Allow Objective-c++ to recognise lambdas.
[official-gcc.git] / gcc / fortran / interface.c
blob04bcf12864bb8cfe65bb1a6d941b2514e61f5ca3
1 /* Deal with interfaces.
2 Copyright (C) 2000-2014 Free Software Foundation, Inc.
3 Contributed by Andy Vaught
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 /* Deal with interfaces. An explicit interface is represented as a
23 singly linked list of formal argument structures attached to the
24 relevant symbols. For an implicit interface, the arguments don't
25 point to symbols. Explicit interfaces point to namespaces that
26 contain the symbols within that interface.
28 Implicit interfaces are linked together in a singly linked list
29 along the next_if member of symbol nodes. Since a particular
30 symbol can only have a single explicit interface, the symbol cannot
31 be part of multiple lists and a single next-member suffices.
33 This is not the case for general classes, though. An operator
34 definition is independent of just about all other uses and has it's
35 own head pointer.
37 Nameless interfaces:
38 Nameless interfaces create symbols with explicit interfaces within
39 the current namespace. They are otherwise unlinked.
41 Generic interfaces:
42 The generic name points to a linked list of symbols. Each symbol
43 has an explicit interface. Each explicit interface has its own
44 namespace containing the arguments. Module procedures are symbols in
45 which the interface is added later when the module procedure is parsed.
47 User operators:
48 User-defined operators are stored in a their own set of symtrees
49 separate from regular symbols. The symtrees point to gfc_user_op
50 structures which in turn head up a list of relevant interfaces.
52 Extended intrinsics and assignment:
53 The head of these interface lists are stored in the containing namespace.
55 Implicit interfaces:
56 An implicit interface is represented as a singly linked list of
57 formal argument list structures that don't point to any symbol
58 nodes -- they just contain types.
61 When a subprogram is defined, the program unit's name points to an
62 interface as usual, but the link to the namespace is NULL and the
63 formal argument list points to symbols within the same namespace as
64 the program unit name. */
66 #include "config.h"
67 #include "system.h"
68 #include "coretypes.h"
69 #include "flags.h"
70 #include "gfortran.h"
71 #include "match.h"
72 #include "arith.h"
74 /* The current_interface structure holds information about the
75 interface currently being parsed. This structure is saved and
76 restored during recursive interfaces. */
78 gfc_interface_info current_interface;
81 /* Free a singly linked list of gfc_interface structures. */
83 void
84 gfc_free_interface (gfc_interface *intr)
86 gfc_interface *next;
88 for (; intr; intr = next)
90 next = intr->next;
91 free (intr);
96 /* Change the operators unary plus and minus into binary plus and
97 minus respectively, leaving the rest unchanged. */
99 static gfc_intrinsic_op
100 fold_unary_intrinsic (gfc_intrinsic_op op)
102 switch (op)
104 case INTRINSIC_UPLUS:
105 op = INTRINSIC_PLUS;
106 break;
107 case INTRINSIC_UMINUS:
108 op = INTRINSIC_MINUS;
109 break;
110 default:
111 break;
114 return op;
118 /* Match a generic specification. Depending on which type of
119 interface is found, the 'name' or 'op' pointers may be set.
120 This subroutine doesn't return MATCH_NO. */
122 match
123 gfc_match_generic_spec (interface_type *type,
124 char *name,
125 gfc_intrinsic_op *op)
127 char buffer[GFC_MAX_SYMBOL_LEN + 1];
128 match m;
129 gfc_intrinsic_op i;
131 if (gfc_match (" assignment ( = )") == MATCH_YES)
133 *type = INTERFACE_INTRINSIC_OP;
134 *op = INTRINSIC_ASSIGN;
135 return MATCH_YES;
138 if (gfc_match (" operator ( %o )", &i) == MATCH_YES)
139 { /* Operator i/f */
140 *type = INTERFACE_INTRINSIC_OP;
141 *op = fold_unary_intrinsic (i);
142 return MATCH_YES;
145 *op = INTRINSIC_NONE;
146 if (gfc_match (" operator ( ") == MATCH_YES)
148 m = gfc_match_defined_op_name (buffer, 1);
149 if (m == MATCH_NO)
150 goto syntax;
151 if (m != MATCH_YES)
152 return MATCH_ERROR;
154 m = gfc_match_char (')');
155 if (m == MATCH_NO)
156 goto syntax;
157 if (m != MATCH_YES)
158 return MATCH_ERROR;
160 strcpy (name, buffer);
161 *type = INTERFACE_USER_OP;
162 return MATCH_YES;
165 if (gfc_match_name (buffer) == MATCH_YES)
167 strcpy (name, buffer);
168 *type = INTERFACE_GENERIC;
169 return MATCH_YES;
172 *type = INTERFACE_NAMELESS;
173 return MATCH_YES;
175 syntax:
176 gfc_error ("Syntax error in generic specification at %C");
177 return MATCH_ERROR;
181 /* Match one of the five F95 forms of an interface statement. The
182 matcher for the abstract interface follows. */
184 match
185 gfc_match_interface (void)
187 char name[GFC_MAX_SYMBOL_LEN + 1];
188 interface_type type;
189 gfc_symbol *sym;
190 gfc_intrinsic_op op;
191 match m;
193 m = gfc_match_space ();
195 if (gfc_match_generic_spec (&type, name, &op) == MATCH_ERROR)
196 return MATCH_ERROR;
198 /* If we're not looking at the end of the statement now, or if this
199 is not a nameless interface but we did not see a space, punt. */
200 if (gfc_match_eos () != MATCH_YES
201 || (type != INTERFACE_NAMELESS && m != MATCH_YES))
203 gfc_error ("Syntax error: Trailing garbage in INTERFACE statement "
204 "at %C");
205 return MATCH_ERROR;
208 current_interface.type = type;
210 switch (type)
212 case INTERFACE_GENERIC:
213 if (gfc_get_symbol (name, NULL, &sym))
214 return MATCH_ERROR;
216 if (!sym->attr.generic
217 && !gfc_add_generic (&sym->attr, sym->name, NULL))
218 return MATCH_ERROR;
220 if (sym->attr.dummy)
222 gfc_error ("Dummy procedure %qs at %C cannot have a "
223 "generic interface", sym->name);
224 return MATCH_ERROR;
227 current_interface.sym = gfc_new_block = sym;
228 break;
230 case INTERFACE_USER_OP:
231 current_interface.uop = gfc_get_uop (name);
232 break;
234 case INTERFACE_INTRINSIC_OP:
235 current_interface.op = op;
236 break;
238 case INTERFACE_NAMELESS:
239 case INTERFACE_ABSTRACT:
240 break;
243 return MATCH_YES;
248 /* Match a F2003 abstract interface. */
250 match
251 gfc_match_abstract_interface (void)
253 match m;
255 if (!gfc_notify_std (GFC_STD_F2003, "ABSTRACT INTERFACE at %C"))
256 return MATCH_ERROR;
258 m = gfc_match_eos ();
260 if (m != MATCH_YES)
262 gfc_error ("Syntax error in ABSTRACT INTERFACE statement at %C");
263 return MATCH_ERROR;
266 current_interface.type = INTERFACE_ABSTRACT;
268 return m;
272 /* Match the different sort of generic-specs that can be present after
273 the END INTERFACE itself. */
275 match
276 gfc_match_end_interface (void)
278 char name[GFC_MAX_SYMBOL_LEN + 1];
279 interface_type type;
280 gfc_intrinsic_op op;
281 match m;
283 m = gfc_match_space ();
285 if (gfc_match_generic_spec (&type, name, &op) == MATCH_ERROR)
286 return MATCH_ERROR;
288 /* If we're not looking at the end of the statement now, or if this
289 is not a nameless interface but we did not see a space, punt. */
290 if (gfc_match_eos () != MATCH_YES
291 || (type != INTERFACE_NAMELESS && m != MATCH_YES))
293 gfc_error ("Syntax error: Trailing garbage in END INTERFACE "
294 "statement at %C");
295 return MATCH_ERROR;
298 m = MATCH_YES;
300 switch (current_interface.type)
302 case INTERFACE_NAMELESS:
303 case INTERFACE_ABSTRACT:
304 if (type != INTERFACE_NAMELESS)
306 gfc_error ("Expected a nameless interface at %C");
307 m = MATCH_ERROR;
310 break;
312 case INTERFACE_INTRINSIC_OP:
313 if (type != current_interface.type || op != current_interface.op)
316 if (current_interface.op == INTRINSIC_ASSIGN)
318 m = MATCH_ERROR;
319 gfc_error ("Expected %<END INTERFACE ASSIGNMENT (=)%> at %C");
321 else
323 const char *s1, *s2;
324 s1 = gfc_op2string (current_interface.op);
325 s2 = gfc_op2string (op);
327 /* The following if-statements are used to enforce C1202
328 from F2003. */
329 if ((strcmp(s1, "==") == 0 && strcmp (s2, ".eq.") == 0)
330 || (strcmp(s1, ".eq.") == 0 && strcmp (s2, "==") == 0))
331 break;
332 if ((strcmp(s1, "/=") == 0 && strcmp (s2, ".ne.") == 0)
333 || (strcmp(s1, ".ne.") == 0 && strcmp (s2, "/=") == 0))
334 break;
335 if ((strcmp(s1, "<=") == 0 && strcmp (s2, ".le.") == 0)
336 || (strcmp(s1, ".le.") == 0 && strcmp (s2, "<=") == 0))
337 break;
338 if ((strcmp(s1, "<") == 0 && strcmp (s2, ".lt.") == 0)
339 || (strcmp(s1, ".lt.") == 0 && strcmp (s2, "<") == 0))
340 break;
341 if ((strcmp(s1, ">=") == 0 && strcmp (s2, ".ge.") == 0)
342 || (strcmp(s1, ".ge.") == 0 && strcmp (s2, ">=") == 0))
343 break;
344 if ((strcmp(s1, ">") == 0 && strcmp (s2, ".gt.") == 0)
345 || (strcmp(s1, ".gt.") == 0 && strcmp (s2, ">") == 0))
346 break;
348 m = MATCH_ERROR;
349 gfc_error ("Expecting %<END INTERFACE OPERATOR (%s)%> at %C, "
350 "but got %s", s1, s2);
355 break;
357 case INTERFACE_USER_OP:
358 /* Comparing the symbol node names is OK because only use-associated
359 symbols can be renamed. */
360 if (type != current_interface.type
361 || strcmp (current_interface.uop->name, name) != 0)
363 gfc_error ("Expecting %<END INTERFACE OPERATOR (.%s.)%> at %C",
364 current_interface.uop->name);
365 m = MATCH_ERROR;
368 break;
370 case INTERFACE_GENERIC:
371 if (type != current_interface.type
372 || strcmp (current_interface.sym->name, name) != 0)
374 gfc_error ("Expecting %<END INTERFACE %s%> at %C",
375 current_interface.sym->name);
376 m = MATCH_ERROR;
379 break;
382 return m;
386 /* Compare two derived types using the criteria in 4.4.2 of the standard,
387 recursing through gfc_compare_types for the components. */
390 gfc_compare_derived_types (gfc_symbol *derived1, gfc_symbol *derived2)
392 gfc_component *dt1, *dt2;
394 if (derived1 == derived2)
395 return 1;
397 gcc_assert (derived1 && derived2);
399 /* Special case for comparing derived types across namespaces. If the
400 true names and module names are the same and the module name is
401 nonnull, then they are equal. */
402 if (strcmp (derived1->name, derived2->name) == 0
403 && derived1->module != NULL && derived2->module != NULL
404 && strcmp (derived1->module, derived2->module) == 0)
405 return 1;
407 /* Compare type via the rules of the standard. Both types must have
408 the SEQUENCE or BIND(C) attribute to be equal. */
410 if (strcmp (derived1->name, derived2->name))
411 return 0;
413 if (derived1->component_access == ACCESS_PRIVATE
414 || derived2->component_access == ACCESS_PRIVATE)
415 return 0;
417 if (!(derived1->attr.sequence && derived2->attr.sequence)
418 && !(derived1->attr.is_bind_c && derived2->attr.is_bind_c))
419 return 0;
421 dt1 = derived1->components;
422 dt2 = derived2->components;
424 /* Since subtypes of SEQUENCE types must be SEQUENCE types as well, a
425 simple test can speed things up. Otherwise, lots of things have to
426 match. */
427 for (;;)
429 if (strcmp (dt1->name, dt2->name) != 0)
430 return 0;
432 if (dt1->attr.access != dt2->attr.access)
433 return 0;
435 if (dt1->attr.pointer != dt2->attr.pointer)
436 return 0;
438 if (dt1->attr.dimension != dt2->attr.dimension)
439 return 0;
441 if (dt1->attr.allocatable != dt2->attr.allocatable)
442 return 0;
444 if (dt1->attr.dimension && gfc_compare_array_spec (dt1->as, dt2->as) == 0)
445 return 0;
447 /* Make sure that link lists do not put this function into an
448 endless recursive loop! */
449 if (!(dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived)
450 && !(dt2->ts.type == BT_DERIVED && derived2 == dt2->ts.u.derived)
451 && gfc_compare_types (&dt1->ts, &dt2->ts) == 0)
452 return 0;
454 else if ((dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived)
455 && !(dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived))
456 return 0;
458 else if (!(dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived)
459 && (dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived))
460 return 0;
462 dt1 = dt1->next;
463 dt2 = dt2->next;
465 if (dt1 == NULL && dt2 == NULL)
466 break;
467 if (dt1 == NULL || dt2 == NULL)
468 return 0;
471 return 1;
475 /* Compare two typespecs, recursively if necessary. */
478 gfc_compare_types (gfc_typespec *ts1, gfc_typespec *ts2)
480 /* See if one of the typespecs is a BT_VOID, which is what is being used
481 to allow the funcs like c_f_pointer to accept any pointer type.
482 TODO: Possibly should narrow this to just the one typespec coming in
483 that is for the formal arg, but oh well. */
484 if (ts1->type == BT_VOID || ts2->type == BT_VOID)
485 return 1;
487 if (ts1->type == BT_CLASS
488 && ts1->u.derived->components->ts.u.derived->attr.unlimited_polymorphic)
489 return 1;
491 /* F2003: C717 */
492 if (ts2->type == BT_CLASS && ts1->type == BT_DERIVED
493 && ts2->u.derived->components->ts.u.derived->attr.unlimited_polymorphic
494 && (ts1->u.derived->attr.sequence || ts1->u.derived->attr.is_bind_c))
495 return 1;
497 if (ts1->type != ts2->type
498 && ((ts1->type != BT_DERIVED && ts1->type != BT_CLASS)
499 || (ts2->type != BT_DERIVED && ts2->type != BT_CLASS)))
500 return 0;
501 if (ts1->type != BT_DERIVED && ts1->type != BT_CLASS)
502 return (ts1->kind == ts2->kind);
504 /* Compare derived types. */
505 if (gfc_type_compatible (ts1, ts2))
506 return 1;
508 return gfc_compare_derived_types (ts1->u.derived ,ts2->u.derived);
512 static int
513 compare_type (gfc_symbol *s1, gfc_symbol *s2)
515 if (s2->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
516 return 1;
518 /* TYPE and CLASS of the same declared type are type compatible,
519 but have different characteristics. */
520 if ((s1->ts.type == BT_CLASS && s2->ts.type == BT_DERIVED)
521 || (s1->ts.type == BT_DERIVED && s2->ts.type == BT_CLASS))
522 return 0;
524 return gfc_compare_types (&s1->ts, &s2->ts) || s2->ts.type == BT_ASSUMED;
528 static int
529 compare_rank (gfc_symbol *s1, gfc_symbol *s2)
531 gfc_array_spec *as1, *as2;
532 int r1, r2;
534 if (s2->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
535 return 1;
537 as1 = (s1->ts.type == BT_CLASS) ? CLASS_DATA (s1)->as : s1->as;
538 as2 = (s2->ts.type == BT_CLASS) ? CLASS_DATA (s2)->as : s2->as;
540 r1 = as1 ? as1->rank : 0;
541 r2 = as2 ? as2->rank : 0;
543 if (r1 != r2 && (!as2 || as2->type != AS_ASSUMED_RANK))
544 return 0; /* Ranks differ. */
546 return 1;
550 /* Given two symbols that are formal arguments, compare their ranks
551 and types. Returns nonzero if they have the same rank and type,
552 zero otherwise. */
554 static int
555 compare_type_rank (gfc_symbol *s1, gfc_symbol *s2)
557 return compare_type (s1, s2) && compare_rank (s1, s2);
561 /* Given two symbols that are formal arguments, compare their types
562 and rank and their formal interfaces if they are both dummy
563 procedures. Returns nonzero if the same, zero if different. */
565 static int
566 compare_type_rank_if (gfc_symbol *s1, gfc_symbol *s2)
568 if (s1 == NULL || s2 == NULL)
569 return s1 == s2 ? 1 : 0;
571 if (s1 == s2)
572 return 1;
574 if (s1->attr.flavor != FL_PROCEDURE && s2->attr.flavor != FL_PROCEDURE)
575 return compare_type_rank (s1, s2);
577 if (s1->attr.flavor != FL_PROCEDURE || s2->attr.flavor != FL_PROCEDURE)
578 return 0;
580 /* At this point, both symbols are procedures. It can happen that
581 external procedures are compared, where one is identified by usage
582 to be a function or subroutine but the other is not. Check TKR
583 nonetheless for these cases. */
584 if (s1->attr.function == 0 && s1->attr.subroutine == 0)
585 return s1->attr.external == 1 ? compare_type_rank (s1, s2) : 0;
587 if (s2->attr.function == 0 && s2->attr.subroutine == 0)
588 return s2->attr.external == 1 ? compare_type_rank (s1, s2) : 0;
590 /* Now the type of procedure has been identified. */
591 if (s1->attr.function != s2->attr.function
592 || s1->attr.subroutine != s2->attr.subroutine)
593 return 0;
595 if (s1->attr.function && compare_type_rank (s1, s2) == 0)
596 return 0;
598 /* Originally, gfortran recursed here to check the interfaces of passed
599 procedures. This is explicitly not required by the standard. */
600 return 1;
604 /* Given a formal argument list and a keyword name, search the list
605 for that keyword. Returns the correct symbol node if found, NULL
606 if not found. */
608 static gfc_symbol *
609 find_keyword_arg (const char *name, gfc_formal_arglist *f)
611 for (; f; f = f->next)
612 if (strcmp (f->sym->name, name) == 0)
613 return f->sym;
615 return NULL;
619 /******** Interface checking subroutines **********/
622 /* Given an operator interface and the operator, make sure that all
623 interfaces for that operator are legal. */
625 bool
626 gfc_check_operator_interface (gfc_symbol *sym, gfc_intrinsic_op op,
627 locus opwhere)
629 gfc_formal_arglist *formal;
630 sym_intent i1, i2;
631 bt t1, t2;
632 int args, r1, r2, k1, k2;
634 gcc_assert (sym);
636 args = 0;
637 t1 = t2 = BT_UNKNOWN;
638 i1 = i2 = INTENT_UNKNOWN;
639 r1 = r2 = -1;
640 k1 = k2 = -1;
642 for (formal = gfc_sym_get_dummy_args (sym); formal; formal = formal->next)
644 gfc_symbol *fsym = formal->sym;
645 if (fsym == NULL)
647 gfc_error ("Alternate return cannot appear in operator "
648 "interface at %L", &sym->declared_at);
649 return false;
651 if (args == 0)
653 t1 = fsym->ts.type;
654 i1 = fsym->attr.intent;
655 r1 = (fsym->as != NULL) ? fsym->as->rank : 0;
656 k1 = fsym->ts.kind;
658 if (args == 1)
660 t2 = fsym->ts.type;
661 i2 = fsym->attr.intent;
662 r2 = (fsym->as != NULL) ? fsym->as->rank : 0;
663 k2 = fsym->ts.kind;
665 args++;
668 /* Only +, - and .not. can be unary operators.
669 .not. cannot be a binary operator. */
670 if (args == 0 || args > 2 || (args == 1 && op != INTRINSIC_PLUS
671 && op != INTRINSIC_MINUS
672 && op != INTRINSIC_NOT)
673 || (args == 2 && op == INTRINSIC_NOT))
675 if (op == INTRINSIC_ASSIGN)
676 gfc_error ("Assignment operator interface at %L must have "
677 "two arguments", &sym->declared_at);
678 else
679 gfc_error ("Operator interface at %L has the wrong number of arguments",
680 &sym->declared_at);
681 return false;
684 /* Check that intrinsics are mapped to functions, except
685 INTRINSIC_ASSIGN which should map to a subroutine. */
686 if (op == INTRINSIC_ASSIGN)
688 gfc_formal_arglist *dummy_args;
690 if (!sym->attr.subroutine)
692 gfc_error ("Assignment operator interface at %L must be "
693 "a SUBROUTINE", &sym->declared_at);
694 return false;
697 /* Allowed are (per F2003, 12.3.2.1.2 Defined assignments):
698 - First argument an array with different rank than second,
699 - First argument is a scalar and second an array,
700 - Types and kinds do not conform, or
701 - First argument is of derived type. */
702 dummy_args = gfc_sym_get_dummy_args (sym);
703 if (dummy_args->sym->ts.type != BT_DERIVED
704 && dummy_args->sym->ts.type != BT_CLASS
705 && (r2 == 0 || r1 == r2)
706 && (dummy_args->sym->ts.type == dummy_args->next->sym->ts.type
707 || (gfc_numeric_ts (&dummy_args->sym->ts)
708 && gfc_numeric_ts (&dummy_args->next->sym->ts))))
710 gfc_error ("Assignment operator interface at %L must not redefine "
711 "an INTRINSIC type assignment", &sym->declared_at);
712 return false;
715 else
717 if (!sym->attr.function)
719 gfc_error ("Intrinsic operator interface at %L must be a FUNCTION",
720 &sym->declared_at);
721 return false;
725 /* Check intents on operator interfaces. */
726 if (op == INTRINSIC_ASSIGN)
728 if (i1 != INTENT_OUT && i1 != INTENT_INOUT)
730 gfc_error ("First argument of defined assignment at %L must be "
731 "INTENT(OUT) or INTENT(INOUT)", &sym->declared_at);
732 return false;
735 if (i2 != INTENT_IN)
737 gfc_error ("Second argument of defined assignment at %L must be "
738 "INTENT(IN)", &sym->declared_at);
739 return false;
742 else
744 if (i1 != INTENT_IN)
746 gfc_error ("First argument of operator interface at %L must be "
747 "INTENT(IN)", &sym->declared_at);
748 return false;
751 if (args == 2 && i2 != INTENT_IN)
753 gfc_error ("Second argument of operator interface at %L must be "
754 "INTENT(IN)", &sym->declared_at);
755 return false;
759 /* From now on, all we have to do is check that the operator definition
760 doesn't conflict with an intrinsic operator. The rules for this
761 game are defined in 7.1.2 and 7.1.3 of both F95 and F2003 standards,
762 as well as 12.3.2.1.1 of Fortran 2003:
764 "If the operator is an intrinsic-operator (R310), the number of
765 function arguments shall be consistent with the intrinsic uses of
766 that operator, and the types, kind type parameters, or ranks of the
767 dummy arguments shall differ from those required for the intrinsic
768 operation (7.1.2)." */
770 #define IS_NUMERIC_TYPE(t) \
771 ((t) == BT_INTEGER || (t) == BT_REAL || (t) == BT_COMPLEX)
773 /* Unary ops are easy, do them first. */
774 if (op == INTRINSIC_NOT)
776 if (t1 == BT_LOGICAL)
777 goto bad_repl;
778 else
779 return true;
782 if (args == 1 && (op == INTRINSIC_PLUS || op == INTRINSIC_MINUS))
784 if (IS_NUMERIC_TYPE (t1))
785 goto bad_repl;
786 else
787 return true;
790 /* Character intrinsic operators have same character kind, thus
791 operator definitions with operands of different character kinds
792 are always safe. */
793 if (t1 == BT_CHARACTER && t2 == BT_CHARACTER && k1 != k2)
794 return true;
796 /* Intrinsic operators always perform on arguments of same rank,
797 so different ranks is also always safe. (rank == 0) is an exception
798 to that, because all intrinsic operators are elemental. */
799 if (r1 != r2 && r1 != 0 && r2 != 0)
800 return true;
802 switch (op)
804 case INTRINSIC_EQ:
805 case INTRINSIC_EQ_OS:
806 case INTRINSIC_NE:
807 case INTRINSIC_NE_OS:
808 if (t1 == BT_CHARACTER && t2 == BT_CHARACTER)
809 goto bad_repl;
810 /* Fall through. */
812 case INTRINSIC_PLUS:
813 case INTRINSIC_MINUS:
814 case INTRINSIC_TIMES:
815 case INTRINSIC_DIVIDE:
816 case INTRINSIC_POWER:
817 if (IS_NUMERIC_TYPE (t1) && IS_NUMERIC_TYPE (t2))
818 goto bad_repl;
819 break;
821 case INTRINSIC_GT:
822 case INTRINSIC_GT_OS:
823 case INTRINSIC_GE:
824 case INTRINSIC_GE_OS:
825 case INTRINSIC_LT:
826 case INTRINSIC_LT_OS:
827 case INTRINSIC_LE:
828 case INTRINSIC_LE_OS:
829 if (t1 == BT_CHARACTER && t2 == BT_CHARACTER)
830 goto bad_repl;
831 if ((t1 == BT_INTEGER || t1 == BT_REAL)
832 && (t2 == BT_INTEGER || t2 == BT_REAL))
833 goto bad_repl;
834 break;
836 case INTRINSIC_CONCAT:
837 if (t1 == BT_CHARACTER && t2 == BT_CHARACTER)
838 goto bad_repl;
839 break;
841 case INTRINSIC_AND:
842 case INTRINSIC_OR:
843 case INTRINSIC_EQV:
844 case INTRINSIC_NEQV:
845 if (t1 == BT_LOGICAL && t2 == BT_LOGICAL)
846 goto bad_repl;
847 break;
849 default:
850 break;
853 return true;
855 #undef IS_NUMERIC_TYPE
857 bad_repl:
858 gfc_error ("Operator interface at %L conflicts with intrinsic interface",
859 &opwhere);
860 return false;
864 /* Given a pair of formal argument lists, we see if the two lists can
865 be distinguished by counting the number of nonoptional arguments of
866 a given type/rank in f1 and seeing if there are less then that
867 number of those arguments in f2 (including optional arguments).
868 Since this test is asymmetric, it has to be called twice to make it
869 symmetric. Returns nonzero if the argument lists are incompatible
870 by this test. This subroutine implements rule 1 of section F03:16.2.3.
871 'p1' and 'p2' are the PASS arguments of both procedures (if applicable). */
873 static int
874 count_types_test (gfc_formal_arglist *f1, gfc_formal_arglist *f2,
875 const char *p1, const char *p2)
877 int rc, ac1, ac2, i, j, k, n1;
878 gfc_formal_arglist *f;
880 typedef struct
882 int flag;
883 gfc_symbol *sym;
885 arginfo;
887 arginfo *arg;
889 n1 = 0;
891 for (f = f1; f; f = f->next)
892 n1++;
894 /* Build an array of integers that gives the same integer to
895 arguments of the same type/rank. */
896 arg = XCNEWVEC (arginfo, n1);
898 f = f1;
899 for (i = 0; i < n1; i++, f = f->next)
901 arg[i].flag = -1;
902 arg[i].sym = f->sym;
905 k = 0;
907 for (i = 0; i < n1; i++)
909 if (arg[i].flag != -1)
910 continue;
912 if (arg[i].sym && (arg[i].sym->attr.optional
913 || (p1 && strcmp (arg[i].sym->name, p1) == 0)))
914 continue; /* Skip OPTIONAL and PASS arguments. */
916 arg[i].flag = k;
918 /* Find other non-optional, non-pass arguments of the same type/rank. */
919 for (j = i + 1; j < n1; j++)
920 if ((arg[j].sym == NULL
921 || !(arg[j].sym->attr.optional
922 || (p1 && strcmp (arg[j].sym->name, p1) == 0)))
923 && (compare_type_rank_if (arg[i].sym, arg[j].sym)
924 || compare_type_rank_if (arg[j].sym, arg[i].sym)))
925 arg[j].flag = k;
927 k++;
930 /* Now loop over each distinct type found in f1. */
931 k = 0;
932 rc = 0;
934 for (i = 0; i < n1; i++)
936 if (arg[i].flag != k)
937 continue;
939 ac1 = 1;
940 for (j = i + 1; j < n1; j++)
941 if (arg[j].flag == k)
942 ac1++;
944 /* Count the number of non-pass arguments in f2 with that type,
945 including those that are optional. */
946 ac2 = 0;
948 for (f = f2; f; f = f->next)
949 if ((!p2 || strcmp (f->sym->name, p2) != 0)
950 && (compare_type_rank_if (arg[i].sym, f->sym)
951 || compare_type_rank_if (f->sym, arg[i].sym)))
952 ac2++;
954 if (ac1 > ac2)
956 rc = 1;
957 break;
960 k++;
963 free (arg);
965 return rc;
969 /* Perform the correspondence test in rule (3) of F08:C1215.
970 Returns zero if no argument is found that satisfies this rule,
971 nonzero otherwise. 'p1' and 'p2' are the PASS arguments of both procedures
972 (if applicable).
974 This test is also not symmetric in f1 and f2 and must be called
975 twice. This test finds problems caused by sorting the actual
976 argument list with keywords. For example:
978 INTERFACE FOO
979 SUBROUTINE F1(A, B)
980 INTEGER :: A ; REAL :: B
981 END SUBROUTINE F1
983 SUBROUTINE F2(B, A)
984 INTEGER :: A ; REAL :: B
985 END SUBROUTINE F1
986 END INTERFACE FOO
988 At this point, 'CALL FOO(A=1, B=1.0)' is ambiguous. */
990 static int
991 generic_correspondence (gfc_formal_arglist *f1, gfc_formal_arglist *f2,
992 const char *p1, const char *p2)
994 gfc_formal_arglist *f2_save, *g;
995 gfc_symbol *sym;
997 f2_save = f2;
999 while (f1)
1001 if (f1->sym->attr.optional)
1002 goto next;
1004 if (p1 && strcmp (f1->sym->name, p1) == 0)
1005 f1 = f1->next;
1006 if (f2 && p2 && strcmp (f2->sym->name, p2) == 0)
1007 f2 = f2->next;
1009 if (f2 != NULL && (compare_type_rank (f1->sym, f2->sym)
1010 || compare_type_rank (f2->sym, f1->sym))
1011 && !((gfc_option.allow_std & GFC_STD_F2008)
1012 && ((f1->sym->attr.allocatable && f2->sym->attr.pointer)
1013 || (f2->sym->attr.allocatable && f1->sym->attr.pointer))))
1014 goto next;
1016 /* Now search for a disambiguating keyword argument starting at
1017 the current non-match. */
1018 for (g = f1; g; g = g->next)
1020 if (g->sym->attr.optional || (p1 && strcmp (g->sym->name, p1) == 0))
1021 continue;
1023 sym = find_keyword_arg (g->sym->name, f2_save);
1024 if (sym == NULL || !compare_type_rank (g->sym, sym)
1025 || ((gfc_option.allow_std & GFC_STD_F2008)
1026 && ((sym->attr.allocatable && g->sym->attr.pointer)
1027 || (sym->attr.pointer && g->sym->attr.allocatable))))
1028 return 1;
1031 next:
1032 if (f1 != NULL)
1033 f1 = f1->next;
1034 if (f2 != NULL)
1035 f2 = f2->next;
1038 return 0;
1042 static int
1043 symbol_rank (gfc_symbol *sym)
1045 gfc_array_spec *as;
1046 as = (sym->ts.type == BT_CLASS) ? CLASS_DATA (sym)->as : sym->as;
1047 return as ? as->rank : 0;
1051 /* Check if the characteristics of two dummy arguments match,
1052 cf. F08:12.3.2. */
1054 static bool
1055 check_dummy_characteristics (gfc_symbol *s1, gfc_symbol *s2,
1056 bool type_must_agree, char *errmsg, int err_len)
1058 if (s1 == NULL || s2 == NULL)
1059 return s1 == s2 ? true : false;
1061 /* Check type and rank. */
1062 if (type_must_agree)
1064 if (!compare_type (s1, s2) || !compare_type (s2, s1))
1066 snprintf (errmsg, err_len, "Type mismatch in argument '%s' (%s/%s)",
1067 s1->name, gfc_typename (&s1->ts), gfc_typename (&s2->ts));
1068 return false;
1070 if (!compare_rank (s1, s2))
1072 snprintf (errmsg, err_len, "Rank mismatch in argument '%s' (%i/%i)",
1073 s1->name, symbol_rank (s1), symbol_rank (s2));
1074 return false;
1078 /* Check INTENT. */
1079 if (s1->attr.intent != s2->attr.intent)
1081 snprintf (errmsg, err_len, "INTENT mismatch in argument '%s'",
1082 s1->name);
1083 return false;
1086 /* Check OPTIONAL attribute. */
1087 if (s1->attr.optional != s2->attr.optional)
1089 snprintf (errmsg, err_len, "OPTIONAL mismatch in argument '%s'",
1090 s1->name);
1091 return false;
1094 /* Check ALLOCATABLE attribute. */
1095 if (s1->attr.allocatable != s2->attr.allocatable)
1097 snprintf (errmsg, err_len, "ALLOCATABLE mismatch in argument '%s'",
1098 s1->name);
1099 return false;
1102 /* Check POINTER attribute. */
1103 if (s1->attr.pointer != s2->attr.pointer)
1105 snprintf (errmsg, err_len, "POINTER mismatch in argument '%s'",
1106 s1->name);
1107 return false;
1110 /* Check TARGET attribute. */
1111 if (s1->attr.target != s2->attr.target)
1113 snprintf (errmsg, err_len, "TARGET mismatch in argument '%s'",
1114 s1->name);
1115 return false;
1118 /* Check ASYNCHRONOUS attribute. */
1119 if (s1->attr.asynchronous != s2->attr.asynchronous)
1121 snprintf (errmsg, err_len, "ASYNCHRONOUS mismatch in argument '%s'",
1122 s1->name);
1123 return false;
1126 /* Check CONTIGUOUS attribute. */
1127 if (s1->attr.contiguous != s2->attr.contiguous)
1129 snprintf (errmsg, err_len, "CONTIGUOUS mismatch in argument '%s'",
1130 s1->name);
1131 return false;
1134 /* Check VALUE attribute. */
1135 if (s1->attr.value != s2->attr.value)
1137 snprintf (errmsg, err_len, "VALUE mismatch in argument '%s'",
1138 s1->name);
1139 return false;
1142 /* Check VOLATILE attribute. */
1143 if (s1->attr.volatile_ != s2->attr.volatile_)
1145 snprintf (errmsg, err_len, "VOLATILE mismatch in argument '%s'",
1146 s1->name);
1147 return false;
1150 /* Check interface of dummy procedures. */
1151 if (s1->attr.flavor == FL_PROCEDURE)
1153 char err[200];
1154 if (!gfc_compare_interfaces (s1, s2, s2->name, 0, 1, err, sizeof(err),
1155 NULL, NULL))
1157 snprintf (errmsg, err_len, "Interface mismatch in dummy procedure "
1158 "'%s': %s", s1->name, err);
1159 return false;
1163 /* Check string length. */
1164 if (s1->ts.type == BT_CHARACTER
1165 && s1->ts.u.cl && s1->ts.u.cl->length
1166 && s2->ts.u.cl && s2->ts.u.cl->length)
1168 int compval = gfc_dep_compare_expr (s1->ts.u.cl->length,
1169 s2->ts.u.cl->length);
1170 switch (compval)
1172 case -1:
1173 case 1:
1174 case -3:
1175 snprintf (errmsg, err_len, "Character length mismatch "
1176 "in argument '%s'", s1->name);
1177 return false;
1179 case -2:
1180 /* FIXME: Implement a warning for this case.
1181 gfc_warning ("Possible character length mismatch in argument %qs",
1182 s1->name);*/
1183 break;
1185 case 0:
1186 break;
1188 default:
1189 gfc_internal_error ("check_dummy_characteristics: Unexpected result "
1190 "%i of gfc_dep_compare_expr", compval);
1191 break;
1195 /* Check array shape. */
1196 if (s1->as && s2->as)
1198 int i, compval;
1199 gfc_expr *shape1, *shape2;
1201 if (s1->as->type != s2->as->type)
1203 snprintf (errmsg, err_len, "Shape mismatch in argument '%s'",
1204 s1->name);
1205 return false;
1208 if (s1->as->type == AS_EXPLICIT)
1209 for (i = 0; i < s1->as->rank + s1->as->corank; i++)
1211 shape1 = gfc_subtract (gfc_copy_expr (s1->as->upper[i]),
1212 gfc_copy_expr (s1->as->lower[i]));
1213 shape2 = gfc_subtract (gfc_copy_expr (s2->as->upper[i]),
1214 gfc_copy_expr (s2->as->lower[i]));
1215 compval = gfc_dep_compare_expr (shape1, shape2);
1216 gfc_free_expr (shape1);
1217 gfc_free_expr (shape2);
1218 switch (compval)
1220 case -1:
1221 case 1:
1222 case -3:
1223 snprintf (errmsg, err_len, "Shape mismatch in dimension %i of "
1224 "argument '%s'", i + 1, s1->name);
1225 return false;
1227 case -2:
1228 /* FIXME: Implement a warning for this case.
1229 gfc_warning ("Possible shape mismatch in argument %qs",
1230 s1->name);*/
1231 break;
1233 case 0:
1234 break;
1236 default:
1237 gfc_internal_error ("check_dummy_characteristics: Unexpected "
1238 "result %i of gfc_dep_compare_expr",
1239 compval);
1240 break;
1245 return true;
1249 /* Check if the characteristics of two function results match,
1250 cf. F08:12.3.3. */
1252 static bool
1253 check_result_characteristics (gfc_symbol *s1, gfc_symbol *s2,
1254 char *errmsg, int err_len)
1256 gfc_symbol *r1, *r2;
1258 if (s1->ts.interface && s1->ts.interface->result)
1259 r1 = s1->ts.interface->result;
1260 else
1261 r1 = s1->result ? s1->result : s1;
1263 if (s2->ts.interface && s2->ts.interface->result)
1264 r2 = s2->ts.interface->result;
1265 else
1266 r2 = s2->result ? s2->result : s2;
1268 if (r1->ts.type == BT_UNKNOWN)
1269 return true;
1271 /* Check type and rank. */
1272 if (!compare_type (r1, r2))
1274 snprintf (errmsg, err_len, "Type mismatch in function result (%s/%s)",
1275 gfc_typename (&r1->ts), gfc_typename (&r2->ts));
1276 return false;
1278 if (!compare_rank (r1, r2))
1280 snprintf (errmsg, err_len, "Rank mismatch in function result (%i/%i)",
1281 symbol_rank (r1), symbol_rank (r2));
1282 return false;
1285 /* Check ALLOCATABLE attribute. */
1286 if (r1->attr.allocatable != r2->attr.allocatable)
1288 snprintf (errmsg, err_len, "ALLOCATABLE attribute mismatch in "
1289 "function result");
1290 return false;
1293 /* Check POINTER attribute. */
1294 if (r1->attr.pointer != r2->attr.pointer)
1296 snprintf (errmsg, err_len, "POINTER attribute mismatch in "
1297 "function result");
1298 return false;
1301 /* Check CONTIGUOUS attribute. */
1302 if (r1->attr.contiguous != r2->attr.contiguous)
1304 snprintf (errmsg, err_len, "CONTIGUOUS attribute mismatch in "
1305 "function result");
1306 return false;
1309 /* Check PROCEDURE POINTER attribute. */
1310 if (r1 != s1 && r1->attr.proc_pointer != r2->attr.proc_pointer)
1312 snprintf (errmsg, err_len, "PROCEDURE POINTER mismatch in "
1313 "function result");
1314 return false;
1317 /* Check string length. */
1318 if (r1->ts.type == BT_CHARACTER && r1->ts.u.cl && r2->ts.u.cl)
1320 if (r1->ts.deferred != r2->ts.deferred)
1322 snprintf (errmsg, err_len, "Character length mismatch "
1323 "in function result");
1324 return false;
1327 if (r1->ts.u.cl->length && r2->ts.u.cl->length)
1329 int compval = gfc_dep_compare_expr (r1->ts.u.cl->length,
1330 r2->ts.u.cl->length);
1331 switch (compval)
1333 case -1:
1334 case 1:
1335 case -3:
1336 snprintf (errmsg, err_len, "Character length mismatch "
1337 "in function result");
1338 return false;
1340 case -2:
1341 /* FIXME: Implement a warning for this case.
1342 snprintf (errmsg, err_len, "Possible character length mismatch "
1343 "in function result");*/
1344 break;
1346 case 0:
1347 break;
1349 default:
1350 gfc_internal_error ("check_result_characteristics (1): Unexpected "
1351 "result %i of gfc_dep_compare_expr", compval);
1352 break;
1357 /* Check array shape. */
1358 if (!r1->attr.allocatable && !r1->attr.pointer && r1->as && r2->as)
1360 int i, compval;
1361 gfc_expr *shape1, *shape2;
1363 if (r1->as->type != r2->as->type)
1365 snprintf (errmsg, err_len, "Shape mismatch in function result");
1366 return false;
1369 if (r1->as->type == AS_EXPLICIT)
1370 for (i = 0; i < r1->as->rank + r1->as->corank; i++)
1372 shape1 = gfc_subtract (gfc_copy_expr (r1->as->upper[i]),
1373 gfc_copy_expr (r1->as->lower[i]));
1374 shape2 = gfc_subtract (gfc_copy_expr (r2->as->upper[i]),
1375 gfc_copy_expr (r2->as->lower[i]));
1376 compval = gfc_dep_compare_expr (shape1, shape2);
1377 gfc_free_expr (shape1);
1378 gfc_free_expr (shape2);
1379 switch (compval)
1381 case -1:
1382 case 1:
1383 case -3:
1384 snprintf (errmsg, err_len, "Shape mismatch in dimension %i of "
1385 "function result", i + 1);
1386 return false;
1388 case -2:
1389 /* FIXME: Implement a warning for this case.
1390 gfc_warning ("Possible shape mismatch in return value");*/
1391 break;
1393 case 0:
1394 break;
1396 default:
1397 gfc_internal_error ("check_result_characteristics (2): "
1398 "Unexpected result %i of "
1399 "gfc_dep_compare_expr", compval);
1400 break;
1405 return true;
1409 /* 'Compare' two formal interfaces associated with a pair of symbols.
1410 We return nonzero if there exists an actual argument list that
1411 would be ambiguous between the two interfaces, zero otherwise.
1412 'strict_flag' specifies whether all the characteristics are
1413 required to match, which is not the case for ambiguity checks.
1414 'p1' and 'p2' are the PASS arguments of both procedures (if applicable). */
1417 gfc_compare_interfaces (gfc_symbol *s1, gfc_symbol *s2, const char *name2,
1418 int generic_flag, int strict_flag,
1419 char *errmsg, int err_len,
1420 const char *p1, const char *p2)
1422 gfc_formal_arglist *f1, *f2;
1424 gcc_assert (name2 != NULL);
1426 if (s1->attr.function && (s2->attr.subroutine
1427 || (!s2->attr.function && s2->ts.type == BT_UNKNOWN
1428 && gfc_get_default_type (name2, s2->ns)->type == BT_UNKNOWN)))
1430 if (errmsg != NULL)
1431 snprintf (errmsg, err_len, "'%s' is not a function", name2);
1432 return 0;
1435 if (s1->attr.subroutine && s2->attr.function)
1437 if (errmsg != NULL)
1438 snprintf (errmsg, err_len, "'%s' is not a subroutine", name2);
1439 return 0;
1442 /* Do strict checks on all characteristics
1443 (for dummy procedures and procedure pointer assignments). */
1444 if (!generic_flag && strict_flag)
1446 if (s1->attr.function && s2->attr.function)
1448 /* If both are functions, check result characteristics. */
1449 if (!check_result_characteristics (s1, s2, errmsg, err_len)
1450 || !check_result_characteristics (s2, s1, errmsg, err_len))
1451 return 0;
1454 if (s1->attr.pure && !s2->attr.pure)
1456 snprintf (errmsg, err_len, "Mismatch in PURE attribute");
1457 return 0;
1459 if (s1->attr.elemental && !s2->attr.elemental)
1461 snprintf (errmsg, err_len, "Mismatch in ELEMENTAL attribute");
1462 return 0;
1466 if (s1->attr.if_source == IFSRC_UNKNOWN
1467 || s2->attr.if_source == IFSRC_UNKNOWN)
1468 return 1;
1470 f1 = gfc_sym_get_dummy_args (s1);
1471 f2 = gfc_sym_get_dummy_args (s2);
1473 if (f1 == NULL && f2 == NULL)
1474 return 1; /* Special case: No arguments. */
1476 if (generic_flag)
1478 if (count_types_test (f1, f2, p1, p2)
1479 || count_types_test (f2, f1, p2, p1))
1480 return 0;
1481 if (generic_correspondence (f1, f2, p1, p2)
1482 || generic_correspondence (f2, f1, p2, p1))
1483 return 0;
1485 else
1486 /* Perform the abbreviated correspondence test for operators (the
1487 arguments cannot be optional and are always ordered correctly).
1488 This is also done when comparing interfaces for dummy procedures and in
1489 procedure pointer assignments. */
1491 for (;;)
1493 /* Check existence. */
1494 if (f1 == NULL && f2 == NULL)
1495 break;
1496 if (f1 == NULL || f2 == NULL)
1498 if (errmsg != NULL)
1499 snprintf (errmsg, err_len, "'%s' has the wrong number of "
1500 "arguments", name2);
1501 return 0;
1504 if (UNLIMITED_POLY (f1->sym))
1505 goto next;
1507 if (strict_flag)
1509 /* Check all characteristics. */
1510 if (!check_dummy_characteristics (f1->sym, f2->sym, true,
1511 errmsg, err_len))
1512 return 0;
1514 else
1516 /* Only check type and rank. */
1517 if (!compare_type (f2->sym, f1->sym))
1519 if (errmsg != NULL)
1520 snprintf (errmsg, err_len, "Type mismatch in argument '%s' "
1521 "(%s/%s)", f1->sym->name,
1522 gfc_typename (&f1->sym->ts),
1523 gfc_typename (&f2->sym->ts));
1524 return 0;
1526 if (!compare_rank (f2->sym, f1->sym))
1528 if (errmsg != NULL)
1529 snprintf (errmsg, err_len, "Rank mismatch in argument '%s' "
1530 "(%i/%i)", f1->sym->name, symbol_rank (f1->sym),
1531 symbol_rank (f2->sym));
1532 return 0;
1535 next:
1536 f1 = f1->next;
1537 f2 = f2->next;
1540 return 1;
1544 /* Given a pointer to an interface pointer, remove duplicate
1545 interfaces and make sure that all symbols are either functions
1546 or subroutines, and all of the same kind. Returns nonzero if
1547 something goes wrong. */
1549 static int
1550 check_interface0 (gfc_interface *p, const char *interface_name)
1552 gfc_interface *psave, *q, *qlast;
1554 psave = p;
1555 for (; p; p = p->next)
1557 /* Make sure all symbols in the interface have been defined as
1558 functions or subroutines. */
1559 if (((!p->sym->attr.function && !p->sym->attr.subroutine)
1560 || !p->sym->attr.if_source)
1561 && p->sym->attr.flavor != FL_DERIVED)
1563 if (p->sym->attr.external)
1564 gfc_error ("Procedure %qs in %s at %L has no explicit interface",
1565 p->sym->name, interface_name, &p->sym->declared_at);
1566 else
1567 gfc_error ("Procedure %qs in %s at %L is neither function nor "
1568 "subroutine", p->sym->name, interface_name,
1569 &p->sym->declared_at);
1570 return 1;
1573 /* Verify that procedures are either all SUBROUTINEs or all FUNCTIONs. */
1574 if ((psave->sym->attr.function && !p->sym->attr.function
1575 && p->sym->attr.flavor != FL_DERIVED)
1576 || (psave->sym->attr.subroutine && !p->sym->attr.subroutine))
1578 if (p->sym->attr.flavor != FL_DERIVED)
1579 gfc_error ("In %s at %L procedures must be either all SUBROUTINEs"
1580 " or all FUNCTIONs", interface_name,
1581 &p->sym->declared_at);
1582 else
1583 gfc_error ("In %s at %L procedures must be all FUNCTIONs as the "
1584 "generic name is also the name of a derived type",
1585 interface_name, &p->sym->declared_at);
1586 return 1;
1589 /* F2003, C1207. F2008, C1207. */
1590 if (p->sym->attr.proc == PROC_INTERNAL
1591 && !gfc_notify_std (GFC_STD_F2008, "Internal procedure "
1592 "%qs in %s at %L", p->sym->name,
1593 interface_name, &p->sym->declared_at))
1594 return 1;
1596 p = psave;
1598 /* Remove duplicate interfaces in this interface list. */
1599 for (; p; p = p->next)
1601 qlast = p;
1603 for (q = p->next; q;)
1605 if (p->sym != q->sym)
1607 qlast = q;
1608 q = q->next;
1610 else
1612 /* Duplicate interface. */
1613 qlast->next = q->next;
1614 free (q);
1615 q = qlast->next;
1620 return 0;
1624 /* Check lists of interfaces to make sure that no two interfaces are
1625 ambiguous. Duplicate interfaces (from the same symbol) are OK here. */
1627 static int
1628 check_interface1 (gfc_interface *p, gfc_interface *q0,
1629 int generic_flag, const char *interface_name,
1630 bool referenced)
1632 gfc_interface *q;
1633 for (; p; p = p->next)
1634 for (q = q0; q; q = q->next)
1636 if (p->sym == q->sym)
1637 continue; /* Duplicates OK here. */
1639 if (p->sym->name == q->sym->name && p->sym->module == q->sym->module)
1640 continue;
1642 if (p->sym->attr.flavor != FL_DERIVED
1643 && q->sym->attr.flavor != FL_DERIVED
1644 && gfc_compare_interfaces (p->sym, q->sym, q->sym->name,
1645 generic_flag, 0, NULL, 0, NULL, NULL))
1647 if (referenced)
1648 gfc_error ("Ambiguous interfaces %qs and %qs in %s at %L",
1649 p->sym->name, q->sym->name, interface_name,
1650 &p->where);
1651 else if (!p->sym->attr.use_assoc && q->sym->attr.use_assoc)
1652 gfc_warning ("Ambiguous interfaces %qs and %qs in %s at %L",
1653 p->sym->name, q->sym->name, interface_name,
1654 &p->where);
1655 else
1656 gfc_warning ("Although not referenced, %qs has ambiguous "
1657 "interfaces at %L", interface_name, &p->where);
1658 return 1;
1661 return 0;
1665 /* Check the generic and operator interfaces of symbols to make sure
1666 that none of the interfaces conflict. The check has to be done
1667 after all of the symbols are actually loaded. */
1669 static void
1670 check_sym_interfaces (gfc_symbol *sym)
1672 char interface_name[100];
1673 gfc_interface *p;
1675 if (sym->ns != gfc_current_ns)
1676 return;
1678 if (sym->generic != NULL)
1680 sprintf (interface_name, "generic interface '%s'", sym->name);
1681 if (check_interface0 (sym->generic, interface_name))
1682 return;
1684 for (p = sym->generic; p; p = p->next)
1686 if (p->sym->attr.mod_proc
1687 && (p->sym->attr.if_source != IFSRC_DECL
1688 || p->sym->attr.procedure))
1690 gfc_error ("%qs at %L is not a module procedure",
1691 p->sym->name, &p->where);
1692 return;
1696 /* Originally, this test was applied to host interfaces too;
1697 this is incorrect since host associated symbols, from any
1698 source, cannot be ambiguous with local symbols. */
1699 check_interface1 (sym->generic, sym->generic, 1, interface_name,
1700 sym->attr.referenced || !sym->attr.use_assoc);
1705 static void
1706 check_uop_interfaces (gfc_user_op *uop)
1708 char interface_name[100];
1709 gfc_user_op *uop2;
1710 gfc_namespace *ns;
1712 sprintf (interface_name, "operator interface '%s'", uop->name);
1713 if (check_interface0 (uop->op, interface_name))
1714 return;
1716 for (ns = gfc_current_ns; ns; ns = ns->parent)
1718 uop2 = gfc_find_uop (uop->name, ns);
1719 if (uop2 == NULL)
1720 continue;
1722 check_interface1 (uop->op, uop2->op, 0,
1723 interface_name, true);
1727 /* Given an intrinsic op, return an equivalent op if one exists,
1728 or INTRINSIC_NONE otherwise. */
1730 gfc_intrinsic_op
1731 gfc_equivalent_op (gfc_intrinsic_op op)
1733 switch(op)
1735 case INTRINSIC_EQ:
1736 return INTRINSIC_EQ_OS;
1738 case INTRINSIC_EQ_OS:
1739 return INTRINSIC_EQ;
1741 case INTRINSIC_NE:
1742 return INTRINSIC_NE_OS;
1744 case INTRINSIC_NE_OS:
1745 return INTRINSIC_NE;
1747 case INTRINSIC_GT:
1748 return INTRINSIC_GT_OS;
1750 case INTRINSIC_GT_OS:
1751 return INTRINSIC_GT;
1753 case INTRINSIC_GE:
1754 return INTRINSIC_GE_OS;
1756 case INTRINSIC_GE_OS:
1757 return INTRINSIC_GE;
1759 case INTRINSIC_LT:
1760 return INTRINSIC_LT_OS;
1762 case INTRINSIC_LT_OS:
1763 return INTRINSIC_LT;
1765 case INTRINSIC_LE:
1766 return INTRINSIC_LE_OS;
1768 case INTRINSIC_LE_OS:
1769 return INTRINSIC_LE;
1771 default:
1772 return INTRINSIC_NONE;
1776 /* For the namespace, check generic, user operator and intrinsic
1777 operator interfaces for consistency and to remove duplicate
1778 interfaces. We traverse the whole namespace, counting on the fact
1779 that most symbols will not have generic or operator interfaces. */
1781 void
1782 gfc_check_interfaces (gfc_namespace *ns)
1784 gfc_namespace *old_ns, *ns2;
1785 char interface_name[100];
1786 int i;
1788 old_ns = gfc_current_ns;
1789 gfc_current_ns = ns;
1791 gfc_traverse_ns (ns, check_sym_interfaces);
1793 gfc_traverse_user_op (ns, check_uop_interfaces);
1795 for (i = GFC_INTRINSIC_BEGIN; i != GFC_INTRINSIC_END; i++)
1797 if (i == INTRINSIC_USER)
1798 continue;
1800 if (i == INTRINSIC_ASSIGN)
1801 strcpy (interface_name, "intrinsic assignment operator");
1802 else
1803 sprintf (interface_name, "intrinsic '%s' operator",
1804 gfc_op2string ((gfc_intrinsic_op) i));
1806 if (check_interface0 (ns->op[i], interface_name))
1807 continue;
1809 if (ns->op[i])
1810 gfc_check_operator_interface (ns->op[i]->sym, (gfc_intrinsic_op) i,
1811 ns->op[i]->where);
1813 for (ns2 = ns; ns2; ns2 = ns2->parent)
1815 gfc_intrinsic_op other_op;
1817 if (check_interface1 (ns->op[i], ns2->op[i], 0,
1818 interface_name, true))
1819 goto done;
1821 /* i should be gfc_intrinsic_op, but has to be int with this cast
1822 here for stupid C++ compatibility rules. */
1823 other_op = gfc_equivalent_op ((gfc_intrinsic_op) i);
1824 if (other_op != INTRINSIC_NONE
1825 && check_interface1 (ns->op[i], ns2->op[other_op],
1826 0, interface_name, true))
1827 goto done;
1831 done:
1832 gfc_current_ns = old_ns;
1836 /* Given a symbol of a formal argument list and an expression, if the
1837 formal argument is allocatable, check that the actual argument is
1838 allocatable. Returns nonzero if compatible, zero if not compatible. */
1840 static int
1841 compare_allocatable (gfc_symbol *formal, gfc_expr *actual)
1843 symbol_attribute attr;
1845 if (formal->attr.allocatable
1846 || (formal->ts.type == BT_CLASS && CLASS_DATA (formal)->attr.allocatable))
1848 attr = gfc_expr_attr (actual);
1849 if (!attr.allocatable)
1850 return 0;
1853 return 1;
1857 /* Given a symbol of a formal argument list and an expression, if the
1858 formal argument is a pointer, see if the actual argument is a
1859 pointer. Returns nonzero if compatible, zero if not compatible. */
1861 static int
1862 compare_pointer (gfc_symbol *formal, gfc_expr *actual)
1864 symbol_attribute attr;
1866 if (formal->attr.pointer
1867 || (formal->ts.type == BT_CLASS && CLASS_DATA (formal)
1868 && CLASS_DATA (formal)->attr.class_pointer))
1870 attr = gfc_expr_attr (actual);
1872 /* Fortran 2008 allows non-pointer actual arguments. */
1873 if (!attr.pointer && attr.target && formal->attr.intent == INTENT_IN)
1874 return 2;
1876 if (!attr.pointer)
1877 return 0;
1880 return 1;
1884 /* Emit clear error messages for rank mismatch. */
1886 static void
1887 argument_rank_mismatch (const char *name, locus *where,
1888 int rank1, int rank2)
1891 /* TS 29113, C407b. */
1892 if (rank2 == -1)
1894 gfc_error ("The assumed-rank array at %L requires that the dummy argument"
1895 " %qs has assumed-rank", where, name);
1897 else if (rank1 == 0)
1899 gfc_error ("Rank mismatch in argument %qs at %L "
1900 "(scalar and rank-%d)", name, where, rank2);
1902 else if (rank2 == 0)
1904 gfc_error ("Rank mismatch in argument %qs at %L "
1905 "(rank-%d and scalar)", name, where, rank1);
1907 else
1909 gfc_error ("Rank mismatch in argument %qs at %L "
1910 "(rank-%d and rank-%d)", name, where, rank1, rank2);
1915 /* Given a symbol of a formal argument list and an expression, see if
1916 the two are compatible as arguments. Returns nonzero if
1917 compatible, zero if not compatible. */
1919 static int
1920 compare_parameter (gfc_symbol *formal, gfc_expr *actual,
1921 int ranks_must_agree, int is_elemental, locus *where)
1923 gfc_ref *ref;
1924 bool rank_check, is_pointer;
1926 /* If the formal arg has type BT_VOID, it's to one of the iso_c_binding
1927 procs c_f_pointer or c_f_procpointer, and we need to accept most
1928 pointers the user could give us. This should allow that. */
1929 if (formal->ts.type == BT_VOID)
1930 return 1;
1932 if (formal->ts.type == BT_DERIVED
1933 && formal->ts.u.derived && formal->ts.u.derived->ts.is_iso_c
1934 && actual->ts.type == BT_DERIVED
1935 && actual->ts.u.derived && actual->ts.u.derived->ts.is_iso_c)
1936 return 1;
1938 if (formal->ts.type == BT_CLASS && actual->ts.type == BT_DERIVED)
1939 /* Make sure the vtab symbol is present when
1940 the module variables are generated. */
1941 gfc_find_derived_vtab (actual->ts.u.derived);
1943 if (actual->ts.type == BT_PROCEDURE)
1945 char err[200];
1946 gfc_symbol *act_sym = actual->symtree->n.sym;
1948 if (formal->attr.flavor != FL_PROCEDURE)
1950 if (where)
1951 gfc_error ("Invalid procedure argument at %L", &actual->where);
1952 return 0;
1955 if (!gfc_compare_interfaces (formal, act_sym, act_sym->name, 0, 1, err,
1956 sizeof(err), NULL, NULL))
1958 if (where)
1959 gfc_error ("Interface mismatch in dummy procedure %qs at %L: %s",
1960 formal->name, &actual->where, err);
1961 return 0;
1964 if (formal->attr.function && !act_sym->attr.function)
1966 gfc_add_function (&act_sym->attr, act_sym->name,
1967 &act_sym->declared_at);
1968 if (act_sym->ts.type == BT_UNKNOWN
1969 && !gfc_set_default_type (act_sym, 1, act_sym->ns))
1970 return 0;
1972 else if (formal->attr.subroutine && !act_sym->attr.subroutine)
1973 gfc_add_subroutine (&act_sym->attr, act_sym->name,
1974 &act_sym->declared_at);
1976 return 1;
1979 /* F2008, C1241. */
1980 if (formal->attr.pointer && formal->attr.contiguous
1981 && !gfc_is_simply_contiguous (actual, true))
1983 if (where)
1984 gfc_error ("Actual argument to contiguous pointer dummy %qs at %L "
1985 "must be simply contiguous", formal->name, &actual->where);
1986 return 0;
1989 if ((actual->expr_type != EXPR_NULL || actual->ts.type != BT_UNKNOWN)
1990 && actual->ts.type != BT_HOLLERITH
1991 && formal->ts.type != BT_ASSUMED
1992 && !(formal->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
1993 && !gfc_compare_types (&formal->ts, &actual->ts)
1994 && !(formal->ts.type == BT_DERIVED && actual->ts.type == BT_CLASS
1995 && gfc_compare_derived_types (formal->ts.u.derived,
1996 CLASS_DATA (actual)->ts.u.derived)))
1998 if (where)
1999 gfc_error ("Type mismatch in argument %qs at %L; passed %s to %s",
2000 formal->name, &actual->where, gfc_typename (&actual->ts),
2001 gfc_typename (&formal->ts));
2002 return 0;
2005 if (actual->ts.type == BT_ASSUMED && formal->ts.type != BT_ASSUMED)
2007 if (where)
2008 gfc_error ("Assumed-type actual argument at %L requires that dummy "
2009 "argument %qs is of assumed type", &actual->where,
2010 formal->name);
2011 return 0;
2014 /* F2008, 12.5.2.5; IR F08/0073. */
2015 if (formal->ts.type == BT_CLASS && formal->attr.class_ok
2016 && actual->expr_type != EXPR_NULL
2017 && ((CLASS_DATA (formal)->attr.class_pointer
2018 && formal->attr.intent != INTENT_IN)
2019 || CLASS_DATA (formal)->attr.allocatable))
2021 if (actual->ts.type != BT_CLASS)
2023 if (where)
2024 gfc_error ("Actual argument to %qs at %L must be polymorphic",
2025 formal->name, &actual->where);
2026 return 0;
2029 if (!gfc_expr_attr (actual).class_ok)
2030 return 0;
2032 if ((!UNLIMITED_POLY (formal) || !UNLIMITED_POLY(actual))
2033 && !gfc_compare_derived_types (CLASS_DATA (actual)->ts.u.derived,
2034 CLASS_DATA (formal)->ts.u.derived))
2036 if (where)
2037 gfc_error ("Actual argument to %qs at %L must have the same "
2038 "declared type", formal->name, &actual->where);
2039 return 0;
2043 /* F08: 12.5.2.5 Allocatable and pointer dummy variables. However, this
2044 is necessary also for F03, so retain error for both.
2045 NOTE: Other type/kind errors pre-empt this error. Since they are F03
2046 compatible, no attempt has been made to channel to this one. */
2047 if (UNLIMITED_POLY (formal) && !UNLIMITED_POLY (actual)
2048 && (CLASS_DATA (formal)->attr.allocatable
2049 ||CLASS_DATA (formal)->attr.class_pointer))
2051 if (where)
2052 gfc_error ("Actual argument to %qs at %L must be unlimited "
2053 "polymorphic since the formal argument is a "
2054 "pointer or allocatable unlimited polymorphic "
2055 "entity [F2008: 12.5.2.5]", formal->name,
2056 &actual->where);
2057 return 0;
2060 if (formal->attr.codimension && !gfc_is_coarray (actual))
2062 if (where)
2063 gfc_error ("Actual argument to %qs at %L must be a coarray",
2064 formal->name, &actual->where);
2065 return 0;
2068 if (formal->attr.codimension && formal->attr.allocatable)
2070 gfc_ref *last = NULL;
2072 for (ref = actual->ref; ref; ref = ref->next)
2073 if (ref->type == REF_COMPONENT)
2074 last = ref;
2076 /* F2008, 12.5.2.6. */
2077 if ((last && last->u.c.component->as->corank != formal->as->corank)
2078 || (!last
2079 && actual->symtree->n.sym->as->corank != formal->as->corank))
2081 if (where)
2082 gfc_error ("Corank mismatch in argument %qs at %L (%d and %d)",
2083 formal->name, &actual->where, formal->as->corank,
2084 last ? last->u.c.component->as->corank
2085 : actual->symtree->n.sym->as->corank);
2086 return 0;
2090 if (formal->attr.codimension)
2092 /* F2008, 12.5.2.8. */
2093 if (formal->attr.dimension
2094 && (formal->attr.contiguous || formal->as->type != AS_ASSUMED_SHAPE)
2095 && gfc_expr_attr (actual).dimension
2096 && !gfc_is_simply_contiguous (actual, true))
2098 if (where)
2099 gfc_error ("Actual argument to %qs at %L must be simply "
2100 "contiguous", formal->name, &actual->where);
2101 return 0;
2104 /* F2008, C1303 and C1304. */
2105 if (formal->attr.intent != INTENT_INOUT
2106 && (((formal->ts.type == BT_DERIVED || formal->ts.type == BT_CLASS)
2107 && formal->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
2108 && formal->ts.u.derived->intmod_sym_id == ISOFORTRAN_LOCK_TYPE)
2109 || formal->attr.lock_comp))
2112 if (where)
2113 gfc_error ("Actual argument to non-INTENT(INOUT) dummy %qs at %L, "
2114 "which is LOCK_TYPE or has a LOCK_TYPE component",
2115 formal->name, &actual->where);
2116 return 0;
2120 /* F2008, C1239/C1240. */
2121 if (actual->expr_type == EXPR_VARIABLE
2122 && (actual->symtree->n.sym->attr.asynchronous
2123 || actual->symtree->n.sym->attr.volatile_)
2124 && (formal->attr.asynchronous || formal->attr.volatile_)
2125 && actual->rank && formal->as && !gfc_is_simply_contiguous (actual, true)
2126 && ((formal->as->type != AS_ASSUMED_SHAPE
2127 && formal->as->type != AS_ASSUMED_RANK && !formal->attr.pointer)
2128 || formal->attr.contiguous))
2130 if (where)
2131 gfc_error ("Dummy argument %qs has to be a pointer, assumed-shape or "
2132 "assumed-rank array without CONTIGUOUS attribute - as actual"
2133 " argument at %L is not simply contiguous and both are "
2134 "ASYNCHRONOUS or VOLATILE", formal->name, &actual->where);
2135 return 0;
2138 if (formal->attr.allocatable && !formal->attr.codimension
2139 && gfc_expr_attr (actual).codimension)
2141 if (formal->attr.intent == INTENT_OUT)
2143 if (where)
2144 gfc_error ("Passing coarray at %L to allocatable, noncoarray, "
2145 "INTENT(OUT) dummy argument %qs", &actual->where,
2146 formal->name);
2147 return 0;
2149 else if (warn_surprising && where && formal->attr.intent != INTENT_IN)
2150 gfc_warning (OPT_Wsurprising,
2151 "Passing coarray at %L to allocatable, noncoarray dummy "
2152 "argument %qs, which is invalid if the allocation status"
2153 " is modified", &actual->where, formal->name);
2156 /* If the rank is the same or the formal argument has assumed-rank. */
2157 if (symbol_rank (formal) == actual->rank || symbol_rank (formal) == -1)
2158 return 1;
2160 rank_check = where != NULL && !is_elemental && formal->as
2161 && (formal->as->type == AS_ASSUMED_SHAPE
2162 || formal->as->type == AS_DEFERRED)
2163 && actual->expr_type != EXPR_NULL;
2165 /* Skip rank checks for NO_ARG_CHECK. */
2166 if (formal->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
2167 return 1;
2169 /* Scalar & coindexed, see: F2008, Section 12.5.2.4. */
2170 if (rank_check || ranks_must_agree
2171 || (formal->attr.pointer && actual->expr_type != EXPR_NULL)
2172 || (actual->rank != 0 && !(is_elemental || formal->attr.dimension))
2173 || (actual->rank == 0
2174 && ((formal->ts.type == BT_CLASS
2175 && CLASS_DATA (formal)->as->type == AS_ASSUMED_SHAPE)
2176 || (formal->ts.type != BT_CLASS
2177 && formal->as->type == AS_ASSUMED_SHAPE))
2178 && actual->expr_type != EXPR_NULL)
2179 || (actual->rank == 0 && formal->attr.dimension
2180 && gfc_is_coindexed (actual)))
2182 if (where)
2183 argument_rank_mismatch (formal->name, &actual->where,
2184 symbol_rank (formal), actual->rank);
2185 return 0;
2187 else if (actual->rank != 0 && (is_elemental || formal->attr.dimension))
2188 return 1;
2190 /* At this point, we are considering a scalar passed to an array. This
2191 is valid (cf. F95 12.4.1.1, F2003 12.4.1.2, and F2008 12.5.2.4),
2192 - if the actual argument is (a substring of) an element of a
2193 non-assumed-shape/non-pointer/non-polymorphic array; or
2194 - (F2003) if the actual argument is of type character of default/c_char
2195 kind. */
2197 is_pointer = actual->expr_type == EXPR_VARIABLE
2198 ? actual->symtree->n.sym->attr.pointer : false;
2200 for (ref = actual->ref; ref; ref = ref->next)
2202 if (ref->type == REF_COMPONENT)
2203 is_pointer = ref->u.c.component->attr.pointer;
2204 else if (ref->type == REF_ARRAY && ref->u.ar.type == AR_ELEMENT
2205 && ref->u.ar.dimen > 0
2206 && (!ref->next
2207 || (ref->next->type == REF_SUBSTRING && !ref->next->next)))
2208 break;
2211 if (actual->ts.type == BT_CLASS && actual->expr_type != EXPR_NULL)
2213 if (where)
2214 gfc_error ("Polymorphic scalar passed to array dummy argument %qs "
2215 "at %L", formal->name, &actual->where);
2216 return 0;
2219 if (actual->expr_type != EXPR_NULL && ref && actual->ts.type != BT_CHARACTER
2220 && (is_pointer || ref->u.ar.as->type == AS_ASSUMED_SHAPE))
2222 if (where)
2223 gfc_error ("Element of assumed-shaped or pointer "
2224 "array passed to array dummy argument %qs at %L",
2225 formal->name, &actual->where);
2226 return 0;
2229 if (actual->ts.type == BT_CHARACTER && actual->expr_type != EXPR_NULL
2230 && (!ref || is_pointer || ref->u.ar.as->type == AS_ASSUMED_SHAPE))
2232 if (formal->ts.kind != 1 && (gfc_option.allow_std & GFC_STD_GNU) == 0)
2234 if (where)
2235 gfc_error ("Extension: Scalar non-default-kind, non-C_CHAR-kind "
2236 "CHARACTER actual argument with array dummy argument "
2237 "%qs at %L", formal->name, &actual->where);
2238 return 0;
2241 if (where && (gfc_option.allow_std & GFC_STD_F2003) == 0)
2243 gfc_error ("Fortran 2003: Scalar CHARACTER actual argument with "
2244 "array dummy argument %qs at %L",
2245 formal->name, &actual->where);
2246 return 0;
2248 else if ((gfc_option.allow_std & GFC_STD_F2003) == 0)
2249 return 0;
2250 else
2251 return 1;
2254 if (ref == NULL && actual->expr_type != EXPR_NULL)
2256 if (where)
2257 argument_rank_mismatch (formal->name, &actual->where,
2258 symbol_rank (formal), actual->rank);
2259 return 0;
2262 return 1;
2266 /* Returns the storage size of a symbol (formal argument) or
2267 zero if it cannot be determined. */
2269 static unsigned long
2270 get_sym_storage_size (gfc_symbol *sym)
2272 int i;
2273 unsigned long strlen, elements;
2275 if (sym->ts.type == BT_CHARACTER)
2277 if (sym->ts.u.cl && sym->ts.u.cl->length
2278 && sym->ts.u.cl->length->expr_type == EXPR_CONSTANT)
2279 strlen = mpz_get_ui (sym->ts.u.cl->length->value.integer);
2280 else
2281 return 0;
2283 else
2284 strlen = 1;
2286 if (symbol_rank (sym) == 0)
2287 return strlen;
2289 elements = 1;
2290 if (sym->as->type != AS_EXPLICIT)
2291 return 0;
2292 for (i = 0; i < sym->as->rank; i++)
2294 if (sym->as->upper[i]->expr_type != EXPR_CONSTANT
2295 || sym->as->lower[i]->expr_type != EXPR_CONSTANT)
2296 return 0;
2298 elements *= mpz_get_si (sym->as->upper[i]->value.integer)
2299 - mpz_get_si (sym->as->lower[i]->value.integer) + 1L;
2302 return strlen*elements;
2306 /* Returns the storage size of an expression (actual argument) or
2307 zero if it cannot be determined. For an array element, it returns
2308 the remaining size as the element sequence consists of all storage
2309 units of the actual argument up to the end of the array. */
2311 static unsigned long
2312 get_expr_storage_size (gfc_expr *e)
2314 int i;
2315 long int strlen, elements;
2316 long int substrlen = 0;
2317 bool is_str_storage = false;
2318 gfc_ref *ref;
2320 if (e == NULL)
2321 return 0;
2323 if (e->ts.type == BT_CHARACTER)
2325 if (e->ts.u.cl && e->ts.u.cl->length
2326 && e->ts.u.cl->length->expr_type == EXPR_CONSTANT)
2327 strlen = mpz_get_si (e->ts.u.cl->length->value.integer);
2328 else if (e->expr_type == EXPR_CONSTANT
2329 && (e->ts.u.cl == NULL || e->ts.u.cl->length == NULL))
2330 strlen = e->value.character.length;
2331 else
2332 return 0;
2334 else
2335 strlen = 1; /* Length per element. */
2337 if (e->rank == 0 && !e->ref)
2338 return strlen;
2340 elements = 1;
2341 if (!e->ref)
2343 if (!e->shape)
2344 return 0;
2345 for (i = 0; i < e->rank; i++)
2346 elements *= mpz_get_si (e->shape[i]);
2347 return elements*strlen;
2350 for (ref = e->ref; ref; ref = ref->next)
2352 if (ref->type == REF_SUBSTRING && ref->u.ss.start
2353 && ref->u.ss.start->expr_type == EXPR_CONSTANT)
2355 if (is_str_storage)
2357 /* The string length is the substring length.
2358 Set now to full string length. */
2359 if (!ref->u.ss.length || !ref->u.ss.length->length
2360 || ref->u.ss.length->length->expr_type != EXPR_CONSTANT)
2361 return 0;
2363 strlen = mpz_get_ui (ref->u.ss.length->length->value.integer);
2365 substrlen = strlen - mpz_get_ui (ref->u.ss.start->value.integer) + 1;
2366 continue;
2369 if (ref->type == REF_ARRAY && ref->u.ar.type == AR_SECTION)
2370 for (i = 0; i < ref->u.ar.dimen; i++)
2372 long int start, end, stride;
2373 stride = 1;
2375 if (ref->u.ar.stride[i])
2377 if (ref->u.ar.stride[i]->expr_type == EXPR_CONSTANT)
2378 stride = mpz_get_si (ref->u.ar.stride[i]->value.integer);
2379 else
2380 return 0;
2383 if (ref->u.ar.start[i])
2385 if (ref->u.ar.start[i]->expr_type == EXPR_CONSTANT)
2386 start = mpz_get_si (ref->u.ar.start[i]->value.integer);
2387 else
2388 return 0;
2390 else if (ref->u.ar.as->lower[i]
2391 && ref->u.ar.as->lower[i]->expr_type == EXPR_CONSTANT)
2392 start = mpz_get_si (ref->u.ar.as->lower[i]->value.integer);
2393 else
2394 return 0;
2396 if (ref->u.ar.end[i])
2398 if (ref->u.ar.end[i]->expr_type == EXPR_CONSTANT)
2399 end = mpz_get_si (ref->u.ar.end[i]->value.integer);
2400 else
2401 return 0;
2403 else if (ref->u.ar.as->upper[i]
2404 && ref->u.ar.as->upper[i]->expr_type == EXPR_CONSTANT)
2405 end = mpz_get_si (ref->u.ar.as->upper[i]->value.integer);
2406 else
2407 return 0;
2409 elements *= (end - start)/stride + 1L;
2411 else if (ref->type == REF_ARRAY && ref->u.ar.type == AR_FULL)
2412 for (i = 0; i < ref->u.ar.as->rank; i++)
2414 if (ref->u.ar.as->lower[i] && ref->u.ar.as->upper[i]
2415 && ref->u.ar.as->lower[i]->expr_type == EXPR_CONSTANT
2416 && ref->u.ar.as->upper[i]->expr_type == EXPR_CONSTANT)
2417 elements *= mpz_get_si (ref->u.ar.as->upper[i]->value.integer)
2418 - mpz_get_si (ref->u.ar.as->lower[i]->value.integer)
2419 + 1L;
2420 else
2421 return 0;
2423 else if (ref->type == REF_ARRAY && ref->u.ar.type == AR_ELEMENT
2424 && e->expr_type == EXPR_VARIABLE)
2426 if (ref->u.ar.as->type == AS_ASSUMED_SHAPE
2427 || e->symtree->n.sym->attr.pointer)
2429 elements = 1;
2430 continue;
2433 /* Determine the number of remaining elements in the element
2434 sequence for array element designators. */
2435 is_str_storage = true;
2436 for (i = ref->u.ar.dimen - 1; i >= 0; i--)
2438 if (ref->u.ar.start[i] == NULL
2439 || ref->u.ar.start[i]->expr_type != EXPR_CONSTANT
2440 || ref->u.ar.as->upper[i] == NULL
2441 || ref->u.ar.as->lower[i] == NULL
2442 || ref->u.ar.as->upper[i]->expr_type != EXPR_CONSTANT
2443 || ref->u.ar.as->lower[i]->expr_type != EXPR_CONSTANT)
2444 return 0;
2446 elements
2447 = elements
2448 * (mpz_get_si (ref->u.ar.as->upper[i]->value.integer)
2449 - mpz_get_si (ref->u.ar.as->lower[i]->value.integer)
2450 + 1L)
2451 - (mpz_get_si (ref->u.ar.start[i]->value.integer)
2452 - mpz_get_si (ref->u.ar.as->lower[i]->value.integer));
2455 else if (ref->type == REF_COMPONENT && ref->u.c.component->attr.function
2456 && ref->u.c.component->attr.proc_pointer
2457 && ref->u.c.component->attr.dimension)
2459 /* Array-valued procedure-pointer components. */
2460 gfc_array_spec *as = ref->u.c.component->as;
2461 for (i = 0; i < as->rank; i++)
2463 if (!as->upper[i] || !as->lower[i]
2464 || as->upper[i]->expr_type != EXPR_CONSTANT
2465 || as->lower[i]->expr_type != EXPR_CONSTANT)
2466 return 0;
2468 elements = elements
2469 * (mpz_get_si (as->upper[i]->value.integer)
2470 - mpz_get_si (as->lower[i]->value.integer) + 1L);
2475 if (substrlen)
2476 return (is_str_storage) ? substrlen + (elements-1)*strlen
2477 : elements*strlen;
2478 else
2479 return elements*strlen;
2483 /* Given an expression, check whether it is an array section
2484 which has a vector subscript. If it has, one is returned,
2485 otherwise zero. */
2488 gfc_has_vector_subscript (gfc_expr *e)
2490 int i;
2491 gfc_ref *ref;
2493 if (e == NULL || e->rank == 0 || e->expr_type != EXPR_VARIABLE)
2494 return 0;
2496 for (ref = e->ref; ref; ref = ref->next)
2497 if (ref->type == REF_ARRAY && ref->u.ar.type == AR_SECTION)
2498 for (i = 0; i < ref->u.ar.dimen; i++)
2499 if (ref->u.ar.dimen_type[i] == DIMEN_VECTOR)
2500 return 1;
2502 return 0;
2506 /* Given formal and actual argument lists, see if they are compatible.
2507 If they are compatible, the actual argument list is sorted to
2508 correspond with the formal list, and elements for missing optional
2509 arguments are inserted. If WHERE pointer is nonnull, then we issue
2510 errors when things don't match instead of just returning the status
2511 code. */
2513 static int
2514 compare_actual_formal (gfc_actual_arglist **ap, gfc_formal_arglist *formal,
2515 int ranks_must_agree, int is_elemental, locus *where)
2517 gfc_actual_arglist **new_arg, *a, *actual, temp;
2518 gfc_formal_arglist *f;
2519 int i, n, na;
2520 unsigned long actual_size, formal_size;
2521 bool full_array = false;
2523 actual = *ap;
2525 if (actual == NULL && formal == NULL)
2526 return 1;
2528 n = 0;
2529 for (f = formal; f; f = f->next)
2530 n++;
2532 new_arg = XALLOCAVEC (gfc_actual_arglist *, n);
2534 for (i = 0; i < n; i++)
2535 new_arg[i] = NULL;
2537 na = 0;
2538 f = formal;
2539 i = 0;
2541 for (a = actual; a; a = a->next, f = f->next)
2543 /* Look for keywords but ignore g77 extensions like %VAL. */
2544 if (a->name != NULL && a->name[0] != '%')
2546 i = 0;
2547 for (f = formal; f; f = f->next, i++)
2549 if (f->sym == NULL)
2550 continue;
2551 if (strcmp (f->sym->name, a->name) == 0)
2552 break;
2555 if (f == NULL)
2557 if (where)
2558 gfc_error ("Keyword argument %qs at %L is not in "
2559 "the procedure", a->name, &a->expr->where);
2560 return 0;
2563 if (new_arg[i] != NULL)
2565 if (where)
2566 gfc_error ("Keyword argument %qs at %L is already associated "
2567 "with another actual argument", a->name,
2568 &a->expr->where);
2569 return 0;
2573 if (f == NULL)
2575 if (where)
2576 gfc_error ("More actual than formal arguments in procedure "
2577 "call at %L", where);
2579 return 0;
2582 if (f->sym == NULL && a->expr == NULL)
2583 goto match;
2585 if (f->sym == NULL)
2587 if (where)
2588 gfc_error ("Missing alternate return spec in subroutine call "
2589 "at %L", where);
2590 return 0;
2593 if (a->expr == NULL)
2595 if (where)
2596 gfc_error ("Unexpected alternate return spec in subroutine "
2597 "call at %L", where);
2598 return 0;
2601 /* Make sure that intrinsic vtables exist for calls to unlimited
2602 polymorphic formal arguments. */
2603 if (UNLIMITED_POLY (f->sym)
2604 && a->expr->ts.type != BT_DERIVED
2605 && a->expr->ts.type != BT_CLASS)
2606 gfc_find_vtab (&a->expr->ts);
2608 if (a->expr->expr_type == EXPR_NULL
2609 && ((f->sym->ts.type != BT_CLASS && !f->sym->attr.pointer
2610 && (f->sym->attr.allocatable || !f->sym->attr.optional
2611 || (gfc_option.allow_std & GFC_STD_F2008) == 0))
2612 || (f->sym->ts.type == BT_CLASS
2613 && !CLASS_DATA (f->sym)->attr.class_pointer
2614 && (CLASS_DATA (f->sym)->attr.allocatable
2615 || !f->sym->attr.optional
2616 || (gfc_option.allow_std & GFC_STD_F2008) == 0))))
2618 if (where
2619 && (!f->sym->attr.optional
2620 || (f->sym->ts.type != BT_CLASS && f->sym->attr.allocatable)
2621 || (f->sym->ts.type == BT_CLASS
2622 && CLASS_DATA (f->sym)->attr.allocatable)))
2623 gfc_error ("Unexpected NULL() intrinsic at %L to dummy %qs",
2624 where, f->sym->name);
2625 else if (where)
2626 gfc_error ("Fortran 2008: Null pointer at %L to non-pointer "
2627 "dummy %qs", where, f->sym->name);
2629 return 0;
2632 if (!compare_parameter (f->sym, a->expr, ranks_must_agree,
2633 is_elemental, where))
2634 return 0;
2636 /* TS 29113, 6.3p2. */
2637 if (f->sym->ts.type == BT_ASSUMED
2638 && (a->expr->ts.type == BT_DERIVED
2639 || (a->expr->ts.type == BT_CLASS && CLASS_DATA (a->expr))))
2641 gfc_namespace *f2k_derived;
2643 f2k_derived = a->expr->ts.type == BT_DERIVED
2644 ? a->expr->ts.u.derived->f2k_derived
2645 : CLASS_DATA (a->expr)->ts.u.derived->f2k_derived;
2647 if (f2k_derived
2648 && (f2k_derived->finalizers || f2k_derived->tb_sym_root))
2650 gfc_error ("Actual argument at %L to assumed-type dummy is of "
2651 "derived type with type-bound or FINAL procedures",
2652 &a->expr->where);
2653 return false;
2657 /* Special case for character arguments. For allocatable, pointer
2658 and assumed-shape dummies, the string length needs to match
2659 exactly. */
2660 if (a->expr->ts.type == BT_CHARACTER
2661 && a->expr->ts.u.cl && a->expr->ts.u.cl->length
2662 && a->expr->ts.u.cl->length->expr_type == EXPR_CONSTANT
2663 && f->sym->ts.u.cl && f->sym->ts.u.cl && f->sym->ts.u.cl->length
2664 && f->sym->ts.u.cl->length->expr_type == EXPR_CONSTANT
2665 && (f->sym->attr.pointer || f->sym->attr.allocatable
2666 || (f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE))
2667 && (mpz_cmp (a->expr->ts.u.cl->length->value.integer,
2668 f->sym->ts.u.cl->length->value.integer) != 0))
2670 if (where && (f->sym->attr.pointer || f->sym->attr.allocatable))
2671 gfc_warning ("Character length mismatch (%ld/%ld) between actual "
2672 "argument and pointer or allocatable dummy argument "
2673 "%qs at %L",
2674 mpz_get_si (a->expr->ts.u.cl->length->value.integer),
2675 mpz_get_si (f->sym->ts.u.cl->length->value.integer),
2676 f->sym->name, &a->expr->where);
2677 else if (where)
2678 gfc_warning ("Character length mismatch (%ld/%ld) between actual "
2679 "argument and assumed-shape dummy argument %qs "
2680 "at %L",
2681 mpz_get_si (a->expr->ts.u.cl->length->value.integer),
2682 mpz_get_si (f->sym->ts.u.cl->length->value.integer),
2683 f->sym->name, &a->expr->where);
2684 return 0;
2687 if ((f->sym->attr.pointer || f->sym->attr.allocatable)
2688 && f->sym->ts.deferred != a->expr->ts.deferred
2689 && a->expr->ts.type == BT_CHARACTER)
2691 if (where)
2692 gfc_error ("Actual argument at %L to allocatable or "
2693 "pointer dummy argument %qs must have a deferred "
2694 "length type parameter if and only if the dummy has one",
2695 &a->expr->where, f->sym->name);
2696 return 0;
2699 if (f->sym->ts.type == BT_CLASS)
2700 goto skip_size_check;
2702 actual_size = get_expr_storage_size (a->expr);
2703 formal_size = get_sym_storage_size (f->sym);
2704 if (actual_size != 0 && actual_size < formal_size
2705 && a->expr->ts.type != BT_PROCEDURE
2706 && f->sym->attr.flavor != FL_PROCEDURE)
2708 if (a->expr->ts.type == BT_CHARACTER && !f->sym->as && where)
2709 gfc_warning ("Character length of actual argument shorter "
2710 "than of dummy argument %qs (%lu/%lu) at %L",
2711 f->sym->name, actual_size, formal_size,
2712 &a->expr->where);
2713 else if (where)
2714 gfc_warning ("Actual argument contains too few "
2715 "elements for dummy argument %qs (%lu/%lu) at %L",
2716 f->sym->name, actual_size, formal_size,
2717 &a->expr->where);
2718 return 0;
2721 skip_size_check:
2723 /* Satisfy F03:12.4.1.3 by ensuring that a procedure pointer actual
2724 argument is provided for a procedure pointer formal argument. */
2725 if (f->sym->attr.proc_pointer
2726 && !((a->expr->expr_type == EXPR_VARIABLE
2727 && a->expr->symtree->n.sym->attr.proc_pointer)
2728 || (a->expr->expr_type == EXPR_FUNCTION
2729 && a->expr->symtree->n.sym->result->attr.proc_pointer)
2730 || gfc_is_proc_ptr_comp (a->expr)))
2732 if (where)
2733 gfc_error ("Expected a procedure pointer for argument %qs at %L",
2734 f->sym->name, &a->expr->where);
2735 return 0;
2738 /* Satisfy F03:12.4.1.3 by ensuring that a procedure actual argument is
2739 provided for a procedure formal argument. */
2740 if (f->sym->attr.flavor == FL_PROCEDURE
2741 && gfc_expr_attr (a->expr).flavor != FL_PROCEDURE)
2743 if (where)
2744 gfc_error ("Expected a procedure for argument %qs at %L",
2745 f->sym->name, &a->expr->where);
2746 return 0;
2749 if (f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE
2750 && a->expr->expr_type == EXPR_VARIABLE
2751 && a->expr->symtree->n.sym->as
2752 && a->expr->symtree->n.sym->as->type == AS_ASSUMED_SIZE
2753 && (a->expr->ref == NULL
2754 || (a->expr->ref->type == REF_ARRAY
2755 && a->expr->ref->u.ar.type == AR_FULL)))
2757 if (where)
2758 gfc_error ("Actual argument for %qs cannot be an assumed-size"
2759 " array at %L", f->sym->name, where);
2760 return 0;
2763 if (a->expr->expr_type != EXPR_NULL
2764 && compare_pointer (f->sym, a->expr) == 0)
2766 if (where)
2767 gfc_error ("Actual argument for %qs must be a pointer at %L",
2768 f->sym->name, &a->expr->where);
2769 return 0;
2772 if (a->expr->expr_type != EXPR_NULL
2773 && (gfc_option.allow_std & GFC_STD_F2008) == 0
2774 && compare_pointer (f->sym, a->expr) == 2)
2776 if (where)
2777 gfc_error ("Fortran 2008: Non-pointer actual argument at %L to "
2778 "pointer dummy %qs", &a->expr->where,f->sym->name);
2779 return 0;
2783 /* Fortran 2008, C1242. */
2784 if (f->sym->attr.pointer && gfc_is_coindexed (a->expr))
2786 if (where)
2787 gfc_error ("Coindexed actual argument at %L to pointer "
2788 "dummy %qs",
2789 &a->expr->where, f->sym->name);
2790 return 0;
2793 /* Fortran 2008, 12.5.2.5 (no constraint). */
2794 if (a->expr->expr_type == EXPR_VARIABLE
2795 && f->sym->attr.intent != INTENT_IN
2796 && f->sym->attr.allocatable
2797 && gfc_is_coindexed (a->expr))
2799 if (where)
2800 gfc_error ("Coindexed actual argument at %L to allocatable "
2801 "dummy %qs requires INTENT(IN)",
2802 &a->expr->where, f->sym->name);
2803 return 0;
2806 /* Fortran 2008, C1237. */
2807 if (a->expr->expr_type == EXPR_VARIABLE
2808 && (f->sym->attr.asynchronous || f->sym->attr.volatile_)
2809 && gfc_is_coindexed (a->expr)
2810 && (a->expr->symtree->n.sym->attr.volatile_
2811 || a->expr->symtree->n.sym->attr.asynchronous))
2813 if (where)
2814 gfc_error ("Coindexed ASYNCHRONOUS or VOLATILE actual argument at "
2815 "%L requires that dummy %qs has neither "
2816 "ASYNCHRONOUS nor VOLATILE", &a->expr->where,
2817 f->sym->name);
2818 return 0;
2821 /* Fortran 2008, 12.5.2.4 (no constraint). */
2822 if (a->expr->expr_type == EXPR_VARIABLE
2823 && f->sym->attr.intent != INTENT_IN && !f->sym->attr.value
2824 && gfc_is_coindexed (a->expr)
2825 && gfc_has_ultimate_allocatable (a->expr))
2827 if (where)
2828 gfc_error ("Coindexed actual argument at %L with allocatable "
2829 "ultimate component to dummy %qs requires either VALUE "
2830 "or INTENT(IN)", &a->expr->where, f->sym->name);
2831 return 0;
2834 if (f->sym->ts.type == BT_CLASS
2835 && CLASS_DATA (f->sym)->attr.allocatable
2836 && gfc_is_class_array_ref (a->expr, &full_array)
2837 && !full_array)
2839 if (where)
2840 gfc_error ("Actual CLASS array argument for %qs must be a full "
2841 "array at %L", f->sym->name, &a->expr->where);
2842 return 0;
2846 if (a->expr->expr_type != EXPR_NULL
2847 && compare_allocatable (f->sym, a->expr) == 0)
2849 if (where)
2850 gfc_error ("Actual argument for %qs must be ALLOCATABLE at %L",
2851 f->sym->name, &a->expr->where);
2852 return 0;
2855 /* Check intent = OUT/INOUT for definable actual argument. */
2856 if ((f->sym->attr.intent == INTENT_OUT
2857 || f->sym->attr.intent == INTENT_INOUT))
2859 const char* context = (where
2860 ? _("actual argument to INTENT = OUT/INOUT")
2861 : NULL);
2863 if (((f->sym->ts.type == BT_CLASS && f->sym->attr.class_ok
2864 && CLASS_DATA (f->sym)->attr.class_pointer)
2865 || (f->sym->ts.type != BT_CLASS && f->sym->attr.pointer))
2866 && !gfc_check_vardef_context (a->expr, true, false, false, context))
2867 return 0;
2868 if (!gfc_check_vardef_context (a->expr, false, false, false, context))
2869 return 0;
2872 if ((f->sym->attr.intent == INTENT_OUT
2873 || f->sym->attr.intent == INTENT_INOUT
2874 || f->sym->attr.volatile_
2875 || f->sym->attr.asynchronous)
2876 && gfc_has_vector_subscript (a->expr))
2878 if (where)
2879 gfc_error ("Array-section actual argument with vector "
2880 "subscripts at %L is incompatible with INTENT(OUT), "
2881 "INTENT(INOUT), VOLATILE or ASYNCHRONOUS attribute "
2882 "of the dummy argument %qs",
2883 &a->expr->where, f->sym->name);
2884 return 0;
2887 /* C1232 (R1221) For an actual argument which is an array section or
2888 an assumed-shape array, the dummy argument shall be an assumed-
2889 shape array, if the dummy argument has the VOLATILE attribute. */
2891 if (f->sym->attr.volatile_
2892 && a->expr->symtree->n.sym->as
2893 && a->expr->symtree->n.sym->as->type == AS_ASSUMED_SHAPE
2894 && !(f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE))
2896 if (where)
2897 gfc_error ("Assumed-shape actual argument at %L is "
2898 "incompatible with the non-assumed-shape "
2899 "dummy argument %qs due to VOLATILE attribute",
2900 &a->expr->where,f->sym->name);
2901 return 0;
2904 if (f->sym->attr.volatile_
2905 && a->expr->ref && a->expr->ref->u.ar.type == AR_SECTION
2906 && !(f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE))
2908 if (where)
2909 gfc_error ("Array-section actual argument at %L is "
2910 "incompatible with the non-assumed-shape "
2911 "dummy argument %qs due to VOLATILE attribute",
2912 &a->expr->where,f->sym->name);
2913 return 0;
2916 /* C1233 (R1221) For an actual argument which is a pointer array, the
2917 dummy argument shall be an assumed-shape or pointer array, if the
2918 dummy argument has the VOLATILE attribute. */
2920 if (f->sym->attr.volatile_
2921 && a->expr->symtree->n.sym->attr.pointer
2922 && a->expr->symtree->n.sym->as
2923 && !(f->sym->as
2924 && (f->sym->as->type == AS_ASSUMED_SHAPE
2925 || f->sym->attr.pointer)))
2927 if (where)
2928 gfc_error ("Pointer-array actual argument at %L requires "
2929 "an assumed-shape or pointer-array dummy "
2930 "argument %qs due to VOLATILE attribute",
2931 &a->expr->where,f->sym->name);
2932 return 0;
2935 match:
2936 if (a == actual)
2937 na = i;
2939 new_arg[i++] = a;
2942 /* Make sure missing actual arguments are optional. */
2943 i = 0;
2944 for (f = formal; f; f = f->next, i++)
2946 if (new_arg[i] != NULL)
2947 continue;
2948 if (f->sym == NULL)
2950 if (where)
2951 gfc_error ("Missing alternate return spec in subroutine call "
2952 "at %L", where);
2953 return 0;
2955 if (!f->sym->attr.optional)
2957 if (where)
2958 gfc_error ("Missing actual argument for argument %qs at %L",
2959 f->sym->name, where);
2960 return 0;
2964 /* The argument lists are compatible. We now relink a new actual
2965 argument list with null arguments in the right places. The head
2966 of the list remains the head. */
2967 for (i = 0; i < n; i++)
2968 if (new_arg[i] == NULL)
2969 new_arg[i] = gfc_get_actual_arglist ();
2971 if (na != 0)
2973 temp = *new_arg[0];
2974 *new_arg[0] = *actual;
2975 *actual = temp;
2977 a = new_arg[0];
2978 new_arg[0] = new_arg[na];
2979 new_arg[na] = a;
2982 for (i = 0; i < n - 1; i++)
2983 new_arg[i]->next = new_arg[i + 1];
2985 new_arg[i]->next = NULL;
2987 if (*ap == NULL && n > 0)
2988 *ap = new_arg[0];
2990 /* Note the types of omitted optional arguments. */
2991 for (a = *ap, f = formal; a; a = a->next, f = f->next)
2992 if (a->expr == NULL && a->label == NULL)
2993 a->missing_arg_type = f->sym->ts.type;
2995 return 1;
2999 typedef struct
3001 gfc_formal_arglist *f;
3002 gfc_actual_arglist *a;
3004 argpair;
3006 /* qsort comparison function for argument pairs, with the following
3007 order:
3008 - p->a->expr == NULL
3009 - p->a->expr->expr_type != EXPR_VARIABLE
3010 - growing p->a->expr->symbol. */
3012 static int
3013 pair_cmp (const void *p1, const void *p2)
3015 const gfc_actual_arglist *a1, *a2;
3017 /* *p1 and *p2 are elements of the to-be-sorted array. */
3018 a1 = ((const argpair *) p1)->a;
3019 a2 = ((const argpair *) p2)->a;
3020 if (!a1->expr)
3022 if (!a2->expr)
3023 return 0;
3024 return -1;
3026 if (!a2->expr)
3027 return 1;
3028 if (a1->expr->expr_type != EXPR_VARIABLE)
3030 if (a2->expr->expr_type != EXPR_VARIABLE)
3031 return 0;
3032 return -1;
3034 if (a2->expr->expr_type != EXPR_VARIABLE)
3035 return 1;
3036 return a1->expr->symtree->n.sym < a2->expr->symtree->n.sym;
3040 /* Given two expressions from some actual arguments, test whether they
3041 refer to the same expression. The analysis is conservative.
3042 Returning false will produce no warning. */
3044 static bool
3045 compare_actual_expr (gfc_expr *e1, gfc_expr *e2)
3047 const gfc_ref *r1, *r2;
3049 if (!e1 || !e2
3050 || e1->expr_type != EXPR_VARIABLE
3051 || e2->expr_type != EXPR_VARIABLE
3052 || e1->symtree->n.sym != e2->symtree->n.sym)
3053 return false;
3055 /* TODO: improve comparison, see expr.c:show_ref(). */
3056 for (r1 = e1->ref, r2 = e2->ref; r1 && r2; r1 = r1->next, r2 = r2->next)
3058 if (r1->type != r2->type)
3059 return false;
3060 switch (r1->type)
3062 case REF_ARRAY:
3063 if (r1->u.ar.type != r2->u.ar.type)
3064 return false;
3065 /* TODO: At the moment, consider only full arrays;
3066 we could do better. */
3067 if (r1->u.ar.type != AR_FULL || r2->u.ar.type != AR_FULL)
3068 return false;
3069 break;
3071 case REF_COMPONENT:
3072 if (r1->u.c.component != r2->u.c.component)
3073 return false;
3074 break;
3076 case REF_SUBSTRING:
3077 return false;
3079 default:
3080 gfc_internal_error ("compare_actual_expr(): Bad component code");
3083 if (!r1 && !r2)
3084 return true;
3085 return false;
3089 /* Given formal and actual argument lists that correspond to one
3090 another, check that identical actual arguments aren't not
3091 associated with some incompatible INTENTs. */
3093 static bool
3094 check_some_aliasing (gfc_formal_arglist *f, gfc_actual_arglist *a)
3096 sym_intent f1_intent, f2_intent;
3097 gfc_formal_arglist *f1;
3098 gfc_actual_arglist *a1;
3099 size_t n, i, j;
3100 argpair *p;
3101 bool t = true;
3103 n = 0;
3104 for (f1 = f, a1 = a;; f1 = f1->next, a1 = a1->next)
3106 if (f1 == NULL && a1 == NULL)
3107 break;
3108 if (f1 == NULL || a1 == NULL)
3109 gfc_internal_error ("check_some_aliasing(): List mismatch");
3110 n++;
3112 if (n == 0)
3113 return t;
3114 p = XALLOCAVEC (argpair, n);
3116 for (i = 0, f1 = f, a1 = a; i < n; i++, f1 = f1->next, a1 = a1->next)
3118 p[i].f = f1;
3119 p[i].a = a1;
3122 qsort (p, n, sizeof (argpair), pair_cmp);
3124 for (i = 0; i < n; i++)
3126 if (!p[i].a->expr
3127 || p[i].a->expr->expr_type != EXPR_VARIABLE
3128 || p[i].a->expr->ts.type == BT_PROCEDURE)
3129 continue;
3130 f1_intent = p[i].f->sym->attr.intent;
3131 for (j = i + 1; j < n; j++)
3133 /* Expected order after the sort. */
3134 if (!p[j].a->expr || p[j].a->expr->expr_type != EXPR_VARIABLE)
3135 gfc_internal_error ("check_some_aliasing(): corrupted data");
3137 /* Are the expression the same? */
3138 if (!compare_actual_expr (p[i].a->expr, p[j].a->expr))
3139 break;
3140 f2_intent = p[j].f->sym->attr.intent;
3141 if ((f1_intent == INTENT_IN && f2_intent == INTENT_OUT)
3142 || (f1_intent == INTENT_OUT && f2_intent == INTENT_IN)
3143 || (f1_intent == INTENT_OUT && f2_intent == INTENT_OUT))
3145 gfc_warning ("Same actual argument associated with INTENT(%s) "
3146 "argument %qs and INTENT(%s) argument %qs at %L",
3147 gfc_intent_string (f1_intent), p[i].f->sym->name,
3148 gfc_intent_string (f2_intent), p[j].f->sym->name,
3149 &p[i].a->expr->where);
3150 t = false;
3155 return t;
3159 /* Given formal and actual argument lists that correspond to one
3160 another, check that they are compatible in the sense that intents
3161 are not mismatched. */
3163 static bool
3164 check_intents (gfc_formal_arglist *f, gfc_actual_arglist *a)
3166 sym_intent f_intent;
3168 for (;; f = f->next, a = a->next)
3170 gfc_expr *expr;
3172 if (f == NULL && a == NULL)
3173 break;
3174 if (f == NULL || a == NULL)
3175 gfc_internal_error ("check_intents(): List mismatch");
3177 if (a->expr && a->expr->expr_type == EXPR_FUNCTION
3178 && a->expr->value.function.isym
3179 && a->expr->value.function.isym->id == GFC_ISYM_CAF_GET)
3180 expr = a->expr->value.function.actual->expr;
3181 else
3182 expr = a->expr;
3184 if (expr == NULL || expr->expr_type != EXPR_VARIABLE)
3185 continue;
3187 f_intent = f->sym->attr.intent;
3189 if (gfc_pure (NULL) && gfc_impure_variable (expr->symtree->n.sym))
3191 if ((f->sym->ts.type == BT_CLASS && f->sym->attr.class_ok
3192 && CLASS_DATA (f->sym)->attr.class_pointer)
3193 || (f->sym->ts.type != BT_CLASS && f->sym->attr.pointer))
3195 gfc_error ("Procedure argument at %L is local to a PURE "
3196 "procedure and has the POINTER attribute",
3197 &expr->where);
3198 return false;
3202 /* Fortran 2008, C1283. */
3203 if (gfc_pure (NULL) && gfc_is_coindexed (expr))
3205 if (f_intent == INTENT_INOUT || f_intent == INTENT_OUT)
3207 gfc_error ("Coindexed actual argument at %L in PURE procedure "
3208 "is passed to an INTENT(%s) argument",
3209 &expr->where, gfc_intent_string (f_intent));
3210 return false;
3213 if ((f->sym->ts.type == BT_CLASS && f->sym->attr.class_ok
3214 && CLASS_DATA (f->sym)->attr.class_pointer)
3215 || (f->sym->ts.type != BT_CLASS && f->sym->attr.pointer))
3217 gfc_error ("Coindexed actual argument at %L in PURE procedure "
3218 "is passed to a POINTER dummy argument",
3219 &expr->where);
3220 return false;
3224 /* F2008, Section 12.5.2.4. */
3225 if (expr->ts.type == BT_CLASS && f->sym->ts.type == BT_CLASS
3226 && gfc_is_coindexed (expr))
3228 gfc_error ("Coindexed polymorphic actual argument at %L is passed "
3229 "polymorphic dummy argument %qs",
3230 &expr->where, f->sym->name);
3231 return false;
3235 return true;
3239 /* Check how a procedure is used against its interface. If all goes
3240 well, the actual argument list will also end up being properly
3241 sorted. */
3243 bool
3244 gfc_procedure_use (gfc_symbol *sym, gfc_actual_arglist **ap, locus *where)
3246 gfc_formal_arglist *dummy_args;
3248 /* Warn about calls with an implicit interface. Special case
3249 for calling a ISO_C_BINDING because c_loc and c_funloc
3250 are pseudo-unknown. Additionally, warn about procedures not
3251 explicitly declared at all if requested. */
3252 if (sym->attr.if_source == IFSRC_UNKNOWN && !sym->attr.is_iso_c)
3254 if (sym->ns->has_implicit_none_export && sym->attr.proc == PROC_UNKNOWN)
3256 gfc_error ("Procedure %qs called at %L is not explicitly declared",
3257 sym->name, where);
3258 return false;
3260 if (warn_implicit_interface)
3261 gfc_warning (OPT_Wimplicit_interface,
3262 "Procedure %qs called with an implicit interface at %L",
3263 sym->name, where);
3264 else if (warn_implicit_procedure && sym->attr.proc == PROC_UNKNOWN)
3265 gfc_warning (OPT_Wimplicit_procedure,
3266 "Procedure %qs called at %L is not explicitly declared",
3267 sym->name, where);
3270 if (sym->attr.if_source == IFSRC_UNKNOWN)
3272 gfc_actual_arglist *a;
3274 if (sym->attr.pointer)
3276 gfc_error ("The pointer object %qs at %L must have an explicit "
3277 "function interface or be declared as array",
3278 sym->name, where);
3279 return false;
3282 if (sym->attr.allocatable && !sym->attr.external)
3284 gfc_error ("The allocatable object %qs at %L must have an explicit "
3285 "function interface or be declared as array",
3286 sym->name, where);
3287 return false;
3290 if (sym->attr.allocatable)
3292 gfc_error ("Allocatable function %qs at %L must have an explicit "
3293 "function interface", sym->name, where);
3294 return false;
3297 for (a = *ap; a; a = a->next)
3299 /* Skip g77 keyword extensions like %VAL, %REF, %LOC. */
3300 if (a->name != NULL && a->name[0] != '%')
3302 gfc_error ("Keyword argument requires explicit interface "
3303 "for procedure %qs at %L", sym->name, &a->expr->where);
3304 break;
3307 /* TS 29113, 6.2. */
3308 if (a->expr && a->expr->ts.type == BT_ASSUMED
3309 && sym->intmod_sym_id != ISOCBINDING_LOC)
3311 gfc_error ("Assumed-type argument %s at %L requires an explicit "
3312 "interface", a->expr->symtree->n.sym->name,
3313 &a->expr->where);
3314 break;
3317 /* F2008, C1303 and C1304. */
3318 if (a->expr
3319 && (a->expr->ts.type == BT_DERIVED || a->expr->ts.type == BT_CLASS)
3320 && ((a->expr->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
3321 && a->expr->ts.u.derived->intmod_sym_id == ISOFORTRAN_LOCK_TYPE)
3322 || gfc_expr_attr (a->expr).lock_comp))
3324 gfc_error ("Actual argument of LOCK_TYPE or with LOCK_TYPE "
3325 "component at %L requires an explicit interface for "
3326 "procedure %qs", &a->expr->where, sym->name);
3327 break;
3330 if (a->expr && a->expr->expr_type == EXPR_NULL
3331 && a->expr->ts.type == BT_UNKNOWN)
3333 gfc_error ("MOLD argument to NULL required at %L", &a->expr->where);
3334 return false;
3337 /* TS 29113, C407b. */
3338 if (a->expr && a->expr->expr_type == EXPR_VARIABLE
3339 && symbol_rank (a->expr->symtree->n.sym) == -1)
3341 gfc_error ("Assumed-rank argument requires an explicit interface "
3342 "at %L", &a->expr->where);
3343 return false;
3347 return true;
3350 dummy_args = gfc_sym_get_dummy_args (sym);
3352 if (!compare_actual_formal (ap, dummy_args, 0, sym->attr.elemental, where))
3353 return false;
3355 if (!check_intents (dummy_args, *ap))
3356 return false;
3358 if (warn_aliasing)
3359 check_some_aliasing (dummy_args, *ap);
3361 return true;
3365 /* Check how a procedure pointer component is used against its interface.
3366 If all goes well, the actual argument list will also end up being properly
3367 sorted. Completely analogous to gfc_procedure_use. */
3369 void
3370 gfc_ppc_use (gfc_component *comp, gfc_actual_arglist **ap, locus *where)
3372 /* Warn about calls with an implicit interface. Special case
3373 for calling a ISO_C_BINDING because c_loc and c_funloc
3374 are pseudo-unknown. */
3375 if (warn_implicit_interface
3376 && comp->attr.if_source == IFSRC_UNKNOWN
3377 && !comp->attr.is_iso_c)
3378 gfc_warning (OPT_Wimplicit_interface,
3379 "Procedure pointer component %qs called with an implicit "
3380 "interface at %L", comp->name, where);
3382 if (comp->attr.if_source == IFSRC_UNKNOWN)
3384 gfc_actual_arglist *a;
3385 for (a = *ap; a; a = a->next)
3387 /* Skip g77 keyword extensions like %VAL, %REF, %LOC. */
3388 if (a->name != NULL && a->name[0] != '%')
3390 gfc_error ("Keyword argument requires explicit interface "
3391 "for procedure pointer component %qs at %L",
3392 comp->name, &a->expr->where);
3393 break;
3397 return;
3400 if (!compare_actual_formal (ap, comp->ts.interface->formal, 0,
3401 comp->attr.elemental, where))
3402 return;
3404 check_intents (comp->ts.interface->formal, *ap);
3405 if (warn_aliasing)
3406 check_some_aliasing (comp->ts.interface->formal, *ap);
3410 /* Try if an actual argument list matches the formal list of a symbol,
3411 respecting the symbol's attributes like ELEMENTAL. This is used for
3412 GENERIC resolution. */
3414 bool
3415 gfc_arglist_matches_symbol (gfc_actual_arglist** args, gfc_symbol* sym)
3417 gfc_formal_arglist *dummy_args;
3418 bool r;
3420 gcc_assert (sym->attr.flavor == FL_PROCEDURE);
3422 dummy_args = gfc_sym_get_dummy_args (sym);
3424 r = !sym->attr.elemental;
3425 if (compare_actual_formal (args, dummy_args, r, !r, NULL))
3427 check_intents (dummy_args, *args);
3428 if (warn_aliasing)
3429 check_some_aliasing (dummy_args, *args);
3430 return true;
3433 return false;
3437 /* Given an interface pointer and an actual argument list, search for
3438 a formal argument list that matches the actual. If found, returns
3439 a pointer to the symbol of the correct interface. Returns NULL if
3440 not found. */
3442 gfc_symbol *
3443 gfc_search_interface (gfc_interface *intr, int sub_flag,
3444 gfc_actual_arglist **ap)
3446 gfc_symbol *elem_sym = NULL;
3447 gfc_symbol *null_sym = NULL;
3448 locus null_expr_loc;
3449 gfc_actual_arglist *a;
3450 bool has_null_arg = false;
3452 for (a = *ap; a; a = a->next)
3453 if (a->expr && a->expr->expr_type == EXPR_NULL
3454 && a->expr->ts.type == BT_UNKNOWN)
3456 has_null_arg = true;
3457 null_expr_loc = a->expr->where;
3458 break;
3461 for (; intr; intr = intr->next)
3463 if (intr->sym->attr.flavor == FL_DERIVED)
3464 continue;
3465 if (sub_flag && intr->sym->attr.function)
3466 continue;
3467 if (!sub_flag && intr->sym->attr.subroutine)
3468 continue;
3470 if (gfc_arglist_matches_symbol (ap, intr->sym))
3472 if (has_null_arg && null_sym)
3474 gfc_error ("MOLD= required in NULL() argument at %L: Ambiguity "
3475 "between specific functions %s and %s",
3476 &null_expr_loc, null_sym->name, intr->sym->name);
3477 return NULL;
3479 else if (has_null_arg)
3481 null_sym = intr->sym;
3482 continue;
3485 /* Satisfy 12.4.4.1 such that an elemental match has lower
3486 weight than a non-elemental match. */
3487 if (intr->sym->attr.elemental)
3489 elem_sym = intr->sym;
3490 continue;
3492 return intr->sym;
3496 if (null_sym)
3497 return null_sym;
3499 return elem_sym ? elem_sym : NULL;
3503 /* Do a brute force recursive search for a symbol. */
3505 static gfc_symtree *
3506 find_symtree0 (gfc_symtree *root, gfc_symbol *sym)
3508 gfc_symtree * st;
3510 if (root->n.sym == sym)
3511 return root;
3513 st = NULL;
3514 if (root->left)
3515 st = find_symtree0 (root->left, sym);
3516 if (root->right && ! st)
3517 st = find_symtree0 (root->right, sym);
3518 return st;
3522 /* Find a symtree for a symbol. */
3524 gfc_symtree *
3525 gfc_find_sym_in_symtree (gfc_symbol *sym)
3527 gfc_symtree *st;
3528 gfc_namespace *ns;
3530 /* First try to find it by name. */
3531 gfc_find_sym_tree (sym->name, gfc_current_ns, 1, &st);
3532 if (st && st->n.sym == sym)
3533 return st;
3535 /* If it's been renamed, resort to a brute-force search. */
3536 /* TODO: avoid having to do this search. If the symbol doesn't exist
3537 in the symtree for the current namespace, it should probably be added. */
3538 for (ns = gfc_current_ns; ns; ns = ns->parent)
3540 st = find_symtree0 (ns->sym_root, sym);
3541 if (st)
3542 return st;
3544 gfc_internal_error ("Unable to find symbol %qs", sym->name);
3545 /* Not reached. */
3549 /* See if the arglist to an operator-call contains a derived-type argument
3550 with a matching type-bound operator. If so, return the matching specific
3551 procedure defined as operator-target as well as the base-object to use
3552 (which is the found derived-type argument with operator). The generic
3553 name, if any, is transmitted to the final expression via 'gname'. */
3555 static gfc_typebound_proc*
3556 matching_typebound_op (gfc_expr** tb_base,
3557 gfc_actual_arglist* args,
3558 gfc_intrinsic_op op, const char* uop,
3559 const char ** gname)
3561 gfc_actual_arglist* base;
3563 for (base = args; base; base = base->next)
3564 if (base->expr->ts.type == BT_DERIVED || base->expr->ts.type == BT_CLASS)
3566 gfc_typebound_proc* tb;
3567 gfc_symbol* derived;
3568 bool result;
3570 while (base->expr->expr_type == EXPR_OP
3571 && base->expr->value.op.op == INTRINSIC_PARENTHESES)
3572 base->expr = base->expr->value.op.op1;
3574 if (base->expr->ts.type == BT_CLASS)
3576 if (CLASS_DATA (base->expr) == NULL
3577 || !gfc_expr_attr (base->expr).class_ok)
3578 continue;
3579 derived = CLASS_DATA (base->expr)->ts.u.derived;
3581 else
3582 derived = base->expr->ts.u.derived;
3584 if (op == INTRINSIC_USER)
3586 gfc_symtree* tb_uop;
3588 gcc_assert (uop);
3589 tb_uop = gfc_find_typebound_user_op (derived, &result, uop,
3590 false, NULL);
3592 if (tb_uop)
3593 tb = tb_uop->n.tb;
3594 else
3595 tb = NULL;
3597 else
3598 tb = gfc_find_typebound_intrinsic_op (derived, &result, op,
3599 false, NULL);
3601 /* This means we hit a PRIVATE operator which is use-associated and
3602 should thus not be seen. */
3603 if (!result)
3604 tb = NULL;
3606 /* Look through the super-type hierarchy for a matching specific
3607 binding. */
3608 for (; tb; tb = tb->overridden)
3610 gfc_tbp_generic* g;
3612 gcc_assert (tb->is_generic);
3613 for (g = tb->u.generic; g; g = g->next)
3615 gfc_symbol* target;
3616 gfc_actual_arglist* argcopy;
3617 bool matches;
3619 gcc_assert (g->specific);
3620 if (g->specific->error)
3621 continue;
3623 target = g->specific->u.specific->n.sym;
3625 /* Check if this arglist matches the formal. */
3626 argcopy = gfc_copy_actual_arglist (args);
3627 matches = gfc_arglist_matches_symbol (&argcopy, target);
3628 gfc_free_actual_arglist (argcopy);
3630 /* Return if we found a match. */
3631 if (matches)
3633 *tb_base = base->expr;
3634 *gname = g->specific_st->name;
3635 return g->specific;
3641 return NULL;
3645 /* For the 'actual arglist' of an operator call and a specific typebound
3646 procedure that has been found the target of a type-bound operator, build the
3647 appropriate EXPR_COMPCALL and resolve it. We take this indirection over
3648 type-bound procedures rather than resolving type-bound operators 'directly'
3649 so that we can reuse the existing logic. */
3651 static void
3652 build_compcall_for_operator (gfc_expr* e, gfc_actual_arglist* actual,
3653 gfc_expr* base, gfc_typebound_proc* target,
3654 const char *gname)
3656 e->expr_type = EXPR_COMPCALL;
3657 e->value.compcall.tbp = target;
3658 e->value.compcall.name = gname ? gname : "$op";
3659 e->value.compcall.actual = actual;
3660 e->value.compcall.base_object = base;
3661 e->value.compcall.ignore_pass = 1;
3662 e->value.compcall.assign = 0;
3663 if (e->ts.type == BT_UNKNOWN
3664 && target->function)
3666 if (target->is_generic)
3667 e->ts = target->u.generic->specific->u.specific->n.sym->ts;
3668 else
3669 e->ts = target->u.specific->n.sym->ts;
3674 /* This subroutine is called when an expression is being resolved.
3675 The expression node in question is either a user defined operator
3676 or an intrinsic operator with arguments that aren't compatible
3677 with the operator. This subroutine builds an actual argument list
3678 corresponding to the operands, then searches for a compatible
3679 interface. If one is found, the expression node is replaced with
3680 the appropriate function call. We use the 'match' enum to specify
3681 whether a replacement has been made or not, or if an error occurred. */
3683 match
3684 gfc_extend_expr (gfc_expr *e)
3686 gfc_actual_arglist *actual;
3687 gfc_symbol *sym;
3688 gfc_namespace *ns;
3689 gfc_user_op *uop;
3690 gfc_intrinsic_op i;
3691 const char *gname;
3693 sym = NULL;
3695 actual = gfc_get_actual_arglist ();
3696 actual->expr = e->value.op.op1;
3698 gname = NULL;
3700 if (e->value.op.op2 != NULL)
3702 actual->next = gfc_get_actual_arglist ();
3703 actual->next->expr = e->value.op.op2;
3706 i = fold_unary_intrinsic (e->value.op.op);
3708 if (i == INTRINSIC_USER)
3710 for (ns = gfc_current_ns; ns; ns = ns->parent)
3712 uop = gfc_find_uop (e->value.op.uop->name, ns);
3713 if (uop == NULL)
3714 continue;
3716 sym = gfc_search_interface (uop->op, 0, &actual);
3717 if (sym != NULL)
3718 break;
3721 else
3723 for (ns = gfc_current_ns; ns; ns = ns->parent)
3725 /* Due to the distinction between '==' and '.eq.' and friends, one has
3726 to check if either is defined. */
3727 switch (i)
3729 #define CHECK_OS_COMPARISON(comp) \
3730 case INTRINSIC_##comp: \
3731 case INTRINSIC_##comp##_OS: \
3732 sym = gfc_search_interface (ns->op[INTRINSIC_##comp], 0, &actual); \
3733 if (!sym) \
3734 sym = gfc_search_interface (ns->op[INTRINSIC_##comp##_OS], 0, &actual); \
3735 break;
3736 CHECK_OS_COMPARISON(EQ)
3737 CHECK_OS_COMPARISON(NE)
3738 CHECK_OS_COMPARISON(GT)
3739 CHECK_OS_COMPARISON(GE)
3740 CHECK_OS_COMPARISON(LT)
3741 CHECK_OS_COMPARISON(LE)
3742 #undef CHECK_OS_COMPARISON
3744 default:
3745 sym = gfc_search_interface (ns->op[i], 0, &actual);
3748 if (sym != NULL)
3749 break;
3753 /* TODO: Do an ambiguity-check and error if multiple matching interfaces are
3754 found rather than just taking the first one and not checking further. */
3756 if (sym == NULL)
3758 gfc_typebound_proc* tbo;
3759 gfc_expr* tb_base;
3761 /* See if we find a matching type-bound operator. */
3762 if (i == INTRINSIC_USER)
3763 tbo = matching_typebound_op (&tb_base, actual,
3764 i, e->value.op.uop->name, &gname);
3765 else
3766 switch (i)
3768 #define CHECK_OS_COMPARISON(comp) \
3769 case INTRINSIC_##comp: \
3770 case INTRINSIC_##comp##_OS: \
3771 tbo = matching_typebound_op (&tb_base, actual, \
3772 INTRINSIC_##comp, NULL, &gname); \
3773 if (!tbo) \
3774 tbo = matching_typebound_op (&tb_base, actual, \
3775 INTRINSIC_##comp##_OS, NULL, &gname); \
3776 break;
3777 CHECK_OS_COMPARISON(EQ)
3778 CHECK_OS_COMPARISON(NE)
3779 CHECK_OS_COMPARISON(GT)
3780 CHECK_OS_COMPARISON(GE)
3781 CHECK_OS_COMPARISON(LT)
3782 CHECK_OS_COMPARISON(LE)
3783 #undef CHECK_OS_COMPARISON
3785 default:
3786 tbo = matching_typebound_op (&tb_base, actual, i, NULL, &gname);
3787 break;
3790 /* If there is a matching typebound-operator, replace the expression with
3791 a call to it and succeed. */
3792 if (tbo)
3794 bool result;
3796 gcc_assert (tb_base);
3797 build_compcall_for_operator (e, actual, tb_base, tbo, gname);
3799 result = gfc_resolve_expr (e);
3800 if (!result)
3801 return MATCH_ERROR;
3803 return MATCH_YES;
3806 /* Don't use gfc_free_actual_arglist(). */
3807 free (actual->next);
3808 free (actual);
3810 return MATCH_NO;
3813 /* Change the expression node to a function call. */
3814 e->expr_type = EXPR_FUNCTION;
3815 e->symtree = gfc_find_sym_in_symtree (sym);
3816 e->value.function.actual = actual;
3817 e->value.function.esym = NULL;
3818 e->value.function.isym = NULL;
3819 e->value.function.name = NULL;
3820 e->user_operator = 1;
3822 if (!gfc_resolve_expr (e))
3823 return MATCH_ERROR;
3825 return MATCH_YES;
3829 /* Tries to replace an assignment code node with a subroutine call to the
3830 subroutine associated with the assignment operator. Return true if the node
3831 was replaced. On false, no error is generated. */
3833 bool
3834 gfc_extend_assign (gfc_code *c, gfc_namespace *ns)
3836 gfc_actual_arglist *actual;
3837 gfc_expr *lhs, *rhs, *tb_base;
3838 gfc_symbol *sym = NULL;
3839 const char *gname = NULL;
3840 gfc_typebound_proc* tbo;
3842 lhs = c->expr1;
3843 rhs = c->expr2;
3845 /* Don't allow an intrinsic assignment to be replaced. */
3846 if (lhs->ts.type != BT_DERIVED && lhs->ts.type != BT_CLASS
3847 && (rhs->rank == 0 || rhs->rank == lhs->rank)
3848 && (lhs->ts.type == rhs->ts.type
3849 || (gfc_numeric_ts (&lhs->ts) && gfc_numeric_ts (&rhs->ts))))
3850 return false;
3852 actual = gfc_get_actual_arglist ();
3853 actual->expr = lhs;
3855 actual->next = gfc_get_actual_arglist ();
3856 actual->next->expr = rhs;
3858 /* TODO: Ambiguity-check, see above for gfc_extend_expr. */
3860 /* See if we find a matching type-bound assignment. */
3861 tbo = matching_typebound_op (&tb_base, actual, INTRINSIC_ASSIGN,
3862 NULL, &gname);
3864 if (tbo)
3866 /* Success: Replace the expression with a type-bound call. */
3867 gcc_assert (tb_base);
3868 c->expr1 = gfc_get_expr ();
3869 build_compcall_for_operator (c->expr1, actual, tb_base, tbo, gname);
3870 c->expr1->value.compcall.assign = 1;
3871 c->expr1->where = c->loc;
3872 c->expr2 = NULL;
3873 c->op = EXEC_COMPCALL;
3874 return true;
3877 /* See if we find an 'ordinary' (non-typebound) assignment procedure. */
3878 for (; ns; ns = ns->parent)
3880 sym = gfc_search_interface (ns->op[INTRINSIC_ASSIGN], 1, &actual);
3881 if (sym != NULL)
3882 break;
3885 if (sym)
3887 /* Success: Replace the assignment with the call. */
3888 c->op = EXEC_ASSIGN_CALL;
3889 c->symtree = gfc_find_sym_in_symtree (sym);
3890 c->expr1 = NULL;
3891 c->expr2 = NULL;
3892 c->ext.actual = actual;
3893 return true;
3896 /* Failure: No assignment procedure found. */
3897 free (actual->next);
3898 free (actual);
3899 return false;
3903 /* Make sure that the interface just parsed is not already present in
3904 the given interface list. Ambiguity isn't checked yet since module
3905 procedures can be present without interfaces. */
3907 bool
3908 gfc_check_new_interface (gfc_interface *base, gfc_symbol *new_sym, locus loc)
3910 gfc_interface *ip;
3912 for (ip = base; ip; ip = ip->next)
3914 if (ip->sym == new_sym)
3916 gfc_error ("Entity %qs at %L is already present in the interface",
3917 new_sym->name, &loc);
3918 return false;
3922 return true;
3926 /* Add a symbol to the current interface. */
3928 bool
3929 gfc_add_interface (gfc_symbol *new_sym)
3931 gfc_interface **head, *intr;
3932 gfc_namespace *ns;
3933 gfc_symbol *sym;
3935 switch (current_interface.type)
3937 case INTERFACE_NAMELESS:
3938 case INTERFACE_ABSTRACT:
3939 return true;
3941 case INTERFACE_INTRINSIC_OP:
3942 for (ns = current_interface.ns; ns; ns = ns->parent)
3943 switch (current_interface.op)
3945 case INTRINSIC_EQ:
3946 case INTRINSIC_EQ_OS:
3947 if (!gfc_check_new_interface (ns->op[INTRINSIC_EQ], new_sym,
3948 gfc_current_locus)
3949 || !gfc_check_new_interface (ns->op[INTRINSIC_EQ_OS],
3950 new_sym, gfc_current_locus))
3951 return false;
3952 break;
3954 case INTRINSIC_NE:
3955 case INTRINSIC_NE_OS:
3956 if (!gfc_check_new_interface (ns->op[INTRINSIC_NE], new_sym,
3957 gfc_current_locus)
3958 || !gfc_check_new_interface (ns->op[INTRINSIC_NE_OS],
3959 new_sym, gfc_current_locus))
3960 return false;
3961 break;
3963 case INTRINSIC_GT:
3964 case INTRINSIC_GT_OS:
3965 if (!gfc_check_new_interface (ns->op[INTRINSIC_GT],
3966 new_sym, gfc_current_locus)
3967 || !gfc_check_new_interface (ns->op[INTRINSIC_GT_OS],
3968 new_sym, gfc_current_locus))
3969 return false;
3970 break;
3972 case INTRINSIC_GE:
3973 case INTRINSIC_GE_OS:
3974 if (!gfc_check_new_interface (ns->op[INTRINSIC_GE],
3975 new_sym, gfc_current_locus)
3976 || !gfc_check_new_interface (ns->op[INTRINSIC_GE_OS],
3977 new_sym, gfc_current_locus))
3978 return false;
3979 break;
3981 case INTRINSIC_LT:
3982 case INTRINSIC_LT_OS:
3983 if (!gfc_check_new_interface (ns->op[INTRINSIC_LT],
3984 new_sym, gfc_current_locus)
3985 || !gfc_check_new_interface (ns->op[INTRINSIC_LT_OS],
3986 new_sym, gfc_current_locus))
3987 return false;
3988 break;
3990 case INTRINSIC_LE:
3991 case INTRINSIC_LE_OS:
3992 if (!gfc_check_new_interface (ns->op[INTRINSIC_LE],
3993 new_sym, gfc_current_locus)
3994 || !gfc_check_new_interface (ns->op[INTRINSIC_LE_OS],
3995 new_sym, gfc_current_locus))
3996 return false;
3997 break;
3999 default:
4000 if (!gfc_check_new_interface (ns->op[current_interface.op],
4001 new_sym, gfc_current_locus))
4002 return false;
4005 head = &current_interface.ns->op[current_interface.op];
4006 break;
4008 case INTERFACE_GENERIC:
4009 for (ns = current_interface.ns; ns; ns = ns->parent)
4011 gfc_find_symbol (current_interface.sym->name, ns, 0, &sym);
4012 if (sym == NULL)
4013 continue;
4015 if (!gfc_check_new_interface (sym->generic,
4016 new_sym, gfc_current_locus))
4017 return false;
4020 head = &current_interface.sym->generic;
4021 break;
4023 case INTERFACE_USER_OP:
4024 if (!gfc_check_new_interface (current_interface.uop->op,
4025 new_sym, gfc_current_locus))
4026 return false;
4028 head = &current_interface.uop->op;
4029 break;
4031 default:
4032 gfc_internal_error ("gfc_add_interface(): Bad interface type");
4035 intr = gfc_get_interface ();
4036 intr->sym = new_sym;
4037 intr->where = gfc_current_locus;
4039 intr->next = *head;
4040 *head = intr;
4042 return true;
4046 gfc_interface *
4047 gfc_current_interface_head (void)
4049 switch (current_interface.type)
4051 case INTERFACE_INTRINSIC_OP:
4052 return current_interface.ns->op[current_interface.op];
4053 break;
4055 case INTERFACE_GENERIC:
4056 return current_interface.sym->generic;
4057 break;
4059 case INTERFACE_USER_OP:
4060 return current_interface.uop->op;
4061 break;
4063 default:
4064 gcc_unreachable ();
4069 void
4070 gfc_set_current_interface_head (gfc_interface *i)
4072 switch (current_interface.type)
4074 case INTERFACE_INTRINSIC_OP:
4075 current_interface.ns->op[current_interface.op] = i;
4076 break;
4078 case INTERFACE_GENERIC:
4079 current_interface.sym->generic = i;
4080 break;
4082 case INTERFACE_USER_OP:
4083 current_interface.uop->op = i;
4084 break;
4086 default:
4087 gcc_unreachable ();
4092 /* Gets rid of a formal argument list. We do not free symbols.
4093 Symbols are freed when a namespace is freed. */
4095 void
4096 gfc_free_formal_arglist (gfc_formal_arglist *p)
4098 gfc_formal_arglist *q;
4100 for (; p; p = q)
4102 q = p->next;
4103 free (p);
4108 /* Check that it is ok for the type-bound procedure 'proc' to override the
4109 procedure 'old', cf. F08:4.5.7.3. */
4111 bool
4112 gfc_check_typebound_override (gfc_symtree* proc, gfc_symtree* old)
4114 locus where;
4115 gfc_symbol *proc_target, *old_target;
4116 unsigned proc_pass_arg, old_pass_arg, argpos;
4117 gfc_formal_arglist *proc_formal, *old_formal;
4118 bool check_type;
4119 char err[200];
4121 /* This procedure should only be called for non-GENERIC proc. */
4122 gcc_assert (!proc->n.tb->is_generic);
4124 /* If the overwritten procedure is GENERIC, this is an error. */
4125 if (old->n.tb->is_generic)
4127 gfc_error ("Can't overwrite GENERIC %qs at %L",
4128 old->name, &proc->n.tb->where);
4129 return false;
4132 where = proc->n.tb->where;
4133 proc_target = proc->n.tb->u.specific->n.sym;
4134 old_target = old->n.tb->u.specific->n.sym;
4136 /* Check that overridden binding is not NON_OVERRIDABLE. */
4137 if (old->n.tb->non_overridable)
4139 gfc_error ("%qs at %L overrides a procedure binding declared"
4140 " NON_OVERRIDABLE", proc->name, &where);
4141 return false;
4144 /* It's an error to override a non-DEFERRED procedure with a DEFERRED one. */
4145 if (!old->n.tb->deferred && proc->n.tb->deferred)
4147 gfc_error ("%qs at %L must not be DEFERRED as it overrides a"
4148 " non-DEFERRED binding", proc->name, &where);
4149 return false;
4152 /* If the overridden binding is PURE, the overriding must be, too. */
4153 if (old_target->attr.pure && !proc_target->attr.pure)
4155 gfc_error ("%qs at %L overrides a PURE procedure and must also be PURE",
4156 proc->name, &where);
4157 return false;
4160 /* If the overridden binding is ELEMENTAL, the overriding must be, too. If it
4161 is not, the overriding must not be either. */
4162 if (old_target->attr.elemental && !proc_target->attr.elemental)
4164 gfc_error ("%qs at %L overrides an ELEMENTAL procedure and must also be"
4165 " ELEMENTAL", proc->name, &where);
4166 return false;
4168 if (!old_target->attr.elemental && proc_target->attr.elemental)
4170 gfc_error ("%qs at %L overrides a non-ELEMENTAL procedure and must not"
4171 " be ELEMENTAL, either", proc->name, &where);
4172 return false;
4175 /* If the overridden binding is a SUBROUTINE, the overriding must also be a
4176 SUBROUTINE. */
4177 if (old_target->attr.subroutine && !proc_target->attr.subroutine)
4179 gfc_error ("%qs at %L overrides a SUBROUTINE and must also be a"
4180 " SUBROUTINE", proc->name, &where);
4181 return false;
4184 /* If the overridden binding is a FUNCTION, the overriding must also be a
4185 FUNCTION and have the same characteristics. */
4186 if (old_target->attr.function)
4188 if (!proc_target->attr.function)
4190 gfc_error ("%qs at %L overrides a FUNCTION and must also be a"
4191 " FUNCTION", proc->name, &where);
4192 return false;
4195 if (!check_result_characteristics (proc_target, old_target, err,
4196 sizeof(err)))
4198 gfc_error ("Result mismatch for the overriding procedure "
4199 "%qs at %L: %s", proc->name, &where, err);
4200 return false;
4204 /* If the overridden binding is PUBLIC, the overriding one must not be
4205 PRIVATE. */
4206 if (old->n.tb->access == ACCESS_PUBLIC
4207 && proc->n.tb->access == ACCESS_PRIVATE)
4209 gfc_error ("%qs at %L overrides a PUBLIC procedure and must not be"
4210 " PRIVATE", proc->name, &where);
4211 return false;
4214 /* Compare the formal argument lists of both procedures. This is also abused
4215 to find the position of the passed-object dummy arguments of both
4216 bindings as at least the overridden one might not yet be resolved and we
4217 need those positions in the check below. */
4218 proc_pass_arg = old_pass_arg = 0;
4219 if (!proc->n.tb->nopass && !proc->n.tb->pass_arg)
4220 proc_pass_arg = 1;
4221 if (!old->n.tb->nopass && !old->n.tb->pass_arg)
4222 old_pass_arg = 1;
4223 argpos = 1;
4224 proc_formal = gfc_sym_get_dummy_args (proc_target);
4225 old_formal = gfc_sym_get_dummy_args (old_target);
4226 for ( ; proc_formal && old_formal;
4227 proc_formal = proc_formal->next, old_formal = old_formal->next)
4229 if (proc->n.tb->pass_arg
4230 && !strcmp (proc->n.tb->pass_arg, proc_formal->sym->name))
4231 proc_pass_arg = argpos;
4232 if (old->n.tb->pass_arg
4233 && !strcmp (old->n.tb->pass_arg, old_formal->sym->name))
4234 old_pass_arg = argpos;
4236 /* Check that the names correspond. */
4237 if (strcmp (proc_formal->sym->name, old_formal->sym->name))
4239 gfc_error ("Dummy argument %qs of %qs at %L should be named %qs as"
4240 " to match the corresponding argument of the overridden"
4241 " procedure", proc_formal->sym->name, proc->name, &where,
4242 old_formal->sym->name);
4243 return false;
4246 check_type = proc_pass_arg != argpos && old_pass_arg != argpos;
4247 if (!check_dummy_characteristics (proc_formal->sym, old_formal->sym,
4248 check_type, err, sizeof(err)))
4250 gfc_error ("Argument mismatch for the overriding procedure "
4251 "%qs at %L: %s", proc->name, &where, err);
4252 return false;
4255 ++argpos;
4257 if (proc_formal || old_formal)
4259 gfc_error ("%qs at %L must have the same number of formal arguments as"
4260 " the overridden procedure", proc->name, &where);
4261 return false;
4264 /* If the overridden binding is NOPASS, the overriding one must also be
4265 NOPASS. */
4266 if (old->n.tb->nopass && !proc->n.tb->nopass)
4268 gfc_error ("%qs at %L overrides a NOPASS binding and must also be"
4269 " NOPASS", proc->name, &where);
4270 return false;
4273 /* If the overridden binding is PASS(x), the overriding one must also be
4274 PASS and the passed-object dummy arguments must correspond. */
4275 if (!old->n.tb->nopass)
4277 if (proc->n.tb->nopass)
4279 gfc_error ("%qs at %L overrides a binding with PASS and must also be"
4280 " PASS", proc->name, &where);
4281 return false;
4284 if (proc_pass_arg != old_pass_arg)
4286 gfc_error ("Passed-object dummy argument of %qs at %L must be at"
4287 " the same position as the passed-object dummy argument of"
4288 " the overridden procedure", proc->name, &where);
4289 return false;
4293 return true;