sem_ch5.adb, [...]: Change spelling 'parametrization' to 'parameterization'.
[official-gcc.git] / gcc / vec.h
blob587302344d5deb629e9e9ae68e22b89a813ef0e8
1 /* Vector API for GNU compiler.
2 Copyright (C) 2004-2014 Free Software Foundation, Inc.
3 Contributed by Nathan Sidwell <nathan@codesourcery.com>
4 Re-implemented in C++ by Diego Novillo <dnovillo@google.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #ifndef GCC_VEC_H
23 #define GCC_VEC_H
25 /* FIXME - When compiling some of the gen* binaries, we cannot enable GC
26 support because the headers generated by gengtype are still not
27 present. In particular, the header file gtype-desc.h is missing,
28 so compilation may fail if we try to include ggc.h.
30 Since we use some of those declarations, we need to provide them
31 (even if the GC-based templates are not used). This is not a
32 problem because the code that runs before gengtype is built will
33 never need to use GC vectors. But it does force us to declare
34 these functions more than once. */
35 #ifdef GENERATOR_FILE
36 #define VEC_GC_ENABLED 0
37 #else
38 #define VEC_GC_ENABLED 1
39 #endif // GENERATOR_FILE
41 #include "statistics.h" // For CXX_MEM_STAT_INFO.
43 #if VEC_GC_ENABLED
44 #include "ggc.h"
45 #else
46 # ifndef GCC_GGC_H
47 /* Even if we think that GC is not enabled, the test that sets it is
48 weak. There are files compiled with -DGENERATOR_FILE that already
49 include ggc.h. We only need to provide these definitions if ggc.h
50 has not been included. Sigh. */
51 extern void ggc_free (void *);
52 extern size_t ggc_round_alloc_size (size_t requested_size);
53 extern void *ggc_realloc_stat (void *, size_t MEM_STAT_DECL);
54 # endif // GCC_GGC_H
55 #endif // VEC_GC_ENABLED
57 /* Templated vector type and associated interfaces.
59 The interface functions are typesafe and use inline functions,
60 sometimes backed by out-of-line generic functions. The vectors are
61 designed to interoperate with the GTY machinery.
63 There are both 'index' and 'iterate' accessors. The index accessor
64 is implemented by operator[]. The iterator returns a boolean
65 iteration condition and updates the iteration variable passed by
66 reference. Because the iterator will be inlined, the address-of
67 can be optimized away.
69 Each operation that increases the number of active elements is
70 available in 'quick' and 'safe' variants. The former presumes that
71 there is sufficient allocated space for the operation to succeed
72 (it dies if there is not). The latter will reallocate the
73 vector, if needed. Reallocation causes an exponential increase in
74 vector size. If you know you will be adding N elements, it would
75 be more efficient to use the reserve operation before adding the
76 elements with the 'quick' operation. This will ensure there are at
77 least as many elements as you ask for, it will exponentially
78 increase if there are too few spare slots. If you want reserve a
79 specific number of slots, but do not want the exponential increase
80 (for instance, you know this is the last allocation), use the
81 reserve_exact operation. You can also create a vector of a
82 specific size from the get go.
84 You should prefer the push and pop operations, as they append and
85 remove from the end of the vector. If you need to remove several
86 items in one go, use the truncate operation. The insert and remove
87 operations allow you to change elements in the middle of the
88 vector. There are two remove operations, one which preserves the
89 element ordering 'ordered_remove', and one which does not
90 'unordered_remove'. The latter function copies the end element
91 into the removed slot, rather than invoke a memmove operation. The
92 'lower_bound' function will determine where to place an item in the
93 array using insert that will maintain sorted order.
95 Vectors are template types with three arguments: the type of the
96 elements in the vector, the allocation strategy, and the physical
97 layout to use
99 Four allocation strategies are supported:
101 - Heap: allocation is done using malloc/free. This is the
102 default allocation strategy.
104 - GC: allocation is done using ggc_alloc/ggc_free.
106 - GC atomic: same as GC with the exception that the elements
107 themselves are assumed to be of an atomic type that does
108 not need to be garbage collected. This means that marking
109 routines do not need to traverse the array marking the
110 individual elements. This increases the performance of
111 GC activities.
113 Two physical layouts are supported:
115 - Embedded: The vector is structured using the trailing array
116 idiom. The last member of the structure is an array of size
117 1. When the vector is initially allocated, a single memory
118 block is created to hold the vector's control data and the
119 array of elements. These vectors cannot grow without
120 reallocation (see discussion on embeddable vectors below).
122 - Space efficient: The vector is structured as a pointer to an
123 embedded vector. This is the default layout. It means that
124 vectors occupy a single word of storage before initial
125 allocation. Vectors are allowed to grow (the internal
126 pointer is reallocated but the main vector instance does not
127 need to relocate).
129 The type, allocation and layout are specified when the vector is
130 declared.
132 If you need to directly manipulate a vector, then the 'address'
133 accessor will return the address of the start of the vector. Also
134 the 'space' predicate will tell you whether there is spare capacity
135 in the vector. You will not normally need to use these two functions.
137 Notes on the different layout strategies
139 * Embeddable vectors (vec<T, A, vl_embed>)
141 These vectors are suitable to be embedded in other data
142 structures so that they can be pre-allocated in a contiguous
143 memory block.
145 Embeddable vectors are implemented using the trailing array
146 idiom, thus they are not resizeable without changing the address
147 of the vector object itself. This means you cannot have
148 variables or fields of embeddable vector type -- always use a
149 pointer to a vector. The one exception is the final field of a
150 structure, which could be a vector type.
152 You will have to use the embedded_size & embedded_init calls to
153 create such objects, and they will not be resizeable (so the
154 'safe' allocation variants are not available).
156 Properties of embeddable vectors:
158 - The whole vector and control data are allocated in a single
159 contiguous block. It uses the trailing-vector idiom, so
160 allocation must reserve enough space for all the elements
161 in the vector plus its control data.
162 - The vector cannot be re-allocated.
163 - The vector cannot grow nor shrink.
164 - No indirections needed for access/manipulation.
165 - It requires 2 words of storage (prior to vector allocation).
168 * Space efficient vector (vec<T, A, vl_ptr>)
170 These vectors can grow dynamically and are allocated together
171 with their control data. They are suited to be included in data
172 structures. Prior to initial allocation, they only take a single
173 word of storage.
175 These vectors are implemented as a pointer to embeddable vectors.
176 The semantics allow for this pointer to be NULL to represent
177 empty vectors. This way, empty vectors occupy minimal space in
178 the structure containing them.
180 Properties:
182 - The whole vector and control data are allocated in a single
183 contiguous block.
184 - The whole vector may be re-allocated.
185 - Vector data may grow and shrink.
186 - Access and manipulation requires a pointer test and
187 indirection.
188 - It requires 1 word of storage (prior to vector allocation).
190 An example of their use would be,
192 struct my_struct {
193 // A space-efficient vector of tree pointers in GC memory.
194 vec<tree, va_gc, vl_ptr> v;
197 struct my_struct *s;
199 if (s->v.length ()) { we have some contents }
200 s->v.safe_push (decl); // append some decl onto the end
201 for (ix = 0; s->v.iterate (ix, &elt); ix++)
202 { do something with elt }
205 /* Support function for statistics. */
206 extern void dump_vec_loc_statistics (void);
209 /* Control data for vectors. This contains the number of allocated
210 and used slots inside a vector. */
212 struct vec_prefix
214 /* FIXME - These fields should be private, but we need to cater to
215 compilers that have stricter notions of PODness for types. */
217 /* Memory allocation support routines in vec.c. */
218 void register_overhead (size_t, const char *, int, const char *);
219 void release_overhead (void);
220 static unsigned calculate_allocation (vec_prefix *, unsigned, bool);
221 static unsigned calculate_allocation_1 (unsigned, unsigned);
223 /* Note that vec_prefix should be a base class for vec, but we use
224 offsetof() on vector fields of tree structures (e.g.,
225 tree_binfo::base_binfos), and offsetof only supports base types.
227 To compensate, we make vec_prefix a field inside vec and make
228 vec a friend class of vec_prefix so it can access its fields. */
229 template <typename, typename, typename> friend struct vec;
231 /* The allocator types also need access to our internals. */
232 friend struct va_gc;
233 friend struct va_gc_atomic;
234 friend struct va_heap;
236 unsigned m_alloc : 31;
237 unsigned m_using_auto_storage : 1;
238 unsigned m_num;
241 /* Calculate the number of slots to reserve a vector, making sure that
242 RESERVE slots are free. If EXACT grow exactly, otherwise grow
243 exponentially. PFX is the control data for the vector. */
245 inline unsigned
246 vec_prefix::calculate_allocation (vec_prefix *pfx, unsigned reserve,
247 bool exact)
249 if (exact)
250 return (pfx ? pfx->m_num : 0) + reserve;
251 else if (!pfx)
252 return MAX (4, reserve);
253 return calculate_allocation_1 (pfx->m_alloc, pfx->m_num + reserve);
256 template<typename, typename, typename> struct vec;
258 /* Valid vector layouts
260 vl_embed - Embeddable vector that uses the trailing array idiom.
261 vl_ptr - Space efficient vector that uses a pointer to an
262 embeddable vector. */
263 struct vl_embed { };
264 struct vl_ptr { };
267 /* Types of supported allocations
269 va_heap - Allocation uses malloc/free.
270 va_gc - Allocation uses ggc_alloc.
271 va_gc_atomic - Same as GC, but individual elements of the array
272 do not need to be marked during collection. */
274 /* Allocator type for heap vectors. */
275 struct va_heap
277 /* Heap vectors are frequently regular instances, so use the vl_ptr
278 layout for them. */
279 typedef vl_ptr default_layout;
281 template<typename T>
282 static void reserve (vec<T, va_heap, vl_embed> *&, unsigned, bool
283 CXX_MEM_STAT_INFO);
285 template<typename T>
286 static void release (vec<T, va_heap, vl_embed> *&);
290 /* Allocator for heap memory. Ensure there are at least RESERVE free
291 slots in V. If EXACT is true, grow exactly, else grow
292 exponentially. As a special case, if the vector had not been
293 allocated and and RESERVE is 0, no vector will be created. */
295 template<typename T>
296 inline void
297 va_heap::reserve (vec<T, va_heap, vl_embed> *&v, unsigned reserve, bool exact
298 MEM_STAT_DECL)
300 unsigned alloc
301 = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact);
302 gcc_checking_assert (alloc);
304 if (GATHER_STATISTICS && v)
305 v->m_vecpfx.release_overhead ();
307 size_t size = vec<T, va_heap, vl_embed>::embedded_size (alloc);
308 unsigned nelem = v ? v->length () : 0;
309 v = static_cast <vec<T, va_heap, vl_embed> *> (xrealloc (v, size));
310 v->embedded_init (alloc, nelem);
312 if (GATHER_STATISTICS)
313 v->m_vecpfx.register_overhead (size FINAL_PASS_MEM_STAT);
317 /* Free the heap space allocated for vector V. */
319 template<typename T>
320 void
321 va_heap::release (vec<T, va_heap, vl_embed> *&v)
323 if (v == NULL)
324 return;
326 if (GATHER_STATISTICS)
327 v->m_vecpfx.release_overhead ();
328 ::free (v);
329 v = NULL;
333 /* Allocator type for GC vectors. Notice that we need the structure
334 declaration even if GC is not enabled. */
336 struct va_gc
338 /* Use vl_embed as the default layout for GC vectors. Due to GTY
339 limitations, GC vectors must always be pointers, so it is more
340 efficient to use a pointer to the vl_embed layout, rather than
341 using a pointer to a pointer as would be the case with vl_ptr. */
342 typedef vl_embed default_layout;
344 template<typename T, typename A>
345 static void reserve (vec<T, A, vl_embed> *&, unsigned, bool
346 CXX_MEM_STAT_INFO);
348 template<typename T, typename A>
349 static void release (vec<T, A, vl_embed> *&v);
353 /* Free GC memory used by V and reset V to NULL. */
355 template<typename T, typename A>
356 inline void
357 va_gc::release (vec<T, A, vl_embed> *&v)
359 if (v)
360 ::ggc_free (v);
361 v = NULL;
365 /* Allocator for GC memory. Ensure there are at least RESERVE free
366 slots in V. If EXACT is true, grow exactly, else grow
367 exponentially. As a special case, if the vector had not been
368 allocated and and RESERVE is 0, no vector will be created. */
370 template<typename T, typename A>
371 void
372 va_gc::reserve (vec<T, A, vl_embed> *&v, unsigned reserve, bool exact
373 MEM_STAT_DECL)
375 unsigned alloc
376 = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact);
377 if (!alloc)
379 ::ggc_free (v);
380 v = NULL;
381 return;
384 /* Calculate the amount of space we want. */
385 size_t size = vec<T, A, vl_embed>::embedded_size (alloc);
387 /* Ask the allocator how much space it will really give us. */
388 size = ::ggc_round_alloc_size (size);
390 /* Adjust the number of slots accordingly. */
391 size_t vec_offset = sizeof (vec_prefix);
392 size_t elt_size = sizeof (T);
393 alloc = (size - vec_offset) / elt_size;
395 /* And finally, recalculate the amount of space we ask for. */
396 size = vec_offset + alloc * elt_size;
398 unsigned nelem = v ? v->length () : 0;
399 v = static_cast <vec<T, A, vl_embed> *> (::ggc_realloc_stat (v, size
400 PASS_MEM_STAT));
401 v->embedded_init (alloc, nelem);
405 /* Allocator type for GC vectors. This is for vectors of types
406 atomics w.r.t. collection, so allocation and deallocation is
407 completely inherited from va_gc. */
408 struct va_gc_atomic : va_gc
413 /* Generic vector template. Default values for A and L indicate the
414 most commonly used strategies.
416 FIXME - Ideally, they would all be vl_ptr to encourage using regular
417 instances for vectors, but the existing GTY machinery is limited
418 in that it can only deal with GC objects that are pointers
419 themselves.
421 This means that vector operations that need to deal with
422 potentially NULL pointers, must be provided as free
423 functions (see the vec_safe_* functions above). */
424 template<typename T,
425 typename A = va_heap,
426 typename L = typename A::default_layout>
427 struct GTY((user)) vec
431 /* Type to provide NULL values for vec<T, A, L>. This is used to
432 provide nil initializers for vec instances. Since vec must be
433 a POD, we cannot have proper ctor/dtor for it. To initialize
434 a vec instance, you can assign it the value vNULL. */
435 struct vnull
437 template <typename T, typename A, typename L>
438 operator vec<T, A, L> () { return vec<T, A, L>(); }
440 extern vnull vNULL;
443 /* Embeddable vector. These vectors are suitable to be embedded
444 in other data structures so that they can be pre-allocated in a
445 contiguous memory block.
447 Embeddable vectors are implemented using the trailing array idiom,
448 thus they are not resizeable without changing the address of the
449 vector object itself. This means you cannot have variables or
450 fields of embeddable vector type -- always use a pointer to a
451 vector. The one exception is the final field of a structure, which
452 could be a vector type.
454 You will have to use the embedded_size & embedded_init calls to
455 create such objects, and they will not be resizeable (so the 'safe'
456 allocation variants are not available).
458 Properties:
460 - The whole vector and control data are allocated in a single
461 contiguous block. It uses the trailing-vector idiom, so
462 allocation must reserve enough space for all the elements
463 in the vector plus its control data.
464 - The vector cannot be re-allocated.
465 - The vector cannot grow nor shrink.
466 - No indirections needed for access/manipulation.
467 - It requires 2 words of storage (prior to vector allocation). */
469 template<typename T, typename A>
470 struct GTY((user)) vec<T, A, vl_embed>
472 public:
473 unsigned allocated (void) const { return m_vecpfx.m_alloc; }
474 unsigned length (void) const { return m_vecpfx.m_num; }
475 bool is_empty (void) const { return m_vecpfx.m_num == 0; }
476 T *address (void) { return m_vecdata; }
477 const T *address (void) const { return m_vecdata; }
478 const T &operator[] (unsigned) const;
479 T &operator[] (unsigned);
480 T &last (void);
481 bool space (unsigned) const;
482 bool iterate (unsigned, T *) const;
483 bool iterate (unsigned, T **) const;
484 vec *copy (ALONE_CXX_MEM_STAT_INFO) const;
485 void splice (vec &);
486 void splice (vec *src);
487 T *quick_push (const T &);
488 T &pop (void);
489 void truncate (unsigned);
490 void quick_insert (unsigned, const T &);
491 void ordered_remove (unsigned);
492 void unordered_remove (unsigned);
493 void block_remove (unsigned, unsigned);
494 void qsort (int (*) (const void *, const void *));
495 T *bsearch (const void *key, int (*compar)(const void *, const void *));
496 unsigned lower_bound (T, bool (*)(const T &, const T &)) const;
497 static size_t embedded_size (unsigned);
498 void embedded_init (unsigned, unsigned = 0, unsigned = 0);
499 void quick_grow (unsigned len);
500 void quick_grow_cleared (unsigned len);
502 /* vec class can access our internal data and functions. */
503 template <typename, typename, typename> friend struct vec;
505 /* The allocator types also need access to our internals. */
506 friend struct va_gc;
507 friend struct va_gc_atomic;
508 friend struct va_heap;
510 /* FIXME - These fields should be private, but we need to cater to
511 compilers that have stricter notions of PODness for types. */
512 vec_prefix m_vecpfx;
513 T m_vecdata[1];
517 /* Convenience wrapper functions to use when dealing with pointers to
518 embedded vectors. Some functionality for these vectors must be
519 provided via free functions for these reasons:
521 1- The pointer may be NULL (e.g., before initial allocation).
523 2- When the vector needs to grow, it must be reallocated, so
524 the pointer will change its value.
526 Because of limitations with the current GC machinery, all vectors
527 in GC memory *must* be pointers. */
530 /* If V contains no room for NELEMS elements, return false. Otherwise,
531 return true. */
532 template<typename T, typename A>
533 inline bool
534 vec_safe_space (const vec<T, A, vl_embed> *v, unsigned nelems)
536 return v ? v->space (nelems) : nelems == 0;
540 /* If V is NULL, return 0. Otherwise, return V->length(). */
541 template<typename T, typename A>
542 inline unsigned
543 vec_safe_length (const vec<T, A, vl_embed> *v)
545 return v ? v->length () : 0;
549 /* If V is NULL, return NULL. Otherwise, return V->address(). */
550 template<typename T, typename A>
551 inline T *
552 vec_safe_address (vec<T, A, vl_embed> *v)
554 return v ? v->address () : NULL;
558 /* If V is NULL, return true. Otherwise, return V->is_empty(). */
559 template<typename T, typename A>
560 inline bool
561 vec_safe_is_empty (vec<T, A, vl_embed> *v)
563 return v ? v->is_empty () : true;
567 /* If V does not have space for NELEMS elements, call
568 V->reserve(NELEMS, EXACT). */
569 template<typename T, typename A>
570 inline bool
571 vec_safe_reserve (vec<T, A, vl_embed> *&v, unsigned nelems, bool exact = false
572 CXX_MEM_STAT_INFO)
574 bool extend = nelems ? !vec_safe_space (v, nelems) : false;
575 if (extend)
576 A::reserve (v, nelems, exact PASS_MEM_STAT);
577 return extend;
580 template<typename T, typename A>
581 inline bool
582 vec_safe_reserve_exact (vec<T, A, vl_embed> *&v, unsigned nelems
583 CXX_MEM_STAT_INFO)
585 return vec_safe_reserve (v, nelems, true PASS_MEM_STAT);
589 /* Allocate GC memory for V with space for NELEMS slots. If NELEMS
590 is 0, V is initialized to NULL. */
592 template<typename T, typename A>
593 inline void
594 vec_alloc (vec<T, A, vl_embed> *&v, unsigned nelems CXX_MEM_STAT_INFO)
596 v = NULL;
597 vec_safe_reserve (v, nelems, false PASS_MEM_STAT);
601 /* Free the GC memory allocated by vector V and set it to NULL. */
603 template<typename T, typename A>
604 inline void
605 vec_free (vec<T, A, vl_embed> *&v)
607 A::release (v);
611 /* Grow V to length LEN. Allocate it, if necessary. */
612 template<typename T, typename A>
613 inline void
614 vec_safe_grow (vec<T, A, vl_embed> *&v, unsigned len CXX_MEM_STAT_INFO)
616 unsigned oldlen = vec_safe_length (v);
617 gcc_checking_assert (len >= oldlen);
618 vec_safe_reserve_exact (v, len - oldlen PASS_MEM_STAT);
619 v->quick_grow (len);
623 /* If V is NULL, allocate it. Call V->safe_grow_cleared(LEN). */
624 template<typename T, typename A>
625 inline void
626 vec_safe_grow_cleared (vec<T, A, vl_embed> *&v, unsigned len CXX_MEM_STAT_INFO)
628 unsigned oldlen = vec_safe_length (v);
629 vec_safe_grow (v, len PASS_MEM_STAT);
630 memset (&(v->address ()[oldlen]), 0, sizeof (T) * (len - oldlen));
634 /* If V is NULL return false, otherwise return V->iterate(IX, PTR). */
635 template<typename T, typename A>
636 inline bool
637 vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T **ptr)
639 if (v)
640 return v->iterate (ix, ptr);
641 else
643 *ptr = 0;
644 return false;
648 template<typename T, typename A>
649 inline bool
650 vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T *ptr)
652 if (v)
653 return v->iterate (ix, ptr);
654 else
656 *ptr = 0;
657 return false;
662 /* If V has no room for one more element, reallocate it. Then call
663 V->quick_push(OBJ). */
664 template<typename T, typename A>
665 inline T *
666 vec_safe_push (vec<T, A, vl_embed> *&v, const T &obj CXX_MEM_STAT_INFO)
668 vec_safe_reserve (v, 1, false PASS_MEM_STAT);
669 return v->quick_push (obj);
673 /* if V has no room for one more element, reallocate it. Then call
674 V->quick_insert(IX, OBJ). */
675 template<typename T, typename A>
676 inline void
677 vec_safe_insert (vec<T, A, vl_embed> *&v, unsigned ix, const T &obj
678 CXX_MEM_STAT_INFO)
680 vec_safe_reserve (v, 1, false PASS_MEM_STAT);
681 v->quick_insert (ix, obj);
685 /* If V is NULL, do nothing. Otherwise, call V->truncate(SIZE). */
686 template<typename T, typename A>
687 inline void
688 vec_safe_truncate (vec<T, A, vl_embed> *v, unsigned size)
690 if (v)
691 v->truncate (size);
695 /* If SRC is not NULL, return a pointer to a copy of it. */
696 template<typename T, typename A>
697 inline vec<T, A, vl_embed> *
698 vec_safe_copy (vec<T, A, vl_embed> *src CXX_MEM_STAT_INFO)
700 return src ? src->copy (ALONE_PASS_MEM_STAT) : NULL;
703 /* Copy the elements from SRC to the end of DST as if by memcpy.
704 Reallocate DST, if necessary. */
705 template<typename T, typename A>
706 inline void
707 vec_safe_splice (vec<T, A, vl_embed> *&dst, vec<T, A, vl_embed> *src
708 CXX_MEM_STAT_INFO)
710 unsigned src_len = vec_safe_length (src);
711 if (src_len)
713 vec_safe_reserve_exact (dst, vec_safe_length (dst) + src_len
714 PASS_MEM_STAT);
715 dst->splice (*src);
720 /* Index into vector. Return the IX'th element. IX must be in the
721 domain of the vector. */
723 template<typename T, typename A>
724 inline const T &
725 vec<T, A, vl_embed>::operator[] (unsigned ix) const
727 gcc_checking_assert (ix < m_vecpfx.m_num);
728 return m_vecdata[ix];
731 template<typename T, typename A>
732 inline T &
733 vec<T, A, vl_embed>::operator[] (unsigned ix)
735 gcc_checking_assert (ix < m_vecpfx.m_num);
736 return m_vecdata[ix];
740 /* Get the final element of the vector, which must not be empty. */
742 template<typename T, typename A>
743 inline T &
744 vec<T, A, vl_embed>::last (void)
746 gcc_checking_assert (m_vecpfx.m_num > 0);
747 return (*this)[m_vecpfx.m_num - 1];
751 /* If this vector has space for NELEMS additional entries, return
752 true. You usually only need to use this if you are doing your
753 own vector reallocation, for instance on an embedded vector. This
754 returns true in exactly the same circumstances that vec::reserve
755 will. */
757 template<typename T, typename A>
758 inline bool
759 vec<T, A, vl_embed>::space (unsigned nelems) const
761 return m_vecpfx.m_alloc - m_vecpfx.m_num >= nelems;
765 /* Return iteration condition and update PTR to point to the IX'th
766 element of this vector. Use this to iterate over the elements of a
767 vector as follows,
769 for (ix = 0; vec<T, A>::iterate (v, ix, &ptr); ix++)
770 continue; */
772 template<typename T, typename A>
773 inline bool
774 vec<T, A, vl_embed>::iterate (unsigned ix, T *ptr) const
776 if (ix < m_vecpfx.m_num)
778 *ptr = m_vecdata[ix];
779 return true;
781 else
783 *ptr = 0;
784 return false;
789 /* Return iteration condition and update *PTR to point to the
790 IX'th element of this vector. Use this to iterate over the
791 elements of a vector as follows,
793 for (ix = 0; v->iterate (ix, &ptr); ix++)
794 continue;
796 This variant is for vectors of objects. */
798 template<typename T, typename A>
799 inline bool
800 vec<T, A, vl_embed>::iterate (unsigned ix, T **ptr) const
802 if (ix < m_vecpfx.m_num)
804 *ptr = CONST_CAST (T *, &m_vecdata[ix]);
805 return true;
807 else
809 *ptr = 0;
810 return false;
815 /* Return a pointer to a copy of this vector. */
817 template<typename T, typename A>
818 inline vec<T, A, vl_embed> *
819 vec<T, A, vl_embed>::copy (ALONE_MEM_STAT_DECL) const
821 vec<T, A, vl_embed> *new_vec = NULL;
822 unsigned len = length ();
823 if (len)
825 vec_alloc (new_vec, len PASS_MEM_STAT);
826 new_vec->embedded_init (len, len);
827 memcpy (new_vec->address (), m_vecdata, sizeof (T) * len);
829 return new_vec;
833 /* Copy the elements from SRC to the end of this vector as if by memcpy.
834 The vector must have sufficient headroom available. */
836 template<typename T, typename A>
837 inline void
838 vec<T, A, vl_embed>::splice (vec<T, A, vl_embed> &src)
840 unsigned len = src.length ();
841 if (len)
843 gcc_checking_assert (space (len));
844 memcpy (address () + length (), src.address (), len * sizeof (T));
845 m_vecpfx.m_num += len;
849 template<typename T, typename A>
850 inline void
851 vec<T, A, vl_embed>::splice (vec<T, A, vl_embed> *src)
853 if (src)
854 splice (*src);
858 /* Push OBJ (a new element) onto the end of the vector. There must be
859 sufficient space in the vector. Return a pointer to the slot
860 where OBJ was inserted. */
862 template<typename T, typename A>
863 inline T *
864 vec<T, A, vl_embed>::quick_push (const T &obj)
866 gcc_checking_assert (space (1));
867 T *slot = &m_vecdata[m_vecpfx.m_num++];
868 *slot = obj;
869 return slot;
873 /* Pop and return the last element off the end of the vector. */
875 template<typename T, typename A>
876 inline T &
877 vec<T, A, vl_embed>::pop (void)
879 gcc_checking_assert (length () > 0);
880 return m_vecdata[--m_vecpfx.m_num];
884 /* Set the length of the vector to SIZE. The new length must be less
885 than or equal to the current length. This is an O(1) operation. */
887 template<typename T, typename A>
888 inline void
889 vec<T, A, vl_embed>::truncate (unsigned size)
891 gcc_checking_assert (length () >= size);
892 m_vecpfx.m_num = size;
896 /* Insert an element, OBJ, at the IXth position of this vector. There
897 must be sufficient space. */
899 template<typename T, typename A>
900 inline void
901 vec<T, A, vl_embed>::quick_insert (unsigned ix, const T &obj)
903 gcc_checking_assert (length () < allocated ());
904 gcc_checking_assert (ix <= length ());
905 T *slot = &m_vecdata[ix];
906 memmove (slot + 1, slot, (m_vecpfx.m_num++ - ix) * sizeof (T));
907 *slot = obj;
911 /* Remove an element from the IXth position of this vector. Ordering of
912 remaining elements is preserved. This is an O(N) operation due to
913 memmove. */
915 template<typename T, typename A>
916 inline void
917 vec<T, A, vl_embed>::ordered_remove (unsigned ix)
919 gcc_checking_assert (ix < length ());
920 T *slot = &m_vecdata[ix];
921 memmove (slot, slot + 1, (--m_vecpfx.m_num - ix) * sizeof (T));
925 /* Remove an element from the IXth position of this vector. Ordering of
926 remaining elements is destroyed. This is an O(1) operation. */
928 template<typename T, typename A>
929 inline void
930 vec<T, A, vl_embed>::unordered_remove (unsigned ix)
932 gcc_checking_assert (ix < length ());
933 m_vecdata[ix] = m_vecdata[--m_vecpfx.m_num];
937 /* Remove LEN elements starting at the IXth. Ordering is retained.
938 This is an O(N) operation due to memmove. */
940 template<typename T, typename A>
941 inline void
942 vec<T, A, vl_embed>::block_remove (unsigned ix, unsigned len)
944 gcc_checking_assert (ix + len <= length ());
945 T *slot = &m_vecdata[ix];
946 m_vecpfx.m_num -= len;
947 memmove (slot, slot + len, (m_vecpfx.m_num - ix) * sizeof (T));
951 /* Sort the contents of this vector with qsort. CMP is the comparison
952 function to pass to qsort. */
954 template<typename T, typename A>
955 inline void
956 vec<T, A, vl_embed>::qsort (int (*cmp) (const void *, const void *))
958 if (length () > 1)
959 ::qsort (address (), length (), sizeof (T), cmp);
963 /* Search the contents of the sorted vector with a binary search.
964 CMP is the comparison function to pass to bsearch. */
966 template<typename T, typename A>
967 inline T *
968 vec<T, A, vl_embed>::bsearch (const void *key,
969 int (*compar) (const void *, const void *))
971 const void *base = this->address ();
972 size_t nmemb = this->length ();
973 size_t size = sizeof (T);
974 /* The following is a copy of glibc stdlib-bsearch.h. */
975 size_t l, u, idx;
976 const void *p;
977 int comparison;
979 l = 0;
980 u = nmemb;
981 while (l < u)
983 idx = (l + u) / 2;
984 p = (const void *) (((const char *) base) + (idx * size));
985 comparison = (*compar) (key, p);
986 if (comparison < 0)
987 u = idx;
988 else if (comparison > 0)
989 l = idx + 1;
990 else
991 return (T *)const_cast<void *>(p);
994 return NULL;
998 /* Find and return the first position in which OBJ could be inserted
999 without changing the ordering of this vector. LESSTHAN is a
1000 function that returns true if the first argument is strictly less
1001 than the second. */
1003 template<typename T, typename A>
1004 unsigned
1005 vec<T, A, vl_embed>::lower_bound (T obj, bool (*lessthan)(const T &, const T &))
1006 const
1008 unsigned int len = length ();
1009 unsigned int half, middle;
1010 unsigned int first = 0;
1011 while (len > 0)
1013 half = len / 2;
1014 middle = first;
1015 middle += half;
1016 T middle_elem = (*this)[middle];
1017 if (lessthan (middle_elem, obj))
1019 first = middle;
1020 ++first;
1021 len = len - half - 1;
1023 else
1024 len = half;
1026 return first;
1030 /* Return the number of bytes needed to embed an instance of an
1031 embeddable vec inside another data structure.
1033 Use these methods to determine the required size and initialization
1034 of a vector V of type T embedded within another structure (as the
1035 final member):
1037 size_t vec<T, A, vl_embed>::embedded_size (unsigned alloc);
1038 void v->embedded_init (unsigned alloc, unsigned num);
1040 These allow the caller to perform the memory allocation. */
1042 template<typename T, typename A>
1043 inline size_t
1044 vec<T, A, vl_embed>::embedded_size (unsigned alloc)
1046 typedef vec<T, A, vl_embed> vec_embedded;
1047 return offsetof (vec_embedded, m_vecdata) + alloc * sizeof (T);
1051 /* Initialize the vector to contain room for ALLOC elements and
1052 NUM active elements. */
1054 template<typename T, typename A>
1055 inline void
1056 vec<T, A, vl_embed>::embedded_init (unsigned alloc, unsigned num, unsigned aut)
1058 m_vecpfx.m_alloc = alloc;
1059 m_vecpfx.m_using_auto_storage = aut;
1060 m_vecpfx.m_num = num;
1064 /* Grow the vector to a specific length. LEN must be as long or longer than
1065 the current length. The new elements are uninitialized. */
1067 template<typename T, typename A>
1068 inline void
1069 vec<T, A, vl_embed>::quick_grow (unsigned len)
1071 gcc_checking_assert (length () <= len && len <= m_vecpfx.m_alloc);
1072 m_vecpfx.m_num = len;
1076 /* Grow the vector to a specific length. LEN must be as long or longer than
1077 the current length. The new elements are initialized to zero. */
1079 template<typename T, typename A>
1080 inline void
1081 vec<T, A, vl_embed>::quick_grow_cleared (unsigned len)
1083 unsigned oldlen = length ();
1084 quick_grow (len);
1085 memset (&(address ()[oldlen]), 0, sizeof (T) * (len - oldlen));
1089 /* Garbage collection support for vec<T, A, vl_embed>. */
1091 template<typename T>
1092 void
1093 gt_ggc_mx (vec<T, va_gc> *v)
1095 extern void gt_ggc_mx (T &);
1096 for (unsigned i = 0; i < v->length (); i++)
1097 gt_ggc_mx ((*v)[i]);
1100 template<typename T>
1101 void
1102 gt_ggc_mx (vec<T, va_gc_atomic, vl_embed> *v ATTRIBUTE_UNUSED)
1104 /* Nothing to do. Vectors of atomic types wrt GC do not need to
1105 be traversed. */
1109 /* PCH support for vec<T, A, vl_embed>. */
1111 template<typename T, typename A>
1112 void
1113 gt_pch_nx (vec<T, A, vl_embed> *v)
1115 extern void gt_pch_nx (T &);
1116 for (unsigned i = 0; i < v->length (); i++)
1117 gt_pch_nx ((*v)[i]);
1120 template<typename T, typename A>
1121 void
1122 gt_pch_nx (vec<T *, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
1124 for (unsigned i = 0; i < v->length (); i++)
1125 op (&((*v)[i]), cookie);
1128 template<typename T, typename A>
1129 void
1130 gt_pch_nx (vec<T, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
1132 extern void gt_pch_nx (T *, gt_pointer_operator, void *);
1133 for (unsigned i = 0; i < v->length (); i++)
1134 gt_pch_nx (&((*v)[i]), op, cookie);
1138 /* Space efficient vector. These vectors can grow dynamically and are
1139 allocated together with their control data. They are suited to be
1140 included in data structures. Prior to initial allocation, they
1141 only take a single word of storage.
1143 These vectors are implemented as a pointer to an embeddable vector.
1144 The semantics allow for this pointer to be NULL to represent empty
1145 vectors. This way, empty vectors occupy minimal space in the
1146 structure containing them.
1148 Properties:
1150 - The whole vector and control data are allocated in a single
1151 contiguous block.
1152 - The whole vector may be re-allocated.
1153 - Vector data may grow and shrink.
1154 - Access and manipulation requires a pointer test and
1155 indirection.
1156 - It requires 1 word of storage (prior to vector allocation).
1159 Limitations:
1161 These vectors must be PODs because they are stored in unions.
1162 (http://en.wikipedia.org/wiki/Plain_old_data_structures).
1163 As long as we use C++03, we cannot have constructors nor
1164 destructors in classes that are stored in unions. */
1166 template<typename T>
1167 struct vec<T, va_heap, vl_ptr>
1169 public:
1170 /* Memory allocation and deallocation for the embedded vector.
1171 Needed because we cannot have proper ctors/dtors defined. */
1172 void create (unsigned nelems CXX_MEM_STAT_INFO);
1173 void release (void);
1175 /* Vector operations. */
1176 bool exists (void) const
1177 { return m_vec != NULL; }
1179 bool is_empty (void) const
1180 { return m_vec ? m_vec->is_empty () : true; }
1182 unsigned length (void) const
1183 { return m_vec ? m_vec->length () : 0; }
1185 T *address (void)
1186 { return m_vec ? m_vec->m_vecdata : NULL; }
1188 const T *address (void) const
1189 { return m_vec ? m_vec->m_vecdata : NULL; }
1191 const T &operator[] (unsigned ix) const
1192 { return (*m_vec)[ix]; }
1194 bool operator!=(const vec &other) const
1195 { return !(*this == other); }
1197 bool operator==(const vec &other) const
1198 { return address () == other.address (); }
1200 T &operator[] (unsigned ix)
1201 { return (*m_vec)[ix]; }
1203 T &last (void)
1204 { return m_vec->last (); }
1206 bool space (int nelems) const
1207 { return m_vec ? m_vec->space (nelems) : nelems == 0; }
1209 bool iterate (unsigned ix, T *p) const;
1210 bool iterate (unsigned ix, T **p) const;
1211 vec copy (ALONE_CXX_MEM_STAT_INFO) const;
1212 bool reserve (unsigned, bool = false CXX_MEM_STAT_INFO);
1213 bool reserve_exact (unsigned CXX_MEM_STAT_INFO);
1214 void splice (vec &);
1215 void safe_splice (vec & CXX_MEM_STAT_INFO);
1216 T *quick_push (const T &);
1217 T *safe_push (const T &CXX_MEM_STAT_INFO);
1218 T &pop (void);
1219 void truncate (unsigned);
1220 void safe_grow (unsigned CXX_MEM_STAT_INFO);
1221 void safe_grow_cleared (unsigned CXX_MEM_STAT_INFO);
1222 void quick_grow (unsigned);
1223 void quick_grow_cleared (unsigned);
1224 void quick_insert (unsigned, const T &);
1225 void safe_insert (unsigned, const T & CXX_MEM_STAT_INFO);
1226 void ordered_remove (unsigned);
1227 void unordered_remove (unsigned);
1228 void block_remove (unsigned, unsigned);
1229 void qsort (int (*) (const void *, const void *));
1230 T *bsearch (const void *key, int (*compar)(const void *, const void *));
1231 unsigned lower_bound (T, bool (*)(const T &, const T &)) const;
1233 bool using_auto_storage () const;
1235 /* FIXME - This field should be private, but we need to cater to
1236 compilers that have stricter notions of PODness for types. */
1237 vec<T, va_heap, vl_embed> *m_vec;
1241 /* auto_vec is a subclass of vec that automatically manages creating and
1242 releasing the internal vector. If N is non zero then it has N elements of
1243 internal storage. The default is no internal storage, and you probably only
1244 want to ask for internal storage for vectors on the stack because if the
1245 size of the vector is larger than the internal storage that space is wasted.
1247 template<typename T, size_t N = 0>
1248 class auto_vec : public vec<T, va_heap>
1250 public:
1251 auto_vec ()
1253 m_auto.embedded_init (MAX (N, 2), 0, 1);
1254 this->m_vec = &m_auto;
1257 ~auto_vec ()
1259 this->release ();
1262 private:
1263 vec<T, va_heap, vl_embed> m_auto;
1264 T m_data[MAX (N - 1, 1)];
1267 /* auto_vec is a sub class of vec whose storage is released when it is
1268 destroyed. */
1269 template<typename T>
1270 class auto_vec<T, 0> : public vec<T, va_heap>
1272 public:
1273 auto_vec () { this->m_vec = NULL; }
1274 auto_vec (size_t n) { this->create (n); }
1275 ~auto_vec () { this->release (); }
1279 /* Allocate heap memory for pointer V and create the internal vector
1280 with space for NELEMS elements. If NELEMS is 0, the internal
1281 vector is initialized to empty. */
1283 template<typename T>
1284 inline void
1285 vec_alloc (vec<T> *&v, unsigned nelems CXX_MEM_STAT_INFO)
1287 v = new vec<T>;
1288 v->create (nelems PASS_MEM_STAT);
1292 /* Conditionally allocate heap memory for VEC and its internal vector. */
1294 template<typename T>
1295 inline void
1296 vec_check_alloc (vec<T, va_heap> *&vec, unsigned nelems CXX_MEM_STAT_INFO)
1298 if (!vec)
1299 vec_alloc (vec, nelems PASS_MEM_STAT);
1303 /* Free the heap memory allocated by vector V and set it to NULL. */
1305 template<typename T>
1306 inline void
1307 vec_free (vec<T> *&v)
1309 if (v == NULL)
1310 return;
1312 v->release ();
1313 delete v;
1314 v = NULL;
1318 /* Return iteration condition and update PTR to point to the IX'th
1319 element of this vector. Use this to iterate over the elements of a
1320 vector as follows,
1322 for (ix = 0; v.iterate (ix, &ptr); ix++)
1323 continue; */
1325 template<typename T>
1326 inline bool
1327 vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T *ptr) const
1329 if (m_vec)
1330 return m_vec->iterate (ix, ptr);
1331 else
1333 *ptr = 0;
1334 return false;
1339 /* Return iteration condition and update *PTR to point to the
1340 IX'th element of this vector. Use this to iterate over the
1341 elements of a vector as follows,
1343 for (ix = 0; v->iterate (ix, &ptr); ix++)
1344 continue;
1346 This variant is for vectors of objects. */
1348 template<typename T>
1349 inline bool
1350 vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T **ptr) const
1352 if (m_vec)
1353 return m_vec->iterate (ix, ptr);
1354 else
1356 *ptr = 0;
1357 return false;
1362 /* Convenience macro for forward iteration. */
1363 #define FOR_EACH_VEC_ELT(V, I, P) \
1364 for (I = 0; (V).iterate ((I), &(P)); ++(I))
1366 #define FOR_EACH_VEC_SAFE_ELT(V, I, P) \
1367 for (I = 0; vec_safe_iterate ((V), (I), &(P)); ++(I))
1369 /* Likewise, but start from FROM rather than 0. */
1370 #define FOR_EACH_VEC_ELT_FROM(V, I, P, FROM) \
1371 for (I = (FROM); (V).iterate ((I), &(P)); ++(I))
1373 /* Convenience macro for reverse iteration. */
1374 #define FOR_EACH_VEC_ELT_REVERSE(V, I, P) \
1375 for (I = (V).length () - 1; \
1376 (V).iterate ((I), &(P)); \
1377 (I)--)
1379 #define FOR_EACH_VEC_SAFE_ELT_REVERSE(V, I, P) \
1380 for (I = vec_safe_length (V) - 1; \
1381 vec_safe_iterate ((V), (I), &(P)); \
1382 (I)--)
1385 /* Return a copy of this vector. */
1387 template<typename T>
1388 inline vec<T, va_heap, vl_ptr>
1389 vec<T, va_heap, vl_ptr>::copy (ALONE_MEM_STAT_DECL) const
1391 vec<T, va_heap, vl_ptr> new_vec = vNULL;
1392 if (length ())
1393 new_vec.m_vec = m_vec->copy ();
1394 return new_vec;
1398 /* Ensure that the vector has at least RESERVE slots available (if
1399 EXACT is false), or exactly RESERVE slots available (if EXACT is
1400 true).
1402 This may create additional headroom if EXACT is false.
1404 Note that this can cause the embedded vector to be reallocated.
1405 Returns true iff reallocation actually occurred. */
1407 template<typename T>
1408 inline bool
1409 vec<T, va_heap, vl_ptr>::reserve (unsigned nelems, bool exact MEM_STAT_DECL)
1411 if (space (nelems))
1412 return false;
1414 /* For now play a game with va_heap::reserve to hide our auto storage if any,
1415 this is necessary because it doesn't have enough information to know the
1416 embedded vector is in auto storage, and so should not be freed. */
1417 vec<T, va_heap, vl_embed> *oldvec = m_vec;
1418 unsigned int oldsize = 0;
1419 bool handle_auto_vec = m_vec && using_auto_storage ();
1420 if (handle_auto_vec)
1422 m_vec = NULL;
1423 oldsize = oldvec->length ();
1424 nelems += oldsize;
1427 va_heap::reserve (m_vec, nelems, exact PASS_MEM_STAT);
1428 if (handle_auto_vec)
1430 memcpy (m_vec->address (), oldvec->address (), sizeof (T) * oldsize);
1431 m_vec->m_vecpfx.m_num = oldsize;
1434 return true;
1438 /* Ensure that this vector has exactly NELEMS slots available. This
1439 will not create additional headroom. Note this can cause the
1440 embedded vector to be reallocated. Returns true iff reallocation
1441 actually occurred. */
1443 template<typename T>
1444 inline bool
1445 vec<T, va_heap, vl_ptr>::reserve_exact (unsigned nelems MEM_STAT_DECL)
1447 return reserve (nelems, true PASS_MEM_STAT);
1451 /* Create the internal vector and reserve NELEMS for it. This is
1452 exactly like vec::reserve, but the internal vector is
1453 unconditionally allocated from scratch. The old one, if it
1454 existed, is lost. */
1456 template<typename T>
1457 inline void
1458 vec<T, va_heap, vl_ptr>::create (unsigned nelems MEM_STAT_DECL)
1460 m_vec = NULL;
1461 if (nelems > 0)
1462 reserve_exact (nelems PASS_MEM_STAT);
1466 /* Free the memory occupied by the embedded vector. */
1468 template<typename T>
1469 inline void
1470 vec<T, va_heap, vl_ptr>::release (void)
1472 if (!m_vec)
1473 return;
1475 if (using_auto_storage ())
1477 m_vec->m_vecpfx.m_num = 0;
1478 return;
1481 va_heap::release (m_vec);
1484 /* Copy the elements from SRC to the end of this vector as if by memcpy.
1485 SRC and this vector must be allocated with the same memory
1486 allocation mechanism. This vector is assumed to have sufficient
1487 headroom available. */
1489 template<typename T>
1490 inline void
1491 vec<T, va_heap, vl_ptr>::splice (vec<T, va_heap, vl_ptr> &src)
1493 if (src.m_vec)
1494 m_vec->splice (*(src.m_vec));
1498 /* Copy the elements in SRC to the end of this vector as if by memcpy.
1499 SRC and this vector must be allocated with the same mechanism.
1500 If there is not enough headroom in this vector, it will be reallocated
1501 as needed. */
1503 template<typename T>
1504 inline void
1505 vec<T, va_heap, vl_ptr>::safe_splice (vec<T, va_heap, vl_ptr> &src
1506 MEM_STAT_DECL)
1508 if (src.length ())
1510 reserve_exact (src.length ());
1511 splice (src);
1516 /* Push OBJ (a new element) onto the end of the vector. There must be
1517 sufficient space in the vector. Return a pointer to the slot
1518 where OBJ was inserted. */
1520 template<typename T>
1521 inline T *
1522 vec<T, va_heap, vl_ptr>::quick_push (const T &obj)
1524 return m_vec->quick_push (obj);
1528 /* Push a new element OBJ onto the end of this vector. Reallocates
1529 the embedded vector, if needed. Return a pointer to the slot where
1530 OBJ was inserted. */
1532 template<typename T>
1533 inline T *
1534 vec<T, va_heap, vl_ptr>::safe_push (const T &obj MEM_STAT_DECL)
1536 reserve (1, false PASS_MEM_STAT);
1537 return quick_push (obj);
1541 /* Pop and return the last element off the end of the vector. */
1543 template<typename T>
1544 inline T &
1545 vec<T, va_heap, vl_ptr>::pop (void)
1547 return m_vec->pop ();
1551 /* Set the length of the vector to LEN. The new length must be less
1552 than or equal to the current length. This is an O(1) operation. */
1554 template<typename T>
1555 inline void
1556 vec<T, va_heap, vl_ptr>::truncate (unsigned size)
1558 if (m_vec)
1559 m_vec->truncate (size);
1560 else
1561 gcc_checking_assert (size == 0);
1565 /* Grow the vector to a specific length. LEN must be as long or
1566 longer than the current length. The new elements are
1567 uninitialized. Reallocate the internal vector, if needed. */
1569 template<typename T>
1570 inline void
1571 vec<T, va_heap, vl_ptr>::safe_grow (unsigned len MEM_STAT_DECL)
1573 unsigned oldlen = length ();
1574 gcc_checking_assert (oldlen <= len);
1575 reserve_exact (len - oldlen PASS_MEM_STAT);
1576 m_vec->quick_grow (len);
1580 /* Grow the embedded vector to a specific length. LEN must be as
1581 long or longer than the current length. The new elements are
1582 initialized to zero. Reallocate the internal vector, if needed. */
1584 template<typename T>
1585 inline void
1586 vec<T, va_heap, vl_ptr>::safe_grow_cleared (unsigned len MEM_STAT_DECL)
1588 unsigned oldlen = length ();
1589 safe_grow (len PASS_MEM_STAT);
1590 memset (&(address ()[oldlen]), 0, sizeof (T) * (len - oldlen));
1594 /* Same as vec::safe_grow but without reallocation of the internal vector.
1595 If the vector cannot be extended, a runtime assertion will be triggered. */
1597 template<typename T>
1598 inline void
1599 vec<T, va_heap, vl_ptr>::quick_grow (unsigned len)
1601 gcc_checking_assert (m_vec);
1602 m_vec->quick_grow (len);
1606 /* Same as vec::quick_grow_cleared but without reallocation of the
1607 internal vector. If the vector cannot be extended, a runtime
1608 assertion will be triggered. */
1610 template<typename T>
1611 inline void
1612 vec<T, va_heap, vl_ptr>::quick_grow_cleared (unsigned len)
1614 gcc_checking_assert (m_vec);
1615 m_vec->quick_grow_cleared (len);
1619 /* Insert an element, OBJ, at the IXth position of this vector. There
1620 must be sufficient space. */
1622 template<typename T>
1623 inline void
1624 vec<T, va_heap, vl_ptr>::quick_insert (unsigned ix, const T &obj)
1626 m_vec->quick_insert (ix, obj);
1630 /* Insert an element, OBJ, at the IXth position of the vector.
1631 Reallocate the embedded vector, if necessary. */
1633 template<typename T>
1634 inline void
1635 vec<T, va_heap, vl_ptr>::safe_insert (unsigned ix, const T &obj MEM_STAT_DECL)
1637 reserve (1, false PASS_MEM_STAT);
1638 quick_insert (ix, obj);
1642 /* Remove an element from the IXth position of this vector. Ordering of
1643 remaining elements is preserved. This is an O(N) operation due to
1644 a memmove. */
1646 template<typename T>
1647 inline void
1648 vec<T, va_heap, vl_ptr>::ordered_remove (unsigned ix)
1650 m_vec->ordered_remove (ix);
1654 /* Remove an element from the IXth position of this vector. Ordering
1655 of remaining elements is destroyed. This is an O(1) operation. */
1657 template<typename T>
1658 inline void
1659 vec<T, va_heap, vl_ptr>::unordered_remove (unsigned ix)
1661 m_vec->unordered_remove (ix);
1665 /* Remove LEN elements starting at the IXth. Ordering is retained.
1666 This is an O(N) operation due to memmove. */
1668 template<typename T>
1669 inline void
1670 vec<T, va_heap, vl_ptr>::block_remove (unsigned ix, unsigned len)
1672 m_vec->block_remove (ix, len);
1676 /* Sort the contents of this vector with qsort. CMP is the comparison
1677 function to pass to qsort. */
1679 template<typename T>
1680 inline void
1681 vec<T, va_heap, vl_ptr>::qsort (int (*cmp) (const void *, const void *))
1683 if (m_vec)
1684 m_vec->qsort (cmp);
1688 /* Search the contents of the sorted vector with a binary search.
1689 CMP is the comparison function to pass to bsearch. */
1691 template<typename T>
1692 inline T *
1693 vec<T, va_heap, vl_ptr>::bsearch (const void *key,
1694 int (*cmp) (const void *, const void *))
1696 if (m_vec)
1697 return m_vec->bsearch (key, cmp);
1698 return NULL;
1702 /* Find and return the first position in which OBJ could be inserted
1703 without changing the ordering of this vector. LESSTHAN is a
1704 function that returns true if the first argument is strictly less
1705 than the second. */
1707 template<typename T>
1708 inline unsigned
1709 vec<T, va_heap, vl_ptr>::lower_bound (T obj,
1710 bool (*lessthan)(const T &, const T &))
1711 const
1713 return m_vec ? m_vec->lower_bound (obj, lessthan) : 0;
1716 template<typename T>
1717 inline bool
1718 vec<T, va_heap, vl_ptr>::using_auto_storage () const
1720 return m_vec->m_vecpfx.m_using_auto_storage;
1723 #if (GCC_VERSION >= 3000)
1724 # pragma GCC poison m_vec m_vecpfx m_vecdata
1725 #endif
1727 #endif // GCC_VEC_H