PR middle-end/28915
[official-gcc.git] / gcc / explow.c
blobe21e9c112ecbc36233759dcf404974d6fc754e61
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "toplev.h"
29 #include "rtl.h"
30 #include "tree.h"
31 #include "tm_p.h"
32 #include "flags.h"
33 #include "function.h"
34 #include "expr.h"
35 #include "optabs.h"
36 #include "hard-reg-set.h"
37 #include "insn-config.h"
38 #include "ggc.h"
39 #include "recog.h"
40 #include "langhooks.h"
41 #include "target.h"
42 #include "output.h"
44 static rtx break_out_memory_refs (rtx);
45 static void emit_stack_probe (rtx);
48 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
50 HOST_WIDE_INT
51 trunc_int_for_mode (HOST_WIDE_INT c, enum machine_mode mode)
53 int width = GET_MODE_BITSIZE (mode);
55 /* You want to truncate to a _what_? */
56 gcc_assert (SCALAR_INT_MODE_P (mode));
58 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
59 if (mode == BImode)
60 return c & 1 ? STORE_FLAG_VALUE : 0;
62 /* Sign-extend for the requested mode. */
64 if (width < HOST_BITS_PER_WIDE_INT)
66 HOST_WIDE_INT sign = 1;
67 sign <<= width - 1;
68 c &= (sign << 1) - 1;
69 c ^= sign;
70 c -= sign;
73 return c;
76 /* Return an rtx for the sum of X and the integer C. */
78 rtx
79 plus_constant (rtx x, HOST_WIDE_INT c)
81 RTX_CODE code;
82 rtx y;
83 enum machine_mode mode;
84 rtx tem;
85 int all_constant = 0;
87 if (c == 0)
88 return x;
90 restart:
92 code = GET_CODE (x);
93 mode = GET_MODE (x);
94 y = x;
96 switch (code)
98 case CONST_INT:
99 return GEN_INT (INTVAL (x) + c);
101 case CONST_DOUBLE:
103 unsigned HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
104 HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
105 unsigned HOST_WIDE_INT l2 = c;
106 HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
107 unsigned HOST_WIDE_INT lv;
108 HOST_WIDE_INT hv;
110 add_double (l1, h1, l2, h2, &lv, &hv);
112 return immed_double_const (lv, hv, VOIDmode);
115 case MEM:
116 /* If this is a reference to the constant pool, try replacing it with
117 a reference to a new constant. If the resulting address isn't
118 valid, don't return it because we have no way to validize it. */
119 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
120 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
123 = force_const_mem (GET_MODE (x),
124 plus_constant (get_pool_constant (XEXP (x, 0)),
125 c));
126 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
127 return tem;
129 break;
131 case CONST:
132 /* If adding to something entirely constant, set a flag
133 so that we can add a CONST around the result. */
134 x = XEXP (x, 0);
135 all_constant = 1;
136 goto restart;
138 case SYMBOL_REF:
139 case LABEL_REF:
140 all_constant = 1;
141 break;
143 case PLUS:
144 /* The interesting case is adding the integer to a sum.
145 Look for constant term in the sum and combine
146 with C. For an integer constant term, we make a combined
147 integer. For a constant term that is not an explicit integer,
148 we cannot really combine, but group them together anyway.
150 Restart or use a recursive call in case the remaining operand is
151 something that we handle specially, such as a SYMBOL_REF.
153 We may not immediately return from the recursive call here, lest
154 all_constant gets lost. */
156 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
158 c += INTVAL (XEXP (x, 1));
160 if (GET_MODE (x) != VOIDmode)
161 c = trunc_int_for_mode (c, GET_MODE (x));
163 x = XEXP (x, 0);
164 goto restart;
166 else if (CONSTANT_P (XEXP (x, 1)))
168 x = gen_rtx_PLUS (mode, XEXP (x, 0), plus_constant (XEXP (x, 1), c));
169 c = 0;
171 else if (find_constant_term_loc (&y))
173 /* We need to be careful since X may be shared and we can't
174 modify it in place. */
175 rtx copy = copy_rtx (x);
176 rtx *const_loc = find_constant_term_loc (&copy);
178 *const_loc = plus_constant (*const_loc, c);
179 x = copy;
180 c = 0;
182 break;
184 default:
185 break;
188 if (c != 0)
189 x = gen_rtx_PLUS (mode, x, GEN_INT (c));
191 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
192 return x;
193 else if (all_constant)
194 return gen_rtx_CONST (mode, x);
195 else
196 return x;
199 /* If X is a sum, return a new sum like X but lacking any constant terms.
200 Add all the removed constant terms into *CONSTPTR.
201 X itself is not altered. The result != X if and only if
202 it is not isomorphic to X. */
205 eliminate_constant_term (rtx x, rtx *constptr)
207 rtx x0, x1;
208 rtx tem;
210 if (GET_CODE (x) != PLUS)
211 return x;
213 /* First handle constants appearing at this level explicitly. */
214 if (GET_CODE (XEXP (x, 1)) == CONST_INT
215 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
216 XEXP (x, 1)))
217 && GET_CODE (tem) == CONST_INT)
219 *constptr = tem;
220 return eliminate_constant_term (XEXP (x, 0), constptr);
223 tem = const0_rtx;
224 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
225 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
226 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
227 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
228 *constptr, tem))
229 && GET_CODE (tem) == CONST_INT)
231 *constptr = tem;
232 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
235 return x;
238 /* Return an rtx for the size in bytes of the value of EXP. */
241 expr_size (tree exp)
243 tree size;
245 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
246 size = TREE_OPERAND (exp, 1);
247 else
248 size = SUBSTITUTE_PLACEHOLDER_IN_EXPR (lang_hooks.expr_size (exp), exp);
250 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), 0);
253 /* Return a wide integer for the size in bytes of the value of EXP, or -1
254 if the size can vary or is larger than an integer. */
256 HOST_WIDE_INT
257 int_expr_size (tree exp)
259 tree size;
261 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
262 size = TREE_OPERAND (exp, 1);
263 else
264 size = lang_hooks.expr_size (exp);
266 if (size == 0 || !host_integerp (size, 0))
267 return -1;
269 return tree_low_cst (size, 0);
272 /* Return a copy of X in which all memory references
273 and all constants that involve symbol refs
274 have been replaced with new temporary registers.
275 Also emit code to load the memory locations and constants
276 into those registers.
278 If X contains no such constants or memory references,
279 X itself (not a copy) is returned.
281 If a constant is found in the address that is not a legitimate constant
282 in an insn, it is left alone in the hope that it might be valid in the
283 address.
285 X may contain no arithmetic except addition, subtraction and multiplication.
286 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
288 static rtx
289 break_out_memory_refs (rtx x)
291 if (MEM_P (x)
292 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
293 && GET_MODE (x) != VOIDmode))
294 x = force_reg (GET_MODE (x), x);
295 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
296 || GET_CODE (x) == MULT)
298 rtx op0 = break_out_memory_refs (XEXP (x, 0));
299 rtx op1 = break_out_memory_refs (XEXP (x, 1));
301 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
302 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
305 return x;
308 /* Given X, a memory address in ptr_mode, convert it to an address
309 in Pmode, or vice versa (TO_MODE says which way). We take advantage of
310 the fact that pointers are not allowed to overflow by commuting arithmetic
311 operations over conversions so that address arithmetic insns can be
312 used. */
315 convert_memory_address (enum machine_mode to_mode ATTRIBUTE_UNUSED,
316 rtx x)
318 #ifndef POINTERS_EXTEND_UNSIGNED
319 gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode);
320 return x;
321 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
322 enum machine_mode from_mode;
323 rtx temp;
324 enum rtx_code code;
326 /* If X already has the right mode, just return it. */
327 if (GET_MODE (x) == to_mode)
328 return x;
330 from_mode = to_mode == ptr_mode ? Pmode : ptr_mode;
332 /* Here we handle some special cases. If none of them apply, fall through
333 to the default case. */
334 switch (GET_CODE (x))
336 case CONST_INT:
337 case CONST_DOUBLE:
338 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
339 code = TRUNCATE;
340 else if (POINTERS_EXTEND_UNSIGNED < 0)
341 break;
342 else if (POINTERS_EXTEND_UNSIGNED > 0)
343 code = ZERO_EXTEND;
344 else
345 code = SIGN_EXTEND;
346 temp = simplify_unary_operation (code, to_mode, x, from_mode);
347 if (temp)
348 return temp;
349 break;
351 case SUBREG:
352 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
353 && GET_MODE (SUBREG_REG (x)) == to_mode)
354 return SUBREG_REG (x);
355 break;
357 case LABEL_REF:
358 temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
359 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
360 return temp;
361 break;
363 case SYMBOL_REF:
364 temp = shallow_copy_rtx (x);
365 PUT_MODE (temp, to_mode);
366 return temp;
367 break;
369 case CONST:
370 return gen_rtx_CONST (to_mode,
371 convert_memory_address (to_mode, XEXP (x, 0)));
372 break;
374 case PLUS:
375 case MULT:
376 /* For addition we can safely permute the conversion and addition
377 operation if one operand is a constant and converting the constant
378 does not change it. We can always safely permute them if we are
379 making the address narrower. */
380 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
381 || (GET_CODE (x) == PLUS
382 && GET_CODE (XEXP (x, 1)) == CONST_INT
383 && XEXP (x, 1) == convert_memory_address (to_mode, XEXP (x, 1))))
384 return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
385 convert_memory_address (to_mode, XEXP (x, 0)),
386 XEXP (x, 1));
387 break;
389 default:
390 break;
393 return convert_modes (to_mode, from_mode,
394 x, POINTERS_EXTEND_UNSIGNED);
395 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
398 /* Return something equivalent to X but valid as a memory address
399 for something of mode MODE. When X is not itself valid, this
400 works by copying X or subexpressions of it into registers. */
403 memory_address (enum machine_mode mode, rtx x)
405 rtx oldx = x;
407 x = convert_memory_address (Pmode, x);
409 /* By passing constant addresses through registers
410 we get a chance to cse them. */
411 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
412 x = force_reg (Pmode, x);
414 /* We get better cse by rejecting indirect addressing at this stage.
415 Let the combiner create indirect addresses where appropriate.
416 For now, generate the code so that the subexpressions useful to share
417 are visible. But not if cse won't be done! */
418 else
420 if (! cse_not_expected && !REG_P (x))
421 x = break_out_memory_refs (x);
423 /* At this point, any valid address is accepted. */
424 if (memory_address_p (mode, x))
425 goto win;
427 /* If it was valid before but breaking out memory refs invalidated it,
428 use it the old way. */
429 if (memory_address_p (mode, oldx))
430 goto win2;
432 /* Perform machine-dependent transformations on X
433 in certain cases. This is not necessary since the code
434 below can handle all possible cases, but machine-dependent
435 transformations can make better code. */
436 LEGITIMIZE_ADDRESS (x, oldx, mode, win);
438 /* PLUS and MULT can appear in special ways
439 as the result of attempts to make an address usable for indexing.
440 Usually they are dealt with by calling force_operand, below.
441 But a sum containing constant terms is special
442 if removing them makes the sum a valid address:
443 then we generate that address in a register
444 and index off of it. We do this because it often makes
445 shorter code, and because the addresses thus generated
446 in registers often become common subexpressions. */
447 if (GET_CODE (x) == PLUS)
449 rtx constant_term = const0_rtx;
450 rtx y = eliminate_constant_term (x, &constant_term);
451 if (constant_term == const0_rtx
452 || ! memory_address_p (mode, y))
453 x = force_operand (x, NULL_RTX);
454 else
456 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
457 if (! memory_address_p (mode, y))
458 x = force_operand (x, NULL_RTX);
459 else
460 x = y;
464 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
465 x = force_operand (x, NULL_RTX);
467 /* If we have a register that's an invalid address,
468 it must be a hard reg of the wrong class. Copy it to a pseudo. */
469 else if (REG_P (x))
470 x = copy_to_reg (x);
472 /* Last resort: copy the value to a register, since
473 the register is a valid address. */
474 else
475 x = force_reg (Pmode, x);
477 goto done;
479 win2:
480 x = oldx;
481 win:
482 if (flag_force_addr && ! cse_not_expected && !REG_P (x))
484 x = force_operand (x, NULL_RTX);
485 x = force_reg (Pmode, x);
489 done:
491 /* If we didn't change the address, we are done. Otherwise, mark
492 a reg as a pointer if we have REG or REG + CONST_INT. */
493 if (oldx == x)
494 return x;
495 else if (REG_P (x))
496 mark_reg_pointer (x, BITS_PER_UNIT);
497 else if (GET_CODE (x) == PLUS
498 && REG_P (XEXP (x, 0))
499 && GET_CODE (XEXP (x, 1)) == CONST_INT)
500 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
502 /* OLDX may have been the address on a temporary. Update the address
503 to indicate that X is now used. */
504 update_temp_slot_address (oldx, x);
506 return x;
509 /* Like `memory_address' but pretend `flag_force_addr' is 0. */
512 memory_address_noforce (enum machine_mode mode, rtx x)
514 int ambient_force_addr = flag_force_addr;
515 rtx val;
517 flag_force_addr = 0;
518 val = memory_address (mode, x);
519 flag_force_addr = ambient_force_addr;
520 return val;
523 /* Convert a mem ref into one with a valid memory address.
524 Pass through anything else unchanged. */
527 validize_mem (rtx ref)
529 if (!MEM_P (ref))
530 return ref;
531 ref = use_anchored_address (ref);
532 if (! (flag_force_addr && CONSTANT_ADDRESS_P (XEXP (ref, 0)))
533 && memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
534 return ref;
536 /* Don't alter REF itself, since that is probably a stack slot. */
537 return replace_equiv_address (ref, XEXP (ref, 0));
540 /* If X is a memory reference to a member of an object block, try rewriting
541 it to use an anchor instead. Return the new memory reference on success
542 and the old one on failure. */
545 use_anchored_address (rtx x)
547 rtx base;
548 HOST_WIDE_INT offset;
550 if (!flag_section_anchors)
551 return x;
553 if (!MEM_P (x))
554 return x;
556 /* Split the address into a base and offset. */
557 base = XEXP (x, 0);
558 offset = 0;
559 if (GET_CODE (base) == CONST
560 && GET_CODE (XEXP (base, 0)) == PLUS
561 && GET_CODE (XEXP (XEXP (base, 0), 1)) == CONST_INT)
563 offset += INTVAL (XEXP (XEXP (base, 0), 1));
564 base = XEXP (XEXP (base, 0), 0);
567 /* Check whether BASE is suitable for anchors. */
568 if (GET_CODE (base) != SYMBOL_REF
569 || !SYMBOL_REF_HAS_BLOCK_INFO_P (base)
570 || SYMBOL_REF_ANCHOR_P (base)
571 || SYMBOL_REF_BLOCK (base) == NULL
572 || !targetm.use_anchors_for_symbol_p (base))
573 return x;
575 /* Decide where BASE is going to be. */
576 place_block_symbol (base);
578 /* Get the anchor we need to use. */
579 offset += SYMBOL_REF_BLOCK_OFFSET (base);
580 base = get_section_anchor (SYMBOL_REF_BLOCK (base), offset,
581 SYMBOL_REF_TLS_MODEL (base));
583 /* Work out the offset from the anchor. */
584 offset -= SYMBOL_REF_BLOCK_OFFSET (base);
586 /* If we're going to run a CSE pass, force the anchor into a register.
587 We will then be able to reuse registers for several accesses, if the
588 target costs say that that's worthwhile. */
589 if (!cse_not_expected)
590 base = force_reg (GET_MODE (base), base);
592 return replace_equiv_address (x, plus_constant (base, offset));
595 /* Copy the value or contents of X to a new temp reg and return that reg. */
598 copy_to_reg (rtx x)
600 rtx temp = gen_reg_rtx (GET_MODE (x));
602 /* If not an operand, must be an address with PLUS and MULT so
603 do the computation. */
604 if (! general_operand (x, VOIDmode))
605 x = force_operand (x, temp);
607 if (x != temp)
608 emit_move_insn (temp, x);
610 return temp;
613 /* Like copy_to_reg but always give the new register mode Pmode
614 in case X is a constant. */
617 copy_addr_to_reg (rtx x)
619 return copy_to_mode_reg (Pmode, x);
622 /* Like copy_to_reg but always give the new register mode MODE
623 in case X is a constant. */
626 copy_to_mode_reg (enum machine_mode mode, rtx x)
628 rtx temp = gen_reg_rtx (mode);
630 /* If not an operand, must be an address with PLUS and MULT so
631 do the computation. */
632 if (! general_operand (x, VOIDmode))
633 x = force_operand (x, temp);
635 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
636 if (x != temp)
637 emit_move_insn (temp, x);
638 return temp;
641 /* Load X into a register if it is not already one.
642 Use mode MODE for the register.
643 X should be valid for mode MODE, but it may be a constant which
644 is valid for all integer modes; that's why caller must specify MODE.
646 The caller must not alter the value in the register we return,
647 since we mark it as a "constant" register. */
650 force_reg (enum machine_mode mode, rtx x)
652 rtx temp, insn, set;
654 if (REG_P (x))
655 return x;
657 if (general_operand (x, mode))
659 temp = gen_reg_rtx (mode);
660 insn = emit_move_insn (temp, x);
662 else
664 temp = force_operand (x, NULL_RTX);
665 if (REG_P (temp))
666 insn = get_last_insn ();
667 else
669 rtx temp2 = gen_reg_rtx (mode);
670 insn = emit_move_insn (temp2, temp);
671 temp = temp2;
675 /* Let optimizers know that TEMP's value never changes
676 and that X can be substituted for it. Don't get confused
677 if INSN set something else (such as a SUBREG of TEMP). */
678 if (CONSTANT_P (x)
679 && (set = single_set (insn)) != 0
680 && SET_DEST (set) == temp
681 && ! rtx_equal_p (x, SET_SRC (set)))
682 set_unique_reg_note (insn, REG_EQUAL, x);
684 /* Let optimizers know that TEMP is a pointer, and if so, the
685 known alignment of that pointer. */
687 unsigned align = 0;
688 if (GET_CODE (x) == SYMBOL_REF)
690 align = BITS_PER_UNIT;
691 if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
692 align = DECL_ALIGN (SYMBOL_REF_DECL (x));
694 else if (GET_CODE (x) == LABEL_REF)
695 align = BITS_PER_UNIT;
696 else if (GET_CODE (x) == CONST
697 && GET_CODE (XEXP (x, 0)) == PLUS
698 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
699 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
701 rtx s = XEXP (XEXP (x, 0), 0);
702 rtx c = XEXP (XEXP (x, 0), 1);
703 unsigned sa, ca;
705 sa = BITS_PER_UNIT;
706 if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
707 sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
709 ca = exact_log2 (INTVAL (c) & -INTVAL (c)) * BITS_PER_UNIT;
711 align = MIN (sa, ca);
713 else if (MEM_P (x) && MEM_POINTER (x))
714 align = MEM_ALIGN (x);
716 if (align)
717 mark_reg_pointer (temp, align);
720 return temp;
723 /* If X is a memory ref, copy its contents to a new temp reg and return
724 that reg. Otherwise, return X. */
727 force_not_mem (rtx x)
729 rtx temp;
731 if (!MEM_P (x) || GET_MODE (x) == BLKmode)
732 return x;
734 temp = gen_reg_rtx (GET_MODE (x));
736 if (MEM_POINTER (x))
737 REG_POINTER (temp) = 1;
739 emit_move_insn (temp, x);
740 return temp;
743 /* Copy X to TARGET (if it's nonzero and a reg)
744 or to a new temp reg and return that reg.
745 MODE is the mode to use for X in case it is a constant. */
748 copy_to_suggested_reg (rtx x, rtx target, enum machine_mode mode)
750 rtx temp;
752 if (target && REG_P (target))
753 temp = target;
754 else
755 temp = gen_reg_rtx (mode);
757 emit_move_insn (temp, x);
758 return temp;
761 /* Return the mode to use to store a scalar of TYPE and MODE.
762 PUNSIGNEDP points to the signedness of the type and may be adjusted
763 to show what signedness to use on extension operations.
765 FOR_CALL is nonzero if this call is promoting args for a call. */
767 #if defined(PROMOTE_MODE) && !defined(PROMOTE_FUNCTION_MODE)
768 #define PROMOTE_FUNCTION_MODE PROMOTE_MODE
769 #endif
771 enum machine_mode
772 promote_mode (tree type, enum machine_mode mode, int *punsignedp,
773 int for_call ATTRIBUTE_UNUSED)
775 enum tree_code code = TREE_CODE (type);
776 int unsignedp = *punsignedp;
778 #ifndef PROMOTE_MODE
779 if (! for_call)
780 return mode;
781 #endif
783 switch (code)
785 #ifdef PROMOTE_FUNCTION_MODE
786 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
787 case REAL_TYPE: case OFFSET_TYPE:
788 #ifdef PROMOTE_MODE
789 if (for_call)
791 #endif
792 PROMOTE_FUNCTION_MODE (mode, unsignedp, type);
793 #ifdef PROMOTE_MODE
795 else
797 PROMOTE_MODE (mode, unsignedp, type);
799 #endif
800 break;
801 #endif
803 #ifdef POINTERS_EXTEND_UNSIGNED
804 case REFERENCE_TYPE:
805 case POINTER_TYPE:
806 mode = Pmode;
807 unsignedp = POINTERS_EXTEND_UNSIGNED;
808 break;
809 #endif
811 default:
812 break;
815 *punsignedp = unsignedp;
816 return mode;
819 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
820 This pops when ADJUST is positive. ADJUST need not be constant. */
822 void
823 adjust_stack (rtx adjust)
825 rtx temp;
827 if (adjust == const0_rtx)
828 return;
830 /* We expect all variable sized adjustments to be multiple of
831 PREFERRED_STACK_BOUNDARY. */
832 if (GET_CODE (adjust) == CONST_INT)
833 stack_pointer_delta -= INTVAL (adjust);
835 temp = expand_binop (Pmode,
836 #ifdef STACK_GROWS_DOWNWARD
837 add_optab,
838 #else
839 sub_optab,
840 #endif
841 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
842 OPTAB_LIB_WIDEN);
844 if (temp != stack_pointer_rtx)
845 emit_move_insn (stack_pointer_rtx, temp);
848 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
849 This pushes when ADJUST is positive. ADJUST need not be constant. */
851 void
852 anti_adjust_stack (rtx adjust)
854 rtx temp;
856 if (adjust == const0_rtx)
857 return;
859 /* We expect all variable sized adjustments to be multiple of
860 PREFERRED_STACK_BOUNDARY. */
861 if (GET_CODE (adjust) == CONST_INT)
862 stack_pointer_delta += INTVAL (adjust);
864 temp = expand_binop (Pmode,
865 #ifdef STACK_GROWS_DOWNWARD
866 sub_optab,
867 #else
868 add_optab,
869 #endif
870 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
871 OPTAB_LIB_WIDEN);
873 if (temp != stack_pointer_rtx)
874 emit_move_insn (stack_pointer_rtx, temp);
877 /* Round the size of a block to be pushed up to the boundary required
878 by this machine. SIZE is the desired size, which need not be constant. */
880 static rtx
881 round_push (rtx size)
883 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
885 if (align == 1)
886 return size;
888 if (GET_CODE (size) == CONST_INT)
890 HOST_WIDE_INT new = (INTVAL (size) + align - 1) / align * align;
892 if (INTVAL (size) != new)
893 size = GEN_INT (new);
895 else
897 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
898 but we know it can't. So add ourselves and then do
899 TRUNC_DIV_EXPR. */
900 size = expand_binop (Pmode, add_optab, size, GEN_INT (align - 1),
901 NULL_RTX, 1, OPTAB_LIB_WIDEN);
902 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, GEN_INT (align),
903 NULL_RTX, 1);
904 size = expand_mult (Pmode, size, GEN_INT (align), NULL_RTX, 1);
907 return size;
910 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
911 to a previously-created save area. If no save area has been allocated,
912 this function will allocate one. If a save area is specified, it
913 must be of the proper mode.
915 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
916 are emitted at the current position. */
918 void
919 emit_stack_save (enum save_level save_level, rtx *psave, rtx after)
921 rtx sa = *psave;
922 /* The default is that we use a move insn and save in a Pmode object. */
923 rtx (*fcn) (rtx, rtx) = gen_move_insn;
924 enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
926 /* See if this machine has anything special to do for this kind of save. */
927 switch (save_level)
929 #ifdef HAVE_save_stack_block
930 case SAVE_BLOCK:
931 if (HAVE_save_stack_block)
932 fcn = gen_save_stack_block;
933 break;
934 #endif
935 #ifdef HAVE_save_stack_function
936 case SAVE_FUNCTION:
937 if (HAVE_save_stack_function)
938 fcn = gen_save_stack_function;
939 break;
940 #endif
941 #ifdef HAVE_save_stack_nonlocal
942 case SAVE_NONLOCAL:
943 if (HAVE_save_stack_nonlocal)
944 fcn = gen_save_stack_nonlocal;
945 break;
946 #endif
947 default:
948 break;
951 /* If there is no save area and we have to allocate one, do so. Otherwise
952 verify the save area is the proper mode. */
954 if (sa == 0)
956 if (mode != VOIDmode)
958 if (save_level == SAVE_NONLOCAL)
959 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
960 else
961 *psave = sa = gen_reg_rtx (mode);
965 if (after)
967 rtx seq;
969 start_sequence ();
970 do_pending_stack_adjust ();
971 /* We must validize inside the sequence, to ensure that any instructions
972 created by the validize call also get moved to the right place. */
973 if (sa != 0)
974 sa = validize_mem (sa);
975 emit_insn (fcn (sa, stack_pointer_rtx));
976 seq = get_insns ();
977 end_sequence ();
978 emit_insn_after (seq, after);
980 else
982 do_pending_stack_adjust ();
983 if (sa != 0)
984 sa = validize_mem (sa);
985 emit_insn (fcn (sa, stack_pointer_rtx));
989 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
990 area made by emit_stack_save. If it is zero, we have nothing to do.
992 Put any emitted insns after insn AFTER, if nonzero, otherwise at
993 current position. */
995 void
996 emit_stack_restore (enum save_level save_level, rtx sa, rtx after)
998 /* The default is that we use a move insn. */
999 rtx (*fcn) (rtx, rtx) = gen_move_insn;
1001 /* See if this machine has anything special to do for this kind of save. */
1002 switch (save_level)
1004 #ifdef HAVE_restore_stack_block
1005 case SAVE_BLOCK:
1006 if (HAVE_restore_stack_block)
1007 fcn = gen_restore_stack_block;
1008 break;
1009 #endif
1010 #ifdef HAVE_restore_stack_function
1011 case SAVE_FUNCTION:
1012 if (HAVE_restore_stack_function)
1013 fcn = gen_restore_stack_function;
1014 break;
1015 #endif
1016 #ifdef HAVE_restore_stack_nonlocal
1017 case SAVE_NONLOCAL:
1018 if (HAVE_restore_stack_nonlocal)
1019 fcn = gen_restore_stack_nonlocal;
1020 break;
1021 #endif
1022 default:
1023 break;
1026 if (sa != 0)
1028 sa = validize_mem (sa);
1029 /* These clobbers prevent the scheduler from moving
1030 references to variable arrays below the code
1031 that deletes (pops) the arrays. */
1032 emit_insn (gen_rtx_CLOBBER (VOIDmode,
1033 gen_rtx_MEM (BLKmode,
1034 gen_rtx_SCRATCH (VOIDmode))));
1035 emit_insn (gen_rtx_CLOBBER (VOIDmode,
1036 gen_rtx_MEM (BLKmode, stack_pointer_rtx)));
1039 discard_pending_stack_adjust ();
1041 if (after)
1043 rtx seq;
1045 start_sequence ();
1046 emit_insn (fcn (stack_pointer_rtx, sa));
1047 seq = get_insns ();
1048 end_sequence ();
1049 emit_insn_after (seq, after);
1051 else
1052 emit_insn (fcn (stack_pointer_rtx, sa));
1055 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1056 function. This function should be called whenever we allocate or
1057 deallocate dynamic stack space. */
1059 void
1060 update_nonlocal_goto_save_area (void)
1062 tree t_save;
1063 rtx r_save;
1065 /* The nonlocal_goto_save_area object is an array of N pointers. The
1066 first one is used for the frame pointer save; the rest are sized by
1067 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
1068 of the stack save area slots. */
1069 t_save = build4 (ARRAY_REF, ptr_type_node, cfun->nonlocal_goto_save_area,
1070 integer_one_node, NULL_TREE, NULL_TREE);
1071 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1073 emit_stack_save (SAVE_NONLOCAL, &r_save, NULL_RTX);
1076 /* Return an rtx representing the address of an area of memory dynamically
1077 pushed on the stack. This region of memory is always aligned to
1078 a multiple of BIGGEST_ALIGNMENT.
1080 Any required stack pointer alignment is preserved.
1082 SIZE is an rtx representing the size of the area.
1083 TARGET is a place in which the address can be placed.
1085 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
1088 allocate_dynamic_stack_space (rtx size, rtx target, int known_align)
1090 /* If we're asking for zero bytes, it doesn't matter what we point
1091 to since we can't dereference it. But return a reasonable
1092 address anyway. */
1093 if (size == const0_rtx)
1094 return virtual_stack_dynamic_rtx;
1096 /* Otherwise, show we're calling alloca or equivalent. */
1097 current_function_calls_alloca = 1;
1099 /* Ensure the size is in the proper mode. */
1100 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1101 size = convert_to_mode (Pmode, size, 1);
1103 /* We can't attempt to minimize alignment necessary, because we don't
1104 know the final value of preferred_stack_boundary yet while executing
1105 this code. */
1106 cfun->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1108 /* We will need to ensure that the address we return is aligned to
1109 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
1110 always know its final value at this point in the compilation (it
1111 might depend on the size of the outgoing parameter lists, for
1112 example), so we must align the value to be returned in that case.
1113 (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1114 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1115 We must also do an alignment operation on the returned value if
1116 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1118 If we have to align, we must leave space in SIZE for the hole
1119 that might result from the alignment operation. */
1121 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1122 #define MUST_ALIGN 1
1123 #else
1124 #define MUST_ALIGN (PREFERRED_STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1125 #endif
1127 if (MUST_ALIGN)
1128 size
1129 = force_operand (plus_constant (size,
1130 BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1131 NULL_RTX);
1133 #ifdef SETJMP_VIA_SAVE_AREA
1134 /* If setjmp restores regs from a save area in the stack frame,
1135 avoid clobbering the reg save area. Note that the offset of
1136 virtual_incoming_args_rtx includes the preallocated stack args space.
1137 It would be no problem to clobber that, but it's on the wrong side
1138 of the old save area.
1140 What used to happen is that, since we did not know for sure
1141 whether setjmp() was invoked until after RTL generation, we
1142 would use reg notes to store the "optimized" size and fix things
1143 up later. These days we know this information before we ever
1144 start building RTL so the reg notes are unnecessary. */
1145 if (!current_function_calls_setjmp)
1147 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
1149 /* ??? Code below assumes that the save area needs maximal
1150 alignment. This constraint may be too strong. */
1151 gcc_assert (PREFERRED_STACK_BOUNDARY == BIGGEST_ALIGNMENT);
1153 if (GET_CODE (size) == CONST_INT)
1155 HOST_WIDE_INT new = INTVAL (size) / align * align;
1157 if (INTVAL (size) != new)
1158 size = GEN_INT (new);
1160 else
1162 /* Since we know overflow is not possible, we avoid using
1163 CEIL_DIV_EXPR and use TRUNC_DIV_EXPR instead. */
1164 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size,
1165 GEN_INT (align), NULL_RTX, 1);
1166 size = expand_mult (Pmode, size,
1167 GEN_INT (align), NULL_RTX, 1);
1170 else
1172 rtx dynamic_offset
1173 = expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
1174 stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
1176 size = expand_binop (Pmode, add_optab, size, dynamic_offset,
1177 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1179 #endif /* SETJMP_VIA_SAVE_AREA */
1181 /* Round the size to a multiple of the required stack alignment.
1182 Since the stack if presumed to be rounded before this allocation,
1183 this will maintain the required alignment.
1185 If the stack grows downward, we could save an insn by subtracting
1186 SIZE from the stack pointer and then aligning the stack pointer.
1187 The problem with this is that the stack pointer may be unaligned
1188 between the execution of the subtraction and alignment insns and
1189 some machines do not allow this. Even on those that do, some
1190 signal handlers malfunction if a signal should occur between those
1191 insns. Since this is an extremely rare event, we have no reliable
1192 way of knowing which systems have this problem. So we avoid even
1193 momentarily mis-aligning the stack. */
1195 /* If we added a variable amount to SIZE,
1196 we can no longer assume it is aligned. */
1197 #if !defined (SETJMP_VIA_SAVE_AREA)
1198 if (MUST_ALIGN || known_align % PREFERRED_STACK_BOUNDARY != 0)
1199 #endif
1200 size = round_push (size);
1202 do_pending_stack_adjust ();
1204 /* We ought to be called always on the toplevel and stack ought to be aligned
1205 properly. */
1206 gcc_assert (!(stack_pointer_delta
1207 % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)));
1209 /* If needed, check that we have the required amount of stack. Take into
1210 account what has already been checked. */
1211 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1212 probe_stack_range (STACK_CHECK_MAX_FRAME_SIZE + STACK_CHECK_PROTECT, size);
1214 /* Don't use a TARGET that isn't a pseudo or is the wrong mode. */
1215 if (target == 0 || !REG_P (target)
1216 || REGNO (target) < FIRST_PSEUDO_REGISTER
1217 || GET_MODE (target) != Pmode)
1218 target = gen_reg_rtx (Pmode);
1220 mark_reg_pointer (target, known_align);
1222 /* Perform the required allocation from the stack. Some systems do
1223 this differently than simply incrementing/decrementing from the
1224 stack pointer, such as acquiring the space by calling malloc(). */
1225 #ifdef HAVE_allocate_stack
1226 if (HAVE_allocate_stack)
1228 enum machine_mode mode = STACK_SIZE_MODE;
1229 insn_operand_predicate_fn pred;
1231 /* We don't have to check against the predicate for operand 0 since
1232 TARGET is known to be a pseudo of the proper mode, which must
1233 be valid for the operand. For operand 1, convert to the
1234 proper mode and validate. */
1235 if (mode == VOIDmode)
1236 mode = insn_data[(int) CODE_FOR_allocate_stack].operand[1].mode;
1238 pred = insn_data[(int) CODE_FOR_allocate_stack].operand[1].predicate;
1239 if (pred && ! ((*pred) (size, mode)))
1240 size = copy_to_mode_reg (mode, convert_to_mode (mode, size, 1));
1242 emit_insn (gen_allocate_stack (target, size));
1244 else
1245 #endif
1247 #ifndef STACK_GROWS_DOWNWARD
1248 emit_move_insn (target, virtual_stack_dynamic_rtx);
1249 #endif
1251 /* Check stack bounds if necessary. */
1252 if (current_function_limit_stack)
1254 rtx available;
1255 rtx space_available = gen_label_rtx ();
1256 #ifdef STACK_GROWS_DOWNWARD
1257 available = expand_binop (Pmode, sub_optab,
1258 stack_pointer_rtx, stack_limit_rtx,
1259 NULL_RTX, 1, OPTAB_WIDEN);
1260 #else
1261 available = expand_binop (Pmode, sub_optab,
1262 stack_limit_rtx, stack_pointer_rtx,
1263 NULL_RTX, 1, OPTAB_WIDEN);
1264 #endif
1265 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1266 space_available);
1267 #ifdef HAVE_trap
1268 if (HAVE_trap)
1269 emit_insn (gen_trap ());
1270 else
1271 #endif
1272 error ("stack limits not supported on this target");
1273 emit_barrier ();
1274 emit_label (space_available);
1277 anti_adjust_stack (size);
1279 #ifdef STACK_GROWS_DOWNWARD
1280 emit_move_insn (target, virtual_stack_dynamic_rtx);
1281 #endif
1284 if (MUST_ALIGN)
1286 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1287 but we know it can't. So add ourselves and then do
1288 TRUNC_DIV_EXPR. */
1289 target = expand_binop (Pmode, add_optab, target,
1290 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1291 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1292 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1293 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1294 NULL_RTX, 1);
1295 target = expand_mult (Pmode, target,
1296 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1297 NULL_RTX, 1);
1300 /* Record the new stack level for nonlocal gotos. */
1301 if (cfun->nonlocal_goto_save_area != 0)
1302 update_nonlocal_goto_save_area ();
1304 return target;
1307 /* A front end may want to override GCC's stack checking by providing a
1308 run-time routine to call to check the stack, so provide a mechanism for
1309 calling that routine. */
1311 static GTY(()) rtx stack_check_libfunc;
1313 void
1314 set_stack_check_libfunc (rtx libfunc)
1316 stack_check_libfunc = libfunc;
1319 /* Emit one stack probe at ADDRESS, an address within the stack. */
1321 static void
1322 emit_stack_probe (rtx address)
1324 rtx memref = gen_rtx_MEM (word_mode, address);
1326 MEM_VOLATILE_P (memref) = 1;
1328 if (STACK_CHECK_PROBE_LOAD)
1329 emit_move_insn (gen_reg_rtx (word_mode), memref);
1330 else
1331 emit_move_insn (memref, const0_rtx);
1334 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1335 FIRST is a constant and size is a Pmode RTX. These are offsets from the
1336 current stack pointer. STACK_GROWS_DOWNWARD says whether to add or
1337 subtract from the stack. If SIZE is constant, this is done
1338 with a fixed number of probes. Otherwise, we must make a loop. */
1340 #ifdef STACK_GROWS_DOWNWARD
1341 #define STACK_GROW_OP MINUS
1342 #else
1343 #define STACK_GROW_OP PLUS
1344 #endif
1346 void
1347 probe_stack_range (HOST_WIDE_INT first, rtx size)
1349 /* First ensure SIZE is Pmode. */
1350 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1351 size = convert_to_mode (Pmode, size, 1);
1353 /* Next see if the front end has set up a function for us to call to
1354 check the stack. */
1355 if (stack_check_libfunc != 0)
1357 rtx addr = memory_address (QImode,
1358 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1359 stack_pointer_rtx,
1360 plus_constant (size, first)));
1362 addr = convert_memory_address (ptr_mode, addr);
1363 emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr,
1364 ptr_mode);
1367 /* Next see if we have an insn to check the stack. Use it if so. */
1368 #ifdef HAVE_check_stack
1369 else if (HAVE_check_stack)
1371 insn_operand_predicate_fn pred;
1372 rtx last_addr
1373 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1374 stack_pointer_rtx,
1375 plus_constant (size, first)),
1376 NULL_RTX);
1378 pred = insn_data[(int) CODE_FOR_check_stack].operand[0].predicate;
1379 if (pred && ! ((*pred) (last_addr, Pmode)))
1380 last_addr = copy_to_mode_reg (Pmode, last_addr);
1382 emit_insn (gen_check_stack (last_addr));
1384 #endif
1386 /* If we have to generate explicit probes, see if we have a constant
1387 small number of them to generate. If so, that's the easy case. */
1388 else if (GET_CODE (size) == CONST_INT
1389 && INTVAL (size) < 10 * STACK_CHECK_PROBE_INTERVAL)
1391 HOST_WIDE_INT offset;
1393 /* Start probing at FIRST + N * STACK_CHECK_PROBE_INTERVAL
1394 for values of N from 1 until it exceeds LAST. If only one
1395 probe is needed, this will not generate any code. Then probe
1396 at LAST. */
1397 for (offset = first + STACK_CHECK_PROBE_INTERVAL;
1398 offset < INTVAL (size);
1399 offset = offset + STACK_CHECK_PROBE_INTERVAL)
1400 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1401 stack_pointer_rtx,
1402 GEN_INT (offset)));
1404 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1405 stack_pointer_rtx,
1406 plus_constant (size, first)));
1409 /* In the variable case, do the same as above, but in a loop. We emit loop
1410 notes so that loop optimization can be done. */
1411 else
1413 rtx test_addr
1414 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1415 stack_pointer_rtx,
1416 GEN_INT (first + STACK_CHECK_PROBE_INTERVAL)),
1417 NULL_RTX);
1418 rtx last_addr
1419 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1420 stack_pointer_rtx,
1421 plus_constant (size, first)),
1422 NULL_RTX);
1423 rtx incr = GEN_INT (STACK_CHECK_PROBE_INTERVAL);
1424 rtx loop_lab = gen_label_rtx ();
1425 rtx test_lab = gen_label_rtx ();
1426 rtx end_lab = gen_label_rtx ();
1427 rtx temp;
1429 if (!REG_P (test_addr)
1430 || REGNO (test_addr) < FIRST_PSEUDO_REGISTER)
1431 test_addr = force_reg (Pmode, test_addr);
1433 emit_jump (test_lab);
1435 emit_label (loop_lab);
1436 emit_stack_probe (test_addr);
1438 #ifdef STACK_GROWS_DOWNWARD
1439 #define CMP_OPCODE GTU
1440 temp = expand_binop (Pmode, sub_optab, test_addr, incr, test_addr,
1441 1, OPTAB_WIDEN);
1442 #else
1443 #define CMP_OPCODE LTU
1444 temp = expand_binop (Pmode, add_optab, test_addr, incr, test_addr,
1445 1, OPTAB_WIDEN);
1446 #endif
1448 gcc_assert (temp == test_addr);
1450 emit_label (test_lab);
1451 emit_cmp_and_jump_insns (test_addr, last_addr, CMP_OPCODE,
1452 NULL_RTX, Pmode, 1, loop_lab);
1453 emit_jump (end_lab);
1454 emit_label (end_lab);
1456 emit_stack_probe (last_addr);
1460 /* Return an rtx representing the register or memory location
1461 in which a scalar value of data type VALTYPE
1462 was returned by a function call to function FUNC.
1463 FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
1464 function is known, otherwise 0.
1465 OUTGOING is 1 if on a machine with register windows this function
1466 should return the register in which the function will put its result
1467 and 0 otherwise. */
1470 hard_function_value (tree valtype, tree func, tree fntype,
1471 int outgoing ATTRIBUTE_UNUSED)
1473 rtx val;
1475 val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing);
1477 if (REG_P (val)
1478 && GET_MODE (val) == BLKmode)
1480 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1481 enum machine_mode tmpmode;
1483 /* int_size_in_bytes can return -1. We don't need a check here
1484 since the value of bytes will then be large enough that no
1485 mode will match anyway. */
1487 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1488 tmpmode != VOIDmode;
1489 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1491 /* Have we found a large enough mode? */
1492 if (GET_MODE_SIZE (tmpmode) >= bytes)
1493 break;
1496 /* No suitable mode found. */
1497 gcc_assert (tmpmode != VOIDmode);
1499 PUT_MODE (val, tmpmode);
1501 return val;
1504 /* Return an rtx representing the register or memory location
1505 in which a scalar value of mode MODE was returned by a library call. */
1508 hard_libcall_value (enum machine_mode mode)
1510 return LIBCALL_VALUE (mode);
1513 /* Look up the tree code for a given rtx code
1514 to provide the arithmetic operation for REAL_ARITHMETIC.
1515 The function returns an int because the caller may not know
1516 what `enum tree_code' means. */
1519 rtx_to_tree_code (enum rtx_code code)
1521 enum tree_code tcode;
1523 switch (code)
1525 case PLUS:
1526 tcode = PLUS_EXPR;
1527 break;
1528 case MINUS:
1529 tcode = MINUS_EXPR;
1530 break;
1531 case MULT:
1532 tcode = MULT_EXPR;
1533 break;
1534 case DIV:
1535 tcode = RDIV_EXPR;
1536 break;
1537 case SMIN:
1538 tcode = MIN_EXPR;
1539 break;
1540 case SMAX:
1541 tcode = MAX_EXPR;
1542 break;
1543 default:
1544 tcode = LAST_AND_UNUSED_TREE_CODE;
1545 break;
1547 return ((int) tcode);
1550 #include "gt-explow.h"