PR middle-end/23971
[official-gcc.git] / gcc / tree-chrec.c
blob0bf1d38459229cca98f0e8a54ad01eb234a730b1
1 /* Chains of recurrences.
2 Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <s.pop@laposte.net>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 /* This file implements operations on chains of recurrences. Chains
23 of recurrences are used for modeling evolution functions of scalar
24 variables.
27 #include "config.h"
28 #include "system.h"
29 #include "coretypes.h"
30 #include "tm.h"
31 #include "ggc.h"
32 #include "tree.h"
33 #include "real.h"
34 #include "diagnostic.h"
35 #include "varray.h"
36 #include "cfgloop.h"
37 #include "tree-flow.h"
38 #include "tree-chrec.h"
39 #include "tree-pass.h"
40 #include "params.h"
41 #include "tree-scalar-evolution.h"
45 /* Extended folder for chrecs. */
47 /* Determines whether CST is not a constant evolution. */
49 static inline bool
50 is_not_constant_evolution (tree cst)
52 return (TREE_CODE (cst) == POLYNOMIAL_CHREC);
55 /* Fold CODE for a polynomial function and a constant. */
57 static inline tree
58 chrec_fold_poly_cst (enum tree_code code,
59 tree type,
60 tree poly,
61 tree cst)
63 gcc_assert (poly);
64 gcc_assert (cst);
65 gcc_assert (TREE_CODE (poly) == POLYNOMIAL_CHREC);
66 gcc_assert (!is_not_constant_evolution (cst));
68 switch (code)
70 case PLUS_EXPR:
71 return build_polynomial_chrec
72 (CHREC_VARIABLE (poly),
73 chrec_fold_plus (type, CHREC_LEFT (poly), cst),
74 CHREC_RIGHT (poly));
76 case MINUS_EXPR:
77 return build_polynomial_chrec
78 (CHREC_VARIABLE (poly),
79 chrec_fold_minus (type, CHREC_LEFT (poly), cst),
80 CHREC_RIGHT (poly));
82 case MULT_EXPR:
83 return build_polynomial_chrec
84 (CHREC_VARIABLE (poly),
85 chrec_fold_multiply (type, CHREC_LEFT (poly), cst),
86 chrec_fold_multiply (type, CHREC_RIGHT (poly), cst));
88 default:
89 return chrec_dont_know;
93 /* Fold the addition of two polynomial functions. */
95 static inline tree
96 chrec_fold_plus_poly_poly (enum tree_code code,
97 tree type,
98 tree poly0,
99 tree poly1)
101 tree left, right;
103 gcc_assert (poly0);
104 gcc_assert (poly1);
105 gcc_assert (TREE_CODE (poly0) == POLYNOMIAL_CHREC);
106 gcc_assert (TREE_CODE (poly1) == POLYNOMIAL_CHREC);
109 {a, +, b}_1 + {c, +, d}_2 -> {{a, +, b}_1 + c, +, d}_2,
110 {a, +, b}_2 + {c, +, d}_1 -> {{c, +, d}_1 + a, +, b}_2,
111 {a, +, b}_x + {c, +, d}_x -> {a+c, +, b+d}_x. */
112 if (CHREC_VARIABLE (poly0) < CHREC_VARIABLE (poly1))
114 if (code == PLUS_EXPR)
115 return build_polynomial_chrec
116 (CHREC_VARIABLE (poly1),
117 chrec_fold_plus (type, poly0, CHREC_LEFT (poly1)),
118 CHREC_RIGHT (poly1));
119 else
120 return build_polynomial_chrec
121 (CHREC_VARIABLE (poly1),
122 chrec_fold_minus (type, poly0, CHREC_LEFT (poly1)),
123 chrec_fold_multiply (type, CHREC_RIGHT (poly1),
124 SCALAR_FLOAT_TYPE_P (type)
125 ? build_real (type, dconstm1)
126 : build_int_cst_type (type, -1)));
129 if (CHREC_VARIABLE (poly0) > CHREC_VARIABLE (poly1))
131 if (code == PLUS_EXPR)
132 return build_polynomial_chrec
133 (CHREC_VARIABLE (poly0),
134 chrec_fold_plus (type, CHREC_LEFT (poly0), poly1),
135 CHREC_RIGHT (poly0));
136 else
137 return build_polynomial_chrec
138 (CHREC_VARIABLE (poly0),
139 chrec_fold_minus (type, CHREC_LEFT (poly0), poly1),
140 CHREC_RIGHT (poly0));
143 if (code == PLUS_EXPR)
145 left = chrec_fold_plus
146 (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
147 right = chrec_fold_plus
148 (type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
150 else
152 left = chrec_fold_minus
153 (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
154 right = chrec_fold_minus
155 (type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
158 if (chrec_zerop (right))
159 return left;
160 else
161 return build_polynomial_chrec
162 (CHREC_VARIABLE (poly0), left, right);
167 /* Fold the multiplication of two polynomial functions. */
169 static inline tree
170 chrec_fold_multiply_poly_poly (tree type,
171 tree poly0,
172 tree poly1)
174 tree t0, t1, t2;
175 int var;
177 gcc_assert (poly0);
178 gcc_assert (poly1);
179 gcc_assert (TREE_CODE (poly0) == POLYNOMIAL_CHREC);
180 gcc_assert (TREE_CODE (poly1) == POLYNOMIAL_CHREC);
182 /* {a, +, b}_1 * {c, +, d}_2 -> {c*{a, +, b}_1, +, d}_2,
183 {a, +, b}_2 * {c, +, d}_1 -> {a*{c, +, d}_1, +, b}_2,
184 {a, +, b}_x * {c, +, d}_x -> {a*c, +, a*d + b*c + b*d, +, 2*b*d}_x. */
185 if (CHREC_VARIABLE (poly0) < CHREC_VARIABLE (poly1))
186 /* poly0 is a constant wrt. poly1. */
187 return build_polynomial_chrec
188 (CHREC_VARIABLE (poly1),
189 chrec_fold_multiply (type, CHREC_LEFT (poly1), poly0),
190 CHREC_RIGHT (poly1));
192 if (CHREC_VARIABLE (poly1) < CHREC_VARIABLE (poly0))
193 /* poly1 is a constant wrt. poly0. */
194 return build_polynomial_chrec
195 (CHREC_VARIABLE (poly0),
196 chrec_fold_multiply (type, CHREC_LEFT (poly0), poly1),
197 CHREC_RIGHT (poly0));
199 /* poly0 and poly1 are two polynomials in the same variable,
200 {a, +, b}_x * {c, +, d}_x -> {a*c, +, a*d + b*c + b*d, +, 2*b*d}_x. */
202 /* "a*c". */
203 t0 = chrec_fold_multiply (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
205 /* "a*d + b*c + b*d". */
206 t1 = chrec_fold_multiply (type, CHREC_LEFT (poly0), CHREC_RIGHT (poly1));
207 t1 = chrec_fold_plus (type, t1, chrec_fold_multiply (type,
208 CHREC_RIGHT (poly0),
209 CHREC_LEFT (poly1)));
210 t1 = chrec_fold_plus (type, t1, chrec_fold_multiply (type,
211 CHREC_RIGHT (poly0),
212 CHREC_RIGHT (poly1)));
213 /* "2*b*d". */
214 t2 = chrec_fold_multiply (type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
215 t2 = chrec_fold_multiply (type, SCALAR_FLOAT_TYPE_P (type)
216 ? build_real (type, dconst2)
217 : build_int_cst_type (type, 2), t2);
219 var = CHREC_VARIABLE (poly0);
220 return build_polynomial_chrec (var, t0,
221 build_polynomial_chrec (var, t1, t2));
224 /* When the operands are automatically_generated_chrec_p, the fold has
225 to respect the semantics of the operands. */
227 static inline tree
228 chrec_fold_automatically_generated_operands (tree op0,
229 tree op1)
231 if (op0 == chrec_dont_know
232 || op1 == chrec_dont_know)
233 return chrec_dont_know;
235 if (op0 == chrec_known
236 || op1 == chrec_known)
237 return chrec_known;
239 if (op0 == chrec_not_analyzed_yet
240 || op1 == chrec_not_analyzed_yet)
241 return chrec_not_analyzed_yet;
243 /* The default case produces a safe result. */
244 return chrec_dont_know;
247 /* Fold the addition of two chrecs. */
249 static tree
250 chrec_fold_plus_1 (enum tree_code code,
251 tree type,
252 tree op0,
253 tree op1)
255 if (automatically_generated_chrec_p (op0)
256 || automatically_generated_chrec_p (op1))
257 return chrec_fold_automatically_generated_operands (op0, op1);
259 switch (TREE_CODE (op0))
261 case POLYNOMIAL_CHREC:
262 switch (TREE_CODE (op1))
264 case POLYNOMIAL_CHREC:
265 return chrec_fold_plus_poly_poly (code, type, op0, op1);
267 default:
268 if (code == PLUS_EXPR)
269 return build_polynomial_chrec
270 (CHREC_VARIABLE (op0),
271 chrec_fold_plus (type, CHREC_LEFT (op0), op1),
272 CHREC_RIGHT (op0));
273 else
274 return build_polynomial_chrec
275 (CHREC_VARIABLE (op0),
276 chrec_fold_minus (type, CHREC_LEFT (op0), op1),
277 CHREC_RIGHT (op0));
280 default:
281 switch (TREE_CODE (op1))
283 case POLYNOMIAL_CHREC:
284 if (code == PLUS_EXPR)
285 return build_polynomial_chrec
286 (CHREC_VARIABLE (op1),
287 chrec_fold_plus (type, op0, CHREC_LEFT (op1)),
288 CHREC_RIGHT (op1));
289 else
290 return build_polynomial_chrec
291 (CHREC_VARIABLE (op1),
292 chrec_fold_minus (type, op0, CHREC_LEFT (op1)),
293 chrec_fold_multiply (type, CHREC_RIGHT (op1),
294 SCALAR_FLOAT_TYPE_P (type)
295 ? build_real (type, dconstm1)
296 : build_int_cst_type (type, -1)));
298 default:
300 int size = 0;
301 if ((tree_contains_chrecs (op0, &size)
302 || tree_contains_chrecs (op1, &size))
303 && size < PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
304 return build2 (code, type, op0, op1);
305 else if (size < PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
306 return fold_build2 (code, type,
307 fold_convert (type, op0),
308 fold_convert (type, op1));
309 else
310 return chrec_dont_know;
316 /* Fold the addition of two chrecs. */
318 tree
319 chrec_fold_plus (tree type,
320 tree op0,
321 tree op1)
323 if (integer_zerop (op0))
324 return op1;
325 if (integer_zerop (op1))
326 return op0;
328 return chrec_fold_plus_1 (PLUS_EXPR, type, op0, op1);
331 /* Fold the subtraction of two chrecs. */
333 tree
334 chrec_fold_minus (tree type,
335 tree op0,
336 tree op1)
338 if (integer_zerop (op1))
339 return op0;
341 return chrec_fold_plus_1 (MINUS_EXPR, type, op0, op1);
344 /* Fold the multiplication of two chrecs. */
346 tree
347 chrec_fold_multiply (tree type,
348 tree op0,
349 tree op1)
351 if (automatically_generated_chrec_p (op0)
352 || automatically_generated_chrec_p (op1))
353 return chrec_fold_automatically_generated_operands (op0, op1);
355 switch (TREE_CODE (op0))
357 case POLYNOMIAL_CHREC:
358 switch (TREE_CODE (op1))
360 case POLYNOMIAL_CHREC:
361 return chrec_fold_multiply_poly_poly (type, op0, op1);
363 default:
364 if (integer_onep (op1))
365 return op0;
366 if (integer_zerop (op1))
367 return build_int_cst_type (type, 0);
369 return build_polynomial_chrec
370 (CHREC_VARIABLE (op0),
371 chrec_fold_multiply (type, CHREC_LEFT (op0), op1),
372 chrec_fold_multiply (type, CHREC_RIGHT (op0), op1));
375 default:
376 if (integer_onep (op0))
377 return op1;
379 if (integer_zerop (op0))
380 return build_int_cst_type (type, 0);
382 switch (TREE_CODE (op1))
384 case POLYNOMIAL_CHREC:
385 return build_polynomial_chrec
386 (CHREC_VARIABLE (op1),
387 chrec_fold_multiply (type, CHREC_LEFT (op1), op0),
388 chrec_fold_multiply (type, CHREC_RIGHT (op1), op0));
390 default:
391 if (integer_onep (op1))
392 return op0;
393 if (integer_zerop (op1))
394 return build_int_cst_type (type, 0);
395 return fold_build2 (MULT_EXPR, type, op0, op1);
402 /* Operations. */
404 /* Evaluate the binomial coefficient. Return NULL_TREE if the intermediate
405 calculation overflows, otherwise return C(n,k) with type TYPE. */
407 static tree
408 tree_fold_binomial (tree type, tree n, unsigned int k)
410 unsigned HOST_WIDE_INT lidx, lnum, ldenom, lres, ldum;
411 HOST_WIDE_INT hidx, hnum, hdenom, hres, hdum;
412 unsigned int i;
413 tree res;
415 /* Handle the most frequent cases. */
416 if (k == 0)
417 return build_int_cst (type, 1);
418 if (k == 1)
419 return fold_convert (type, n);
421 /* Check that k <= n. */
422 if (TREE_INT_CST_HIGH (n) == 0
423 && TREE_INT_CST_LOW (n) < k)
424 return NULL_TREE;
426 /* Numerator = n. */
427 lnum = TREE_INT_CST_LOW (n);
428 hnum = TREE_INT_CST_HIGH (n);
430 /* Denominator = 2. */
431 ldenom = 2;
432 hdenom = 0;
434 /* Index = Numerator-1. */
435 if (lnum == 0)
437 hidx = hnum - 1;
438 lidx = ~ (unsigned HOST_WIDE_INT) 0;
440 else
442 hidx = hnum;
443 lidx = lnum - 1;
446 /* Numerator = Numerator*Index = n*(n-1). */
447 if (mul_double (lnum, hnum, lidx, hidx, &lnum, &hnum))
448 return NULL_TREE;
450 for (i = 3; i <= k; i++)
452 /* Index--. */
453 if (lidx == 0)
455 hidx--;
456 lidx = ~ (unsigned HOST_WIDE_INT) 0;
458 else
459 lidx--;
461 /* Numerator *= Index. */
462 if (mul_double (lnum, hnum, lidx, hidx, &lnum, &hnum))
463 return NULL_TREE;
465 /* Denominator *= i. */
466 mul_double (ldenom, hdenom, i, 0, &ldenom, &hdenom);
469 /* Result = Numerator / Denominator. */
470 div_and_round_double (EXACT_DIV_EXPR, 1, lnum, hnum, ldenom, hdenom,
471 &lres, &hres, &ldum, &hdum);
473 res = build_int_cst_wide (type, lres, hres);
474 return int_fits_type_p (res, type) ? res : NULL_TREE;
477 /* Helper function. Use the Newton's interpolating formula for
478 evaluating the value of the evolution function. */
480 static tree
481 chrec_evaluate (unsigned var, tree chrec, tree n, unsigned int k)
483 tree arg0, arg1, binomial_n_k;
484 tree type = TREE_TYPE (chrec);
486 while (TREE_CODE (chrec) == POLYNOMIAL_CHREC
487 && CHREC_VARIABLE (chrec) > var)
488 chrec = CHREC_LEFT (chrec);
490 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC
491 && CHREC_VARIABLE (chrec) == var)
493 arg0 = chrec_evaluate (var, CHREC_RIGHT (chrec), n, k + 1);
494 if (arg0 == chrec_dont_know)
495 return chrec_dont_know;
496 binomial_n_k = tree_fold_binomial (type, n, k);
497 if (!binomial_n_k)
498 return chrec_dont_know;
499 arg1 = fold_build2 (MULT_EXPR, type,
500 CHREC_LEFT (chrec), binomial_n_k);
501 return chrec_fold_plus (type, arg0, arg1);
504 binomial_n_k = tree_fold_binomial (type, n, k);
505 if (!binomial_n_k)
506 return chrec_dont_know;
508 return fold_build2 (MULT_EXPR, type, chrec, binomial_n_k);
511 /* Evaluates "CHREC (X)" when the varying variable is VAR.
512 Example: Given the following parameters,
514 var = 1
515 chrec = {3, +, 4}_1
516 x = 10
518 The result is given by the Newton's interpolating formula:
519 3 * \binom{10}{0} + 4 * \binom{10}{1}.
522 tree
523 chrec_apply (unsigned var,
524 tree chrec,
525 tree x)
527 tree type = chrec_type (chrec);
528 tree res = chrec_dont_know;
530 if (automatically_generated_chrec_p (chrec)
531 || automatically_generated_chrec_p (x)
533 /* When the symbols are defined in an outer loop, it is possible
534 to symbolically compute the apply, since the symbols are
535 constants with respect to the varying loop. */
536 || chrec_contains_symbols_defined_in_loop (chrec, var)
537 || chrec_contains_symbols (x))
538 return chrec_dont_know;
540 if (dump_file && (dump_flags & TDF_DETAILS))
541 fprintf (dump_file, "(chrec_apply \n");
543 if (TREE_CODE (x) == INTEGER_CST && SCALAR_FLOAT_TYPE_P (type))
544 x = build_real_from_int_cst (type, x);
546 if (evolution_function_is_affine_p (chrec))
548 /* "{a, +, b} (x)" -> "a + b*x". */
549 if (TREE_CODE (CHREC_LEFT (chrec)) == INTEGER_CST
550 && integer_zerop (CHREC_LEFT (chrec)))
551 res = chrec_fold_multiply (type, CHREC_RIGHT (chrec), x);
553 else
554 res = chrec_fold_plus (type, CHREC_LEFT (chrec),
555 chrec_fold_multiply (type,
556 CHREC_RIGHT (chrec), x));
559 else if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
560 res = chrec;
562 else if (TREE_CODE (x) == INTEGER_CST
563 && tree_int_cst_sgn (x) == 1)
564 /* testsuite/.../ssa-chrec-38.c. */
565 res = chrec_evaluate (var, chrec, x, 0);
567 else
568 res = chrec_dont_know;
570 if (dump_file && (dump_flags & TDF_DETAILS))
572 fprintf (dump_file, " (varying_loop = %d\n", var);
573 fprintf (dump_file, ")\n (chrec = ");
574 print_generic_expr (dump_file, chrec, 0);
575 fprintf (dump_file, ")\n (x = ");
576 print_generic_expr (dump_file, x, 0);
577 fprintf (dump_file, ")\n (res = ");
578 print_generic_expr (dump_file, res, 0);
579 fprintf (dump_file, "))\n");
582 return res;
585 /* Replaces the initial condition in CHREC with INIT_COND. */
587 tree
588 chrec_replace_initial_condition (tree chrec,
589 tree init_cond)
591 if (automatically_generated_chrec_p (chrec))
592 return chrec;
594 switch (TREE_CODE (chrec))
596 case POLYNOMIAL_CHREC:
597 return build_polynomial_chrec
598 (CHREC_VARIABLE (chrec),
599 chrec_replace_initial_condition (CHREC_LEFT (chrec), init_cond),
600 CHREC_RIGHT (chrec));
602 default:
603 return init_cond;
607 /* Returns the initial condition of a given CHREC. */
609 tree
610 initial_condition (tree chrec)
612 if (automatically_generated_chrec_p (chrec))
613 return chrec;
615 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
616 return initial_condition (CHREC_LEFT (chrec));
617 else
618 return chrec;
621 /* Returns a univariate function that represents the evolution in
622 LOOP_NUM. Mask the evolution of any other loop. */
624 tree
625 hide_evolution_in_other_loops_than_loop (tree chrec,
626 unsigned loop_num)
628 if (automatically_generated_chrec_p (chrec))
629 return chrec;
631 switch (TREE_CODE (chrec))
633 case POLYNOMIAL_CHREC:
634 if (CHREC_VARIABLE (chrec) == loop_num)
635 return build_polynomial_chrec
636 (loop_num,
637 hide_evolution_in_other_loops_than_loop (CHREC_LEFT (chrec),
638 loop_num),
639 CHREC_RIGHT (chrec));
641 else if (CHREC_VARIABLE (chrec) < loop_num)
642 /* There is no evolution in this loop. */
643 return initial_condition (chrec);
645 else
646 return hide_evolution_in_other_loops_than_loop (CHREC_LEFT (chrec),
647 loop_num);
649 default:
650 return chrec;
654 /* Returns the evolution part of CHREC in LOOP_NUM when RIGHT is
655 true, otherwise returns the initial condition in LOOP_NUM. */
657 static tree
658 chrec_component_in_loop_num (tree chrec,
659 unsigned loop_num,
660 bool right)
662 tree component;
664 if (automatically_generated_chrec_p (chrec))
665 return chrec;
667 switch (TREE_CODE (chrec))
669 case POLYNOMIAL_CHREC:
670 if (CHREC_VARIABLE (chrec) == loop_num)
672 if (right)
673 component = CHREC_RIGHT (chrec);
674 else
675 component = CHREC_LEFT (chrec);
677 if (TREE_CODE (CHREC_LEFT (chrec)) != POLYNOMIAL_CHREC
678 || CHREC_VARIABLE (CHREC_LEFT (chrec)) != CHREC_VARIABLE (chrec))
679 return component;
681 else
682 return build_polynomial_chrec
683 (loop_num,
684 chrec_component_in_loop_num (CHREC_LEFT (chrec),
685 loop_num,
686 right),
687 component);
690 else if (CHREC_VARIABLE (chrec) < loop_num)
691 /* There is no evolution part in this loop. */
692 return NULL_TREE;
694 else
695 return chrec_component_in_loop_num (CHREC_LEFT (chrec),
696 loop_num,
697 right);
699 default:
700 if (right)
701 return NULL_TREE;
702 else
703 return chrec;
707 /* Returns the evolution part in LOOP_NUM. Example: the call
708 evolution_part_in_loop_num ({{0, +, 1}_1, +, 2}_1, 1) returns
709 {1, +, 2}_1 */
711 tree
712 evolution_part_in_loop_num (tree chrec,
713 unsigned loop_num)
715 return chrec_component_in_loop_num (chrec, loop_num, true);
718 /* Returns the initial condition in LOOP_NUM. Example: the call
719 initial_condition_in_loop_num ({{0, +, 1}_1, +, 2}_2, 2) returns
720 {0, +, 1}_1 */
722 tree
723 initial_condition_in_loop_num (tree chrec,
724 unsigned loop_num)
726 return chrec_component_in_loop_num (chrec, loop_num, false);
729 /* Set or reset the evolution of CHREC to NEW_EVOL in loop LOOP_NUM.
730 This function is essentially used for setting the evolution to
731 chrec_dont_know, for example after having determined that it is
732 impossible to say how many times a loop will execute. */
734 tree
735 reset_evolution_in_loop (unsigned loop_num,
736 tree chrec,
737 tree new_evol)
739 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC
740 && CHREC_VARIABLE (chrec) > loop_num)
742 tree left = reset_evolution_in_loop (loop_num, CHREC_LEFT (chrec),
743 new_evol);
744 tree right = reset_evolution_in_loop (loop_num, CHREC_RIGHT (chrec),
745 new_evol);
746 return build3 (POLYNOMIAL_CHREC, TREE_TYPE (left),
747 build_int_cst (NULL_TREE, CHREC_VARIABLE (chrec)),
748 left, right);
751 while (TREE_CODE (chrec) == POLYNOMIAL_CHREC
752 && CHREC_VARIABLE (chrec) == loop_num)
753 chrec = CHREC_LEFT (chrec);
755 return build_polynomial_chrec (loop_num, chrec, new_evol);
758 /* Merges two evolution functions that were found by following two
759 alternate paths of a conditional expression. */
761 tree
762 chrec_merge (tree chrec1,
763 tree chrec2)
765 if (chrec1 == chrec_dont_know
766 || chrec2 == chrec_dont_know)
767 return chrec_dont_know;
769 if (chrec1 == chrec_known
770 || chrec2 == chrec_known)
771 return chrec_known;
773 if (chrec1 == chrec_not_analyzed_yet)
774 return chrec2;
775 if (chrec2 == chrec_not_analyzed_yet)
776 return chrec1;
778 if (operand_equal_p (chrec1, chrec2, 0))
779 return chrec1;
781 return chrec_dont_know;
786 /* Observers. */
788 /* Helper function for is_multivariate_chrec. */
790 static bool
791 is_multivariate_chrec_rec (tree chrec, unsigned int rec_var)
793 if (chrec == NULL_TREE)
794 return false;
796 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
798 if (CHREC_VARIABLE (chrec) != rec_var)
799 return true;
800 else
801 return (is_multivariate_chrec_rec (CHREC_LEFT (chrec), rec_var)
802 || is_multivariate_chrec_rec (CHREC_RIGHT (chrec), rec_var));
804 else
805 return false;
808 /* Determine whether the given chrec is multivariate or not. */
810 bool
811 is_multivariate_chrec (tree chrec)
813 if (chrec == NULL_TREE)
814 return false;
816 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
817 return (is_multivariate_chrec_rec (CHREC_LEFT (chrec),
818 CHREC_VARIABLE (chrec))
819 || is_multivariate_chrec_rec (CHREC_RIGHT (chrec),
820 CHREC_VARIABLE (chrec)));
821 else
822 return false;
825 /* Determines whether the chrec contains symbolic names or not. */
827 bool
828 chrec_contains_symbols (tree chrec)
830 if (chrec == NULL_TREE)
831 return false;
833 if (TREE_CODE (chrec) == SSA_NAME
834 || TREE_CODE (chrec) == VAR_DECL
835 || TREE_CODE (chrec) == PARM_DECL
836 || TREE_CODE (chrec) == FUNCTION_DECL
837 || TREE_CODE (chrec) == LABEL_DECL
838 || TREE_CODE (chrec) == RESULT_DECL
839 || TREE_CODE (chrec) == FIELD_DECL)
840 return true;
842 switch (TREE_CODE_LENGTH (TREE_CODE (chrec)))
844 case 3:
845 if (chrec_contains_symbols (TREE_OPERAND (chrec, 2)))
846 return true;
848 case 2:
849 if (chrec_contains_symbols (TREE_OPERAND (chrec, 1)))
850 return true;
852 case 1:
853 if (chrec_contains_symbols (TREE_OPERAND (chrec, 0)))
854 return true;
856 default:
857 return false;
861 /* Determines whether the chrec contains undetermined coefficients. */
863 bool
864 chrec_contains_undetermined (tree chrec)
866 if (chrec == chrec_dont_know
867 || chrec == chrec_not_analyzed_yet
868 || chrec == NULL_TREE)
869 return true;
871 switch (TREE_CODE_LENGTH (TREE_CODE (chrec)))
873 case 3:
874 if (chrec_contains_undetermined (TREE_OPERAND (chrec, 2)))
875 return true;
877 case 2:
878 if (chrec_contains_undetermined (TREE_OPERAND (chrec, 1)))
879 return true;
881 case 1:
882 if (chrec_contains_undetermined (TREE_OPERAND (chrec, 0)))
883 return true;
885 default:
886 return false;
890 /* Determines whether the tree EXPR contains chrecs, and increment
891 SIZE if it is not a NULL pointer by an estimation of the depth of
892 the tree. */
894 bool
895 tree_contains_chrecs (tree expr, int *size)
897 if (expr == NULL_TREE)
898 return false;
900 if (size)
901 (*size)++;
903 if (tree_is_chrec (expr))
904 return true;
906 switch (TREE_CODE_LENGTH (TREE_CODE (expr)))
908 case 3:
909 if (tree_contains_chrecs (TREE_OPERAND (expr, 2), size))
910 return true;
912 case 2:
913 if (tree_contains_chrecs (TREE_OPERAND (expr, 1), size))
914 return true;
916 case 1:
917 if (tree_contains_chrecs (TREE_OPERAND (expr, 0), size))
918 return true;
920 default:
921 return false;
925 /* Recursive helper function. */
927 static bool
928 evolution_function_is_invariant_rec_p (tree chrec, int loopnum)
930 if (evolution_function_is_constant_p (chrec))
931 return true;
933 if (TREE_CODE (chrec) == SSA_NAME
934 && expr_invariant_in_loop_p (current_loops->parray[loopnum],
935 chrec))
936 return true;
938 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
940 if (CHREC_VARIABLE (chrec) == (unsigned) loopnum
941 || !evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec),
942 loopnum)
943 || !evolution_function_is_invariant_rec_p (CHREC_LEFT (chrec),
944 loopnum))
945 return false;
946 return true;
949 switch (TREE_CODE_LENGTH (TREE_CODE (chrec)))
951 case 2:
952 if (!evolution_function_is_invariant_rec_p (TREE_OPERAND (chrec, 1),
953 loopnum))
954 return false;
956 case 1:
957 if (!evolution_function_is_invariant_rec_p (TREE_OPERAND (chrec, 0),
958 loopnum))
959 return false;
960 return true;
962 default:
963 return false;
966 return false;
969 /* Return true if CHREC is invariant in loop LOOPNUM, false otherwise. */
971 bool
972 evolution_function_is_invariant_p (tree chrec, int loopnum)
974 if (evolution_function_is_constant_p (chrec))
975 return true;
977 if (current_loops != NULL)
978 return evolution_function_is_invariant_rec_p (chrec, loopnum);
980 return false;
983 /* Determine whether the given tree is an affine multivariate
984 evolution. */
986 bool
987 evolution_function_is_affine_multivariate_p (tree chrec)
989 if (chrec == NULL_TREE)
990 return false;
992 switch (TREE_CODE (chrec))
994 case POLYNOMIAL_CHREC:
995 if (evolution_function_is_constant_p (CHREC_LEFT (chrec)))
997 if (evolution_function_is_constant_p (CHREC_RIGHT (chrec)))
998 return true;
999 else
1001 if (TREE_CODE (CHREC_RIGHT (chrec)) == POLYNOMIAL_CHREC
1002 && CHREC_VARIABLE (CHREC_RIGHT (chrec))
1003 != CHREC_VARIABLE (chrec)
1004 && evolution_function_is_affine_multivariate_p
1005 (CHREC_RIGHT (chrec)))
1006 return true;
1007 else
1008 return false;
1011 else
1013 if (evolution_function_is_constant_p (CHREC_RIGHT (chrec))
1014 && TREE_CODE (CHREC_LEFT (chrec)) == POLYNOMIAL_CHREC
1015 && CHREC_VARIABLE (CHREC_LEFT (chrec)) != CHREC_VARIABLE (chrec)
1016 && evolution_function_is_affine_multivariate_p
1017 (CHREC_LEFT (chrec)))
1018 return true;
1019 else
1020 return false;
1023 default:
1024 return false;
1028 /* Determine whether the given tree is a function in zero or one
1029 variables. */
1031 bool
1032 evolution_function_is_univariate_p (tree chrec)
1034 if (chrec == NULL_TREE)
1035 return true;
1037 switch (TREE_CODE (chrec))
1039 case POLYNOMIAL_CHREC:
1040 switch (TREE_CODE (CHREC_LEFT (chrec)))
1042 case POLYNOMIAL_CHREC:
1043 if (CHREC_VARIABLE (chrec) != CHREC_VARIABLE (CHREC_LEFT (chrec)))
1044 return false;
1045 if (!evolution_function_is_univariate_p (CHREC_LEFT (chrec)))
1046 return false;
1047 break;
1049 default:
1050 break;
1053 switch (TREE_CODE (CHREC_RIGHT (chrec)))
1055 case POLYNOMIAL_CHREC:
1056 if (CHREC_VARIABLE (chrec) != CHREC_VARIABLE (CHREC_RIGHT (chrec)))
1057 return false;
1058 if (!evolution_function_is_univariate_p (CHREC_RIGHT (chrec)))
1059 return false;
1060 break;
1062 default:
1063 break;
1066 default:
1067 return true;
1071 /* Returns the number of variables of CHREC. Example: the call
1072 nb_vars_in_chrec ({{0, +, 1}_5, +, 2}_6) returns 2. */
1074 unsigned
1075 nb_vars_in_chrec (tree chrec)
1077 if (chrec == NULL_TREE)
1078 return 0;
1080 switch (TREE_CODE (chrec))
1082 case POLYNOMIAL_CHREC:
1083 return 1 + nb_vars_in_chrec
1084 (initial_condition_in_loop_num (chrec, CHREC_VARIABLE (chrec)));
1086 default:
1087 return 0;
1093 /* Convert CHREC to TYPE. When the analyzer knows the context in
1094 which the CHREC is built, it sets AT_STMT to the statement that
1095 contains the definition of the analyzed variable, otherwise the
1096 conversion is less accurate: the information is used for
1097 determining a more accurate estimation of the number of iterations.
1098 By default AT_STMT could be safely set to NULL_TREE.
1100 The following rule is always true: TREE_TYPE (chrec) ==
1101 TREE_TYPE (CHREC_LEFT (chrec)) == TREE_TYPE (CHREC_RIGHT (chrec)).
1102 An example of what could happen when adding two chrecs and the type
1103 of the CHREC_RIGHT is different than CHREC_LEFT is:
1105 {(uint) 0, +, (uchar) 10} +
1106 {(uint) 0, +, (uchar) 250}
1108 that would produce a wrong result if CHREC_RIGHT is not (uint):
1110 {(uint) 0, +, (uchar) 4}
1112 instead of
1114 {(uint) 0, +, (uint) 260}
1117 tree
1118 chrec_convert (tree type, tree chrec, tree at_stmt)
1120 tree ct, res;
1122 if (automatically_generated_chrec_p (chrec))
1123 return chrec;
1125 ct = chrec_type (chrec);
1126 if (ct == type)
1127 return chrec;
1129 if (evolution_function_is_affine_p (chrec))
1131 tree base, step;
1132 bool dummy;
1133 struct loop *loop = current_loops->parray[CHREC_VARIABLE (chrec)];
1135 base = instantiate_parameters (loop, CHREC_LEFT (chrec));
1136 step = instantiate_parameters (loop, CHREC_RIGHT (chrec));
1138 /* Avoid conversion of (signed char) {(uchar)1, +, (uchar)1}_x
1139 when it is not possible to prove that the scev does not wrap.
1140 See PR22236, where a sequence 1, 2, ..., 255 has to be
1141 converted to signed char, but this would wrap:
1142 1, 2, ..., 127, -128, ... The result should not be
1143 {(schar)1, +, (schar)1}_x, but instead, we should keep the
1144 conversion: (schar) {(uchar)1, +, (uchar)1}_x. */
1145 if (scev_probably_wraps_p (type, base, step, at_stmt, loop,
1146 &dummy, &dummy))
1147 goto failed_to_convert;
1149 step = convert_step (loop, type, base, step, at_stmt);
1150 if (!step)
1152 failed_to_convert:;
1153 if (dump_file && (dump_flags & TDF_DETAILS))
1155 fprintf (dump_file, "(failed conversion:");
1156 fprintf (dump_file, "\n type: ");
1157 print_generic_expr (dump_file, type, 0);
1158 fprintf (dump_file, "\n base: ");
1159 print_generic_expr (dump_file, base, 0);
1160 fprintf (dump_file, "\n step: ");
1161 print_generic_expr (dump_file, step, 0);
1162 fprintf (dump_file, "\n estimated_nb_iterations: ");
1163 print_generic_expr (dump_file, loop->estimated_nb_iterations, 0);
1164 fprintf (dump_file, "\n)\n");
1167 return fold_convert (type, chrec);
1170 return build_polynomial_chrec (CHREC_VARIABLE (chrec),
1171 chrec_convert (type, CHREC_LEFT (chrec),
1172 at_stmt),
1173 step);
1176 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
1177 return chrec_dont_know;
1179 res = fold_convert (type, chrec);
1181 /* Don't propagate overflows. */
1182 if (CONSTANT_CLASS_P (res))
1184 TREE_CONSTANT_OVERFLOW (res) = 0;
1185 TREE_OVERFLOW (res) = 0;
1188 /* But reject constants that don't fit in their type after conversion.
1189 This can happen if TYPE_MIN_VALUE or TYPE_MAX_VALUE are not the
1190 natural values associated with TYPE_PRECISION and TYPE_UNSIGNED,
1191 and can cause problems later when computing niters of loops. Note
1192 that we don't do the check before converting because we don't want
1193 to reject conversions of negative chrecs to unsigned types. */
1194 if (TREE_CODE (res) == INTEGER_CST
1195 && TREE_CODE (type) == INTEGER_TYPE
1196 && !int_fits_type_p (res, type))
1197 res = chrec_dont_know;
1199 return res;
1202 /* Convert CHREC to TYPE, without regard to signed overflows. Returns the new
1203 chrec if something else than what chrec_convert would do happens, NULL_TREE
1204 otherwise. */
1206 tree
1207 chrec_convert_aggressive (tree type, tree chrec)
1209 tree inner_type, left, right, lc, rc;
1211 if (automatically_generated_chrec_p (chrec)
1212 || TREE_CODE (chrec) != POLYNOMIAL_CHREC)
1213 return NULL_TREE;
1215 inner_type = TREE_TYPE (chrec);
1216 if (TYPE_PRECISION (type) > TYPE_PRECISION (inner_type))
1217 return NULL_TREE;
1219 left = CHREC_LEFT (chrec);
1220 right = CHREC_RIGHT (chrec);
1221 lc = chrec_convert_aggressive (type, left);
1222 if (!lc)
1223 lc = chrec_convert (type, left, NULL_TREE);
1224 rc = chrec_convert_aggressive (type, right);
1225 if (!rc)
1226 rc = chrec_convert (type, right, NULL_TREE);
1228 return build_polynomial_chrec (CHREC_VARIABLE (chrec), lc, rc);
1231 /* Returns the type of the chrec. */
1233 tree
1234 chrec_type (tree chrec)
1236 if (automatically_generated_chrec_p (chrec))
1237 return NULL_TREE;
1239 return TREE_TYPE (chrec);