sem_ch5.adb, [...]: Change spelling 'parametrization' to 'parameterization'.
[official-gcc.git] / gcc / dse.c
blobf5c9c7376ea5c968d9ac045049fe19e8c43a2436
1 /* RTL dead store elimination.
2 Copyright (C) 2005-2014 Free Software Foundation, Inc.
4 Contributed by Richard Sandiford <rsandifor@codesourcery.com>
5 and Kenneth Zadeck <zadeck@naturalbridge.com>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 #undef BASELINE
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "hash-table.h"
29 #include "tm.h"
30 #include "rtl.h"
31 #include "tree.h"
32 #include "stor-layout.h"
33 #include "tm_p.h"
34 #include "regs.h"
35 #include "hard-reg-set.h"
36 #include "regset.h"
37 #include "flags.h"
38 #include "df.h"
39 #include "cselib.h"
40 #include "tree-pass.h"
41 #include "alloc-pool.h"
42 #include "alias.h"
43 #include "insn-config.h"
44 #include "expr.h"
45 #include "recog.h"
46 #include "optabs.h"
47 #include "dbgcnt.h"
48 #include "target.h"
49 #include "params.h"
50 #include "pointer-set.h"
51 #include "tree-ssa-alias.h"
52 #include "internal-fn.h"
53 #include "gimple-expr.h"
54 #include "is-a.h"
55 #include "gimple.h"
56 #include "gimple-ssa.h"
58 /* This file contains three techniques for performing Dead Store
59 Elimination (dse).
61 * The first technique performs dse locally on any base address. It
62 is based on the cselib which is a local value numbering technique.
63 This technique is local to a basic block but deals with a fairly
64 general addresses.
66 * The second technique performs dse globally but is restricted to
67 base addresses that are either constant or are relative to the
68 frame_pointer.
70 * The third technique, (which is only done after register allocation)
71 processes the spill spill slots. This differs from the second
72 technique because it takes advantage of the fact that spilling is
73 completely free from the effects of aliasing.
75 Logically, dse is a backwards dataflow problem. A store can be
76 deleted if it if cannot be reached in the backward direction by any
77 use of the value being stored. However, the local technique uses a
78 forwards scan of the basic block because cselib requires that the
79 block be processed in that order.
81 The pass is logically broken into 7 steps:
83 0) Initialization.
85 1) The local algorithm, as well as scanning the insns for the two
86 global algorithms.
88 2) Analysis to see if the global algs are necessary. In the case
89 of stores base on a constant address, there must be at least two
90 stores to that address, to make it possible to delete some of the
91 stores. In the case of stores off of the frame or spill related
92 stores, only one store to an address is necessary because those
93 stores die at the end of the function.
95 3) Set up the global dataflow equations based on processing the
96 info parsed in the first step.
98 4) Solve the dataflow equations.
100 5) Delete the insns that the global analysis has indicated are
101 unnecessary.
103 6) Delete insns that store the same value as preceding store
104 where the earlier store couldn't be eliminated.
106 7) Cleanup.
108 This step uses cselib and canon_rtx to build the largest expression
109 possible for each address. This pass is a forwards pass through
110 each basic block. From the point of view of the global technique,
111 the first pass could examine a block in either direction. The
112 forwards ordering is to accommodate cselib.
114 We make a simplifying assumption: addresses fall into four broad
115 categories:
117 1) base has rtx_varies_p == false, offset is constant.
118 2) base has rtx_varies_p == false, offset variable.
119 3) base has rtx_varies_p == true, offset constant.
120 4) base has rtx_varies_p == true, offset variable.
122 The local passes are able to process all 4 kinds of addresses. The
123 global pass only handles 1).
125 The global problem is formulated as follows:
127 A store, S1, to address A, where A is not relative to the stack
128 frame, can be eliminated if all paths from S1 to the end of the
129 function contain another store to A before a read to A.
131 If the address A is relative to the stack frame, a store S2 to A
132 can be eliminated if there are no paths from S2 that reach the
133 end of the function that read A before another store to A. In
134 this case S2 can be deleted if there are paths from S2 to the
135 end of the function that have no reads or writes to A. This
136 second case allows stores to the stack frame to be deleted that
137 would otherwise die when the function returns. This cannot be
138 done if stores_off_frame_dead_at_return is not true. See the doc
139 for that variable for when this variable is false.
141 The global problem is formulated as a backwards set union
142 dataflow problem where the stores are the gens and reads are the
143 kills. Set union problems are rare and require some special
144 handling given our representation of bitmaps. A straightforward
145 implementation requires a lot of bitmaps filled with 1s.
146 These are expensive and cumbersome in our bitmap formulation so
147 care has been taken to avoid large vectors filled with 1s. See
148 the comments in bb_info and in the dataflow confluence functions
149 for details.
151 There are two places for further enhancements to this algorithm:
153 1) The original dse which was embedded in a pass called flow also
154 did local address forwarding. For example in
156 A <- r100
157 ... <- A
159 flow would replace the right hand side of the second insn with a
160 reference to r100. Most of the information is available to add this
161 to this pass. It has not done it because it is a lot of work in
162 the case that either r100 is assigned to between the first and
163 second insn and/or the second insn is a load of part of the value
164 stored by the first insn.
166 insn 5 in gcc.c-torture/compile/990203-1.c simple case.
167 insn 15 in gcc.c-torture/execute/20001017-2.c simple case.
168 insn 25 in gcc.c-torture/execute/20001026-1.c simple case.
169 insn 44 in gcc.c-torture/execute/20010910-1.c simple case.
171 2) The cleaning up of spill code is quite profitable. It currently
172 depends on reading tea leaves and chicken entrails left by reload.
173 This pass depends on reload creating a singleton alias set for each
174 spill slot and telling the next dse pass which of these alias sets
175 are the singletons. Rather than analyze the addresses of the
176 spills, dse's spill processing just does analysis of the loads and
177 stores that use those alias sets. There are three cases where this
178 falls short:
180 a) Reload sometimes creates the slot for one mode of access, and
181 then inserts loads and/or stores for a smaller mode. In this
182 case, the current code just punts on the slot. The proper thing
183 to do is to back out and use one bit vector position for each
184 byte of the entity associated with the slot. This depends on
185 KNOWING that reload always generates the accesses for each of the
186 bytes in some canonical (read that easy to understand several
187 passes after reload happens) way.
189 b) Reload sometimes decides that spill slot it allocated was not
190 large enough for the mode and goes back and allocates more slots
191 with the same mode and alias set. The backout in this case is a
192 little more graceful than (a). In this case the slot is unmarked
193 as being a spill slot and if final address comes out to be based
194 off the frame pointer, the global algorithm handles this slot.
196 c) For any pass that may prespill, there is currently no
197 mechanism to tell the dse pass that the slot being used has the
198 special properties that reload uses. It may be that all that is
199 required is to have those passes make the same calls that reload
200 does, assuming that the alias sets can be manipulated in the same
201 way. */
203 /* There are limits to the size of constant offsets we model for the
204 global problem. There are certainly test cases, that exceed this
205 limit, however, it is unlikely that there are important programs
206 that really have constant offsets this size. */
207 #define MAX_OFFSET (64 * 1024)
209 /* Obstack for the DSE dataflow bitmaps. We don't want to put these
210 on the default obstack because these bitmaps can grow quite large
211 (~2GB for the small (!) test case of PR54146) and we'll hold on to
212 all that memory until the end of the compiler run.
213 As a bonus, delete_tree_live_info can destroy all the bitmaps by just
214 releasing the whole obstack. */
215 static bitmap_obstack dse_bitmap_obstack;
217 /* Obstack for other data. As for above: Kinda nice to be able to
218 throw it all away at the end in one big sweep. */
219 static struct obstack dse_obstack;
221 /* Scratch bitmap for cselib's cselib_expand_value_rtx. */
222 static bitmap scratch = NULL;
224 struct insn_info;
226 /* This structure holds information about a candidate store. */
227 struct store_info
230 /* False means this is a clobber. */
231 bool is_set;
233 /* False if a single HOST_WIDE_INT bitmap is used for positions_needed. */
234 bool is_large;
236 /* The id of the mem group of the base address. If rtx_varies_p is
237 true, this is -1. Otherwise, it is the index into the group
238 table. */
239 int group_id;
241 /* This is the cselib value. */
242 cselib_val *cse_base;
244 /* This canonized mem. */
245 rtx mem;
247 /* Canonized MEM address for use by canon_true_dependence. */
248 rtx mem_addr;
250 /* If this is non-zero, it is the alias set of a spill location. */
251 alias_set_type alias_set;
253 /* The offset of the first and byte before the last byte associated
254 with the operation. */
255 HOST_WIDE_INT begin, end;
257 union
259 /* A bitmask as wide as the number of bytes in the word that
260 contains a 1 if the byte may be needed. The store is unused if
261 all of the bits are 0. This is used if IS_LARGE is false. */
262 unsigned HOST_WIDE_INT small_bitmask;
264 struct
266 /* A bitmap with one bit per byte. Cleared bit means the position
267 is needed. Used if IS_LARGE is false. */
268 bitmap bmap;
270 /* Number of set bits (i.e. unneeded bytes) in BITMAP. If it is
271 equal to END - BEGIN, the whole store is unused. */
272 int count;
273 } large;
274 } positions_needed;
276 /* The next store info for this insn. */
277 struct store_info *next;
279 /* The right hand side of the store. This is used if there is a
280 subsequent reload of the mems address somewhere later in the
281 basic block. */
282 rtx rhs;
284 /* If rhs is or holds a constant, this contains that constant,
285 otherwise NULL. */
286 rtx const_rhs;
288 /* Set if this store stores the same constant value as REDUNDANT_REASON
289 insn stored. These aren't eliminated early, because doing that
290 might prevent the earlier larger store to be eliminated. */
291 struct insn_info *redundant_reason;
294 /* Return a bitmask with the first N low bits set. */
296 static unsigned HOST_WIDE_INT
297 lowpart_bitmask (int n)
299 unsigned HOST_WIDE_INT mask = ~(unsigned HOST_WIDE_INT) 0;
300 return mask >> (HOST_BITS_PER_WIDE_INT - n);
303 typedef struct store_info *store_info_t;
304 static alloc_pool cse_store_info_pool;
305 static alloc_pool rtx_store_info_pool;
307 /* This structure holds information about a load. These are only
308 built for rtx bases. */
309 struct read_info
311 /* The id of the mem group of the base address. */
312 int group_id;
314 /* If this is non-zero, it is the alias set of a spill location. */
315 alias_set_type alias_set;
317 /* The offset of the first and byte after the last byte associated
318 with the operation. If begin == end == 0, the read did not have
319 a constant offset. */
320 int begin, end;
322 /* The mem being read. */
323 rtx mem;
325 /* The next read_info for this insn. */
326 struct read_info *next;
328 typedef struct read_info *read_info_t;
329 static alloc_pool read_info_pool;
332 /* One of these records is created for each insn. */
334 struct insn_info
336 /* Set true if the insn contains a store but the insn itself cannot
337 be deleted. This is set if the insn is a parallel and there is
338 more than one non dead output or if the insn is in some way
339 volatile. */
340 bool cannot_delete;
342 /* This field is only used by the global algorithm. It is set true
343 if the insn contains any read of mem except for a (1). This is
344 also set if the insn is a call or has a clobber mem. If the insn
345 contains a wild read, the use_rec will be null. */
346 bool wild_read;
348 /* This is true only for CALL instructions which could potentially read
349 any non-frame memory location. This field is used by the global
350 algorithm. */
351 bool non_frame_wild_read;
353 /* This field is only used for the processing of const functions.
354 These functions cannot read memory, but they can read the stack
355 because that is where they may get their parms. We need to be
356 this conservative because, like the store motion pass, we don't
357 consider CALL_INSN_FUNCTION_USAGE when processing call insns.
358 Moreover, we need to distinguish two cases:
359 1. Before reload (register elimination), the stores related to
360 outgoing arguments are stack pointer based and thus deemed
361 of non-constant base in this pass. This requires special
362 handling but also means that the frame pointer based stores
363 need not be killed upon encountering a const function call.
364 2. After reload, the stores related to outgoing arguments can be
365 either stack pointer or hard frame pointer based. This means
366 that we have no other choice than also killing all the frame
367 pointer based stores upon encountering a const function call.
368 This field is set after reload for const function calls. Having
369 this set is less severe than a wild read, it just means that all
370 the frame related stores are killed rather than all the stores. */
371 bool frame_read;
373 /* This field is only used for the processing of const functions.
374 It is set if the insn may contain a stack pointer based store. */
375 bool stack_pointer_based;
377 /* This is true if any of the sets within the store contains a
378 cselib base. Such stores can only be deleted by the local
379 algorithm. */
380 bool contains_cselib_groups;
382 /* The insn. */
383 rtx insn;
385 /* The list of mem sets or mem clobbers that are contained in this
386 insn. If the insn is deletable, it contains only one mem set.
387 But it could also contain clobbers. Insns that contain more than
388 one mem set are not deletable, but each of those mems are here in
389 order to provide info to delete other insns. */
390 store_info_t store_rec;
392 /* The linked list of mem uses in this insn. Only the reads from
393 rtx bases are listed here. The reads to cselib bases are
394 completely processed during the first scan and so are never
395 created. */
396 read_info_t read_rec;
398 /* The live fixed registers. We assume only fixed registers can
399 cause trouble by being clobbered from an expanded pattern;
400 storing only the live fixed registers (rather than all registers)
401 means less memory needs to be allocated / copied for the individual
402 stores. */
403 regset fixed_regs_live;
405 /* The prev insn in the basic block. */
406 struct insn_info * prev_insn;
408 /* The linked list of insns that are in consideration for removal in
409 the forwards pass through the basic block. This pointer may be
410 trash as it is not cleared when a wild read occurs. The only
411 time it is guaranteed to be correct is when the traversal starts
412 at active_local_stores. */
413 struct insn_info * next_local_store;
416 typedef struct insn_info *insn_info_t;
417 static alloc_pool insn_info_pool;
419 /* The linked list of stores that are under consideration in this
420 basic block. */
421 static insn_info_t active_local_stores;
422 static int active_local_stores_len;
424 struct bb_info
427 /* Pointer to the insn info for the last insn in the block. These
428 are linked so this is how all of the insns are reached. During
429 scanning this is the current insn being scanned. */
430 insn_info_t last_insn;
432 /* The info for the global dataflow problem. */
435 /* This is set if the transfer function should and in the wild_read
436 bitmap before applying the kill and gen sets. That vector knocks
437 out most of the bits in the bitmap and thus speeds up the
438 operations. */
439 bool apply_wild_read;
441 /* The following 4 bitvectors hold information about which positions
442 of which stores are live or dead. They are indexed by
443 get_bitmap_index. */
445 /* The set of store positions that exist in this block before a wild read. */
446 bitmap gen;
448 /* The set of load positions that exist in this block above the
449 same position of a store. */
450 bitmap kill;
452 /* The set of stores that reach the top of the block without being
453 killed by a read.
455 Do not represent the in if it is all ones. Note that this is
456 what the bitvector should logically be initialized to for a set
457 intersection problem. However, like the kill set, this is too
458 expensive. So initially, the in set will only be created for the
459 exit block and any block that contains a wild read. */
460 bitmap in;
462 /* The set of stores that reach the bottom of the block from it's
463 successors.
465 Do not represent the in if it is all ones. Note that this is
466 what the bitvector should logically be initialized to for a set
467 intersection problem. However, like the kill and in set, this is
468 too expensive. So what is done is that the confluence operator
469 just initializes the vector from one of the out sets of the
470 successors of the block. */
471 bitmap out;
473 /* The following bitvector is indexed by the reg number. It
474 contains the set of regs that are live at the current instruction
475 being processed. While it contains info for all of the
476 registers, only the hard registers are actually examined. It is used
477 to assure that shift and/or add sequences that are inserted do not
478 accidentally clobber live hard regs. */
479 bitmap regs_live;
482 typedef struct bb_info *bb_info_t;
483 static alloc_pool bb_info_pool;
485 /* Table to hold all bb_infos. */
486 static bb_info_t *bb_table;
488 /* There is a group_info for each rtx base that is used to reference
489 memory. There are also not many of the rtx bases because they are
490 very limited in scope. */
492 struct group_info
494 /* The actual base of the address. */
495 rtx rtx_base;
497 /* The sequential id of the base. This allows us to have a
498 canonical ordering of these that is not based on addresses. */
499 int id;
501 /* True if there are any positions that are to be processed
502 globally. */
503 bool process_globally;
505 /* True if the base of this group is either the frame_pointer or
506 hard_frame_pointer. */
507 bool frame_related;
509 /* A mem wrapped around the base pointer for the group in order to do
510 read dependency. It must be given BLKmode in order to encompass all
511 the possible offsets from the base. */
512 rtx base_mem;
514 /* Canonized version of base_mem's address. */
515 rtx canon_base_addr;
517 /* These two sets of two bitmaps are used to keep track of how many
518 stores are actually referencing that position from this base. We
519 only do this for rtx bases as this will be used to assign
520 positions in the bitmaps for the global problem. Bit N is set in
521 store1 on the first store for offset N. Bit N is set in store2
522 for the second store to offset N. This is all we need since we
523 only care about offsets that have two or more stores for them.
525 The "_n" suffix is for offsets less than 0 and the "_p" suffix is
526 for 0 and greater offsets.
528 There is one special case here, for stores into the stack frame,
529 we will or store1 into store2 before deciding which stores look
530 at globally. This is because stores to the stack frame that have
531 no other reads before the end of the function can also be
532 deleted. */
533 bitmap store1_n, store1_p, store2_n, store2_p;
535 /* These bitmaps keep track of offsets in this group escape this function.
536 An offset escapes if it corresponds to a named variable whose
537 addressable flag is set. */
538 bitmap escaped_n, escaped_p;
540 /* The positions in this bitmap have the same assignments as the in,
541 out, gen and kill bitmaps. This bitmap is all zeros except for
542 the positions that are occupied by stores for this group. */
543 bitmap group_kill;
545 /* The offset_map is used to map the offsets from this base into
546 positions in the global bitmaps. It is only created after all of
547 the all of stores have been scanned and we know which ones we
548 care about. */
549 int *offset_map_n, *offset_map_p;
550 int offset_map_size_n, offset_map_size_p;
552 typedef struct group_info *group_info_t;
553 typedef const struct group_info *const_group_info_t;
554 static alloc_pool rtx_group_info_pool;
556 /* Index into the rtx_group_vec. */
557 static int rtx_group_next_id;
560 static vec<group_info_t> rtx_group_vec;
563 /* This structure holds the set of changes that are being deferred
564 when removing read operation. See replace_read. */
565 struct deferred_change
568 /* The mem that is being replaced. */
569 rtx *loc;
571 /* The reg it is being replaced with. */
572 rtx reg;
574 struct deferred_change *next;
577 typedef struct deferred_change *deferred_change_t;
578 static alloc_pool deferred_change_pool;
580 static deferred_change_t deferred_change_list = NULL;
582 /* The group that holds all of the clear_alias_sets. */
583 static group_info_t clear_alias_group;
585 /* The modes of the clear_alias_sets. */
586 static htab_t clear_alias_mode_table;
588 /* Hash table element to look up the mode for an alias set. */
589 struct clear_alias_mode_holder
591 alias_set_type alias_set;
592 enum machine_mode mode;
595 /* This is true except if cfun->stdarg -- i.e. we cannot do
596 this for vararg functions because they play games with the frame. */
597 static bool stores_off_frame_dead_at_return;
599 /* Counter for stats. */
600 static int globally_deleted;
601 static int locally_deleted;
602 static int spill_deleted;
604 static bitmap all_blocks;
606 /* Locations that are killed by calls in the global phase. */
607 static bitmap kill_on_calls;
609 /* The number of bits used in the global bitmaps. */
610 static unsigned int current_position;
613 static bool gate_dse1 (void);
614 static bool gate_dse2 (void);
617 /*----------------------------------------------------------------------------
618 Zeroth step.
620 Initialization.
621 ----------------------------------------------------------------------------*/
624 /* Find the entry associated with ALIAS_SET. */
626 static struct clear_alias_mode_holder *
627 clear_alias_set_lookup (alias_set_type alias_set)
629 struct clear_alias_mode_holder tmp_holder;
630 void **slot;
632 tmp_holder.alias_set = alias_set;
633 slot = htab_find_slot (clear_alias_mode_table, &tmp_holder, NO_INSERT);
634 gcc_assert (*slot);
636 return (struct clear_alias_mode_holder *) *slot;
640 /* Hashtable callbacks for maintaining the "bases" field of
641 store_group_info, given that the addresses are function invariants. */
643 struct invariant_group_base_hasher : typed_noop_remove <group_info>
645 typedef group_info value_type;
646 typedef group_info compare_type;
647 static inline hashval_t hash (const value_type *);
648 static inline bool equal (const value_type *, const compare_type *);
651 inline bool
652 invariant_group_base_hasher::equal (const value_type *gi1,
653 const compare_type *gi2)
655 return rtx_equal_p (gi1->rtx_base, gi2->rtx_base);
658 inline hashval_t
659 invariant_group_base_hasher::hash (const value_type *gi)
661 int do_not_record;
662 return hash_rtx (gi->rtx_base, Pmode, &do_not_record, NULL, false);
665 /* Tables of group_info structures, hashed by base value. */
666 static hash_table <invariant_group_base_hasher> rtx_group_table;
669 /* Get the GROUP for BASE. Add a new group if it is not there. */
671 static group_info_t
672 get_group_info (rtx base)
674 struct group_info tmp_gi;
675 group_info_t gi;
676 group_info **slot;
678 if (base)
680 /* Find the store_base_info structure for BASE, creating a new one
681 if necessary. */
682 tmp_gi.rtx_base = base;
683 slot = rtx_group_table.find_slot (&tmp_gi, INSERT);
684 gi = (group_info_t) *slot;
686 else
688 if (!clear_alias_group)
690 clear_alias_group = gi =
691 (group_info_t) pool_alloc (rtx_group_info_pool);
692 memset (gi, 0, sizeof (struct group_info));
693 gi->id = rtx_group_next_id++;
694 gi->store1_n = BITMAP_ALLOC (&dse_bitmap_obstack);
695 gi->store1_p = BITMAP_ALLOC (&dse_bitmap_obstack);
696 gi->store2_n = BITMAP_ALLOC (&dse_bitmap_obstack);
697 gi->store2_p = BITMAP_ALLOC (&dse_bitmap_obstack);
698 gi->escaped_p = BITMAP_ALLOC (&dse_bitmap_obstack);
699 gi->escaped_n = BITMAP_ALLOC (&dse_bitmap_obstack);
700 gi->group_kill = BITMAP_ALLOC (&dse_bitmap_obstack);
701 gi->process_globally = false;
702 gi->offset_map_size_n = 0;
703 gi->offset_map_size_p = 0;
704 gi->offset_map_n = NULL;
705 gi->offset_map_p = NULL;
706 rtx_group_vec.safe_push (gi);
708 return clear_alias_group;
711 if (gi == NULL)
713 *slot = gi = (group_info_t) pool_alloc (rtx_group_info_pool);
714 gi->rtx_base = base;
715 gi->id = rtx_group_next_id++;
716 gi->base_mem = gen_rtx_MEM (BLKmode, base);
717 gi->canon_base_addr = canon_rtx (base);
718 gi->store1_n = BITMAP_ALLOC (&dse_bitmap_obstack);
719 gi->store1_p = BITMAP_ALLOC (&dse_bitmap_obstack);
720 gi->store2_n = BITMAP_ALLOC (&dse_bitmap_obstack);
721 gi->store2_p = BITMAP_ALLOC (&dse_bitmap_obstack);
722 gi->escaped_p = BITMAP_ALLOC (&dse_bitmap_obstack);
723 gi->escaped_n = BITMAP_ALLOC (&dse_bitmap_obstack);
724 gi->group_kill = BITMAP_ALLOC (&dse_bitmap_obstack);
725 gi->process_globally = false;
726 gi->frame_related =
727 (base == frame_pointer_rtx) || (base == hard_frame_pointer_rtx);
728 gi->offset_map_size_n = 0;
729 gi->offset_map_size_p = 0;
730 gi->offset_map_n = NULL;
731 gi->offset_map_p = NULL;
732 rtx_group_vec.safe_push (gi);
735 return gi;
739 /* Initialization of data structures. */
741 static void
742 dse_step0 (void)
744 locally_deleted = 0;
745 globally_deleted = 0;
746 spill_deleted = 0;
748 bitmap_obstack_initialize (&dse_bitmap_obstack);
749 gcc_obstack_init (&dse_obstack);
751 scratch = BITMAP_ALLOC (&reg_obstack);
752 kill_on_calls = BITMAP_ALLOC (&dse_bitmap_obstack);
754 rtx_store_info_pool
755 = create_alloc_pool ("rtx_store_info_pool",
756 sizeof (struct store_info), 100);
757 read_info_pool
758 = create_alloc_pool ("read_info_pool",
759 sizeof (struct read_info), 100);
760 insn_info_pool
761 = create_alloc_pool ("insn_info_pool",
762 sizeof (struct insn_info), 100);
763 bb_info_pool
764 = create_alloc_pool ("bb_info_pool",
765 sizeof (struct bb_info), 100);
766 rtx_group_info_pool
767 = create_alloc_pool ("rtx_group_info_pool",
768 sizeof (struct group_info), 100);
769 deferred_change_pool
770 = create_alloc_pool ("deferred_change_pool",
771 sizeof (struct deferred_change), 10);
773 rtx_group_table.create (11);
775 bb_table = XNEWVEC (bb_info_t, last_basic_block_for_fn (cfun));
776 rtx_group_next_id = 0;
778 stores_off_frame_dead_at_return = !cfun->stdarg;
780 init_alias_analysis ();
782 clear_alias_group = NULL;
787 /*----------------------------------------------------------------------------
788 First step.
790 Scan all of the insns. Any random ordering of the blocks is fine.
791 Each block is scanned in forward order to accommodate cselib which
792 is used to remove stores with non-constant bases.
793 ----------------------------------------------------------------------------*/
795 /* Delete all of the store_info recs from INSN_INFO. */
797 static void
798 free_store_info (insn_info_t insn_info)
800 store_info_t store_info = insn_info->store_rec;
801 while (store_info)
803 store_info_t next = store_info->next;
804 if (store_info->is_large)
805 BITMAP_FREE (store_info->positions_needed.large.bmap);
806 if (store_info->cse_base)
807 pool_free (cse_store_info_pool, store_info);
808 else
809 pool_free (rtx_store_info_pool, store_info);
810 store_info = next;
813 insn_info->cannot_delete = true;
814 insn_info->contains_cselib_groups = false;
815 insn_info->store_rec = NULL;
818 typedef struct
820 rtx first, current;
821 regset fixed_regs_live;
822 bool failure;
823 } note_add_store_info;
825 /* Callback for emit_inc_dec_insn_before via note_stores.
826 Check if a register is clobbered which is live afterwards. */
828 static void
829 note_add_store (rtx loc, const_rtx expr ATTRIBUTE_UNUSED, void *data)
831 rtx insn;
832 note_add_store_info *info = (note_add_store_info *) data;
833 int r, n;
835 if (!REG_P (loc))
836 return;
838 /* If this register is referenced by the current or an earlier insn,
839 that's OK. E.g. this applies to the register that is being incremented
840 with this addition. */
841 for (insn = info->first;
842 insn != NEXT_INSN (info->current);
843 insn = NEXT_INSN (insn))
844 if (reg_referenced_p (loc, PATTERN (insn)))
845 return;
847 /* If we come here, we have a clobber of a register that's only OK
848 if that register is not live. If we don't have liveness information
849 available, fail now. */
850 if (!info->fixed_regs_live)
852 info->failure = true;
853 return;
855 /* Now check if this is a live fixed register. */
856 r = REGNO (loc);
857 n = hard_regno_nregs[r][GET_MODE (loc)];
858 while (--n >= 0)
859 if (REGNO_REG_SET_P (info->fixed_regs_live, r+n))
860 info->failure = true;
863 /* Callback for for_each_inc_dec that emits an INSN that sets DEST to
864 SRC + SRCOFF before insn ARG. */
866 static int
867 emit_inc_dec_insn_before (rtx mem ATTRIBUTE_UNUSED,
868 rtx op ATTRIBUTE_UNUSED,
869 rtx dest, rtx src, rtx srcoff, void *arg)
871 insn_info_t insn_info = (insn_info_t) arg;
872 rtx insn = insn_info->insn, new_insn, cur;
873 note_add_store_info info;
875 /* We can reuse all operands without copying, because we are about
876 to delete the insn that contained it. */
877 if (srcoff)
879 start_sequence ();
880 emit_insn (gen_add3_insn (dest, src, srcoff));
881 new_insn = get_insns ();
882 end_sequence ();
884 else
885 new_insn = gen_move_insn (dest, src);
886 info.first = new_insn;
887 info.fixed_regs_live = insn_info->fixed_regs_live;
888 info.failure = false;
889 for (cur = new_insn; cur; cur = NEXT_INSN (cur))
891 info.current = cur;
892 note_stores (PATTERN (cur), note_add_store, &info);
895 /* If a failure was flagged above, return 1 so that for_each_inc_dec will
896 return it immediately, communicating the failure to its caller. */
897 if (info.failure)
898 return 1;
900 emit_insn_before (new_insn, insn);
902 return -1;
905 /* Before we delete INSN_INFO->INSN, make sure that the auto inc/dec, if it
906 is there, is split into a separate insn.
907 Return true on success (or if there was nothing to do), false on failure. */
909 static bool
910 check_for_inc_dec_1 (insn_info_t insn_info)
912 rtx insn = insn_info->insn;
913 rtx note = find_reg_note (insn, REG_INC, NULL_RTX);
914 if (note)
915 return for_each_inc_dec (&insn, emit_inc_dec_insn_before, insn_info) == 0;
916 return true;
920 /* Entry point for postreload. If you work on reload_cse, or you need this
921 anywhere else, consider if you can provide register liveness information
922 and add a parameter to this function so that it can be passed down in
923 insn_info.fixed_regs_live. */
924 bool
925 check_for_inc_dec (rtx insn)
927 struct insn_info insn_info;
928 rtx note;
930 insn_info.insn = insn;
931 insn_info.fixed_regs_live = NULL;
932 note = find_reg_note (insn, REG_INC, NULL_RTX);
933 if (note)
934 return for_each_inc_dec (&insn, emit_inc_dec_insn_before, &insn_info) == 0;
935 return true;
938 /* Delete the insn and free all of the fields inside INSN_INFO. */
940 static void
941 delete_dead_store_insn (insn_info_t insn_info)
943 read_info_t read_info;
945 if (!dbg_cnt (dse))
946 return;
948 if (!check_for_inc_dec_1 (insn_info))
949 return;
950 if (dump_file && (dump_flags & TDF_DETAILS))
952 fprintf (dump_file, "Locally deleting insn %d ",
953 INSN_UID (insn_info->insn));
954 if (insn_info->store_rec->alias_set)
955 fprintf (dump_file, "alias set %d\n",
956 (int) insn_info->store_rec->alias_set);
957 else
958 fprintf (dump_file, "\n");
961 free_store_info (insn_info);
962 read_info = insn_info->read_rec;
964 while (read_info)
966 read_info_t next = read_info->next;
967 pool_free (read_info_pool, read_info);
968 read_info = next;
970 insn_info->read_rec = NULL;
972 delete_insn (insn_info->insn);
973 locally_deleted++;
974 insn_info->insn = NULL;
976 insn_info->wild_read = false;
979 /* Return whether DECL, a local variable, can possibly escape the current
980 function scope. */
982 static bool
983 local_variable_can_escape (tree decl)
985 if (TREE_ADDRESSABLE (decl))
986 return true;
988 /* If this is a partitioned variable, we need to consider all the variables
989 in the partition. This is necessary because a store into one of them can
990 be replaced with a store into another and this may not change the outcome
991 of the escape analysis. */
992 if (cfun->gimple_df->decls_to_pointers != NULL)
994 void *namep
995 = pointer_map_contains (cfun->gimple_df->decls_to_pointers, decl);
996 if (namep)
997 return TREE_ADDRESSABLE (*(tree *)namep);
1000 return false;
1003 /* Return whether EXPR can possibly escape the current function scope. */
1005 static bool
1006 can_escape (tree expr)
1008 tree base;
1009 if (!expr)
1010 return true;
1011 base = get_base_address (expr);
1012 if (DECL_P (base)
1013 && !may_be_aliased (base)
1014 && !(TREE_CODE (base) == VAR_DECL
1015 && !DECL_EXTERNAL (base)
1016 && !TREE_STATIC (base)
1017 && local_variable_can_escape (base)))
1018 return false;
1019 return true;
1022 /* Set the store* bitmaps offset_map_size* fields in GROUP based on
1023 OFFSET and WIDTH. */
1025 static void
1026 set_usage_bits (group_info_t group, HOST_WIDE_INT offset, HOST_WIDE_INT width,
1027 tree expr)
1029 HOST_WIDE_INT i;
1030 bool expr_escapes = can_escape (expr);
1031 if (offset > -MAX_OFFSET && offset + width < MAX_OFFSET)
1032 for (i=offset; i<offset+width; i++)
1034 bitmap store1;
1035 bitmap store2;
1036 bitmap escaped;
1037 int ai;
1038 if (i < 0)
1040 store1 = group->store1_n;
1041 store2 = group->store2_n;
1042 escaped = group->escaped_n;
1043 ai = -i;
1045 else
1047 store1 = group->store1_p;
1048 store2 = group->store2_p;
1049 escaped = group->escaped_p;
1050 ai = i;
1053 if (!bitmap_set_bit (store1, ai))
1054 bitmap_set_bit (store2, ai);
1055 else
1057 if (i < 0)
1059 if (group->offset_map_size_n < ai)
1060 group->offset_map_size_n = ai;
1062 else
1064 if (group->offset_map_size_p < ai)
1065 group->offset_map_size_p = ai;
1068 if (expr_escapes)
1069 bitmap_set_bit (escaped, ai);
1073 static void
1074 reset_active_stores (void)
1076 active_local_stores = NULL;
1077 active_local_stores_len = 0;
1080 /* Free all READ_REC of the LAST_INSN of BB_INFO. */
1082 static void
1083 free_read_records (bb_info_t bb_info)
1085 insn_info_t insn_info = bb_info->last_insn;
1086 read_info_t *ptr = &insn_info->read_rec;
1087 while (*ptr)
1089 read_info_t next = (*ptr)->next;
1090 if ((*ptr)->alias_set == 0)
1092 pool_free (read_info_pool, *ptr);
1093 *ptr = next;
1095 else
1096 ptr = &(*ptr)->next;
1100 /* Set the BB_INFO so that the last insn is marked as a wild read. */
1102 static void
1103 add_wild_read (bb_info_t bb_info)
1105 insn_info_t insn_info = bb_info->last_insn;
1106 insn_info->wild_read = true;
1107 free_read_records (bb_info);
1108 reset_active_stores ();
1111 /* Set the BB_INFO so that the last insn is marked as a wild read of
1112 non-frame locations. */
1114 static void
1115 add_non_frame_wild_read (bb_info_t bb_info)
1117 insn_info_t insn_info = bb_info->last_insn;
1118 insn_info->non_frame_wild_read = true;
1119 free_read_records (bb_info);
1120 reset_active_stores ();
1123 /* Return true if X is a constant or one of the registers that behave
1124 as a constant over the life of a function. This is equivalent to
1125 !rtx_varies_p for memory addresses. */
1127 static bool
1128 const_or_frame_p (rtx x)
1130 if (CONSTANT_P (x))
1131 return true;
1133 if (GET_CODE (x) == REG)
1135 /* Note that we have to test for the actual rtx used for the frame
1136 and arg pointers and not just the register number in case we have
1137 eliminated the frame and/or arg pointer and are using it
1138 for pseudos. */
1139 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
1140 /* The arg pointer varies if it is not a fixed register. */
1141 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
1142 || x == pic_offset_table_rtx)
1143 return true;
1144 return false;
1147 return false;
1150 /* Take all reasonable action to put the address of MEM into the form
1151 that we can do analysis on.
1153 The gold standard is to get the address into the form: address +
1154 OFFSET where address is something that rtx_varies_p considers a
1155 constant. When we can get the address in this form, we can do
1156 global analysis on it. Note that for constant bases, address is
1157 not actually returned, only the group_id. The address can be
1158 obtained from that.
1160 If that fails, we try cselib to get a value we can at least use
1161 locally. If that fails we return false.
1163 The GROUP_ID is set to -1 for cselib bases and the index of the
1164 group for non_varying bases.
1166 FOR_READ is true if this is a mem read and false if not. */
1168 static bool
1169 canon_address (rtx mem,
1170 alias_set_type *alias_set_out,
1171 int *group_id,
1172 HOST_WIDE_INT *offset,
1173 cselib_val **base)
1175 enum machine_mode address_mode = get_address_mode (mem);
1176 rtx mem_address = XEXP (mem, 0);
1177 rtx expanded_address, address;
1178 int expanded;
1180 *alias_set_out = 0;
1182 cselib_lookup (mem_address, address_mode, 1, GET_MODE (mem));
1184 if (dump_file && (dump_flags & TDF_DETAILS))
1186 fprintf (dump_file, " mem: ");
1187 print_inline_rtx (dump_file, mem_address, 0);
1188 fprintf (dump_file, "\n");
1191 /* First see if just canon_rtx (mem_address) is const or frame,
1192 if not, try cselib_expand_value_rtx and call canon_rtx on that. */
1193 address = NULL_RTX;
1194 for (expanded = 0; expanded < 2; expanded++)
1196 if (expanded)
1198 /* Use cselib to replace all of the reg references with the full
1199 expression. This will take care of the case where we have
1201 r_x = base + offset;
1202 val = *r_x;
1204 by making it into
1206 val = *(base + offset); */
1208 expanded_address = cselib_expand_value_rtx (mem_address,
1209 scratch, 5);
1211 /* If this fails, just go with the address from first
1212 iteration. */
1213 if (!expanded_address)
1214 break;
1216 else
1217 expanded_address = mem_address;
1219 /* Split the address into canonical BASE + OFFSET terms. */
1220 address = canon_rtx (expanded_address);
1222 *offset = 0;
1224 if (dump_file && (dump_flags & TDF_DETAILS))
1226 if (expanded)
1228 fprintf (dump_file, "\n after cselib_expand address: ");
1229 print_inline_rtx (dump_file, expanded_address, 0);
1230 fprintf (dump_file, "\n");
1233 fprintf (dump_file, "\n after canon_rtx address: ");
1234 print_inline_rtx (dump_file, address, 0);
1235 fprintf (dump_file, "\n");
1238 if (GET_CODE (address) == CONST)
1239 address = XEXP (address, 0);
1241 if (GET_CODE (address) == PLUS
1242 && CONST_INT_P (XEXP (address, 1)))
1244 *offset = INTVAL (XEXP (address, 1));
1245 address = XEXP (address, 0);
1248 if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (mem))
1249 && const_or_frame_p (address))
1251 group_info_t group = get_group_info (address);
1253 if (dump_file && (dump_flags & TDF_DETAILS))
1254 fprintf (dump_file, " gid=%d offset=%d \n",
1255 group->id, (int)*offset);
1256 *base = NULL;
1257 *group_id = group->id;
1258 return true;
1262 *base = cselib_lookup (address, address_mode, true, GET_MODE (mem));
1263 *group_id = -1;
1265 if (*base == NULL)
1267 if (dump_file && (dump_flags & TDF_DETAILS))
1268 fprintf (dump_file, " no cselib val - should be a wild read.\n");
1269 return false;
1271 if (dump_file && (dump_flags & TDF_DETAILS))
1272 fprintf (dump_file, " varying cselib base=%u:%u offset = %d\n",
1273 (*base)->uid, (*base)->hash, (int)*offset);
1274 return true;
1278 /* Clear the rhs field from the active_local_stores array. */
1280 static void
1281 clear_rhs_from_active_local_stores (void)
1283 insn_info_t ptr = active_local_stores;
1285 while (ptr)
1287 store_info_t store_info = ptr->store_rec;
1288 /* Skip the clobbers. */
1289 while (!store_info->is_set)
1290 store_info = store_info->next;
1292 store_info->rhs = NULL;
1293 store_info->const_rhs = NULL;
1295 ptr = ptr->next_local_store;
1300 /* Mark byte POS bytes from the beginning of store S_INFO as unneeded. */
1302 static inline void
1303 set_position_unneeded (store_info_t s_info, int pos)
1305 if (__builtin_expect (s_info->is_large, false))
1307 if (bitmap_set_bit (s_info->positions_needed.large.bmap, pos))
1308 s_info->positions_needed.large.count++;
1310 else
1311 s_info->positions_needed.small_bitmask
1312 &= ~(((unsigned HOST_WIDE_INT) 1) << pos);
1315 /* Mark the whole store S_INFO as unneeded. */
1317 static inline void
1318 set_all_positions_unneeded (store_info_t s_info)
1320 if (__builtin_expect (s_info->is_large, false))
1322 int pos, end = s_info->end - s_info->begin;
1323 for (pos = 0; pos < end; pos++)
1324 bitmap_set_bit (s_info->positions_needed.large.bmap, pos);
1325 s_info->positions_needed.large.count = end;
1327 else
1328 s_info->positions_needed.small_bitmask = (unsigned HOST_WIDE_INT) 0;
1331 /* Return TRUE if any bytes from S_INFO store are needed. */
1333 static inline bool
1334 any_positions_needed_p (store_info_t s_info)
1336 if (__builtin_expect (s_info->is_large, false))
1337 return (s_info->positions_needed.large.count
1338 < s_info->end - s_info->begin);
1339 else
1340 return (s_info->positions_needed.small_bitmask
1341 != (unsigned HOST_WIDE_INT) 0);
1344 /* Return TRUE if all bytes START through START+WIDTH-1 from S_INFO
1345 store are needed. */
1347 static inline bool
1348 all_positions_needed_p (store_info_t s_info, int start, int width)
1350 if (__builtin_expect (s_info->is_large, false))
1352 int end = start + width;
1353 while (start < end)
1354 if (bitmap_bit_p (s_info->positions_needed.large.bmap, start++))
1355 return false;
1356 return true;
1358 else
1360 unsigned HOST_WIDE_INT mask = lowpart_bitmask (width) << start;
1361 return (s_info->positions_needed.small_bitmask & mask) == mask;
1366 static rtx get_stored_val (store_info_t, enum machine_mode, HOST_WIDE_INT,
1367 HOST_WIDE_INT, basic_block, bool);
1370 /* BODY is an instruction pattern that belongs to INSN. Return 1 if
1371 there is a candidate store, after adding it to the appropriate
1372 local store group if so. */
1374 static int
1375 record_store (rtx body, bb_info_t bb_info)
1377 rtx mem, rhs, const_rhs, mem_addr;
1378 HOST_WIDE_INT offset = 0;
1379 HOST_WIDE_INT width = 0;
1380 alias_set_type spill_alias_set;
1381 insn_info_t insn_info = bb_info->last_insn;
1382 store_info_t store_info = NULL;
1383 int group_id;
1384 cselib_val *base = NULL;
1385 insn_info_t ptr, last, redundant_reason;
1386 bool store_is_unused;
1388 if (GET_CODE (body) != SET && GET_CODE (body) != CLOBBER)
1389 return 0;
1391 mem = SET_DEST (body);
1393 /* If this is not used, then this cannot be used to keep the insn
1394 from being deleted. On the other hand, it does provide something
1395 that can be used to prove that another store is dead. */
1396 store_is_unused
1397 = (find_reg_note (insn_info->insn, REG_UNUSED, mem) != NULL);
1399 /* Check whether that value is a suitable memory location. */
1400 if (!MEM_P (mem))
1402 /* If the set or clobber is unused, then it does not effect our
1403 ability to get rid of the entire insn. */
1404 if (!store_is_unused)
1405 insn_info->cannot_delete = true;
1406 return 0;
1409 /* At this point we know mem is a mem. */
1410 if (GET_MODE (mem) == BLKmode)
1412 if (GET_CODE (XEXP (mem, 0)) == SCRATCH)
1414 if (dump_file && (dump_flags & TDF_DETAILS))
1415 fprintf (dump_file, " adding wild read for (clobber (mem:BLK (scratch))\n");
1416 add_wild_read (bb_info);
1417 insn_info->cannot_delete = true;
1418 return 0;
1420 /* Handle (set (mem:BLK (addr) [... S36 ...]) (const_int 0))
1421 as memset (addr, 0, 36); */
1422 else if (!MEM_SIZE_KNOWN_P (mem)
1423 || MEM_SIZE (mem) <= 0
1424 || MEM_SIZE (mem) > MAX_OFFSET
1425 || GET_CODE (body) != SET
1426 || !CONST_INT_P (SET_SRC (body)))
1428 if (!store_is_unused)
1430 /* If the set or clobber is unused, then it does not effect our
1431 ability to get rid of the entire insn. */
1432 insn_info->cannot_delete = true;
1433 clear_rhs_from_active_local_stores ();
1435 return 0;
1439 /* We can still process a volatile mem, we just cannot delete it. */
1440 if (MEM_VOLATILE_P (mem))
1441 insn_info->cannot_delete = true;
1443 if (!canon_address (mem, &spill_alias_set, &group_id, &offset, &base))
1445 clear_rhs_from_active_local_stores ();
1446 return 0;
1449 if (GET_MODE (mem) == BLKmode)
1450 width = MEM_SIZE (mem);
1451 else
1452 width = GET_MODE_SIZE (GET_MODE (mem));
1454 if (spill_alias_set)
1456 bitmap store1 = clear_alias_group->store1_p;
1457 bitmap store2 = clear_alias_group->store2_p;
1459 gcc_assert (GET_MODE (mem) != BLKmode);
1461 if (!bitmap_set_bit (store1, spill_alias_set))
1462 bitmap_set_bit (store2, spill_alias_set);
1464 if (clear_alias_group->offset_map_size_p < spill_alias_set)
1465 clear_alias_group->offset_map_size_p = spill_alias_set;
1467 store_info = (store_info_t) pool_alloc (rtx_store_info_pool);
1469 if (dump_file && (dump_flags & TDF_DETAILS))
1470 fprintf (dump_file, " processing spill store %d(%s)\n",
1471 (int) spill_alias_set, GET_MODE_NAME (GET_MODE (mem)));
1473 else if (group_id >= 0)
1475 /* In the restrictive case where the base is a constant or the
1476 frame pointer we can do global analysis. */
1478 group_info_t group
1479 = rtx_group_vec[group_id];
1480 tree expr = MEM_EXPR (mem);
1482 store_info = (store_info_t) pool_alloc (rtx_store_info_pool);
1483 set_usage_bits (group, offset, width, expr);
1485 if (dump_file && (dump_flags & TDF_DETAILS))
1486 fprintf (dump_file, " processing const base store gid=%d[%d..%d)\n",
1487 group_id, (int)offset, (int)(offset+width));
1489 else
1491 if (may_be_sp_based_p (XEXP (mem, 0)))
1492 insn_info->stack_pointer_based = true;
1493 insn_info->contains_cselib_groups = true;
1495 store_info = (store_info_t) pool_alloc (cse_store_info_pool);
1496 group_id = -1;
1498 if (dump_file && (dump_flags & TDF_DETAILS))
1499 fprintf (dump_file, " processing cselib store [%d..%d)\n",
1500 (int)offset, (int)(offset+width));
1503 const_rhs = rhs = NULL_RTX;
1504 if (GET_CODE (body) == SET
1505 /* No place to keep the value after ra. */
1506 && !reload_completed
1507 && (REG_P (SET_SRC (body))
1508 || GET_CODE (SET_SRC (body)) == SUBREG
1509 || CONSTANT_P (SET_SRC (body)))
1510 && !MEM_VOLATILE_P (mem)
1511 /* Sometimes the store and reload is used for truncation and
1512 rounding. */
1513 && !(FLOAT_MODE_P (GET_MODE (mem)) && (flag_float_store)))
1515 rhs = SET_SRC (body);
1516 if (CONSTANT_P (rhs))
1517 const_rhs = rhs;
1518 else if (body == PATTERN (insn_info->insn))
1520 rtx tem = find_reg_note (insn_info->insn, REG_EQUAL, NULL_RTX);
1521 if (tem && CONSTANT_P (XEXP (tem, 0)))
1522 const_rhs = XEXP (tem, 0);
1524 if (const_rhs == NULL_RTX && REG_P (rhs))
1526 rtx tem = cselib_expand_value_rtx (rhs, scratch, 5);
1528 if (tem && CONSTANT_P (tem))
1529 const_rhs = tem;
1533 /* Check to see if this stores causes some other stores to be
1534 dead. */
1535 ptr = active_local_stores;
1536 last = NULL;
1537 redundant_reason = NULL;
1538 mem = canon_rtx (mem);
1539 /* For alias_set != 0 canon_true_dependence should be never called. */
1540 if (spill_alias_set)
1541 mem_addr = NULL_RTX;
1542 else
1544 if (group_id < 0)
1545 mem_addr = base->val_rtx;
1546 else
1548 group_info_t group
1549 = rtx_group_vec[group_id];
1550 mem_addr = group->canon_base_addr;
1552 if (offset)
1553 mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset);
1556 while (ptr)
1558 insn_info_t next = ptr->next_local_store;
1559 store_info_t s_info = ptr->store_rec;
1560 bool del = true;
1562 /* Skip the clobbers. We delete the active insn if this insn
1563 shadows the set. To have been put on the active list, it
1564 has exactly on set. */
1565 while (!s_info->is_set)
1566 s_info = s_info->next;
1568 if (s_info->alias_set != spill_alias_set)
1569 del = false;
1570 else if (s_info->alias_set)
1572 struct clear_alias_mode_holder *entry
1573 = clear_alias_set_lookup (s_info->alias_set);
1574 /* Generally, spills cannot be processed if and of the
1575 references to the slot have a different mode. But if
1576 we are in the same block and mode is exactly the same
1577 between this store and one before in the same block,
1578 we can still delete it. */
1579 if ((GET_MODE (mem) == GET_MODE (s_info->mem))
1580 && (GET_MODE (mem) == entry->mode))
1582 del = true;
1583 set_all_positions_unneeded (s_info);
1585 if (dump_file && (dump_flags & TDF_DETAILS))
1586 fprintf (dump_file, " trying spill store in insn=%d alias_set=%d\n",
1587 INSN_UID (ptr->insn), (int) s_info->alias_set);
1589 else if ((s_info->group_id == group_id)
1590 && (s_info->cse_base == base))
1592 HOST_WIDE_INT i;
1593 if (dump_file && (dump_flags & TDF_DETAILS))
1594 fprintf (dump_file, " trying store in insn=%d gid=%d[%d..%d)\n",
1595 INSN_UID (ptr->insn), s_info->group_id,
1596 (int)s_info->begin, (int)s_info->end);
1598 /* Even if PTR won't be eliminated as unneeded, if both
1599 PTR and this insn store the same constant value, we might
1600 eliminate this insn instead. */
1601 if (s_info->const_rhs
1602 && const_rhs
1603 && offset >= s_info->begin
1604 && offset + width <= s_info->end
1605 && all_positions_needed_p (s_info, offset - s_info->begin,
1606 width))
1608 if (GET_MODE (mem) == BLKmode)
1610 if (GET_MODE (s_info->mem) == BLKmode
1611 && s_info->const_rhs == const_rhs)
1612 redundant_reason = ptr;
1614 else if (s_info->const_rhs == const0_rtx
1615 && const_rhs == const0_rtx)
1616 redundant_reason = ptr;
1617 else
1619 rtx val;
1620 start_sequence ();
1621 val = get_stored_val (s_info, GET_MODE (mem),
1622 offset, offset + width,
1623 BLOCK_FOR_INSN (insn_info->insn),
1624 true);
1625 if (get_insns () != NULL)
1626 val = NULL_RTX;
1627 end_sequence ();
1628 if (val && rtx_equal_p (val, const_rhs))
1629 redundant_reason = ptr;
1633 for (i = MAX (offset, s_info->begin);
1634 i < offset + width && i < s_info->end;
1635 i++)
1636 set_position_unneeded (s_info, i - s_info->begin);
1638 else if (s_info->rhs)
1639 /* Need to see if it is possible for this store to overwrite
1640 the value of store_info. If it is, set the rhs to NULL to
1641 keep it from being used to remove a load. */
1643 if (canon_true_dependence (s_info->mem,
1644 GET_MODE (s_info->mem),
1645 s_info->mem_addr,
1646 mem, mem_addr))
1648 s_info->rhs = NULL;
1649 s_info->const_rhs = NULL;
1653 /* An insn can be deleted if every position of every one of
1654 its s_infos is zero. */
1655 if (any_positions_needed_p (s_info))
1656 del = false;
1658 if (del)
1660 insn_info_t insn_to_delete = ptr;
1662 active_local_stores_len--;
1663 if (last)
1664 last->next_local_store = ptr->next_local_store;
1665 else
1666 active_local_stores = ptr->next_local_store;
1668 if (!insn_to_delete->cannot_delete)
1669 delete_dead_store_insn (insn_to_delete);
1671 else
1672 last = ptr;
1674 ptr = next;
1677 /* Finish filling in the store_info. */
1678 store_info->next = insn_info->store_rec;
1679 insn_info->store_rec = store_info;
1680 store_info->mem = mem;
1681 store_info->alias_set = spill_alias_set;
1682 store_info->mem_addr = mem_addr;
1683 store_info->cse_base = base;
1684 if (width > HOST_BITS_PER_WIDE_INT)
1686 store_info->is_large = true;
1687 store_info->positions_needed.large.count = 0;
1688 store_info->positions_needed.large.bmap = BITMAP_ALLOC (&dse_bitmap_obstack);
1690 else
1692 store_info->is_large = false;
1693 store_info->positions_needed.small_bitmask = lowpart_bitmask (width);
1695 store_info->group_id = group_id;
1696 store_info->begin = offset;
1697 store_info->end = offset + width;
1698 store_info->is_set = GET_CODE (body) == SET;
1699 store_info->rhs = rhs;
1700 store_info->const_rhs = const_rhs;
1701 store_info->redundant_reason = redundant_reason;
1703 /* If this is a clobber, we return 0. We will only be able to
1704 delete this insn if there is only one store USED store, but we
1705 can use the clobber to delete other stores earlier. */
1706 return store_info->is_set ? 1 : 0;
1710 static void
1711 dump_insn_info (const char * start, insn_info_t insn_info)
1713 fprintf (dump_file, "%s insn=%d %s\n", start,
1714 INSN_UID (insn_info->insn),
1715 insn_info->store_rec ? "has store" : "naked");
1719 /* If the modes are different and the value's source and target do not
1720 line up, we need to extract the value from lower part of the rhs of
1721 the store, shift it, and then put it into a form that can be shoved
1722 into the read_insn. This function generates a right SHIFT of a
1723 value that is at least ACCESS_SIZE bytes wide of READ_MODE. The
1724 shift sequence is returned or NULL if we failed to find a
1725 shift. */
1727 static rtx
1728 find_shift_sequence (int access_size,
1729 store_info_t store_info,
1730 enum machine_mode read_mode,
1731 int shift, bool speed, bool require_cst)
1733 enum machine_mode store_mode = GET_MODE (store_info->mem);
1734 enum machine_mode new_mode;
1735 rtx read_reg = NULL;
1737 /* Some machines like the x86 have shift insns for each size of
1738 operand. Other machines like the ppc or the ia-64 may only have
1739 shift insns that shift values within 32 or 64 bit registers.
1740 This loop tries to find the smallest shift insn that will right
1741 justify the value we want to read but is available in one insn on
1742 the machine. */
1744 for (new_mode = smallest_mode_for_size (access_size * BITS_PER_UNIT,
1745 MODE_INT);
1746 GET_MODE_BITSIZE (new_mode) <= BITS_PER_WORD;
1747 new_mode = GET_MODE_WIDER_MODE (new_mode))
1749 rtx target, new_reg, shift_seq, insn, new_lhs;
1750 int cost;
1752 /* If a constant was stored into memory, try to simplify it here,
1753 otherwise the cost of the shift might preclude this optimization
1754 e.g. at -Os, even when no actual shift will be needed. */
1755 if (store_info->const_rhs)
1757 unsigned int byte = subreg_lowpart_offset (new_mode, store_mode);
1758 rtx ret = simplify_subreg (new_mode, store_info->const_rhs,
1759 store_mode, byte);
1760 if (ret && CONSTANT_P (ret))
1762 ret = simplify_const_binary_operation (LSHIFTRT, new_mode,
1763 ret, GEN_INT (shift));
1764 if (ret && CONSTANT_P (ret))
1766 byte = subreg_lowpart_offset (read_mode, new_mode);
1767 ret = simplify_subreg (read_mode, ret, new_mode, byte);
1768 if (ret && CONSTANT_P (ret)
1769 && set_src_cost (ret, speed) <= COSTS_N_INSNS (1))
1770 return ret;
1775 if (require_cst)
1776 return NULL_RTX;
1778 /* Try a wider mode if truncating the store mode to NEW_MODE
1779 requires a real instruction. */
1780 if (GET_MODE_BITSIZE (new_mode) < GET_MODE_BITSIZE (store_mode)
1781 && !TRULY_NOOP_TRUNCATION_MODES_P (new_mode, store_mode))
1782 continue;
1784 /* Also try a wider mode if the necessary punning is either not
1785 desirable or not possible. */
1786 if (!CONSTANT_P (store_info->rhs)
1787 && !MODES_TIEABLE_P (new_mode, store_mode))
1788 continue;
1790 new_reg = gen_reg_rtx (new_mode);
1792 start_sequence ();
1794 /* In theory we could also check for an ashr. Ian Taylor knows
1795 of one dsp where the cost of these two was not the same. But
1796 this really is a rare case anyway. */
1797 target = expand_binop (new_mode, lshr_optab, new_reg,
1798 GEN_INT (shift), new_reg, 1, OPTAB_DIRECT);
1800 shift_seq = get_insns ();
1801 end_sequence ();
1803 if (target != new_reg || shift_seq == NULL)
1804 continue;
1806 cost = 0;
1807 for (insn = shift_seq; insn != NULL_RTX; insn = NEXT_INSN (insn))
1808 if (INSN_P (insn))
1809 cost += insn_rtx_cost (PATTERN (insn), speed);
1811 /* The computation up to here is essentially independent
1812 of the arguments and could be precomputed. It may
1813 not be worth doing so. We could precompute if
1814 worthwhile or at least cache the results. The result
1815 technically depends on both SHIFT and ACCESS_SIZE,
1816 but in practice the answer will depend only on ACCESS_SIZE. */
1818 if (cost > COSTS_N_INSNS (1))
1819 continue;
1821 new_lhs = extract_low_bits (new_mode, store_mode,
1822 copy_rtx (store_info->rhs));
1823 if (new_lhs == NULL_RTX)
1824 continue;
1826 /* We found an acceptable shift. Generate a move to
1827 take the value from the store and put it into the
1828 shift pseudo, then shift it, then generate another
1829 move to put in into the target of the read. */
1830 emit_move_insn (new_reg, new_lhs);
1831 emit_insn (shift_seq);
1832 read_reg = extract_low_bits (read_mode, new_mode, new_reg);
1833 break;
1836 return read_reg;
1840 /* Call back for note_stores to find the hard regs set or clobbered by
1841 insn. Data is a bitmap of the hardregs set so far. */
1843 static void
1844 look_for_hardregs (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1846 bitmap regs_set = (bitmap) data;
1848 if (REG_P (x)
1849 && HARD_REGISTER_P (x))
1851 unsigned int regno = REGNO (x);
1852 bitmap_set_range (regs_set, regno,
1853 hard_regno_nregs[regno][GET_MODE (x)]);
1857 /* Helper function for replace_read and record_store.
1858 Attempt to return a value stored in STORE_INFO, from READ_BEGIN
1859 to one before READ_END bytes read in READ_MODE. Return NULL
1860 if not successful. If REQUIRE_CST is true, return always constant. */
1862 static rtx
1863 get_stored_val (store_info_t store_info, enum machine_mode read_mode,
1864 HOST_WIDE_INT read_begin, HOST_WIDE_INT read_end,
1865 basic_block bb, bool require_cst)
1867 enum machine_mode store_mode = GET_MODE (store_info->mem);
1868 int shift;
1869 int access_size; /* In bytes. */
1870 rtx read_reg;
1872 /* To get here the read is within the boundaries of the write so
1873 shift will never be negative. Start out with the shift being in
1874 bytes. */
1875 if (store_mode == BLKmode)
1876 shift = 0;
1877 else if (BYTES_BIG_ENDIAN)
1878 shift = store_info->end - read_end;
1879 else
1880 shift = read_begin - store_info->begin;
1882 access_size = shift + GET_MODE_SIZE (read_mode);
1884 /* From now on it is bits. */
1885 shift *= BITS_PER_UNIT;
1887 if (shift)
1888 read_reg = find_shift_sequence (access_size, store_info, read_mode, shift,
1889 optimize_bb_for_speed_p (bb),
1890 require_cst);
1891 else if (store_mode == BLKmode)
1893 /* The store is a memset (addr, const_val, const_size). */
1894 gcc_assert (CONST_INT_P (store_info->rhs));
1895 store_mode = int_mode_for_mode (read_mode);
1896 if (store_mode == BLKmode)
1897 read_reg = NULL_RTX;
1898 else if (store_info->rhs == const0_rtx)
1899 read_reg = extract_low_bits (read_mode, store_mode, const0_rtx);
1900 else if (GET_MODE_BITSIZE (store_mode) > HOST_BITS_PER_WIDE_INT
1901 || BITS_PER_UNIT >= HOST_BITS_PER_WIDE_INT)
1902 read_reg = NULL_RTX;
1903 else
1905 unsigned HOST_WIDE_INT c
1906 = INTVAL (store_info->rhs)
1907 & (((HOST_WIDE_INT) 1 << BITS_PER_UNIT) - 1);
1908 int shift = BITS_PER_UNIT;
1909 while (shift < HOST_BITS_PER_WIDE_INT)
1911 c |= (c << shift);
1912 shift <<= 1;
1914 read_reg = gen_int_mode (c, store_mode);
1915 read_reg = extract_low_bits (read_mode, store_mode, read_reg);
1918 else if (store_info->const_rhs
1919 && (require_cst
1920 || GET_MODE_CLASS (read_mode) != GET_MODE_CLASS (store_mode)))
1921 read_reg = extract_low_bits (read_mode, store_mode,
1922 copy_rtx (store_info->const_rhs));
1923 else
1924 read_reg = extract_low_bits (read_mode, store_mode,
1925 copy_rtx (store_info->rhs));
1926 if (require_cst && read_reg && !CONSTANT_P (read_reg))
1927 read_reg = NULL_RTX;
1928 return read_reg;
1931 /* Take a sequence of:
1932 A <- r1
1934 ... <- A
1936 and change it into
1937 r2 <- r1
1938 A <- r1
1940 ... <- r2
1944 r3 <- extract (r1)
1945 r3 <- r3 >> shift
1946 r2 <- extract (r3)
1947 ... <- r2
1951 r2 <- extract (r1)
1952 ... <- r2
1954 Depending on the alignment and the mode of the store and
1955 subsequent load.
1958 The STORE_INFO and STORE_INSN are for the store and READ_INFO
1959 and READ_INSN are for the read. Return true if the replacement
1960 went ok. */
1962 static bool
1963 replace_read (store_info_t store_info, insn_info_t store_insn,
1964 read_info_t read_info, insn_info_t read_insn, rtx *loc,
1965 bitmap regs_live)
1967 enum machine_mode store_mode = GET_MODE (store_info->mem);
1968 enum machine_mode read_mode = GET_MODE (read_info->mem);
1969 rtx insns, this_insn, read_reg;
1970 basic_block bb;
1972 if (!dbg_cnt (dse))
1973 return false;
1975 /* Create a sequence of instructions to set up the read register.
1976 This sequence goes immediately before the store and its result
1977 is read by the load.
1979 We need to keep this in perspective. We are replacing a read
1980 with a sequence of insns, but the read will almost certainly be
1981 in cache, so it is not going to be an expensive one. Thus, we
1982 are not willing to do a multi insn shift or worse a subroutine
1983 call to get rid of the read. */
1984 if (dump_file && (dump_flags & TDF_DETAILS))
1985 fprintf (dump_file, "trying to replace %smode load in insn %d"
1986 " from %smode store in insn %d\n",
1987 GET_MODE_NAME (read_mode), INSN_UID (read_insn->insn),
1988 GET_MODE_NAME (store_mode), INSN_UID (store_insn->insn));
1989 start_sequence ();
1990 bb = BLOCK_FOR_INSN (read_insn->insn);
1991 read_reg = get_stored_val (store_info,
1992 read_mode, read_info->begin, read_info->end,
1993 bb, false);
1994 if (read_reg == NULL_RTX)
1996 end_sequence ();
1997 if (dump_file && (dump_flags & TDF_DETAILS))
1998 fprintf (dump_file, " -- could not extract bits of stored value\n");
1999 return false;
2001 /* Force the value into a new register so that it won't be clobbered
2002 between the store and the load. */
2003 read_reg = copy_to_mode_reg (read_mode, read_reg);
2004 insns = get_insns ();
2005 end_sequence ();
2007 if (insns != NULL_RTX)
2009 /* Now we have to scan the set of new instructions to see if the
2010 sequence contains and sets of hardregs that happened to be
2011 live at this point. For instance, this can happen if one of
2012 the insns sets the CC and the CC happened to be live at that
2013 point. This does occasionally happen, see PR 37922. */
2014 bitmap regs_set = BITMAP_ALLOC (&reg_obstack);
2016 for (this_insn = insns; this_insn != NULL_RTX; this_insn = NEXT_INSN (this_insn))
2017 note_stores (PATTERN (this_insn), look_for_hardregs, regs_set);
2019 bitmap_and_into (regs_set, regs_live);
2020 if (!bitmap_empty_p (regs_set))
2022 if (dump_file && (dump_flags & TDF_DETAILS))
2024 fprintf (dump_file,
2025 "abandoning replacement because sequence clobbers live hardregs:");
2026 df_print_regset (dump_file, regs_set);
2029 BITMAP_FREE (regs_set);
2030 return false;
2032 BITMAP_FREE (regs_set);
2035 if (validate_change (read_insn->insn, loc, read_reg, 0))
2037 deferred_change_t deferred_change =
2038 (deferred_change_t) pool_alloc (deferred_change_pool);
2040 /* Insert this right before the store insn where it will be safe
2041 from later insns that might change it before the read. */
2042 emit_insn_before (insns, store_insn->insn);
2044 /* And now for the kludge part: cselib croaks if you just
2045 return at this point. There are two reasons for this:
2047 1) Cselib has an idea of how many pseudos there are and
2048 that does not include the new ones we just added.
2050 2) Cselib does not know about the move insn we added
2051 above the store_info, and there is no way to tell it
2052 about it, because it has "moved on".
2054 Problem (1) is fixable with a certain amount of engineering.
2055 Problem (2) is requires starting the bb from scratch. This
2056 could be expensive.
2058 So we are just going to have to lie. The move/extraction
2059 insns are not really an issue, cselib did not see them. But
2060 the use of the new pseudo read_insn is a real problem because
2061 cselib has not scanned this insn. The way that we solve this
2062 problem is that we are just going to put the mem back for now
2063 and when we are finished with the block, we undo this. We
2064 keep a table of mems to get rid of. At the end of the basic
2065 block we can put them back. */
2067 *loc = read_info->mem;
2068 deferred_change->next = deferred_change_list;
2069 deferred_change_list = deferred_change;
2070 deferred_change->loc = loc;
2071 deferred_change->reg = read_reg;
2073 /* Get rid of the read_info, from the point of view of the
2074 rest of dse, play like this read never happened. */
2075 read_insn->read_rec = read_info->next;
2076 pool_free (read_info_pool, read_info);
2077 if (dump_file && (dump_flags & TDF_DETAILS))
2079 fprintf (dump_file, " -- replaced the loaded MEM with ");
2080 print_simple_rtl (dump_file, read_reg);
2081 fprintf (dump_file, "\n");
2083 return true;
2085 else
2087 if (dump_file && (dump_flags & TDF_DETAILS))
2089 fprintf (dump_file, " -- replacing the loaded MEM with ");
2090 print_simple_rtl (dump_file, read_reg);
2091 fprintf (dump_file, " led to an invalid instruction\n");
2093 return false;
2097 /* A for_each_rtx callback in which DATA is the bb_info. Check to see
2098 if LOC is a mem and if it is look at the address and kill any
2099 appropriate stores that may be active. */
2101 static int
2102 check_mem_read_rtx (rtx *loc, void *data)
2104 rtx mem = *loc, mem_addr;
2105 bb_info_t bb_info;
2106 insn_info_t insn_info;
2107 HOST_WIDE_INT offset = 0;
2108 HOST_WIDE_INT width = 0;
2109 alias_set_type spill_alias_set = 0;
2110 cselib_val *base = NULL;
2111 int group_id;
2112 read_info_t read_info;
2114 if (!mem || !MEM_P (mem))
2115 return 0;
2117 bb_info = (bb_info_t) data;
2118 insn_info = bb_info->last_insn;
2120 if ((MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2121 || (MEM_VOLATILE_P (mem)))
2123 if (dump_file && (dump_flags & TDF_DETAILS))
2124 fprintf (dump_file, " adding wild read, volatile or barrier.\n");
2125 add_wild_read (bb_info);
2126 insn_info->cannot_delete = true;
2127 return 0;
2130 /* If it is reading readonly mem, then there can be no conflict with
2131 another write. */
2132 if (MEM_READONLY_P (mem))
2133 return 0;
2135 if (!canon_address (mem, &spill_alias_set, &group_id, &offset, &base))
2137 if (dump_file && (dump_flags & TDF_DETAILS))
2138 fprintf (dump_file, " adding wild read, canon_address failure.\n");
2139 add_wild_read (bb_info);
2140 return 0;
2143 if (GET_MODE (mem) == BLKmode)
2144 width = -1;
2145 else
2146 width = GET_MODE_SIZE (GET_MODE (mem));
2148 read_info = (read_info_t) pool_alloc (read_info_pool);
2149 read_info->group_id = group_id;
2150 read_info->mem = mem;
2151 read_info->alias_set = spill_alias_set;
2152 read_info->begin = offset;
2153 read_info->end = offset + width;
2154 read_info->next = insn_info->read_rec;
2155 insn_info->read_rec = read_info;
2156 /* For alias_set != 0 canon_true_dependence should be never called. */
2157 if (spill_alias_set)
2158 mem_addr = NULL_RTX;
2159 else
2161 if (group_id < 0)
2162 mem_addr = base->val_rtx;
2163 else
2165 group_info_t group
2166 = rtx_group_vec[group_id];
2167 mem_addr = group->canon_base_addr;
2169 if (offset)
2170 mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset);
2173 /* We ignore the clobbers in store_info. The is mildly aggressive,
2174 but there really should not be a clobber followed by a read. */
2176 if (spill_alias_set)
2178 insn_info_t i_ptr = active_local_stores;
2179 insn_info_t last = NULL;
2181 if (dump_file && (dump_flags & TDF_DETAILS))
2182 fprintf (dump_file, " processing spill load %d\n",
2183 (int) spill_alias_set);
2185 while (i_ptr)
2187 store_info_t store_info = i_ptr->store_rec;
2189 /* Skip the clobbers. */
2190 while (!store_info->is_set)
2191 store_info = store_info->next;
2193 if (store_info->alias_set == spill_alias_set)
2195 if (dump_file && (dump_flags & TDF_DETAILS))
2196 dump_insn_info ("removing from active", i_ptr);
2198 active_local_stores_len--;
2199 if (last)
2200 last->next_local_store = i_ptr->next_local_store;
2201 else
2202 active_local_stores = i_ptr->next_local_store;
2204 else
2205 last = i_ptr;
2206 i_ptr = i_ptr->next_local_store;
2209 else if (group_id >= 0)
2211 /* This is the restricted case where the base is a constant or
2212 the frame pointer and offset is a constant. */
2213 insn_info_t i_ptr = active_local_stores;
2214 insn_info_t last = NULL;
2216 if (dump_file && (dump_flags & TDF_DETAILS))
2218 if (width == -1)
2219 fprintf (dump_file, " processing const load gid=%d[BLK]\n",
2220 group_id);
2221 else
2222 fprintf (dump_file, " processing const load gid=%d[%d..%d)\n",
2223 group_id, (int)offset, (int)(offset+width));
2226 while (i_ptr)
2228 bool remove = false;
2229 store_info_t store_info = i_ptr->store_rec;
2231 /* Skip the clobbers. */
2232 while (!store_info->is_set)
2233 store_info = store_info->next;
2235 /* There are three cases here. */
2236 if (store_info->group_id < 0)
2237 /* We have a cselib store followed by a read from a
2238 const base. */
2239 remove
2240 = canon_true_dependence (store_info->mem,
2241 GET_MODE (store_info->mem),
2242 store_info->mem_addr,
2243 mem, mem_addr);
2245 else if (group_id == store_info->group_id)
2247 /* This is a block mode load. We may get lucky and
2248 canon_true_dependence may save the day. */
2249 if (width == -1)
2250 remove
2251 = canon_true_dependence (store_info->mem,
2252 GET_MODE (store_info->mem),
2253 store_info->mem_addr,
2254 mem, mem_addr);
2256 /* If this read is just reading back something that we just
2257 stored, rewrite the read. */
2258 else
2260 if (store_info->rhs
2261 && offset >= store_info->begin
2262 && offset + width <= store_info->end
2263 && all_positions_needed_p (store_info,
2264 offset - store_info->begin,
2265 width)
2266 && replace_read (store_info, i_ptr, read_info,
2267 insn_info, loc, bb_info->regs_live))
2268 return 0;
2270 /* The bases are the same, just see if the offsets
2271 overlap. */
2272 if ((offset < store_info->end)
2273 && (offset + width > store_info->begin))
2274 remove = true;
2278 /* else
2279 The else case that is missing here is that the
2280 bases are constant but different. There is nothing
2281 to do here because there is no overlap. */
2283 if (remove)
2285 if (dump_file && (dump_flags & TDF_DETAILS))
2286 dump_insn_info ("removing from active", i_ptr);
2288 active_local_stores_len--;
2289 if (last)
2290 last->next_local_store = i_ptr->next_local_store;
2291 else
2292 active_local_stores = i_ptr->next_local_store;
2294 else
2295 last = i_ptr;
2296 i_ptr = i_ptr->next_local_store;
2299 else
2301 insn_info_t i_ptr = active_local_stores;
2302 insn_info_t last = NULL;
2303 if (dump_file && (dump_flags & TDF_DETAILS))
2305 fprintf (dump_file, " processing cselib load mem:");
2306 print_inline_rtx (dump_file, mem, 0);
2307 fprintf (dump_file, "\n");
2310 while (i_ptr)
2312 bool remove = false;
2313 store_info_t store_info = i_ptr->store_rec;
2315 if (dump_file && (dump_flags & TDF_DETAILS))
2316 fprintf (dump_file, " processing cselib load against insn %d\n",
2317 INSN_UID (i_ptr->insn));
2319 /* Skip the clobbers. */
2320 while (!store_info->is_set)
2321 store_info = store_info->next;
2323 /* If this read is just reading back something that we just
2324 stored, rewrite the read. */
2325 if (store_info->rhs
2326 && store_info->group_id == -1
2327 && store_info->cse_base == base
2328 && width != -1
2329 && offset >= store_info->begin
2330 && offset + width <= store_info->end
2331 && all_positions_needed_p (store_info,
2332 offset - store_info->begin, width)
2333 && replace_read (store_info, i_ptr, read_info, insn_info, loc,
2334 bb_info->regs_live))
2335 return 0;
2337 if (!store_info->alias_set)
2338 remove = canon_true_dependence (store_info->mem,
2339 GET_MODE (store_info->mem),
2340 store_info->mem_addr,
2341 mem, mem_addr);
2343 if (remove)
2345 if (dump_file && (dump_flags & TDF_DETAILS))
2346 dump_insn_info ("removing from active", i_ptr);
2348 active_local_stores_len--;
2349 if (last)
2350 last->next_local_store = i_ptr->next_local_store;
2351 else
2352 active_local_stores = i_ptr->next_local_store;
2354 else
2355 last = i_ptr;
2356 i_ptr = i_ptr->next_local_store;
2359 return 0;
2362 /* A for_each_rtx callback in which DATA points the INSN_INFO for
2363 as check_mem_read_rtx. Nullify the pointer if i_m_r_m_r returns
2364 true for any part of *LOC. */
2366 static void
2367 check_mem_read_use (rtx *loc, void *data)
2369 for_each_rtx (loc, check_mem_read_rtx, data);
2373 /* Get arguments passed to CALL_INSN. Return TRUE if successful.
2374 So far it only handles arguments passed in registers. */
2376 static bool
2377 get_call_args (rtx call_insn, tree fn, rtx *args, int nargs)
2379 CUMULATIVE_ARGS args_so_far_v;
2380 cumulative_args_t args_so_far;
2381 tree arg;
2382 int idx;
2384 INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
2385 args_so_far = pack_cumulative_args (&args_so_far_v);
2387 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
2388 for (idx = 0;
2389 arg != void_list_node && idx < nargs;
2390 arg = TREE_CHAIN (arg), idx++)
2392 enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
2393 rtx reg, link, tmp;
2394 reg = targetm.calls.function_arg (args_so_far, mode, NULL_TREE, true);
2395 if (!reg || !REG_P (reg) || GET_MODE (reg) != mode
2396 || GET_MODE_CLASS (mode) != MODE_INT)
2397 return false;
2399 for (link = CALL_INSN_FUNCTION_USAGE (call_insn);
2400 link;
2401 link = XEXP (link, 1))
2402 if (GET_CODE (XEXP (link, 0)) == USE)
2404 args[idx] = XEXP (XEXP (link, 0), 0);
2405 if (REG_P (args[idx])
2406 && REGNO (args[idx]) == REGNO (reg)
2407 && (GET_MODE (args[idx]) == mode
2408 || (GET_MODE_CLASS (GET_MODE (args[idx])) == MODE_INT
2409 && (GET_MODE_SIZE (GET_MODE (args[idx]))
2410 <= UNITS_PER_WORD)
2411 && (GET_MODE_SIZE (GET_MODE (args[idx]))
2412 > GET_MODE_SIZE (mode)))))
2413 break;
2415 if (!link)
2416 return false;
2418 tmp = cselib_expand_value_rtx (args[idx], scratch, 5);
2419 if (GET_MODE (args[idx]) != mode)
2421 if (!tmp || !CONST_INT_P (tmp))
2422 return false;
2423 tmp = gen_int_mode (INTVAL (tmp), mode);
2425 if (tmp)
2426 args[idx] = tmp;
2428 targetm.calls.function_arg_advance (args_so_far, mode, NULL_TREE, true);
2430 if (arg != void_list_node || idx != nargs)
2431 return false;
2432 return true;
2435 /* Return a bitmap of the fixed registers contained in IN. */
2437 static bitmap
2438 copy_fixed_regs (const_bitmap in)
2440 bitmap ret;
2442 ret = ALLOC_REG_SET (NULL);
2443 bitmap_and (ret, in, fixed_reg_set_regset);
2444 return ret;
2447 /* Apply record_store to all candidate stores in INSN. Mark INSN
2448 if some part of it is not a candidate store and assigns to a
2449 non-register target. */
2451 static void
2452 scan_insn (bb_info_t bb_info, rtx insn)
2454 rtx body;
2455 insn_info_t insn_info = (insn_info_t) pool_alloc (insn_info_pool);
2456 int mems_found = 0;
2457 memset (insn_info, 0, sizeof (struct insn_info));
2459 if (dump_file && (dump_flags & TDF_DETAILS))
2460 fprintf (dump_file, "\n**scanning insn=%d\n",
2461 INSN_UID (insn));
2463 insn_info->prev_insn = bb_info->last_insn;
2464 insn_info->insn = insn;
2465 bb_info->last_insn = insn_info;
2467 if (DEBUG_INSN_P (insn))
2469 insn_info->cannot_delete = true;
2470 return;
2473 /* Cselib clears the table for this case, so we have to essentially
2474 do the same. */
2475 if (NONJUMP_INSN_P (insn)
2476 && volatile_insn_p (PATTERN (insn)))
2478 add_wild_read (bb_info);
2479 insn_info->cannot_delete = true;
2480 return;
2483 /* Look at all of the uses in the insn. */
2484 note_uses (&PATTERN (insn), check_mem_read_use, bb_info);
2486 if (CALL_P (insn))
2488 bool const_call;
2489 tree memset_call = NULL_TREE;
2491 insn_info->cannot_delete = true;
2493 /* Const functions cannot do anything bad i.e. read memory,
2494 however, they can read their parameters which may have
2495 been pushed onto the stack.
2496 memset and bzero don't read memory either. */
2497 const_call = RTL_CONST_CALL_P (insn);
2498 if (!const_call)
2500 rtx call = get_call_rtx_from (insn);
2501 if (call && GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
2503 rtx symbol = XEXP (XEXP (call, 0), 0);
2504 if (SYMBOL_REF_DECL (symbol)
2505 && TREE_CODE (SYMBOL_REF_DECL (symbol)) == FUNCTION_DECL)
2507 if ((DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol))
2508 == BUILT_IN_NORMAL
2509 && (DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol))
2510 == BUILT_IN_MEMSET))
2511 || SYMBOL_REF_DECL (symbol) == block_clear_fn)
2512 memset_call = SYMBOL_REF_DECL (symbol);
2516 if (const_call || memset_call)
2518 insn_info_t i_ptr = active_local_stores;
2519 insn_info_t last = NULL;
2521 if (dump_file && (dump_flags & TDF_DETAILS))
2522 fprintf (dump_file, "%s call %d\n",
2523 const_call ? "const" : "memset", INSN_UID (insn));
2525 /* See the head comment of the frame_read field. */
2526 if (reload_completed)
2527 insn_info->frame_read = true;
2529 /* Loop over the active stores and remove those which are
2530 killed by the const function call. */
2531 while (i_ptr)
2533 bool remove_store = false;
2535 /* The stack pointer based stores are always killed. */
2536 if (i_ptr->stack_pointer_based)
2537 remove_store = true;
2539 /* If the frame is read, the frame related stores are killed. */
2540 else if (insn_info->frame_read)
2542 store_info_t store_info = i_ptr->store_rec;
2544 /* Skip the clobbers. */
2545 while (!store_info->is_set)
2546 store_info = store_info->next;
2548 if (store_info->group_id >= 0
2549 && rtx_group_vec[store_info->group_id]->frame_related)
2550 remove_store = true;
2553 if (remove_store)
2555 if (dump_file && (dump_flags & TDF_DETAILS))
2556 dump_insn_info ("removing from active", i_ptr);
2558 active_local_stores_len--;
2559 if (last)
2560 last->next_local_store = i_ptr->next_local_store;
2561 else
2562 active_local_stores = i_ptr->next_local_store;
2564 else
2565 last = i_ptr;
2567 i_ptr = i_ptr->next_local_store;
2570 if (memset_call)
2572 rtx args[3];
2573 if (get_call_args (insn, memset_call, args, 3)
2574 && CONST_INT_P (args[1])
2575 && CONST_INT_P (args[2])
2576 && INTVAL (args[2]) > 0)
2578 rtx mem = gen_rtx_MEM (BLKmode, args[0]);
2579 set_mem_size (mem, INTVAL (args[2]));
2580 body = gen_rtx_SET (VOIDmode, mem, args[1]);
2581 mems_found += record_store (body, bb_info);
2582 if (dump_file && (dump_flags & TDF_DETAILS))
2583 fprintf (dump_file, "handling memset as BLKmode store\n");
2584 if (mems_found == 1)
2586 if (active_local_stores_len++
2587 >= PARAM_VALUE (PARAM_MAX_DSE_ACTIVE_LOCAL_STORES))
2589 active_local_stores_len = 1;
2590 active_local_stores = NULL;
2592 insn_info->fixed_regs_live
2593 = copy_fixed_regs (bb_info->regs_live);
2594 insn_info->next_local_store = active_local_stores;
2595 active_local_stores = insn_info;
2601 else
2602 /* Every other call, including pure functions, may read any memory
2603 that is not relative to the frame. */
2604 add_non_frame_wild_read (bb_info);
2606 return;
2609 /* Assuming that there are sets in these insns, we cannot delete
2610 them. */
2611 if ((GET_CODE (PATTERN (insn)) == CLOBBER)
2612 || volatile_refs_p (PATTERN (insn))
2613 || (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn))
2614 || (RTX_FRAME_RELATED_P (insn))
2615 || find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX))
2616 insn_info->cannot_delete = true;
2618 body = PATTERN (insn);
2619 if (GET_CODE (body) == PARALLEL)
2621 int i;
2622 for (i = 0; i < XVECLEN (body, 0); i++)
2623 mems_found += record_store (XVECEXP (body, 0, i), bb_info);
2625 else
2626 mems_found += record_store (body, bb_info);
2628 if (dump_file && (dump_flags & TDF_DETAILS))
2629 fprintf (dump_file, "mems_found = %d, cannot_delete = %s\n",
2630 mems_found, insn_info->cannot_delete ? "true" : "false");
2632 /* If we found some sets of mems, add it into the active_local_stores so
2633 that it can be locally deleted if found dead or used for
2634 replace_read and redundant constant store elimination. Otherwise mark
2635 it as cannot delete. This simplifies the processing later. */
2636 if (mems_found == 1)
2638 if (active_local_stores_len++
2639 >= PARAM_VALUE (PARAM_MAX_DSE_ACTIVE_LOCAL_STORES))
2641 active_local_stores_len = 1;
2642 active_local_stores = NULL;
2644 insn_info->fixed_regs_live = copy_fixed_regs (bb_info->regs_live);
2645 insn_info->next_local_store = active_local_stores;
2646 active_local_stores = insn_info;
2648 else
2649 insn_info->cannot_delete = true;
2653 /* Remove BASE from the set of active_local_stores. This is a
2654 callback from cselib that is used to get rid of the stores in
2655 active_local_stores. */
2657 static void
2658 remove_useless_values (cselib_val *base)
2660 insn_info_t insn_info = active_local_stores;
2661 insn_info_t last = NULL;
2663 while (insn_info)
2665 store_info_t store_info = insn_info->store_rec;
2666 bool del = false;
2668 /* If ANY of the store_infos match the cselib group that is
2669 being deleted, then the insn can not be deleted. */
2670 while (store_info)
2672 if ((store_info->group_id == -1)
2673 && (store_info->cse_base == base))
2675 del = true;
2676 break;
2678 store_info = store_info->next;
2681 if (del)
2683 active_local_stores_len--;
2684 if (last)
2685 last->next_local_store = insn_info->next_local_store;
2686 else
2687 active_local_stores = insn_info->next_local_store;
2688 free_store_info (insn_info);
2690 else
2691 last = insn_info;
2693 insn_info = insn_info->next_local_store;
2698 /* Do all of step 1. */
2700 static void
2701 dse_step1 (void)
2703 basic_block bb;
2704 bitmap regs_live = BITMAP_ALLOC (&reg_obstack);
2706 cselib_init (0);
2707 all_blocks = BITMAP_ALLOC (NULL);
2708 bitmap_set_bit (all_blocks, ENTRY_BLOCK);
2709 bitmap_set_bit (all_blocks, EXIT_BLOCK);
2711 FOR_ALL_BB_FN (bb, cfun)
2713 insn_info_t ptr;
2714 bb_info_t bb_info = (bb_info_t) pool_alloc (bb_info_pool);
2716 memset (bb_info, 0, sizeof (struct bb_info));
2717 bitmap_set_bit (all_blocks, bb->index);
2718 bb_info->regs_live = regs_live;
2720 bitmap_copy (regs_live, DF_LR_IN (bb));
2721 df_simulate_initialize_forwards (bb, regs_live);
2723 bb_table[bb->index] = bb_info;
2724 cselib_discard_hook = remove_useless_values;
2726 if (bb->index >= NUM_FIXED_BLOCKS)
2728 rtx insn;
2730 cse_store_info_pool
2731 = create_alloc_pool ("cse_store_info_pool",
2732 sizeof (struct store_info), 100);
2733 active_local_stores = NULL;
2734 active_local_stores_len = 0;
2735 cselib_clear_table ();
2737 /* Scan the insns. */
2738 FOR_BB_INSNS (bb, insn)
2740 if (INSN_P (insn))
2741 scan_insn (bb_info, insn);
2742 cselib_process_insn (insn);
2743 if (INSN_P (insn))
2744 df_simulate_one_insn_forwards (bb, insn, regs_live);
2747 /* This is something of a hack, because the global algorithm
2748 is supposed to take care of the case where stores go dead
2749 at the end of the function. However, the global
2750 algorithm must take a more conservative view of block
2751 mode reads than the local alg does. So to get the case
2752 where you have a store to the frame followed by a non
2753 overlapping block more read, we look at the active local
2754 stores at the end of the function and delete all of the
2755 frame and spill based ones. */
2756 if (stores_off_frame_dead_at_return
2757 && (EDGE_COUNT (bb->succs) == 0
2758 || (single_succ_p (bb)
2759 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun)
2760 && ! crtl->calls_eh_return)))
2762 insn_info_t i_ptr = active_local_stores;
2763 while (i_ptr)
2765 store_info_t store_info = i_ptr->store_rec;
2767 /* Skip the clobbers. */
2768 while (!store_info->is_set)
2769 store_info = store_info->next;
2770 if (store_info->alias_set && !i_ptr->cannot_delete)
2771 delete_dead_store_insn (i_ptr);
2772 else
2773 if (store_info->group_id >= 0)
2775 group_info_t group
2776 = rtx_group_vec[store_info->group_id];
2777 if (group->frame_related && !i_ptr->cannot_delete)
2778 delete_dead_store_insn (i_ptr);
2781 i_ptr = i_ptr->next_local_store;
2785 /* Get rid of the loads that were discovered in
2786 replace_read. Cselib is finished with this block. */
2787 while (deferred_change_list)
2789 deferred_change_t next = deferred_change_list->next;
2791 /* There is no reason to validate this change. That was
2792 done earlier. */
2793 *deferred_change_list->loc = deferred_change_list->reg;
2794 pool_free (deferred_change_pool, deferred_change_list);
2795 deferred_change_list = next;
2798 /* Get rid of all of the cselib based store_infos in this
2799 block and mark the containing insns as not being
2800 deletable. */
2801 ptr = bb_info->last_insn;
2802 while (ptr)
2804 if (ptr->contains_cselib_groups)
2806 store_info_t s_info = ptr->store_rec;
2807 while (s_info && !s_info->is_set)
2808 s_info = s_info->next;
2809 if (s_info
2810 && s_info->redundant_reason
2811 && s_info->redundant_reason->insn
2812 && !ptr->cannot_delete)
2814 if (dump_file && (dump_flags & TDF_DETAILS))
2815 fprintf (dump_file, "Locally deleting insn %d "
2816 "because insn %d stores the "
2817 "same value and couldn't be "
2818 "eliminated\n",
2819 INSN_UID (ptr->insn),
2820 INSN_UID (s_info->redundant_reason->insn));
2821 delete_dead_store_insn (ptr);
2823 free_store_info (ptr);
2825 else
2827 store_info_t s_info;
2829 /* Free at least positions_needed bitmaps. */
2830 for (s_info = ptr->store_rec; s_info; s_info = s_info->next)
2831 if (s_info->is_large)
2833 BITMAP_FREE (s_info->positions_needed.large.bmap);
2834 s_info->is_large = false;
2837 ptr = ptr->prev_insn;
2840 free_alloc_pool (cse_store_info_pool);
2842 bb_info->regs_live = NULL;
2845 BITMAP_FREE (regs_live);
2846 cselib_finish ();
2847 rtx_group_table.empty ();
2851 /*----------------------------------------------------------------------------
2852 Second step.
2854 Assign each byte position in the stores that we are going to
2855 analyze globally to a position in the bitmaps. Returns true if
2856 there are any bit positions assigned.
2857 ----------------------------------------------------------------------------*/
2859 static void
2860 dse_step2_init (void)
2862 unsigned int i;
2863 group_info_t group;
2865 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2867 /* For all non stack related bases, we only consider a store to
2868 be deletable if there are two or more stores for that
2869 position. This is because it takes one store to make the
2870 other store redundant. However, for the stores that are
2871 stack related, we consider them if there is only one store
2872 for the position. We do this because the stack related
2873 stores can be deleted if their is no read between them and
2874 the end of the function.
2876 To make this work in the current framework, we take the stack
2877 related bases add all of the bits from store1 into store2.
2878 This has the effect of making the eligible even if there is
2879 only one store. */
2881 if (stores_off_frame_dead_at_return && group->frame_related)
2883 bitmap_ior_into (group->store2_n, group->store1_n);
2884 bitmap_ior_into (group->store2_p, group->store1_p);
2885 if (dump_file && (dump_flags & TDF_DETAILS))
2886 fprintf (dump_file, "group %d is frame related ", i);
2889 group->offset_map_size_n++;
2890 group->offset_map_n = XOBNEWVEC (&dse_obstack, int,
2891 group->offset_map_size_n);
2892 group->offset_map_size_p++;
2893 group->offset_map_p = XOBNEWVEC (&dse_obstack, int,
2894 group->offset_map_size_p);
2895 group->process_globally = false;
2896 if (dump_file && (dump_flags & TDF_DETAILS))
2898 fprintf (dump_file, "group %d(%d+%d): ", i,
2899 (int)bitmap_count_bits (group->store2_n),
2900 (int)bitmap_count_bits (group->store2_p));
2901 bitmap_print (dump_file, group->store2_n, "n ", " ");
2902 bitmap_print (dump_file, group->store2_p, "p ", "\n");
2908 /* Init the offset tables for the normal case. */
2910 static bool
2911 dse_step2_nospill (void)
2913 unsigned int i;
2914 group_info_t group;
2915 /* Position 0 is unused because 0 is used in the maps to mean
2916 unused. */
2917 current_position = 1;
2918 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2920 bitmap_iterator bi;
2921 unsigned int j;
2923 if (group == clear_alias_group)
2924 continue;
2926 memset (group->offset_map_n, 0, sizeof (int) * group->offset_map_size_n);
2927 memset (group->offset_map_p, 0, sizeof (int) * group->offset_map_size_p);
2928 bitmap_clear (group->group_kill);
2930 EXECUTE_IF_SET_IN_BITMAP (group->store2_n, 0, j, bi)
2932 bitmap_set_bit (group->group_kill, current_position);
2933 if (bitmap_bit_p (group->escaped_n, j))
2934 bitmap_set_bit (kill_on_calls, current_position);
2935 group->offset_map_n[j] = current_position++;
2936 group->process_globally = true;
2938 EXECUTE_IF_SET_IN_BITMAP (group->store2_p, 0, j, bi)
2940 bitmap_set_bit (group->group_kill, current_position);
2941 if (bitmap_bit_p (group->escaped_p, j))
2942 bitmap_set_bit (kill_on_calls, current_position);
2943 group->offset_map_p[j] = current_position++;
2944 group->process_globally = true;
2947 return current_position != 1;
2952 /*----------------------------------------------------------------------------
2953 Third step.
2955 Build the bit vectors for the transfer functions.
2956 ----------------------------------------------------------------------------*/
2959 /* Look up the bitmap index for OFFSET in GROUP_INFO. If it is not
2960 there, return 0. */
2962 static int
2963 get_bitmap_index (group_info_t group_info, HOST_WIDE_INT offset)
2965 if (offset < 0)
2967 HOST_WIDE_INT offset_p = -offset;
2968 if (offset_p >= group_info->offset_map_size_n)
2969 return 0;
2970 return group_info->offset_map_n[offset_p];
2972 else
2974 if (offset >= group_info->offset_map_size_p)
2975 return 0;
2976 return group_info->offset_map_p[offset];
2981 /* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
2982 may be NULL. */
2984 static void
2985 scan_stores_nospill (store_info_t store_info, bitmap gen, bitmap kill)
2987 while (store_info)
2989 HOST_WIDE_INT i;
2990 group_info_t group_info
2991 = rtx_group_vec[store_info->group_id];
2992 if (group_info->process_globally)
2993 for (i = store_info->begin; i < store_info->end; i++)
2995 int index = get_bitmap_index (group_info, i);
2996 if (index != 0)
2998 bitmap_set_bit (gen, index);
2999 if (kill)
3000 bitmap_clear_bit (kill, index);
3003 store_info = store_info->next;
3008 /* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
3009 may be NULL. */
3011 static void
3012 scan_stores_spill (store_info_t store_info, bitmap gen, bitmap kill)
3014 while (store_info)
3016 if (store_info->alias_set)
3018 int index = get_bitmap_index (clear_alias_group,
3019 store_info->alias_set);
3020 if (index != 0)
3022 bitmap_set_bit (gen, index);
3023 if (kill)
3024 bitmap_clear_bit (kill, index);
3027 store_info = store_info->next;
3032 /* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
3033 may be NULL. */
3035 static void
3036 scan_reads_nospill (insn_info_t insn_info, bitmap gen, bitmap kill)
3038 read_info_t read_info = insn_info->read_rec;
3039 int i;
3040 group_info_t group;
3042 /* If this insn reads the frame, kill all the frame related stores. */
3043 if (insn_info->frame_read)
3045 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3046 if (group->process_globally && group->frame_related)
3048 if (kill)
3049 bitmap_ior_into (kill, group->group_kill);
3050 bitmap_and_compl_into (gen, group->group_kill);
3053 if (insn_info->non_frame_wild_read)
3055 /* Kill all non-frame related stores. Kill all stores of variables that
3056 escape. */
3057 if (kill)
3058 bitmap_ior_into (kill, kill_on_calls);
3059 bitmap_and_compl_into (gen, kill_on_calls);
3060 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3061 if (group->process_globally && !group->frame_related)
3063 if (kill)
3064 bitmap_ior_into (kill, group->group_kill);
3065 bitmap_and_compl_into (gen, group->group_kill);
3068 while (read_info)
3070 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3072 if (group->process_globally)
3074 if (i == read_info->group_id)
3076 if (read_info->begin > read_info->end)
3078 /* Begin > end for block mode reads. */
3079 if (kill)
3080 bitmap_ior_into (kill, group->group_kill);
3081 bitmap_and_compl_into (gen, group->group_kill);
3083 else
3085 /* The groups are the same, just process the
3086 offsets. */
3087 HOST_WIDE_INT j;
3088 for (j = read_info->begin; j < read_info->end; j++)
3090 int index = get_bitmap_index (group, j);
3091 if (index != 0)
3093 if (kill)
3094 bitmap_set_bit (kill, index);
3095 bitmap_clear_bit (gen, index);
3100 else
3102 /* The groups are different, if the alias sets
3103 conflict, clear the entire group. We only need
3104 to apply this test if the read_info is a cselib
3105 read. Anything with a constant base cannot alias
3106 something else with a different constant
3107 base. */
3108 if ((read_info->group_id < 0)
3109 && canon_true_dependence (group->base_mem,
3110 GET_MODE (group->base_mem),
3111 group->canon_base_addr,
3112 read_info->mem, NULL_RTX))
3114 if (kill)
3115 bitmap_ior_into (kill, group->group_kill);
3116 bitmap_and_compl_into (gen, group->group_kill);
3122 read_info = read_info->next;
3126 /* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
3127 may be NULL. */
3129 static void
3130 scan_reads_spill (read_info_t read_info, bitmap gen, bitmap kill)
3132 while (read_info)
3134 if (read_info->alias_set)
3136 int index = get_bitmap_index (clear_alias_group,
3137 read_info->alias_set);
3138 if (index != 0)
3140 if (kill)
3141 bitmap_set_bit (kill, index);
3142 bitmap_clear_bit (gen, index);
3146 read_info = read_info->next;
3151 /* Return the insn in BB_INFO before the first wild read or if there
3152 are no wild reads in the block, return the last insn. */
3154 static insn_info_t
3155 find_insn_before_first_wild_read (bb_info_t bb_info)
3157 insn_info_t insn_info = bb_info->last_insn;
3158 insn_info_t last_wild_read = NULL;
3160 while (insn_info)
3162 if (insn_info->wild_read)
3164 last_wild_read = insn_info->prev_insn;
3165 /* Block starts with wild read. */
3166 if (!last_wild_read)
3167 return NULL;
3170 insn_info = insn_info->prev_insn;
3173 if (last_wild_read)
3174 return last_wild_read;
3175 else
3176 return bb_info->last_insn;
3180 /* Scan the insns in BB_INFO starting at PTR and going to the top of
3181 the block in order to build the gen and kill sets for the block.
3182 We start at ptr which may be the last insn in the block or may be
3183 the first insn with a wild read. In the latter case we are able to
3184 skip the rest of the block because it just does not matter:
3185 anything that happens is hidden by the wild read. */
3187 static void
3188 dse_step3_scan (bool for_spills, basic_block bb)
3190 bb_info_t bb_info = bb_table[bb->index];
3191 insn_info_t insn_info;
3193 if (for_spills)
3194 /* There are no wild reads in the spill case. */
3195 insn_info = bb_info->last_insn;
3196 else
3197 insn_info = find_insn_before_first_wild_read (bb_info);
3199 /* In the spill case or in the no_spill case if there is no wild
3200 read in the block, we will need a kill set. */
3201 if (insn_info == bb_info->last_insn)
3203 if (bb_info->kill)
3204 bitmap_clear (bb_info->kill);
3205 else
3206 bb_info->kill = BITMAP_ALLOC (&dse_bitmap_obstack);
3208 else
3209 if (bb_info->kill)
3210 BITMAP_FREE (bb_info->kill);
3212 while (insn_info)
3214 /* There may have been code deleted by the dce pass run before
3215 this phase. */
3216 if (insn_info->insn && INSN_P (insn_info->insn))
3218 /* Process the read(s) last. */
3219 if (for_spills)
3221 scan_stores_spill (insn_info->store_rec, bb_info->gen, bb_info->kill);
3222 scan_reads_spill (insn_info->read_rec, bb_info->gen, bb_info->kill);
3224 else
3226 scan_stores_nospill (insn_info->store_rec, bb_info->gen, bb_info->kill);
3227 scan_reads_nospill (insn_info, bb_info->gen, bb_info->kill);
3231 insn_info = insn_info->prev_insn;
3236 /* Set the gen set of the exit block, and also any block with no
3237 successors that does not have a wild read. */
3239 static void
3240 dse_step3_exit_block_scan (bb_info_t bb_info)
3242 /* The gen set is all 0's for the exit block except for the
3243 frame_pointer_group. */
3245 if (stores_off_frame_dead_at_return)
3247 unsigned int i;
3248 group_info_t group;
3250 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3252 if (group->process_globally && group->frame_related)
3253 bitmap_ior_into (bb_info->gen, group->group_kill);
3259 /* Find all of the blocks that are not backwards reachable from the
3260 exit block or any block with no successors (BB). These are the
3261 infinite loops or infinite self loops. These blocks will still
3262 have their bits set in UNREACHABLE_BLOCKS. */
3264 static void
3265 mark_reachable_blocks (sbitmap unreachable_blocks, basic_block bb)
3267 edge e;
3268 edge_iterator ei;
3270 if (bitmap_bit_p (unreachable_blocks, bb->index))
3272 bitmap_clear_bit (unreachable_blocks, bb->index);
3273 FOR_EACH_EDGE (e, ei, bb->preds)
3275 mark_reachable_blocks (unreachable_blocks, e->src);
3280 /* Build the transfer functions for the function. */
3282 static void
3283 dse_step3 (bool for_spills)
3285 basic_block bb;
3286 sbitmap unreachable_blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
3287 sbitmap_iterator sbi;
3288 bitmap all_ones = NULL;
3289 unsigned int i;
3291 bitmap_ones (unreachable_blocks);
3293 FOR_ALL_BB_FN (bb, cfun)
3295 bb_info_t bb_info = bb_table[bb->index];
3296 if (bb_info->gen)
3297 bitmap_clear (bb_info->gen);
3298 else
3299 bb_info->gen = BITMAP_ALLOC (&dse_bitmap_obstack);
3301 if (bb->index == ENTRY_BLOCK)
3303 else if (bb->index == EXIT_BLOCK)
3304 dse_step3_exit_block_scan (bb_info);
3305 else
3306 dse_step3_scan (for_spills, bb);
3307 if (EDGE_COUNT (bb->succs) == 0)
3308 mark_reachable_blocks (unreachable_blocks, bb);
3310 /* If this is the second time dataflow is run, delete the old
3311 sets. */
3312 if (bb_info->in)
3313 BITMAP_FREE (bb_info->in);
3314 if (bb_info->out)
3315 BITMAP_FREE (bb_info->out);
3318 /* For any block in an infinite loop, we must initialize the out set
3319 to all ones. This could be expensive, but almost never occurs in
3320 practice. However, it is common in regression tests. */
3321 EXECUTE_IF_SET_IN_BITMAP (unreachable_blocks, 0, i, sbi)
3323 if (bitmap_bit_p (all_blocks, i))
3325 bb_info_t bb_info = bb_table[i];
3326 if (!all_ones)
3328 unsigned int j;
3329 group_info_t group;
3331 all_ones = BITMAP_ALLOC (&dse_bitmap_obstack);
3332 FOR_EACH_VEC_ELT (rtx_group_vec, j, group)
3333 bitmap_ior_into (all_ones, group->group_kill);
3335 if (!bb_info->out)
3337 bb_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3338 bitmap_copy (bb_info->out, all_ones);
3343 if (all_ones)
3344 BITMAP_FREE (all_ones);
3345 sbitmap_free (unreachable_blocks);
3350 /*----------------------------------------------------------------------------
3351 Fourth step.
3353 Solve the bitvector equations.
3354 ----------------------------------------------------------------------------*/
3357 /* Confluence function for blocks with no successors. Create an out
3358 set from the gen set of the exit block. This block logically has
3359 the exit block as a successor. */
3363 static void
3364 dse_confluence_0 (basic_block bb)
3366 bb_info_t bb_info = bb_table[bb->index];
3368 if (bb->index == EXIT_BLOCK)
3369 return;
3371 if (!bb_info->out)
3373 bb_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3374 bitmap_copy (bb_info->out, bb_table[EXIT_BLOCK]->gen);
3378 /* Propagate the information from the in set of the dest of E to the
3379 out set of the src of E. If the various in or out sets are not
3380 there, that means they are all ones. */
3382 static bool
3383 dse_confluence_n (edge e)
3385 bb_info_t src_info = bb_table[e->src->index];
3386 bb_info_t dest_info = bb_table[e->dest->index];
3388 if (dest_info->in)
3390 if (src_info->out)
3391 bitmap_and_into (src_info->out, dest_info->in);
3392 else
3394 src_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3395 bitmap_copy (src_info->out, dest_info->in);
3398 return true;
3402 /* Propagate the info from the out to the in set of BB_INDEX's basic
3403 block. There are three cases:
3405 1) The block has no kill set. In this case the kill set is all
3406 ones. It does not matter what the out set of the block is, none of
3407 the info can reach the top. The only thing that reaches the top is
3408 the gen set and we just copy the set.
3410 2) There is a kill set but no out set and bb has successors. In
3411 this case we just return. Eventually an out set will be created and
3412 it is better to wait than to create a set of ones.
3414 3) There is both a kill and out set. We apply the obvious transfer
3415 function.
3418 static bool
3419 dse_transfer_function (int bb_index)
3421 bb_info_t bb_info = bb_table[bb_index];
3423 if (bb_info->kill)
3425 if (bb_info->out)
3427 /* Case 3 above. */
3428 if (bb_info->in)
3429 return bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3430 bb_info->out, bb_info->kill);
3431 else
3433 bb_info->in = BITMAP_ALLOC (&dse_bitmap_obstack);
3434 bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3435 bb_info->out, bb_info->kill);
3436 return true;
3439 else
3440 /* Case 2 above. */
3441 return false;
3443 else
3445 /* Case 1 above. If there is already an in set, nothing
3446 happens. */
3447 if (bb_info->in)
3448 return false;
3449 else
3451 bb_info->in = BITMAP_ALLOC (&dse_bitmap_obstack);
3452 bitmap_copy (bb_info->in, bb_info->gen);
3453 return true;
3458 /* Solve the dataflow equations. */
3460 static void
3461 dse_step4 (void)
3463 df_simple_dataflow (DF_BACKWARD, NULL, dse_confluence_0,
3464 dse_confluence_n, dse_transfer_function,
3465 all_blocks, df_get_postorder (DF_BACKWARD),
3466 df_get_n_blocks (DF_BACKWARD));
3467 if (dump_file && (dump_flags & TDF_DETAILS))
3469 basic_block bb;
3471 fprintf (dump_file, "\n\n*** Global dataflow info after analysis.\n");
3472 FOR_ALL_BB_FN (bb, cfun)
3474 bb_info_t bb_info = bb_table[bb->index];
3476 df_print_bb_index (bb, dump_file);
3477 if (bb_info->in)
3478 bitmap_print (dump_file, bb_info->in, " in: ", "\n");
3479 else
3480 fprintf (dump_file, " in: *MISSING*\n");
3481 if (bb_info->gen)
3482 bitmap_print (dump_file, bb_info->gen, " gen: ", "\n");
3483 else
3484 fprintf (dump_file, " gen: *MISSING*\n");
3485 if (bb_info->kill)
3486 bitmap_print (dump_file, bb_info->kill, " kill: ", "\n");
3487 else
3488 fprintf (dump_file, " kill: *MISSING*\n");
3489 if (bb_info->out)
3490 bitmap_print (dump_file, bb_info->out, " out: ", "\n");
3491 else
3492 fprintf (dump_file, " out: *MISSING*\n\n");
3499 /*----------------------------------------------------------------------------
3500 Fifth step.
3502 Delete the stores that can only be deleted using the global information.
3503 ----------------------------------------------------------------------------*/
3506 static void
3507 dse_step5_nospill (void)
3509 basic_block bb;
3510 FOR_EACH_BB_FN (bb, cfun)
3512 bb_info_t bb_info = bb_table[bb->index];
3513 insn_info_t insn_info = bb_info->last_insn;
3514 bitmap v = bb_info->out;
3516 while (insn_info)
3518 bool deleted = false;
3519 if (dump_file && insn_info->insn)
3521 fprintf (dump_file, "starting to process insn %d\n",
3522 INSN_UID (insn_info->insn));
3523 bitmap_print (dump_file, v, " v: ", "\n");
3526 /* There may have been code deleted by the dce pass run before
3527 this phase. */
3528 if (insn_info->insn
3529 && INSN_P (insn_info->insn)
3530 && (!insn_info->cannot_delete)
3531 && (!bitmap_empty_p (v)))
3533 store_info_t store_info = insn_info->store_rec;
3535 /* Try to delete the current insn. */
3536 deleted = true;
3538 /* Skip the clobbers. */
3539 while (!store_info->is_set)
3540 store_info = store_info->next;
3542 if (store_info->alias_set)
3543 deleted = false;
3544 else
3546 HOST_WIDE_INT i;
3547 group_info_t group_info
3548 = rtx_group_vec[store_info->group_id];
3550 for (i = store_info->begin; i < store_info->end; i++)
3552 int index = get_bitmap_index (group_info, i);
3554 if (dump_file && (dump_flags & TDF_DETAILS))
3555 fprintf (dump_file, "i = %d, index = %d\n", (int)i, index);
3556 if (index == 0 || !bitmap_bit_p (v, index))
3558 if (dump_file && (dump_flags & TDF_DETAILS))
3559 fprintf (dump_file, "failing at i = %d\n", (int)i);
3560 deleted = false;
3561 break;
3565 if (deleted)
3567 if (dbg_cnt (dse)
3568 && check_for_inc_dec_1 (insn_info))
3570 delete_insn (insn_info->insn);
3571 insn_info->insn = NULL;
3572 globally_deleted++;
3576 /* We do want to process the local info if the insn was
3577 deleted. For instance, if the insn did a wild read, we
3578 no longer need to trash the info. */
3579 if (insn_info->insn
3580 && INSN_P (insn_info->insn)
3581 && (!deleted))
3583 scan_stores_nospill (insn_info->store_rec, v, NULL);
3584 if (insn_info->wild_read)
3586 if (dump_file && (dump_flags & TDF_DETAILS))
3587 fprintf (dump_file, "wild read\n");
3588 bitmap_clear (v);
3590 else if (insn_info->read_rec
3591 || insn_info->non_frame_wild_read)
3593 if (dump_file && !insn_info->non_frame_wild_read)
3594 fprintf (dump_file, "regular read\n");
3595 else if (dump_file && (dump_flags & TDF_DETAILS))
3596 fprintf (dump_file, "non-frame wild read\n");
3597 scan_reads_nospill (insn_info, v, NULL);
3601 insn_info = insn_info->prev_insn;
3608 /*----------------------------------------------------------------------------
3609 Sixth step.
3611 Delete stores made redundant by earlier stores (which store the same
3612 value) that couldn't be eliminated.
3613 ----------------------------------------------------------------------------*/
3615 static void
3616 dse_step6 (void)
3618 basic_block bb;
3620 FOR_ALL_BB_FN (bb, cfun)
3622 bb_info_t bb_info = bb_table[bb->index];
3623 insn_info_t insn_info = bb_info->last_insn;
3625 while (insn_info)
3627 /* There may have been code deleted by the dce pass run before
3628 this phase. */
3629 if (insn_info->insn
3630 && INSN_P (insn_info->insn)
3631 && !insn_info->cannot_delete)
3633 store_info_t s_info = insn_info->store_rec;
3635 while (s_info && !s_info->is_set)
3636 s_info = s_info->next;
3637 if (s_info
3638 && s_info->redundant_reason
3639 && s_info->redundant_reason->insn
3640 && INSN_P (s_info->redundant_reason->insn))
3642 rtx rinsn = s_info->redundant_reason->insn;
3643 if (dump_file && (dump_flags & TDF_DETAILS))
3644 fprintf (dump_file, "Locally deleting insn %d "
3645 "because insn %d stores the "
3646 "same value and couldn't be "
3647 "eliminated\n",
3648 INSN_UID (insn_info->insn),
3649 INSN_UID (rinsn));
3650 delete_dead_store_insn (insn_info);
3653 insn_info = insn_info->prev_insn;
3658 /*----------------------------------------------------------------------------
3659 Seventh step.
3661 Destroy everything left standing.
3662 ----------------------------------------------------------------------------*/
3664 static void
3665 dse_step7 (void)
3667 bitmap_obstack_release (&dse_bitmap_obstack);
3668 obstack_free (&dse_obstack, NULL);
3670 end_alias_analysis ();
3671 free (bb_table);
3672 rtx_group_table.dispose ();
3673 rtx_group_vec.release ();
3674 BITMAP_FREE (all_blocks);
3675 BITMAP_FREE (scratch);
3677 free_alloc_pool (rtx_store_info_pool);
3678 free_alloc_pool (read_info_pool);
3679 free_alloc_pool (insn_info_pool);
3680 free_alloc_pool (bb_info_pool);
3681 free_alloc_pool (rtx_group_info_pool);
3682 free_alloc_pool (deferred_change_pool);
3686 /* -------------------------------------------------------------------------
3688 ------------------------------------------------------------------------- */
3690 /* Callback for running pass_rtl_dse. */
3692 static unsigned int
3693 rest_of_handle_dse (void)
3695 df_set_flags (DF_DEFER_INSN_RESCAN);
3697 /* Need the notes since we must track live hardregs in the forwards
3698 direction. */
3699 df_note_add_problem ();
3700 df_analyze ();
3702 dse_step0 ();
3703 dse_step1 ();
3704 dse_step2_init ();
3705 if (dse_step2_nospill ())
3707 df_set_flags (DF_LR_RUN_DCE);
3708 df_analyze ();
3709 if (dump_file && (dump_flags & TDF_DETAILS))
3710 fprintf (dump_file, "doing global processing\n");
3711 dse_step3 (false);
3712 dse_step4 ();
3713 dse_step5_nospill ();
3716 dse_step6 ();
3717 dse_step7 ();
3719 if (dump_file)
3720 fprintf (dump_file, "dse: local deletions = %d, global deletions = %d, spill deletions = %d\n",
3721 locally_deleted, globally_deleted, spill_deleted);
3722 return 0;
3725 static bool
3726 gate_dse1 (void)
3728 return optimize > 0 && flag_dse
3729 && dbg_cnt (dse1);
3732 static bool
3733 gate_dse2 (void)
3735 return optimize > 0 && flag_dse
3736 && dbg_cnt (dse2);
3739 namespace {
3741 const pass_data pass_data_rtl_dse1 =
3743 RTL_PASS, /* type */
3744 "dse1", /* name */
3745 OPTGROUP_NONE, /* optinfo_flags */
3746 true, /* has_gate */
3747 true, /* has_execute */
3748 TV_DSE1, /* tv_id */
3749 0, /* properties_required */
3750 0, /* properties_provided */
3751 0, /* properties_destroyed */
3752 0, /* todo_flags_start */
3753 ( TODO_df_finish | TODO_verify_rtl_sharing ), /* todo_flags_finish */
3756 class pass_rtl_dse1 : public rtl_opt_pass
3758 public:
3759 pass_rtl_dse1 (gcc::context *ctxt)
3760 : rtl_opt_pass (pass_data_rtl_dse1, ctxt)
3763 /* opt_pass methods: */
3764 bool gate () { return gate_dse1 (); }
3765 unsigned int execute () { return rest_of_handle_dse (); }
3767 }; // class pass_rtl_dse1
3769 } // anon namespace
3771 rtl_opt_pass *
3772 make_pass_rtl_dse1 (gcc::context *ctxt)
3774 return new pass_rtl_dse1 (ctxt);
3777 namespace {
3779 const pass_data pass_data_rtl_dse2 =
3781 RTL_PASS, /* type */
3782 "dse2", /* name */
3783 OPTGROUP_NONE, /* optinfo_flags */
3784 true, /* has_gate */
3785 true, /* has_execute */
3786 TV_DSE2, /* tv_id */
3787 0, /* properties_required */
3788 0, /* properties_provided */
3789 0, /* properties_destroyed */
3790 0, /* todo_flags_start */
3791 ( TODO_df_finish | TODO_verify_rtl_sharing ), /* todo_flags_finish */
3794 class pass_rtl_dse2 : public rtl_opt_pass
3796 public:
3797 pass_rtl_dse2 (gcc::context *ctxt)
3798 : rtl_opt_pass (pass_data_rtl_dse2, ctxt)
3801 /* opt_pass methods: */
3802 bool gate () { return gate_dse2 (); }
3803 unsigned int execute () { return rest_of_handle_dse (); }
3805 }; // class pass_rtl_dse2
3807 } // anon namespace
3809 rtl_opt_pass *
3810 make_pass_rtl_dse2 (gcc::context *ctxt)
3812 return new pass_rtl_dse2 (ctxt);