1 /* Register Transfer Language (RTL) definitions for GCC
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
23 /* This file is occasionally included by generator files which expect
24 machmode.h and other files to exist and would not normally have been
25 included by coretypes.h. */
28 #include "fixed-value.h"
29 #include "statistics.h"
31 #include "hash-table.h"
35 #endif /* GENERATOR_FILE */
37 #include "hard-reg-set.h"
39 /* Value used by some passes to "recognize" noop moves as valid
41 #define NOOP_MOVE_INSN_CODE INT_MAX
43 /* Register Transfer Language EXPRESSIONS CODES */
45 #define RTX_CODE enum rtx_code
48 #define DEF_RTL_EXPR(ENUM, NAME, FORMAT, CLASS) ENUM ,
49 #include "rtl.def" /* rtl expressions are documented here */
52 LAST_AND_UNUSED_RTX_CODE
}; /* A convenient way to get a value for
54 Assumes default enum value assignment. */
56 /* The cast here, saves many elsewhere. */
57 #define NUM_RTX_CODE ((int) LAST_AND_UNUSED_RTX_CODE)
59 /* Similar, but since generator files get more entries... */
61 # define NON_GENERATOR_NUM_RTX_CODE ((int) MATCH_OPERAND)
64 /* Register Transfer Language EXPRESSIONS CODE CLASSES */
67 /* We check bit 0-1 of some rtx class codes in the predicates below. */
69 /* Bit 0 = comparison if 0, arithmetic is 1
70 Bit 1 = 1 if commutative. */
76 /* Must follow the four preceding values. */
83 /* Bit 0 = 1 if constant. */
92 #define RTX_OBJ_MASK (~1)
93 #define RTX_OBJ_RESULT (RTX_OBJ & RTX_OBJ_MASK)
94 #define RTX_COMPARE_MASK (~1)
95 #define RTX_COMPARE_RESULT (RTX_COMPARE & RTX_COMPARE_MASK)
96 #define RTX_ARITHMETIC_MASK (~1)
97 #define RTX_ARITHMETIC_RESULT (RTX_COMM_ARITH & RTX_ARITHMETIC_MASK)
98 #define RTX_BINARY_MASK (~3)
99 #define RTX_BINARY_RESULT (RTX_COMPARE & RTX_BINARY_MASK)
100 #define RTX_COMMUTATIVE_MASK (~2)
101 #define RTX_COMMUTATIVE_RESULT (RTX_COMM_COMPARE & RTX_COMMUTATIVE_MASK)
102 #define RTX_NON_COMMUTATIVE_RESULT (RTX_COMPARE & RTX_COMMUTATIVE_MASK)
104 extern const unsigned char rtx_length
[NUM_RTX_CODE
];
105 #define GET_RTX_LENGTH(CODE) (rtx_length[(int) (CODE)])
107 extern const char * const rtx_name
[NUM_RTX_CODE
];
108 #define GET_RTX_NAME(CODE) (rtx_name[(int) (CODE)])
110 extern const char * const rtx_format
[NUM_RTX_CODE
];
111 #define GET_RTX_FORMAT(CODE) (rtx_format[(int) (CODE)])
113 extern const enum rtx_class rtx_class
[NUM_RTX_CODE
];
114 #define GET_RTX_CLASS(CODE) (rtx_class[(int) (CODE)])
116 /* True if CODE is part of the insn chain (i.e. has INSN_UID, PREV_INSN
117 and NEXT_INSN fields). */
118 #define INSN_CHAIN_CODE_P(CODE) IN_RANGE (CODE, DEBUG_INSN, NOTE)
120 extern const unsigned char rtx_code_size
[NUM_RTX_CODE
];
121 extern const unsigned char rtx_next
[NUM_RTX_CODE
];
123 /* The flags and bitfields of an ADDR_DIFF_VEC. BASE is the base label
124 relative to which the offsets are calculated, as explained in rtl.def. */
125 struct addr_diff_vec_flags
127 /* Set at the start of shorten_branches - ONLY WHEN OPTIMIZING - : */
128 unsigned min_align
: 8;
130 unsigned base_after_vec
: 1; /* BASE is after the ADDR_DIFF_VEC. */
131 unsigned min_after_vec
: 1; /* minimum address target label is
132 after the ADDR_DIFF_VEC. */
133 unsigned max_after_vec
: 1; /* maximum address target label is
134 after the ADDR_DIFF_VEC. */
135 unsigned min_after_base
: 1; /* minimum address target label is
137 unsigned max_after_base
: 1; /* maximum address target label is
139 /* Set by the actual branch shortening process - ONLY WHEN OPTIMIZING - : */
140 unsigned offset_unsigned
: 1; /* offsets have to be treated as unsigned. */
145 /* Structure used to describe the attributes of a MEM. These are hashed
146 so MEMs that the same attributes share a data structure. This means
147 they cannot be modified in place. */
148 struct GTY(()) mem_attrs
152 /* The expression that the MEM accesses, or null if not known.
153 This expression might be larger than the memory reference itself.
154 (In other words, the MEM might access only part of the object.) */
157 /* The offset of the memory reference from the start of EXPR.
158 Only valid if OFFSET_KNOWN_P. */
161 /* The size of the memory reference in bytes. Only valid if
165 /* The alias set of the memory reference. */
166 alias_set_type alias
;
168 /* The alignment of the reference in bits. Always a multiple of
169 BITS_PER_UNIT. Note that EXPR may have a stricter alignment
170 than the memory reference itself. */
173 /* The address space that the memory reference uses. */
174 unsigned char addrspace
;
176 /* True if OFFSET is known. */
179 /* True if SIZE is known. */
183 /* Structure used to describe the attributes of a REG in similar way as
184 mem_attrs does for MEM above. Note that the OFFSET field is calculated
185 in the same way as for mem_attrs, rather than in the same way as a
186 SUBREG_BYTE. For example, if a big-endian target stores a byte
187 object in the low part of a 4-byte register, the OFFSET field
188 will be -3 rather than 0. */
190 struct GTY((for_user
)) reg_attrs
{
191 tree decl
; /* decl corresponding to REG. */
192 poly_int64 offset
; /* Offset from start of DECL. */
195 /* Common union for an element of an rtx. */
200 unsigned int rt_uint
;
201 poly_uint16_pod rt_subreg
;
205 machine_mode rt_type
;
206 addr_diff_vec_flags rt_addr_diff_vec_flags
;
207 struct cselib_val
*rt_cselib
;
211 struct constant_descriptor_rtx
*rt_constant
;
212 struct dw_cfi_node
*rt_cfi
;
215 /* Describes the properties of a REG. */
216 struct GTY(()) reg_info
{
217 /* The value of REGNO. */
220 /* The value of REG_NREGS. */
221 unsigned int nregs
: 8;
222 unsigned int unused
: 24;
224 /* The value of REG_ATTRS. */
228 /* This structure remembers the position of a SYMBOL_REF within an
229 object_block structure. A SYMBOL_REF only provides this information
230 if SYMBOL_REF_HAS_BLOCK_INFO_P is true. */
231 struct GTY(()) block_symbol
{
232 /* The usual SYMBOL_REF fields. */
233 rtunion
GTY ((skip
)) fld
[2];
235 /* The block that contains this object. */
236 struct object_block
*block
;
238 /* The offset of this object from the start of its block. It is negative
239 if the symbol has not yet been assigned an offset. */
240 HOST_WIDE_INT offset
;
243 /* Describes a group of objects that are to be placed together in such
244 a way that their relative positions are known. */
245 struct GTY((for_user
)) object_block
{
246 /* The section in which these objects should be placed. */
249 /* The alignment of the first object, measured in bits. */
250 unsigned int alignment
;
252 /* The total size of the objects, measured in bytes. */
255 /* The SYMBOL_REFs for each object. The vector is sorted in
256 order of increasing offset and the following conditions will
257 hold for each element X:
259 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
260 !SYMBOL_REF_ANCHOR_P (X)
261 SYMBOL_REF_BLOCK (X) == [address of this structure]
262 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
263 vec
<rtx
, va_gc
> *objects
;
265 /* All the anchor SYMBOL_REFs used to address these objects, sorted
266 in order of increasing offset, and then increasing TLS model.
267 The following conditions will hold for each element X in this vector:
269 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
270 SYMBOL_REF_ANCHOR_P (X)
271 SYMBOL_REF_BLOCK (X) == [address of this structure]
272 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
273 vec
<rtx
, va_gc
> *anchors
;
276 struct GTY((variable_size
)) hwivec_def
{
277 HOST_WIDE_INT elem
[1];
280 /* Number of elements of the HWIVEC if RTX is a CONST_WIDE_INT. */
281 #define CWI_GET_NUM_ELEM(RTX) \
282 ((int)RTL_FLAG_CHECK1("CWI_GET_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem)
283 #define CWI_PUT_NUM_ELEM(RTX, NUM) \
284 (RTL_FLAG_CHECK1("CWI_PUT_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem = (NUM))
286 struct GTY((variable_size
)) const_poly_int_def
{
287 trailing_wide_ints
<NUM_POLY_INT_COEFFS
> coeffs
;
290 /* RTL expression ("rtx"). */
292 /* The GTY "desc" and "tag" options below are a kludge: we need a desc
293 field for gengtype to recognize that inheritance is occurring,
294 so that all subclasses are redirected to the traversal hook for the
296 However, all of the fields are in the base class, and special-casing
297 is at work. Hence we use desc and tag of 0, generating a switch
298 statement of the form:
301 case 0: // all the work happens here
303 in order to work with the existing special-casing in gengtype. */
305 struct GTY((desc("0"), tag("0"),
306 chain_next ("RTX_NEXT (&%h)"),
307 chain_prev ("RTX_PREV (&%h)"))) rtx_def
{
308 /* The kind of expression this is. */
309 ENUM_BITFIELD(rtx_code
) code
: 16;
311 /* The kind of value the expression has. */
312 ENUM_BITFIELD(machine_mode
) mode
: 8;
314 /* 1 in a MEM if we should keep the alias set for this mem unchanged
315 when we access a component.
316 1 in a JUMP_INSN if it is a crossing jump.
317 1 in a CALL_INSN if it is a sibling call.
318 1 in a SET that is for a return.
319 In a CODE_LABEL, part of the two-bit alternate entry field.
320 1 in a CONCAT is VAL_EXPR_IS_COPIED in var-tracking.c.
321 1 in a VALUE is SP_BASED_VALUE_P in cselib.c.
322 1 in a SUBREG generated by LRA for reload insns.
323 1 in a REG if this is a static chain register.
324 1 in a CALL for calls instrumented by Pointer Bounds Checker.
325 Dumped as "/j" in RTL dumps. */
326 unsigned int jump
: 1;
327 /* In a CODE_LABEL, part of the two-bit alternate entry field.
328 1 in a MEM if it cannot trap.
329 1 in a CALL_INSN logically equivalent to
330 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P.
331 Dumped as "/c" in RTL dumps. */
332 unsigned int call
: 1;
333 /* 1 in a REG, MEM, or CONCAT if the value is set at most once, anywhere.
334 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
335 1 in a SYMBOL_REF if it addresses something in the per-function
337 1 in a CALL_INSN logically equivalent to ECF_CONST and TREE_READONLY.
338 1 in a NOTE, or EXPR_LIST for a const call.
339 1 in a JUMP_INSN of an annulling branch.
340 1 in a CONCAT is VAL_EXPR_IS_CLOBBERED in var-tracking.c.
341 1 in a preserved VALUE is PRESERVED_VALUE_P in cselib.c.
342 1 in a clobber temporarily created for LRA.
343 Dumped as "/u" in RTL dumps. */
344 unsigned int unchanging
: 1;
345 /* 1 in a MEM or ASM_OPERANDS expression if the memory reference is volatile.
346 1 in an INSN, CALL_INSN, JUMP_INSN, CODE_LABEL, BARRIER, or NOTE
347 if it has been deleted.
348 1 in a REG expression if corresponds to a variable declared by the user,
349 0 for an internally generated temporary.
350 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
351 1 in a LABEL_REF, REG_LABEL_TARGET or REG_LABEL_OPERAND note for a
353 In a SYMBOL_REF, this flag is used for machine-specific purposes.
354 In a PREFETCH, this flag indicates that it should be considered a
356 1 in a CONCAT is VAL_NEEDS_RESOLUTION in var-tracking.c.
357 Dumped as "/v" in RTL dumps. */
358 unsigned int volatil
: 1;
359 /* 1 in a REG if the register is used only in exit code a loop.
360 1 in a SUBREG expression if was generated from a variable with a
362 1 in a CODE_LABEL if the label is used for nonlocal gotos
363 and must not be deleted even if its count is zero.
364 1 in an INSN, JUMP_INSN or CALL_INSN if this insn must be scheduled
365 together with the preceding insn. Valid only within sched.
366 1 in an INSN, JUMP_INSN, or CALL_INSN if insn is in a delay slot and
367 from the target of a branch. Valid from reorg until end of compilation;
370 The name of the field is historical. It used to be used in MEMs
371 to record whether the MEM accessed part of a structure.
372 Dumped as "/s" in RTL dumps. */
373 unsigned int in_struct
: 1;
374 /* At the end of RTL generation, 1 if this rtx is used. This is used for
375 copying shared structure. See `unshare_all_rtl'.
376 In a REG, this is not needed for that purpose, and used instead
377 in `leaf_renumber_regs_insn'.
378 1 in a SYMBOL_REF, means that emit_library_call
379 has used it as the function.
380 1 in a CONCAT is VAL_HOLDS_TRACK_EXPR in var-tracking.c.
381 1 in a VALUE or DEBUG_EXPR is VALUE_RECURSED_INTO in var-tracking.c. */
382 unsigned int used
: 1;
383 /* 1 in an INSN or a SET if this rtx is related to the call frame,
384 either changing how we compute the frame address or saving and
385 restoring registers in the prologue and epilogue.
386 1 in a REG or MEM if it is a pointer.
387 1 in a SYMBOL_REF if it addresses something in the per-function
388 constant string pool.
389 1 in a VALUE is VALUE_CHANGED in var-tracking.c.
390 Dumped as "/f" in RTL dumps. */
391 unsigned frame_related
: 1;
392 /* 1 in a REG or PARALLEL that is the current function's return value.
393 1 in a SYMBOL_REF for a weak symbol.
394 1 in a CALL_INSN logically equivalent to ECF_PURE and DECL_PURE_P.
395 1 in a CONCAT is VAL_EXPR_HAS_REVERSE in var-tracking.c.
396 1 in a VALUE or DEBUG_EXPR is NO_LOC_P in var-tracking.c.
397 Dumped as "/i" in RTL dumps. */
398 unsigned return_val
: 1;
401 /* The final union field is aligned to 64 bits on LP64 hosts,
402 giving a 32-bit gap after the fields above. We optimize the
403 layout for that case and use the gap for extra code-specific
406 /* The ORIGINAL_REGNO of a REG. */
407 unsigned int original_regno
;
409 /* The INSN_UID of an RTX_INSN-class code. */
412 /* The SYMBOL_REF_FLAGS of a SYMBOL_REF. */
413 unsigned int symbol_ref_flags
;
415 /* The PAT_VAR_LOCATION_STATUS of a VAR_LOCATION. */
416 enum var_init_status var_location_status
;
418 /* In a CONST_WIDE_INT (aka hwivec_def), this is the number of
419 HOST_WIDE_INTs in the hwivec_def. */
420 unsigned int num_elem
;
423 /* The first element of the operands of this rtx.
424 The number of operands and their types are controlled
425 by the `code' field, according to rtl.def. */
428 HOST_WIDE_INT hwint
[1];
430 struct block_symbol block_sym
;
431 struct real_value rv
;
432 struct fixed_value fv
;
433 struct hwivec_def hwiv
;
434 struct const_poly_int_def cpi
;
435 } GTY ((special ("rtx_def"), desc ("GET_CODE (&%0)"))) u
;
438 /* A node for constructing singly-linked lists of rtx. */
440 class GTY(()) rtx_expr_list
: public rtx_def
442 /* No extra fields, but adds invariant: (GET_CODE (X) == EXPR_LIST). */
445 /* Get next in list. */
446 rtx_expr_list
*next () const;
448 /* Get at the underlying rtx. */
449 rtx
element () const;
455 is_a_helper
<rtx_expr_list
*>::test (rtx rt
)
457 return rt
->code
== EXPR_LIST
;
460 class GTY(()) rtx_insn_list
: public rtx_def
462 /* No extra fields, but adds invariant: (GET_CODE (X) == INSN_LIST).
464 This is an instance of:
466 DEF_RTL_EXPR(INSN_LIST, "insn_list", "ue", RTX_EXTRA)
468 i.e. a node for constructing singly-linked lists of rtx_insn *, where
469 the list is "external" to the insn (as opposed to the doubly-linked
470 list embedded within rtx_insn itself). */
473 /* Get next in list. */
474 rtx_insn_list
*next () const;
476 /* Get at the underlying instruction. */
477 rtx_insn
*insn () const;
484 is_a_helper
<rtx_insn_list
*>::test (rtx rt
)
486 return rt
->code
== INSN_LIST
;
489 /* A node with invariant GET_CODE (X) == SEQUENCE i.e. a vector of rtx,
490 typically (but not always) of rtx_insn *, used in the late passes. */
492 class GTY(()) rtx_sequence
: public rtx_def
494 /* No extra fields, but adds invariant: (GET_CODE (X) == SEQUENCE). */
497 /* Get number of elements in sequence. */
500 /* Get i-th element of the sequence. */
501 rtx
element (int index
) const;
503 /* Get i-th element of the sequence, with a checked cast to
505 rtx_insn
*insn (int index
) const;
511 is_a_helper
<rtx_sequence
*>::test (rtx rt
)
513 return rt
->code
== SEQUENCE
;
519 is_a_helper
<const rtx_sequence
*>::test (const_rtx rt
)
521 return rt
->code
== SEQUENCE
;
524 class GTY(()) rtx_insn
: public rtx_def
527 /* No extra fields, but adds the invariant:
531 || JUMP_TABLE_DATA_P (X)
535 i.e. that we must be able to use the following:
539 i.e. we have an rtx that has an INSN_UID field and can be part of
540 a linked list of insns.
543 /* Returns true if this insn has been deleted. */
545 bool deleted () const { return volatil
; }
547 /* Mark this insn as deleted. */
549 void set_deleted () { volatil
= true; }
551 /* Mark this insn as not deleted. */
553 void set_undeleted () { volatil
= false; }
556 /* Subclasses of rtx_insn. */
558 class GTY(()) rtx_debug_insn
: public rtx_insn
560 /* No extra fields, but adds the invariant:
561 DEBUG_INSN_P (X) aka (GET_CODE (X) == DEBUG_INSN)
562 i.e. an annotation for tracking variable assignments.
564 This is an instance of:
565 DEF_RTL_EXPR(DEBUG_INSN, "debug_insn", "uuBeiie", RTX_INSN)
569 class GTY(()) rtx_nonjump_insn
: public rtx_insn
571 /* No extra fields, but adds the invariant:
572 NONJUMP_INSN_P (X) aka (GET_CODE (X) == INSN)
573 i.e an instruction that cannot jump.
575 This is an instance of:
576 DEF_RTL_EXPR(INSN, "insn", "uuBeiie", RTX_INSN)
580 class GTY(()) rtx_jump_insn
: public rtx_insn
583 /* No extra fields, but adds the invariant:
584 JUMP_P (X) aka (GET_CODE (X) == JUMP_INSN)
585 i.e. an instruction that can possibly jump.
587 This is an instance of:
588 DEF_RTL_EXPR(JUMP_INSN, "jump_insn", "uuBeiie0", RTX_INSN)
591 /* Returns jump target of this instruction. The returned value is not
592 necessarily a code label: it may also be a RETURN or SIMPLE_RETURN
593 expression. Also, when the code label is marked "deleted", it is
594 replaced by a NOTE. In some cases the value is NULL_RTX. */
596 inline rtx
jump_label () const;
598 /* Returns jump target cast to rtx_code_label *. */
600 inline rtx_code_label
*jump_target () const;
602 /* Set jump target. */
604 inline void set_jump_target (rtx_code_label
*);
607 class GTY(()) rtx_call_insn
: public rtx_insn
609 /* No extra fields, but adds the invariant:
610 CALL_P (X) aka (GET_CODE (X) == CALL_INSN)
611 i.e. an instruction that can possibly call a subroutine
612 but which will not change which instruction comes next
613 in the current function.
615 This is an instance of:
616 DEF_RTL_EXPR(CALL_INSN, "call_insn", "uuBeiiee", RTX_INSN)
620 class GTY(()) rtx_jump_table_data
: public rtx_insn
622 /* No extra fields, but adds the invariant:
623 JUMP_TABLE_DATA_P (X) aka (GET_CODE (INSN) == JUMP_TABLE_DATA)
624 i.e. a data for a jump table, considered an instruction for
627 This is an instance of:
628 DEF_RTL_EXPR(JUMP_TABLE_DATA, "jump_table_data", "uuBe0000", RTX_INSN)
633 /* This can be either:
635 (a) a table of absolute jumps, in which case PATTERN (this) is an
636 ADDR_VEC with arg 0 a vector of labels, or
638 (b) a table of relative jumps (e.g. for -fPIC), in which case
639 PATTERN (this) is an ADDR_DIFF_VEC, with arg 0 a LABEL_REF and
640 arg 1 the vector of labels.
642 This method gets the underlying vec. */
644 inline rtvec
get_labels () const;
645 inline scalar_int_mode
get_data_mode () const;
648 class GTY(()) rtx_barrier
: public rtx_insn
650 /* No extra fields, but adds the invariant:
651 BARRIER_P (X) aka (GET_CODE (X) == BARRIER)
652 i.e. a marker that indicates that control will not flow through.
654 This is an instance of:
655 DEF_RTL_EXPR(BARRIER, "barrier", "uu00000", RTX_EXTRA)
659 class GTY(()) rtx_code_label
: public rtx_insn
661 /* No extra fields, but adds the invariant:
662 LABEL_P (X) aka (GET_CODE (X) == CODE_LABEL)
663 i.e. a label in the assembler.
665 This is an instance of:
666 DEF_RTL_EXPR(CODE_LABEL, "code_label", "uuB00is", RTX_EXTRA)
670 class GTY(()) rtx_note
: public rtx_insn
672 /* No extra fields, but adds the invariant:
673 NOTE_P(X) aka (GET_CODE (X) == NOTE)
674 i.e. a note about the corresponding source code.
676 This is an instance of:
677 DEF_RTL_EXPR(NOTE, "note", "uuB0ni", RTX_EXTRA)
681 /* The size in bytes of an rtx header (code, mode and flags). */
682 #define RTX_HDR_SIZE offsetof (struct rtx_def, u)
684 /* The size in bytes of an rtx with code CODE. */
685 #define RTX_CODE_SIZE(CODE) rtx_code_size[CODE]
687 #define NULL_RTX (rtx) 0
689 /* The "next" and "previous" RTX, relative to this one. */
691 #define RTX_NEXT(X) (rtx_next[GET_CODE (X)] == 0 ? NULL \
692 : *(rtx *)(((char *)X) + rtx_next[GET_CODE (X)]))
694 /* FIXME: the "NEXT_INSN (PREV_INSN (X)) == X" condition shouldn't be needed.
696 #define RTX_PREV(X) ((INSN_P (X) \
698 || JUMP_TABLE_DATA_P (X) \
701 && PREV_INSN (as_a <rtx_insn *> (X)) != NULL \
702 && NEXT_INSN (PREV_INSN (as_a <rtx_insn *> (X))) == X \
703 ? PREV_INSN (as_a <rtx_insn *> (X)) : NULL)
705 /* Define macros to access the `code' field of the rtx. */
707 #define GET_CODE(RTX) ((enum rtx_code) (RTX)->code)
708 #define PUT_CODE(RTX, CODE) ((RTX)->code = (CODE))
710 #define GET_MODE(RTX) ((machine_mode) (RTX)->mode)
711 #define PUT_MODE_RAW(RTX, MODE) ((RTX)->mode = (MODE))
713 /* RTL vector. These appear inside RTX's when there is a need
714 for a variable number of things. The principle use is inside
715 PARALLEL expressions. */
717 struct GTY(()) rtvec_def
{
718 int num_elem
; /* number of elements */
719 rtx
GTY ((length ("%h.num_elem"))) elem
[1];
722 #define NULL_RTVEC (rtvec) 0
724 #define GET_NUM_ELEM(RTVEC) ((RTVEC)->num_elem)
725 #define PUT_NUM_ELEM(RTVEC, NUM) ((RTVEC)->num_elem = (NUM))
727 /* Predicate yielding nonzero iff X is an rtx for a register. */
728 #define REG_P(X) (GET_CODE (X) == REG)
730 /* Predicate yielding nonzero iff X is an rtx for a memory location. */
731 #define MEM_P(X) (GET_CODE (X) == MEM)
733 #if TARGET_SUPPORTS_WIDE_INT
735 /* Match CONST_*s that can represent compile-time constant integers. */
736 #define CASE_CONST_SCALAR_INT \
740 /* Match CONST_*s for which pointer equality corresponds to value
742 #define CASE_CONST_UNIQUE \
744 case CONST_WIDE_INT: \
745 case CONST_POLY_INT: \
749 /* Match all CONST_* rtxes. */
750 #define CASE_CONST_ANY \
752 case CONST_WIDE_INT: \
753 case CONST_POLY_INT: \
760 /* Match CONST_*s that can represent compile-time constant integers. */
761 #define CASE_CONST_SCALAR_INT \
765 /* Match CONST_*s for which pointer equality corresponds to value
767 #define CASE_CONST_UNIQUE \
772 /* Match all CONST_* rtxes. */
773 #define CASE_CONST_ANY \
780 /* Predicate yielding nonzero iff X is an rtx for a constant integer. */
781 #define CONST_INT_P(X) (GET_CODE (X) == CONST_INT)
783 /* Predicate yielding nonzero iff X is an rtx for a constant integer. */
784 #define CONST_WIDE_INT_P(X) (GET_CODE (X) == CONST_WIDE_INT)
786 /* Predicate yielding nonzero iff X is an rtx for a polynomial constant
788 #define CONST_POLY_INT_P(X) \
789 (NUM_POLY_INT_COEFFS > 1 && GET_CODE (X) == CONST_POLY_INT)
791 /* Predicate yielding nonzero iff X is an rtx for a constant fixed-point. */
792 #define CONST_FIXED_P(X) (GET_CODE (X) == CONST_FIXED)
794 /* Predicate yielding true iff X is an rtx for a double-int
795 or floating point constant. */
796 #define CONST_DOUBLE_P(X) (GET_CODE (X) == CONST_DOUBLE)
798 /* Predicate yielding true iff X is an rtx for a double-int. */
799 #define CONST_DOUBLE_AS_INT_P(X) \
800 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == VOIDmode)
802 /* Predicate yielding true iff X is an rtx for a integer const. */
803 #if TARGET_SUPPORTS_WIDE_INT
804 #define CONST_SCALAR_INT_P(X) \
805 (CONST_INT_P (X) || CONST_WIDE_INT_P (X))
807 #define CONST_SCALAR_INT_P(X) \
808 (CONST_INT_P (X) || CONST_DOUBLE_AS_INT_P (X))
811 /* Predicate yielding true iff X is an rtx for a double-int. */
812 #define CONST_DOUBLE_AS_FLOAT_P(X) \
813 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != VOIDmode)
815 /* Predicate yielding nonzero iff X is a label insn. */
816 #define LABEL_P(X) (GET_CODE (X) == CODE_LABEL)
818 /* Predicate yielding nonzero iff X is a jump insn. */
819 #define JUMP_P(X) (GET_CODE (X) == JUMP_INSN)
821 /* Predicate yielding nonzero iff X is a call insn. */
822 #define CALL_P(X) (GET_CODE (X) == CALL_INSN)
824 /* Predicate yielding nonzero iff X is an insn that cannot jump. */
825 #define NONJUMP_INSN_P(X) (GET_CODE (X) == INSN)
827 /* Predicate yielding nonzero iff X is a debug note/insn. */
828 #define DEBUG_INSN_P(X) (GET_CODE (X) == DEBUG_INSN)
830 /* Predicate yielding nonzero iff X is an insn that is not a debug insn. */
831 #define NONDEBUG_INSN_P(X) (INSN_P (X) && !DEBUG_INSN_P (X))
833 /* Nonzero if DEBUG_MARKER_INSN_P may possibly hold. */
834 #define MAY_HAVE_DEBUG_MARKER_INSNS debug_nonbind_markers_p
835 /* Nonzero if DEBUG_BIND_INSN_P may possibly hold. */
836 #define MAY_HAVE_DEBUG_BIND_INSNS flag_var_tracking_assignments
837 /* Nonzero if DEBUG_INSN_P may possibly hold. */
838 #define MAY_HAVE_DEBUG_INSNS \
839 (MAY_HAVE_DEBUG_MARKER_INSNS || MAY_HAVE_DEBUG_BIND_INSNS)
841 /* Predicate yielding nonzero iff X is a real insn. */
843 (NONJUMP_INSN_P (X) || DEBUG_INSN_P (X) || JUMP_P (X) || CALL_P (X))
845 /* Predicate yielding nonzero iff X is a note insn. */
846 #define NOTE_P(X) (GET_CODE (X) == NOTE)
848 /* Predicate yielding nonzero iff X is a barrier insn. */
849 #define BARRIER_P(X) (GET_CODE (X) == BARRIER)
851 /* Predicate yielding nonzero iff X is a data for a jump table. */
852 #define JUMP_TABLE_DATA_P(INSN) (GET_CODE (INSN) == JUMP_TABLE_DATA)
854 /* Predicate yielding nonzero iff RTX is a subreg. */
855 #define SUBREG_P(RTX) (GET_CODE (RTX) == SUBREG)
857 /* Predicate yielding true iff RTX is a symbol ref. */
858 #define SYMBOL_REF_P(RTX) (GET_CODE (RTX) == SYMBOL_REF)
863 is_a_helper
<rtx_insn
*>::test (rtx rt
)
867 || JUMP_TABLE_DATA_P (rt
)
875 is_a_helper
<const rtx_insn
*>::test (const_rtx rt
)
879 || JUMP_TABLE_DATA_P (rt
)
887 is_a_helper
<rtx_debug_insn
*>::test (rtx rt
)
889 return DEBUG_INSN_P (rt
);
895 is_a_helper
<rtx_nonjump_insn
*>::test (rtx rt
)
897 return NONJUMP_INSN_P (rt
);
903 is_a_helper
<rtx_jump_insn
*>::test (rtx rt
)
911 is_a_helper
<rtx_jump_insn
*>::test (rtx_insn
*insn
)
913 return JUMP_P (insn
);
919 is_a_helper
<rtx_call_insn
*>::test (rtx rt
)
927 is_a_helper
<rtx_call_insn
*>::test (rtx_insn
*insn
)
929 return CALL_P (insn
);
935 is_a_helper
<rtx_jump_table_data
*>::test (rtx rt
)
937 return JUMP_TABLE_DATA_P (rt
);
943 is_a_helper
<rtx_jump_table_data
*>::test (rtx_insn
*insn
)
945 return JUMP_TABLE_DATA_P (insn
);
951 is_a_helper
<rtx_barrier
*>::test (rtx rt
)
953 return BARRIER_P (rt
);
959 is_a_helper
<rtx_code_label
*>::test (rtx rt
)
967 is_a_helper
<rtx_code_label
*>::test (rtx_insn
*insn
)
969 return LABEL_P (insn
);
975 is_a_helper
<rtx_note
*>::test (rtx rt
)
983 is_a_helper
<rtx_note
*>::test (rtx_insn
*insn
)
985 return NOTE_P (insn
);
988 /* Predicate yielding nonzero iff X is a return or simple_return. */
989 #define ANY_RETURN_P(X) \
990 (GET_CODE (X) == RETURN || GET_CODE (X) == SIMPLE_RETURN)
992 /* 1 if X is a unary operator. */
995 (GET_RTX_CLASS (GET_CODE (X)) == RTX_UNARY)
997 /* 1 if X is a binary operator. */
999 #define BINARY_P(X) \
1000 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_BINARY_MASK) == RTX_BINARY_RESULT)
1002 /* 1 if X is an arithmetic operator. */
1004 #define ARITHMETIC_P(X) \
1005 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_ARITHMETIC_MASK) \
1006 == RTX_ARITHMETIC_RESULT)
1008 /* 1 if X is an arithmetic operator. */
1010 #define COMMUTATIVE_ARITH_P(X) \
1011 (GET_RTX_CLASS (GET_CODE (X)) == RTX_COMM_ARITH)
1013 /* 1 if X is a commutative arithmetic operator or a comparison operator.
1014 These two are sometimes selected together because it is possible to
1015 swap the two operands. */
1017 #define SWAPPABLE_OPERANDS_P(X) \
1018 ((1 << GET_RTX_CLASS (GET_CODE (X))) \
1019 & ((1 << RTX_COMM_ARITH) | (1 << RTX_COMM_COMPARE) \
1020 | (1 << RTX_COMPARE)))
1022 /* 1 if X is a non-commutative operator. */
1024 #define NON_COMMUTATIVE_P(X) \
1025 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
1026 == RTX_NON_COMMUTATIVE_RESULT)
1028 /* 1 if X is a commutative operator on integers. */
1030 #define COMMUTATIVE_P(X) \
1031 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
1032 == RTX_COMMUTATIVE_RESULT)
1034 /* 1 if X is a relational operator. */
1036 #define COMPARISON_P(X) \
1037 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMPARE_MASK) == RTX_COMPARE_RESULT)
1039 /* 1 if X is a constant value that is an integer. */
1041 #define CONSTANT_P(X) \
1042 (GET_RTX_CLASS (GET_CODE (X)) == RTX_CONST_OBJ)
1044 /* 1 if X can be used to represent an object. */
1045 #define OBJECT_P(X) \
1046 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_OBJ_MASK) == RTX_OBJ_RESULT)
1048 /* General accessor macros for accessing the fields of an rtx. */
1050 #if defined ENABLE_RTL_CHECKING && (GCC_VERSION >= 2007)
1051 /* The bit with a star outside the statement expr and an & inside is
1052 so that N can be evaluated only once. */
1053 #define RTL_CHECK1(RTX, N, C1) __extension__ \
1054 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1055 const enum rtx_code _code = GET_CODE (_rtx); \
1056 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1057 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1059 if (GET_RTX_FORMAT (_code)[_n] != C1) \
1060 rtl_check_failed_type1 (_rtx, _n, C1, __FILE__, __LINE__, \
1062 &_rtx->u.fld[_n]; }))
1064 #define RTL_CHECK2(RTX, N, C1, C2) __extension__ \
1065 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1066 const enum rtx_code _code = GET_CODE (_rtx); \
1067 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1068 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1070 if (GET_RTX_FORMAT (_code)[_n] != C1 \
1071 && GET_RTX_FORMAT (_code)[_n] != C2) \
1072 rtl_check_failed_type2 (_rtx, _n, C1, C2, __FILE__, __LINE__, \
1074 &_rtx->u.fld[_n]; }))
1076 #define RTL_CHECKC1(RTX, N, C) __extension__ \
1077 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1078 if (GET_CODE (_rtx) != (C)) \
1079 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
1081 &_rtx->u.fld[_n]; }))
1083 #define RTL_CHECKC2(RTX, N, C1, C2) __extension__ \
1084 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1085 const enum rtx_code _code = GET_CODE (_rtx); \
1086 if (_code != (C1) && _code != (C2)) \
1087 rtl_check_failed_code2 (_rtx, (C1), (C2), __FILE__, __LINE__, \
1089 &_rtx->u.fld[_n]; }))
1091 #define RTVEC_ELT(RTVEC, I) __extension__ \
1092 (*({ __typeof (RTVEC) const _rtvec = (RTVEC); const int _i = (I); \
1093 if (_i < 0 || _i >= GET_NUM_ELEM (_rtvec)) \
1094 rtvec_check_failed_bounds (_rtvec, _i, __FILE__, __LINE__, \
1096 &_rtvec->elem[_i]; }))
1098 #define XWINT(RTX, N) __extension__ \
1099 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1100 const enum rtx_code _code = GET_CODE (_rtx); \
1101 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1102 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1104 if (GET_RTX_FORMAT (_code)[_n] != 'w') \
1105 rtl_check_failed_type1 (_rtx, _n, 'w', __FILE__, __LINE__, \
1107 &_rtx->u.hwint[_n]; }))
1109 #define CWI_ELT(RTX, I) __extension__ \
1110 (*({ __typeof (RTX) const _cwi = (RTX); \
1111 int _max = CWI_GET_NUM_ELEM (_cwi); \
1112 const int _i = (I); \
1113 if (_i < 0 || _i >= _max) \
1114 cwi_check_failed_bounds (_cwi, _i, __FILE__, __LINE__, \
1116 &_cwi->u.hwiv.elem[_i]; }))
1118 #define XCWINT(RTX, N, C) __extension__ \
1119 (*({ __typeof (RTX) const _rtx = (RTX); \
1120 if (GET_CODE (_rtx) != (C)) \
1121 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
1123 &_rtx->u.hwint[N]; }))
1125 #define XCMWINT(RTX, N, C, M) __extension__ \
1126 (*({ __typeof (RTX) const _rtx = (RTX); \
1127 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) != (M)) \
1128 rtl_check_failed_code_mode (_rtx, (C), (M), false, __FILE__, \
1129 __LINE__, __FUNCTION__); \
1130 &_rtx->u.hwint[N]; }))
1132 #define XCNMPRV(RTX, C, M) __extension__ \
1133 ({ __typeof (RTX) const _rtx = (RTX); \
1134 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
1135 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
1136 __LINE__, __FUNCTION__); \
1139 #define XCNMPFV(RTX, C, M) __extension__ \
1140 ({ __typeof (RTX) const _rtx = (RTX); \
1141 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
1142 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
1143 __LINE__, __FUNCTION__); \
1146 #define REG_CHECK(RTX) __extension__ \
1147 ({ __typeof (RTX) const _rtx = (RTX); \
1148 if (GET_CODE (_rtx) != REG) \
1149 rtl_check_failed_code1 (_rtx, REG, __FILE__, __LINE__, \
1153 #define BLOCK_SYMBOL_CHECK(RTX) __extension__ \
1154 ({ __typeof (RTX) const _symbol = (RTX); \
1155 const unsigned int flags = SYMBOL_REF_FLAGS (_symbol); \
1156 if ((flags & SYMBOL_FLAG_HAS_BLOCK_INFO) == 0) \
1157 rtl_check_failed_block_symbol (__FILE__, __LINE__, \
1159 &_symbol->u.block_sym; })
1161 #define HWIVEC_CHECK(RTX,C) __extension__ \
1162 ({ __typeof (RTX) const _symbol = (RTX); \
1163 RTL_CHECKC1 (_symbol, 0, C); \
1164 &_symbol->u.hwiv; })
1166 extern void rtl_check_failed_bounds (const_rtx
, int, const char *, int,
1168 ATTRIBUTE_NORETURN ATTRIBUTE_COLD
;
1169 extern void rtl_check_failed_type1 (const_rtx
, int, int, const char *, int,
1171 ATTRIBUTE_NORETURN ATTRIBUTE_COLD
;
1172 extern void rtl_check_failed_type2 (const_rtx
, int, int, int, const char *,
1174 ATTRIBUTE_NORETURN ATTRIBUTE_COLD
;
1175 extern void rtl_check_failed_code1 (const_rtx
, enum rtx_code
, const char *,
1177 ATTRIBUTE_NORETURN ATTRIBUTE_COLD
;
1178 extern void rtl_check_failed_code2 (const_rtx
, enum rtx_code
, enum rtx_code
,
1179 const char *, int, const char *)
1180 ATTRIBUTE_NORETURN ATTRIBUTE_COLD
;
1181 extern void rtl_check_failed_code_mode (const_rtx
, enum rtx_code
, machine_mode
,
1182 bool, const char *, int, const char *)
1183 ATTRIBUTE_NORETURN ATTRIBUTE_COLD
;
1184 extern void rtl_check_failed_block_symbol (const char *, int, const char *)
1185 ATTRIBUTE_NORETURN ATTRIBUTE_COLD
;
1186 extern void cwi_check_failed_bounds (const_rtx
, int, const char *, int,
1188 ATTRIBUTE_NORETURN ATTRIBUTE_COLD
;
1189 extern void rtvec_check_failed_bounds (const_rtvec
, int, const char *, int,
1191 ATTRIBUTE_NORETURN ATTRIBUTE_COLD
;
1193 #else /* not ENABLE_RTL_CHECKING */
1195 #define RTL_CHECK1(RTX, N, C1) ((RTX)->u.fld[N])
1196 #define RTL_CHECK2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1197 #define RTL_CHECKC1(RTX, N, C) ((RTX)->u.fld[N])
1198 #define RTL_CHECKC2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1199 #define RTVEC_ELT(RTVEC, I) ((RTVEC)->elem[I])
1200 #define XWINT(RTX, N) ((RTX)->u.hwint[N])
1201 #define CWI_ELT(RTX, I) ((RTX)->u.hwiv.elem[I])
1202 #define XCWINT(RTX, N, C) ((RTX)->u.hwint[N])
1203 #define XCMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1204 #define XCNMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1205 #define XCNMPRV(RTX, C, M) (&(RTX)->u.rv)
1206 #define XCNMPFV(RTX, C, M) (&(RTX)->u.fv)
1207 #define REG_CHECK(RTX) (&(RTX)->u.reg)
1208 #define BLOCK_SYMBOL_CHECK(RTX) (&(RTX)->u.block_sym)
1209 #define HWIVEC_CHECK(RTX,C) (&(RTX)->u.hwiv)
1213 /* General accessor macros for accessing the flags of an rtx. */
1215 /* Access an individual rtx flag, with no checking of any kind. */
1216 #define RTX_FLAG(RTX, FLAG) ((RTX)->FLAG)
1218 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION >= 2007)
1219 #define RTL_FLAG_CHECK1(NAME, RTX, C1) __extension__ \
1220 ({ __typeof (RTX) const _rtx = (RTX); \
1221 if (GET_CODE (_rtx) != C1) \
1222 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1226 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) __extension__ \
1227 ({ __typeof (RTX) const _rtx = (RTX); \
1228 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2) \
1229 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1233 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) __extension__ \
1234 ({ __typeof (RTX) const _rtx = (RTX); \
1235 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1236 && GET_CODE (_rtx) != C3) \
1237 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1241 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) __extension__ \
1242 ({ __typeof (RTX) const _rtx = (RTX); \
1243 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1244 && GET_CODE (_rtx) != C3 && GET_CODE(_rtx) != C4) \
1245 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1249 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) __extension__ \
1250 ({ __typeof (RTX) const _rtx = (RTX); \
1251 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1252 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1253 && GET_CODE (_rtx) != C5) \
1254 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1258 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) \
1260 ({ __typeof (RTX) const _rtx = (RTX); \
1261 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1262 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1263 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6) \
1264 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1268 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) \
1270 ({ __typeof (RTX) const _rtx = (RTX); \
1271 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1272 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1273 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6 \
1274 && GET_CODE (_rtx) != C7) \
1275 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1279 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) \
1281 ({ __typeof (RTX) const _rtx = (RTX); \
1282 if (!INSN_CHAIN_CODE_P (GET_CODE (_rtx))) \
1283 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1287 extern void rtl_check_failed_flag (const char *, const_rtx
, const char *,
1289 ATTRIBUTE_NORETURN ATTRIBUTE_COLD
1292 #else /* not ENABLE_RTL_FLAG_CHECKING */
1294 #define RTL_FLAG_CHECK1(NAME, RTX, C1) (RTX)
1295 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) (RTX)
1296 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) (RTX)
1297 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) (RTX)
1298 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) (RTX)
1299 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) (RTX)
1300 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) (RTX)
1301 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) (RTX)
1304 #define XINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_int)
1305 #define XUINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_uint)
1306 #define XSTR(RTX, N) (RTL_CHECK2 (RTX, N, 's', 'S').rt_str)
1307 #define XEXP(RTX, N) (RTL_CHECK2 (RTX, N, 'e', 'u').rt_rtx)
1308 #define XVEC(RTX, N) (RTL_CHECK2 (RTX, N, 'E', 'V').rt_rtvec)
1309 #define XMODE(RTX, N) (RTL_CHECK1 (RTX, N, 'M').rt_type)
1310 #define XTREE(RTX, N) (RTL_CHECK1 (RTX, N, 't').rt_tree)
1311 #define XBBDEF(RTX, N) (RTL_CHECK1 (RTX, N, 'B').rt_bb)
1312 #define XTMPL(RTX, N) (RTL_CHECK1 (RTX, N, 'T').rt_str)
1313 #define XCFI(RTX, N) (RTL_CHECK1 (RTX, N, 'C').rt_cfi)
1315 #define XVECEXP(RTX, N, M) RTVEC_ELT (XVEC (RTX, N), M)
1316 #define XVECLEN(RTX, N) GET_NUM_ELEM (XVEC (RTX, N))
1318 /* These are like XINT, etc. except that they expect a '0' field instead
1319 of the normal type code. */
1321 #define X0INT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_int)
1322 #define X0UINT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_uint)
1323 #define X0STR(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_str)
1324 #define X0EXP(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtx)
1325 #define X0VEC(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtvec)
1326 #define X0MODE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_type)
1327 #define X0TREE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_tree)
1328 #define X0BBDEF(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_bb)
1329 #define X0ADVFLAGS(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_addr_diff_vec_flags)
1330 #define X0CSELIB(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_cselib)
1331 #define X0MEMATTR(RTX, N) (RTL_CHECKC1 (RTX, N, MEM).rt_mem)
1332 #define X0CONSTANT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_constant)
1334 /* Access a '0' field with any type. */
1335 #define X0ANY(RTX, N) RTL_CHECK1 (RTX, N, '0')
1337 #define XCINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_int)
1338 #define XCUINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_uint)
1339 #define XCSUBREG(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_subreg)
1340 #define XCSTR(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_str)
1341 #define XCEXP(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtx)
1342 #define XCVEC(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtvec)
1343 #define XCMODE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_type)
1344 #define XCTREE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_tree)
1345 #define XCBBDEF(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_bb)
1346 #define XCCFI(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cfi)
1347 #define XCCSELIB(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cselib)
1349 #define XCVECEXP(RTX, N, M, C) RTVEC_ELT (XCVEC (RTX, N, C), M)
1350 #define XCVECLEN(RTX, N, C) GET_NUM_ELEM (XCVEC (RTX, N, C))
1352 #define XC2EXP(RTX, N, C1, C2) (RTL_CHECKC2 (RTX, N, C1, C2).rt_rtx)
1355 /* Methods of rtx_expr_list. */
1357 inline rtx_expr_list
*rtx_expr_list::next () const
1359 rtx tmp
= XEXP (this, 1);
1360 return safe_as_a
<rtx_expr_list
*> (tmp
);
1363 inline rtx
rtx_expr_list::element () const
1365 return XEXP (this, 0);
1368 /* Methods of rtx_insn_list. */
1370 inline rtx_insn_list
*rtx_insn_list::next () const
1372 rtx tmp
= XEXP (this, 1);
1373 return safe_as_a
<rtx_insn_list
*> (tmp
);
1376 inline rtx_insn
*rtx_insn_list::insn () const
1378 rtx tmp
= XEXP (this, 0);
1379 return safe_as_a
<rtx_insn
*> (tmp
);
1382 /* Methods of rtx_sequence. */
1384 inline int rtx_sequence::len () const
1386 return XVECLEN (this, 0);
1389 inline rtx
rtx_sequence::element (int index
) const
1391 return XVECEXP (this, 0, index
);
1394 inline rtx_insn
*rtx_sequence::insn (int index
) const
1396 return as_a
<rtx_insn
*> (XVECEXP (this, 0, index
));
1399 /* ACCESS MACROS for particular fields of insns. */
1401 /* Holds a unique number for each insn.
1402 These are not necessarily sequentially increasing. */
1403 inline int INSN_UID (const_rtx insn
)
1405 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1406 (insn
))->u2
.insn_uid
;
1408 inline int& INSN_UID (rtx insn
)
1410 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1411 (insn
))->u2
.insn_uid
;
1414 /* Chain insns together in sequence. */
1416 /* For now these are split in two: an rvalue form:
1419 SET_NEXT_INSN/SET_PREV_INSN. */
1421 inline rtx_insn
*PREV_INSN (const rtx_insn
*insn
)
1423 rtx prev
= XEXP (insn
, 0);
1424 return safe_as_a
<rtx_insn
*> (prev
);
1427 inline rtx
& SET_PREV_INSN (rtx_insn
*insn
)
1429 return XEXP (insn
, 0);
1432 inline rtx_insn
*NEXT_INSN (const rtx_insn
*insn
)
1434 rtx next
= XEXP (insn
, 1);
1435 return safe_as_a
<rtx_insn
*> (next
);
1438 inline rtx
& SET_NEXT_INSN (rtx_insn
*insn
)
1440 return XEXP (insn
, 1);
1443 inline basic_block
BLOCK_FOR_INSN (const_rtx insn
)
1445 return XBBDEF (insn
, 2);
1448 inline basic_block
& BLOCK_FOR_INSN (rtx insn
)
1450 return XBBDEF (insn
, 2);
1453 inline void set_block_for_insn (rtx_insn
*insn
, basic_block bb
)
1455 BLOCK_FOR_INSN (insn
) = bb
;
1458 /* The body of an insn. */
1459 inline rtx
PATTERN (const_rtx insn
)
1461 return XEXP (insn
, 3);
1464 inline rtx
& PATTERN (rtx insn
)
1466 return XEXP (insn
, 3);
1469 inline unsigned int INSN_LOCATION (const rtx_insn
*insn
)
1471 return XUINT (insn
, 4);
1474 inline unsigned int& INSN_LOCATION (rtx_insn
*insn
)
1476 return XUINT (insn
, 4);
1479 inline bool INSN_HAS_LOCATION (const rtx_insn
*insn
)
1481 return LOCATION_LOCUS (INSN_LOCATION (insn
)) != UNKNOWN_LOCATION
;
1484 /* LOCATION of an RTX if relevant. */
1485 #define RTL_LOCATION(X) (INSN_P (X) ? \
1486 INSN_LOCATION (as_a <rtx_insn *> (X)) \
1489 /* Code number of instruction, from when it was recognized.
1490 -1 means this instruction has not been recognized yet. */
1491 #define INSN_CODE(INSN) XINT (INSN, 5)
1493 inline rtvec
rtx_jump_table_data::get_labels () const
1495 rtx pat
= PATTERN (this);
1496 if (GET_CODE (pat
) == ADDR_VEC
)
1497 return XVEC (pat
, 0);
1499 return XVEC (pat
, 1); /* presumably an ADDR_DIFF_VEC */
1502 /* Return the mode of the data in the table, which is always a scalar
1505 inline scalar_int_mode
1506 rtx_jump_table_data::get_data_mode () const
1508 return as_a
<scalar_int_mode
> (GET_MODE (PATTERN (this)));
1511 /* If LABEL is followed by a jump table, return the table, otherwise
1514 inline rtx_jump_table_data
*
1515 jump_table_for_label (const rtx_code_label
*label
)
1517 return safe_dyn_cast
<rtx_jump_table_data
*> (NEXT_INSN (label
));
1520 #define RTX_FRAME_RELATED_P(RTX) \
1521 (RTL_FLAG_CHECK6 ("RTX_FRAME_RELATED_P", (RTX), DEBUG_INSN, INSN, \
1522 CALL_INSN, JUMP_INSN, BARRIER, SET)->frame_related)
1524 /* 1 if JUMP RTX is a crossing jump. */
1525 #define CROSSING_JUMP_P(RTX) \
1526 (RTL_FLAG_CHECK1 ("CROSSING_JUMP_P", (RTX), JUMP_INSN)->jump)
1528 /* 1 if RTX is a call to a const function. Built from ECF_CONST and
1530 #define RTL_CONST_CALL_P(RTX) \
1531 (RTL_FLAG_CHECK1 ("RTL_CONST_CALL_P", (RTX), CALL_INSN)->unchanging)
1533 /* 1 if RTX is a call to a pure function. Built from ECF_PURE and
1535 #define RTL_PURE_CALL_P(RTX) \
1536 (RTL_FLAG_CHECK1 ("RTL_PURE_CALL_P", (RTX), CALL_INSN)->return_val)
1538 /* 1 if RTX is a call to a const or pure function. */
1539 #define RTL_CONST_OR_PURE_CALL_P(RTX) \
1540 (RTL_CONST_CALL_P (RTX) || RTL_PURE_CALL_P (RTX))
1542 /* 1 if RTX is a call to a looping const or pure function. Built from
1543 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P. */
1544 #define RTL_LOOPING_CONST_OR_PURE_CALL_P(RTX) \
1545 (RTL_FLAG_CHECK1 ("CONST_OR_PURE_CALL_P", (RTX), CALL_INSN)->call)
1547 /* 1 if RTX is a call_insn for a sibling call. */
1548 #define SIBLING_CALL_P(RTX) \
1549 (RTL_FLAG_CHECK1 ("SIBLING_CALL_P", (RTX), CALL_INSN)->jump)
1551 /* 1 if RTX is a jump_insn, call_insn, or insn that is an annulling branch. */
1552 #define INSN_ANNULLED_BRANCH_P(RTX) \
1553 (RTL_FLAG_CHECK1 ("INSN_ANNULLED_BRANCH_P", (RTX), JUMP_INSN)->unchanging)
1555 /* 1 if RTX is an insn in a delay slot and is from the target of the branch.
1556 If the branch insn has INSN_ANNULLED_BRANCH_P set, this insn should only be
1557 executed if the branch is taken. For annulled branches with this bit
1558 clear, the insn should be executed only if the branch is not taken. */
1559 #define INSN_FROM_TARGET_P(RTX) \
1560 (RTL_FLAG_CHECK3 ("INSN_FROM_TARGET_P", (RTX), INSN, JUMP_INSN, \
1561 CALL_INSN)->in_struct)
1563 /* In an ADDR_DIFF_VEC, the flags for RTX for use by branch shortening.
1564 See the comments for ADDR_DIFF_VEC in rtl.def. */
1565 #define ADDR_DIFF_VEC_FLAGS(RTX) X0ADVFLAGS (RTX, 4)
1567 /* In a VALUE, the value cselib has assigned to RTX.
1568 This is a "struct cselib_val", see cselib.h. */
1569 #define CSELIB_VAL_PTR(RTX) X0CSELIB (RTX, 0)
1571 /* Holds a list of notes on what this insn does to various REGs.
1572 It is a chain of EXPR_LIST rtx's, where the second operand is the
1573 chain pointer and the first operand is the REG being described.
1574 The mode field of the EXPR_LIST contains not a real machine mode
1575 but a value from enum reg_note. */
1576 #define REG_NOTES(INSN) XEXP(INSN, 6)
1578 /* In an ENTRY_VALUE this is the DECL_INCOMING_RTL of the argument in
1580 #define ENTRY_VALUE_EXP(RTX) (RTL_CHECKC1 (RTX, 0, ENTRY_VALUE).rt_rtx)
1584 #define DEF_REG_NOTE(NAME) NAME,
1585 #include "reg-notes.def"
1590 /* Define macros to extract and insert the reg-note kind in an EXPR_LIST. */
1591 #define REG_NOTE_KIND(LINK) ((enum reg_note) GET_MODE (LINK))
1592 #define PUT_REG_NOTE_KIND(LINK, KIND) \
1593 PUT_MODE_RAW (LINK, (machine_mode) (KIND))
1595 /* Names for REG_NOTE's in EXPR_LIST insn's. */
1597 extern const char * const reg_note_name
[];
1598 #define GET_REG_NOTE_NAME(MODE) (reg_note_name[(int) (MODE)])
1600 /* This field is only present on CALL_INSNs. It holds a chain of EXPR_LIST of
1601 USE and CLOBBER expressions.
1602 USE expressions list the registers filled with arguments that
1603 are passed to the function.
1604 CLOBBER expressions document the registers explicitly clobbered
1606 Pseudo registers can not be mentioned in this list. */
1607 #define CALL_INSN_FUNCTION_USAGE(INSN) XEXP(INSN, 7)
1609 /* The label-number of a code-label. The assembler label
1610 is made from `L' and the label-number printed in decimal.
1611 Label numbers are unique in a compilation. */
1612 #define CODE_LABEL_NUMBER(INSN) XINT (INSN, 5)
1614 /* In a NOTE that is a line number, this is a string for the file name that the
1615 line is in. We use the same field to record block numbers temporarily in
1616 NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes. (We avoid lots of casts
1617 between ints and pointers if we use a different macro for the block number.)
1621 #define NOTE_DATA(INSN) RTL_CHECKC1 (INSN, 3, NOTE)
1622 #define NOTE_DELETED_LABEL_NAME(INSN) XCSTR (INSN, 3, NOTE)
1623 #define SET_INSN_DELETED(INSN) set_insn_deleted (INSN);
1624 #define NOTE_BLOCK(INSN) XCTREE (INSN, 3, NOTE)
1625 #define NOTE_EH_HANDLER(INSN) XCINT (INSN, 3, NOTE)
1626 #define NOTE_BASIC_BLOCK(INSN) XCBBDEF (INSN, 3, NOTE)
1627 #define NOTE_VAR_LOCATION(INSN) XCEXP (INSN, 3, NOTE)
1628 #define NOTE_MARKER_LOCATION(INSN) XCUINT (INSN, 3, NOTE)
1629 #define NOTE_CFI(INSN) XCCFI (INSN, 3, NOTE)
1630 #define NOTE_LABEL_NUMBER(INSN) XCINT (INSN, 3, NOTE)
1632 /* In a NOTE that is a line number, this is the line number.
1633 Other kinds of NOTEs are identified by negative numbers here. */
1634 #define NOTE_KIND(INSN) XCINT (INSN, 4, NOTE)
1636 /* Nonzero if INSN is a note marking the beginning of a basic block. */
1637 #define NOTE_INSN_BASIC_BLOCK_P(INSN) \
1638 (NOTE_P (INSN) && NOTE_KIND (INSN) == NOTE_INSN_BASIC_BLOCK)
1640 /* Nonzero if INSN is a debug nonbind marker note,
1641 for which NOTE_MARKER_LOCATION can be used. */
1642 #define NOTE_MARKER_P(INSN) \
1644 (NOTE_KIND (INSN) == NOTE_INSN_BEGIN_STMT))
1646 /* Variable declaration and the location of a variable. */
1647 #define PAT_VAR_LOCATION_DECL(PAT) (XCTREE ((PAT), 0, VAR_LOCATION))
1648 #define PAT_VAR_LOCATION_LOC(PAT) (XCEXP ((PAT), 1, VAR_LOCATION))
1650 /* Initialization status of the variable in the location. Status
1651 can be unknown, uninitialized or initialized. See enumeration
1653 #define PAT_VAR_LOCATION_STATUS(PAT) \
1654 (RTL_FLAG_CHECK1 ("PAT_VAR_LOCATION_STATUS", PAT, VAR_LOCATION) \
1655 ->u2.var_location_status)
1657 /* Accessors for a NOTE_INSN_VAR_LOCATION. */
1658 #define NOTE_VAR_LOCATION_DECL(NOTE) \
1659 PAT_VAR_LOCATION_DECL (NOTE_VAR_LOCATION (NOTE))
1660 #define NOTE_VAR_LOCATION_LOC(NOTE) \
1661 PAT_VAR_LOCATION_LOC (NOTE_VAR_LOCATION (NOTE))
1662 #define NOTE_VAR_LOCATION_STATUS(NOTE) \
1663 PAT_VAR_LOCATION_STATUS (NOTE_VAR_LOCATION (NOTE))
1665 /* Evaluate to TRUE if INSN is a debug insn that denotes a variable
1666 location/value tracking annotation. */
1667 #define DEBUG_BIND_INSN_P(INSN) \
1668 (DEBUG_INSN_P (INSN) \
1669 && (GET_CODE (PATTERN (INSN)) \
1671 /* Evaluate to TRUE if INSN is a debug insn that denotes a program
1672 source location marker. */
1673 #define DEBUG_MARKER_INSN_P(INSN) \
1674 (DEBUG_INSN_P (INSN) \
1675 && (GET_CODE (PATTERN (INSN)) \
1677 /* Evaluate to the marker kind. */
1678 #define INSN_DEBUG_MARKER_KIND(INSN) \
1679 (GET_CODE (PATTERN (INSN)) == DEBUG_MARKER \
1680 ? (GET_MODE (PATTERN (INSN)) == VOIDmode \
1681 ? NOTE_INSN_BEGIN_STMT \
1682 : (enum insn_note)-1) \
1683 : (enum insn_note)-1)
1684 /* Create patterns for debug markers. These and the above abstract
1685 the representation, so that it's easier to get rid of the abuse of
1686 the mode to hold the marker kind. Other marker types are
1687 envisioned, so a single bit flag won't do; maybe separate RTL codes
1688 wouldn't be a problem. */
1689 #define GEN_RTX_DEBUG_MARKER_BEGIN_STMT_PAT() \
1690 gen_rtx_DEBUG_MARKER (VOIDmode)
1692 /* The VAR_LOCATION rtx in a DEBUG_INSN. */
1693 #define INSN_VAR_LOCATION(INSN) \
1694 (RTL_FLAG_CHECK1 ("INSN_VAR_LOCATION", PATTERN (INSN), VAR_LOCATION))
1695 /* A pointer to the VAR_LOCATION rtx in a DEBUG_INSN. */
1696 #define INSN_VAR_LOCATION_PTR(INSN) \
1699 /* Accessors for a tree-expanded var location debug insn. */
1700 #define INSN_VAR_LOCATION_DECL(INSN) \
1701 PAT_VAR_LOCATION_DECL (INSN_VAR_LOCATION (INSN))
1702 #define INSN_VAR_LOCATION_LOC(INSN) \
1703 PAT_VAR_LOCATION_LOC (INSN_VAR_LOCATION (INSN))
1704 #define INSN_VAR_LOCATION_STATUS(INSN) \
1705 PAT_VAR_LOCATION_STATUS (INSN_VAR_LOCATION (INSN))
1707 /* Expand to the RTL that denotes an unknown variable location in a
1709 #define gen_rtx_UNKNOWN_VAR_LOC() (gen_rtx_CLOBBER (VOIDmode, const0_rtx))
1711 /* Determine whether X is such an unknown location. */
1712 #define VAR_LOC_UNKNOWN_P(X) \
1713 (GET_CODE (X) == CLOBBER && XEXP ((X), 0) == const0_rtx)
1715 /* 1 if RTX is emitted after a call, but it should take effect before
1716 the call returns. */
1717 #define NOTE_DURING_CALL_P(RTX) \
1718 (RTL_FLAG_CHECK1 ("NOTE_VAR_LOCATION_DURING_CALL_P", (RTX), NOTE)->call)
1720 /* DEBUG_EXPR_DECL corresponding to a DEBUG_EXPR RTX. */
1721 #define DEBUG_EXPR_TREE_DECL(RTX) XCTREE (RTX, 0, DEBUG_EXPR)
1723 /* VAR_DECL/PARM_DECL DEBUG_IMPLICIT_PTR takes address of. */
1724 #define DEBUG_IMPLICIT_PTR_DECL(RTX) XCTREE (RTX, 0, DEBUG_IMPLICIT_PTR)
1726 /* PARM_DECL DEBUG_PARAMETER_REF references. */
1727 #define DEBUG_PARAMETER_REF_DECL(RTX) XCTREE (RTX, 0, DEBUG_PARAMETER_REF)
1729 /* Codes that appear in the NOTE_KIND field for kinds of notes
1730 that are not line numbers. These codes are all negative.
1732 Notice that we do not try to use zero here for any of
1733 the special note codes because sometimes the source line
1734 actually can be zero! This happens (for example) when we
1735 are generating code for the per-translation-unit constructor
1736 and destructor routines for some C++ translation unit. */
1740 #define DEF_INSN_NOTE(NAME) NAME,
1741 #include "insn-notes.def"
1742 #undef DEF_INSN_NOTE
1747 /* Names for NOTE insn's other than line numbers. */
1749 extern const char * const note_insn_name
[NOTE_INSN_MAX
];
1750 #define GET_NOTE_INSN_NAME(NOTE_CODE) \
1751 (note_insn_name[(NOTE_CODE)])
1753 /* The name of a label, in case it corresponds to an explicit label
1754 in the input source code. */
1755 #define LABEL_NAME(RTX) XCSTR (RTX, 6, CODE_LABEL)
1757 /* In jump.c, each label contains a count of the number
1758 of LABEL_REFs that point at it, so unused labels can be deleted. */
1759 #define LABEL_NUSES(RTX) XCINT (RTX, 4, CODE_LABEL)
1761 /* Labels carry a two-bit field composed of the ->jump and ->call
1762 bits. This field indicates whether the label is an alternate
1763 entry point, and if so, what kind. */
1766 LABEL_NORMAL
= 0, /* ordinary label */
1767 LABEL_STATIC_ENTRY
, /* alternate entry point, not exported */
1768 LABEL_GLOBAL_ENTRY
, /* alternate entry point, exported */
1769 LABEL_WEAK_ENTRY
/* alternate entry point, exported as weak symbol */
1772 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION > 2007)
1774 /* Retrieve the kind of LABEL. */
1775 #define LABEL_KIND(LABEL) __extension__ \
1776 ({ __typeof (LABEL) const _label = (LABEL); \
1777 if (! LABEL_P (_label)) \
1778 rtl_check_failed_flag ("LABEL_KIND", _label, __FILE__, __LINE__, \
1780 (enum label_kind) ((_label->jump << 1) | _label->call); })
1782 /* Set the kind of LABEL. */
1783 #define SET_LABEL_KIND(LABEL, KIND) do { \
1784 __typeof (LABEL) const _label = (LABEL); \
1785 const unsigned int _kind = (KIND); \
1786 if (! LABEL_P (_label)) \
1787 rtl_check_failed_flag ("SET_LABEL_KIND", _label, __FILE__, __LINE__, \
1789 _label->jump = ((_kind >> 1) & 1); \
1790 _label->call = (_kind & 1); \
1795 /* Retrieve the kind of LABEL. */
1796 #define LABEL_KIND(LABEL) \
1797 ((enum label_kind) (((LABEL)->jump << 1) | (LABEL)->call))
1799 /* Set the kind of LABEL. */
1800 #define SET_LABEL_KIND(LABEL, KIND) do { \
1801 rtx const _label = (LABEL); \
1802 const unsigned int _kind = (KIND); \
1803 _label->jump = ((_kind >> 1) & 1); \
1804 _label->call = (_kind & 1); \
1807 #endif /* rtl flag checking */
1809 #define LABEL_ALT_ENTRY_P(LABEL) (LABEL_KIND (LABEL) != LABEL_NORMAL)
1811 /* In jump.c, each JUMP_INSN can point to a label that it can jump to,
1812 so that if the JUMP_INSN is deleted, the label's LABEL_NUSES can
1813 be decremented and possibly the label can be deleted. */
1814 #define JUMP_LABEL(INSN) XCEXP (INSN, 7, JUMP_INSN)
1816 inline rtx_insn
*JUMP_LABEL_AS_INSN (const rtx_insn
*insn
)
1818 return safe_as_a
<rtx_insn
*> (JUMP_LABEL (insn
));
1821 /* Methods of rtx_jump_insn. */
1823 inline rtx
rtx_jump_insn::jump_label () const
1825 return JUMP_LABEL (this);
1828 inline rtx_code_label
*rtx_jump_insn::jump_target () const
1830 return safe_as_a
<rtx_code_label
*> (JUMP_LABEL (this));
1833 inline void rtx_jump_insn::set_jump_target (rtx_code_label
*target
)
1835 JUMP_LABEL (this) = target
;
1838 /* Once basic blocks are found, each CODE_LABEL starts a chain that
1839 goes through all the LABEL_REFs that jump to that label. The chain
1840 eventually winds up at the CODE_LABEL: it is circular. */
1841 #define LABEL_REFS(LABEL) XCEXP (LABEL, 3, CODE_LABEL)
1843 /* Get the label that a LABEL_REF references. */
1844 static inline rtx_insn
*
1845 label_ref_label (const_rtx ref
)
1847 return as_a
<rtx_insn
*> (XCEXP (ref
, 0, LABEL_REF
));
1850 /* Set the label that LABEL_REF ref refers to. */
1853 set_label_ref_label (rtx ref
, rtx_insn
*label
)
1855 XCEXP (ref
, 0, LABEL_REF
) = label
;
1858 /* For a REG rtx, REGNO extracts the register number. REGNO can only
1859 be used on RHS. Use SET_REGNO to change the value. */
1860 #define REGNO(RTX) (rhs_regno(RTX))
1861 #define SET_REGNO(RTX, N) (df_ref_change_reg_with_loc (RTX, N))
1863 /* Return the number of consecutive registers in a REG. This is always
1864 1 for pseudo registers and is determined by TARGET_HARD_REGNO_NREGS for
1866 #define REG_NREGS(RTX) (REG_CHECK (RTX)->nregs)
1868 /* ORIGINAL_REGNO holds the number the register originally had; for a
1869 pseudo register turned into a hard reg this will hold the old pseudo
1871 #define ORIGINAL_REGNO(RTX) \
1872 (RTL_FLAG_CHECK1 ("ORIGINAL_REGNO", (RTX), REG)->u2.original_regno)
1874 /* Force the REGNO macro to only be used on the lhs. */
1875 static inline unsigned int
1876 rhs_regno (const_rtx x
)
1878 return REG_CHECK (x
)->regno
;
1881 /* Return the final register in REG X plus one. */
1882 static inline unsigned int
1883 END_REGNO (const_rtx x
)
1885 return REGNO (x
) + REG_NREGS (x
);
1888 /* Change the REGNO and REG_NREGS of REG X to the specified values,
1889 bypassing the df machinery. */
1891 set_regno_raw (rtx x
, unsigned int regno
, unsigned int nregs
)
1893 reg_info
*reg
= REG_CHECK (x
);
1898 /* 1 if RTX is a reg or parallel that is the current function's return
1900 #define REG_FUNCTION_VALUE_P(RTX) \
1901 (RTL_FLAG_CHECK2 ("REG_FUNCTION_VALUE_P", (RTX), REG, PARALLEL)->return_val)
1903 /* 1 if RTX is a reg that corresponds to a variable declared by the user. */
1904 #define REG_USERVAR_P(RTX) \
1905 (RTL_FLAG_CHECK1 ("REG_USERVAR_P", (RTX), REG)->volatil)
1907 /* 1 if RTX is a reg that holds a pointer value. */
1908 #define REG_POINTER(RTX) \
1909 (RTL_FLAG_CHECK1 ("REG_POINTER", (RTX), REG)->frame_related)
1911 /* 1 if RTX is a mem that holds a pointer value. */
1912 #define MEM_POINTER(RTX) \
1913 (RTL_FLAG_CHECK1 ("MEM_POINTER", (RTX), MEM)->frame_related)
1915 /* 1 if the given register REG corresponds to a hard register. */
1916 #define HARD_REGISTER_P(REG) (HARD_REGISTER_NUM_P (REGNO (REG)))
1918 /* 1 if the given register number REG_NO corresponds to a hard register. */
1919 #define HARD_REGISTER_NUM_P(REG_NO) ((REG_NO) < FIRST_PSEUDO_REGISTER)
1921 /* For a CONST_INT rtx, INTVAL extracts the integer. */
1922 #define INTVAL(RTX) XCWINT (RTX, 0, CONST_INT)
1923 #define UINTVAL(RTX) ((unsigned HOST_WIDE_INT) INTVAL (RTX))
1925 /* For a CONST_WIDE_INT, CONST_WIDE_INT_NUNITS is the number of
1926 elements actually needed to represent the constant.
1927 CONST_WIDE_INT_ELT gets one of the elements. 0 is the least
1928 significant HOST_WIDE_INT. */
1929 #define CONST_WIDE_INT_VEC(RTX) HWIVEC_CHECK (RTX, CONST_WIDE_INT)
1930 #define CONST_WIDE_INT_NUNITS(RTX) CWI_GET_NUM_ELEM (RTX)
1931 #define CONST_WIDE_INT_ELT(RTX, N) CWI_ELT (RTX, N)
1933 /* For a CONST_POLY_INT, CONST_POLY_INT_COEFFS gives access to the
1934 individual coefficients, in the form of a trailing_wide_ints structure. */
1935 #define CONST_POLY_INT_COEFFS(RTX) \
1936 (RTL_FLAG_CHECK1("CONST_POLY_INT_COEFFS", (RTX), \
1937 CONST_POLY_INT)->u.cpi.coeffs)
1939 /* For a CONST_DOUBLE:
1940 #if TARGET_SUPPORTS_WIDE_INT == 0
1941 For a VOIDmode, there are two integers CONST_DOUBLE_LOW is the
1942 low-order word and ..._HIGH the high-order.
1944 For a float, there is a REAL_VALUE_TYPE structure, and
1945 CONST_DOUBLE_REAL_VALUE(r) is a pointer to it. */
1946 #define CONST_DOUBLE_LOW(r) XCMWINT (r, 0, CONST_DOUBLE, VOIDmode)
1947 #define CONST_DOUBLE_HIGH(r) XCMWINT (r, 1, CONST_DOUBLE, VOIDmode)
1948 #define CONST_DOUBLE_REAL_VALUE(r) \
1949 ((const struct real_value *) XCNMPRV (r, CONST_DOUBLE, VOIDmode))
1951 #define CONST_FIXED_VALUE(r) \
1952 ((const struct fixed_value *) XCNMPFV (r, CONST_FIXED, VOIDmode))
1953 #define CONST_FIXED_VALUE_HIGH(r) \
1954 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.high))
1955 #define CONST_FIXED_VALUE_LOW(r) \
1956 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.low))
1958 /* For a CONST_VECTOR, return element #n. */
1959 #define CONST_VECTOR_ELT(RTX, N) XCVECEXP (RTX, 0, N, CONST_VECTOR)
1961 /* For a CONST_VECTOR, return the number of elements in a vector. */
1962 #define CONST_VECTOR_NUNITS(RTX) XCVECLEN (RTX, 0, CONST_VECTOR)
1964 /* For a SUBREG rtx, SUBREG_REG extracts the value we want a subreg of.
1965 SUBREG_BYTE extracts the byte-number. */
1967 #define SUBREG_REG(RTX) XCEXP (RTX, 0, SUBREG)
1968 #define SUBREG_BYTE(RTX) XCSUBREG (RTX, 1, SUBREG)
1971 /* Return the right cost to give to an operation
1972 to make the cost of the corresponding register-to-register instruction
1973 N times that of a fast register-to-register instruction. */
1974 #define COSTS_N_INSNS(N) ((N) * 4)
1976 /* Maximum cost of an rtl expression. This value has the special meaning
1977 not to use an rtx with this cost under any circumstances. */
1978 #define MAX_COST INT_MAX
1980 /* Return true if CODE always has VOIDmode. */
1983 always_void_p (enum rtx_code code
)
1988 /* A structure to hold all available cost information about an rtl
1990 struct full_rtx_costs
1996 /* Initialize a full_rtx_costs structure C to the maximum cost. */
1998 init_costs_to_max (struct full_rtx_costs
*c
)
2000 c
->speed
= MAX_COST
;
2004 /* Initialize a full_rtx_costs structure C to zero cost. */
2006 init_costs_to_zero (struct full_rtx_costs
*c
)
2012 /* Compare two full_rtx_costs structures A and B, returning true
2013 if A < B when optimizing for speed. */
2015 costs_lt_p (struct full_rtx_costs
*a
, struct full_rtx_costs
*b
,
2019 return (a
->speed
< b
->speed
2020 || (a
->speed
== b
->speed
&& a
->size
< b
->size
));
2022 return (a
->size
< b
->size
2023 || (a
->size
== b
->size
&& a
->speed
< b
->speed
));
2026 /* Increase both members of the full_rtx_costs structure C by the
2029 costs_add_n_insns (struct full_rtx_costs
*c
, int n
)
2031 c
->speed
+= COSTS_N_INSNS (n
);
2032 c
->size
+= COSTS_N_INSNS (n
);
2035 /* Describes the shape of a subreg:
2037 inner_mode == the mode of the SUBREG_REG
2038 offset == the SUBREG_BYTE
2039 outer_mode == the mode of the SUBREG itself. */
2040 struct subreg_shape
{
2041 subreg_shape (machine_mode
, poly_uint16
, machine_mode
);
2042 bool operator == (const subreg_shape
&) const;
2043 bool operator != (const subreg_shape
&) const;
2044 unsigned HOST_WIDE_INT
unique_id () const;
2046 machine_mode inner_mode
;
2048 machine_mode outer_mode
;
2052 subreg_shape::subreg_shape (machine_mode inner_mode_in
,
2053 poly_uint16 offset_in
,
2054 machine_mode outer_mode_in
)
2055 : inner_mode (inner_mode_in
), offset (offset_in
), outer_mode (outer_mode_in
)
2059 subreg_shape::operator == (const subreg_shape
&other
) const
2061 return (inner_mode
== other
.inner_mode
2062 && known_eq (offset
, other
.offset
)
2063 && outer_mode
== other
.outer_mode
);
2067 subreg_shape::operator != (const subreg_shape
&other
) const
2069 return !operator == (other
);
2072 /* Return an integer that uniquely identifies this shape. Structures
2073 like rtx_def assume that a mode can fit in an 8-bit bitfield and no
2074 current mode is anywhere near being 65536 bytes in size, so the
2075 id comfortably fits in an int. */
2077 inline unsigned HOST_WIDE_INT
2078 subreg_shape::unique_id () const
2080 { STATIC_ASSERT (MAX_MACHINE_MODE
<= 256); }
2081 { STATIC_ASSERT (NUM_POLY_INT_COEFFS
<= 3); }
2082 { STATIC_ASSERT (sizeof (offset
.coeffs
[0]) <= 2); }
2083 int res
= (int) inner_mode
+ ((int) outer_mode
<< 8);
2084 for (int i
= 0; i
< NUM_POLY_INT_COEFFS
; ++i
)
2085 res
+= (HOST_WIDE_INT
) offset
.coeffs
[i
] << ((1 + i
) * 16);
2089 /* Return the shape of a SUBREG rtx. */
2091 static inline subreg_shape
2092 shape_of_subreg (const_rtx x
)
2094 return subreg_shape (GET_MODE (SUBREG_REG (x
)),
2095 SUBREG_BYTE (x
), GET_MODE (x
));
2098 /* Information about an address. This structure is supposed to be able
2099 to represent all supported target addresses. Please extend it if it
2100 is not yet general enough. */
2101 struct address_info
{
2102 /* The mode of the value being addressed, or VOIDmode if this is
2103 a load-address operation with no known address mode. */
2106 /* The address space. */
2109 /* True if this is an RTX_AUTOINC address. */
2112 /* A pointer to the top-level address. */
2115 /* A pointer to the inner address, after all address mutations
2116 have been stripped from the top-level address. It can be one
2119 - A {PRE,POST}_{INC,DEC} of *BASE. SEGMENT, INDEX and DISP are null.
2121 - A {PRE,POST}_MODIFY of *BASE. In this case either INDEX or DISP
2122 points to the step value, depending on whether the step is variable
2123 or constant respectively. SEGMENT is null.
2125 - A plain sum of the form SEGMENT + BASE + INDEX + DISP,
2126 with null fields evaluating to 0. */
2129 /* Components that make up *INNER. Each one may be null or nonnull.
2130 When nonnull, their meanings are as follows:
2132 - *SEGMENT is the "segment" of memory to which the address refers.
2133 This value is entirely target-specific and is only called a "segment"
2134 because that's its most typical use. It contains exactly one UNSPEC,
2135 pointed to by SEGMENT_TERM. The contents of *SEGMENT do not need
2138 - *BASE is a variable expression representing a base address.
2139 It contains exactly one REG, SUBREG or MEM, pointed to by BASE_TERM.
2141 - *INDEX is a variable expression representing an index value.
2142 It may be a scaled expression, such as a MULT. It has exactly
2143 one REG, SUBREG or MEM, pointed to by INDEX_TERM.
2145 - *DISP is a constant, possibly mutated. DISP_TERM points to the
2146 unmutated RTX_CONST_OBJ. */
2157 /* In a {PRE,POST}_MODIFY address, this points to a second copy
2158 of BASE_TERM, otherwise it is null. */
2161 /* ADDRESS if this structure describes an address operand, MEM if
2162 it describes a MEM address. */
2163 enum rtx_code addr_outer_code
;
2165 /* If BASE is nonnull, this is the code of the rtx that contains it. */
2166 enum rtx_code base_outer_code
;
2169 /* This is used to bundle an rtx and a mode together so that the pair
2170 can be used with the wi:: routines. If we ever put modes into rtx
2171 integer constants, this should go away and then just pass an rtx in. */
2172 typedef std::pair
<rtx
, machine_mode
> rtx_mode_t
;
2177 struct int_traits
<rtx_mode_t
>
2179 static const enum precision_type precision_type
= VAR_PRECISION
;
2180 static const bool host_dependent_precision
= false;
2181 /* This ought to be true, except for the special case that BImode
2182 is canonicalized to STORE_FLAG_VALUE, which might be 1. */
2183 static const bool is_sign_extended
= false;
2184 static unsigned int get_precision (const rtx_mode_t
&);
2185 static wi::storage_ref
decompose (HOST_WIDE_INT
*, unsigned int,
2186 const rtx_mode_t
&);
2191 wi::int_traits
<rtx_mode_t
>::get_precision (const rtx_mode_t
&x
)
2193 return GET_MODE_PRECISION (as_a
<scalar_mode
> (x
.second
));
2196 inline wi::storage_ref
2197 wi::int_traits
<rtx_mode_t
>::decompose (HOST_WIDE_INT
*,
2198 unsigned int precision
,
2199 const rtx_mode_t
&x
)
2201 gcc_checking_assert (precision
== get_precision (x
));
2202 switch (GET_CODE (x
.first
))
2205 if (precision
< HOST_BITS_PER_WIDE_INT
)
2206 /* Nonzero BImodes are stored as STORE_FLAG_VALUE, which on many
2207 targets is 1 rather than -1. */
2208 gcc_checking_assert (INTVAL (x
.first
)
2209 == sext_hwi (INTVAL (x
.first
), precision
)
2210 || (x
.second
== BImode
&& INTVAL (x
.first
) == 1));
2212 return wi::storage_ref (&INTVAL (x
.first
), 1, precision
);
2214 case CONST_WIDE_INT
:
2215 return wi::storage_ref (&CONST_WIDE_INT_ELT (x
.first
, 0),
2216 CONST_WIDE_INT_NUNITS (x
.first
), precision
);
2218 #if TARGET_SUPPORTS_WIDE_INT == 0
2220 return wi::storage_ref (&CONST_DOUBLE_LOW (x
.first
), 2, precision
);
2230 hwi_with_prec
shwi (HOST_WIDE_INT
, machine_mode mode
);
2231 wide_int
min_value (machine_mode
, signop
);
2232 wide_int
max_value (machine_mode
, signop
);
2235 inline wi::hwi_with_prec
2236 wi::shwi (HOST_WIDE_INT val
, machine_mode mode
)
2238 return shwi (val
, GET_MODE_PRECISION (as_a
<scalar_mode
> (mode
)));
2241 /* Produce the smallest number that is represented in MODE. The precision
2242 is taken from MODE and the sign from SGN. */
2244 wi::min_value (machine_mode mode
, signop sgn
)
2246 return min_value (GET_MODE_PRECISION (as_a
<scalar_mode
> (mode
)), sgn
);
2249 /* Produce the largest number that is represented in MODE. The precision
2250 is taken from MODE and the sign from SGN. */
2252 wi::max_value (machine_mode mode
, signop sgn
)
2254 return max_value (GET_MODE_PRECISION (as_a
<scalar_mode
> (mode
)), sgn
);
2259 typedef poly_int
<NUM_POLY_INT_COEFFS
,
2260 generic_wide_int
<wide_int_ref_storage
<false, false> > >
2261 rtx_to_poly_wide_ref
;
2262 rtx_to_poly_wide_ref
to_poly_wide (const_rtx
, machine_mode
);
2265 /* Return the value of a CONST_POLY_INT in its native precision. */
2267 inline wi::rtx_to_poly_wide_ref
2268 const_poly_int_value (const_rtx x
)
2270 poly_int
<NUM_POLY_INT_COEFFS
, WIDE_INT_REF_FOR (wide_int
)> res
;
2271 for (unsigned int i
= 0; i
< NUM_POLY_INT_COEFFS
; ++i
)
2272 res
.coeffs
[i
] = CONST_POLY_INT_COEFFS (x
)[i
];
2276 /* Return true if X is a scalar integer or a CONST_POLY_INT. The value
2277 can then be extracted using wi::to_poly_wide. */
2280 poly_int_rtx_p (const_rtx x
)
2282 return CONST_SCALAR_INT_P (x
) || CONST_POLY_INT_P (x
);
2285 /* Access X (which satisfies poly_int_rtx_p) as a poly_wide_int.
2286 MODE is the mode of X. */
2288 inline wi::rtx_to_poly_wide_ref
2289 wi::to_poly_wide (const_rtx x
, machine_mode mode
)
2291 if (CONST_POLY_INT_P (x
))
2292 return const_poly_int_value (x
);
2293 return rtx_mode_t (const_cast<rtx
> (x
), mode
);
2296 /* Return the value of X as a poly_int64. */
2299 rtx_to_poly_int64 (const_rtx x
)
2301 if (CONST_POLY_INT_P (x
))
2304 for (unsigned int i
= 0; i
< NUM_POLY_INT_COEFFS
; ++i
)
2305 res
.coeffs
[i
] = CONST_POLY_INT_COEFFS (x
)[i
].to_shwi ();
2311 /* Return true if arbitrary value X is an integer constant that can
2312 be represented as a poly_int64. Store the value in *RES if so,
2313 otherwise leave it unmodified. */
2316 poly_int_rtx_p (const_rtx x
, poly_int64_pod
*res
)
2318 if (CONST_INT_P (x
))
2323 if (CONST_POLY_INT_P (x
))
2325 for (unsigned int i
= 0; i
< NUM_POLY_INT_COEFFS
; ++i
)
2326 if (!wi::fits_shwi_p (CONST_POLY_INT_COEFFS (x
)[i
]))
2328 for (unsigned int i
= 0; i
< NUM_POLY_INT_COEFFS
; ++i
)
2329 res
->coeffs
[i
] = CONST_POLY_INT_COEFFS (x
)[i
].to_shwi ();
2335 extern void init_rtlanal (void);
2336 extern int rtx_cost (rtx
, machine_mode
, enum rtx_code
, int, bool);
2337 extern int address_cost (rtx
, machine_mode
, addr_space_t
, bool);
2338 extern void get_full_rtx_cost (rtx
, machine_mode
, enum rtx_code
, int,
2339 struct full_rtx_costs
*);
2340 extern poly_uint64
subreg_lsb (const_rtx
);
2341 extern poly_uint64
subreg_lsb_1 (machine_mode
, machine_mode
, poly_uint64
);
2342 extern poly_uint64
subreg_size_offset_from_lsb (poly_uint64
, poly_uint64
,
2344 extern bool read_modify_subreg_p (const_rtx
);
2346 /* Return the subreg byte offset for a subreg whose outer mode is
2347 OUTER_MODE, whose inner mode is INNER_MODE, and where there are
2348 LSB_SHIFT *bits* between the lsb of the outer value and the lsb of
2349 the inner value. This is the inverse of subreg_lsb_1 (which converts
2350 byte offsets to bit shifts). */
2353 subreg_offset_from_lsb (machine_mode outer_mode
,
2354 machine_mode inner_mode
,
2355 poly_uint64 lsb_shift
)
2357 return subreg_size_offset_from_lsb (GET_MODE_SIZE (outer_mode
),
2358 GET_MODE_SIZE (inner_mode
), lsb_shift
);
2361 extern unsigned int subreg_regno_offset (unsigned int, machine_mode
,
2362 poly_uint64
, machine_mode
);
2363 extern bool subreg_offset_representable_p (unsigned int, machine_mode
,
2364 poly_uint64
, machine_mode
);
2365 extern unsigned int subreg_regno (const_rtx
);
2366 extern int simplify_subreg_regno (unsigned int, machine_mode
,
2367 poly_uint64
, machine_mode
);
2368 extern unsigned int subreg_nregs (const_rtx
);
2369 extern unsigned int subreg_nregs_with_regno (unsigned int, const_rtx
);
2370 extern unsigned HOST_WIDE_INT
nonzero_bits (const_rtx
, machine_mode
);
2371 extern unsigned int num_sign_bit_copies (const_rtx
, machine_mode
);
2372 extern bool constant_pool_constant_p (rtx
);
2373 extern bool truncated_to_mode (machine_mode
, const_rtx
);
2374 extern int low_bitmask_len (machine_mode
, unsigned HOST_WIDE_INT
);
2375 extern void split_double (rtx
, rtx
*, rtx
*);
2376 extern rtx
*strip_address_mutations (rtx
*, enum rtx_code
* = 0);
2377 extern void decompose_address (struct address_info
*, rtx
*,
2378 machine_mode
, addr_space_t
, enum rtx_code
);
2379 extern void decompose_lea_address (struct address_info
*, rtx
*);
2380 extern void decompose_mem_address (struct address_info
*, rtx
);
2381 extern void update_address (struct address_info
*);
2382 extern HOST_WIDE_INT
get_index_scale (const struct address_info
*);
2383 extern enum rtx_code
get_index_code (const struct address_info
*);
2385 /* 1 if RTX is a subreg containing a reg that is already known to be
2386 sign- or zero-extended from the mode of the subreg to the mode of
2387 the reg. SUBREG_PROMOTED_UNSIGNED_P gives the signedness of the
2390 When used as a LHS, is means that this extension must be done
2391 when assigning to SUBREG_REG. */
2393 #define SUBREG_PROMOTED_VAR_P(RTX) \
2394 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED", (RTX), SUBREG)->in_struct)
2396 /* Valid for subregs which are SUBREG_PROMOTED_VAR_P(). In that case
2397 this gives the necessary extensions:
2398 0 - signed (SPR_SIGNED)
2399 1 - normal unsigned (SPR_UNSIGNED)
2400 2 - value is both sign and unsign extended for mode
2401 (SPR_SIGNED_AND_UNSIGNED).
2402 -1 - pointer unsigned, which most often can be handled like unsigned
2403 extension, except for generating instructions where we need to
2404 emit special code (ptr_extend insns) on some architectures
2407 const int SRP_POINTER
= -1;
2408 const int SRP_SIGNED
= 0;
2409 const int SRP_UNSIGNED
= 1;
2410 const int SRP_SIGNED_AND_UNSIGNED
= 2;
2412 /* Sets promoted mode for SUBREG_PROMOTED_VAR_P(). */
2413 #define SUBREG_PROMOTED_SET(RTX, VAL) \
2415 rtx const _rtx = RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SET", \
2420 _rtx->volatil = 0; \
2421 _rtx->unchanging = 0; \
2424 _rtx->volatil = 0; \
2425 _rtx->unchanging = 1; \
2427 case SRP_UNSIGNED: \
2428 _rtx->volatil = 1; \
2429 _rtx->unchanging = 0; \
2431 case SRP_SIGNED_AND_UNSIGNED: \
2432 _rtx->volatil = 1; \
2433 _rtx->unchanging = 1; \
2438 /* Gets the value stored in promoted mode for SUBREG_PROMOTED_VAR_P(),
2439 including SRP_SIGNED_AND_UNSIGNED if promoted for
2440 both signed and unsigned. */
2441 #define SUBREG_PROMOTED_GET(RTX) \
2442 (2 * (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_GET", (RTX), SUBREG)->volatil)\
2443 + (RTX)->unchanging - 1)
2445 /* Returns sign of promoted mode for SUBREG_PROMOTED_VAR_P(). */
2446 #define SUBREG_PROMOTED_SIGN(RTX) \
2447 ((RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGN", (RTX), SUBREG)->volatil) ? 1\
2448 : (RTX)->unchanging - 1)
2450 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2452 #define SUBREG_PROMOTED_SIGNED_P(RTX) \
2453 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGNED_P", (RTX), SUBREG)->unchanging)
2455 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2456 for UNSIGNED type. */
2457 #define SUBREG_PROMOTED_UNSIGNED_P(RTX) \
2458 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_UNSIGNED_P", (RTX), SUBREG)->volatil)
2460 /* Checks if RTX of SUBREG_PROMOTED_VAR_P() is promoted for given SIGN. */
2461 #define SUBREG_CHECK_PROMOTED_SIGN(RTX, SIGN) \
2462 ((SIGN) == SRP_POINTER ? SUBREG_PROMOTED_GET (RTX) == SRP_POINTER \
2463 : (SIGN) == SRP_SIGNED ? SUBREG_PROMOTED_SIGNED_P (RTX) \
2464 : SUBREG_PROMOTED_UNSIGNED_P (RTX))
2466 /* True if the REG is the static chain register for some CALL_INSN. */
2467 #define STATIC_CHAIN_REG_P(RTX) \
2468 (RTL_FLAG_CHECK1 ("STATIC_CHAIN_REG_P", (RTX), REG)->jump)
2470 /* True if the subreg was generated by LRA for reload insns. Such
2471 subregs are valid only during LRA. */
2472 #define LRA_SUBREG_P(RTX) \
2473 (RTL_FLAG_CHECK1 ("LRA_SUBREG_P", (RTX), SUBREG)->jump)
2475 /* True if call is instrumented by Pointer Bounds Checker. */
2476 #define CALL_EXPR_WITH_BOUNDS_P(RTX) \
2477 (RTL_FLAG_CHECK1 ("CALL_EXPR_WITH_BOUNDS_P", (RTX), CALL)->jump)
2479 /* Access various components of an ASM_OPERANDS rtx. */
2481 #define ASM_OPERANDS_TEMPLATE(RTX) XCSTR (RTX, 0, ASM_OPERANDS)
2482 #define ASM_OPERANDS_OUTPUT_CONSTRAINT(RTX) XCSTR (RTX, 1, ASM_OPERANDS)
2483 #define ASM_OPERANDS_OUTPUT_IDX(RTX) XCINT (RTX, 2, ASM_OPERANDS)
2484 #define ASM_OPERANDS_INPUT_VEC(RTX) XCVEC (RTX, 3, ASM_OPERANDS)
2485 #define ASM_OPERANDS_INPUT_CONSTRAINT_VEC(RTX) XCVEC (RTX, 4, ASM_OPERANDS)
2486 #define ASM_OPERANDS_INPUT(RTX, N) XCVECEXP (RTX, 3, N, ASM_OPERANDS)
2487 #define ASM_OPERANDS_INPUT_LENGTH(RTX) XCVECLEN (RTX, 3, ASM_OPERANDS)
2488 #define ASM_OPERANDS_INPUT_CONSTRAINT_EXP(RTX, N) \
2489 XCVECEXP (RTX, 4, N, ASM_OPERANDS)
2490 #define ASM_OPERANDS_INPUT_CONSTRAINT(RTX, N) \
2491 XSTR (XCVECEXP (RTX, 4, N, ASM_OPERANDS), 0)
2492 #define ASM_OPERANDS_INPUT_MODE(RTX, N) \
2493 GET_MODE (XCVECEXP (RTX, 4, N, ASM_OPERANDS))
2494 #define ASM_OPERANDS_LABEL_VEC(RTX) XCVEC (RTX, 5, ASM_OPERANDS)
2495 #define ASM_OPERANDS_LABEL_LENGTH(RTX) XCVECLEN (RTX, 5, ASM_OPERANDS)
2496 #define ASM_OPERANDS_LABEL(RTX, N) XCVECEXP (RTX, 5, N, ASM_OPERANDS)
2497 #define ASM_OPERANDS_SOURCE_LOCATION(RTX) XCUINT (RTX, 6, ASM_OPERANDS)
2498 #define ASM_INPUT_SOURCE_LOCATION(RTX) XCUINT (RTX, 1, ASM_INPUT)
2500 /* 1 if RTX is a mem that is statically allocated in read-only memory. */
2501 #define MEM_READONLY_P(RTX) \
2502 (RTL_FLAG_CHECK1 ("MEM_READONLY_P", (RTX), MEM)->unchanging)
2504 /* 1 if RTX is a mem and we should keep the alias set for this mem
2505 unchanged when we access a component. Set to 1, or example, when we
2506 are already in a non-addressable component of an aggregate. */
2507 #define MEM_KEEP_ALIAS_SET_P(RTX) \
2508 (RTL_FLAG_CHECK1 ("MEM_KEEP_ALIAS_SET_P", (RTX), MEM)->jump)
2510 /* 1 if RTX is a mem or asm_operand for a volatile reference. */
2511 #define MEM_VOLATILE_P(RTX) \
2512 (RTL_FLAG_CHECK3 ("MEM_VOLATILE_P", (RTX), MEM, ASM_OPERANDS, \
2513 ASM_INPUT)->volatil)
2515 /* 1 if RTX is a mem that cannot trap. */
2516 #define MEM_NOTRAP_P(RTX) \
2517 (RTL_FLAG_CHECK1 ("MEM_NOTRAP_P", (RTX), MEM)->call)
2519 /* The memory attribute block. We provide access macros for each value
2520 in the block and provide defaults if none specified. */
2521 #define MEM_ATTRS(RTX) X0MEMATTR (RTX, 1)
2523 /* The register attribute block. We provide access macros for each value
2524 in the block and provide defaults if none specified. */
2525 #define REG_ATTRS(RTX) (REG_CHECK (RTX)->attrs)
2527 #ifndef GENERATOR_FILE
2528 /* For a MEM rtx, the alias set. If 0, this MEM is not in any alias
2529 set, and may alias anything. Otherwise, the MEM can only alias
2530 MEMs in a conflicting alias set. This value is set in a
2531 language-dependent manner in the front-end, and should not be
2532 altered in the back-end. These set numbers are tested with
2533 alias_sets_conflict_p. */
2534 #define MEM_ALIAS_SET(RTX) (get_mem_attrs (RTX)->alias)
2536 /* For a MEM rtx, the decl it is known to refer to, if it is known to
2537 refer to part of a DECL. It may also be a COMPONENT_REF. */
2538 #define MEM_EXPR(RTX) (get_mem_attrs (RTX)->expr)
2540 /* For a MEM rtx, true if its MEM_OFFSET is known. */
2541 #define MEM_OFFSET_KNOWN_P(RTX) (get_mem_attrs (RTX)->offset_known_p)
2543 /* For a MEM rtx, the offset from the start of MEM_EXPR. */
2544 #define MEM_OFFSET(RTX) (get_mem_attrs (RTX)->offset)
2546 /* For a MEM rtx, the address space. */
2547 #define MEM_ADDR_SPACE(RTX) (get_mem_attrs (RTX)->addrspace)
2549 /* For a MEM rtx, true if its MEM_SIZE is known. */
2550 #define MEM_SIZE_KNOWN_P(RTX) (get_mem_attrs (RTX)->size_known_p)
2552 /* For a MEM rtx, the size in bytes of the MEM. */
2553 #define MEM_SIZE(RTX) (get_mem_attrs (RTX)->size)
2555 /* For a MEM rtx, the alignment in bits. We can use the alignment of the
2556 mode as a default when STRICT_ALIGNMENT, but not if not. */
2557 #define MEM_ALIGN(RTX) (get_mem_attrs (RTX)->align)
2559 #define MEM_ADDR_SPACE(RTX) ADDR_SPACE_GENERIC
2562 /* For a REG rtx, the decl it is known to refer to, if it is known to
2563 refer to part of a DECL. */
2564 #define REG_EXPR(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->decl)
2566 /* For a REG rtx, the offset from the start of REG_EXPR, if known, as an
2568 #define REG_OFFSET(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->offset)
2570 /* Copy the attributes that apply to memory locations from RHS to LHS. */
2571 #define MEM_COPY_ATTRIBUTES(LHS, RHS) \
2572 (MEM_VOLATILE_P (LHS) = MEM_VOLATILE_P (RHS), \
2573 MEM_NOTRAP_P (LHS) = MEM_NOTRAP_P (RHS), \
2574 MEM_READONLY_P (LHS) = MEM_READONLY_P (RHS), \
2575 MEM_KEEP_ALIAS_SET_P (LHS) = MEM_KEEP_ALIAS_SET_P (RHS), \
2576 MEM_POINTER (LHS) = MEM_POINTER (RHS), \
2577 MEM_ATTRS (LHS) = MEM_ATTRS (RHS))
2579 /* 1 if RTX is a label_ref for a nonlocal label. */
2580 /* Likewise in an expr_list for a REG_LABEL_OPERAND or
2581 REG_LABEL_TARGET note. */
2582 #define LABEL_REF_NONLOCAL_P(RTX) \
2583 (RTL_FLAG_CHECK1 ("LABEL_REF_NONLOCAL_P", (RTX), LABEL_REF)->volatil)
2585 /* 1 if RTX is a code_label that should always be considered to be needed. */
2586 #define LABEL_PRESERVE_P(RTX) \
2587 (RTL_FLAG_CHECK2 ("LABEL_PRESERVE_P", (RTX), CODE_LABEL, NOTE)->in_struct)
2589 /* During sched, 1 if RTX is an insn that must be scheduled together
2590 with the preceding insn. */
2591 #define SCHED_GROUP_P(RTX) \
2592 (RTL_FLAG_CHECK4 ("SCHED_GROUP_P", (RTX), DEBUG_INSN, INSN, \
2593 JUMP_INSN, CALL_INSN)->in_struct)
2595 /* For a SET rtx, SET_DEST is the place that is set
2596 and SET_SRC is the value it is set to. */
2597 #define SET_DEST(RTX) XC2EXP (RTX, 0, SET, CLOBBER)
2598 #define SET_SRC(RTX) XCEXP (RTX, 1, SET)
2599 #define SET_IS_RETURN_P(RTX) \
2600 (RTL_FLAG_CHECK1 ("SET_IS_RETURN_P", (RTX), SET)->jump)
2602 /* For a TRAP_IF rtx, TRAP_CONDITION is an expression. */
2603 #define TRAP_CONDITION(RTX) XCEXP (RTX, 0, TRAP_IF)
2604 #define TRAP_CODE(RTX) XCEXP (RTX, 1, TRAP_IF)
2606 /* For a COND_EXEC rtx, COND_EXEC_TEST is the condition to base
2607 conditionally executing the code on, COND_EXEC_CODE is the code
2608 to execute if the condition is true. */
2609 #define COND_EXEC_TEST(RTX) XCEXP (RTX, 0, COND_EXEC)
2610 #define COND_EXEC_CODE(RTX) XCEXP (RTX, 1, COND_EXEC)
2612 /* 1 if RTX is a symbol_ref that addresses this function's rtl
2614 #define CONSTANT_POOL_ADDRESS_P(RTX) \
2615 (RTL_FLAG_CHECK1 ("CONSTANT_POOL_ADDRESS_P", (RTX), SYMBOL_REF)->unchanging)
2617 /* 1 if RTX is a symbol_ref that addresses a value in the file's
2618 tree constant pool. This information is private to varasm.c. */
2619 #define TREE_CONSTANT_POOL_ADDRESS_P(RTX) \
2620 (RTL_FLAG_CHECK1 ("TREE_CONSTANT_POOL_ADDRESS_P", \
2621 (RTX), SYMBOL_REF)->frame_related)
2623 /* Used if RTX is a symbol_ref, for machine-specific purposes. */
2624 #define SYMBOL_REF_FLAG(RTX) \
2625 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAG", (RTX), SYMBOL_REF)->volatil)
2627 /* 1 if RTX is a symbol_ref that has been the library function in
2628 emit_library_call. */
2629 #define SYMBOL_REF_USED(RTX) \
2630 (RTL_FLAG_CHECK1 ("SYMBOL_REF_USED", (RTX), SYMBOL_REF)->used)
2632 /* 1 if RTX is a symbol_ref for a weak symbol. */
2633 #define SYMBOL_REF_WEAK(RTX) \
2634 (RTL_FLAG_CHECK1 ("SYMBOL_REF_WEAK", (RTX), SYMBOL_REF)->return_val)
2636 /* A pointer attached to the SYMBOL_REF; either SYMBOL_REF_DECL or
2637 SYMBOL_REF_CONSTANT. */
2638 #define SYMBOL_REF_DATA(RTX) X0ANY ((RTX), 1)
2640 /* Set RTX's SYMBOL_REF_DECL to DECL. RTX must not be a constant
2642 #define SET_SYMBOL_REF_DECL(RTX, DECL) \
2643 (gcc_assert (!CONSTANT_POOL_ADDRESS_P (RTX)), X0TREE ((RTX), 1) = (DECL))
2645 /* The tree (decl or constant) associated with the symbol, or null. */
2646 #define SYMBOL_REF_DECL(RTX) \
2647 (CONSTANT_POOL_ADDRESS_P (RTX) ? NULL : X0TREE ((RTX), 1))
2649 /* Set RTX's SYMBOL_REF_CONSTANT to C. RTX must be a constant pool symbol. */
2650 #define SET_SYMBOL_REF_CONSTANT(RTX, C) \
2651 (gcc_assert (CONSTANT_POOL_ADDRESS_P (RTX)), X0CONSTANT ((RTX), 1) = (C))
2653 /* The rtx constant pool entry for a symbol, or null. */
2654 #define SYMBOL_REF_CONSTANT(RTX) \
2655 (CONSTANT_POOL_ADDRESS_P (RTX) ? X0CONSTANT ((RTX), 1) : NULL)
2657 /* A set of flags on a symbol_ref that are, in some respects, redundant with
2658 information derivable from the tree decl associated with this symbol.
2659 Except that we build a *lot* of SYMBOL_REFs that aren't associated with a
2660 decl. In some cases this is a bug. But beyond that, it's nice to cache
2661 this information to avoid recomputing it. Finally, this allows space for
2662 the target to store more than one bit of information, as with
2664 #define SYMBOL_REF_FLAGS(RTX) \
2665 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAGS", (RTX), SYMBOL_REF) \
2666 ->u2.symbol_ref_flags)
2668 /* These flags are common enough to be defined for all targets. They
2669 are computed by the default version of targetm.encode_section_info. */
2671 /* Set if this symbol is a function. */
2672 #define SYMBOL_FLAG_FUNCTION (1 << 0)
2673 #define SYMBOL_REF_FUNCTION_P(RTX) \
2674 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_FUNCTION) != 0)
2675 /* Set if targetm.binds_local_p is true. */
2676 #define SYMBOL_FLAG_LOCAL (1 << 1)
2677 #define SYMBOL_REF_LOCAL_P(RTX) \
2678 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_LOCAL) != 0)
2679 /* Set if targetm.in_small_data_p is true. */
2680 #define SYMBOL_FLAG_SMALL (1 << 2)
2681 #define SYMBOL_REF_SMALL_P(RTX) \
2682 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_SMALL) != 0)
2683 /* The three-bit field at [5:3] is true for TLS variables; use
2684 SYMBOL_REF_TLS_MODEL to extract the field as an enum tls_model. */
2685 #define SYMBOL_FLAG_TLS_SHIFT 3
2686 #define SYMBOL_REF_TLS_MODEL(RTX) \
2687 ((enum tls_model) ((SYMBOL_REF_FLAGS (RTX) >> SYMBOL_FLAG_TLS_SHIFT) & 7))
2688 /* Set if this symbol is not defined in this translation unit. */
2689 #define SYMBOL_FLAG_EXTERNAL (1 << 6)
2690 #define SYMBOL_REF_EXTERNAL_P(RTX) \
2691 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_EXTERNAL) != 0)
2692 /* Set if this symbol has a block_symbol structure associated with it. */
2693 #define SYMBOL_FLAG_HAS_BLOCK_INFO (1 << 7)
2694 #define SYMBOL_REF_HAS_BLOCK_INFO_P(RTX) \
2695 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_HAS_BLOCK_INFO) != 0)
2696 /* Set if this symbol is a section anchor. SYMBOL_REF_ANCHOR_P implies
2697 SYMBOL_REF_HAS_BLOCK_INFO_P. */
2698 #define SYMBOL_FLAG_ANCHOR (1 << 8)
2699 #define SYMBOL_REF_ANCHOR_P(RTX) \
2700 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_ANCHOR) != 0)
2702 /* Subsequent bits are available for the target to use. */
2703 #define SYMBOL_FLAG_MACH_DEP_SHIFT 9
2704 #define SYMBOL_FLAG_MACH_DEP (1 << SYMBOL_FLAG_MACH_DEP_SHIFT)
2706 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the object_block
2707 structure to which the symbol belongs, or NULL if it has not been
2708 assigned a block. */
2709 #define SYMBOL_REF_BLOCK(RTX) (BLOCK_SYMBOL_CHECK (RTX)->block)
2711 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the offset of RTX from
2712 the first object in SYMBOL_REF_BLOCK (RTX). The value is negative if
2713 RTX has not yet been assigned to a block, or it has not been given an
2714 offset within that block. */
2715 #define SYMBOL_REF_BLOCK_OFFSET(RTX) (BLOCK_SYMBOL_CHECK (RTX)->offset)
2717 /* True if RTX is flagged to be a scheduling barrier. */
2718 #define PREFETCH_SCHEDULE_BARRIER_P(RTX) \
2719 (RTL_FLAG_CHECK1 ("PREFETCH_SCHEDULE_BARRIER_P", (RTX), PREFETCH)->volatil)
2721 /* Indicate whether the machine has any sort of auto increment addressing.
2722 If not, we can avoid checking for REG_INC notes. */
2724 #if (defined (HAVE_PRE_INCREMENT) || defined (HAVE_PRE_DECREMENT) \
2725 || defined (HAVE_POST_INCREMENT) || defined (HAVE_POST_DECREMENT) \
2726 || defined (HAVE_PRE_MODIFY_DISP) || defined (HAVE_POST_MODIFY_DISP) \
2727 || defined (HAVE_PRE_MODIFY_REG) || defined (HAVE_POST_MODIFY_REG))
2728 #define AUTO_INC_DEC 1
2730 #define AUTO_INC_DEC 0
2733 /* Define a macro to look for REG_INC notes,
2734 but save time on machines where they never exist. */
2737 #define FIND_REG_INC_NOTE(INSN, REG) \
2738 ((REG) != NULL_RTX && REG_P ((REG)) \
2739 ? find_regno_note ((INSN), REG_INC, REGNO (REG)) \
2740 : find_reg_note ((INSN), REG_INC, (REG)))
2742 #define FIND_REG_INC_NOTE(INSN, REG) 0
2745 #ifndef HAVE_PRE_INCREMENT
2746 #define HAVE_PRE_INCREMENT 0
2749 #ifndef HAVE_PRE_DECREMENT
2750 #define HAVE_PRE_DECREMENT 0
2753 #ifndef HAVE_POST_INCREMENT
2754 #define HAVE_POST_INCREMENT 0
2757 #ifndef HAVE_POST_DECREMENT
2758 #define HAVE_POST_DECREMENT 0
2761 #ifndef HAVE_POST_MODIFY_DISP
2762 #define HAVE_POST_MODIFY_DISP 0
2765 #ifndef HAVE_POST_MODIFY_REG
2766 #define HAVE_POST_MODIFY_REG 0
2769 #ifndef HAVE_PRE_MODIFY_DISP
2770 #define HAVE_PRE_MODIFY_DISP 0
2773 #ifndef HAVE_PRE_MODIFY_REG
2774 #define HAVE_PRE_MODIFY_REG 0
2778 /* Some architectures do not have complete pre/post increment/decrement
2779 instruction sets, or only move some modes efficiently. These macros
2780 allow us to tune autoincrement generation. */
2782 #ifndef USE_LOAD_POST_INCREMENT
2783 #define USE_LOAD_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2786 #ifndef USE_LOAD_POST_DECREMENT
2787 #define USE_LOAD_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2790 #ifndef USE_LOAD_PRE_INCREMENT
2791 #define USE_LOAD_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2794 #ifndef USE_LOAD_PRE_DECREMENT
2795 #define USE_LOAD_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2798 #ifndef USE_STORE_POST_INCREMENT
2799 #define USE_STORE_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2802 #ifndef USE_STORE_POST_DECREMENT
2803 #define USE_STORE_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2806 #ifndef USE_STORE_PRE_INCREMENT
2807 #define USE_STORE_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2810 #ifndef USE_STORE_PRE_DECREMENT
2811 #define USE_STORE_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2814 /* Nonzero when we are generating CONCATs. */
2815 extern int generating_concat_p
;
2817 /* Nonzero when we are expanding trees to RTL. */
2818 extern int currently_expanding_to_rtl
;
2820 /* Generally useful functions. */
2822 #ifndef GENERATOR_FILE
2823 /* Return the cost of SET X. SPEED_P is true if optimizing for speed
2824 rather than size. */
2827 set_rtx_cost (rtx x
, bool speed_p
)
2829 return rtx_cost (x
, VOIDmode
, INSN
, 4, speed_p
);
2832 /* Like set_rtx_cost, but return both the speed and size costs in C. */
2835 get_full_set_rtx_cost (rtx x
, struct full_rtx_costs
*c
)
2837 get_full_rtx_cost (x
, VOIDmode
, INSN
, 4, c
);
2840 /* Return the cost of moving X into a register, relative to the cost
2841 of a register move. SPEED_P is true if optimizing for speed rather
2845 set_src_cost (rtx x
, machine_mode mode
, bool speed_p
)
2847 return rtx_cost (x
, mode
, SET
, 1, speed_p
);
2850 /* Like set_src_cost, but return both the speed and size costs in C. */
2853 get_full_set_src_cost (rtx x
, machine_mode mode
, struct full_rtx_costs
*c
)
2855 get_full_rtx_cost (x
, mode
, SET
, 1, c
);
2859 /* A convenience macro to validate the arguments of a zero_extract
2860 expression. It determines whether SIZE lies inclusively within
2861 [1, RANGE], POS lies inclusively within between [0, RANGE - 1]
2862 and the sum lies inclusively within [1, RANGE]. RANGE must be
2863 >= 1, but SIZE and POS may be negative. */
2864 #define EXTRACT_ARGS_IN_RANGE(SIZE, POS, RANGE) \
2865 (IN_RANGE ((POS), 0, (unsigned HOST_WIDE_INT) (RANGE) - 1) \
2866 && IN_RANGE ((SIZE), 1, (unsigned HOST_WIDE_INT) (RANGE) \
2867 - (unsigned HOST_WIDE_INT)(POS)))
2870 extern HOST_WIDE_INT
trunc_int_for_mode (HOST_WIDE_INT
, machine_mode
);
2871 extern poly_int64
trunc_int_for_mode (poly_int64
, machine_mode
);
2872 extern rtx
plus_constant (machine_mode
, rtx
, poly_int64
, bool = false);
2873 extern HOST_WIDE_INT
get_stack_check_protect (void);
2876 extern rtx
rtx_alloc (RTX_CODE CXX_MEM_STAT_INFO
);
2877 extern rtx
rtx_alloc_stat_v (RTX_CODE MEM_STAT_DECL
, int);
2878 #define rtx_alloc_v(c, SZ) rtx_alloc_stat_v (c MEM_STAT_INFO, SZ)
2879 #define const_wide_int_alloc(NWORDS) \
2880 rtx_alloc_v (CONST_WIDE_INT, \
2881 (sizeof (struct hwivec_def) \
2882 + ((NWORDS)-1) * sizeof (HOST_WIDE_INT))) \
2884 extern rtvec rtvec_alloc (int);
2885 extern rtvec
shallow_copy_rtvec (rtvec
);
2886 extern bool shared_const_p (const_rtx
);
2887 extern rtx
copy_rtx (rtx
);
2888 extern enum rtx_code
classify_insn (rtx
);
2889 extern void dump_rtx_statistics (void);
2892 extern rtx
copy_rtx_if_shared (rtx
);
2895 extern unsigned int rtx_size (const_rtx
);
2896 extern rtx
shallow_copy_rtx (const_rtx CXX_MEM_STAT_INFO
);
2897 extern int rtx_equal_p (const_rtx
, const_rtx
);
2898 extern bool rtvec_all_equal_p (const_rtvec
);
2900 /* Return true if X is some form of vector constant. */
2903 const_vec_p (const_rtx x
)
2905 return VECTOR_MODE_P (GET_MODE (x
)) && CONSTANT_P (x
);
2908 /* Return true if X is a vector constant with a duplicated element value. */
2911 const_vec_duplicate_p (const_rtx x
)
2913 return ((GET_CODE (x
) == CONST_VECTOR
&& rtvec_all_equal_p (XVEC (x
, 0)))
2914 || (GET_CODE (x
) == CONST
2915 && GET_CODE (XEXP (x
, 0)) == VEC_DUPLICATE
));
2918 /* Return true if X is a vector constant with a duplicated element value.
2919 Store the duplicated element in *ELT if so. */
2921 template <typename T
>
2923 const_vec_duplicate_p (T x
, T
*elt
)
2925 if (GET_CODE (x
) == CONST_VECTOR
&& rtvec_all_equal_p (XVEC (x
, 0)))
2927 *elt
= CONST_VECTOR_ELT (x
, 0);
2930 if (GET_CODE (x
) == CONST
&& GET_CODE (XEXP (x
, 0)) == VEC_DUPLICATE
)
2932 *elt
= XEXP (XEXP (x
, 0), 0);
2938 /* Return true if X is a vector with a duplicated element value, either
2939 constant or nonconstant. Store the duplicated element in *ELT if so. */
2941 template <typename T
>
2943 vec_duplicate_p (T x
, T
*elt
)
2945 if (GET_CODE (x
) == VEC_DUPLICATE
)
2950 return const_vec_duplicate_p (x
, elt
);
2953 /* If X is a vector constant with a duplicated element value, return that
2954 element value, otherwise return X. */
2956 template <typename T
>
2958 unwrap_const_vec_duplicate (T x
)
2960 if (GET_CODE (x
) == CONST_VECTOR
&& rtvec_all_equal_p (XVEC (x
, 0)))
2961 return CONST_VECTOR_ELT (x
, 0);
2962 if (GET_CODE (x
) == CONST
&& GET_CODE (XEXP (x
, 0)) == VEC_DUPLICATE
)
2963 return XEXP (XEXP (x
, 0), 0);
2967 /* In emit-rtl.c. */
2968 extern bool const_vec_series_p_1 (const_rtx
, rtx
*, rtx
*);
2970 /* Return true if X is a constant vector that contains a linear series
2973 { B, B + S, B + 2 * S, B + 3 * S, ... }
2975 for a nonzero S. Store B and S in *BASE_OUT and *STEP_OUT on sucess. */
2978 const_vec_series_p (const_rtx x
, rtx
*base_out
, rtx
*step_out
)
2980 if (GET_CODE (x
) == CONST_VECTOR
2981 && GET_MODE_CLASS (GET_MODE (x
)) == MODE_VECTOR_INT
)
2982 return const_vec_series_p_1 (x
, base_out
, step_out
);
2983 if (GET_CODE (x
) == CONST
&& GET_CODE (XEXP (x
, 0)) == VEC_SERIES
)
2985 *base_out
= XEXP (XEXP (x
, 0), 0);
2986 *step_out
= XEXP (XEXP (x
, 0), 1);
2992 /* Return true if X is a vector that contains a linear series of the
2995 { B, B + S, B + 2 * S, B + 3 * S, ... }
2997 where B and S are constant or nonconstant. Store B and S in
2998 *BASE_OUT and *STEP_OUT on sucess. */
3001 vec_series_p (const_rtx x
, rtx
*base_out
, rtx
*step_out
)
3003 if (GET_CODE (x
) == VEC_SERIES
)
3005 *base_out
= XEXP (x
, 0);
3006 *step_out
= XEXP (x
, 1);
3009 return const_vec_series_p (x
, base_out
, step_out
);
3012 /* Return the unpromoted (outer) mode of SUBREG_PROMOTED_VAR_P subreg X. */
3014 inline scalar_int_mode
3015 subreg_unpromoted_mode (rtx x
)
3017 gcc_checking_assert (SUBREG_PROMOTED_VAR_P (x
));
3018 return as_a
<scalar_int_mode
> (GET_MODE (x
));
3021 /* Return the promoted (inner) mode of SUBREG_PROMOTED_VAR_P subreg X. */
3023 inline scalar_int_mode
3024 subreg_promoted_mode (rtx x
)
3026 gcc_checking_assert (SUBREG_PROMOTED_VAR_P (x
));
3027 return as_a
<scalar_int_mode
> (GET_MODE (SUBREG_REG (x
)));
3031 extern rtvec
gen_rtvec_v (int, rtx
*);
3032 extern rtvec
gen_rtvec_v (int, rtx_insn
**);
3033 extern rtx
gen_reg_rtx (machine_mode
);
3034 extern rtx
gen_rtx_REG_offset (rtx
, machine_mode
, unsigned int, poly_int64
);
3035 extern rtx
gen_reg_rtx_offset (rtx
, machine_mode
, int);
3036 extern rtx
gen_reg_rtx_and_attrs (rtx
);
3037 extern rtx_code_label
*gen_label_rtx (void);
3038 extern rtx
gen_lowpart_common (machine_mode
, rtx
);
3041 extern rtx
gen_lowpart_if_possible (machine_mode
, rtx
);
3044 extern rtx
gen_highpart (machine_mode
, rtx
);
3045 extern rtx
gen_highpart_mode (machine_mode
, machine_mode
, rtx
);
3046 extern rtx
operand_subword (rtx
, poly_uint64
, int, machine_mode
);
3049 extern rtx
operand_subword_force (rtx
, poly_uint64
, machine_mode
);
3050 extern int subreg_lowpart_p (const_rtx
);
3051 extern poly_uint64
subreg_size_lowpart_offset (poly_uint64
, poly_uint64
);
3053 /* Return true if a subreg of mode OUTERMODE would only access part of
3054 an inner register with mode INNERMODE. The other bits of the inner
3055 register would then be "don't care" on read. The behavior for writes
3056 depends on REGMODE_NATURAL_SIZE; bits in the same REGMODE_NATURAL_SIZE-d
3057 chunk would be clobbered but other bits would be preserved. */
3060 partial_subreg_p (machine_mode outermode
, machine_mode innermode
)
3062 return GET_MODE_PRECISION (outermode
) < GET_MODE_PRECISION (innermode
);
3065 /* Likewise return true if X is a subreg that is smaller than the inner
3066 register. Use read_modify_subreg_p to test whether writing to such
3067 a subreg preserves any part of the inner register. */
3070 partial_subreg_p (const_rtx x
)
3072 if (GET_CODE (x
) != SUBREG
)
3074 return partial_subreg_p (GET_MODE (x
), GET_MODE (SUBREG_REG (x
)));
3077 /* Return true if a subreg with the given outer and inner modes is
3081 paradoxical_subreg_p (machine_mode outermode
, machine_mode innermode
)
3083 return GET_MODE_PRECISION (outermode
) > GET_MODE_PRECISION (innermode
);
3086 /* Return true if X is a paradoxical subreg, false otherwise. */
3089 paradoxical_subreg_p (const_rtx x
)
3091 if (GET_CODE (x
) != SUBREG
)
3093 return paradoxical_subreg_p (GET_MODE (x
), GET_MODE (SUBREG_REG (x
)));
3096 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
3099 subreg_lowpart_offset (machine_mode outermode
, machine_mode innermode
)
3101 return subreg_size_lowpart_offset (GET_MODE_SIZE (outermode
),
3102 GET_MODE_SIZE (innermode
));
3105 /* Given that a subreg has outer mode OUTERMODE and inner mode INNERMODE,
3106 return the smaller of the two modes if they are different sizes,
3107 otherwise return the outer mode. */
3110 narrower_subreg_mode (machine_mode outermode
, machine_mode innermode
)
3112 return paradoxical_subreg_p (outermode
, innermode
) ? innermode
: outermode
;
3115 /* Given that a subreg has outer mode OUTERMODE and inner mode INNERMODE,
3116 return the mode that is big enough to hold both the outer and inner
3117 values. Prefer the outer mode in the event of a tie. */
3120 wider_subreg_mode (machine_mode outermode
, machine_mode innermode
)
3122 return partial_subreg_p (outermode
, innermode
) ? innermode
: outermode
;
3125 /* Likewise for subreg X. */
3128 wider_subreg_mode (const_rtx x
)
3130 return wider_subreg_mode (GET_MODE (x
), GET_MODE (SUBREG_REG (x
)));
3133 extern poly_uint64
subreg_size_highpart_offset (poly_uint64
, poly_uint64
);
3135 /* Return the SUBREG_BYTE for an OUTERMODE highpart of an INNERMODE value. */
3138 subreg_highpart_offset (machine_mode outermode
, machine_mode innermode
)
3140 return subreg_size_highpart_offset (GET_MODE_SIZE (outermode
),
3141 GET_MODE_SIZE (innermode
));
3144 extern poly_int64
byte_lowpart_offset (machine_mode
, machine_mode
);
3145 extern poly_int64
subreg_memory_offset (machine_mode
, machine_mode
,
3147 extern poly_int64
subreg_memory_offset (const_rtx
);
3148 extern rtx
make_safe_from (rtx
, rtx
);
3149 extern rtx
convert_memory_address_addr_space_1 (scalar_int_mode
, rtx
,
3150 addr_space_t
, bool, bool);
3151 extern rtx
convert_memory_address_addr_space (scalar_int_mode
, rtx
,
3153 #define convert_memory_address(to_mode,x) \
3154 convert_memory_address_addr_space ((to_mode), (x), ADDR_SPACE_GENERIC)
3155 extern const char *get_insn_name (int);
3156 extern rtx_insn
*get_last_insn_anywhere (void);
3157 extern rtx_insn
*get_first_nonnote_insn (void);
3158 extern rtx_insn
*get_last_nonnote_insn (void);
3159 extern void start_sequence (void);
3160 extern void push_to_sequence (rtx_insn
*);
3161 extern void push_to_sequence2 (rtx_insn
*, rtx_insn
*);
3162 extern void end_sequence (void);
3163 #if TARGET_SUPPORTS_WIDE_INT == 0
3164 extern double_int
rtx_to_double_int (const_rtx
);
3166 extern void cwi_output_hex (FILE *, const_rtx
);
3167 #if TARGET_SUPPORTS_WIDE_INT == 0
3168 extern rtx
immed_double_const (HOST_WIDE_INT
, HOST_WIDE_INT
,
3171 extern rtx
immed_wide_int_const (const poly_wide_int_ref
&, machine_mode
);
3174 extern rtx
force_const_mem (machine_mode
, rtx
);
3179 extern rtx
get_pool_constant (const_rtx
);
3180 extern rtx
get_pool_constant_mark (rtx
, bool *);
3181 extern fixed_size_mode
get_pool_mode (const_rtx
);
3182 extern rtx
simplify_subtraction (rtx
);
3183 extern void decide_function_section (tree
);
3186 extern rtx_insn
*emit_insn_before (rtx
, rtx
);
3187 extern rtx_insn
*emit_insn_before_noloc (rtx
, rtx_insn
*, basic_block
);
3188 extern rtx_insn
*emit_insn_before_setloc (rtx
, rtx_insn
*, int);
3189 extern rtx_jump_insn
*emit_jump_insn_before (rtx
, rtx
);
3190 extern rtx_jump_insn
*emit_jump_insn_before_noloc (rtx
, rtx_insn
*);
3191 extern rtx_jump_insn
*emit_jump_insn_before_setloc (rtx
, rtx_insn
*, int);
3192 extern rtx_insn
*emit_call_insn_before (rtx
, rtx_insn
*);
3193 extern rtx_insn
*emit_call_insn_before_noloc (rtx
, rtx_insn
*);
3194 extern rtx_insn
*emit_call_insn_before_setloc (rtx
, rtx_insn
*, int);
3195 extern rtx_insn
*emit_debug_insn_before (rtx
, rtx_insn
*);
3196 extern rtx_insn
*emit_debug_insn_before_noloc (rtx
, rtx
);
3197 extern rtx_insn
*emit_debug_insn_before_setloc (rtx
, rtx
, int);
3198 extern rtx_barrier
*emit_barrier_before (rtx
);
3199 extern rtx_code_label
*emit_label_before (rtx
, rtx_insn
*);
3200 extern rtx_note
*emit_note_before (enum insn_note
, rtx_insn
*);
3201 extern rtx_insn
*emit_insn_after (rtx
, rtx
);
3202 extern rtx_insn
*emit_insn_after_noloc (rtx
, rtx
, basic_block
);
3203 extern rtx_insn
*emit_insn_after_setloc (rtx
, rtx
, int);
3204 extern rtx_jump_insn
*emit_jump_insn_after (rtx
, rtx
);
3205 extern rtx_jump_insn
*emit_jump_insn_after_noloc (rtx
, rtx
);
3206 extern rtx_jump_insn
*emit_jump_insn_after_setloc (rtx
, rtx
, int);
3207 extern rtx_insn
*emit_call_insn_after (rtx
, rtx
);
3208 extern rtx_insn
*emit_call_insn_after_noloc (rtx
, rtx
);
3209 extern rtx_insn
*emit_call_insn_after_setloc (rtx
, rtx
, int);
3210 extern rtx_insn
*emit_debug_insn_after (rtx
, rtx
);
3211 extern rtx_insn
*emit_debug_insn_after_noloc (rtx
, rtx
);
3212 extern rtx_insn
*emit_debug_insn_after_setloc (rtx
, rtx
, int);
3213 extern rtx_barrier
*emit_barrier_after (rtx
);
3214 extern rtx_insn
*emit_label_after (rtx
, rtx_insn
*);
3215 extern rtx_note
*emit_note_after (enum insn_note
, rtx_insn
*);
3216 extern rtx_insn
*emit_insn (rtx
);
3217 extern rtx_insn
*emit_debug_insn (rtx
);
3218 extern rtx_insn
*emit_jump_insn (rtx
);
3219 extern rtx_insn
*emit_call_insn (rtx
);
3220 extern rtx_code_label
*emit_label (rtx
);
3221 extern rtx_jump_table_data
*emit_jump_table_data (rtx
);
3222 extern rtx_barrier
*emit_barrier (void);
3223 extern rtx_note
*emit_note (enum insn_note
);
3224 extern rtx_note
*emit_note_copy (rtx_note
*);
3225 extern rtx_insn
*gen_clobber (rtx
);
3226 extern rtx_insn
*emit_clobber (rtx
);
3227 extern rtx_insn
*gen_use (rtx
);
3228 extern rtx_insn
*emit_use (rtx
);
3229 extern rtx_insn
*make_insn_raw (rtx
);
3230 extern void add_function_usage_to (rtx
, rtx
);
3231 extern rtx_call_insn
*last_call_insn (void);
3232 extern rtx_insn
*previous_insn (rtx_insn
*);
3233 extern rtx_insn
*next_insn (rtx_insn
*);
3234 extern rtx_insn
*prev_nonnote_insn (rtx_insn
*);
3235 extern rtx_insn
*next_nonnote_insn (rtx_insn
*);
3236 extern rtx_insn
*prev_nondebug_insn (rtx_insn
*);
3237 extern rtx_insn
*next_nondebug_insn (rtx_insn
*);
3238 extern rtx_insn
*prev_nonnote_nondebug_insn (rtx_insn
*);
3239 extern rtx_insn
*prev_nonnote_nondebug_insn_bb (rtx_insn
*);
3240 extern rtx_insn
*next_nonnote_nondebug_insn (rtx_insn
*);
3241 extern rtx_insn
*next_nonnote_nondebug_insn_bb (rtx_insn
*);
3242 extern rtx_insn
*prev_real_insn (rtx_insn
*);
3243 extern rtx_insn
*next_real_insn (rtx
);
3244 extern rtx_insn
*prev_active_insn (rtx_insn
*);
3245 extern rtx_insn
*next_active_insn (rtx_insn
*);
3246 extern int active_insn_p (const rtx_insn
*);
3247 extern rtx_insn
*next_cc0_user (rtx_insn
*);
3248 extern rtx_insn
*prev_cc0_setter (rtx_insn
*);
3251 extern int insn_line (const rtx_insn
*);
3252 extern const char * insn_file (const rtx_insn
*);
3253 extern tree
insn_scope (const rtx_insn
*);
3254 extern expanded_location
insn_location (const rtx_insn
*);
3255 extern location_t prologue_location
, epilogue_location
;
3258 extern enum rtx_code
reverse_condition (enum rtx_code
);
3259 extern enum rtx_code
reverse_condition_maybe_unordered (enum rtx_code
);
3260 extern enum rtx_code
swap_condition (enum rtx_code
);
3261 extern enum rtx_code
unsigned_condition (enum rtx_code
);
3262 extern enum rtx_code
signed_condition (enum rtx_code
);
3263 extern void mark_jump_label (rtx
, rtx_insn
*, int);
3266 extern rtx_insn
*delete_related_insns (rtx
);
3269 extern rtx
*find_constant_term_loc (rtx
*);
3272 extern rtx_insn
*try_split (rtx
, rtx_insn
*, int);
3274 /* In insn-recog.c (generated by genrecog). */
3275 extern rtx_insn
*split_insns (rtx
, rtx_insn
*);
3277 /* In simplify-rtx.c */
3278 extern rtx
simplify_const_unary_operation (enum rtx_code
, machine_mode
,
3280 extern rtx
simplify_unary_operation (enum rtx_code
, machine_mode
, rtx
,
3282 extern rtx
simplify_const_binary_operation (enum rtx_code
, machine_mode
,
3284 extern rtx
simplify_binary_operation (enum rtx_code
, machine_mode
, rtx
,
3286 extern rtx
simplify_ternary_operation (enum rtx_code
, machine_mode
,
3287 machine_mode
, rtx
, rtx
, rtx
);
3288 extern rtx
simplify_const_relational_operation (enum rtx_code
,
3289 machine_mode
, rtx
, rtx
);
3290 extern rtx
simplify_relational_operation (enum rtx_code
, machine_mode
,
3291 machine_mode
, rtx
, rtx
);
3292 extern rtx
simplify_gen_binary (enum rtx_code
, machine_mode
, rtx
, rtx
);
3293 extern rtx
simplify_gen_unary (enum rtx_code
, machine_mode
, rtx
,
3295 extern rtx
simplify_gen_ternary (enum rtx_code
, machine_mode
,
3296 machine_mode
, rtx
, rtx
, rtx
);
3297 extern rtx
simplify_gen_relational (enum rtx_code
, machine_mode
,
3298 machine_mode
, rtx
, rtx
);
3299 extern rtx
simplify_subreg (machine_mode
, rtx
, machine_mode
, poly_uint64
);
3300 extern rtx
simplify_gen_subreg (machine_mode
, rtx
, machine_mode
, poly_uint64
);
3301 extern rtx
lowpart_subreg (machine_mode
, rtx
, machine_mode
);
3302 extern rtx
simplify_replace_fn_rtx (rtx
, const_rtx
,
3303 rtx (*fn
) (rtx
, const_rtx
, void *), void *);
3304 extern rtx
simplify_replace_rtx (rtx
, const_rtx
, rtx
);
3305 extern rtx
simplify_rtx (const_rtx
);
3306 extern rtx
avoid_constant_pool_reference (rtx
);
3307 extern rtx
delegitimize_mem_from_attrs (rtx
);
3308 extern bool mode_signbit_p (machine_mode
, const_rtx
);
3309 extern bool val_signbit_p (machine_mode
, unsigned HOST_WIDE_INT
);
3310 extern bool val_signbit_known_set_p (machine_mode
,
3311 unsigned HOST_WIDE_INT
);
3312 extern bool val_signbit_known_clear_p (machine_mode
,
3313 unsigned HOST_WIDE_INT
);
3316 extern machine_mode
choose_hard_reg_mode (unsigned int, unsigned int,
3318 extern const HARD_REG_SET
&simplifiable_subregs (const subreg_shape
&);
3321 extern rtx
set_for_reg_notes (rtx
);
3322 extern rtx
set_unique_reg_note (rtx
, enum reg_note
, rtx
);
3323 extern rtx
set_dst_reg_note (rtx
, enum reg_note
, rtx
, rtx
);
3324 extern void set_insn_deleted (rtx
);
3326 /* Functions in rtlanal.c */
3328 extern rtx
single_set_2 (const rtx_insn
*, const_rtx
);
3329 extern bool contains_symbol_ref_p (const_rtx
);
3330 extern bool contains_symbolic_reference_p (const_rtx
);
3332 /* Handle the cheap and common cases inline for performance. */
3334 inline rtx
single_set (const rtx_insn
*insn
)
3339 if (GET_CODE (PATTERN (insn
)) == SET
)
3340 return PATTERN (insn
);
3342 /* Defer to the more expensive case. */
3343 return single_set_2 (insn
, PATTERN (insn
));
3346 extern scalar_int_mode
get_address_mode (rtx mem
);
3347 extern int rtx_addr_can_trap_p (const_rtx
);
3348 extern bool nonzero_address_p (const_rtx
);
3349 extern int rtx_unstable_p (const_rtx
);
3350 extern bool rtx_varies_p (const_rtx
, bool);
3351 extern bool rtx_addr_varies_p (const_rtx
, bool);
3352 extern rtx
get_call_rtx_from (rtx
);
3353 extern HOST_WIDE_INT
get_integer_term (const_rtx
);
3354 extern rtx
get_related_value (const_rtx
);
3355 extern bool offset_within_block_p (const_rtx
, HOST_WIDE_INT
);
3356 extern void split_const (rtx
, rtx
*, rtx
*);
3357 extern rtx
strip_offset (rtx
, poly_int64_pod
*);
3358 extern poly_int64
get_args_size (const_rtx
);
3359 extern bool unsigned_reg_p (rtx
);
3360 extern int reg_mentioned_p (const_rtx
, const_rtx
);
3361 extern int count_occurrences (const_rtx
, const_rtx
, int);
3362 extern int reg_referenced_p (const_rtx
, const_rtx
);
3363 extern int reg_used_between_p (const_rtx
, const rtx_insn
*, const rtx_insn
*);
3364 extern int reg_set_between_p (const_rtx
, const rtx_insn
*, const rtx_insn
*);
3365 extern int commutative_operand_precedence (rtx
);
3366 extern bool swap_commutative_operands_p (rtx
, rtx
);
3367 extern int modified_between_p (const_rtx
, const rtx_insn
*, const rtx_insn
*);
3368 extern int no_labels_between_p (const rtx_insn
*, const rtx_insn
*);
3369 extern int modified_in_p (const_rtx
, const_rtx
);
3370 extern int reg_set_p (const_rtx
, const_rtx
);
3371 extern int multiple_sets (const_rtx
);
3372 extern int set_noop_p (const_rtx
);
3373 extern int noop_move_p (const rtx_insn
*);
3374 extern bool refers_to_regno_p (unsigned int, unsigned int, const_rtx
, rtx
*);
3375 extern int reg_overlap_mentioned_p (const_rtx
, const_rtx
);
3376 extern const_rtx
set_of (const_rtx
, const_rtx
);
3377 extern void record_hard_reg_sets (rtx
, const_rtx
, void *);
3378 extern void record_hard_reg_uses (rtx
*, void *);
3379 extern void find_all_hard_regs (const_rtx
, HARD_REG_SET
*);
3380 extern void find_all_hard_reg_sets (const rtx_insn
*, HARD_REG_SET
*, bool);
3381 extern void note_stores (const_rtx
, void (*) (rtx
, const_rtx
, void *), void *);
3382 extern void note_uses (rtx
*, void (*) (rtx
*, void *), void *);
3383 extern int dead_or_set_p (const rtx_insn
*, const_rtx
);
3384 extern int dead_or_set_regno_p (const rtx_insn
*, unsigned int);
3385 extern rtx
find_reg_note (const_rtx
, enum reg_note
, const_rtx
);
3386 extern rtx
find_regno_note (const_rtx
, enum reg_note
, unsigned int);
3387 extern rtx
find_reg_equal_equiv_note (const_rtx
);
3388 extern rtx
find_constant_src (const rtx_insn
*);
3389 extern int find_reg_fusage (const_rtx
, enum rtx_code
, const_rtx
);
3390 extern int find_regno_fusage (const_rtx
, enum rtx_code
, unsigned int);
3391 extern rtx
alloc_reg_note (enum reg_note
, rtx
, rtx
);
3392 extern void add_reg_note (rtx
, enum reg_note
, rtx
);
3393 extern void add_int_reg_note (rtx_insn
*, enum reg_note
, int);
3394 extern void add_args_size_note (rtx_insn
*, poly_int64
);
3395 extern void add_shallow_copy_of_reg_note (rtx_insn
*, rtx
);
3396 extern rtx
duplicate_reg_note (rtx
);
3397 extern void remove_note (rtx_insn
*, const_rtx
);
3398 extern bool remove_reg_equal_equiv_notes (rtx_insn
*);
3399 extern void remove_reg_equal_equiv_notes_for_regno (unsigned int);
3400 extern int side_effects_p (const_rtx
);
3401 extern int volatile_refs_p (const_rtx
);
3402 extern int volatile_insn_p (const_rtx
);
3403 extern int may_trap_p_1 (const_rtx
, unsigned);
3404 extern int may_trap_p (const_rtx
);
3405 extern int may_trap_or_fault_p (const_rtx
);
3406 extern bool can_throw_internal (const_rtx
);
3407 extern bool can_throw_external (const_rtx
);
3408 extern bool insn_could_throw_p (const_rtx
);
3409 extern bool insn_nothrow_p (const_rtx
);
3410 extern bool can_nonlocal_goto (const rtx_insn
*);
3411 extern void copy_reg_eh_region_note_forward (rtx
, rtx_insn
*, rtx
);
3412 extern void copy_reg_eh_region_note_backward (rtx
, rtx_insn
*, rtx
);
3413 extern int inequality_comparisons_p (const_rtx
);
3414 extern rtx
replace_rtx (rtx
, rtx
, rtx
, bool = false);
3415 extern void replace_label (rtx
*, rtx
, rtx
, bool);
3416 extern void replace_label_in_insn (rtx_insn
*, rtx_insn
*, rtx_insn
*, bool);
3417 extern bool rtx_referenced_p (const_rtx
, const_rtx
);
3418 extern bool tablejump_p (const rtx_insn
*, rtx_insn
**, rtx_jump_table_data
**);
3419 extern int computed_jump_p (const rtx_insn
*);
3420 extern bool tls_referenced_p (const_rtx
);
3421 extern bool contains_mem_rtx_p (rtx x
);
3423 /* Overload for refers_to_regno_p for checking a single register. */
3425 refers_to_regno_p (unsigned int regnum
, const_rtx x
, rtx
* loc
= NULL
)
3427 return refers_to_regno_p (regnum
, regnum
+ 1, x
, loc
);
3430 /* Callback for for_each_inc_dec, to process the autoinc operation OP
3431 within MEM that sets DEST to SRC + SRCOFF, or SRC if SRCOFF is
3432 NULL. The callback is passed the same opaque ARG passed to
3433 for_each_inc_dec. Return zero to continue looking for other
3434 autoinc operations or any other value to interrupt the traversal and
3435 return that value to the caller of for_each_inc_dec. */
3436 typedef int (*for_each_inc_dec_fn
) (rtx mem
, rtx op
, rtx dest
, rtx src
,
3437 rtx srcoff
, void *arg
);
3438 extern int for_each_inc_dec (rtx
, for_each_inc_dec_fn
, void *arg
);
3440 typedef int (*rtx_equal_p_callback_function
) (const_rtx
*, const_rtx
*,
3442 extern int rtx_equal_p_cb (const_rtx
, const_rtx
,
3443 rtx_equal_p_callback_function
);
3445 typedef int (*hash_rtx_callback_function
) (const_rtx
, machine_mode
, rtx
*,
3447 extern unsigned hash_rtx_cb (const_rtx
, machine_mode
, int *, int *,
3448 bool, hash_rtx_callback_function
);
3450 extern rtx
regno_use_in (unsigned int, rtx
);
3451 extern int auto_inc_p (const_rtx
);
3452 extern bool in_insn_list_p (const rtx_insn_list
*, const rtx_insn
*);
3453 extern void remove_node_from_expr_list (const_rtx
, rtx_expr_list
**);
3454 extern void remove_node_from_insn_list (const rtx_insn
*, rtx_insn_list
**);
3455 extern int loc_mentioned_in_p (rtx
*, const_rtx
);
3456 extern rtx_insn
*find_first_parameter_load (rtx_insn
*, rtx_insn
*);
3457 extern bool keep_with_call_p (const rtx_insn
*);
3458 extern bool label_is_jump_target_p (const_rtx
, const rtx_insn
*);
3459 extern int pattern_cost (rtx
, bool);
3460 extern int insn_cost (rtx_insn
*, bool);
3461 extern unsigned seq_cost (const rtx_insn
*, bool);
3463 /* Given an insn and condition, return a canonical description of
3464 the test being made. */
3465 extern rtx
canonicalize_condition (rtx_insn
*, rtx
, int, rtx_insn
**, rtx
,
3468 /* Given a JUMP_INSN, return a canonical description of the test
3470 extern rtx
get_condition (rtx_insn
*, rtx_insn
**, int, int);
3472 /* Information about a subreg of a hard register. */
3475 /* Offset of first hard register involved in the subreg. */
3477 /* Number of hard registers involved in the subreg. In the case of
3478 a paradoxical subreg, this is the number of registers that would
3479 be modified by writing to the subreg; some of them may be don't-care
3480 when reading from the subreg. */
3482 /* Whether this subreg can be represented as a hard reg with the new
3483 mode (by adding OFFSET to the original hard register). */
3484 bool representable_p
;
3487 extern void subreg_get_info (unsigned int, machine_mode
,
3488 poly_uint64
, machine_mode
,
3489 struct subreg_info
*);
3493 extern void free_EXPR_LIST_list (rtx_expr_list
**);
3494 extern void free_INSN_LIST_list (rtx_insn_list
**);
3495 extern void free_EXPR_LIST_node (rtx
);
3496 extern void free_INSN_LIST_node (rtx
);
3497 extern rtx_insn_list
*alloc_INSN_LIST (rtx
, rtx
);
3498 extern rtx_insn_list
*copy_INSN_LIST (rtx_insn_list
*);
3499 extern rtx_insn_list
*concat_INSN_LIST (rtx_insn_list
*, rtx_insn_list
*);
3500 extern rtx_expr_list
*alloc_EXPR_LIST (int, rtx
, rtx
);
3501 extern void remove_free_INSN_LIST_elem (rtx_insn
*, rtx_insn_list
**);
3502 extern rtx
remove_list_elem (rtx
, rtx
*);
3503 extern rtx_insn
*remove_free_INSN_LIST_node (rtx_insn_list
**);
3504 extern rtx
remove_free_EXPR_LIST_node (rtx_expr_list
**);
3509 /* Resize reg info. */
3510 extern bool resize_reg_info (void);
3511 /* Free up register info memory. */
3512 extern void free_reg_info (void);
3513 extern void init_subregs_of_mode (void);
3514 extern void finish_subregs_of_mode (void);
3517 extern rtx
extract_asm_operands (rtx
);
3518 extern int asm_noperands (const_rtx
);
3519 extern const char *decode_asm_operands (rtx
, rtx
*, rtx
**, const char **,
3520 machine_mode
*, location_t
*);
3521 extern void get_referenced_operands (const char *, bool *, unsigned int);
3523 extern enum reg_class
reg_preferred_class (int);
3524 extern enum reg_class
reg_alternate_class (int);
3525 extern enum reg_class
reg_allocno_class (int);
3526 extern void setup_reg_classes (int, enum reg_class
, enum reg_class
,
3529 extern void split_all_insns (void);
3530 extern unsigned int split_all_insns_noflow (void);
3532 #define MAX_SAVED_CONST_INT 64
3533 extern GTY(()) rtx const_int_rtx
[MAX_SAVED_CONST_INT
* 2 + 1];
3535 #define const0_rtx (const_int_rtx[MAX_SAVED_CONST_INT])
3536 #define const1_rtx (const_int_rtx[MAX_SAVED_CONST_INT+1])
3537 #define const2_rtx (const_int_rtx[MAX_SAVED_CONST_INT+2])
3538 #define constm1_rtx (const_int_rtx[MAX_SAVED_CONST_INT-1])
3539 extern GTY(()) rtx const_true_rtx
;
3541 extern GTY(()) rtx const_tiny_rtx
[4][(int) MAX_MACHINE_MODE
];
3543 /* Returns a constant 0 rtx in mode MODE. Integer modes are treated the
3544 same as VOIDmode. */
3546 #define CONST0_RTX(MODE) (const_tiny_rtx[0][(int) (MODE)])
3548 /* Likewise, for the constants 1 and 2 and -1. */
3550 #define CONST1_RTX(MODE) (const_tiny_rtx[1][(int) (MODE)])
3551 #define CONST2_RTX(MODE) (const_tiny_rtx[2][(int) (MODE)])
3552 #define CONSTM1_RTX(MODE) (const_tiny_rtx[3][(int) (MODE)])
3554 extern GTY(()) rtx pc_rtx
;
3555 extern GTY(()) rtx cc0_rtx
;
3556 extern GTY(()) rtx ret_rtx
;
3557 extern GTY(()) rtx simple_return_rtx
;
3558 extern GTY(()) rtx_insn
*invalid_insn_rtx
;
3560 /* If HARD_FRAME_POINTER_REGNUM is defined, then a special dummy reg
3561 is used to represent the frame pointer. This is because the
3562 hard frame pointer and the automatic variables are separated by an amount
3563 that cannot be determined until after register allocation. We can assume
3564 that in this case ELIMINABLE_REGS will be defined, one action of which
3565 will be to eliminate FRAME_POINTER_REGNUM into HARD_FRAME_POINTER_REGNUM. */
3566 #ifndef HARD_FRAME_POINTER_REGNUM
3567 #define HARD_FRAME_POINTER_REGNUM FRAME_POINTER_REGNUM
3570 #ifndef HARD_FRAME_POINTER_IS_FRAME_POINTER
3571 #define HARD_FRAME_POINTER_IS_FRAME_POINTER \
3572 (HARD_FRAME_POINTER_REGNUM == FRAME_POINTER_REGNUM)
3575 #ifndef HARD_FRAME_POINTER_IS_ARG_POINTER
3576 #define HARD_FRAME_POINTER_IS_ARG_POINTER \
3577 (HARD_FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM)
3580 /* Index labels for global_rtl. */
3581 enum global_rtl_index
3585 /* For register elimination to work properly these hard_frame_pointer_rtx,
3586 frame_pointer_rtx, and arg_pointer_rtx must be the same if they refer to
3587 the same register. */
3588 #if FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
3589 GR_ARG_POINTER
= GR_FRAME_POINTER
,
3591 #if HARD_FRAME_POINTER_IS_FRAME_POINTER
3592 GR_HARD_FRAME_POINTER
= GR_FRAME_POINTER
,
3594 GR_HARD_FRAME_POINTER
,
3596 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3597 #if HARD_FRAME_POINTER_IS_ARG_POINTER
3598 GR_ARG_POINTER
= GR_HARD_FRAME_POINTER
,
3603 GR_VIRTUAL_INCOMING_ARGS
,
3604 GR_VIRTUAL_STACK_ARGS
,
3605 GR_VIRTUAL_STACK_DYNAMIC
,
3606 GR_VIRTUAL_OUTGOING_ARGS
,
3608 GR_VIRTUAL_PREFERRED_STACK_BOUNDARY
,
3613 /* Target-dependent globals. */
3614 struct GTY(()) target_rtl
{
3615 /* All references to the hard registers in global_rtl_index go through
3616 these unique rtl objects. On machines where the frame-pointer and
3617 arg-pointer are the same register, they use the same unique object.
3619 After register allocation, other rtl objects which used to be pseudo-regs
3620 may be clobbered to refer to the frame-pointer register.
3621 But references that were originally to the frame-pointer can be
3622 distinguished from the others because they contain frame_pointer_rtx.
3624 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
3625 tricky: until register elimination has taken place hard_frame_pointer_rtx
3626 should be used if it is being set, and frame_pointer_rtx otherwise. After
3627 register elimination hard_frame_pointer_rtx should always be used.
3628 On machines where the two registers are same (most) then these are the
3630 rtx x_global_rtl
[GR_MAX
];
3632 /* A unique representation of (REG:Pmode PIC_OFFSET_TABLE_REGNUM). */
3633 rtx x_pic_offset_table_rtx
;
3635 /* A unique representation of (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM).
3636 This is used to implement __builtin_return_address for some machines;
3637 see for instance the MIPS port. */
3638 rtx x_return_address_pointer_rtx
;
3640 /* Commonly used RTL for hard registers. These objects are not
3641 necessarily unique, so we allocate them separately from global_rtl.
3642 They are initialized once per compilation unit, then copied into
3643 regno_reg_rtx at the beginning of each function. */
3644 rtx x_initial_regno_reg_rtx
[FIRST_PSEUDO_REGISTER
];
3646 /* A sample (mem:M stack_pointer_rtx) rtx for each mode M. */
3647 rtx x_top_of_stack
[MAX_MACHINE_MODE
];
3649 /* Static hunks of RTL used by the aliasing code; these are treated
3650 as persistent to avoid unnecessary RTL allocations. */
3651 rtx x_static_reg_base_value
[FIRST_PSEUDO_REGISTER
];
3653 /* The default memory attributes for each mode. */
3654 struct mem_attrs
*x_mode_mem_attrs
[(int) MAX_MACHINE_MODE
];
3656 /* Track if RTL has been initialized. */
3657 bool target_specific_initialized
;
3660 extern GTY(()) struct target_rtl default_target_rtl
;
3661 #if SWITCHABLE_TARGET
3662 extern struct target_rtl
*this_target_rtl
;
3664 #define this_target_rtl (&default_target_rtl)
3667 #define global_rtl \
3668 (this_target_rtl->x_global_rtl)
3669 #define pic_offset_table_rtx \
3670 (this_target_rtl->x_pic_offset_table_rtx)
3671 #define return_address_pointer_rtx \
3672 (this_target_rtl->x_return_address_pointer_rtx)
3673 #define top_of_stack \
3674 (this_target_rtl->x_top_of_stack)
3675 #define mode_mem_attrs \
3676 (this_target_rtl->x_mode_mem_attrs)
3678 /* All references to certain hard regs, except those created
3679 by allocating pseudo regs into them (when that's possible),
3680 go through these unique rtx objects. */
3681 #define stack_pointer_rtx (global_rtl[GR_STACK_POINTER])
3682 #define frame_pointer_rtx (global_rtl[GR_FRAME_POINTER])
3683 #define hard_frame_pointer_rtx (global_rtl[GR_HARD_FRAME_POINTER])
3684 #define arg_pointer_rtx (global_rtl[GR_ARG_POINTER])
3686 #ifndef GENERATOR_FILE
3687 /* Return the attributes of a MEM rtx. */
3688 static inline const struct mem_attrs
*
3689 get_mem_attrs (const_rtx x
)
3691 struct mem_attrs
*attrs
;
3693 attrs
= MEM_ATTRS (x
);
3695 attrs
= mode_mem_attrs
[(int) GET_MODE (x
)];
3700 /* Include the RTL generation functions. */
3702 #ifndef GENERATOR_FILE
3704 #undef gen_rtx_ASM_INPUT
3705 #define gen_rtx_ASM_INPUT(MODE, ARG0) \
3706 gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), 0)
3707 #define gen_rtx_ASM_INPUT_loc(MODE, ARG0, LOC) \
3708 gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), (LOC))
3711 /* There are some RTL codes that require special attention; the
3712 generation functions included above do the raw handling. If you
3713 add to this list, modify special_rtx in gengenrtl.c as well. */
3715 extern rtx_expr_list
*gen_rtx_EXPR_LIST (machine_mode
, rtx
, rtx
);
3716 extern rtx_insn_list
*gen_rtx_INSN_LIST (machine_mode
, rtx
, rtx
);
3718 gen_rtx_INSN (machine_mode mode
, rtx_insn
*prev_insn
, rtx_insn
*next_insn
,
3719 basic_block bb
, rtx pattern
, int location
, int code
,
3721 extern rtx
gen_rtx_CONST_INT (machine_mode
, HOST_WIDE_INT
);
3722 extern rtx
gen_rtx_CONST_VECTOR (machine_mode
, rtvec
);
3723 extern void set_mode_and_regno (rtx
, machine_mode
, unsigned int);
3724 extern rtx
gen_raw_REG (machine_mode
, unsigned int);
3725 extern rtx
gen_rtx_REG (machine_mode
, unsigned int);
3726 extern rtx
gen_rtx_SUBREG (machine_mode
, rtx
, poly_uint64
);
3727 extern rtx
gen_rtx_MEM (machine_mode
, rtx
);
3728 extern rtx
gen_rtx_VAR_LOCATION (machine_mode
, tree
, rtx
,
3729 enum var_init_status
);
3731 #ifdef GENERATOR_FILE
3732 #define PUT_MODE(RTX, MODE) PUT_MODE_RAW (RTX, MODE)
3735 PUT_MODE (rtx x
, machine_mode mode
)
3738 set_mode_and_regno (x
, mode
, REGNO (x
));
3740 PUT_MODE_RAW (x
, mode
);
3744 #define GEN_INT(N) gen_rtx_CONST_INT (VOIDmode, (N))
3746 /* Virtual registers are used during RTL generation to refer to locations into
3747 the stack frame when the actual location isn't known until RTL generation
3748 is complete. The routine instantiate_virtual_regs replaces these with
3749 the proper value, which is normally {frame,arg,stack}_pointer_rtx plus
3752 #define FIRST_VIRTUAL_REGISTER (FIRST_PSEUDO_REGISTER)
3754 /* This points to the first word of the incoming arguments passed on the stack,
3755 either by the caller or by the callee when pretending it was passed by the
3758 #define virtual_incoming_args_rtx (global_rtl[GR_VIRTUAL_INCOMING_ARGS])
3760 #define VIRTUAL_INCOMING_ARGS_REGNUM (FIRST_VIRTUAL_REGISTER)
3762 /* If FRAME_GROWS_DOWNWARD, this points to immediately above the first
3763 variable on the stack. Otherwise, it points to the first variable on
3766 #define virtual_stack_vars_rtx (global_rtl[GR_VIRTUAL_STACK_ARGS])
3768 #define VIRTUAL_STACK_VARS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 1)
3770 /* This points to the location of dynamically-allocated memory on the stack
3771 immediately after the stack pointer has been adjusted by the amount
3774 #define virtual_stack_dynamic_rtx (global_rtl[GR_VIRTUAL_STACK_DYNAMIC])
3776 #define VIRTUAL_STACK_DYNAMIC_REGNUM ((FIRST_VIRTUAL_REGISTER) + 2)
3778 /* This points to the location in the stack at which outgoing arguments should
3779 be written when the stack is pre-pushed (arguments pushed using push
3780 insns always use sp). */
3782 #define virtual_outgoing_args_rtx (global_rtl[GR_VIRTUAL_OUTGOING_ARGS])
3784 #define VIRTUAL_OUTGOING_ARGS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 3)
3786 /* This points to the Canonical Frame Address of the function. This
3787 should correspond to the CFA produced by INCOMING_FRAME_SP_OFFSET,
3788 but is calculated relative to the arg pointer for simplicity; the
3789 frame pointer nor stack pointer are necessarily fixed relative to
3790 the CFA until after reload. */
3792 #define virtual_cfa_rtx (global_rtl[GR_VIRTUAL_CFA])
3794 #define VIRTUAL_CFA_REGNUM ((FIRST_VIRTUAL_REGISTER) + 4)
3796 #define LAST_VIRTUAL_POINTER_REGISTER ((FIRST_VIRTUAL_REGISTER) + 4)
3798 /* This is replaced by crtl->preferred_stack_boundary / BITS_PER_UNIT
3801 #define virtual_preferred_stack_boundary_rtx \
3802 (global_rtl[GR_VIRTUAL_PREFERRED_STACK_BOUNDARY])
3804 #define VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM \
3805 ((FIRST_VIRTUAL_REGISTER) + 5)
3807 #define LAST_VIRTUAL_REGISTER ((FIRST_VIRTUAL_REGISTER) + 5)
3809 /* Nonzero if REGNUM is a pointer into the stack frame. */
3810 #define REGNO_PTR_FRAME_P(REGNUM) \
3811 ((REGNUM) == STACK_POINTER_REGNUM \
3812 || (REGNUM) == FRAME_POINTER_REGNUM \
3813 || (REGNUM) == HARD_FRAME_POINTER_REGNUM \
3814 || (REGNUM) == ARG_POINTER_REGNUM \
3815 || ((REGNUM) >= FIRST_VIRTUAL_REGISTER \
3816 && (REGNUM) <= LAST_VIRTUAL_POINTER_REGISTER))
3818 /* REGNUM never really appearing in the INSN stream. */
3819 #define INVALID_REGNUM (~(unsigned int) 0)
3821 /* REGNUM for which no debug information can be generated. */
3822 #define IGNORED_DWARF_REGNUM (INVALID_REGNUM - 1)
3824 extern rtx
output_constant_def (tree
, int);
3825 extern rtx
lookup_constant_def (tree
);
3827 /* Nonzero after end of reload pass.
3828 Set to 1 or 0 by reload1.c. */
3830 extern int reload_completed
;
3832 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
3833 extern int epilogue_completed
;
3835 /* Set to 1 while reload_as_needed is operating.
3836 Required by some machines to handle any generated moves differently. */
3838 extern int reload_in_progress
;
3840 /* Set to 1 while in lra. */
3841 extern int lra_in_progress
;
3843 /* This macro indicates whether you may create a new
3846 #define can_create_pseudo_p() (!reload_in_progress && !reload_completed)
3849 /* Nonzero after end of regstack pass.
3850 Set to 1 or 0 by reg-stack.c. */
3851 extern int regstack_completed
;
3854 /* If this is nonzero, we do not bother generating VOLATILE
3855 around volatile memory references, and we are willing to
3856 output indirect addresses. If cse is to follow, we reject
3857 indirect addresses so a useful potential cse is generated;
3858 if it is used only once, instruction combination will produce
3859 the same indirect address eventually. */
3860 extern int cse_not_expected
;
3862 /* Translates rtx code to tree code, for those codes needed by
3863 real_arithmetic. The function returns an int because the caller may not
3864 know what `enum tree_code' means. */
3866 extern int rtx_to_tree_code (enum rtx_code
);
3869 extern int delete_trivially_dead_insns (rtx_insn
*, int);
3870 extern int exp_equiv_p (const_rtx
, const_rtx
, int, bool);
3871 extern unsigned hash_rtx (const_rtx x
, machine_mode
, int *, int *, bool);
3874 extern bool check_for_inc_dec (rtx_insn
*insn
);
3877 extern int comparison_dominates_p (enum rtx_code
, enum rtx_code
);
3878 extern bool jump_to_label_p (const rtx_insn
*);
3879 extern int condjump_p (const rtx_insn
*);
3880 extern int any_condjump_p (const rtx_insn
*);
3881 extern int any_uncondjump_p (const rtx_insn
*);
3882 extern rtx
pc_set (const rtx_insn
*);
3883 extern rtx
condjump_label (const rtx_insn
*);
3884 extern int simplejump_p (const rtx_insn
*);
3885 extern int returnjump_p (const rtx_insn
*);
3886 extern int eh_returnjump_p (rtx_insn
*);
3887 extern int onlyjump_p (const rtx_insn
*);
3888 extern int only_sets_cc0_p (const_rtx
);
3889 extern int sets_cc0_p (const_rtx
);
3890 extern int invert_jump_1 (rtx_jump_insn
*, rtx
);
3891 extern int invert_jump (rtx_jump_insn
*, rtx
, int);
3892 extern int rtx_renumbered_equal_p (const_rtx
, const_rtx
);
3893 extern int true_regnum (const_rtx
);
3894 extern unsigned int reg_or_subregno (const_rtx
);
3895 extern int redirect_jump_1 (rtx_insn
*, rtx
);
3896 extern void redirect_jump_2 (rtx_jump_insn
*, rtx
, rtx
, int, int);
3897 extern int redirect_jump (rtx_jump_insn
*, rtx
, int);
3898 extern void rebuild_jump_labels (rtx_insn
*);
3899 extern void rebuild_jump_labels_chain (rtx_insn
*);
3900 extern rtx
reversed_comparison (const_rtx
, machine_mode
);
3901 extern enum rtx_code
reversed_comparison_code (const_rtx
, const rtx_insn
*);
3902 extern enum rtx_code
reversed_comparison_code_parts (enum rtx_code
, const_rtx
,
3903 const_rtx
, const rtx_insn
*);
3904 extern void delete_for_peephole (rtx_insn
*, rtx_insn
*);
3905 extern int condjump_in_parallel_p (const rtx_insn
*);
3907 /* In emit-rtl.c. */
3908 extern int max_reg_num (void);
3909 extern int max_label_num (void);
3910 extern int get_first_label_num (void);
3911 extern void maybe_set_first_label_num (rtx_code_label
*);
3912 extern void delete_insns_since (rtx_insn
*);
3913 extern void mark_reg_pointer (rtx
, int);
3914 extern void mark_user_reg (rtx
);
3915 extern void reset_used_flags (rtx
);
3916 extern void set_used_flags (rtx
);
3917 extern void reorder_insns (rtx_insn
*, rtx_insn
*, rtx_insn
*);
3918 extern void reorder_insns_nobb (rtx_insn
*, rtx_insn
*, rtx_insn
*);
3919 extern int get_max_insn_count (void);
3920 extern int in_sequence_p (void);
3921 extern void init_emit (void);
3922 extern void init_emit_regs (void);
3923 extern void init_derived_machine_modes (void);
3924 extern void init_emit_once (void);
3925 extern void push_topmost_sequence (void);
3926 extern void pop_topmost_sequence (void);
3927 extern void set_new_first_and_last_insn (rtx_insn
*, rtx_insn
*);
3928 extern unsigned int unshare_all_rtl (void);
3929 extern void unshare_all_rtl_again (rtx_insn
*);
3930 extern void unshare_all_rtl_in_chain (rtx_insn
*);
3931 extern void verify_rtl_sharing (void);
3932 extern void add_insn (rtx_insn
*);
3933 extern void add_insn_before (rtx
, rtx
, basic_block
);
3934 extern void add_insn_after (rtx
, rtx
, basic_block
);
3935 extern void remove_insn (rtx
);
3936 extern rtx_insn
*emit (rtx
, bool = true);
3937 extern void emit_insn_at_entry (rtx
);
3938 extern rtx
gen_lowpart_SUBREG (machine_mode
, rtx
);
3939 extern rtx
gen_const_mem (machine_mode
, rtx
);
3940 extern rtx
gen_frame_mem (machine_mode
, rtx
);
3941 extern rtx
gen_tmp_stack_mem (machine_mode
, rtx
);
3942 extern bool validate_subreg (machine_mode
, machine_mode
,
3943 const_rtx
, poly_uint64
);
3946 extern unsigned int extended_count (const_rtx
, machine_mode
, int);
3947 extern rtx
remove_death (unsigned int, rtx_insn
*);
3948 extern void dump_combine_stats (FILE *);
3949 extern void dump_combine_total_stats (FILE *);
3950 extern rtx
make_compound_operation (rtx
, enum rtx_code
);
3952 /* In sched-rgn.c. */
3953 extern void schedule_insns (void);
3955 /* In sched-ebb.c. */
3956 extern void schedule_ebbs (void);
3958 /* In sel-sched-dump.c. */
3959 extern void sel_sched_fix_param (const char *param
, const char *val
);
3961 /* In print-rtl.c */
3962 extern const char *print_rtx_head
;
3963 extern void debug (const rtx_def
&ref
);
3964 extern void debug (const rtx_def
*ptr
);
3965 extern void debug_rtx (const_rtx
);
3966 extern void debug_rtx_list (const rtx_insn
*, int);
3967 extern void debug_rtx_range (const rtx_insn
*, const rtx_insn
*);
3968 extern const rtx_insn
*debug_rtx_find (const rtx_insn
*, int);
3969 extern void print_mem_expr (FILE *, const_tree
);
3970 extern void print_rtl (FILE *, const_rtx
);
3971 extern void print_simple_rtl (FILE *, const_rtx
);
3972 extern int print_rtl_single (FILE *, const_rtx
);
3973 extern int print_rtl_single_with_indent (FILE *, const_rtx
, int);
3974 extern void print_inline_rtx (FILE *, const_rtx
, int);
3977 extern void expand_null_return (void);
3978 extern void expand_naked_return (void);
3979 extern void emit_jump (rtx
);
3982 extern rtx
move_by_pieces (rtx
, rtx
, unsigned HOST_WIDE_INT
,
3984 extern poly_int64
find_args_size_adjust (rtx_insn
*);
3985 extern poly_int64
fixup_args_size_notes (rtx_insn
*, rtx_insn
*, poly_int64
);
3988 extern void init_expmed (void);
3989 extern void expand_inc (rtx
, rtx
);
3990 extern void expand_dec (rtx
, rtx
);
3992 /* In lower-subreg.c */
3993 extern void init_lower_subreg (void);
3996 extern bool can_copy_p (machine_mode
);
3997 extern bool can_assign_to_reg_without_clobbers_p (rtx
, machine_mode
);
3998 extern rtx
fis_get_condition (rtx_insn
*);
4001 extern HARD_REG_SET eliminable_regset
;
4002 extern void mark_elimination (int, int);
4005 extern int reg_classes_intersect_p (reg_class_t
, reg_class_t
);
4006 extern int reg_class_subset_p (reg_class_t
, reg_class_t
);
4007 extern void globalize_reg (tree
, int);
4008 extern void init_reg_modes_target (void);
4009 extern void init_regs (void);
4010 extern void reinit_regs (void);
4011 extern void init_fake_stack_mems (void);
4012 extern void save_register_info (void);
4013 extern void init_reg_sets (void);
4014 extern void regclass (rtx
, int);
4015 extern void reg_scan (rtx_insn
*, unsigned int);
4016 extern void fix_register (const char *, int, int);
4017 extern const HARD_REG_SET
*valid_mode_changes_for_regno (unsigned int);
4020 extern int function_invariant_p (const_rtx
);
4030 LCT_RETURNS_TWICE
= 5
4033 extern rtx
emit_library_call_value_1 (int, rtx
, rtx
, enum libcall_type
,
4034 machine_mode
, int, rtx_mode_t
*);
4036 /* Output a library call and discard the returned value. FUN is the
4037 address of the function, as a SYMBOL_REF rtx, and OUTMODE is the mode
4038 of the (discarded) return value. FN_TYPE is LCT_NORMAL for `normal'
4039 calls, LCT_CONST for `const' calls, LCT_PURE for `pure' calls, or
4040 another LCT_ value for other types of library calls.
4042 There are different overloads of this function for different numbers
4043 of arguments. In each case the argument value is followed by its mode. */
4046 emit_library_call (rtx fun
, libcall_type fn_type
, machine_mode outmode
)
4048 emit_library_call_value_1 (0, fun
, NULL_RTX
, fn_type
, outmode
, 0, NULL
);
4052 emit_library_call (rtx fun
, libcall_type fn_type
, machine_mode outmode
,
4053 rtx arg1
, machine_mode arg1_mode
)
4055 rtx_mode_t args
[] = { rtx_mode_t (arg1
, arg1_mode
) };
4056 emit_library_call_value_1 (0, fun
, NULL_RTX
, fn_type
, outmode
, 1, args
);
4060 emit_library_call (rtx fun
, libcall_type fn_type
, machine_mode outmode
,
4061 rtx arg1
, machine_mode arg1_mode
,
4062 rtx arg2
, machine_mode arg2_mode
)
4064 rtx_mode_t args
[] = {
4065 rtx_mode_t (arg1
, arg1_mode
),
4066 rtx_mode_t (arg2
, arg2_mode
)
4068 emit_library_call_value_1 (0, fun
, NULL_RTX
, fn_type
, outmode
, 2, args
);
4072 emit_library_call (rtx fun
, libcall_type fn_type
, machine_mode outmode
,
4073 rtx arg1
, machine_mode arg1_mode
,
4074 rtx arg2
, machine_mode arg2_mode
,
4075 rtx arg3
, machine_mode arg3_mode
)
4077 rtx_mode_t args
[] = {
4078 rtx_mode_t (arg1
, arg1_mode
),
4079 rtx_mode_t (arg2
, arg2_mode
),
4080 rtx_mode_t (arg3
, arg3_mode
)
4082 emit_library_call_value_1 (0, fun
, NULL_RTX
, fn_type
, outmode
, 3, args
);
4086 emit_library_call (rtx fun
, libcall_type fn_type
, machine_mode outmode
,
4087 rtx arg1
, machine_mode arg1_mode
,
4088 rtx arg2
, machine_mode arg2_mode
,
4089 rtx arg3
, machine_mode arg3_mode
,
4090 rtx arg4
, machine_mode arg4_mode
)
4092 rtx_mode_t args
[] = {
4093 rtx_mode_t (arg1
, arg1_mode
),
4094 rtx_mode_t (arg2
, arg2_mode
),
4095 rtx_mode_t (arg3
, arg3_mode
),
4096 rtx_mode_t (arg4
, arg4_mode
)
4098 emit_library_call_value_1 (0, fun
, NULL_RTX
, fn_type
, outmode
, 4, args
);
4101 /* Like emit_library_call, but return the value produced by the call.
4102 Use VALUE to store the result if it is nonnull, otherwise pick a
4103 convenient location. */
4106 emit_library_call_value (rtx fun
, rtx value
, libcall_type fn_type
,
4107 machine_mode outmode
)
4109 return emit_library_call_value_1 (1, fun
, value
, fn_type
, outmode
, 0, NULL
);
4113 emit_library_call_value (rtx fun
, rtx value
, libcall_type fn_type
,
4114 machine_mode outmode
,
4115 rtx arg1
, machine_mode arg1_mode
)
4117 rtx_mode_t args
[] = { rtx_mode_t (arg1
, arg1_mode
) };
4118 return emit_library_call_value_1 (1, fun
, value
, fn_type
, outmode
, 1, args
);
4122 emit_library_call_value (rtx fun
, rtx value
, libcall_type fn_type
,
4123 machine_mode outmode
,
4124 rtx arg1
, machine_mode arg1_mode
,
4125 rtx arg2
, machine_mode arg2_mode
)
4127 rtx_mode_t args
[] = {
4128 rtx_mode_t (arg1
, arg1_mode
),
4129 rtx_mode_t (arg2
, arg2_mode
)
4131 return emit_library_call_value_1 (1, fun
, value
, fn_type
, outmode
, 2, args
);
4135 emit_library_call_value (rtx fun
, rtx value
, libcall_type fn_type
,
4136 machine_mode outmode
,
4137 rtx arg1
, machine_mode arg1_mode
,
4138 rtx arg2
, machine_mode arg2_mode
,
4139 rtx arg3
, machine_mode arg3_mode
)
4141 rtx_mode_t args
[] = {
4142 rtx_mode_t (arg1
, arg1_mode
),
4143 rtx_mode_t (arg2
, arg2_mode
),
4144 rtx_mode_t (arg3
, arg3_mode
)
4146 return emit_library_call_value_1 (1, fun
, value
, fn_type
, outmode
, 3, args
);
4150 emit_library_call_value (rtx fun
, rtx value
, libcall_type fn_type
,
4151 machine_mode outmode
,
4152 rtx arg1
, machine_mode arg1_mode
,
4153 rtx arg2
, machine_mode arg2_mode
,
4154 rtx arg3
, machine_mode arg3_mode
,
4155 rtx arg4
, machine_mode arg4_mode
)
4157 rtx_mode_t args
[] = {
4158 rtx_mode_t (arg1
, arg1_mode
),
4159 rtx_mode_t (arg2
, arg2_mode
),
4160 rtx_mode_t (arg3
, arg3_mode
),
4161 rtx_mode_t (arg4
, arg4_mode
)
4163 return emit_library_call_value_1 (1, fun
, value
, fn_type
, outmode
, 4, args
);
4167 extern void init_varasm_once (void);
4169 extern rtx
make_debug_expr_from_rtl (const_rtx
);
4172 #ifdef GENERATOR_FILE
4173 extern bool read_rtx (const char *, vec
<rtx
> *);
4177 extern rtx
canon_rtx (rtx
);
4178 extern int true_dependence (const_rtx
, machine_mode
, const_rtx
);
4179 extern rtx
get_addr (rtx
);
4180 extern int canon_true_dependence (const_rtx
, machine_mode
, rtx
,
4182 extern int read_dependence (const_rtx
, const_rtx
);
4183 extern int anti_dependence (const_rtx
, const_rtx
);
4184 extern int canon_anti_dependence (const_rtx
, bool,
4185 const_rtx
, machine_mode
, rtx
);
4186 extern int output_dependence (const_rtx
, const_rtx
);
4187 extern int canon_output_dependence (const_rtx
, bool,
4188 const_rtx
, machine_mode
, rtx
);
4189 extern int may_alias_p (const_rtx
, const_rtx
);
4190 extern void init_alias_target (void);
4191 extern void init_alias_analysis (void);
4192 extern void end_alias_analysis (void);
4193 extern void vt_equate_reg_base_value (const_rtx
, const_rtx
);
4194 extern bool memory_modified_in_insn_p (const_rtx
, const_rtx
);
4195 extern bool may_be_sp_based_p (rtx
);
4196 extern rtx
gen_hard_reg_clobber (machine_mode
, unsigned int);
4197 extern rtx
get_reg_known_value (unsigned int);
4198 extern bool get_reg_known_equiv_p (unsigned int);
4199 extern rtx
get_reg_base_value (unsigned int);
4202 extern int stack_regs_mentioned (const_rtx insn
);
4206 extern GTY(()) rtx stack_limit_rtx
;
4208 /* In var-tracking.c */
4209 extern unsigned int variable_tracking_main (void);
4211 /* In stor-layout.c. */
4212 extern void get_mode_bounds (scalar_int_mode
, int,
4213 scalar_int_mode
, rtx
*, rtx
*);
4216 extern rtx
canon_condition (rtx
);
4217 extern void simplify_using_condition (rtx
, rtx
*, bitmap
);
4220 extern unsigned int compute_alignments (void);
4221 extern void update_alignments (vec
<rtx
> &);
4222 extern int asm_str_count (const char *templ
);
4226 rtx (*gen_lowpart
) (machine_mode
, rtx
);
4227 rtx (*gen_lowpart_no_emit
) (machine_mode
, rtx
);
4228 rtx (*reg_nonzero_bits
) (const_rtx
, scalar_int_mode
, scalar_int_mode
,
4229 unsigned HOST_WIDE_INT
*);
4230 rtx (*reg_num_sign_bit_copies
) (const_rtx
, scalar_int_mode
, scalar_int_mode
,
4232 bool (*reg_truncated_to_mode
) (machine_mode
, const_rtx
);
4234 /* Whenever you add entries here, make sure you adjust rtlhooks-def.h. */
4237 /* Each pass can provide its own. */
4238 extern struct rtl_hooks rtl_hooks
;
4240 /* ... but then it has to restore these. */
4241 extern const struct rtl_hooks general_rtl_hooks
;
4243 /* Keep this for the nonce. */
4244 #define gen_lowpart rtl_hooks.gen_lowpart
4246 extern void insn_locations_init (void);
4247 extern void insn_locations_finalize (void);
4248 extern void set_curr_insn_location (location_t
);
4249 extern location_t
curr_insn_location (void);
4252 extern void _fatal_insn_not_found (const_rtx
, const char *, int, const char *)
4253 ATTRIBUTE_NORETURN ATTRIBUTE_COLD
;
4254 extern void _fatal_insn (const char *, const_rtx
, const char *, int, const char *)
4255 ATTRIBUTE_NORETURN ATTRIBUTE_COLD
;
4257 #define fatal_insn(msgid, insn) \
4258 _fatal_insn (msgid, insn, __FILE__, __LINE__, __FUNCTION__)
4259 #define fatal_insn_not_found(insn) \
4260 _fatal_insn_not_found (insn, __FILE__, __LINE__, __FUNCTION__)
4263 extern tree
GTY(()) global_regs_decl
[FIRST_PSEUDO_REGISTER
];
4265 /* Information about the function that is propagated by the RTL backend.
4266 Available only for functions that has been already assembled. */
4268 struct GTY(()) cgraph_rtl_info
{
4269 unsigned int preferred_incoming_stack_boundary
;
4271 /* Call unsaved hard registers really used by the corresponding
4272 function (including ones used by functions called by the
4274 HARD_REG_SET function_used_regs
;
4275 /* Set if function_used_regs is valid. */
4276 unsigned function_used_regs_valid
: 1;
4279 /* If loads from memories of mode MODE always sign or zero extend,
4280 return SIGN_EXTEND or ZERO_EXTEND as appropriate. Return UNKNOWN
4284 load_extend_op (machine_mode mode
)
4286 scalar_int_mode int_mode
;
4287 if (is_a
<scalar_int_mode
> (mode
, &int_mode
)
4288 && GET_MODE_PRECISION (int_mode
) < BITS_PER_WORD
)
4289 return LOAD_EXTEND_OP (int_mode
);
4293 /* If X is a PLUS of a base and a constant offset, add the constant to *OFFSET
4294 and return the base. Return X otherwise. */
4297 strip_offset_and_add (rtx x
, poly_int64_pod
*offset
)
4299 if (GET_CODE (x
) == PLUS
)
4301 poly_int64 suboffset
;
4302 x
= strip_offset (x
, &suboffset
);
4303 *offset
+= suboffset
;
4309 extern void gt_ggc_mx (rtx
&);
4310 extern void gt_pch_nx (rtx
&);
4311 extern void gt_pch_nx (rtx
&, gt_pointer_operator
, void *);
4313 #endif /* ! GCC_RTL_H */