1 /* Conditional constant propagation pass for the GNU compiler.
2 Copyright (C) 2000-2014 Free Software Foundation, Inc.
3 Adapted from original RTL SSA-CCP by Daniel Berlin <dberlin@dberlin.org>
4 Adapted to GIMPLE trees by Diego Novillo <dnovillo@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by the
10 Free Software Foundation; either version 3, or (at your option) any
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* Conditional constant propagation (CCP) is based on the SSA
23 propagation engine (tree-ssa-propagate.c). Constant assignments of
24 the form VAR = CST are propagated from the assignments into uses of
25 VAR, which in turn may generate new constants. The simulation uses
26 a four level lattice to keep track of constant values associated
27 with SSA names. Given an SSA name V_i, it may take one of the
30 UNINITIALIZED -> the initial state of the value. This value
31 is replaced with a correct initial value
32 the first time the value is used, so the
33 rest of the pass does not need to care about
34 it. Using this value simplifies initialization
35 of the pass, and prevents us from needlessly
36 scanning statements that are never reached.
38 UNDEFINED -> V_i is a local variable whose definition
39 has not been processed yet. Therefore we
40 don't yet know if its value is a constant
43 CONSTANT -> V_i has been found to hold a constant
46 VARYING -> V_i cannot take a constant value, or if it
47 does, it is not possible to determine it
50 The core of SSA-CCP is in ccp_visit_stmt and ccp_visit_phi_node:
52 1- In ccp_visit_stmt, we are interested in assignments whose RHS
53 evaluates into a constant and conditional jumps whose predicate
54 evaluates into a boolean true or false. When an assignment of
55 the form V_i = CONST is found, V_i's lattice value is set to
56 CONSTANT and CONST is associated with it. This causes the
57 propagation engine to add all the SSA edges coming out the
58 assignment into the worklists, so that statements that use V_i
61 If the statement is a conditional with a constant predicate, we
62 mark the outgoing edges as executable or not executable
63 depending on the predicate's value. This is then used when
64 visiting PHI nodes to know when a PHI argument can be ignored.
67 2- In ccp_visit_phi_node, if all the PHI arguments evaluate to the
68 same constant C, then the LHS of the PHI is set to C. This
69 evaluation is known as the "meet operation". Since one of the
70 goals of this evaluation is to optimistically return constant
71 values as often as possible, it uses two main short cuts:
73 - If an argument is flowing in through a non-executable edge, it
74 is ignored. This is useful in cases like this:
80 a_11 = PHI (a_9, a_10)
82 If PRED is known to always evaluate to false, then we can
83 assume that a_11 will always take its value from a_10, meaning
84 that instead of consider it VARYING (a_9 and a_10 have
85 different values), we can consider it CONSTANT 100.
87 - If an argument has an UNDEFINED value, then it does not affect
88 the outcome of the meet operation. If a variable V_i has an
89 UNDEFINED value, it means that either its defining statement
90 hasn't been visited yet or V_i has no defining statement, in
91 which case the original symbol 'V' is being used
92 uninitialized. Since 'V' is a local variable, the compiler
93 may assume any initial value for it.
96 After propagation, every variable V_i that ends up with a lattice
97 value of CONSTANT will have the associated constant value in the
98 array CONST_VAL[i].VALUE. That is fed into substitute_and_fold for
99 final substitution and folding.
103 Constant propagation with conditional branches,
104 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
106 Building an Optimizing Compiler,
107 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
109 Advanced Compiler Design and Implementation,
110 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
114 #include "coretypes.h"
117 #include "stor-layout.h"
120 #include "basic-block.h"
121 #include "function.h"
122 #include "gimple-pretty-print.h"
123 #include "hash-table.h"
124 #include "tree-ssa-alias.h"
125 #include "internal-fn.h"
126 #include "gimple-fold.h"
128 #include "gimple-expr.h"
131 #include "gimplify.h"
132 #include "gimple-iterator.h"
133 #include "gimple-ssa.h"
134 #include "tree-cfg.h"
135 #include "tree-phinodes.h"
136 #include "ssa-iterators.h"
137 #include "stringpool.h"
138 #include "tree-ssanames.h"
139 #include "tree-pass.h"
140 #include "tree-ssa-propagate.h"
141 #include "value-prof.h"
142 #include "langhooks.h"
144 #include "diagnostic-core.h"
149 /* Possible lattice values. */
158 struct prop_value_d
{
160 ccp_lattice_t lattice_val
;
162 /* Propagated value. */
165 /* Mask that applies to the propagated value during CCP. For
166 X with a CONSTANT lattice value X & ~mask == value & ~mask. */
170 typedef struct prop_value_d prop_value_t
;
172 /* Array of propagated constant values. After propagation,
173 CONST_VAL[I].VALUE holds the constant value for SSA_NAME(I). If
174 the constant is held in an SSA name representing a memory store
175 (i.e., a VDEF), CONST_VAL[I].MEM_REF will contain the actual
176 memory reference used to store (i.e., the LHS of the assignment
178 static prop_value_t
*const_val
;
179 static unsigned n_const_val
;
181 static void canonicalize_value (prop_value_t
*);
182 static bool ccp_fold_stmt (gimple_stmt_iterator
*);
184 /* Dump constant propagation value VAL to file OUTF prefixed by PREFIX. */
187 dump_lattice_value (FILE *outf
, const char *prefix
, prop_value_t val
)
189 switch (val
.lattice_val
)
192 fprintf (outf
, "%sUNINITIALIZED", prefix
);
195 fprintf (outf
, "%sUNDEFINED", prefix
);
198 fprintf (outf
, "%sVARYING", prefix
);
201 if (TREE_CODE (val
.value
) != INTEGER_CST
202 || val
.mask
.is_zero ())
204 fprintf (outf
, "%sCONSTANT ", prefix
);
205 print_generic_expr (outf
, val
.value
, dump_flags
);
209 double_int cval
= tree_to_double_int (val
.value
).and_not (val
.mask
);
210 fprintf (outf
, "%sCONSTANT " HOST_WIDE_INT_PRINT_DOUBLE_HEX
,
211 prefix
, cval
.high
, cval
.low
);
212 fprintf (outf
, " (" HOST_WIDE_INT_PRINT_DOUBLE_HEX
")",
213 val
.mask
.high
, val
.mask
.low
);
222 /* Print lattice value VAL to stderr. */
224 void debug_lattice_value (prop_value_t val
);
227 debug_lattice_value (prop_value_t val
)
229 dump_lattice_value (stderr
, "", val
);
230 fprintf (stderr
, "\n");
234 /* Compute a default value for variable VAR and store it in the
235 CONST_VAL array. The following rules are used to get default
238 1- Global and static variables that are declared constant are
241 2- Any other value is considered UNDEFINED. This is useful when
242 considering PHI nodes. PHI arguments that are undefined do not
243 change the constant value of the PHI node, which allows for more
244 constants to be propagated.
246 3- Variables defined by statements other than assignments and PHI
247 nodes are considered VARYING.
249 4- Initial values of variables that are not GIMPLE registers are
250 considered VARYING. */
253 get_default_value (tree var
)
255 prop_value_t val
= { UNINITIALIZED
, NULL_TREE
, { 0, 0 } };
258 stmt
= SSA_NAME_DEF_STMT (var
);
260 if (gimple_nop_p (stmt
))
262 /* Variables defined by an empty statement are those used
263 before being initialized. If VAR is a local variable, we
264 can assume initially that it is UNDEFINED, otherwise we must
265 consider it VARYING. */
266 if (!virtual_operand_p (var
)
267 && TREE_CODE (SSA_NAME_VAR (var
)) == VAR_DECL
)
268 val
.lattice_val
= UNDEFINED
;
271 val
.lattice_val
= VARYING
;
272 val
.mask
= double_int_minus_one
;
273 if (flag_tree_bit_ccp
)
275 double_int nonzero_bits
= get_nonzero_bits (var
);
277 = double_int::mask (TYPE_PRECISION (TREE_TYPE (var
)));
278 if (nonzero_bits
!= double_int_minus_one
&& nonzero_bits
!= mask
)
280 val
.lattice_val
= CONSTANT
;
281 val
.value
= build_zero_cst (TREE_TYPE (var
));
282 /* CCP wants the bits above precision set. */
283 val
.mask
= nonzero_bits
| ~mask
;
288 else if (is_gimple_assign (stmt
))
291 if (gimple_assign_single_p (stmt
)
292 && DECL_P (gimple_assign_rhs1 (stmt
))
293 && (cst
= get_symbol_constant_value (gimple_assign_rhs1 (stmt
))))
295 val
.lattice_val
= CONSTANT
;
300 /* Any other variable defined by an assignment is considered
302 val
.lattice_val
= UNDEFINED
;
305 else if ((is_gimple_call (stmt
)
306 && gimple_call_lhs (stmt
) != NULL_TREE
)
307 || gimple_code (stmt
) == GIMPLE_PHI
)
309 /* A variable defined by a call or a PHI node is considered
311 val
.lattice_val
= UNDEFINED
;
315 /* Otherwise, VAR will never take on a constant value. */
316 val
.lattice_val
= VARYING
;
317 val
.mask
= double_int_minus_one
;
324 /* Get the constant value associated with variable VAR. */
326 static inline prop_value_t
*
331 if (const_val
== NULL
332 || SSA_NAME_VERSION (var
) >= n_const_val
)
335 val
= &const_val
[SSA_NAME_VERSION (var
)];
336 if (val
->lattice_val
== UNINITIALIZED
)
337 *val
= get_default_value (var
);
339 canonicalize_value (val
);
344 /* Return the constant tree value associated with VAR. */
347 get_constant_value (tree var
)
350 if (TREE_CODE (var
) != SSA_NAME
)
352 if (is_gimple_min_invariant (var
))
356 val
= get_value (var
);
358 && val
->lattice_val
== CONSTANT
359 && (TREE_CODE (val
->value
) != INTEGER_CST
360 || val
->mask
.is_zero ()))
365 /* Sets the value associated with VAR to VARYING. */
368 set_value_varying (tree var
)
370 prop_value_t
*val
= &const_val
[SSA_NAME_VERSION (var
)];
372 val
->lattice_val
= VARYING
;
373 val
->value
= NULL_TREE
;
374 val
->mask
= double_int_minus_one
;
377 /* For float types, modify the value of VAL to make ccp work correctly
378 for non-standard values (-0, NaN):
380 If HONOR_SIGNED_ZEROS is false, and VAL = -0, we canonicalize it to 0.
381 If HONOR_NANS is false, and VAL is NaN, we canonicalize it to UNDEFINED.
382 This is to fix the following problem (see PR 29921): Suppose we have
386 and we set value of y to NaN. This causes value of x to be set to NaN.
387 When we later determine that y is in fact VARYING, fold uses the fact
388 that HONOR_NANS is false, and we try to change the value of x to 0,
389 causing an ICE. With HONOR_NANS being false, the real appearance of
390 NaN would cause undefined behavior, though, so claiming that y (and x)
391 are UNDEFINED initially is correct.
393 For other constants, make sure to drop TREE_OVERFLOW. */
396 canonicalize_value (prop_value_t
*val
)
398 enum machine_mode mode
;
402 if (val
->lattice_val
!= CONSTANT
)
405 if (TREE_OVERFLOW_P (val
->value
))
406 val
->value
= drop_tree_overflow (val
->value
);
408 if (TREE_CODE (val
->value
) != REAL_CST
)
411 d
= TREE_REAL_CST (val
->value
);
412 type
= TREE_TYPE (val
->value
);
413 mode
= TYPE_MODE (type
);
415 if (!HONOR_SIGNED_ZEROS (mode
)
416 && REAL_VALUE_MINUS_ZERO (d
))
418 val
->value
= build_real (type
, dconst0
);
422 if (!HONOR_NANS (mode
)
423 && REAL_VALUE_ISNAN (d
))
425 val
->lattice_val
= UNDEFINED
;
431 /* Return whether the lattice transition is valid. */
434 valid_lattice_transition (prop_value_t old_val
, prop_value_t new_val
)
436 /* Lattice transitions must always be monotonically increasing in
438 if (old_val
.lattice_val
< new_val
.lattice_val
)
441 if (old_val
.lattice_val
!= new_val
.lattice_val
)
444 if (!old_val
.value
&& !new_val
.value
)
447 /* Now both lattice values are CONSTANT. */
449 /* Allow transitioning from PHI <&x, not executable> == &x
450 to PHI <&x, &y> == common alignment. */
451 if (TREE_CODE (old_val
.value
) != INTEGER_CST
452 && TREE_CODE (new_val
.value
) == INTEGER_CST
)
455 /* Bit-lattices have to agree in the still valid bits. */
456 if (TREE_CODE (old_val
.value
) == INTEGER_CST
457 && TREE_CODE (new_val
.value
) == INTEGER_CST
)
458 return tree_to_double_int (old_val
.value
).and_not (new_val
.mask
)
459 == tree_to_double_int (new_val
.value
).and_not (new_val
.mask
);
461 /* Otherwise constant values have to agree. */
462 return operand_equal_p (old_val
.value
, new_val
.value
, 0);
465 /* Set the value for variable VAR to NEW_VAL. Return true if the new
466 value is different from VAR's previous value. */
469 set_lattice_value (tree var
, prop_value_t new_val
)
471 /* We can deal with old UNINITIALIZED values just fine here. */
472 prop_value_t
*old_val
= &const_val
[SSA_NAME_VERSION (var
)];
474 canonicalize_value (&new_val
);
476 /* We have to be careful to not go up the bitwise lattice
477 represented by the mask.
478 ??? This doesn't seem to be the best place to enforce this. */
479 if (new_val
.lattice_val
== CONSTANT
480 && old_val
->lattice_val
== CONSTANT
481 && TREE_CODE (new_val
.value
) == INTEGER_CST
482 && TREE_CODE (old_val
->value
) == INTEGER_CST
)
485 diff
= tree_to_double_int (new_val
.value
)
486 ^ tree_to_double_int (old_val
->value
);
487 new_val
.mask
= new_val
.mask
| old_val
->mask
| diff
;
490 gcc_assert (valid_lattice_transition (*old_val
, new_val
));
492 /* If *OLD_VAL and NEW_VAL are the same, return false to inform the
493 caller that this was a non-transition. */
494 if (old_val
->lattice_val
!= new_val
.lattice_val
495 || (new_val
.lattice_val
== CONSTANT
496 && TREE_CODE (new_val
.value
) == INTEGER_CST
497 && (TREE_CODE (old_val
->value
) != INTEGER_CST
498 || new_val
.mask
!= old_val
->mask
)))
500 /* ??? We would like to delay creation of INTEGER_CSTs from
501 partially constants here. */
503 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
505 dump_lattice_value (dump_file
, "Lattice value changed to ", new_val
);
506 fprintf (dump_file
, ". Adding SSA edges to worklist.\n");
511 gcc_assert (new_val
.lattice_val
!= UNINITIALIZED
);
518 static prop_value_t
get_value_for_expr (tree
, bool);
519 static prop_value_t
bit_value_binop (enum tree_code
, tree
, tree
, tree
);
520 static void bit_value_binop_1 (enum tree_code
, tree
, double_int
*, double_int
*,
521 tree
, double_int
, double_int
,
522 tree
, double_int
, double_int
);
524 /* Return a double_int that can be used for bitwise simplifications
528 value_to_double_int (prop_value_t val
)
531 && TREE_CODE (val
.value
) == INTEGER_CST
)
532 return tree_to_double_int (val
.value
);
534 return double_int_zero
;
537 /* Return the value for the address expression EXPR based on alignment
541 get_value_from_alignment (tree expr
)
543 tree type
= TREE_TYPE (expr
);
545 unsigned HOST_WIDE_INT bitpos
;
548 gcc_assert (TREE_CODE (expr
) == ADDR_EXPR
);
550 get_pointer_alignment_1 (expr
, &align
, &bitpos
);
551 val
.mask
= (POINTER_TYPE_P (type
) || TYPE_UNSIGNED (type
)
552 ? double_int::mask (TYPE_PRECISION (type
))
553 : double_int_minus_one
)
554 .and_not (double_int::from_uhwi (align
/ BITS_PER_UNIT
- 1));
555 val
.lattice_val
= val
.mask
.is_minus_one () ? VARYING
: CONSTANT
;
556 if (val
.lattice_val
== CONSTANT
)
558 = double_int_to_tree (type
,
559 double_int::from_uhwi (bitpos
/ BITS_PER_UNIT
));
561 val
.value
= NULL_TREE
;
566 /* Return the value for the tree operand EXPR. If FOR_BITS_P is true
567 return constant bits extracted from alignment information for
568 invariant addresses. */
571 get_value_for_expr (tree expr
, bool for_bits_p
)
575 if (TREE_CODE (expr
) == SSA_NAME
)
577 val
= *get_value (expr
);
579 && val
.lattice_val
== CONSTANT
580 && TREE_CODE (val
.value
) == ADDR_EXPR
)
581 val
= get_value_from_alignment (val
.value
);
583 else if (is_gimple_min_invariant (expr
)
584 && (!for_bits_p
|| TREE_CODE (expr
) != ADDR_EXPR
))
586 val
.lattice_val
= CONSTANT
;
588 val
.mask
= double_int_zero
;
589 canonicalize_value (&val
);
591 else if (TREE_CODE (expr
) == ADDR_EXPR
)
592 val
= get_value_from_alignment (expr
);
595 val
.lattice_val
= VARYING
;
596 val
.mask
= double_int_minus_one
;
597 val
.value
= NULL_TREE
;
602 /* Return the likely CCP lattice value for STMT.
604 If STMT has no operands, then return CONSTANT.
606 Else if undefinedness of operands of STMT cause its value to be
607 undefined, then return UNDEFINED.
609 Else if any operands of STMT are constants, then return CONSTANT.
611 Else return VARYING. */
614 likely_value (gimple stmt
)
616 bool has_constant_operand
, has_undefined_operand
, all_undefined_operands
;
621 enum gimple_code code
= gimple_code (stmt
);
623 /* This function appears to be called only for assignments, calls,
624 conditionals, and switches, due to the logic in visit_stmt. */
625 gcc_assert (code
== GIMPLE_ASSIGN
626 || code
== GIMPLE_CALL
627 || code
== GIMPLE_COND
628 || code
== GIMPLE_SWITCH
);
630 /* If the statement has volatile operands, it won't fold to a
632 if (gimple_has_volatile_ops (stmt
))
635 /* Arrive here for more complex cases. */
636 has_constant_operand
= false;
637 has_undefined_operand
= false;
638 all_undefined_operands
= true;
639 FOR_EACH_SSA_TREE_OPERAND (use
, stmt
, iter
, SSA_OP_USE
)
641 prop_value_t
*val
= get_value (use
);
643 if (val
->lattice_val
== UNDEFINED
)
644 has_undefined_operand
= true;
646 all_undefined_operands
= false;
648 if (val
->lattice_val
== CONSTANT
)
649 has_constant_operand
= true;
652 /* There may be constants in regular rhs operands. For calls we
653 have to ignore lhs, fndecl and static chain, otherwise only
655 for (i
= (is_gimple_call (stmt
) ? 2 : 0) + gimple_has_lhs (stmt
);
656 i
< gimple_num_ops (stmt
); ++i
)
658 tree op
= gimple_op (stmt
, i
);
659 if (!op
|| TREE_CODE (op
) == SSA_NAME
)
661 if (is_gimple_min_invariant (op
))
662 has_constant_operand
= true;
665 if (has_constant_operand
)
666 all_undefined_operands
= false;
668 if (has_undefined_operand
669 && code
== GIMPLE_CALL
670 && gimple_call_internal_p (stmt
))
671 switch (gimple_call_internal_fn (stmt
))
673 /* These 3 builtins use the first argument just as a magic
674 way how to find out a decl uid. */
675 case IFN_GOMP_SIMD_LANE
:
676 case IFN_GOMP_SIMD_VF
:
677 case IFN_GOMP_SIMD_LAST_LANE
:
678 has_undefined_operand
= false;
684 /* If the operation combines operands like COMPLEX_EXPR make sure to
685 not mark the result UNDEFINED if only one part of the result is
687 if (has_undefined_operand
&& all_undefined_operands
)
689 else if (code
== GIMPLE_ASSIGN
&& has_undefined_operand
)
691 switch (gimple_assign_rhs_code (stmt
))
693 /* Unary operators are handled with all_undefined_operands. */
696 case POINTER_PLUS_EXPR
:
697 /* Not MIN_EXPR, MAX_EXPR. One VARYING operand may be selected.
698 Not bitwise operators, one VARYING operand may specify the
699 result completely. Not logical operators for the same reason.
700 Not COMPLEX_EXPR as one VARYING operand makes the result partly
701 not UNDEFINED. Not *DIV_EXPR, comparisons and shifts because
702 the undefined operand may be promoted. */
706 /* If any part of an address is UNDEFINED, like the index
707 of an ARRAY_EXPR, then treat the result as UNDEFINED. */
714 /* If there was an UNDEFINED operand but the result may be not UNDEFINED
715 fall back to CONSTANT. During iteration UNDEFINED may still drop
717 if (has_undefined_operand
)
720 /* We do not consider virtual operands here -- load from read-only
721 memory may have only VARYING virtual operands, but still be
723 if (has_constant_operand
724 || gimple_references_memory_p (stmt
))
730 /* Returns true if STMT cannot be constant. */
733 surely_varying_stmt_p (gimple stmt
)
735 /* If the statement has operands that we cannot handle, it cannot be
737 if (gimple_has_volatile_ops (stmt
))
740 /* If it is a call and does not return a value or is not a
741 builtin and not an indirect call or a call to function with
742 assume_aligned/alloc_align attribute, it is varying. */
743 if (is_gimple_call (stmt
))
745 tree fndecl
, fntype
= gimple_call_fntype (stmt
);
746 if (!gimple_call_lhs (stmt
)
747 || ((fndecl
= gimple_call_fndecl (stmt
)) != NULL_TREE
748 && !DECL_BUILT_IN (fndecl
)
749 && !lookup_attribute ("assume_aligned",
750 TYPE_ATTRIBUTES (fntype
))
751 && !lookup_attribute ("alloc_align",
752 TYPE_ATTRIBUTES (fntype
))))
756 /* Any other store operation is not interesting. */
757 else if (gimple_vdef (stmt
))
760 /* Anything other than assignments and conditional jumps are not
761 interesting for CCP. */
762 if (gimple_code (stmt
) != GIMPLE_ASSIGN
763 && gimple_code (stmt
) != GIMPLE_COND
764 && gimple_code (stmt
) != GIMPLE_SWITCH
765 && gimple_code (stmt
) != GIMPLE_CALL
)
771 /* Initialize local data structures for CCP. */
774 ccp_initialize (void)
778 n_const_val
= num_ssa_names
;
779 const_val
= XCNEWVEC (prop_value_t
, n_const_val
);
781 /* Initialize simulation flags for PHI nodes and statements. */
782 FOR_EACH_BB_FN (bb
, cfun
)
784 gimple_stmt_iterator i
;
786 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); gsi_next (&i
))
788 gimple stmt
= gsi_stmt (i
);
791 /* If the statement is a control insn, then we do not
792 want to avoid simulating the statement once. Failure
793 to do so means that those edges will never get added. */
794 if (stmt_ends_bb_p (stmt
))
797 is_varying
= surely_varying_stmt_p (stmt
);
804 /* If the statement will not produce a constant, mark
805 all its outputs VARYING. */
806 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, iter
, SSA_OP_ALL_DEFS
)
807 set_value_varying (def
);
809 prop_set_simulate_again (stmt
, !is_varying
);
813 /* Now process PHI nodes. We never clear the simulate_again flag on
814 phi nodes, since we do not know which edges are executable yet,
815 except for phi nodes for virtual operands when we do not do store ccp. */
816 FOR_EACH_BB_FN (bb
, cfun
)
818 gimple_stmt_iterator i
;
820 for (i
= gsi_start_phis (bb
); !gsi_end_p (i
); gsi_next (&i
))
822 gimple phi
= gsi_stmt (i
);
824 if (virtual_operand_p (gimple_phi_result (phi
)))
825 prop_set_simulate_again (phi
, false);
827 prop_set_simulate_again (phi
, true);
832 /* Debug count support. Reset the values of ssa names
833 VARYING when the total number ssa names analyzed is
834 beyond the debug count specified. */
840 for (i
= 0; i
< num_ssa_names
; i
++)
844 const_val
[i
].lattice_val
= VARYING
;
845 const_val
[i
].mask
= double_int_minus_one
;
846 const_val
[i
].value
= NULL_TREE
;
852 /* Do final substitution of propagated values, cleanup the flowgraph and
853 free allocated storage.
855 Return TRUE when something was optimized. */
860 bool something_changed
;
865 /* Derive alignment and misalignment information from partially
866 constant pointers in the lattice or nonzero bits from partially
867 constant integers. */
868 for (i
= 1; i
< num_ssa_names
; ++i
)
870 tree name
= ssa_name (i
);
872 unsigned int tem
, align
;
875 || (!POINTER_TYPE_P (TREE_TYPE (name
))
876 && (!INTEGRAL_TYPE_P (TREE_TYPE (name
))
877 /* Don't record nonzero bits before IPA to avoid
878 using too much memory. */
879 || first_pass_instance
)))
882 val
= get_value (name
);
883 if (val
->lattice_val
!= CONSTANT
884 || TREE_CODE (val
->value
) != INTEGER_CST
)
887 if (POINTER_TYPE_P (TREE_TYPE (name
)))
889 /* Trailing mask bits specify the alignment, trailing value
890 bits the misalignment. */
892 align
= (tem
& -tem
);
894 set_ptr_info_alignment (get_ptr_info (name
), align
,
895 (TREE_INT_CST_LOW (val
->value
)
900 double_int nonzero_bits
= val
->mask
;
901 nonzero_bits
= nonzero_bits
| tree_to_double_int (val
->value
);
902 nonzero_bits
&= get_nonzero_bits (name
);
903 set_nonzero_bits (name
, nonzero_bits
);
907 /* Perform substitutions based on the known constant values. */
908 something_changed
= substitute_and_fold (get_constant_value
,
909 ccp_fold_stmt
, true);
913 return something_changed
;;
917 /* Compute the meet operator between *VAL1 and *VAL2. Store the result
920 any M UNDEFINED = any
921 any M VARYING = VARYING
922 Ci M Cj = Ci if (i == j)
923 Ci M Cj = VARYING if (i != j)
927 ccp_lattice_meet (prop_value_t
*val1
, prop_value_t
*val2
)
929 if (val1
->lattice_val
== UNDEFINED
)
931 /* UNDEFINED M any = any */
934 else if (val2
->lattice_val
== UNDEFINED
)
936 /* any M UNDEFINED = any
937 Nothing to do. VAL1 already contains the value we want. */
940 else if (val1
->lattice_val
== VARYING
941 || val2
->lattice_val
== VARYING
)
943 /* any M VARYING = VARYING. */
944 val1
->lattice_val
= VARYING
;
945 val1
->mask
= double_int_minus_one
;
946 val1
->value
= NULL_TREE
;
948 else if (val1
->lattice_val
== CONSTANT
949 && val2
->lattice_val
== CONSTANT
950 && TREE_CODE (val1
->value
) == INTEGER_CST
951 && TREE_CODE (val2
->value
) == INTEGER_CST
)
953 /* Ci M Cj = Ci if (i == j)
954 Ci M Cj = VARYING if (i != j)
956 For INTEGER_CSTs mask unequal bits. If no equal bits remain,
958 val1
->mask
= val1
->mask
| val2
->mask
959 | (tree_to_double_int (val1
->value
)
960 ^ tree_to_double_int (val2
->value
));
961 if (val1
->mask
.is_minus_one ())
963 val1
->lattice_val
= VARYING
;
964 val1
->value
= NULL_TREE
;
967 else if (val1
->lattice_val
== CONSTANT
968 && val2
->lattice_val
== CONSTANT
969 && simple_cst_equal (val1
->value
, val2
->value
) == 1)
971 /* Ci M Cj = Ci if (i == j)
972 Ci M Cj = VARYING if (i != j)
974 VAL1 already contains the value we want for equivalent values. */
976 else if (val1
->lattice_val
== CONSTANT
977 && val2
->lattice_val
== CONSTANT
978 && (TREE_CODE (val1
->value
) == ADDR_EXPR
979 || TREE_CODE (val2
->value
) == ADDR_EXPR
))
981 /* When not equal addresses are involved try meeting for
983 prop_value_t tem
= *val2
;
984 if (TREE_CODE (val1
->value
) == ADDR_EXPR
)
985 *val1
= get_value_for_expr (val1
->value
, true);
986 if (TREE_CODE (val2
->value
) == ADDR_EXPR
)
987 tem
= get_value_for_expr (val2
->value
, true);
988 ccp_lattice_meet (val1
, &tem
);
992 /* Any other combination is VARYING. */
993 val1
->lattice_val
= VARYING
;
994 val1
->mask
= double_int_minus_one
;
995 val1
->value
= NULL_TREE
;
1000 /* Loop through the PHI_NODE's parameters for BLOCK and compare their
1001 lattice values to determine PHI_NODE's lattice value. The value of a
1002 PHI node is determined calling ccp_lattice_meet with all the arguments
1003 of the PHI node that are incoming via executable edges. */
1005 static enum ssa_prop_result
1006 ccp_visit_phi_node (gimple phi
)
1009 prop_value_t
*old_val
, new_val
;
1011 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1013 fprintf (dump_file
, "\nVisiting PHI node: ");
1014 print_gimple_stmt (dump_file
, phi
, 0, dump_flags
);
1017 old_val
= get_value (gimple_phi_result (phi
));
1018 switch (old_val
->lattice_val
)
1021 return SSA_PROP_VARYING
;
1028 new_val
.lattice_val
= UNDEFINED
;
1029 new_val
.value
= NULL_TREE
;
1036 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
1038 /* Compute the meet operator over all the PHI arguments flowing
1039 through executable edges. */
1040 edge e
= gimple_phi_arg_edge (phi
, i
);
1042 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1045 "\n Argument #%d (%d -> %d %sexecutable)\n",
1046 i
, e
->src
->index
, e
->dest
->index
,
1047 (e
->flags
& EDGE_EXECUTABLE
) ? "" : "not ");
1050 /* If the incoming edge is executable, Compute the meet operator for
1051 the existing value of the PHI node and the current PHI argument. */
1052 if (e
->flags
& EDGE_EXECUTABLE
)
1054 tree arg
= gimple_phi_arg (phi
, i
)->def
;
1055 prop_value_t arg_val
= get_value_for_expr (arg
, false);
1057 ccp_lattice_meet (&new_val
, &arg_val
);
1059 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1061 fprintf (dump_file
, "\t");
1062 print_generic_expr (dump_file
, arg
, dump_flags
);
1063 dump_lattice_value (dump_file
, "\tValue: ", arg_val
);
1064 fprintf (dump_file
, "\n");
1067 if (new_val
.lattice_val
== VARYING
)
1072 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1074 dump_lattice_value (dump_file
, "\n PHI node value: ", new_val
);
1075 fprintf (dump_file
, "\n\n");
1078 /* Make the transition to the new value. */
1079 if (set_lattice_value (gimple_phi_result (phi
), new_val
))
1081 if (new_val
.lattice_val
== VARYING
)
1082 return SSA_PROP_VARYING
;
1084 return SSA_PROP_INTERESTING
;
1087 return SSA_PROP_NOT_INTERESTING
;
1090 /* Return the constant value for OP or OP otherwise. */
1093 valueize_op (tree op
)
1095 if (TREE_CODE (op
) == SSA_NAME
)
1097 tree tem
= get_constant_value (op
);
1104 /* CCP specific front-end to the non-destructive constant folding
1107 Attempt to simplify the RHS of STMT knowing that one or more
1108 operands are constants.
1110 If simplification is possible, return the simplified RHS,
1111 otherwise return the original RHS or NULL_TREE. */
1114 ccp_fold (gimple stmt
)
1116 location_t loc
= gimple_location (stmt
);
1117 switch (gimple_code (stmt
))
1121 /* Handle comparison operators that can appear in GIMPLE form. */
1122 tree op0
= valueize_op (gimple_cond_lhs (stmt
));
1123 tree op1
= valueize_op (gimple_cond_rhs (stmt
));
1124 enum tree_code code
= gimple_cond_code (stmt
);
1125 return fold_binary_loc (loc
, code
, boolean_type_node
, op0
, op1
);
1130 /* Return the constant switch index. */
1131 return valueize_op (gimple_switch_index (stmt
));
1136 return gimple_fold_stmt_to_constant_1 (stmt
, valueize_op
);
1143 /* Apply the operation CODE in type TYPE to the value, mask pair
1144 RVAL and RMASK representing a value of type RTYPE and set
1145 the value, mask pair *VAL and *MASK to the result. */
1148 bit_value_unop_1 (enum tree_code code
, tree type
,
1149 double_int
*val
, double_int
*mask
,
1150 tree rtype
, double_int rval
, double_int rmask
)
1161 double_int temv
, temm
;
1162 /* Return ~rval + 1. */
1163 bit_value_unop_1 (BIT_NOT_EXPR
, type
, &temv
, &temm
, type
, rval
, rmask
);
1164 bit_value_binop_1 (PLUS_EXPR
, type
, val
, mask
,
1166 type
, double_int_one
, double_int_zero
);
1174 /* First extend mask and value according to the original type. */
1175 uns
= TYPE_UNSIGNED (rtype
);
1176 *mask
= rmask
.ext (TYPE_PRECISION (rtype
), uns
);
1177 *val
= rval
.ext (TYPE_PRECISION (rtype
), uns
);
1179 /* Then extend mask and value according to the target type. */
1180 uns
= TYPE_UNSIGNED (type
);
1181 *mask
= (*mask
).ext (TYPE_PRECISION (type
), uns
);
1182 *val
= (*val
).ext (TYPE_PRECISION (type
), uns
);
1187 *mask
= double_int_minus_one
;
1192 /* Apply the operation CODE in type TYPE to the value, mask pairs
1193 R1VAL, R1MASK and R2VAL, R2MASK representing a values of type R1TYPE
1194 and R2TYPE and set the value, mask pair *VAL and *MASK to the result. */
1197 bit_value_binop_1 (enum tree_code code
, tree type
,
1198 double_int
*val
, double_int
*mask
,
1199 tree r1type
, double_int r1val
, double_int r1mask
,
1200 tree r2type
, double_int r2val
, double_int r2mask
)
1202 bool uns
= TYPE_UNSIGNED (type
);
1203 /* Assume we'll get a constant result. Use an initial varying value,
1204 we fall back to varying in the end if necessary. */
1205 *mask
= double_int_minus_one
;
1209 /* The mask is constant where there is a known not
1210 set bit, (m1 | m2) & ((v1 | m1) & (v2 | m2)) */
1211 *mask
= (r1mask
| r2mask
) & (r1val
| r1mask
) & (r2val
| r2mask
);
1212 *val
= r1val
& r2val
;
1216 /* The mask is constant where there is a known
1217 set bit, (m1 | m2) & ~((v1 & ~m1) | (v2 & ~m2)). */
1218 *mask
= (r1mask
| r2mask
)
1219 .and_not (r1val
.and_not (r1mask
) | r2val
.and_not (r2mask
));
1220 *val
= r1val
| r2val
;
1225 *mask
= r1mask
| r2mask
;
1226 *val
= r1val
^ r2val
;
1231 if (r2mask
.is_zero ())
1233 HOST_WIDE_INT shift
= r2val
.low
;
1234 if (code
== RROTATE_EXPR
)
1236 *mask
= r1mask
.lrotate (shift
, TYPE_PRECISION (type
));
1237 *val
= r1val
.lrotate (shift
, TYPE_PRECISION (type
));
1243 /* ??? We can handle partially known shift counts if we know
1244 its sign. That way we can tell that (x << (y | 8)) & 255
1246 if (r2mask
.is_zero ())
1248 HOST_WIDE_INT shift
= r2val
.low
;
1249 if (code
== RSHIFT_EXPR
)
1251 /* We need to know if we are doing a left or a right shift
1252 to properly shift in zeros for left shift and unsigned
1253 right shifts and the sign bit for signed right shifts.
1254 For signed right shifts we shift in varying in case
1255 the sign bit was varying. */
1258 *mask
= r1mask
.llshift (shift
, TYPE_PRECISION (type
));
1259 *val
= r1val
.llshift (shift
, TYPE_PRECISION (type
));
1264 *mask
= r1mask
.rshift (shift
, TYPE_PRECISION (type
), !uns
);
1265 *val
= r1val
.rshift (shift
, TYPE_PRECISION (type
), !uns
);
1276 case POINTER_PLUS_EXPR
:
1279 /* Do the addition with unknown bits set to zero, to give carry-ins of
1280 zero wherever possible. */
1281 lo
= r1val
.and_not (r1mask
) + r2val
.and_not (r2mask
);
1282 lo
= lo
.ext (TYPE_PRECISION (type
), uns
);
1283 /* Do the addition with unknown bits set to one, to give carry-ins of
1284 one wherever possible. */
1285 hi
= (r1val
| r1mask
) + (r2val
| r2mask
);
1286 hi
= hi
.ext (TYPE_PRECISION (type
), uns
);
1287 /* Each bit in the result is known if (a) the corresponding bits in
1288 both inputs are known, and (b) the carry-in to that bit position
1289 is known. We can check condition (b) by seeing if we got the same
1290 result with minimised carries as with maximised carries. */
1291 *mask
= r1mask
| r2mask
| (lo
^ hi
);
1292 *mask
= (*mask
).ext (TYPE_PRECISION (type
), uns
);
1293 /* It shouldn't matter whether we choose lo or hi here. */
1300 double_int temv
, temm
;
1301 bit_value_unop_1 (NEGATE_EXPR
, r2type
, &temv
, &temm
,
1302 r2type
, r2val
, r2mask
);
1303 bit_value_binop_1 (PLUS_EXPR
, type
, val
, mask
,
1304 r1type
, r1val
, r1mask
,
1305 r2type
, temv
, temm
);
1311 /* Just track trailing zeros in both operands and transfer
1312 them to the other. */
1313 int r1tz
= (r1val
| r1mask
).trailing_zeros ();
1314 int r2tz
= (r2val
| r2mask
).trailing_zeros ();
1315 if (r1tz
+ r2tz
>= HOST_BITS_PER_DOUBLE_INT
)
1317 *mask
= double_int_zero
;
1318 *val
= double_int_zero
;
1320 else if (r1tz
+ r2tz
> 0)
1322 *mask
= ~double_int::mask (r1tz
+ r2tz
);
1323 *mask
= (*mask
).ext (TYPE_PRECISION (type
), uns
);
1324 *val
= double_int_zero
;
1332 double_int m
= r1mask
| r2mask
;
1333 if (r1val
.and_not (m
) != r2val
.and_not (m
))
1335 *mask
= double_int_zero
;
1336 *val
= ((code
== EQ_EXPR
) ? double_int_zero
: double_int_one
);
1340 /* We know the result of a comparison is always one or zero. */
1341 *mask
= double_int_one
;
1342 *val
= double_int_zero
;
1350 double_int tem
= r1val
;
1356 code
= swap_tree_comparison (code
);
1363 /* If the most significant bits are not known we know nothing. */
1364 if (r1mask
.is_negative () || r2mask
.is_negative ())
1367 /* For comparisons the signedness is in the comparison operands. */
1368 uns
= TYPE_UNSIGNED (r1type
);
1370 /* If we know the most significant bits we know the values
1371 value ranges by means of treating varying bits as zero
1372 or one. Do a cross comparison of the max/min pairs. */
1373 maxmin
= (r1val
| r1mask
).cmp (r2val
.and_not (r2mask
), uns
);
1374 minmax
= r1val
.and_not (r1mask
).cmp (r2val
| r2mask
, uns
);
1375 if (maxmin
< 0) /* r1 is less than r2. */
1377 *mask
= double_int_zero
;
1378 *val
= double_int_one
;
1380 else if (minmax
> 0) /* r1 is not less or equal to r2. */
1382 *mask
= double_int_zero
;
1383 *val
= double_int_zero
;
1385 else if (maxmin
== minmax
) /* r1 and r2 are equal. */
1387 /* This probably should never happen as we'd have
1388 folded the thing during fully constant value folding. */
1389 *mask
= double_int_zero
;
1390 *val
= (code
== LE_EXPR
? double_int_one
: double_int_zero
);
1394 /* We know the result of a comparison is always one or zero. */
1395 *mask
= double_int_one
;
1396 *val
= double_int_zero
;
1405 /* Return the propagation value when applying the operation CODE to
1406 the value RHS yielding type TYPE. */
1409 bit_value_unop (enum tree_code code
, tree type
, tree rhs
)
1411 prop_value_t rval
= get_value_for_expr (rhs
, true);
1412 double_int value
, mask
;
1415 if (rval
.lattice_val
== UNDEFINED
)
1418 gcc_assert ((rval
.lattice_val
== CONSTANT
1419 && TREE_CODE (rval
.value
) == INTEGER_CST
)
1420 || rval
.mask
.is_minus_one ());
1421 bit_value_unop_1 (code
, type
, &value
, &mask
,
1422 TREE_TYPE (rhs
), value_to_double_int (rval
), rval
.mask
);
1423 if (!mask
.is_minus_one ())
1425 val
.lattice_val
= CONSTANT
;
1427 /* ??? Delay building trees here. */
1428 val
.value
= double_int_to_tree (type
, value
);
1432 val
.lattice_val
= VARYING
;
1433 val
.value
= NULL_TREE
;
1434 val
.mask
= double_int_minus_one
;
1439 /* Return the propagation value when applying the operation CODE to
1440 the values RHS1 and RHS2 yielding type TYPE. */
1443 bit_value_binop (enum tree_code code
, tree type
, tree rhs1
, tree rhs2
)
1445 prop_value_t r1val
= get_value_for_expr (rhs1
, true);
1446 prop_value_t r2val
= get_value_for_expr (rhs2
, true);
1447 double_int value
, mask
;
1450 if (r1val
.lattice_val
== UNDEFINED
1451 || r2val
.lattice_val
== UNDEFINED
)
1453 val
.lattice_val
= VARYING
;
1454 val
.value
= NULL_TREE
;
1455 val
.mask
= double_int_minus_one
;
1459 gcc_assert ((r1val
.lattice_val
== CONSTANT
1460 && TREE_CODE (r1val
.value
) == INTEGER_CST
)
1461 || r1val
.mask
.is_minus_one ());
1462 gcc_assert ((r2val
.lattice_val
== CONSTANT
1463 && TREE_CODE (r2val
.value
) == INTEGER_CST
)
1464 || r2val
.mask
.is_minus_one ());
1465 bit_value_binop_1 (code
, type
, &value
, &mask
,
1466 TREE_TYPE (rhs1
), value_to_double_int (r1val
), r1val
.mask
,
1467 TREE_TYPE (rhs2
), value_to_double_int (r2val
), r2val
.mask
);
1468 if (!mask
.is_minus_one ())
1470 val
.lattice_val
= CONSTANT
;
1472 /* ??? Delay building trees here. */
1473 val
.value
= double_int_to_tree (type
, value
);
1477 val
.lattice_val
= VARYING
;
1478 val
.value
= NULL_TREE
;
1479 val
.mask
= double_int_minus_one
;
1484 /* Return the propagation value for __builtin_assume_aligned
1485 and functions with assume_aligned or alloc_aligned attribute.
1486 For __builtin_assume_aligned, ATTR is NULL_TREE,
1487 for assume_aligned attribute ATTR is non-NULL and ALLOC_ALIGNED
1488 is false, for alloc_aligned attribute ATTR is non-NULL and
1489 ALLOC_ALIGNED is true. */
1492 bit_value_assume_aligned (gimple stmt
, tree attr
, prop_value_t ptrval
,
1495 tree align
, misalign
= NULL_TREE
, type
;
1496 unsigned HOST_WIDE_INT aligni
, misaligni
= 0;
1497 prop_value_t alignval
;
1498 double_int value
, mask
;
1501 if (attr
== NULL_TREE
)
1503 tree ptr
= gimple_call_arg (stmt
, 0);
1504 type
= TREE_TYPE (ptr
);
1505 ptrval
= get_value_for_expr (ptr
, true);
1509 tree lhs
= gimple_call_lhs (stmt
);
1510 type
= TREE_TYPE (lhs
);
1513 if (ptrval
.lattice_val
== UNDEFINED
)
1515 gcc_assert ((ptrval
.lattice_val
== CONSTANT
1516 && TREE_CODE (ptrval
.value
) == INTEGER_CST
)
1517 || ptrval
.mask
.is_minus_one ());
1518 if (attr
== NULL_TREE
)
1520 /* Get aligni and misaligni from __builtin_assume_aligned. */
1521 align
= gimple_call_arg (stmt
, 1);
1522 if (!tree_fits_uhwi_p (align
))
1524 aligni
= tree_to_uhwi (align
);
1525 if (gimple_call_num_args (stmt
) > 2)
1527 misalign
= gimple_call_arg (stmt
, 2);
1528 if (!tree_fits_uhwi_p (misalign
))
1530 misaligni
= tree_to_uhwi (misalign
);
1535 /* Get aligni and misaligni from assume_aligned or
1536 alloc_align attributes. */
1537 if (TREE_VALUE (attr
) == NULL_TREE
)
1539 attr
= TREE_VALUE (attr
);
1540 align
= TREE_VALUE (attr
);
1541 if (!tree_fits_uhwi_p (align
))
1543 aligni
= tree_to_uhwi (align
);
1546 if (aligni
== 0 || aligni
> gimple_call_num_args (stmt
))
1548 align
= gimple_call_arg (stmt
, aligni
- 1);
1549 if (!tree_fits_uhwi_p (align
))
1551 aligni
= tree_to_uhwi (align
);
1553 else if (TREE_CHAIN (attr
) && TREE_VALUE (TREE_CHAIN (attr
)))
1555 misalign
= TREE_VALUE (TREE_CHAIN (attr
));
1556 if (!tree_fits_uhwi_p (misalign
))
1558 misaligni
= tree_to_uhwi (misalign
);
1561 if (aligni
<= 1 || (aligni
& (aligni
- 1)) != 0 || misaligni
>= aligni
)
1564 align
= build_int_cst_type (type
, -aligni
);
1565 alignval
= get_value_for_expr (align
, true);
1566 bit_value_binop_1 (BIT_AND_EXPR
, type
, &value
, &mask
,
1567 type
, value_to_double_int (ptrval
), ptrval
.mask
,
1568 type
, value_to_double_int (alignval
), alignval
.mask
);
1569 if (!mask
.is_minus_one ())
1571 val
.lattice_val
= CONSTANT
;
1573 gcc_assert ((mask
.low
& (aligni
- 1)) == 0);
1574 gcc_assert ((value
.low
& (aligni
- 1)) == 0);
1575 value
.low
|= misaligni
;
1576 /* ??? Delay building trees here. */
1577 val
.value
= double_int_to_tree (type
, value
);
1581 val
.lattice_val
= VARYING
;
1582 val
.value
= NULL_TREE
;
1583 val
.mask
= double_int_minus_one
;
1588 /* Evaluate statement STMT.
1589 Valid only for assignments, calls, conditionals, and switches. */
1592 evaluate_stmt (gimple stmt
)
1595 tree simplified
= NULL_TREE
;
1596 ccp_lattice_t likelyvalue
= likely_value (stmt
);
1597 bool is_constant
= false;
1600 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1602 fprintf (dump_file
, "which is likely ");
1603 switch (likelyvalue
)
1606 fprintf (dump_file
, "CONSTANT");
1609 fprintf (dump_file
, "UNDEFINED");
1612 fprintf (dump_file
, "VARYING");
1616 fprintf (dump_file
, "\n");
1619 /* If the statement is likely to have a CONSTANT result, then try
1620 to fold the statement to determine the constant value. */
1621 /* FIXME. This is the only place that we call ccp_fold.
1622 Since likely_value never returns CONSTANT for calls, we will
1623 not attempt to fold them, including builtins that may profit. */
1624 if (likelyvalue
== CONSTANT
)
1626 fold_defer_overflow_warnings ();
1627 simplified
= ccp_fold (stmt
);
1628 is_constant
= simplified
&& is_gimple_min_invariant (simplified
);
1629 fold_undefer_overflow_warnings (is_constant
, stmt
, 0);
1632 /* The statement produced a constant value. */
1633 val
.lattice_val
= CONSTANT
;
1634 val
.value
= simplified
;
1635 val
.mask
= double_int_zero
;
1638 /* If the statement is likely to have a VARYING result, then do not
1639 bother folding the statement. */
1640 else if (likelyvalue
== VARYING
)
1642 enum gimple_code code
= gimple_code (stmt
);
1643 if (code
== GIMPLE_ASSIGN
)
1645 enum tree_code subcode
= gimple_assign_rhs_code (stmt
);
1647 /* Other cases cannot satisfy is_gimple_min_invariant
1649 if (get_gimple_rhs_class (subcode
) == GIMPLE_SINGLE_RHS
)
1650 simplified
= gimple_assign_rhs1 (stmt
);
1652 else if (code
== GIMPLE_SWITCH
)
1653 simplified
= gimple_switch_index (stmt
);
1655 /* These cannot satisfy is_gimple_min_invariant without folding. */
1656 gcc_assert (code
== GIMPLE_CALL
|| code
== GIMPLE_COND
);
1657 is_constant
= simplified
&& is_gimple_min_invariant (simplified
);
1660 /* The statement produced a constant value. */
1661 val
.lattice_val
= CONSTANT
;
1662 val
.value
= simplified
;
1663 val
.mask
= double_int_zero
;
1667 /* Resort to simplification for bitwise tracking. */
1668 if (flag_tree_bit_ccp
1669 && (likelyvalue
== CONSTANT
|| is_gimple_call (stmt
))
1672 enum gimple_code code
= gimple_code (stmt
);
1673 val
.lattice_val
= VARYING
;
1674 val
.value
= NULL_TREE
;
1675 val
.mask
= double_int_minus_one
;
1676 if (code
== GIMPLE_ASSIGN
)
1678 enum tree_code subcode
= gimple_assign_rhs_code (stmt
);
1679 tree rhs1
= gimple_assign_rhs1 (stmt
);
1680 switch (get_gimple_rhs_class (subcode
))
1682 case GIMPLE_SINGLE_RHS
:
1683 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1
))
1684 || POINTER_TYPE_P (TREE_TYPE (rhs1
)))
1685 val
= get_value_for_expr (rhs1
, true);
1688 case GIMPLE_UNARY_RHS
:
1689 if ((INTEGRAL_TYPE_P (TREE_TYPE (rhs1
))
1690 || POINTER_TYPE_P (TREE_TYPE (rhs1
)))
1691 && (INTEGRAL_TYPE_P (gimple_expr_type (stmt
))
1692 || POINTER_TYPE_P (gimple_expr_type (stmt
))))
1693 val
= bit_value_unop (subcode
, gimple_expr_type (stmt
), rhs1
);
1696 case GIMPLE_BINARY_RHS
:
1697 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1
))
1698 || POINTER_TYPE_P (TREE_TYPE (rhs1
)))
1700 tree lhs
= gimple_assign_lhs (stmt
);
1701 tree rhs2
= gimple_assign_rhs2 (stmt
);
1702 val
= bit_value_binop (subcode
,
1703 TREE_TYPE (lhs
), rhs1
, rhs2
);
1710 else if (code
== GIMPLE_COND
)
1712 enum tree_code code
= gimple_cond_code (stmt
);
1713 tree rhs1
= gimple_cond_lhs (stmt
);
1714 tree rhs2
= gimple_cond_rhs (stmt
);
1715 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1
))
1716 || POINTER_TYPE_P (TREE_TYPE (rhs1
)))
1717 val
= bit_value_binop (code
, TREE_TYPE (rhs1
), rhs1
, rhs2
);
1719 else if (gimple_call_builtin_p (stmt
, BUILT_IN_NORMAL
))
1721 tree fndecl
= gimple_call_fndecl (stmt
);
1722 switch (DECL_FUNCTION_CODE (fndecl
))
1724 case BUILT_IN_MALLOC
:
1725 case BUILT_IN_REALLOC
:
1726 case BUILT_IN_CALLOC
:
1727 case BUILT_IN_STRDUP
:
1728 case BUILT_IN_STRNDUP
:
1729 val
.lattice_val
= CONSTANT
;
1730 val
.value
= build_int_cst (TREE_TYPE (gimple_get_lhs (stmt
)), 0);
1731 val
.mask
= double_int::from_shwi
1732 (~(((HOST_WIDE_INT
) MALLOC_ABI_ALIGNMENT
)
1733 / BITS_PER_UNIT
- 1));
1736 case BUILT_IN_ALLOCA
:
1737 case BUILT_IN_ALLOCA_WITH_ALIGN
:
1738 align
= (DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_ALLOCA_WITH_ALIGN
1739 ? TREE_INT_CST_LOW (gimple_call_arg (stmt
, 1))
1740 : BIGGEST_ALIGNMENT
);
1741 val
.lattice_val
= CONSTANT
;
1742 val
.value
= build_int_cst (TREE_TYPE (gimple_get_lhs (stmt
)), 0);
1743 val
.mask
= double_int::from_shwi (~(((HOST_WIDE_INT
) align
)
1744 / BITS_PER_UNIT
- 1));
1747 /* These builtins return their first argument, unmodified. */
1748 case BUILT_IN_MEMCPY
:
1749 case BUILT_IN_MEMMOVE
:
1750 case BUILT_IN_MEMSET
:
1751 case BUILT_IN_STRCPY
:
1752 case BUILT_IN_STRNCPY
:
1753 case BUILT_IN_MEMCPY_CHK
:
1754 case BUILT_IN_MEMMOVE_CHK
:
1755 case BUILT_IN_MEMSET_CHK
:
1756 case BUILT_IN_STRCPY_CHK
:
1757 case BUILT_IN_STRNCPY_CHK
:
1758 val
= get_value_for_expr (gimple_call_arg (stmt
, 0), true);
1761 case BUILT_IN_ASSUME_ALIGNED
:
1762 val
= bit_value_assume_aligned (stmt
, NULL_TREE
, val
, false);
1768 if (is_gimple_call (stmt
) && gimple_call_lhs (stmt
))
1770 tree fntype
= gimple_call_fntype (stmt
);
1773 tree attrs
= lookup_attribute ("assume_aligned",
1774 TYPE_ATTRIBUTES (fntype
));
1776 val
= bit_value_assume_aligned (stmt
, attrs
, val
, false);
1777 attrs
= lookup_attribute ("alloc_align",
1778 TYPE_ATTRIBUTES (fntype
));
1780 val
= bit_value_assume_aligned (stmt
, attrs
, val
, true);
1783 is_constant
= (val
.lattice_val
== CONSTANT
);
1786 if (flag_tree_bit_ccp
1787 && ((is_constant
&& TREE_CODE (val
.value
) == INTEGER_CST
)
1788 || (!is_constant
&& likelyvalue
!= UNDEFINED
))
1789 && gimple_get_lhs (stmt
)
1790 && TREE_CODE (gimple_get_lhs (stmt
)) == SSA_NAME
)
1792 tree lhs
= gimple_get_lhs (stmt
);
1793 double_int nonzero_bits
= get_nonzero_bits (lhs
);
1794 double_int mask
= double_int::mask (TYPE_PRECISION (TREE_TYPE (lhs
)));
1795 if (nonzero_bits
!= double_int_minus_one
&& nonzero_bits
!= mask
)
1799 val
.lattice_val
= CONSTANT
;
1800 val
.value
= build_zero_cst (TREE_TYPE (lhs
));
1801 /* CCP wants the bits above precision set. */
1802 val
.mask
= nonzero_bits
| ~mask
;
1807 double_int valv
= tree_to_double_int (val
.value
);
1808 if (!(valv
& ~nonzero_bits
& mask
).is_zero ())
1809 val
.value
= double_int_to_tree (TREE_TYPE (lhs
),
1810 valv
& nonzero_bits
);
1811 if (nonzero_bits
.is_zero ())
1812 val
.mask
= double_int_zero
;
1814 val
.mask
= val
.mask
& (nonzero_bits
| ~mask
);
1821 /* The statement produced a nonconstant value. If the statement
1822 had UNDEFINED operands, then the result of the statement
1823 should be UNDEFINED. Otherwise, the statement is VARYING. */
1824 if (likelyvalue
== UNDEFINED
)
1826 val
.lattice_val
= likelyvalue
;
1827 val
.mask
= double_int_zero
;
1831 val
.lattice_val
= VARYING
;
1832 val
.mask
= double_int_minus_one
;
1835 val
.value
= NULL_TREE
;
1841 typedef hash_table
<pointer_hash
<gimple_statement_base
> > gimple_htab
;
1843 /* Given a BUILT_IN_STACK_SAVE value SAVED_VAL, insert a clobber of VAR before
1844 each matching BUILT_IN_STACK_RESTORE. Mark visited phis in VISITED. */
1847 insert_clobber_before_stack_restore (tree saved_val
, tree var
,
1848 gimple_htab
*visited
)
1850 gimple stmt
, clobber_stmt
;
1852 imm_use_iterator iter
;
1853 gimple_stmt_iterator i
;
1856 FOR_EACH_IMM_USE_STMT (stmt
, iter
, saved_val
)
1857 if (gimple_call_builtin_p (stmt
, BUILT_IN_STACK_RESTORE
))
1859 clobber
= build_constructor (TREE_TYPE (var
),
1861 TREE_THIS_VOLATILE (clobber
) = 1;
1862 clobber_stmt
= gimple_build_assign (var
, clobber
);
1864 i
= gsi_for_stmt (stmt
);
1865 gsi_insert_before (&i
, clobber_stmt
, GSI_SAME_STMT
);
1867 else if (gimple_code (stmt
) == GIMPLE_PHI
)
1869 if (!visited
->is_created ())
1870 visited
->create (10);
1872 slot
= visited
->find_slot (stmt
, INSERT
);
1877 insert_clobber_before_stack_restore (gimple_phi_result (stmt
), var
,
1880 else if (gimple_assign_ssa_name_copy_p (stmt
))
1881 insert_clobber_before_stack_restore (gimple_assign_lhs (stmt
), var
,
1884 gcc_assert (is_gimple_debug (stmt
));
1887 /* Advance the iterator to the previous non-debug gimple statement in the same
1888 or dominating basic block. */
1891 gsi_prev_dom_bb_nondebug (gimple_stmt_iterator
*i
)
1895 gsi_prev_nondebug (i
);
1896 while (gsi_end_p (*i
))
1898 dom
= get_immediate_dominator (CDI_DOMINATORS
, i
->bb
);
1899 if (dom
== NULL
|| dom
== ENTRY_BLOCK_PTR_FOR_FN (cfun
))
1902 *i
= gsi_last_bb (dom
);
1906 /* Find a BUILT_IN_STACK_SAVE dominating gsi_stmt (I), and insert
1907 a clobber of VAR before each matching BUILT_IN_STACK_RESTORE.
1909 It is possible that BUILT_IN_STACK_SAVE cannot be find in a dominator when a
1910 previous pass (such as DOM) duplicated it along multiple paths to a BB. In
1911 that case the function gives up without inserting the clobbers. */
1914 insert_clobbers_for_var (gimple_stmt_iterator i
, tree var
)
1918 gimple_htab visited
;
1920 for (; !gsi_end_p (i
); gsi_prev_dom_bb_nondebug (&i
))
1922 stmt
= gsi_stmt (i
);
1924 if (!gimple_call_builtin_p (stmt
, BUILT_IN_STACK_SAVE
))
1927 saved_val
= gimple_call_lhs (stmt
);
1928 if (saved_val
== NULL_TREE
)
1931 insert_clobber_before_stack_restore (saved_val
, var
, &visited
);
1935 if (visited
.is_created ())
1939 /* Detects a __builtin_alloca_with_align with constant size argument. Declares
1940 fixed-size array and returns the address, if found, otherwise returns
1944 fold_builtin_alloca_with_align (gimple stmt
)
1946 unsigned HOST_WIDE_INT size
, threshold
, n_elem
;
1947 tree lhs
, arg
, block
, var
, elem_type
, array_type
;
1950 lhs
= gimple_call_lhs (stmt
);
1951 if (lhs
== NULL_TREE
)
1954 /* Detect constant argument. */
1955 arg
= get_constant_value (gimple_call_arg (stmt
, 0));
1956 if (arg
== NULL_TREE
1957 || TREE_CODE (arg
) != INTEGER_CST
1958 || !tree_fits_uhwi_p (arg
))
1961 size
= tree_to_uhwi (arg
);
1963 /* Heuristic: don't fold large allocas. */
1964 threshold
= (unsigned HOST_WIDE_INT
)PARAM_VALUE (PARAM_LARGE_STACK_FRAME
);
1965 /* In case the alloca is located at function entry, it has the same lifetime
1966 as a declared array, so we allow a larger size. */
1967 block
= gimple_block (stmt
);
1968 if (!(cfun
->after_inlining
1969 && TREE_CODE (BLOCK_SUPERCONTEXT (block
)) == FUNCTION_DECL
))
1971 if (size
> threshold
)
1974 /* Declare array. */
1975 elem_type
= build_nonstandard_integer_type (BITS_PER_UNIT
, 1);
1976 n_elem
= size
* 8 / BITS_PER_UNIT
;
1977 array_type
= build_array_type_nelts (elem_type
, n_elem
);
1978 var
= create_tmp_var (array_type
, NULL
);
1979 DECL_ALIGN (var
) = TREE_INT_CST_LOW (gimple_call_arg (stmt
, 1));
1981 struct ptr_info_def
*pi
= SSA_NAME_PTR_INFO (lhs
);
1982 if (pi
!= NULL
&& !pi
->pt
.anything
)
1986 singleton_p
= pt_solution_singleton_p (&pi
->pt
, &uid
);
1987 gcc_assert (singleton_p
);
1988 SET_DECL_PT_UID (var
, uid
);
1992 /* Fold alloca to the address of the array. */
1993 return fold_convert (TREE_TYPE (lhs
), build_fold_addr_expr (var
));
1996 /* Fold the stmt at *GSI with CCP specific information that propagating
1997 and regular folding does not catch. */
2000 ccp_fold_stmt (gimple_stmt_iterator
*gsi
)
2002 gimple stmt
= gsi_stmt (*gsi
);
2004 switch (gimple_code (stmt
))
2009 /* Statement evaluation will handle type mismatches in constants
2010 more gracefully than the final propagation. This allows us to
2011 fold more conditionals here. */
2012 val
= evaluate_stmt (stmt
);
2013 if (val
.lattice_val
!= CONSTANT
2014 || !val
.mask
.is_zero ())
2019 fprintf (dump_file
, "Folding predicate ");
2020 print_gimple_expr (dump_file
, stmt
, 0, 0);
2021 fprintf (dump_file
, " to ");
2022 print_generic_expr (dump_file
, val
.value
, 0);
2023 fprintf (dump_file
, "\n");
2026 if (integer_zerop (val
.value
))
2027 gimple_cond_make_false (stmt
);
2029 gimple_cond_make_true (stmt
);
2036 tree lhs
= gimple_call_lhs (stmt
);
2037 int flags
= gimple_call_flags (stmt
);
2040 bool changed
= false;
2043 /* If the call was folded into a constant make sure it goes
2044 away even if we cannot propagate into all uses because of
2047 && TREE_CODE (lhs
) == SSA_NAME
2048 && (val
= get_constant_value (lhs
))
2049 /* Don't optimize away calls that have side-effects. */
2050 && (flags
& (ECF_CONST
|ECF_PURE
)) != 0
2051 && (flags
& ECF_LOOPING_CONST_OR_PURE
) == 0)
2053 tree new_rhs
= unshare_expr (val
);
2055 if (!useless_type_conversion_p (TREE_TYPE (lhs
),
2056 TREE_TYPE (new_rhs
)))
2057 new_rhs
= fold_convert (TREE_TYPE (lhs
), new_rhs
);
2058 res
= update_call_from_tree (gsi
, new_rhs
);
2063 /* Internal calls provide no argument types, so the extra laxity
2064 for normal calls does not apply. */
2065 if (gimple_call_internal_p (stmt
))
2068 /* The heuristic of fold_builtin_alloca_with_align differs before and
2069 after inlining, so we don't require the arg to be changed into a
2070 constant for folding, but just to be constant. */
2071 if (gimple_call_builtin_p (stmt
, BUILT_IN_ALLOCA_WITH_ALIGN
))
2073 tree new_rhs
= fold_builtin_alloca_with_align (stmt
);
2076 bool res
= update_call_from_tree (gsi
, new_rhs
);
2077 tree var
= TREE_OPERAND (TREE_OPERAND (new_rhs
, 0),0);
2079 insert_clobbers_for_var (*gsi
, var
);
2084 /* Propagate into the call arguments. Compared to replace_uses_in
2085 this can use the argument slot types for type verification
2086 instead of the current argument type. We also can safely
2087 drop qualifiers here as we are dealing with constants anyway. */
2088 argt
= TYPE_ARG_TYPES (gimple_call_fntype (stmt
));
2089 for (i
= 0; i
< gimple_call_num_args (stmt
) && argt
;
2090 ++i
, argt
= TREE_CHAIN (argt
))
2092 tree arg
= gimple_call_arg (stmt
, i
);
2093 if (TREE_CODE (arg
) == SSA_NAME
2094 && (val
= get_constant_value (arg
))
2095 && useless_type_conversion_p
2096 (TYPE_MAIN_VARIANT (TREE_VALUE (argt
)),
2097 TYPE_MAIN_VARIANT (TREE_TYPE (val
))))
2099 gimple_call_set_arg (stmt
, i
, unshare_expr (val
));
2109 tree lhs
= gimple_assign_lhs (stmt
);
2112 /* If we have a load that turned out to be constant replace it
2113 as we cannot propagate into all uses in all cases. */
2114 if (gimple_assign_single_p (stmt
)
2115 && TREE_CODE (lhs
) == SSA_NAME
2116 && (val
= get_constant_value (lhs
)))
2118 tree rhs
= unshare_expr (val
);
2119 if (!useless_type_conversion_p (TREE_TYPE (lhs
), TREE_TYPE (rhs
)))
2120 rhs
= fold_build1 (VIEW_CONVERT_EXPR
, TREE_TYPE (lhs
), rhs
);
2121 gimple_assign_set_rhs_from_tree (gsi
, rhs
);
2133 /* Visit the assignment statement STMT. Set the value of its LHS to the
2134 value computed by the RHS and store LHS in *OUTPUT_P. If STMT
2135 creates virtual definitions, set the value of each new name to that
2136 of the RHS (if we can derive a constant out of the RHS).
2137 Value-returning call statements also perform an assignment, and
2138 are handled here. */
2140 static enum ssa_prop_result
2141 visit_assignment (gimple stmt
, tree
*output_p
)
2144 enum ssa_prop_result retval
;
2146 tree lhs
= gimple_get_lhs (stmt
);
2148 gcc_assert (gimple_code (stmt
) != GIMPLE_CALL
2149 || gimple_call_lhs (stmt
) != NULL_TREE
);
2151 if (gimple_assign_single_p (stmt
)
2152 && gimple_assign_rhs_code (stmt
) == SSA_NAME
)
2153 /* For a simple copy operation, we copy the lattice values. */
2154 val
= *get_value (gimple_assign_rhs1 (stmt
));
2156 /* Evaluate the statement, which could be
2157 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
2158 val
= evaluate_stmt (stmt
);
2160 retval
= SSA_PROP_NOT_INTERESTING
;
2162 /* Set the lattice value of the statement's output. */
2163 if (TREE_CODE (lhs
) == SSA_NAME
)
2165 /* If STMT is an assignment to an SSA_NAME, we only have one
2167 if (set_lattice_value (lhs
, val
))
2170 if (val
.lattice_val
== VARYING
)
2171 retval
= SSA_PROP_VARYING
;
2173 retval
= SSA_PROP_INTERESTING
;
2181 /* Visit the conditional statement STMT. Return SSA_PROP_INTERESTING
2182 if it can determine which edge will be taken. Otherwise, return
2183 SSA_PROP_VARYING. */
2185 static enum ssa_prop_result
2186 visit_cond_stmt (gimple stmt
, edge
*taken_edge_p
)
2191 block
= gimple_bb (stmt
);
2192 val
= evaluate_stmt (stmt
);
2193 if (val
.lattice_val
!= CONSTANT
2194 || !val
.mask
.is_zero ())
2195 return SSA_PROP_VARYING
;
2197 /* Find which edge out of the conditional block will be taken and add it
2198 to the worklist. If no single edge can be determined statically,
2199 return SSA_PROP_VARYING to feed all the outgoing edges to the
2200 propagation engine. */
2201 *taken_edge_p
= find_taken_edge (block
, val
.value
);
2203 return SSA_PROP_INTERESTING
;
2205 return SSA_PROP_VARYING
;
2209 /* Evaluate statement STMT. If the statement produces an output value and
2210 its evaluation changes the lattice value of its output, return
2211 SSA_PROP_INTERESTING and set *OUTPUT_P to the SSA_NAME holding the
2214 If STMT is a conditional branch and we can determine its truth
2215 value, set *TAKEN_EDGE_P accordingly. If STMT produces a varying
2216 value, return SSA_PROP_VARYING. */
2218 static enum ssa_prop_result
2219 ccp_visit_stmt (gimple stmt
, edge
*taken_edge_p
, tree
*output_p
)
2224 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2226 fprintf (dump_file
, "\nVisiting statement:\n");
2227 print_gimple_stmt (dump_file
, stmt
, 0, dump_flags
);
2230 switch (gimple_code (stmt
))
2233 /* If the statement is an assignment that produces a single
2234 output value, evaluate its RHS to see if the lattice value of
2235 its output has changed. */
2236 return visit_assignment (stmt
, output_p
);
2239 /* A value-returning call also performs an assignment. */
2240 if (gimple_call_lhs (stmt
) != NULL_TREE
)
2241 return visit_assignment (stmt
, output_p
);
2246 /* If STMT is a conditional branch, see if we can determine
2247 which branch will be taken. */
2248 /* FIXME. It appears that we should be able to optimize
2249 computed GOTOs here as well. */
2250 return visit_cond_stmt (stmt
, taken_edge_p
);
2256 /* Any other kind of statement is not interesting for constant
2257 propagation and, therefore, not worth simulating. */
2258 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2259 fprintf (dump_file
, "No interesting values produced. Marked VARYING.\n");
2261 /* Definitions made by statements other than assignments to
2262 SSA_NAMEs represent unknown modifications to their outputs.
2263 Mark them VARYING. */
2264 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, iter
, SSA_OP_ALL_DEFS
)
2266 prop_value_t v
= { VARYING
, NULL_TREE
, { -1, (HOST_WIDE_INT
) -1 } };
2267 set_lattice_value (def
, v
);
2270 return SSA_PROP_VARYING
;
2274 /* Main entry point for SSA Conditional Constant Propagation. */
2279 unsigned int todo
= 0;
2280 calculate_dominance_info (CDI_DOMINATORS
);
2282 ssa_propagate (ccp_visit_stmt
, ccp_visit_phi_node
);
2283 if (ccp_finalize ())
2284 todo
= (TODO_cleanup_cfg
| TODO_update_ssa
);
2285 free_dominance_info (CDI_DOMINATORS
);
2293 return flag_tree_ccp
!= 0;
2299 const pass_data pass_data_ccp
=
2301 GIMPLE_PASS
, /* type */
2303 OPTGROUP_NONE
, /* optinfo_flags */
2304 true, /* has_gate */
2305 true, /* has_execute */
2306 TV_TREE_CCP
, /* tv_id */
2307 ( PROP_cfg
| PROP_ssa
), /* properties_required */
2308 0, /* properties_provided */
2309 0, /* properties_destroyed */
2310 0, /* todo_flags_start */
2311 ( TODO_verify_ssa
| TODO_update_address_taken
2312 | TODO_verify_stmts
), /* todo_flags_finish */
2315 class pass_ccp
: public gimple_opt_pass
2318 pass_ccp (gcc::context
*ctxt
)
2319 : gimple_opt_pass (pass_data_ccp
, ctxt
)
2322 /* opt_pass methods: */
2323 opt_pass
* clone () { return new pass_ccp (m_ctxt
); }
2324 bool gate () { return gate_ccp (); }
2325 unsigned int execute () { return do_ssa_ccp (); }
2327 }; // class pass_ccp
2332 make_pass_ccp (gcc::context
*ctxt
)
2334 return new pass_ccp (ctxt
);
2339 /* Try to optimize out __builtin_stack_restore. Optimize it out
2340 if there is another __builtin_stack_restore in the same basic
2341 block and no calls or ASM_EXPRs are in between, or if this block's
2342 only outgoing edge is to EXIT_BLOCK and there are no calls or
2343 ASM_EXPRs after this __builtin_stack_restore. */
2346 optimize_stack_restore (gimple_stmt_iterator i
)
2351 basic_block bb
= gsi_bb (i
);
2352 gimple call
= gsi_stmt (i
);
2354 if (gimple_code (call
) != GIMPLE_CALL
2355 || gimple_call_num_args (call
) != 1
2356 || TREE_CODE (gimple_call_arg (call
, 0)) != SSA_NAME
2357 || !POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (call
, 0))))
2360 for (gsi_next (&i
); !gsi_end_p (i
); gsi_next (&i
))
2362 stmt
= gsi_stmt (i
);
2363 if (gimple_code (stmt
) == GIMPLE_ASM
)
2365 if (gimple_code (stmt
) != GIMPLE_CALL
)
2368 callee
= gimple_call_fndecl (stmt
);
2370 || DECL_BUILT_IN_CLASS (callee
) != BUILT_IN_NORMAL
2371 /* All regular builtins are ok, just obviously not alloca. */
2372 || DECL_FUNCTION_CODE (callee
) == BUILT_IN_ALLOCA
2373 || DECL_FUNCTION_CODE (callee
) == BUILT_IN_ALLOCA_WITH_ALIGN
)
2376 if (DECL_FUNCTION_CODE (callee
) == BUILT_IN_STACK_RESTORE
)
2377 goto second_stack_restore
;
2383 /* Allow one successor of the exit block, or zero successors. */
2384 switch (EDGE_COUNT (bb
->succs
))
2389 if (single_succ_edge (bb
)->dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
2395 second_stack_restore
:
2397 /* If there's exactly one use, then zap the call to __builtin_stack_save.
2398 If there are multiple uses, then the last one should remove the call.
2399 In any case, whether the call to __builtin_stack_save can be removed
2400 or not is irrelevant to removing the call to __builtin_stack_restore. */
2401 if (has_single_use (gimple_call_arg (call
, 0)))
2403 gimple stack_save
= SSA_NAME_DEF_STMT (gimple_call_arg (call
, 0));
2404 if (is_gimple_call (stack_save
))
2406 callee
= gimple_call_fndecl (stack_save
);
2408 && DECL_BUILT_IN_CLASS (callee
) == BUILT_IN_NORMAL
2409 && DECL_FUNCTION_CODE (callee
) == BUILT_IN_STACK_SAVE
)
2411 gimple_stmt_iterator stack_save_gsi
;
2414 stack_save_gsi
= gsi_for_stmt (stack_save
);
2415 rhs
= build_int_cst (TREE_TYPE (gimple_call_arg (call
, 0)), 0);
2416 update_call_from_tree (&stack_save_gsi
, rhs
);
2421 /* No effect, so the statement will be deleted. */
2422 return integer_zero_node
;
2425 /* If va_list type is a simple pointer and nothing special is needed,
2426 optimize __builtin_va_start (&ap, 0) into ap = __builtin_next_arg (0),
2427 __builtin_va_end (&ap) out as NOP and __builtin_va_copy into a simple
2428 pointer assignment. */
2431 optimize_stdarg_builtin (gimple call
)
2433 tree callee
, lhs
, rhs
, cfun_va_list
;
2434 bool va_list_simple_ptr
;
2435 location_t loc
= gimple_location (call
);
2437 if (gimple_code (call
) != GIMPLE_CALL
)
2440 callee
= gimple_call_fndecl (call
);
2442 cfun_va_list
= targetm
.fn_abi_va_list (callee
);
2443 va_list_simple_ptr
= POINTER_TYPE_P (cfun_va_list
)
2444 && (TREE_TYPE (cfun_va_list
) == void_type_node
2445 || TREE_TYPE (cfun_va_list
) == char_type_node
);
2447 switch (DECL_FUNCTION_CODE (callee
))
2449 case BUILT_IN_VA_START
:
2450 if (!va_list_simple_ptr
2451 || targetm
.expand_builtin_va_start
!= NULL
2452 || !builtin_decl_explicit_p (BUILT_IN_NEXT_ARG
))
2455 if (gimple_call_num_args (call
) != 2)
2458 lhs
= gimple_call_arg (call
, 0);
2459 if (!POINTER_TYPE_P (TREE_TYPE (lhs
))
2460 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs
)))
2461 != TYPE_MAIN_VARIANT (cfun_va_list
))
2464 lhs
= build_fold_indirect_ref_loc (loc
, lhs
);
2465 rhs
= build_call_expr_loc (loc
, builtin_decl_explicit (BUILT_IN_NEXT_ARG
),
2466 1, integer_zero_node
);
2467 rhs
= fold_convert_loc (loc
, TREE_TYPE (lhs
), rhs
);
2468 return build2 (MODIFY_EXPR
, TREE_TYPE (lhs
), lhs
, rhs
);
2470 case BUILT_IN_VA_COPY
:
2471 if (!va_list_simple_ptr
)
2474 if (gimple_call_num_args (call
) != 2)
2477 lhs
= gimple_call_arg (call
, 0);
2478 if (!POINTER_TYPE_P (TREE_TYPE (lhs
))
2479 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs
)))
2480 != TYPE_MAIN_VARIANT (cfun_va_list
))
2483 lhs
= build_fold_indirect_ref_loc (loc
, lhs
);
2484 rhs
= gimple_call_arg (call
, 1);
2485 if (TYPE_MAIN_VARIANT (TREE_TYPE (rhs
))
2486 != TYPE_MAIN_VARIANT (cfun_va_list
))
2489 rhs
= fold_convert_loc (loc
, TREE_TYPE (lhs
), rhs
);
2490 return build2 (MODIFY_EXPR
, TREE_TYPE (lhs
), lhs
, rhs
);
2492 case BUILT_IN_VA_END
:
2493 /* No effect, so the statement will be deleted. */
2494 return integer_zero_node
;
2501 /* Attemp to make the block of __builtin_unreachable I unreachable by changing
2502 the incoming jumps. Return true if at least one jump was changed. */
2505 optimize_unreachable (gimple_stmt_iterator i
)
2507 basic_block bb
= gsi_bb (i
);
2508 gimple_stmt_iterator gsi
;
2514 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
2516 stmt
= gsi_stmt (gsi
);
2518 if (is_gimple_debug (stmt
))
2521 if (gimple_code (stmt
) == GIMPLE_LABEL
)
2523 /* Verify we do not need to preserve the label. */
2524 if (FORCED_LABEL (gimple_label_label (stmt
)))
2530 /* Only handle the case that __builtin_unreachable is the first statement
2531 in the block. We rely on DCE to remove stmts without side-effects
2532 before __builtin_unreachable. */
2533 if (gsi_stmt (gsi
) != gsi_stmt (i
))
2538 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
2540 gsi
= gsi_last_bb (e
->src
);
2541 if (gsi_end_p (gsi
))
2544 stmt
= gsi_stmt (gsi
);
2545 if (gimple_code (stmt
) == GIMPLE_COND
)
2547 if (e
->flags
& EDGE_TRUE_VALUE
)
2548 gimple_cond_make_false (stmt
);
2549 else if (e
->flags
& EDGE_FALSE_VALUE
)
2550 gimple_cond_make_true (stmt
);
2557 /* Todo: handle other cases, f.i. switch statement. */
2567 /* A simple pass that attempts to fold all builtin functions. This pass
2568 is run after we've propagated as many constants as we can. */
2571 execute_fold_all_builtins (void)
2573 bool cfg_changed
= false;
2575 unsigned int todoflags
= 0;
2577 FOR_EACH_BB_FN (bb
, cfun
)
2579 gimple_stmt_iterator i
;
2580 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); )
2582 gimple stmt
, old_stmt
;
2583 tree callee
, result
;
2584 enum built_in_function fcode
;
2586 stmt
= gsi_stmt (i
);
2588 if (gimple_code (stmt
) != GIMPLE_CALL
)
2590 /* Remove all *ssaname_N ={v} {CLOBBER}; stmts,
2591 after the last GIMPLE DSE they aren't needed and might
2592 unnecessarily keep the SSA_NAMEs live. */
2593 if (gimple_clobber_p (stmt
))
2595 tree lhs
= gimple_assign_lhs (stmt
);
2596 if (TREE_CODE (lhs
) == MEM_REF
2597 && TREE_CODE (TREE_OPERAND (lhs
, 0)) == SSA_NAME
)
2599 unlink_stmt_vdef (stmt
);
2600 gsi_remove (&i
, true);
2601 release_defs (stmt
);
2608 callee
= gimple_call_fndecl (stmt
);
2609 if (!callee
|| DECL_BUILT_IN_CLASS (callee
) != BUILT_IN_NORMAL
)
2614 fcode
= DECL_FUNCTION_CODE (callee
);
2616 result
= gimple_fold_builtin (stmt
);
2619 gimple_remove_stmt_histograms (cfun
, stmt
);
2622 switch (DECL_FUNCTION_CODE (callee
))
2624 case BUILT_IN_CONSTANT_P
:
2625 /* Resolve __builtin_constant_p. If it hasn't been
2626 folded to integer_one_node by now, it's fairly
2627 certain that the value simply isn't constant. */
2628 result
= integer_zero_node
;
2631 case BUILT_IN_ASSUME_ALIGNED
:
2632 /* Remove __builtin_assume_aligned. */
2633 result
= gimple_call_arg (stmt
, 0);
2636 case BUILT_IN_STACK_RESTORE
:
2637 result
= optimize_stack_restore (i
);
2643 case BUILT_IN_UNREACHABLE
:
2644 if (optimize_unreachable (i
))
2648 case BUILT_IN_VA_START
:
2649 case BUILT_IN_VA_END
:
2650 case BUILT_IN_VA_COPY
:
2651 /* These shouldn't be folded before pass_stdarg. */
2652 result
= optimize_stdarg_builtin (stmt
);
2662 if (result
== NULL_TREE
)
2665 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2667 fprintf (dump_file
, "Simplified\n ");
2668 print_gimple_stmt (dump_file
, stmt
, 0, dump_flags
);
2672 if (!update_call_from_tree (&i
, result
))
2674 gimplify_and_update_call_from_tree (&i
, result
);
2675 todoflags
|= TODO_update_address_taken
;
2678 stmt
= gsi_stmt (i
);
2681 if (maybe_clean_or_replace_eh_stmt (old_stmt
, stmt
)
2682 && gimple_purge_dead_eh_edges (bb
))
2685 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2687 fprintf (dump_file
, "to\n ");
2688 print_gimple_stmt (dump_file
, stmt
, 0, dump_flags
);
2689 fprintf (dump_file
, "\n");
2692 /* Retry the same statement if it changed into another
2693 builtin, there might be new opportunities now. */
2694 if (gimple_code (stmt
) != GIMPLE_CALL
)
2699 callee
= gimple_call_fndecl (stmt
);
2701 || DECL_BUILT_IN_CLASS (callee
) != BUILT_IN_NORMAL
2702 || DECL_FUNCTION_CODE (callee
) == fcode
)
2707 /* Delete unreachable blocks. */
2709 todoflags
|= TODO_cleanup_cfg
;
2717 const pass_data pass_data_fold_builtins
=
2719 GIMPLE_PASS
, /* type */
2721 OPTGROUP_NONE
, /* optinfo_flags */
2722 false, /* has_gate */
2723 true, /* has_execute */
2724 TV_NONE
, /* tv_id */
2725 ( PROP_cfg
| PROP_ssa
), /* properties_required */
2726 0, /* properties_provided */
2727 0, /* properties_destroyed */
2728 0, /* todo_flags_start */
2729 ( TODO_verify_ssa
| TODO_update_ssa
), /* todo_flags_finish */
2732 class pass_fold_builtins
: public gimple_opt_pass
2735 pass_fold_builtins (gcc::context
*ctxt
)
2736 : gimple_opt_pass (pass_data_fold_builtins
, ctxt
)
2739 /* opt_pass methods: */
2740 opt_pass
* clone () { return new pass_fold_builtins (m_ctxt
); }
2741 unsigned int execute () { return execute_fold_all_builtins (); }
2743 }; // class pass_fold_builtins
2748 make_pass_fold_builtins (gcc::context
*ctxt
)
2750 return new pass_fold_builtins (ctxt
);