtvec_alloc (n);
815 for (i = 0; i < n; i++)
816 rt_val->elem[i] = va_arg (p, rtx);
818 va_end (p);
819 return rt_val;
822 rtvec
823 gen_rtvec_v (int n, rtx *argp)
825 int i;
826 rtvec rt_val;
828 /* Don't allocate an empty rtvec... */
829 if (n == 0)
830 return NULL_RTVEC;
832 rt_val = rtvec_alloc (n);
834 for (i = 0; i < n; i++)
835 rt_val->elem[i] = *argp++;
837 return rt_val;
840 /* Return the number of bytes between the start of an OUTER_MODE
841 in-memory value and the start of an INNER_MODE in-memory value,
842 given that the former is a lowpart of the latter. It may be a
843 paradoxical lowpart, in which case the offset will be negative
844 on big-endian targets. */
847 byte_lowpart_offset (enum machine_mode outer_mode,
848 enum machine_mode inner_mode)
850 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
851 return subreg_lowpart_offset (outer_mode, inner_mode);
852 else
853 return -subreg_lowpart_offset (inner_mode, outer_mode);
856 /* Generate a REG rtx for a new pseudo register of mode MODE.
857 This pseudo is assigned the next sequential register number. */
860 gen_reg_rtx (enum machine_mode mode)
862 rtx val;
863 unsigned int align = GET_MODE_ALIGNMENT (mode);
865 gcc_assert (can_create_pseudo_p ());
867 /* If a virtual register with bigger mode alignment is generated,
868 increase stack alignment estimation because it might be spilled
869 to stack later. */
870 if (SUPPORTS_STACK_ALIGNMENT
871 && crtl->stack_alignment_estimated < align
872 && !crtl->stack_realign_processed)
874 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
875 if (crtl->stack_alignment_estimated < min_align)
876 crtl->stack_alignment_estimated = min_align;
879 if (generating_concat_p
880 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
881 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
883 /* For complex modes, don't make a single pseudo.
884 Instead, make a CONCAT of two pseudos.
885 This allows noncontiguous allocation of the real and imaginary parts,
886 which makes much better code. Besides, allocating DCmode
887 pseudos overstrains reload on some machines like the 386. */
888 rtx realpart, imagpart;
889 enum machine_mode partmode = GET_MODE_INNER (mode);
891 realpart = gen_reg_rtx (partmode);
892 imagpart = gen_reg_rtx (partmode);
893 return gen_rtx_CONCAT (mode, realpart, imagpart);
896 /* Make sure regno_pointer_align, and regno_reg_rtx are large
897 enough to have an element for this pseudo reg number. */
899 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
901 int old_size = crtl->emit.regno_pointer_align_length;
902 char *tmp;
903 rtx *new1;
905 tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
906 memset (tmp + old_size, 0, old_size);
907 crtl->emit.regno_pointer_align = (unsigned char *) tmp;
909 new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
910 memset (new1 + old_size, 0, old_size * sizeof (rtx));
911 regno_reg_rtx = new1;
913 crtl->emit.regno_pointer_align_length = old_size * 2;
916 val = gen_raw_REG (mode, reg_rtx_no);
917 regno_reg_rtx[reg_rtx_no++] = val;
918 return val;
921 /* Update NEW with the same attributes as REG, but with OFFSET added
922 to the REG_OFFSET. */
924 static void
925 update_reg_offset (rtx new_rtx, rtx reg, int offset)
927 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
928 REG_OFFSET (reg) + offset);
931 /* Generate a register with same attributes as REG, but with OFFSET
932 added to the REG_OFFSET. */
935 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno,
936 int offset)
938 rtx new_rtx = gen_rtx_REG (mode, regno);
940 update_reg_offset (new_rtx, reg, offset);
941 return new_rtx;
944 /* Generate a new pseudo-register with the same attributes as REG, but
945 with OFFSET added to the REG_OFFSET. */
948 gen_reg_rtx_offset (rtx reg, enum machine_mode mode, int offset)
950 rtx new_rtx = gen_reg_rtx (mode);
952 update_reg_offset (new_rtx, reg, offset);
953 return new_rtx;
956 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
957 new register is a (possibly paradoxical) lowpart of the old one. */
959 void
960 adjust_reg_mode (rtx reg, enum machine_mode mode)
962 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
963 PUT_MODE (reg, mode);
966 /* Copy REG's attributes from X, if X has any attributes. If REG and X
967 have different modes, REG is a (possibly paradoxical) lowpart of X. */
969 void
970 set_reg_attrs_from_value (rtx reg, rtx x)
972 int offset;
973 bool can_be_reg_pointer = true;
975 /* Don't call mark_reg_pointer for incompatible pointer sign
976 extension. */
977 while (GET_CODE (x) == SIGN_EXTEND
978 || GET_CODE (x) == ZERO_EXTEND
979 || GET_CODE (x) == TRUNCATE
980 || (GET_CODE (x) == SUBREG && subreg_lowpart_p (x)))
982 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
983 if ((GET_CODE (x) == SIGN_EXTEND && POINTERS_EXTEND_UNSIGNED)
984 || (GET_CODE (x) != SIGN_EXTEND && ! POINTERS_EXTEND_UNSIGNED))
985 can_be_reg_pointer = false;
986 #endif
987 x = XEXP (x, 0);
990 /* Hard registers can be reused for multiple purposes within the same
991 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
992 on them is wrong. */
993 if (HARD_REGISTER_P (reg))
994 return;
996 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
997 if (MEM_P (x))
999 if (MEM_OFFSET_KNOWN_P (x))
1000 REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x),
1001 MEM_OFFSET (x) + offset);
1002 if (can_be_reg_pointer && MEM_POINTER (x))
1003 mark_reg_pointer (reg, 0);
1005 else if (REG_P (x))
1007 if (REG_ATTRS (x))
1008 update_reg_offset (reg, x, offset);
1009 if (can_be_reg_pointer && REG_POINTER (x))
1010 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
1014 /* Generate a REG rtx for a new pseudo register, copying the mode
1015 and attributes from X. */
1018 gen_reg_rtx_and_attrs (rtx x)
1020 rtx reg = gen_reg_rtx (GET_MODE (x));
1021 set_reg_attrs_from_value (reg, x);
1022 return reg;
1025 /* Set the register attributes for registers contained in PARM_RTX.
1026 Use needed values from memory attributes of MEM. */
1028 void
1029 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1031 if (REG_P (parm_rtx))
1032 set_reg_attrs_from_value (parm_rtx, mem);
1033 else if (GET_CODE (parm_rtx) == PARALLEL)
1035 /* Check for a NULL entry in the first slot, used to indicate that the
1036 parameter goes both on the stack and in registers. */
1037 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1038 for (; i < XVECLEN (parm_rtx, 0); i++)
1040 rtx x = XVECEXP (parm_rtx, 0, i);
1041 if (REG_P (XEXP (x, 0)))
1042 REG_ATTRS (XEXP (x, 0))
1043 = get_reg_attrs (MEM_EXPR (mem),
1044 INTVAL (XEXP (x, 1)));
1049 /* Set the REG_ATTRS for registers in value X, given that X represents
1050 decl T. */
1052 void
1053 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1055 if (GET_CODE (x) == SUBREG)
1057 gcc_assert (subreg_lowpart_p (x));
1058 x = SUBREG_REG (x);
1060 if (REG_P (x))
1061 REG_ATTRS (x)
1062 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1063 DECL_MODE (t)));
1064 if (GET_CODE (x) == CONCAT)
1066 if (REG_P (XEXP (x, 0)))
1067 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1068 if (REG_P (XEXP (x, 1)))
1069 REG_ATTRS (XEXP (x, 1))
1070 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1072 if (GET_CODE (x) == PARALLEL)
1074 int i, start;
1076 /* Check for a NULL entry, used to indicate that the parameter goes
1077 both on the stack and in registers. */
1078 if (XEXP (XVECEXP (x, 0, 0), 0))
1079 start = 0;
1080 else
1081 start = 1;
1083 for (i = start; i < XVECLEN (x, 0); i++)
1085 rtx y = XVECEXP (x, 0, i);
1086 if (REG_P (XEXP (y, 0)))
1087 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1092 /* Assign the RTX X to declaration T. */
1094 void
1095 set_decl_rtl (tree t, rtx x)
1097 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1098 if (x)
1099 set_reg_attrs_for_decl_rtl (t, x);
1102 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1103 if the ABI requires the parameter to be passed by reference. */
1105 void
1106 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1108 DECL_INCOMING_RTL (t) = x;
1109 if (x && !by_reference_p)
1110 set_reg_attrs_for_decl_rtl (t, x);
1113 /* Identify REG (which may be a CONCAT) as a user register. */
1115 void
1116 mark_user_reg (rtx reg)
1118 if (GET_CODE (reg) == CONCAT)
1120 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1121 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1123 else
1125 gcc_assert (REG_P (reg));
1126 REG_USERVAR_P (reg) = 1;
1130 /* Identify REG as a probable pointer register and show its alignment
1131 as ALIGN, if nonzero. */
1133 void
1134 mark_reg_pointer (rtx reg, int align)
1136 if (! REG_POINTER (reg))
1138 REG_POINTER (reg) = 1;
1140 if (align)
1141 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1143 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1144 /* We can no-longer be sure just how aligned this pointer is. */
1145 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1148 /* Return 1 plus largest pseudo reg number used in the current function. */
1151 max_reg_num (void)
1153 return reg_rtx_no;
1156 /* Return 1 + the largest label number used so far in the current function. */
1159 max_label_num (void)
1161 return label_num;
1164 /* Return first label number used in this function (if any were used). */
1167 get_first_label_num (void)
1169 return first_label_num;
1172 /* If the rtx for label was created during the expansion of a nested
1173 function, then first_label_num won't include this label number.
1174 Fix this now so that array indices work later. */
1176 void
1177 maybe_set_first_label_num (rtx x)
1179 if (CODE_LABEL_NUMBER (x) < first_label_num)
1180 first_label_num = CODE_LABEL_NUMBER (x);
1183 /* Return a value representing some low-order bits of X, where the number
1184 of low-order bits is given by MODE. Note that no conversion is done
1185 between floating-point and fixed-point values, rather, the bit
1186 representation is returned.
1188 This function handles the cases in common between gen_lowpart, below,
1189 and two variants in cse.c and combine.c. These are the cases that can
1190 be safely handled at all points in the compilation.
1192 If this is not a case we can handle, return 0. */
1195 gen_lowpart_common (enum machine_mode mode, rtx x)
1197 int msize = GET_MODE_SIZE (mode);
1198 int xsize;
1199 int offset = 0;
1200 enum machine_mode innermode;
1202 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1203 so we have to make one up. Yuk. */
1204 innermode = GET_MODE (x);
1205 if (CONST_INT_P (x)
1206 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1207 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1208 else if (innermode == VOIDmode)
1209 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1211 xsize = GET_MODE_SIZE (innermode);
1213 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1215 if (innermode == mode)
1216 return x;
1218 /* MODE must occupy no more words than the mode of X. */
1219 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1220 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1221 return 0;
1223 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1224 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1225 return 0;
1227 offset = subreg_lowpart_offset (mode, innermode);
1229 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1230 && (GET_MODE_CLASS (mode) == MODE_INT
1231 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1233 /* If we are getting the low-order part of something that has been
1234 sign- or zero-extended, we can either just use the object being
1235 extended or make a narrower extension. If we want an even smaller
1236 piece than the size of the object being extended, call ourselves
1237 recursively.
1239 This case is used mostly by combine and cse. */
1241 if (GET_MODE (XEXP (x, 0)) == mode)
1242 return XEXP (x, 0);
1243 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1244 return gen_lowpart_common (mode, XEXP (x, 0));
1245 else if (msize < xsize)
1246 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1248 else if (GET_CODE (x) == SUBREG || REG_P (x)
1249 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1250 || GET_CODE (x) == CONST_DOUBLE || CONST_INT_P (x))
1251 return simplify_gen_subreg (mode, x, innermode, offset);
1253 /* Otherwise, we can't do this. */
1254 return 0;
1258 gen_highpart (enum machine_mode mode, rtx x)
1260 unsigned int msize = GET_MODE_SIZE (mode);
1261 rtx result;
1263 /* This case loses if X is a subreg. To catch bugs early,
1264 complain if an invalid MODE is used even in other cases. */
1265 gcc_assert (msize <= UNITS_PER_WORD
1266 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1268 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1269 subreg_highpart_offset (mode, GET_MODE (x)));
1270 gcc_assert (result);
1272 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1273 the target if we have a MEM. gen_highpart must return a valid operand,
1274 emitting code if necessary to do so. */
1275 if (MEM_P (result))
1277 result = validize_mem (result);
1278 gcc_assert (result);
1281 return result;
1284 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1285 be VOIDmode constant. */
1287 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1289 if (GET_MODE (exp) != VOIDmode)
1291 gcc_assert (GET_MODE (exp) == innermode);
1292 return gen_highpart (outermode, exp);
1294 return simplify_gen_subreg (outermode, exp, innermode,
1295 subreg_highpart_offset (outermode, innermode));
1298 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1300 unsigned int
1301 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1303 unsigned int offset = 0;
1304 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1306 if (difference > 0)
1308 if (WORDS_BIG_ENDIAN)
1309 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1310 if (BYTES_BIG_ENDIAN)
1311 offset += difference % UNITS_PER_WORD;
1314 return offset;
1317 /* Return offset in bytes to get OUTERMODE high part
1318 of the value in mode INNERMODE stored in memory in target format. */
1319 unsigned int
1320 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1322 unsigned int offset = 0;
1323 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1325 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1327 if (difference > 0)
1329 if (! WORDS_BIG_ENDIAN)
1330 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1331 if (! BYTES_BIG_ENDIAN)
1332 offset += difference % UNITS_PER_WORD;
1335 return offset;
1338 /* Return 1 iff X, assumed to be a SUBREG,
1339 refers to the least significant part of its containing reg.
1340 If X is not a SUBREG, always return 1 (it is its own low part!). */
1343 subreg_lowpart_p (const_rtx x)
1345 if (GET_CODE (x) != SUBREG)
1346 return 1;
1347 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1348 return 0;
1350 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1351 == SUBREG_BYTE (x));
1354 /* Return true if X is a paradoxical subreg, false otherwise. */
1355 bool
1356 paradoxical_subreg_p (const_rtx x)
1358 if (GET_CODE (x) != SUBREG)
1359 return false;
1360 return (GET_MODE_PRECISION (GET_MODE (x))
1361 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))));
1364 /* Return subword OFFSET of operand OP.
1365 The word number, OFFSET, is interpreted as the word number starting
1366 at the low-order address. OFFSET 0 is the low-order word if not
1367 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1369 If we cannot extract the required word, we return zero. Otherwise,
1370 an rtx corresponding to the requested word will be returned.
1372 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1373 reload has completed, a valid address will always be returned. After
1374 reload, if a valid address cannot be returned, we return zero.
1376 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1377 it is the responsibility of the caller.
1379 MODE is the mode of OP in case it is a CONST_INT.
1381 ??? This is still rather broken for some cases. The problem for the
1382 moment is that all callers of this thing provide no 'goal mode' to
1383 tell us to work with. This exists because all callers were written
1384 in a word based SUBREG world.
1385 Now use of this function can be deprecated by simplify_subreg in most
1386 cases.
1390 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1392 if (mode == VOIDmode)
1393 mode = GET_MODE (op);
1395 gcc_assert (mode != VOIDmode);
1397 /* If OP is narrower than a word, fail. */
1398 if (mode != BLKmode
1399 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1400 return 0;
1402 /* If we want a word outside OP, return zero. */
1403 if (mode != BLKmode
1404 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1405 return const0_rtx;
1407 /* Form a new MEM at the requested address. */
1408 if (MEM_P (op))
1410 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1412 if (! validate_address)
1413 return new_rtx;
1415 else if (reload_completed)
1417 if (! strict_memory_address_addr_space_p (word_mode,
1418 XEXP (new_rtx, 0),
1419 MEM_ADDR_SPACE (op)))
1420 return 0;
1422 else
1423 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1426 /* Rest can be handled by simplify_subreg. */
1427 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1430 /* Similar to `operand_subword', but never return 0. If we can't
1431 extract the required subword, put OP into a register and try again.
1432 The second attempt must succeed. We always validate the address in
1433 this case.
1435 MODE is the mode of OP, in case it is CONST_INT. */
1438 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1440 rtx result = operand_subword (op, offset, 1, mode);
1442 if (result)
1443 return result;
1445 if (mode != BLKmode && mode != VOIDmode)
1447 /* If this is a register which can not be accessed by words, copy it
1448 to a pseudo register. */
1449 if (REG_P (op))
1450 op = copy_to_reg (op);
1451 else
1452 op = force_reg (mode, op);
1455 result = operand_subword (op, offset, 1, mode);
1456 gcc_assert (result);
1458 return result;
1461 /* Returns 1 if both MEM_EXPR can be considered equal
1462 and 0 otherwise. */
1465 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1467 if (expr1 == expr2)
1468 return 1;
1470 if (! expr1 || ! expr2)
1471 return 0;
1473 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1474 return 0;
1476 return operand_equal_p (expr1, expr2, 0);
1479 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1480 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1481 -1 if not known. */
1484 get_mem_align_offset (rtx mem, unsigned int align)
1486 tree expr;
1487 unsigned HOST_WIDE_INT offset;
1489 /* This function can't use
1490 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1491 || (MAX (MEM_ALIGN (mem),
1492 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1493 < align))
1494 return -1;
1495 else
1496 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1497 for two reasons:
1498 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1499 for <variable>. get_inner_reference doesn't handle it and
1500 even if it did, the alignment in that case needs to be determined
1501 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1502 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1503 isn't sufficiently aligned, the object it is in might be. */
1504 gcc_assert (MEM_P (mem));
1505 expr = MEM_EXPR (mem);
1506 if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
1507 return -1;
1509 offset = MEM_OFFSET (mem);
1510 if (DECL_P (expr))
1512 if (DECL_ALIGN (expr) < align)
1513 return -1;
1515 else if (INDIRECT_REF_P (expr))
1517 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1518 return -1;
1520 else if (TREE_CODE (expr) == COMPONENT_REF)
1522 while (1)
1524 tree inner = TREE_OPERAND (expr, 0);
1525 tree field = TREE_OPERAND (expr, 1);
1526 tree byte_offset = component_ref_field_offset (expr);
1527 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1529 if (!byte_offset
1530 || !host_integerp (byte_offset, 1)
1531 || !host_integerp (bit_offset, 1))
1532 return -1;
1534 offset += tree_low_cst (byte_offset, 1);
1535 offset += tree_low_cst (bit_offset, 1) / BITS_PER_UNIT;
1537 if (inner == NULL_TREE)
1539 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1540 < (unsigned int) align)
1541 return -1;
1542 break;
1544 else if (DECL_P (inner))
1546 if (DECL_ALIGN (inner) < align)
1547 return -1;
1548 break;
1550 else if (TREE_CODE (inner) != COMPONENT_REF)
1551 return -1;
1552 expr = inner;
1555 else
1556 return -1;
1558 return offset & ((align / BITS_PER_UNIT) - 1);
1561 /* Given REF (a MEM) and T, either the type of X or the expression
1562 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1563 if we are making a new object of this type. BITPOS is nonzero if
1564 there is an offset outstanding on T that will be applied later. */
1566 void
1567 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1568 HOST_WIDE_INT bitpos)
1570 HOST_WIDE_INT apply_bitpos = 0;
1571 tree type;
1572 struct mem_attrs attrs, *defattrs, *refattrs;
1573 addr_space_t as;
1575 /* It can happen that type_for_mode was given a mode for which there
1576 is no language-level type. In which case it returns NULL, which
1577 we can see here. */
1578 if (t == NULL_TREE)
1579 return;
1581 type = TYPE_P (t) ? t : TREE_TYPE (t);
1582 if (type == error_mark_node)
1583 return;
1585 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1586 wrong answer, as it assumes that DECL_RTL already has the right alias
1587 info. Callers should not set DECL_RTL until after the call to
1588 set_mem_attributes. */
1589 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1591 memset (&attrs, 0, sizeof (attrs));
1593 /* Get the alias set from the expression or type (perhaps using a
1594 front-end routine) and use it. */
1595 attrs.alias = get_alias_set (t);
1597 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1598 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1600 /* Default values from pre-existing memory attributes if present. */
1601 refattrs = MEM_ATTRS (ref);
1602 if (refattrs)
1604 /* ??? Can this ever happen? Calling this routine on a MEM that
1605 already carries memory attributes should probably be invalid. */
1606 attrs.expr = refattrs->expr;
1607 attrs.offset_known_p = refattrs->offset_known_p;
1608 attrs.offset = refattrs->offset;
1609 attrs.size_known_p = refattrs->size_known_p;
1610 attrs.size = refattrs->size;
1611 attrs.align = refattrs->align;
1614 /* Otherwise, default values from the mode of the MEM reference. */
1615 else
1617 defattrs = mode_mem_attrs[(int) GET_MODE (ref)];
1618 gcc_assert (!defattrs->expr);
1619 gcc_assert (!defattrs->offset_known_p);
1621 /* Respect mode size. */
1622 attrs.size_known_p = defattrs->size_known_p;
1623 attrs.size = defattrs->size;
1624 /* ??? Is this really necessary? We probably should always get
1625 the size from the type below. */
1627 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1628 if T is an object, always compute the object alignment below. */
1629 if (TYPE_P (t))
1630 attrs.align = defattrs->align;
1631 else
1632 attrs.align = BITS_PER_UNIT;
1633 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1634 e.g. if the type carries an alignment attribute. Should we be
1635 able to simply always use TYPE_ALIGN? */
1638 /* We can set the alignment from the type if we are making an object,
1639 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1640 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1641 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1643 else if (TREE_CODE (t) == MEM_REF)
1645 tree op0 = TREE_OPERAND (t, 0);
1646 if (TREE_CODE (op0) == ADDR_EXPR
1647 && (DECL_P (TREE_OPERAND (op0, 0))
1648 || CONSTANT_CLASS_P (TREE_OPERAND (op0, 0))))
1650 if (DECL_P (TREE_OPERAND (op0, 0)))
1651 attrs.align = DECL_ALIGN (TREE_OPERAND (op0, 0));
1652 else if (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0)))
1654 attrs.align = TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (op0, 0)));
1655 #ifdef CONSTANT_ALIGNMENT
1656 attrs.align = CONSTANT_ALIGNMENT (TREE_OPERAND (op0, 0),
1657 attrs.align);
1658 #endif
1660 if (TREE_INT_CST_LOW (TREE_OPERAND (t, 1)) != 0)
1662 unsigned HOST_WIDE_INT ioff
1663 = TREE_INT_CST_LOW (TREE_OPERAND (t, 1));
1664 unsigned HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1665 attrs.align = MIN (aoff, attrs.align);
1668 else
1669 /* ??? This isn't fully correct, we can't set the alignment from the
1670 type in all cases. */
1671 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1674 else if (TREE_CODE (t) == TARGET_MEM_REF)
1675 /* ??? This isn't fully correct, we can't set the alignment from the
1676 type in all cases. */
1677 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1679 /* If the size is known, we can set that. */
1680 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1682 attrs.size_known_p = true;
1683 attrs.size = tree_low_cst (TYPE_SIZE_UNIT (type), 1);
1686 /* If T is not a type, we may be able to deduce some more information about
1687 the expression. */
1688 if (! TYPE_P (t))
1690 tree base;
1691 bool align_computed = false;
1693 if (TREE_THIS_VOLATILE (t))
1694 MEM_VOLATILE_P (ref) = 1;
1696 /* Now remove any conversions: they don't change what the underlying
1697 object is. Likewise for SAVE_EXPR. */
1698 while (CONVERT_EXPR_P (t)
1699 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1700 || TREE_CODE (t) == SAVE_EXPR)
1701 t = TREE_OPERAND (t, 0);
1703 /* Note whether this expression can trap. */
1704 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t);
1706 base = get_base_address (t);
1707 if (base)
1709 if (DECL_P (base)
1710 && TREE_READONLY (base)
1711 && (TREE_STATIC (base) || DECL_EXTERNAL (base))
1712 && !TREE_THIS_VOLATILE (base))
1713 MEM_READONLY_P (ref) = 1;
1715 /* Mark static const strings readonly as well. */
1716 if (TREE_CODE (base) == STRING_CST
1717 && TREE_READONLY (base)
1718 && TREE_STATIC (base))
1719 MEM_READONLY_P (ref) = 1;
1721 if (TREE_CODE (base) == MEM_REF
1722 || TREE_CODE (base) == TARGET_MEM_REF)
1723 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base,
1724 0))));
1725 else
1726 as = TYPE_ADDR_SPACE (TREE_TYPE (base));
1728 else
1729 as = TYPE_ADDR_SPACE (type);
1731 /* If this expression uses it's parent's alias set, mark it such
1732 that we won't change it. */
1733 if (component_uses_parent_alias_set (t))
1734 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1736 /* If this is a decl, set the attributes of the MEM from it. */
1737 if (DECL_P (t))
1739 attrs.expr = t;
1740 attrs.offset_known_p = true;
1741 attrs.offset = 0;
1742 apply_bitpos = bitpos;
1743 if (DECL_SIZE_UNIT (t) && host_integerp (DECL_SIZE_UNIT (t), 1))
1745 attrs.size_known_p = true;
1746 attrs.size = tree_low_cst (DECL_SIZE_UNIT (t), 1);
1748 else
1749 attrs.size_known_p = false;
1750 attrs.align = DECL_ALIGN (t);
1751 align_computed = true;
1754 /* If this is a constant, we know the alignment. */
1755 else if (CONSTANT_CLASS_P (t))
1757 attrs.align = TYPE_ALIGN (type);
1758 #ifdef CONSTANT_ALIGNMENT
1759 attrs.align = CONSTANT_ALIGNMENT (t, attrs.align);
1760 #endif
1761 align_computed = true;
1764 /* If this is a field reference and not a bit-field, record it. */
1765 /* ??? There is some information that can be gleaned from bit-fields,
1766 such as the word offset in the structure that might be modified.
1767 But skip it for now. */
1768 else if (TREE_CODE (t) == COMPONENT_REF
1769 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1771 attrs.expr = t;
1772 attrs.offset_known_p = true;
1773 attrs.offset = 0;
1774 apply_bitpos = bitpos;
1775 /* ??? Any reason the field size would be different than
1776 the size we got from the type? */
1779 /* If this is an array reference, look for an outer field reference. */
1780 else if (TREE_CODE (t) == ARRAY_REF)
1782 tree off_tree = size_zero_node;
1783 /* We can't modify t, because we use it at the end of the
1784 function. */
1785 tree t2 = t;
1789 tree index = TREE_OPERAND (t2, 1);
1790 tree low_bound = array_ref_low_bound (t2);
1791 tree unit_size = array_ref_element_size (t2);
1793 /* We assume all arrays have sizes that are a multiple of a byte.
1794 First subtract the lower bound, if any, in the type of the
1795 index, then convert to sizetype and multiply by the size of
1796 the array element. */
1797 if (! integer_zerop (low_bound))
1798 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1799 index, low_bound);
1801 off_tree = size_binop (PLUS_EXPR,
1802 size_binop (MULT_EXPR,
1803 fold_convert (sizetype,
1804 index),
1805 unit_size),
1806 off_tree);
1807 t2 = TREE_OPERAND (t2, 0);
1809 while (TREE_CODE (t2) == ARRAY_REF);
1811 if (DECL_P (t2))
1813 attrs.expr = t2;
1814 attrs.offset_known_p = false;
1815 if (host_integerp (off_tree, 1))
1817 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1818 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1819 attrs.align = DECL_ALIGN (t2);
1820 if (aoff && (unsigned HOST_WIDE_INT) aoff < attrs.align)
1821 attrs.align = aoff;
1822 align_computed = true;
1823 attrs.offset_known_p = true;
1824 attrs.offset = ioff;
1825 apply_bitpos = bitpos;
1828 else if (TREE_CODE (t2) == COMPONENT_REF)
1830 attrs.expr = t2;
1831 attrs.offset_known_p = false;
1832 if (host_integerp (off_tree, 1))
1834 attrs.offset_known_p = true;
1835 attrs.offset = tree_low_cst (off_tree, 1);
1836 apply_bitpos = bitpos;
1838 /* ??? Any reason the field size would be different than
1839 the size we got from the type? */
1842 /* If this is an indirect reference, record it. */
1843 else if (TREE_CODE (t) == MEM_REF)
1845 attrs.expr = t;
1846 attrs.offset_known_p = true;
1847 attrs.offset = 0;
1848 apply_bitpos = bitpos;
1852 /* If this is an indirect reference, record it. */
1853 else if (TREE_CODE (t) == MEM_REF
1854 || TREE_CODE (t) == TARGET_MEM_REF)
1856 attrs.expr = t;
1857 attrs.offset_known_p = true;
1858 attrs.offset = 0;
1859 apply_bitpos = bitpos;
1862 if (!align_computed)
1864 unsigned int obj_align = get_object_alignment (t);
1865 attrs.align = MAX (attrs.align, obj_align);
1868 else
1869 as = TYPE_ADDR_SPACE (type);
1871 /* If we modified OFFSET based on T, then subtract the outstanding
1872 bit position offset. Similarly, increase the size of the accessed
1873 object to contain the negative offset. */
1874 if (apply_bitpos)
1876 gcc_assert (attrs.offset_known_p);
1877 attrs.offset -= apply_bitpos / BITS_PER_UNIT;
1878 if (attrs.size_known_p)
1879 attrs.size += apply_bitpos / BITS_PER_UNIT;
1882 /* Now set the attributes we computed above. */
1883 attrs.addrspace = as;
1884 set_mem_attrs (ref, &attrs);
1887 void
1888 set_mem_attributes (rtx ref, tree t, int objectp)
1890 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1893 /* Set the alias set of MEM to SET. */
1895 void
1896 set_mem_alias_set (rtx mem, alias_set_type set)
1898 struct mem_attrs attrs;
1900 /* If the new and old alias sets don't conflict, something is wrong. */
1901 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1902 attrs = *get_mem_attrs (mem);
1903 attrs.alias = set;
1904 set_mem_attrs (mem, &attrs);
1907 /* Set the address space of MEM to ADDRSPACE (target-defined). */
1909 void
1910 set_mem_addr_space (rtx mem, addr_space_t addrspace)
1912 struct mem_attrs attrs;
1914 attrs = *get_mem_attrs (mem);
1915 attrs.addrspace = addrspace;
1916 set_mem_attrs (mem, &attrs);
1919 /* Set the alignment of MEM to ALIGN bits. */
1921 void
1922 set_mem_align (rtx mem, unsigned int align)
1924 struct mem_attrs attrs;
1926 attrs = *get_mem_attrs (mem);
1927 attrs.align = align;
1928 set_mem_attrs (mem, &attrs);
1931 /* Set the expr for MEM to EXPR. */
1933 void
1934 set_mem_expr (rtx mem, tree expr)
1936 struct mem_attrs attrs;
1938 attrs = *get_mem_attrs (mem);
1939 attrs.expr = expr;
1940 set_mem_attrs (mem, &attrs);
1943 /* Set the offset of MEM to OFFSET. */
1945 void
1946 set_mem_offset (rtx mem, HOST_WIDE_INT offset)
1948 struct mem_attrs attrs;
1950 attrs = *get_mem_attrs (mem);
1951 attrs.offset_known_p = true;
1952 attrs.offset = offset;
1953 set_mem_attrs (mem, &attrs);
1956 /* Clear the offset of MEM. */
1958 void
1959 clear_mem_offset (rtx mem)
1961 struct mem_attrs attrs;
1963 attrs = *get_mem_attrs (mem);
1964 attrs.offset_known_p = false;
1965 set_mem_attrs (mem, &attrs);
1968 /* Set the size of MEM to SIZE. */
1970 void
1971 set_mem_size (rtx mem, HOST_WIDE_INT size)
1973 struct mem_attrs attrs;
1975 attrs = *get_mem_attrs (mem);
1976 attrs.size_known_p = true;
1977 attrs.size = size;
1978 set_mem_attrs (mem, &attrs);
1981 /* Clear the size of MEM. */
1983 void
1984 clear_mem_size (rtx mem)
1986 struct mem_attrs attrs;
1988 attrs = *get_mem_attrs (mem);
1989 attrs.size_known_p = false;
1990 set_mem_attrs (mem, &attrs);
1993 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1994 and its address changed to ADDR. (VOIDmode means don't change the mode.
1995 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1996 returned memory location is required to be valid. The memory
1997 attributes are not changed. */
1999 static rtx
2000 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
2002 addr_space_t as;
2003 rtx new_rtx;
2005 gcc_assert (MEM_P (memref));
2006 as = MEM_ADDR_SPACE (memref);
2007 if (mode == VOIDmode)
2008 mode = GET_MODE (memref);
2009 if (addr == 0)
2010 addr = XEXP (memref, 0);
2011 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
2012 && (!validate || memory_address_addr_space_p (mode, addr, as)))
2013 return memref;
2015 if (validate)
2017 if (reload_in_progress || reload_completed)
2018 gcc_assert (memory_address_addr_space_p (mode, addr, as));
2019 else
2020 addr = memory_address_addr_space (mode, addr, as);
2023 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2024 return memref;
2026 new_rtx = gen_rtx_MEM (mode, addr);
2027 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2028 return new_rtx;
2031 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2032 way we are changing MEMREF, so we only preserve the alias set. */
2035 change_address (rtx memref, enum machine_mode mode, rtx addr)
2037 rtx new_rtx = change_address_1 (memref, mode, addr, 1);
2038 enum machine_mode mmode = GET_MODE (new_rtx);
2039 struct mem_attrs attrs, *defattrs;
2041 attrs = *get_mem_attrs (memref);
2042 defattrs = mode_mem_attrs[(int) mmode];
2043 attrs.expr = NULL_TREE;
2044 attrs.offset_known_p = false;
2045 attrs.size_known_p = defattrs->size_known_p;
2046 attrs.size = defattrs->size;
2047 attrs.align = defattrs->align;
2049 /* If there are no changes, just return the original memory reference. */
2050 if (new_rtx == memref)
2052 if (mem_attrs_eq_p (get_mem_attrs (memref), &attrs))
2053 return new_rtx;
2055 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
2056 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2059 set_mem_attrs (new_rtx, &attrs);
2060 return new_rtx;
2063 /* Return a memory reference like MEMREF, but with its mode changed
2064 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2065 nonzero, the memory address is forced to be valid.
2066 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
2067 and caller is responsible for adjusting MEMREF base register. */
2070 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
2071 int validate, int adjust)
2073 rtx addr = XEXP (memref, 0);
2074 rtx new_rtx;
2075 enum machine_mode address_mode;
2076 int pbits;
2077 struct mem_attrs attrs, *defattrs;
2078 unsigned HOST_WIDE_INT max_align;
2080 attrs = *get_mem_attrs (memref);
2082 /* If there are no changes, just return the original memory reference. */
2083 if (mode == GET_MODE (memref) && !offset
2084 && (!validate || memory_address_addr_space_p (mode, addr,
2085 attrs.addrspace)))
2086 return memref;
2088 /* ??? Prefer to create garbage instead of creating shared rtl.
2089 This may happen even if offset is nonzero -- consider
2090 (plus (plus reg reg) const_int) -- so do this always. */
2091 addr = copy_rtx (addr);
2093 /* Convert a possibly large offset to a signed value within the
2094 range of the target address space. */
2095 address_mode = targetm.addr_space.address_mode (attrs.addrspace);
2096 pbits = GET_MODE_BITSIZE (address_mode);
2097 if (HOST_BITS_PER_WIDE_INT > pbits)
2099 int shift = HOST_BITS_PER_WIDE_INT - pbits;
2100 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
2101 >> shift);
2104 if (adjust)
2106 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2107 object, we can merge it into the LO_SUM. */
2108 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2109 && offset >= 0
2110 && (unsigned HOST_WIDE_INT) offset
2111 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2112 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
2113 plus_constant (XEXP (addr, 1), offset));
2114 else
2115 addr = plus_constant (addr, offset);
2118 new_rtx = change_address_1 (memref, mode, addr, validate);
2120 /* If the address is a REG, change_address_1 rightfully returns memref,
2121 but this would destroy memref's MEM_ATTRS. */
2122 if (new_rtx == memref && offset != 0)
2123 new_rtx = copy_rtx (new_rtx);
2125 /* Compute the new values of the memory attributes due to this adjustment.
2126 We add the offsets and update the alignment. */
2127 if (attrs.offset_known_p)
2128 attrs.offset += offset;
2130 /* Compute the new alignment by taking the MIN of the alignment and the
2131 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2132 if zero. */
2133 if (offset != 0)
2135 max_align = (offset & -offset) * BITS_PER_UNIT;
2136 attrs.align = MIN (attrs.align, max_align);
2139 /* We can compute the size in a number of ways. */
2140 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2141 if (defattrs->size_known_p)
2143 attrs.size_known_p = true;
2144 attrs.size = defattrs->size;
2146 else if (attrs.size_known_p)
2147 attrs.size -= offset;
2149 set_mem_attrs (new_rtx, &attrs);
2151 /* At some point, we should validate that this offset is within the object,
2152 if all the appropriate values are known. */
2153 return new_rtx;
2156 /* Return a memory reference like MEMREF, but with its mode changed
2157 to MODE and its address changed to ADDR, which is assumed to be
2158 MEMREF offset by OFFSET bytes. If VALIDATE is
2159 nonzero, the memory address is forced to be valid. */
2162 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
2163 HOST_WIDE_INT offset, int validate)
2165 memref = change_address_1 (memref, VOIDmode, addr, validate);
2166 return adjust_address_1 (memref, mode, offset, validate, 0);
2169 /* Return a memory reference like MEMREF, but whose address is changed by
2170 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2171 known to be in OFFSET (possibly 1). */
2174 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2176 rtx new_rtx, addr = XEXP (memref, 0);
2177 enum machine_mode address_mode;
2178 struct mem_attrs attrs, *defattrs;
2180 attrs = *get_mem_attrs (memref);
2181 address_mode = targetm.addr_space.address_mode (attrs.addrspace);
2182 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2184 /* At this point we don't know _why_ the address is invalid. It
2185 could have secondary memory references, multiplies or anything.
2187 However, if we did go and rearrange things, we can wind up not
2188 being able to recognize the magic around pic_offset_table_rtx.
2189 This stuff is fragile, and is yet another example of why it is
2190 bad to expose PIC machinery too early. */
2191 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx,
2192 attrs.addrspace)
2193 && GET_CODE (addr) == PLUS
2194 && XEXP (addr, 0) == pic_offset_table_rtx)
2196 addr = force_reg (GET_MODE (addr), addr);
2197 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2200 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2201 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1);
2203 /* If there are no changes, just return the original memory reference. */
2204 if (new_rtx == memref)
2205 return new_rtx;
2207 /* Update the alignment to reflect the offset. Reset the offset, which
2208 we don't know. */
2209 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2210 attrs.offset_known_p = false;
2211 attrs.size_known_p = defattrs->size_known_p;
2212 attrs.size = defattrs->size;
2213 attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT);
2214 set_mem_attrs (new_rtx, &attrs);
2215 return new_rtx;
2218 /* Return a memory reference like MEMREF, but with its address changed to
2219 ADDR. The caller is asserting that the actual piece of memory pointed
2220 to is the same, just the form of the address is being changed, such as
2221 by putting something into a register. */
2224 replace_equiv_address (rtx memref, rtx addr)
2226 /* change_address_1 copies the memory attribute structure without change
2227 and that's exactly what we want here. */
2228 update_temp_slot_address (XEXP (memref, 0), addr);
2229 return change_address_1 (memref, VOIDmode, addr, 1);
2232 /* Likewise, but the reference is not required to be valid. */
2235 replace_equiv_address_nv (rtx memref, rtx addr)
2237 return change_address_1 (memref, VOIDmode, addr, 0);
2240 /* Return a memory reference like MEMREF, but with its mode widened to
2241 MODE and offset by OFFSET. This would be used by targets that e.g.
2242 cannot issue QImode memory operations and have to use SImode memory
2243 operations plus masking logic. */
2246 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2248 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1);
2249 struct mem_attrs attrs;
2250 unsigned int size = GET_MODE_SIZE (mode);
2252 /* If there are no changes, just return the original memory reference. */
2253 if (new_rtx == memref)
2254 return new_rtx;
2256 attrs = *get_mem_attrs (new_rtx);
2258 /* If we don't know what offset we were at within the expression, then
2259 we can't know if we've overstepped the bounds. */
2260 if (! attrs.offset_known_p)
2261 attrs.expr = NULL_TREE;
2263 while (attrs.expr)
2265 if (TREE_CODE (attrs.expr) == COMPONENT_REF)
2267 tree field = TREE_OPERAND (attrs.expr, 1);
2268 tree offset = component_ref_field_offset (attrs.expr);
2270 if (! DECL_SIZE_UNIT (field))
2272 attrs.expr = NULL_TREE;
2273 break;
2276 /* Is the field at least as large as the access? If so, ok,
2277 otherwise strip back to the containing structure. */
2278 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2279 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2280 && attrs.offset >= 0)
2281 break;
2283 if (! host_integerp (offset, 1))
2285 attrs.expr = NULL_TREE;
2286 break;
2289 attrs.expr = TREE_OPERAND (attrs.expr, 0);
2290 attrs.offset += tree_low_cst (offset, 1);
2291 attrs.offset += (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2292 / BITS_PER_UNIT);
2294 /* Similarly for the decl. */
2295 else if (DECL_P (attrs.expr)
2296 && DECL_SIZE_UNIT (attrs.expr)
2297 && TREE_CODE (DECL_SIZE_UNIT (attrs.expr)) == INTEGER_CST
2298 && compare_tree_int (DECL_SIZE_UNIT (attrs.expr), size) >= 0
2299 && (! attrs.offset_known_p || attrs.offset >= 0))
2300 break;
2301 else
2303 /* The widened memory access overflows the expression, which means
2304 that it could alias another expression. Zap it. */
2305 attrs.expr = NULL_TREE;
2306 break;
2310 if (! attrs.expr)
2311 attrs.offset_known_p = false;
2313 /* The widened memory may alias other stuff, so zap the alias set. */
2314 /* ??? Maybe use get_alias_set on any remaining expression. */
2315 attrs.alias = 0;
2316 attrs.size_known_p = true;
2317 attrs.size = size;
2318 set_mem_attrs (new_rtx, &attrs);
2319 return new_rtx;
2322 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2323 static GTY(()) tree spill_slot_decl;
2325 tree
2326 get_spill_slot_decl (bool force_build_p)
2328 tree d = spill_slot_decl;
2329 rtx rd;
2330 struct mem_attrs attrs;
2332 if (d || !force_build_p)
2333 return d;
2335 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2336 VAR_DECL, get_identifier ("%sfp"), void_type_node);
2337 DECL_ARTIFICIAL (d) = 1;
2338 DECL_IGNORED_P (d) = 1;
2339 TREE_USED (d) = 1;
2340 spill_slot_decl = d;
2342 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2343 MEM_NOTRAP_P (rd) = 1;
2344 attrs = *mode_mem_attrs[(int) BLKmode];
2345 attrs.alias = new_alias_set ();
2346 attrs.expr = d;
2347 set_mem_attrs (rd, &attrs);
2348 SET_DECL_RTL (d, rd);
2350 return d;
2353 /* Given MEM, a result from assign_stack_local, fill in the memory
2354 attributes as appropriate for a register allocator spill slot.
2355 These slots are not aliasable by other memory. We arrange for
2356 them all to use a single MEM_EXPR, so that the aliasing code can
2357 work properly in the case of shared spill slots. */
2359 void
2360 set_mem_attrs_for_spill (rtx mem)
2362 struct mem_attrs attrs;
2363 rtx addr;
2365 attrs = *get_mem_attrs (mem);
2366 attrs.expr = get_spill_slot_decl (true);
2367 attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr));
2368 attrs.addrspace = ADDR_SPACE_GENERIC;
2370 /* We expect the incoming memory to be of the form:
2371 (mem:MODE (plus (reg sfp) (const_int offset)))
2372 with perhaps the plus missing for offset = 0. */
2373 addr = XEXP (mem, 0);
2374 attrs.offset_known_p = true;
2375 attrs.offset = 0;
2376 if (GET_CODE (addr) == PLUS
2377 && CONST_INT_P (XEXP (addr, 1)))
2378 attrs.offset = INTVAL (XEXP (addr, 1));
2380 set_mem_attrs (mem, &attrs);
2381 MEM_NOTRAP_P (mem) = 1;
2384 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2387 gen_label_rtx (void)
2389 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2390 NULL, label_num++, NULL);
2393 /* For procedure integration. */
2395 /* Install new pointers to the first and last insns in the chain.
2396 Also, set cur_insn_uid to one higher than the last in use.
2397 Used for an inline-procedure after copying the insn chain. */
2399 void
2400 set_new_first_and_last_insn (rtx first, rtx last)
2402 rtx insn;
2404 set_first_insn (first);
2405 set_last_insn (last);
2406 cur_insn_uid = 0;
2408 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2410 int debug_count = 0;
2412 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2413 cur_debug_insn_uid = 0;
2415 for (insn = first; insn; insn = NEXT_INSN (insn))
2416 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2417 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2418 else
2420 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2421 if (DEBUG_INSN_P (insn))
2422 debug_count++;
2425 if (debug_count)
2426 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2427 else
2428 cur_debug_insn_uid++;
2430 else
2431 for (insn = first; insn; insn = NEXT_INSN (insn))
2432 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2434 cur_insn_uid++;
2437 /* Go through all the RTL insn bodies and copy any invalid shared
2438 structure. This routine should only be called once. */
2440 static void
2441 unshare_all_rtl_1 (rtx insn)
2443 /* Unshare just about everything else. */
2444 unshare_all_rtl_in_chain (insn);
2446 /* Make sure the addresses of stack slots found outside the insn chain
2447 (such as, in DECL_RTL of a variable) are not shared
2448 with the insn chain.
2450 This special care is necessary when the stack slot MEM does not
2451 actually appear in the insn chain. If it does appear, its address
2452 is unshared from all else at that point. */
2453 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2456 /* Go through all the RTL insn bodies and copy any invalid shared
2457 structure, again. This is a fairly expensive thing to do so it
2458 should be done sparingly. */
2460 void
2461 unshare_all_rtl_again (rtx insn)
2463 rtx p;
2464 tree decl;
2466 for (p = insn; p; p = NEXT_INSN (p))
2467 if (INSN_P (p))
2469 reset_used_flags (PATTERN (p));
2470 reset_used_flags (REG_NOTES (p));
2471 if (CALL_P (p))
2472 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2475 /* Make sure that virtual stack slots are not shared. */
2476 set_used_decls (DECL_INITIAL (cfun->decl));
2478 /* Make sure that virtual parameters are not shared. */
2479 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2480 set_used_flags (DECL_RTL (decl));
2482 reset_used_flags (stack_slot_list);
2484 unshare_all_rtl_1 (insn);
2487 unsigned int
2488 unshare_all_rtl (void)
2490 unshare_all_rtl_1 (get_insns ());
2491 return 0;
2495 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2496 Recursively does the same for subexpressions. */
2498 static void
2499 verify_rtx_sharing (rtx orig, rtx insn)
2501 rtx x = orig;
2502 int i;
2503 enum rtx_code code;
2504 const char *format_ptr;
2506 if (x == 0)
2507 return;
2509 code = GET_CODE (x);
2511 /* These types may be freely shared. */
2513 switch (code)
2515 case REG:
2516 case DEBUG_EXPR:
2517 case VALUE:
2518 case CONST_INT:
2519 case CONST_DOUBLE:
2520 case CONST_FIXED:
2521 case CONST_VECTOR:
2522 case SYMBOL_REF:
2523 case LABEL_REF:
2524 case CODE_LABEL:
2525 case PC:
2526 case CC0:
2527 case RETURN:
2528 case SIMPLE_RETURN:
2529 case SCRATCH:
2530 return;
2531 /* SCRATCH must be shared because they represent distinct values. */
2532 case CLOBBER:
2533 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2534 return;
2535 break;
2537 case CONST:
2538 if (shared_const_p (orig))
2539 return;
2540 break;
2542 case MEM:
2543 /* A MEM is allowed to be shared if its address is constant. */
2544 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2545 || reload_completed || reload_in_progress)
2546 return;
2548 break;
2550 default:
2551 break;
2554 /* This rtx may not be shared. If it has already been seen,
2555 replace it with a copy of itself. */
2556 #ifdef ENABLE_CHECKING
2557 if (RTX_FLAG (x, used))
2559 error ("invalid rtl sharing found in the insn");
2560 debug_rtx (insn);
2561 error ("shared rtx");
2562 debug_rtx (x);
2563 internal_error ("internal consistency failure");
2565 #endif
2566 gcc_assert (!RTX_FLAG (x, used));
2568 RTX_FLAG (x, used) = 1;
2570 /* Now scan the subexpressions recursively. */
2572 format_ptr = GET_RTX_FORMAT (code);
2574 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2576 switch (*format_ptr++)
2578 case 'e':
2579 verify_rtx_sharing (XEXP (x, i), insn);
2580 break;
2582 case 'E':
2583 if (XVEC (x, i) != NULL)
2585 int j;
2586 int len = XVECLEN (x, i);
2588 for (j = 0; j < len; j++)
2590 /* We allow sharing of ASM_OPERANDS inside single
2591 instruction. */
2592 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2593 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2594 == ASM_OPERANDS))
2595 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2596 else
2597 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2600 break;
2603 return;
2606 /* Go through all the RTL insn bodies and check that there is no unexpected
2607 sharing in between the subexpressions. */
2609 DEBUG_FUNCTION void
2610 verify_rtl_sharing (void)
2612 rtx p;
2614 timevar_push (TV_VERIFY_RTL_SHARING);
2616 for (p = get_insns (); p; p = NEXT_INSN (p))
2617 if (INSN_P (p))
2619 reset_used_flags (PATTERN (p));
2620 reset_used_flags (REG_NOTES (p));
2621 if (CALL_P (p))
2622 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2623 if (GET_CODE (PATTERN (p)) == SEQUENCE)
2625 int i;
2626 rtx q, sequence = PATTERN (p);
2628 for (i = 0; i < XVECLEN (sequence, 0); i++)
2630 q = XVECEXP (sequence, 0, i);
2631 gcc_assert (INSN_P (q));
2632 reset_used_flags (PATTERN (q));
2633 reset_used_flags (REG_NOTES (q));
2634 if (CALL_P (q))
2635 reset_used_flags (CALL_INSN_FUNCTION_USAGE (q));
2640 for (p = get_insns (); p; p = NEXT_INSN (p))
2641 if (INSN_P (p))
2643 verify_rtx_sharing (PATTERN (p), p);
2644 verify_rtx_sharing (REG_NOTES (p), p);
2645 if (CALL_P (p))
2646 verify_rtx_sharing (CALL_INSN_FUNCTION_USAGE (p), p);
2649 timevar_pop (TV_VERIFY_RTL_SHARING);
2652 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2653 Assumes the mark bits are cleared at entry. */
2655 void
2656 unshare_all_rtl_in_chain (rtx insn)
2658 for (; insn; insn = NEXT_INSN (insn))
2659 if (INSN_P (insn))
2661 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2662 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2663 if (CALL_P (insn))
2664 CALL_INSN_FUNCTION_USAGE (insn)
2665 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn));
2669 /* Go through all virtual stack slots of a function and mark them as
2670 shared. We never replace the DECL_RTLs themselves with a copy,
2671 but expressions mentioned into a DECL_RTL cannot be shared with
2672 expressions in the instruction stream.
2674 Note that reload may convert pseudo registers into memories in-place.
2675 Pseudo registers are always shared, but MEMs never are. Thus if we
2676 reset the used flags on MEMs in the instruction stream, we must set
2677 them again on MEMs that appear in DECL_RTLs. */
2679 static void
2680 set_used_decls (tree blk)
2682 tree t;
2684 /* Mark decls. */
2685 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
2686 if (DECL_RTL_SET_P (t))
2687 set_used_flags (DECL_RTL (t));
2689 /* Now process sub-blocks. */
2690 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2691 set_used_decls (t);
2694 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2695 Recursively does the same for subexpressions. Uses
2696 copy_rtx_if_shared_1 to reduce stack space. */
2699 copy_rtx_if_shared (rtx orig)
2701 copy_rtx_if_shared_1 (&orig);
2702 return orig;
2705 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2706 use. Recursively does the same for subexpressions. */
2708 static void
2709 copy_rtx_if_shared_1 (rtx *orig1)
2711 rtx x;
2712 int i;
2713 enum rtx_code code;
2714 rtx *last_ptr;
2715 const char *format_ptr;
2716 int copied = 0;
2717 int length;
2719 /* Repeat is used to turn tail-recursion into iteration. */
2720 repeat:
2721 x = *orig1;
2723 if (x == 0)
2724 return;
2726 code = GET_CODE (x);
2728 /* These types may be freely shared. */
2730 switch (code)
2732 case REG:
2733 case DEBUG_EXPR:
2734 case VALUE:
2735 case CONST_INT:
2736 case CONST_DOUBLE:
2737 case CONST_FIXED:
2738 case CONST_VECTOR:
2739 case SYMBOL_REF:
2740 case LABEL_REF:
2741 case CODE_LABEL:
2742 case PC:
2743 case CC0:
2744 case RETURN:
2745 case SIMPLE_RETURN:
2746 case SCRATCH:
2747 /* SCRATCH must be shared because they represent distinct values. */
2748 return;
2749 case CLOBBER:
2750 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2751 return;
2752 break;
2754 case CONST:
2755 if (shared_const_p (x))
2756 return;
2757 break;
2759 case DEBUG_INSN:
2760 case INSN:
2761 case JUMP_INSN:
2762 case CALL_INSN:
2763 case NOTE:
2764 case BARRIER:
2765 /* The chain of insns is not being copied. */
2766 return;
2768 default:
2769 break;
2772 /* This rtx may not be shared. If it has already been seen,
2773 replace it with a copy of itself. */
2775 if (RTX_FLAG (x, used))
2777 x = shallow_copy_rtx (x);
2778 copied = 1;
2780 RTX_FLAG (x, used) = 1;
2782 /* Now scan the subexpressions recursively.
2783 We can store any replaced subexpressions directly into X
2784 since we know X is not shared! Any vectors in X
2785 must be copied if X was copied. */
2787 format_ptr = GET_RTX_FORMAT (code);
2788 length = GET_RTX_LENGTH (code);
2789 last_ptr = NULL;
2791 for (i = 0; i < length; i++)
2793 switch (*format_ptr++)
2795 case 'e':
2796 if (last_ptr)
2797 copy_rtx_if_shared_1 (last_ptr);
2798 last_ptr = &XEXP (x, i);
2799 break;
2801 case 'E':
2802 if (XVEC (x, i) != NULL)
2804 int j;
2805 int len = XVECLEN (x, i);
2807 /* Copy the vector iff I copied the rtx and the length
2808 is nonzero. */
2809 if (copied && len > 0)
2810 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2812 /* Call recursively on all inside the vector. */
2813 for (j = 0; j < len; j++)
2815 if (last_ptr)
2816 copy_rtx_if_shared_1 (last_ptr);
2817 last_ptr = &XVECEXP (x, i, j);
2820 break;
2823 *orig1 = x;
2824 if (last_ptr)
2826 orig1 = last_ptr;
2827 goto repeat;
2829 return;
2832 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
2834 static void
2835 mark_used_flags (rtx x, int flag)
2837 int i, j;
2838 enum rtx_code code;
2839 const char *format_ptr;
2840 int length;
2842 /* Repeat is used to turn tail-recursion into iteration. */
2843 repeat:
2844 if (x == 0)
2845 return;
2847 code = GET_CODE (x);
2849 /* These types may be freely shared so we needn't do any resetting
2850 for them. */
2852 switch (code)
2854 case REG:
2855 case DEBUG_EXPR:
2856 case VALUE:
2857 case CONST_INT:
2858 case CONST_DOUBLE:
2859 case CONST_FIXED:
2860 case CONST_VECTOR:
2861 case SYMBOL_REF:
2862 case CODE_LABEL:
2863 case PC:
2864 case CC0:
2865 case RETURN:
2866 case SIMPLE_RETURN:
2867 return;
2869 case DEBUG_INSN:
2870 case INSN:
2871 case JUMP_INSN:
2872 case CALL_INSN:
2873 case NOTE:
2874 case LABEL_REF:
2875 case BARRIER:
2876 /* The chain of insns is not being copied. */
2877 return;
2879 default:
2880 break;
2883 RTX_FLAG (x, used) = flag;
2885 format_ptr = GET_RTX_FORMAT (code);
2886 length = GET_RTX_LENGTH (code);
2888 for (i = 0; i < length; i++)
2890 switch (*format_ptr++)
2892 case 'e':
2893 if (i == length-1)
2895 x = XEXP (x, i);
2896 goto repeat;
2898 mark_used_flags (XEXP (x, i), flag);
2899 break;
2901 case 'E':
2902 for (j = 0; j < XVECLEN (x, i); j++)
2903 mark_used_flags (XVECEXP (x, i, j), flag);
2904 break;
2909 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2910 to look for shared sub-parts. */
2912 void
2913 reset_used_flags (rtx x)
2915 mark_used_flags (x, 0);
2918 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2919 to look for shared sub-parts. */
2921 void
2922 set_used_flags (rtx x)
2924 mark_used_flags (x, 1);
2927 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2928 Return X or the rtx for the pseudo reg the value of X was copied into.
2929 OTHER must be valid as a SET_DEST. */
2932 make_safe_from (rtx x, rtx other)
2934 while (1)
2935 switch (GET_CODE (other))
2937 case SUBREG:
2938 other = SUBREG_REG (other);
2939 break;
2940 case STRICT_LOW_PART:
2941 case SIGN_EXTEND:
2942 case ZERO_EXTEND:
2943 other = XEXP (other, 0);
2944 break;
2945 default:
2946 goto done;
2948 done:
2949 if ((MEM_P (other)
2950 && ! CONSTANT_P (x)
2951 && !REG_P (x)
2952 && GET_CODE (x) != SUBREG)
2953 || (REG_P (other)
2954 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2955 || reg_mentioned_p (other, x))))
2957 rtx temp = gen_reg_rtx (GET_MODE (x));
2958 emit_move_insn (temp, x);
2959 return temp;
2961 return x;
2964 /* Emission of insns (adding them to the doubly-linked list). */
2966 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2969 get_last_insn_anywhere (void)
2971 struct sequence_stack *stack;
2972 if (get_last_insn ())
2973 return get_last_insn ();
2974 for (stack = seq_stack; stack; stack = stack->next)
2975 if (stack->last != 0)
2976 return stack->last;
2977 return 0;
2980 /* Return the first nonnote insn emitted in current sequence or current
2981 function. This routine looks inside SEQUENCEs. */
2984 get_first_nonnote_insn (void)
2986 rtx insn = get_insns ();
2988 if (insn)
2990 if (NOTE_P (insn))
2991 for (insn = next_insn (insn);
2992 insn && NOTE_P (insn);
2993 insn = next_insn (insn))
2994 continue;
2995 else
2997 if (NONJUMP_INSN_P (insn)
2998 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2999 insn = XVECEXP (PATTERN (insn), 0, 0);
3003 return insn;
3006 /* Return the last nonnote insn emitted in current sequence or current
3007 function. This routine looks inside SEQUENCEs. */
3010 get_last_nonnote_insn (void)
3012 rtx insn = get_last_insn ();
3014 if (insn)
3016 if (NOTE_P (insn))
3017 for (insn = previous_insn (insn);
3018 insn && NOTE_P (insn);
3019 insn = previous_insn (insn))
3020 continue;
3021 else
3023 if (NONJUMP_INSN_P (insn)
3024 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3025 insn = XVECEXP (PATTERN (insn), 0,
3026 XVECLEN (PATTERN (insn), 0) - 1);
3030 return insn;
3033 /* Return the number of actual (non-debug) insns emitted in this
3034 function. */
3037 get_max_insn_count (void)
3039 int n = cur_insn_uid;
3041 /* The table size must be stable across -g, to avoid codegen
3042 differences due to debug insns, and not be affected by
3043 -fmin-insn-uid, to avoid excessive table size and to simplify
3044 debugging of -fcompare-debug failures. */
3045 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3046 n -= cur_debug_insn_uid;
3047 else
3048 n -= MIN_NONDEBUG_INSN_UID;
3050 return n;
3054 /* Return the next insn. If it is a SEQUENCE, return the first insn
3055 of the sequence. */
3058 next_insn (rtx insn)
3060 if (insn)
3062 insn = NEXT_INSN (insn);
3063 if (insn && NONJUMP_INSN_P (insn)
3064 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3065 insn = XVECEXP (PATTERN (insn), 0, 0);
3068 return insn;
3071 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3072 of the sequence. */
3075 previous_insn (rtx insn)
3077 if (insn)
3079 insn = PREV_INSN (insn);
3080 if (insn && NONJUMP_INSN_P (insn)
3081 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3082 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
3085 return insn;
3088 /* Return the next insn after INSN that is not a NOTE. This routine does not
3089 look inside SEQUENCEs. */
3092 next_nonnote_insn (rtx insn)
3094 while (insn)
3096 insn = NEXT_INSN (insn);
3097 if (insn == 0 || !NOTE_P (insn))
3098 break;
3101 return insn;
3104 /* Return the next insn after INSN that is not a NOTE, but stop the
3105 search before we enter another basic block. This routine does not
3106 look inside SEQUENCEs. */
3109 next_nonnote_insn_bb (rtx insn)
3111 while (insn)
3113 insn = NEXT_INSN (insn);
3114 if (insn == 0 || !NOTE_P (insn))
3115 break;
3116 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3117 return NULL_RTX;
3120 return insn;
3123 /* Return the previous insn before INSN that is not a NOTE. This routine does
3124 not look inside SEQUENCEs. */
3127 prev_nonnote_insn (rtx insn)
3129 while (insn)
3131 insn = PREV_INSN (insn);
3132 if (insn == 0 || !NOTE_P (insn))
3133 break;
3136 return insn;
3139 /* Return the previous insn before INSN that is not a NOTE, but stop
3140 the search before we enter another basic block. This routine does
3141 not look inside SEQUENCEs. */
3144 prev_nonnote_insn_bb (rtx insn)
3146 while (insn)
3148 insn = PREV_INSN (insn);
3149 if (insn == 0 || !NOTE_P (insn))
3150 break;
3151 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3152 return NULL_RTX;
3155 return insn;
3158 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3159 routine does not look inside SEQUENCEs. */
3162 next_nondebug_insn (rtx insn)
3164 while (insn)
3166 insn = NEXT_INSN (insn);
3167 if (insn == 0 || !DEBUG_INSN_P (insn))
3168 break;
3171 return insn;
3174 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3175 This routine does not look inside SEQUENCEs. */
3178 prev_nondebug_insn (rtx insn)
3180 while (insn)
3182 insn = PREV_INSN (insn);
3183 if (insn == 0 || !DEBUG_INSN_P (insn))
3184 break;
3187 return insn;
3190 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3191 This routine does not look inside SEQUENCEs. */
3194 next_nonnote_nondebug_insn (rtx insn)
3196 while (insn)
3198 insn = NEXT_INSN (insn);
3199 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3200 break;
3203 return insn;
3206 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3207 This routine does not look inside SEQUENCEs. */
3210 prev_nonnote_nondebug_insn (rtx insn)
3212 while (insn)
3214 insn = PREV_INSN (insn);
3215 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3216 break;
3219 return insn;
3222 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3223 or 0, if there is none. This routine does not look inside
3224 SEQUENCEs. */
3227 next_real_insn (rtx insn)
3229 while (insn)
3231 insn = NEXT_INSN (insn);
3232 if (insn == 0 || INSN_P (insn))
3233 break;
3236 return insn;
3239 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3240 or 0, if there is none. This routine does not look inside
3241 SEQUENCEs. */
3244 prev_real_insn (rtx insn)
3246 while (insn)
3248 insn = PREV_INSN (insn);
3249 if (insn == 0 || INSN_P (insn))
3250 break;
3253 return insn;
3256 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3257 This routine does not look inside SEQUENCEs. */
3260 last_call_insn (void)
3262 rtx insn;
3264 for (insn = get_last_insn ();
3265 insn && !CALL_P (insn);
3266 insn = PREV_INSN (insn))
3269 return insn;
3272 /* Find the next insn after INSN that really does something. This routine
3273 does not look inside SEQUENCEs. After reload this also skips over
3274 standalone USE and CLOBBER insn. */
3277 active_insn_p (const_rtx insn)
3279 return (CALL_P (insn) || JUMP_P (insn)
3280 || (NONJUMP_INSN_P (insn)
3281 && (! reload_completed
3282 || (GET_CODE (PATTERN (insn)) != USE
3283 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3287 next_active_insn (rtx insn)
3289 while (insn)
3291 insn = NEXT_INSN (insn);
3292 if (insn == 0 || active_insn_p (insn))
3293 break;
3296 return insn;
3299 /* Find the last insn before INSN that really does something. This routine
3300 does not look inside SEQUENCEs. After reload this also skips over
3301 standalone USE and CLOBBER insn. */
3304 prev_active_insn (rtx insn)
3306 while (insn)
3308 insn = PREV_INSN (insn);
3309 if (insn == 0 || active_insn_p (insn))
3310 break;
3313 return insn;
3316 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3319 next_label (rtx insn)
3321 while (insn)
3323 insn = NEXT_INSN (insn);
3324 if (insn == 0 || LABEL_P (insn))
3325 break;
3328 return insn;
3331 /* Return the last label to mark the same position as LABEL. Return LABEL
3332 itself if it is null or any return rtx. */
3335 skip_consecutive_labels (rtx label)
3337 rtx insn;
3339 if (label && ANY_RETURN_P (label))
3340 return label;
3342 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3343 if (LABEL_P (insn))
3344 label = insn;
3346 return label;
3349 #ifdef HAVE_cc0
3350 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3351 and REG_CC_USER notes so we can find it. */
3353 void
3354 link_cc0_insns (rtx insn)
3356 rtx user = next_nonnote_insn (insn);
3358 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
3359 user = XVECEXP (PATTERN (user), 0, 0);
3361 add_reg_note (user, REG_CC_SETTER, insn);
3362 add_reg_note (insn, REG_CC_USER, user);
3365 /* Return the next insn that uses CC0 after INSN, which is assumed to
3366 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3367 applied to the result of this function should yield INSN).
3369 Normally, this is simply the next insn. However, if a REG_CC_USER note
3370 is present, it contains the insn that uses CC0.
3372 Return 0 if we can't find the insn. */
3375 next_cc0_user (rtx insn)
3377 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3379 if (note)
3380 return XEXP (note, 0);
3382 insn = next_nonnote_insn (insn);
3383 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3384 insn = XVECEXP (PATTERN (insn), 0, 0);
3386 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3387 return insn;
3389 return 0;
3392 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3393 note, it is the previous insn. */
3396 prev_cc0_setter (rtx insn)
3398 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3400 if (note)
3401 return XEXP (note, 0);
3403 insn = prev_nonnote_insn (insn);
3404 gcc_assert (sets_cc0_p (PATTERN (insn)));
3406 return insn;
3408 #endif
3410 #ifdef AUTO_INC_DEC
3411 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3413 static int
3414 find_auto_inc (rtx *xp, void *data)
3416 rtx x = *xp;
3417 rtx reg = (rtx) data;
3419 if (GET_RTX_CLASS (GET_CODE (x)) != RTX_AUTOINC)
3420 return 0;
3422 switch (GET_CODE (x))
3424 case PRE_DEC:
3425 case PRE_INC:
3426 case POST_DEC:
3427 case POST_INC:
3428 case PRE_MODIFY:
3429 case POST_MODIFY:
3430 if (rtx_equal_p (reg, XEXP (x, 0)))
3431 return 1;
3432 break;
3434 default:
3435 gcc_unreachable ();
3437 return -1;
3439 #endif
3441 /* Increment the label uses for all labels present in rtx. */
3443 static void
3444 mark_label_nuses (rtx x)
3446 enum rtx_code code;
3447 int i, j;
3448 const char *fmt;
3450 code = GET_CODE (x);
3451 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3452 LABEL_NUSES (XEXP (x, 0))++;
3454 fmt = GET_RTX_FORMAT (code);
3455 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3457 if (fmt[i] == 'e')
3458 mark_label_nuses (XEXP (x, i));
3459 else if (fmt[i] == 'E')
3460 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3461 mark_label_nuses (XVECEXP (x, i, j));
3466 /* Try splitting insns that can be split for better scheduling.
3467 PAT is the pattern which might split.
3468 TRIAL is the insn providing PAT.
3469 LAST is nonzero if we should return the last insn of the sequence produced.
3471 If this routine succeeds in splitting, it returns the first or last
3472 replacement insn depending on the value of LAST. Otherwise, it
3473 returns TRIAL. If the insn to be returned can be split, it will be. */
3476 try_split (rtx pat, rtx trial, int last)
3478 rtx before = PREV_INSN (trial);
3479 rtx after = NEXT_INSN (trial);
3480 int has_barrier = 0;
3481 rtx note, seq, tem;
3482 int probability;
3483 rtx insn_last, insn;
3484 int njumps = 0;
3486 /* We're not good at redistributing frame information. */
3487 if (RTX_FRAME_RELATED_P (trial))
3488 return trial;
3490 if (any_condjump_p (trial)
3491 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3492 split_branch_probability = INTVAL (XEXP (note, 0));
3493 probability = split_branch_probability;
3495 seq = split_insns (pat, trial);
3497 split_branch_probability = -1;
3499 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3500 We may need to handle this specially. */
3501 if (after && BARRIER_P (after))
3503 has_barrier = 1;
3504 after = NEXT_INSN (after);
3507 if (!seq)
3508 return trial;
3510 /* Avoid infinite loop if any insn of the result matches
3511 the original pattern. */
3512 insn_last = seq;
3513 while (1)
3515 if (INSN_P (insn_last)
3516 && rtx_equal_p (PATTERN (insn_last), pat))
3517 return trial;
3518 if (!NEXT_INSN (insn_last))
3519 break;
3520 insn_last = NEXT_INSN (insn_last);
3523 /* We will be adding the new sequence to the function. The splitters
3524 may have introduced invalid RTL sharing, so unshare the sequence now. */
3525 unshare_all_rtl_in_chain (seq);
3527 /* Mark labels. */
3528 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3530 if (JUMP_P (insn))
3532 mark_jump_label (PATTERN (insn), insn, 0);
3533 njumps++;
3534 if (probability != -1
3535 && any_condjump_p (insn)
3536 && !find_reg_note (insn, REG_BR_PROB, 0))
3538 /* We can preserve the REG_BR_PROB notes only if exactly
3539 one jump is created, otherwise the machine description
3540 is responsible for this step using
3541 split_branch_probability variable. */
3542 gcc_assert (njumps == 1);
3543 add_reg_note (insn, REG_BR_PROB, GEN_INT (probability));
3548 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3549 in SEQ and copy any additional information across. */
3550 if (CALL_P (trial))
3552 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3553 if (CALL_P (insn))
3555 rtx next, *p;
3557 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3558 target may have explicitly specified. */
3559 p = &CALL_INSN_FUNCTION_USAGE (insn);
3560 while (*p)
3561 p = &XEXP (*p, 1);
3562 *p = CALL_INSN_FUNCTION_USAGE (trial);
3564 /* If the old call was a sibling call, the new one must
3565 be too. */
3566 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3568 /* If the new call is the last instruction in the sequence,
3569 it will effectively replace the old call in-situ. Otherwise
3570 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3571 so that it comes immediately after the new call. */
3572 if (NEXT_INSN (insn))
3573 for (next = NEXT_INSN (trial);
3574 next && NOTE_P (next);
3575 next = NEXT_INSN (next))
3576 if (NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
3578 remove_insn (next);
3579 add_insn_after (next, insn, NULL);
3580 break;
3585 /* Copy notes, particularly those related to the CFG. */
3586 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3588 switch (REG_NOTE_KIND (note))
3590 case REG_EH_REGION:
3591 copy_reg_eh_region_note_backward (note, insn_last, NULL);
3592 break;
3594 case REG_NORETURN:
3595 case REG_SETJMP:
3596 case REG_TM:
3597 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3599 if (CALL_P (insn))
3600 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3602 break;
3604 case REG_NON_LOCAL_GOTO:
3605 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3607 if (JUMP_P (insn))
3608 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3610 break;
3612 #ifdef AUTO_INC_DEC
3613 case REG_INC:
3614 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3616 rtx reg = XEXP (note, 0);
3617 if (!FIND_REG_INC_NOTE (insn, reg)
3618 && for_each_rtx (&PATTERN (insn), find_auto_inc, reg) > 0)
3619 add_reg_note (insn, REG_INC, reg);
3621 break;
3622 #endif
3624 case REG_ARGS_SIZE:
3625 fixup_args_size_notes (NULL_RTX, insn_last, INTVAL (XEXP (note, 0)));
3626 break;
3628 default:
3629 break;
3633 /* If there are LABELS inside the split insns increment the
3634 usage count so we don't delete the label. */
3635 if (INSN_P (trial))
3637 insn = insn_last;
3638 while (insn != NULL_RTX)
3640 /* JUMP_P insns have already been "marked" above. */
3641 if (NONJUMP_INSN_P (insn))
3642 mark_label_nuses (PATTERN (insn));
3644 insn = PREV_INSN (insn);
3648 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3650 delete_insn (trial);
3651 if (has_barrier)
3652 emit_barrier_after (tem);
3654 /* Recursively call try_split for each new insn created; by the
3655 time control returns here that insn will be fully split, so
3656 set LAST and continue from the insn after the one returned.
3657 We can't use next_active_insn here since AFTER may be a note.
3658 Ignore deleted insns, which can be occur if not optimizing. */
3659 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3660 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3661 tem = try_split (PATTERN (tem), tem, 1);
3663 /* Return either the first or the last insn, depending on which was
3664 requested. */
3665 return last
3666 ? (after ? PREV_INSN (after) : get_last_insn ())
3667 : NEXT_INSN (before);
3670 /* Make and return an INSN rtx, initializing all its slots.
3671 Store PATTERN in the pattern slots. */
3674 make_insn_raw (rtx pattern)
3676 rtx insn;
3678 insn = rtx_alloc (INSN);
3680 INSN_UID (insn) = cur_insn_uid++;
3681 PATTERN (insn) = pattern;
3682 INSN_CODE (insn) = -1;
3683 REG_NOTES (insn) = NULL;
3684 INSN_LOCATOR (insn) = curr_insn_locator ();
3685 BLOCK_FOR_INSN (insn) = NULL;
3687 #ifdef ENABLE_RTL_CHECKING
3688 if (insn
3689 && INSN_P (insn)
3690 && (returnjump_p (insn)
3691 || (GET_CODE (insn) == SET
3692 && SET_DEST (insn) == pc_rtx)))
3694 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3695 debug_rtx (insn);
3697 #endif
3699 return insn;
3702 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3705 make_debug_insn_raw (rtx pattern)
3707 rtx insn;
3709 insn = rtx_alloc (DEBUG_INSN);
3710 INSN_UID (insn) = cur_debug_insn_uid++;
3711 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3712 INSN_UID (insn) = cur_insn_uid++;
3714 PATTERN (insn) = pattern;
3715 INSN_CODE (insn) = -1;
3716 REG_NOTES (insn) = NULL;
3717 INSN_LOCATOR (insn) = curr_insn_locator ();
3718 BLOCK_FOR_INSN (insn) = NULL;
3720 return insn;
3723 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3726 make_jump_insn_raw (rtx pattern)
3728 rtx insn;
3730 insn = rtx_alloc (JUMP_INSN);
3731 INSN_UID (insn) = cur_insn_uid++;
3733 PATTERN (insn) = pattern;
3734 INSN_CODE (insn) = -1;
3735 REG_NOTES (insn) = NULL;
3736 JUMP_LABEL (insn) = NULL;
3737 INSN_LOCATOR (insn) = curr_insn_locator ();
3738 BLOCK_FOR_INSN (insn) = NULL;
3740 return insn;
3743 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3745 static rtx
3746 make_call_insn_raw (rtx pattern)
3748 rtx insn;
3750 insn = rtx_alloc (CALL_INSN);
3751 INSN_UID (insn) = cur_insn_uid++;
3753 PATTERN (insn) = pattern;
3754 INSN_CODE (insn) = -1;
3755 REG_NOTES (insn) = NULL;
3756 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3757 INSN_LOCATOR (insn) = curr_insn_locator ();
3758 BLOCK_FOR_INSN (insn) = NULL;
3760 return insn;
3763 /* Add INSN to the end of the doubly-linked list.
3764 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3766 void
3767 add_insn (rtx insn)
3769 PREV_INSN (insn) = get_last_insn();
3770 NEXT_INSN (insn) = 0;
3772 if (NULL != get_last_insn())
3773 NEXT_INSN (get_last_insn ()) = insn;
3775 if (NULL == get_insns ())
3776 set_first_insn (insn);
3778 set_last_insn (insn);
3781 /* Add INSN into the doubly-linked list after insn AFTER. This and
3782 the next should be the only functions called to insert an insn once
3783 delay slots have been filled since only they know how to update a
3784 SEQUENCE. */
3786 void
3787 add_insn_after (rtx insn, rtx after, basic_block bb)
3789 rtx next = NEXT_INSN (after);
3791 gcc_assert (!optimize || !INSN_DELETED_P (after));
3793 NEXT_INSN (insn) = next;
3794 PREV_INSN (insn) = after;
3796 if (next)
3798 PREV_INSN (next) = insn;
3799 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3800 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3802 else if (get_last_insn () == after)
3803 set_last_insn (insn);
3804 else
3806 struct sequence_stack *stack = seq_stack;
3807 /* Scan all pending sequences too. */
3808 for (; stack; stack = stack->next)
3809 if (after == stack->last)
3811 stack->last = insn;
3812 break;
3815 gcc_assert (stack);
3818 if (!BARRIER_P (after)
3819 && !BARRIER_P (insn)
3820 && (bb = BLOCK_FOR_INSN (after)))
3822 set_block_for_insn (insn, bb);
3823 if (INSN_P (insn))
3824 df_insn_rescan (insn);
3825 /* Should not happen as first in the BB is always
3826 either NOTE or LABEL. */
3827 if (BB_END (bb) == after
3828 /* Avoid clobbering of structure when creating new BB. */
3829 && !BARRIER_P (insn)
3830 && !NOTE_INSN_BASIC_BLOCK_P (insn))
3831 BB_END (bb) = insn;
3834 NEXT_INSN (after) = insn;
3835 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3837 rtx sequence = PATTERN (after);
3838 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3842 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3843 the previous should be the only functions called to insert an insn
3844 once delay slots have been filled since only they know how to
3845 update a SEQUENCE. If BB is NULL, an attempt is made to infer the
3846 bb from before. */
3848 void
3849 add_insn_before (rtx insn, rtx before, basic_block bb)
3851 rtx prev = PREV_INSN (before);
3853 gcc_assert (!optimize || !INSN_DELETED_P (before));
3855 PREV_INSN (insn) = prev;
3856 NEXT_INSN (insn) = before;
3858 if (prev)
3860 NEXT_INSN (prev) = insn;
3861 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3863 rtx sequence = PATTERN (prev);
3864 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3867 else if (get_insns () == before)
3868 set_first_insn (insn);
3869 else
3871 struct sequence_stack *stack = seq_stack;
3872 /* Scan all pending sequences too. */
3873 for (; stack; stack = stack->next)
3874 if (before == stack->first)
3876 stack->first = insn;
3877 break;
3880 gcc_assert (stack);
3883 if (!bb
3884 && !BARRIER_P (before)
3885 && !BARRIER_P (insn))
3886 bb = BLOCK_FOR_INSN (before);
3888 if (bb)
3890 set_block_for_insn (insn, bb);
3891 if (INSN_P (insn))
3892 df_insn_rescan (insn);
3893 /* Should not happen as first in the BB is always either NOTE or
3894 LABEL. */
3895 gcc_assert (BB_HEAD (bb) != insn
3896 /* Avoid clobbering of structure when creating new BB. */
3897 || BARRIER_P (insn)
3898 || NOTE_INSN_BASIC_BLOCK_P (insn));
3901 PREV_INSN (before) = insn;
3902 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3903 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3907 /* Replace insn with an deleted instruction note. */
3909 void
3910 set_insn_deleted (rtx insn)
3912 df_insn_delete (BLOCK_FOR_INSN (insn), INSN_UID (insn));
3913 PUT_CODE (insn, NOTE);
3914 NOTE_KIND (insn) = NOTE_INSN_DELETED;
3918 /* Remove an insn from its doubly-linked list. This function knows how
3919 to handle sequences. */
3920 void
3921 remove_insn (rtx insn)
3923 rtx next = NEXT_INSN (insn);
3924 rtx prev = PREV_INSN (insn);
3925 basic_block bb;
3927 /* Later in the code, the block will be marked dirty. */
3928 df_insn_delete (NULL, INSN_UID (insn));
3930 if (prev)
3932 NEXT_INSN (prev) = next;
3933 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3935 rtx sequence = PATTERN (prev);
3936 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3939 else if (get_insns () == insn)
3941 if (next)
3942 PREV_INSN (next) = NULL;
3943 set_first_insn (next);
3945 else
3947 struct sequence_stack *stack = seq_stack;
3948 /* Scan all pending sequences too. */
3949 for (; stack; stack = stack->next)
3950 if (insn == stack->first)
3952 stack->first = next;
3953 break;
3956 gcc_assert (stack);
3959 if (next)
3961 PREV_INSN (next) = prev;
3962 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3963 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3965 else if (get_last_insn () == insn)
3966 set_last_insn (prev);
3967 else
3969 struct sequence_stack *stack = seq_stack;
3970 /* Scan all pending sequences too. */
3971 for (; stack; stack = stack->next)
3972 if (insn == stack->last)
3974 stack->last = prev;
3975 break;
3978 gcc_assert (stack);
3980 if (!BARRIER_P (insn)
3981 && (bb = BLOCK_FOR_INSN (insn)))
3983 if (NONDEBUG_INSN_P (insn))
3984 df_set_bb_dirty (bb);
3985 if (BB_HEAD (bb) == insn)
3987 /* Never ever delete the basic block note without deleting whole
3988 basic block. */
3989 gcc_assert (!NOTE_P (insn));
3990 BB_HEAD (bb) = next;
3992 if (BB_END (bb) == insn)
3993 BB_END (bb) = prev;
3997 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3999 void
4000 add_function_usage_to (rtx call_insn, rtx call_fusage)
4002 gcc_assert (call_insn && CALL_P (call_insn));
4004 /* Put the register usage information on the CALL. If there is already
4005 some usage information, put ours at the end. */
4006 if (CALL_INSN_FUNCTION_USAGE (call_insn))
4008 rtx link;
4010 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
4011 link = XEXP (link, 1))
4014 XEXP (link, 1) = call_fusage;
4016 else
4017 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
4020 /* Delete all insns made since FROM.
4021 FROM becomes the new last instruction. */
4023 void
4024 delete_insns_since (rtx from)
4026 if (from == 0)
4027 set_first_insn (0);
4028 else
4029 NEXT_INSN (from) = 0;
4030 set_last_insn (from);
4033 /* This function is deprecated, please use sequences instead.
4035 Move a consecutive bunch of insns to a different place in the chain.
4036 The insns to be moved are those between FROM and TO.
4037 They are moved to a new position after the insn AFTER.
4038 AFTER must not be FROM or TO or any insn in between.
4040 This function does not know about SEQUENCEs and hence should not be
4041 called after delay-slot filling has been done. */
4043 void
4044 reorder_insns_nobb (rtx from, rtx to, rtx after)
4046 #ifdef ENABLE_CHECKING
4047 rtx x;
4048 for (x = from; x != to; x = NEXT_INSN (x))
4049 gcc_assert (after != x);
4050 gcc_assert (after != to);
4051 #endif
4053 /* Splice this bunch out of where it is now. */
4054 if (PREV_INSN (from))
4055 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
4056 if (NEXT_INSN (to))
4057 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
4058 if (get_last_insn () == to)
4059 set_last_insn (PREV_INSN (from));
4060 if (get_insns () == from)
4061 set_first_insn (NEXT_INSN (to));
4063 /* Make the new neighbors point to it and it to them. */
4064 if (NEXT_INSN (after))
4065 PREV_INSN (NEXT_INSN (after)) = to;
4067 NEXT_INSN (to) = NEXT_INSN (after);
4068 PREV_INSN (from) = after;
4069 NEXT_INSN (after) = from;
4070 if (after == get_last_insn())
4071 set_last_insn (to);
4074 /* Same as function above, but take care to update BB boundaries. */
4075 void
4076 reorder_insns (rtx from, rtx to, rtx after)
4078 rtx prev = PREV_INSN (from);
4079 basic_block bb, bb2;
4081 reorder_insns_nobb (from, to, after);
4083 if (!BARRIER_P (after)
4084 && (bb = BLOCK_FOR_INSN (after)))
4086 rtx x;
4087 df_set_bb_dirty (bb);
4089 if (!BARRIER_P (from)
4090 && (bb2 = BLOCK_FOR_INSN (from)))
4092 if (BB_END (bb2) == to)
4093 BB_END (bb2) = prev;
4094 df_set_bb_dirty (bb2);
4097 if (BB_END (bb) == after)
4098 BB_END (bb) = to;
4100 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
4101 if (!BARRIER_P (x))
4102 df_insn_change_bb (x, bb);
4107 /* Emit insn(s) of given code and pattern
4108 at a specified place within the doubly-linked list.
4110 All of the emit_foo global entry points accept an object
4111 X which is either an insn list or a PATTERN of a single
4112 instruction.
4114 There are thus a few canonical ways to generate code and
4115 emit it at a specific place in the instruction stream. For
4116 example, consider the instruction named SPOT and the fact that
4117 we would like to emit some instructions before SPOT. We might
4118 do it like this:
4120 start_sequence ();
4121 ... emit the new instructions ...
4122 insns_head = get_insns ();
4123 end_sequence ();
4125 emit_insn_before (insns_head, SPOT);
4127 It used to be common to generate SEQUENCE rtl instead, but that
4128 is a relic of the past which no longer occurs. The reason is that
4129 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4130 generated would almost certainly die right after it was created. */
4132 static rtx
4133 emit_pattern_before_noloc (rtx x, rtx before, rtx last, basic_block bb,
4134 rtx (*make_raw) (rtx))
4136 rtx insn;
4138 gcc_assert (before);
4140 if (x == NULL_RTX)
4141 return last;
4143 switch (GET_CODE (x))
4145 case DEBUG_INSN:
4146 case INSN:
4147 case JUMP_INSN:
4148 case CALL_INSN:
4149 case CODE_LABEL:
4150 case BARRIER:
4151 case NOTE:
4152 insn = x;
4153 while (insn)
4155 rtx next = NEXT_INSN (insn);
4156 add_insn_before (insn, before, bb);
4157 last = insn;
4158 insn = next;
4160 break;
4162 #ifdef ENABLE_RTL_CHECKING
4163 case SEQUENCE:
4164 gcc_unreachable ();
4165 break;
4166 #endif
4168 default:
4169 last = (*make_raw) (x);
4170 add_insn_before (last, before, bb);
4171 break;
4174 return last;
4177 /* Make X be output before the instruction BEFORE. */
4180 emit_insn_before_noloc (rtx x, rtx before, basic_block bb)
4182 return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw);
4185 /* Make an instruction with body X and code JUMP_INSN
4186 and output it before the instruction BEFORE. */
4189 emit_jump_insn_before_noloc (rtx x, rtx before)
4191 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4192 make_jump_insn_raw);
4195 /* Make an instruction with body X and code CALL_INSN
4196 and output it before the instruction BEFORE. */
4199 emit_call_insn_before_noloc (rtx x, rtx before)
4201 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4202 make_call_insn_raw);
4205 /* Make an instruction with body X and code DEBUG_INSN
4206 and output it before the instruction BEFORE. */
4209 emit_debug_insn_before_noloc (rtx x, rtx before)
4211 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4212 make_debug_insn_raw);
4215 /* Make an insn of code BARRIER
4216 and output it before the insn BEFORE. */
4219 emit_barrier_before (rtx before)
4221 rtx insn = rtx_alloc (BARRIER);
4223 INSN_UID (insn) = cur_insn_uid++;
4225 add_insn_before (insn, before, NULL);
4226 return insn;
4229 /* Emit the label LABEL before the insn BEFORE. */
4232 emit_label_before (rtx label, rtx before)
4234 /* This can be called twice for the same label as a result of the
4235 confusion that follows a syntax error! So make it harmless. */
4236 if (INSN_UID (label) == 0)
4238 INSN_UID (label) = cur_insn_uid++;
4239 add_insn_before (label, before, NULL);
4242 return label;
4245 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4248 emit_note_before (enum insn_note subtype, rtx before)
4250 rtx note = rtx_alloc (NOTE);
4251 INSN_UID (note) = cur_insn_uid++;
4252 NOTE_KIND (note) = subtype;
4253 BLOCK_FOR_INSN (note) = NULL;
4254 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4256 add_insn_before (note, before, NULL);
4257 return note;
4260 /* Helper for emit_insn_after, handles lists of instructions
4261 efficiently. */
4263 static rtx
4264 emit_insn_after_1 (rtx first, rtx after, basic_block bb)
4266 rtx last;
4267 rtx after_after;
4268 if (!bb && !BARRIER_P (after))
4269 bb = BLOCK_FOR_INSN (after);
4271 if (bb)
4273 df_set_bb_dirty (bb);
4274 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4275 if (!BARRIER_P (last))
4277 set_block_for_insn (last, bb);
4278 df_insn_rescan (last);
4280 if (!BARRIER_P (last))
4282 set_block_for_insn (last, bb);
4283 df_insn_rescan (last);
4285 if (BB_END (bb) == after)
4286 BB_END (bb) = last;
4288 else
4289 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4290 continue;
4292 after_after = NEXT_INSN (after);
4294 NEXT_INSN (after) = first;
4295 PREV_INSN (first) = after;
4296 NEXT_INSN (last) = after_after;
4297 if (after_after)
4298 PREV_INSN (after_after) = last;
4300 if (after == get_last_insn())
4301 set_last_insn (last);
4303 return last;
4306 static rtx
4307 emit_pattern_after_noloc (rtx x, rtx after, basic_block bb,
4308 rtx (*make_raw)(rtx))
4310 rtx last = after;
4312 gcc_assert (after);
4314 if (x == NULL_RTX)
4315 return last;
4317 switch (GET_CODE (x))
4319 case DEBUG_INSN:
4320 case INSN:
4321 case JUMP_INSN:
4322 case CALL_INSN:
4323 case CODE_LABEL:
4324 case BARRIER:
4325 case NOTE:
4326 last = emit_insn_after_1 (x, after, bb);
4327 break;
4329 #ifdef ENABLE_RTL_CHECKING
4330 case SEQUENCE:
4331 gcc_unreachable ();
4332 break;
4333 #endif
4335 default:
4336 last = (*make_raw) (x);
4337 add_insn_after (last, after, bb);
4338 break;
4341 return last;
4344 /* Make X be output after the insn AFTER and set the BB of insn. If
4345 BB is NULL, an attempt is made to infer the BB from AFTER. */
4348 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4350 return emit_pattern_after_noloc (x, after, bb, make_insn_raw);
4354 /* Make an insn of code JUMP_INSN with body X
4355 and output it after the insn AFTER. */
4358 emit_jump_insn_after_noloc (rtx x, rtx after)
4360 return emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw);
4363 /* Make an instruction with body X and code CALL_INSN
4364 and output it after the instruction AFTER. */
4367 emit_call_insn_after_noloc (rtx x, rtx after)
4369 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw);
4372 /* Make an instruction with body X and code CALL_INSN
4373 and output it after the instruction AFTER. */
4376 emit_debug_insn_after_noloc (rtx x, rtx after)
4378 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw);
4381 /* Make an insn of code BARRIER
4382 and output it after the insn AFTER. */
4385 emit_barrier_after (rtx after)
4387 rtx insn = rtx_alloc (BARRIER);
4389 INSN_UID (insn) = cur_insn_uid++;
4391 add_insn_after (insn, after, NULL);
4392 return insn;
4395 /* Emit the label LABEL after the insn AFTER. */
4398 emit_label_after (rtx label, rtx after)
4400 /* This can be called twice for the same label
4401 as a result of the confusion that follows a syntax error!
4402 So make it harmless. */
4403 if (INSN_UID (label) == 0)
4405 INSN_UID (label) = cur_insn_uid++;
4406 add_insn_after (label, after, NULL);
4409 return label;
4412 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4415 emit_note_after (enum insn_note subtype, rtx after)
4417 rtx note = rtx_alloc (NOTE);
4418 INSN_UID (note) = cur_insn_uid++;
4419 NOTE_KIND (note) = subtype;
4420 BLOCK_FOR_INSN (note) = NULL;
4421 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4422 add_insn_after (note, after, NULL);
4423 return note;
4426 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4427 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4429 static rtx
4430 emit_pattern_after_setloc (rtx pattern, rtx after, int loc,
4431 rtx (*make_raw) (rtx))
4433 rtx last = emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4435 if (pattern == NULL_RTX || !loc)
4436 return last;
4438 after = NEXT_INSN (after);
4439 while (1)
4441 if (active_insn_p (after) && !INSN_LOCATOR (after))
4442 INSN_LOCATOR (after) = loc;
4443 if (after == last)
4444 break;
4445 after = NEXT_INSN (after);
4447 return last;
4450 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4451 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4452 any DEBUG_INSNs. */
4454 static rtx
4455 emit_pattern_after (rtx pattern, rtx after, bool skip_debug_insns,
4456 rtx (*make_raw) (rtx))
4458 rtx prev = after;
4460 if (skip_debug_insns)
4461 while (DEBUG_INSN_P (prev))
4462 prev = PREV_INSN (prev);
4464 if (INSN_P (prev))
4465 return emit_pattern_after_setloc (pattern, after, INSN_LOCATOR (prev),
4466 make_raw);
4467 else
4468 return emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4471 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to LOC. */
4473 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4475 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw);
4478 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4480 emit_insn_after (rtx pattern, rtx after)
4482 return emit_pattern_after (pattern, after, true, make_insn_raw);
4485 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to LOC. */
4487 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4489 return emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw);
4492 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4494 emit_jump_insn_after (rtx pattern, rtx after)
4496 return emit_pattern_after (pattern, after, true, make_jump_insn_raw);
4499 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to LOC. */
4501 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4503 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw);
4506 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4508 emit_call_insn_after (rtx pattern, rtx after)
4510 return emit_pattern_after (pattern, after, true, make_call_insn_raw);
4513 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATOR according to LOC. */
4515 emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4517 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw);
4520 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4522 emit_debug_insn_after (rtx pattern, rtx after)
4524 return emit_pattern_after (pattern, after, false, make_debug_insn_raw);
4527 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4528 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4529 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4530 CALL_INSN, etc. */
4532 static rtx
4533 emit_pattern_before_setloc (rtx pattern, rtx before, int loc, bool insnp,
4534 rtx (*make_raw) (rtx))
4536 rtx first = PREV_INSN (before);
4537 rtx last = emit_pattern_before_noloc (pattern, before,
4538 insnp ? before : NULL_RTX,
4539 NULL, make_raw);
4541 if (pattern == NULL_RTX || !loc)
4542 return last;
4544 if (!first)
4545 first = get_insns ();
4546 else
4547 first = NEXT_INSN (first);
4548 while (1)
4550 if (active_insn_p (first) && !INSN_LOCATOR (first))
4551 INSN_LOCATOR (first) = loc;
4552 if (first == last)
4553 break;
4554 first = NEXT_INSN (first);
4556 return last;
4559 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4560 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4561 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4562 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4564 static rtx
4565 emit_pattern_before (rtx pattern, rtx before, bool skip_debug_insns,
4566 bool insnp, rtx (*make_raw) (rtx))
4568 rtx next = before;
4570 if (skip_debug_insns)
4571 while (DEBUG_INSN_P (next))
4572 next = PREV_INSN (next);
4574 if (INSN_P (next))
4575 return emit_pattern_before_setloc (pattern, before, INSN_LOCATOR (next),
4576 insnp, make_raw);
4577 else
4578 return emit_pattern_before_noloc (pattern, before,
4579 insnp ? before : NULL_RTX,
4580 NULL, make_raw);
4583 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to LOC. */
4585 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4587 return emit_pattern_before_setloc (pattern, before, loc, true,
4588 make_insn_raw);
4591 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4593 emit_insn_before (rtx pattern, rtx before)
4595 return emit_pattern_before (pattern, before, true, true, make_insn_raw);
4598 /* like emit_insn_before_noloc, but set INSN_LOCATOR according to LOC. */
4600 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4602 return emit_pattern_before_setloc (pattern, before, loc, false,
4603 make_jump_insn_raw);
4606 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4608 emit_jump_insn_before (rtx pattern, rtx before)
4610 return emit_pattern_before (pattern, before, true, false,
4611 make_jump_insn_raw);
4614 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to LOC. */
4616 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4618 return emit_pattern_before_setloc (pattern, before, loc, false,
4619 make_call_insn_raw);
4622 /* Like emit_call_insn_before_noloc,
4623 but set insn_locator according to BEFORE. */
4625 emit_call_insn_before (rtx pattern, rtx before)
4627 return emit_pattern_before (pattern, before, true, false,
4628 make_call_insn_raw);
4631 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to LOC. */
4633 emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
4635 return emit_pattern_before_setloc (pattern, before, loc, false,
4636 make_debug_insn_raw);
4639 /* Like emit_debug_insn_before_noloc,
4640 but set insn_locator according to BEFORE. */
4642 emit_debug_insn_before (rtx pattern, rtx before)
4644 return emit_pattern_before (pattern, before, false, false,
4645 make_debug_insn_raw);
4648 /* Take X and emit it at the end of the doubly-linked
4649 INSN list.
4651 Returns the last insn emitted. */
4654 emit_insn (rtx x)
4656 rtx last = get_last_insn();
4657 rtx insn;
4659 if (x == NULL_RTX)
4660 return last;
4662 switch (GET_CODE (x))
4664 case DEBUG_INSN:
4665 case INSN:
4666 case JUMP_INSN:
4667 case CALL_INSN:
4668 case CODE_LABEL:
4669 case BARRIER:
4670 case NOTE:
4671 insn = x;
4672 while (insn)
4674 rtx next = NEXT_INSN (insn);
4675 add_insn (insn);
4676 last = insn;
4677 insn = next;
4679 break;
4681 #ifdef ENABLE_RTL_CHECKING
4682 case SEQUENCE:
4683 gcc_unreachable ();
4684 break;
4685 #endif
4687 default:
4688 last = make_insn_raw (x);
4689 add_insn (last);
4690 break;
4693 return last;
4696 /* Make an insn of code DEBUG_INSN with pattern X
4697 and add it to the end of the doubly-linked list. */
4700 emit_debug_insn (rtx x)
4702 rtx last = get_last_insn();
4703 rtx insn;
4705 if (x == NULL_RTX)
4706 return last;
4708 switch (GET_CODE (x))
4710 case DEBUG_INSN:
4711 case INSN:
4712 case JUMP_INSN:
4713 case CALL_INSN:
4714 case CODE_LABEL:
4715 case BARRIER:
4716 case NOTE:
4717 insn = x;
4718 while (insn)
4720 rtx next = NEXT_INSN (insn);
4721 add_insn (insn);
4722 last = insn;
4723 insn = next;
4725 break;
4727 #ifdef ENABLE_RTL_CHECKING
4728 case SEQUENCE:
4729 gcc_unreachable ();
4730 break;
4731 #endif
4733 default:
4734 last = make_debug_insn_raw (x);
4735 add_insn (last);
4736 break;
4739 return last;
4742 /* Make an insn of code JUMP_INSN with pattern X
4743 and add it to the end of the doubly-linked list. */
4746 emit_jump_insn (rtx x)
4748 rtx last = NULL_RTX, insn;
4750 switch (GET_CODE (x))
4752 case DEBUG_INSN:
4753 case INSN:
4754 case JUMP_INSN:
4755 case CALL_INSN:
4756 case CODE_LABEL:
4757 case BARRIER:
4758 case NOTE:
4759 insn = x;
4760 while (insn)
4762 rtx next = NEXT_INSN (insn);
4763 add_insn (insn);
4764 last = insn;
4765 insn = next;
4767 break;
4769 #ifdef ENABLE_RTL_CHECKING
4770 case SEQUENCE:
4771 gcc_unreachable ();
4772 break;
4773 #endif
4775 default:
4776 last = make_jump_insn_raw (x);
4777 add_insn (last);
4778 break;
4781 return last;
4784 /* Make an insn of code CALL_INSN with pattern X
4785 and add it to the end of the doubly-linked list. */
4788 emit_call_insn (rtx x)
4790 rtx insn;
4792 switch (GET_CODE (x))
4794 case DEBUG_INSN:
4795 case INSN:
4796 case JUMP_INSN:
4797 case CALL_INSN:
4798 case CODE_LABEL:
4799 case BARRIER:
4800 case NOTE:
4801 insn = emit_insn (x);
4802 break;
4804 #ifdef ENABLE_RTL_CHECKING
4805 case SEQUENCE:
4806 gcc_unreachable ();
4807 break;
4808 #endif
4810 default:
4811 insn = make_call_insn_raw (x);
4812 add_insn (insn);
4813 break;
4816 return insn;
4819 /* Add the label LABEL to the end of the doubly-linked list. */
4822 emit_label (rtx label)
4824 /* This can be called twice for the same label
4825 as a result of the confusion that follows a syntax error!
4826 So make it harmless. */
4827 if (INSN_UID (label) == 0)
4829 INSN_UID (label) = cur_insn_uid++;
4830 add_insn (label);
4832 return label;
4835 /* Make an insn of code BARRIER
4836 and add it to the end of the doubly-linked list. */
4839 emit_barrier (void)
4841 rtx barrier = rtx_alloc (BARRIER);
4842 INSN_UID (barrier) = cur_insn_uid++;
4843 add_insn (barrier);
4844 return barrier;
4847 /* Emit a copy of note ORIG. */
4850 emit_note_copy (rtx orig)
4852 rtx note;
4854 note = rtx_alloc (NOTE);
4856 INSN_UID (note) = cur_insn_uid++;
4857 NOTE_DATA (note) = NOTE_DATA (orig);
4858 NOTE_KIND (note) = NOTE_KIND (orig);
4859 BLOCK_FOR_INSN (note) = NULL;
4860 add_insn (note);
4862 return note;
4865 /* Make an insn of code NOTE or type NOTE_NO
4866 and add it to the end of the doubly-linked list. */
4869 emit_note (enum insn_note kind)
4871 rtx note;
4873 note = rtx_alloc (NOTE);
4874 INSN_UID (note) = cur_insn_uid++;
4875 NOTE_KIND (note) = kind;
4876 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4877 BLOCK_FOR_INSN (note) = NULL;
4878 add_insn (note);
4879 return note;
4882 /* Emit a clobber of lvalue X. */
4885 emit_clobber (rtx x)
4887 /* CONCATs should not appear in the insn stream. */
4888 if (GET_CODE (x) == CONCAT)
4890 emit_clobber (XEXP (x, 0));
4891 return emit_clobber (XEXP (x, 1));
4893 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
4896 /* Return a sequence of insns to clobber lvalue X. */
4899 gen_clobber (rtx x)
4901 rtx seq;
4903 start_sequence ();
4904 emit_clobber (x);
4905 seq = get_insns ();
4906 end_sequence ();
4907 return seq;
4910 /* Emit a use of rvalue X. */
4913 emit_use (rtx x)
4915 /* CONCATs should not appear in the insn stream. */
4916 if (GET_CODE (x) == CONCAT)
4918 emit_use (XEXP (x, 0));
4919 return emit_use (XEXP (x, 1));
4921 return emit_insn (gen_rtx_USE (VOIDmode, x));
4924 /* Return a sequence of insns to use rvalue X. */
4927 gen_use (rtx x)
4929 rtx seq;
4931 start_sequence ();
4932 emit_use (x);
4933 seq = get_insns ();
4934 end_sequence ();
4935 return seq;
4938 /* Cause next statement to emit a line note even if the line number
4939 has not changed. */
4941 void
4942 force_next_line_note (void)
4944 last_location = -1;
4947 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4948 note of this type already exists, remove it first. */
4951 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4953 rtx note = find_reg_note (insn, kind, NULL_RTX);
4955 switch (kind)
4957 case REG_EQUAL:
4958 case REG_EQUIV:
4959 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4960 has multiple sets (some callers assume single_set
4961 means the insn only has one set, when in fact it
4962 means the insn only has one * useful * set). */
4963 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4965 gcc_assert (!note);
4966 return NULL_RTX;
4969 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4970 It serves no useful purpose and breaks eliminate_regs. */
4971 if (GET_CODE (datum) == ASM_OPERANDS)
4972 return NULL_RTX;
4974 if (note)
4976 XEXP (note, 0) = datum;
4977 df_notes_rescan (insn);
4978 return note;
4980 break;
4982 default:
4983 if (note)
4985 XEXP (note, 0) = datum;
4986 return note;
4988 break;
4991 add_reg_note (insn, kind, datum);
4993 switch (kind)
4995 case REG_EQUAL:
4996 case REG_EQUIV:
4997 df_notes_rescan (insn);
4998 break;
4999 default:
5000 break;
5003 return REG_NOTES (insn);
5006 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5008 set_dst_reg_note (rtx insn, enum reg_note kind, rtx datum, rtx dst)
5010 rtx set = single_set (insn);
5012 if (set && SET_DEST (set) == dst)
5013 return set_unique_reg_note (insn, kind, datum);
5014 return NULL_RTX;
5017 /* Return an indication of which type of insn should have X as a body.
5018 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
5020 static enum rtx_code
5021 classify_insn (rtx x)
5023 if (LABEL_P (x))
5024 return CODE_LABEL;
5025 if (GET_CODE (x) == CALL)
5026 return CALL_INSN;
5027 if (ANY_RETURN_P (x))
5028 return JUMP_INSN;
5029 if (GET_CODE (x) == SET)
5031 if (SET_DEST (x) == pc_rtx)
5032 return JUMP_INSN;
5033 else if (GET_CODE (SET_SRC (x)) == CALL)
5034 return CALL_INSN;
5035 else
5036 return INSN;
5038 if (GET_CODE (x) == PARALLEL)
5040 int j;
5041 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
5042 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
5043 return CALL_INSN;
5044 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5045 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
5046 return JUMP_INSN;
5047 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5048 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
5049 return CALL_INSN;
5051 return INSN;
5054 /* Emit the rtl pattern X as an appropriate kind of insn.
5055 If X is a label, it is simply added into the insn chain. */
5058 emit (rtx x)
5060 enum rtx_code code = classify_insn (x);
5062 switch (code)
5064 case CODE_LABEL:
5065 return emit_label (x);
5066 case INSN:
5067 return emit_insn (x);
5068 case JUMP_INSN:
5070 rtx insn = emit_jump_insn (x);
5071 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
5072 return emit_barrier ();
5073 return insn;
5075 case CALL_INSN:
5076 return emit_call_insn (x);
5077 case DEBUG_INSN:
5078 return emit_debug_insn (x);
5079 default:
5080 gcc_unreachable ();
5084 /* Space for free sequence stack entries. */
5085 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
5087 /* Begin emitting insns to a sequence. If this sequence will contain
5088 something that might cause the compiler to pop arguments to function
5089 calls (because those pops have previously been deferred; see
5090 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5091 before calling this function. That will ensure that the deferred
5092 pops are not accidentally emitted in the middle of this sequence. */
5094 void
5095 start_sequence (void)
5097 struct sequence_stack *tem;
5099 if (free_sequence_stack != NULL)
5101 tem = free_sequence_stack;
5102 free_sequence_stack = tem->next;
5104 else
5105 tem = ggc_alloc_sequence_stack ();
5107 tem->next = seq_stack;
5108 tem->first = get_insns ();
5109 tem->last = get_last_insn ();
5111 seq_stack = tem;
5113 set_first_insn (0);
5114 set_last_insn (0);
5117 /* Set up the insn chain starting with FIRST as the current sequence,
5118 saving the previously current one. See the documentation for
5119 start_sequence for more information about how to use this function. */
5121 void
5122 push_to_sequence (rtx first)
5124 rtx last;
5126 start_sequence ();
5128 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last))
5131 set_first_insn (first);
5132 set_last_insn (last);
5135 /* Like push_to_sequence, but take the last insn as an argument to avoid
5136 looping through the list. */
5138 void
5139 push_to_sequence2 (rtx first, rtx last)
5141 start_sequence ();
5143 set_first_insn (first);
5144 set_last_insn (last);
5147 /* Set up the outer-level insn chain
5148 as the current sequence, saving the previously current one. */
5150 void
5151 push_topmost_sequence (void)
5153 struct sequence_stack *stack, *top = NULL;
5155 start_sequence ();
5157 for (stack = seq_stack; stack; stack = stack->next)
5158 top = stack;
5160 set_first_insn (top->first);
5161 set_last_insn (top->last);
5164 /* After emitting to the outer-level insn chain, update the outer-level
5165 insn chain, and restore the previous saved state. */
5167 void
5168 pop_topmost_sequence (void)
5170 struct sequence_stack *stack, *top = NULL;
5172 for (stack = seq_stack; stack; stack = stack->next)
5173 top = stack;
5175 top->first = get_insns ();
5176 top->last = get_last_insn ();
5178 end_sequence ();
5181 /* After emitting to a sequence, restore previous saved state.
5183 To get the contents of the sequence just made, you must call
5184 `get_insns' *before* calling here.
5186 If the compiler might have deferred popping arguments while
5187 generating this sequence, and this sequence will not be immediately
5188 inserted into the instruction stream, use do_pending_stack_adjust
5189 before calling get_insns. That will ensure that the deferred
5190 pops are inserted into this sequence, and not into some random
5191 location in the instruction stream. See INHIBIT_DEFER_POP for more
5192 information about deferred popping of arguments. */
5194 void
5195 end_sequence (void)
5197 struct sequence_stack *tem = seq_stack;
5199 set_first_insn (tem->first);
5200 set_last_insn (tem->last);
5201 seq_stack = tem->next;
5203 memset (tem, 0, sizeof (*tem));
5204 tem->next = free_sequence_stack;
5205 free_sequence_stack = tem;
5208 /* Return 1 if currently emitting into a sequence. */
5211 in_sequence_p (void)
5213 return seq_stack != 0;
5216 /* Put the various virtual registers into REGNO_REG_RTX. */
5218 static void
5219 init_virtual_regs (void)
5221 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5222 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5223 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5224 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5225 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5226 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5227 = virtual_preferred_stack_boundary_rtx;
5231 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5232 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5233 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5234 static int copy_insn_n_scratches;
5236 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5237 copied an ASM_OPERANDS.
5238 In that case, it is the original input-operand vector. */
5239 static rtvec orig_asm_operands_vector;
5241 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5242 copied an ASM_OPERANDS.
5243 In that case, it is the copied input-operand vector. */
5244 static rtvec copy_asm_operands_vector;
5246 /* Likewise for the constraints vector. */
5247 static rtvec orig_asm_constraints_vector;
5248 static rtvec copy_asm_constraints_vector;
5250 /* Recursively create a new copy of an rtx for copy_insn.
5251 This function differs from copy_rtx in that it handles SCRATCHes and
5252 ASM_OPERANDs properly.
5253 Normally, this function is not used directly; use copy_insn as front end.
5254 However, you could first copy an insn pattern with copy_insn and then use
5255 this function afterwards to properly copy any REG_NOTEs containing
5256 SCRATCHes. */
5259 copy_insn_1 (rtx orig)
5261 rtx copy;
5262 int i, j;
5263 RTX_CODE code;
5264 const char *format_ptr;
5266 if (orig == NULL)
5267 return NULL;
5269 code = GET_CODE (orig);
5271 switch (code)
5273 case REG:
5274 case DEBUG_EXPR:
5275 case CONST_INT:
5276 case CONST_DOUBLE:
5277 case CONST_FIXED:
5278 case CONST_VECTOR:
5279 case SYMBOL_REF:
5280 case CODE_LABEL:
5281 case PC:
5282 case CC0:
5283 case RETURN:
5284 case SIMPLE_RETURN:
5285 return orig;
5286 case CLOBBER:
5287 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
5288 return orig;
5289 break;
5291 case SCRATCH:
5292 for (i = 0; i < copy_insn_n_scratches; i++)
5293 if (copy_insn_scratch_in[i] == orig)
5294 return copy_insn_scratch_out[i];
5295 break;
5297 case CONST:
5298 if (shared_const_p (orig))
5299 return orig;
5300 break;
5302 /* A MEM with a constant address is not sharable. The problem is that
5303 the constant address may need to be reloaded. If the mem is shared,
5304 then reloading one copy of this mem will cause all copies to appear
5305 to have been reloaded. */
5307 default:
5308 break;
5311 /* Copy the various flags, fields, and other information. We assume
5312 that all fields need copying, and then clear the fields that should
5313 not be copied. That is the sensible default behavior, and forces
5314 us to explicitly document why we are *not* copying a flag. */
5315 copy = shallow_copy_rtx (orig);
5317 /* We do not copy the USED flag, which is used as a mark bit during
5318 walks over the RTL. */
5319 RTX_FLAG (copy, used) = 0;
5321 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5322 if (INSN_P (orig))
5324 RTX_FLAG (copy, jump) = 0;
5325 RTX_FLAG (copy, call) = 0;
5326 RTX_FLAG (copy, frame_related) = 0;
5329 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5331 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5332 switch (*format_ptr++)
5334 case 'e':
5335 if (XEXP (orig, i) != NULL)
5336 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5337 break;
5339 case 'E':
5340 case 'V':
5341 if (XVEC (orig, i) == orig_asm_constraints_vector)
5342 XVEC (copy, i) = copy_asm_constraints_vector;
5343 else if (XVEC (orig, i) == orig_asm_operands_vector)
5344 XVEC (copy, i) = copy_asm_operands_vector;
5345 else if (XVEC (orig, i) != NULL)
5347 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5348 for (j = 0; j < XVECLEN (copy, i); j++)
5349 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5351 break;
5353 case 't':
5354 case 'w':
5355 case 'i':
5356 case 's':
5357 case 'S':
5358 case 'u':
5359 case '0':
5360 /* These are left unchanged. */
5361 break;
5363 default:
5364 gcc_unreachable ();
5367 if (code == SCRATCH)
5369 i = copy_insn_n_scratches++;
5370 gcc_assert (i < MAX_RECOG_OPERANDS);
5371 copy_insn_scratch_in[i] = orig;
5372 copy_insn_scratch_out[i] = copy;
5374 else if (code == ASM_OPERANDS)
5376 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5377 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5378 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5379 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5382 return copy;
5385 /* Create a new copy of an rtx.
5386 This function differs from copy_rtx in that it handles SCRATCHes and
5387 ASM_OPERANDs properly.
5388 INSN doesn't really have to be a full INSN; it could be just the
5389 pattern. */
5391 copy_insn (rtx insn)
5393 copy_insn_n_scratches = 0;
5394 orig_asm_operands_vector = 0;
5395 orig_asm_constraints_vector = 0;
5396 copy_asm_operands_vector = 0;
5397 copy_asm_constraints_vector = 0;
5398 return copy_insn_1 (insn);
5401 /* Initialize data structures and variables in this file
5402 before generating rtl for each function. */
5404 void
5405 init_emit (void)
5407 set_first_insn (NULL);
5408 set_last_insn (NULL);
5409 if (MIN_NONDEBUG_INSN_UID)
5410 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5411 else
5412 cur_insn_uid = 1;
5413 cur_debug_insn_uid = 1;
5414 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5415 last_location = UNKNOWN_LOCATION;
5416 first_label_num = label_num;
5417 seq_stack = NULL;
5419 /* Init the tables that describe all the pseudo regs. */
5421 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5423 crtl->emit.regno_pointer_align
5424 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5426 regno_reg_rtx = ggc_alloc_vec_rtx (crtl->emit.regno_pointer_align_length);
5428 /* Put copies of all the hard registers into regno_reg_rtx. */
5429 memcpy (regno_reg_rtx,
5430 initial_regno_reg_rtx,
5431 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5433 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5434 init_virtual_regs ();
5436 /* Indicate that the virtual registers and stack locations are
5437 all pointers. */
5438 REG_POINTER (stack_pointer_rtx) = 1;
5439 REG_POINTER (frame_pointer_rtx) = 1;
5440 REG_POINTER (hard_frame_pointer_rtx) = 1;
5441 REG_POINTER (arg_pointer_rtx) = 1;
5443 REG_POINTER (virtual_incoming_args_rtx) = 1;
5444 REG_POINTER (virtual_stack_vars_rtx) = 1;
5445 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5446 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5447 REG_POINTER (virtual_cfa_rtx) = 1;
5449 #ifdef STACK_BOUNDARY
5450 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5451 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5452 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5453 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5455 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5456 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5457 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5458 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5459 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5460 #endif
5462 #ifdef INIT_EXPANDERS
5463 INIT_EXPANDERS;
5464 #endif
5467 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5469 static rtx
5470 gen_const_vector (enum machine_mode mode, int constant)
5472 rtx tem;
5473 rtvec v;
5474 int units, i;
5475 enum machine_mode inner;
5477 units = GET_MODE_NUNITS (mode);
5478 inner = GET_MODE_INNER (mode);
5480 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5482 v = rtvec_alloc (units);
5484 /* We need to call this function after we set the scalar const_tiny_rtx
5485 entries. */
5486 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5488 for (i = 0; i < units; ++i)
5489 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5491 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5492 return tem;
5495 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5496 all elements are zero, and the one vector when all elements are one. */
5498 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5500 enum machine_mode inner = GET_MODE_INNER (mode);
5501 int nunits = GET_MODE_NUNITS (mode);
5502 rtx x;
5503 int i;
5505 /* Check to see if all of the elements have the same value. */
5506 x = RTVEC_ELT (v, nunits - 1);
5507 for (i = nunits - 2; i >= 0; i--)
5508 if (RTVEC_ELT (v, i) != x)
5509 break;
5511 /* If the values are all the same, check to see if we can use one of the
5512 standard constant vectors. */
5513 if (i == -1)
5515 if (x == CONST0_RTX (inner))
5516 return CONST0_RTX (mode);
5517 else if (x == CONST1_RTX (inner))
5518 return CONST1_RTX (mode);
5519 else if (x == CONSTM1_RTX (inner))
5520 return CONSTM1_RTX (mode);
5523 return gen_rtx_raw_CONST_VECTOR (mode, v);
5526 /* Initialise global register information required by all functions. */
5528 void
5529 init_emit_regs (void)
5531 int i;
5532 enum machine_mode mode;
5533 mem_attrs *attrs;
5535 /* Reset register attributes */
5536 htab_empty (reg_attrs_htab);
5538 /* We need reg_raw_mode, so initialize the modes now. */
5539 init_reg_modes_target ();
5541 /* Assign register numbers to the globally defined register rtx. */
5542 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5543 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5544 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5545 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5546 virtual_incoming_args_rtx =
5547 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5548 virtual_stack_vars_rtx =
5549 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5550 virtual_stack_dynamic_rtx =
5551 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5552 virtual_outgoing_args_rtx =
5553 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5554 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5555 virtual_preferred_stack_boundary_rtx =
5556 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
5558 /* Initialize RTL for commonly used hard registers. These are
5559 copied into regno_reg_rtx as we begin to compile each function. */
5560 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5561 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5563 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5564 return_address_pointer_rtx
5565 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5566 #endif
5568 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5569 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5570 else
5571 pic_offset_table_rtx = NULL_RTX;
5573 for (i = 0; i < (int) MAX_MACHINE_MODE; i++)
5575 mode = (enum machine_mode) i;
5576 attrs = ggc_alloc_cleared_mem_attrs ();
5577 attrs->align = BITS_PER_UNIT;
5578 attrs->addrspace = ADDR_SPACE_GENERIC;
5579 if (mode != BLKmode)
5581 attrs->size_known_p = true;
5582 attrs->size = GET_MODE_SIZE (mode);
5583 if (STRICT_ALIGNMENT)
5584 attrs->align = GET_MODE_ALIGNMENT (mode);
5586 mode_mem_attrs[i] = attrs;
5590 /* Create some permanent unique rtl objects shared between all functions. */
5592 void
5593 init_emit_once (void)
5595 int i;
5596 enum machine_mode mode;
5597 enum machine_mode double_mode;
5599 /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5600 hash tables. */
5601 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5602 const_int_htab_eq, NULL);
5604 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5605 const_double_htab_eq, NULL);
5607 const_fixed_htab = htab_create_ggc (37, const_fixed_htab_hash,
5608 const_fixed_htab_eq, NULL);
5610 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5611 mem_attrs_htab_eq, NULL);
5612 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5613 reg_attrs_htab_eq, NULL);
5615 /* Compute the word and byte modes. */
5617 byte_mode = VOIDmode;
5618 word_mode = VOIDmode;
5619 double_mode = VOIDmode;
5621 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5622 mode != VOIDmode;
5623 mode = GET_MODE_WIDER_MODE (mode))
5625 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5626 && byte_mode == VOIDmode)
5627 byte_mode = mode;
5629 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5630 && word_mode == VOIDmode)
5631 word_mode = mode;
5634 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5635 mode != VOIDmode;
5636 mode = GET_MODE_WIDER_MODE (mode))
5638 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5639 && double_mode == VOIDmode)
5640 double_mode = mode;
5643 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5645 #ifdef INIT_EXPANDERS
5646 /* This is to initialize {init|mark|free}_machine_status before the first
5647 call to push_function_context_to. This is needed by the Chill front
5648 end which calls push_function_context_to before the first call to
5649 init_function_start. */
5650 INIT_EXPANDERS;
5651 #endif
5653 /* Create the unique rtx's for certain rtx codes and operand values. */
5655 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5656 tries to use these variables. */
5657 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5658 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5659 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5661 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5662 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5663 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5664 else
5665 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5667 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5668 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5669 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5671 dconstm1 = dconst1;
5672 dconstm1.sign = 1;
5674 dconsthalf = dconst1;
5675 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5677 for (i = 0; i < 3; i++)
5679 const REAL_VALUE_TYPE *const r =
5680 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5682 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5683 mode != VOIDmode;
5684 mode = GET_MODE_WIDER_MODE (mode))
5685 const_tiny_rtx[i][(int) mode] =
5686 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5688 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5689 mode != VOIDmode;
5690 mode = GET_MODE_WIDER_MODE (mode))
5691 const_tiny_rtx[i][(int) mode] =
5692 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5694 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5696 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5697 mode != VOIDmode;
5698 mode = GET_MODE_WIDER_MODE (mode))
5699 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5701 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5702 mode != VOIDmode;
5703 mode = GET_MODE_WIDER_MODE (mode))
5704 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5707 const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx;
5709 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5710 mode != VOIDmode;
5711 mode = GET_MODE_WIDER_MODE (mode))
5712 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5714 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5715 mode != VOIDmode;
5716 mode = GET_MODE_WIDER_MODE (mode))
5717 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5719 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5720 mode != VOIDmode;
5721 mode = GET_MODE_WIDER_MODE (mode))
5723 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5724 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5727 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5728 mode != VOIDmode;
5729 mode = GET_MODE_WIDER_MODE (mode))
5731 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5732 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5735 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5736 mode != VOIDmode;
5737 mode = GET_MODE_WIDER_MODE (mode))
5739 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5740 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5741 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
5744 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5745 mode != VOIDmode;
5746 mode = GET_MODE_WIDER_MODE (mode))
5748 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5749 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5752 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
5753 mode != VOIDmode;
5754 mode = GET_MODE_WIDER_MODE (mode))
5756 FCONST0(mode).data.high = 0;
5757 FCONST0(mode).data.low = 0;
5758 FCONST0(mode).mode = mode;
5759 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5760 FCONST0 (mode), mode);
5763 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
5764 mode != VOIDmode;
5765 mode = GET_MODE_WIDER_MODE (mode))
5767 FCONST0(mode).data.high = 0;
5768 FCONST0(mode).data.low = 0;
5769 FCONST0(mode).mode = mode;
5770 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5771 FCONST0 (mode), mode);
5774 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
5775 mode != VOIDmode;
5776 mode = GET_MODE_WIDER_MODE (mode))
5778 FCONST0(mode).data.high = 0;
5779 FCONST0(mode).data.low = 0;
5780 FCONST0(mode).mode = mode;
5781 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5782 FCONST0 (mode), mode);
5784 /* We store the value 1. */
5785 FCONST1(mode).data.high = 0;
5786 FCONST1(mode).data.low = 0;
5787 FCONST1(mode).mode = mode;
5788 lshift_double (1, 0, GET_MODE_FBIT (mode),
5789 2 * HOST_BITS_PER_WIDE_INT,
5790 &FCONST1(mode).data.low,
5791 &FCONST1(mode).data.high,
5792 SIGNED_FIXED_POINT_MODE_P (mode));
5793 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5794 FCONST1 (mode), mode);
5797 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
5798 mode != VOIDmode;
5799 mode = GET_MODE_WIDER_MODE (mode))
5801 FCONST0(mode).data.high = 0;
5802 FCONST0(mode).data.low = 0;
5803 FCONST0(mode).mode = mode;
5804 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5805 FCONST0 (mode), mode);
5807 /* We store the value 1. */
5808 FCONST1(mode).data.high = 0;
5809 FCONST1(mode).data.low = 0;
5810 FCONST1(mode).mode = mode;
5811 lshift_double (1, 0, GET_MODE_FBIT (mode),
5812 2 * HOST_BITS_PER_WIDE_INT,
5813 &FCONST1(mode).data.low,
5814 &FCONST1(mode).data.high,
5815 SIGNED_FIXED_POINT_MODE_P (mode));
5816 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5817 FCONST1 (mode), mode);
5820 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
5821 mode != VOIDmode;
5822 mode = GET_MODE_WIDER_MODE (mode))
5824 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5827 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
5828 mode != VOIDmode;
5829 mode = GET_MODE_WIDER_MODE (mode))
5831 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5834 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
5835 mode != VOIDmode;
5836 mode = GET_MODE_WIDER_MODE (mode))
5838 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5839 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5842 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
5843 mode != VOIDmode;
5844 mode = GET_MODE_WIDER_MODE (mode))
5846 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5847 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5850 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5851 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5852 const_tiny_rtx[0][i] = const0_rtx;
5854 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5855 if (STORE_FLAG_VALUE == 1)
5856 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5858 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode);
5859 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode);
5860 simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode);
5861 cc0_rtx = gen_rtx_fmt_ (CC0, VOIDmode);
5864 /* Produce exact duplicate of insn INSN after AFTER.
5865 Care updating of libcall regions if present. */
5868 emit_copy_of_insn_after (rtx insn, rtx after)
5870 rtx new_rtx, link;
5872 switch (GET_CODE (insn))
5874 case INSN:
5875 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
5876 break;
5878 case JUMP_INSN:
5879 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5880 break;
5882 case DEBUG_INSN:
5883 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
5884 break;
5886 case CALL_INSN:
5887 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5888 if (CALL_INSN_FUNCTION_USAGE (insn))
5889 CALL_INSN_FUNCTION_USAGE (new_rtx)
5890 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5891 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
5892 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
5893 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
5894 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
5895 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
5896 break;
5898 default:
5899 gcc_unreachable ();
5902 /* Update LABEL_NUSES. */
5903 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
5905 INSN_LOCATOR (new_rtx) = INSN_LOCATOR (insn);
5907 /* If the old insn is frame related, then so is the new one. This is
5908 primarily needed for IA-64 unwind info which marks epilogue insns,
5909 which may be duplicated by the basic block reordering code. */
5910 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
5912 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
5913 will make them. REG_LABEL_TARGETs are created there too, but are
5914 supposed to be sticky, so we copy them. */
5915 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5916 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
5918 if (GET_CODE (link) == EXPR_LIST)
5919 add_reg_note (new_rtx, REG_NOTE_KIND (link),
5920 copy_insn_1 (XEXP (link, 0)));
5921 else
5922 add_reg_note (new_rtx, REG_NOTE_KIND (link), XEXP (link, 0));
5925 INSN_CODE (new_rtx) = INSN_CODE (insn);
5926 return new_rtx;
5929 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
5931 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5933 if (hard_reg_clobbers[mode][regno])
5934 return hard_reg_clobbers[mode][regno];
5935 else
5936 return (hard_reg_clobbers[mode][regno] =
5937 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5940 #include "gt-emit-rtl.h"