PR bootstrap/49769
[official-gcc.git] / gcc / tree-flow-inline.h
blobb9c5e16e972c8d28924464c69e77c23fe96f5b89
1 /* Inline functions for tree-flow.h
2 Copyright (C) 2001, 2003, 2005, 2006, 2007, 2008, 2010
3 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #ifndef _TREE_FLOW_INLINE_H
23 #define _TREE_FLOW_INLINE_H 1
25 /* Inline functions for manipulating various data structures defined in
26 tree-flow.h. See tree-flow.h for documentation. */
28 /* Return true when gimple SSA form was built.
29 gimple_in_ssa_p is queried by gimplifier in various early stages before SSA
30 infrastructure is initialized. Check for presence of the datastructures
31 at first place. */
32 static inline bool
33 gimple_in_ssa_p (const struct function *fun)
35 return fun && fun->gimple_df && fun->gimple_df->in_ssa_p;
38 /* Array of all variables referenced in the function. */
39 static inline htab_t
40 gimple_referenced_vars (const struct function *fun)
42 if (!fun->gimple_df)
43 return NULL;
44 return fun->gimple_df->referenced_vars;
47 /* Artificial variable used for the virtual operand FUD chain. */
48 static inline tree
49 gimple_vop (const struct function *fun)
51 gcc_checking_assert (fun && fun->gimple_df);
52 return fun->gimple_df->vop;
55 /* Initialize the hashtable iterator HTI to point to hashtable TABLE */
57 static inline void *
58 first_htab_element (htab_iterator *hti, htab_t table)
60 hti->htab = table;
61 hti->slot = table->entries;
62 hti->limit = hti->slot + htab_size (table);
65 PTR x = *(hti->slot);
66 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
67 break;
68 } while (++(hti->slot) < hti->limit);
70 if (hti->slot < hti->limit)
71 return *(hti->slot);
72 return NULL;
75 /* Return current non-empty/deleted slot of the hashtable pointed to by HTI,
76 or NULL if we have reached the end. */
78 static inline bool
79 end_htab_p (const htab_iterator *hti)
81 if (hti->slot >= hti->limit)
82 return true;
83 return false;
86 /* Advance the hashtable iterator pointed to by HTI to the next element of the
87 hashtable. */
89 static inline void *
90 next_htab_element (htab_iterator *hti)
92 while (++(hti->slot) < hti->limit)
94 PTR x = *(hti->slot);
95 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
96 return x;
98 return NULL;
101 /* Get the variable with uid UID from the list of referenced vars. */
103 static inline tree
104 referenced_var (unsigned int uid)
106 tree var = referenced_var_lookup (cfun, uid);
107 gcc_assert (var || uid == 0);
108 return var;
111 /* Initialize ITER to point to the first referenced variable in the
112 referenced_vars hashtable, and return that variable. */
114 static inline tree
115 first_referenced_var (struct function *fn, referenced_var_iterator *iter)
117 return (tree) first_htab_element (&iter->hti,
118 gimple_referenced_vars (fn));
121 /* Return true if we have hit the end of the referenced variables ITER is
122 iterating through. */
124 static inline bool
125 end_referenced_vars_p (const referenced_var_iterator *iter)
127 return end_htab_p (&iter->hti);
130 /* Make ITER point to the next referenced_var in the referenced_var hashtable,
131 and return that variable. */
133 static inline tree
134 next_referenced_var (referenced_var_iterator *iter)
136 return (tree) next_htab_element (&iter->hti);
139 /* Return the variable annotation for T, which must be a _DECL node.
140 Return NULL if the variable annotation doesn't already exist. */
141 static inline var_ann_t
142 var_ann (const_tree t)
144 const var_ann_t *p = DECL_VAR_ANN_PTR (t);
145 return p ? *p : NULL;
148 /* Return the variable annotation for T, which must be a _DECL node.
149 Create the variable annotation if it doesn't exist. */
150 static inline var_ann_t
151 get_var_ann (tree var)
153 var_ann_t *p = DECL_VAR_ANN_PTR (var);
154 gcc_checking_assert (p);
155 return *p ? *p : create_var_ann (var);
158 /* Get the number of the next statement uid to be allocated. */
159 static inline unsigned int
160 gimple_stmt_max_uid (struct function *fn)
162 return fn->last_stmt_uid;
165 /* Set the number of the next statement uid to be allocated. */
166 static inline void
167 set_gimple_stmt_max_uid (struct function *fn, unsigned int maxid)
169 fn->last_stmt_uid = maxid;
172 /* Set the number of the next statement uid to be allocated. */
173 static inline unsigned int
174 inc_gimple_stmt_max_uid (struct function *fn)
176 return fn->last_stmt_uid++;
179 /* Return the line number for EXPR, or return -1 if we have no line
180 number information for it. */
181 static inline int
182 get_lineno (const_gimple stmt)
184 location_t loc;
186 if (!stmt)
187 return -1;
189 loc = gimple_location (stmt);
190 if (loc == UNKNOWN_LOCATION)
191 return -1;
193 return LOCATION_LINE (loc);
196 /* Delink an immediate_uses node from its chain. */
197 static inline void
198 delink_imm_use (ssa_use_operand_t *linknode)
200 /* Return if this node is not in a list. */
201 if (linknode->prev == NULL)
202 return;
204 linknode->prev->next = linknode->next;
205 linknode->next->prev = linknode->prev;
206 linknode->prev = NULL;
207 linknode->next = NULL;
210 /* Link ssa_imm_use node LINKNODE into the chain for LIST. */
211 static inline void
212 link_imm_use_to_list (ssa_use_operand_t *linknode, ssa_use_operand_t *list)
214 /* Link the new node at the head of the list. If we are in the process of
215 traversing the list, we won't visit any new nodes added to it. */
216 linknode->prev = list;
217 linknode->next = list->next;
218 list->next->prev = linknode;
219 list->next = linknode;
222 /* Link ssa_imm_use node LINKNODE into the chain for DEF. */
223 static inline void
224 link_imm_use (ssa_use_operand_t *linknode, tree def)
226 ssa_use_operand_t *root;
228 if (!def || TREE_CODE (def) != SSA_NAME)
229 linknode->prev = NULL;
230 else
232 root = &(SSA_NAME_IMM_USE_NODE (def));
233 if (linknode->use)
234 gcc_checking_assert (*(linknode->use) == def);
235 link_imm_use_to_list (linknode, root);
239 /* Set the value of a use pointed to by USE to VAL. */
240 static inline void
241 set_ssa_use_from_ptr (use_operand_p use, tree val)
243 delink_imm_use (use);
244 *(use->use) = val;
245 link_imm_use (use, val);
248 /* Link ssa_imm_use node LINKNODE into the chain for DEF, with use occurring
249 in STMT. */
250 static inline void
251 link_imm_use_stmt (ssa_use_operand_t *linknode, tree def, gimple stmt)
253 if (stmt)
254 link_imm_use (linknode, def);
255 else
256 link_imm_use (linknode, NULL);
257 linknode->loc.stmt = stmt;
260 /* Relink a new node in place of an old node in the list. */
261 static inline void
262 relink_imm_use (ssa_use_operand_t *node, ssa_use_operand_t *old)
264 /* The node one had better be in the same list. */
265 gcc_checking_assert (*(old->use) == *(node->use));
266 node->prev = old->prev;
267 node->next = old->next;
268 if (old->prev)
270 old->prev->next = node;
271 old->next->prev = node;
272 /* Remove the old node from the list. */
273 old->prev = NULL;
277 /* Relink ssa_imm_use node LINKNODE into the chain for OLD, with use occurring
278 in STMT. */
279 static inline void
280 relink_imm_use_stmt (ssa_use_operand_t *linknode, ssa_use_operand_t *old,
281 gimple stmt)
283 if (stmt)
284 relink_imm_use (linknode, old);
285 else
286 link_imm_use (linknode, NULL);
287 linknode->loc.stmt = stmt;
291 /* Return true is IMM has reached the end of the immediate use list. */
292 static inline bool
293 end_readonly_imm_use_p (const imm_use_iterator *imm)
295 return (imm->imm_use == imm->end_p);
298 /* Initialize iterator IMM to process the list for VAR. */
299 static inline use_operand_p
300 first_readonly_imm_use (imm_use_iterator *imm, tree var)
302 imm->end_p = &(SSA_NAME_IMM_USE_NODE (var));
303 imm->imm_use = imm->end_p->next;
304 #ifdef ENABLE_CHECKING
305 imm->iter_node.next = imm->imm_use->next;
306 #endif
307 if (end_readonly_imm_use_p (imm))
308 return NULL_USE_OPERAND_P;
309 return imm->imm_use;
312 /* Bump IMM to the next use in the list. */
313 static inline use_operand_p
314 next_readonly_imm_use (imm_use_iterator *imm)
316 use_operand_p old = imm->imm_use;
318 #ifdef ENABLE_CHECKING
319 /* If this assertion fails, it indicates the 'next' pointer has changed
320 since the last bump. This indicates that the list is being modified
321 via stmt changes, or SET_USE, or somesuch thing, and you need to be
322 using the SAFE version of the iterator. */
323 gcc_assert (imm->iter_node.next == old->next);
324 imm->iter_node.next = old->next->next;
325 #endif
327 imm->imm_use = old->next;
328 if (end_readonly_imm_use_p (imm))
329 return NULL_USE_OPERAND_P;
330 return imm->imm_use;
333 /* tree-cfg.c */
334 extern bool has_zero_uses_1 (const ssa_use_operand_t *head);
335 extern bool single_imm_use_1 (const ssa_use_operand_t *head,
336 use_operand_p *use_p, gimple *stmt);
338 /* Return true if VAR has no nondebug uses. */
339 static inline bool
340 has_zero_uses (const_tree var)
342 const ssa_use_operand_t *const ptr = &(SSA_NAME_IMM_USE_NODE (var));
344 /* A single use_operand means there is no items in the list. */
345 if (ptr == ptr->next)
346 return true;
348 /* If there are debug stmts, we have to look at each use and see
349 whether there are any nondebug uses. */
350 if (!MAY_HAVE_DEBUG_STMTS)
351 return false;
353 return has_zero_uses_1 (ptr);
356 /* Return true if VAR has a single nondebug use. */
357 static inline bool
358 has_single_use (const_tree var)
360 const ssa_use_operand_t *const ptr = &(SSA_NAME_IMM_USE_NODE (var));
362 /* If there aren't any uses whatsoever, we're done. */
363 if (ptr == ptr->next)
364 return false;
366 /* If there's a single use, check that it's not a debug stmt. */
367 if (ptr == ptr->next->next)
368 return !is_gimple_debug (USE_STMT (ptr->next));
370 /* If there are debug stmts, we have to look at each of them. */
371 if (!MAY_HAVE_DEBUG_STMTS)
372 return false;
374 return single_imm_use_1 (ptr, NULL, NULL);
378 /* If VAR has only a single immediate nondebug use, return true, and
379 set USE_P and STMT to the use pointer and stmt of occurrence. */
380 static inline bool
381 single_imm_use (const_tree var, use_operand_p *use_p, gimple *stmt)
383 const ssa_use_operand_t *const ptr = &(SSA_NAME_IMM_USE_NODE (var));
385 /* If there aren't any uses whatsoever, we're done. */
386 if (ptr == ptr->next)
388 return_false:
389 *use_p = NULL_USE_OPERAND_P;
390 *stmt = NULL;
391 return false;
394 /* If there's a single use, check that it's not a debug stmt. */
395 if (ptr == ptr->next->next)
397 if (!is_gimple_debug (USE_STMT (ptr->next)))
399 *use_p = ptr->next;
400 *stmt = ptr->next->loc.stmt;
401 return true;
403 else
404 goto return_false;
407 /* If there are debug stmts, we have to look at each of them. */
408 if (!MAY_HAVE_DEBUG_STMTS)
409 goto return_false;
411 return single_imm_use_1 (ptr, use_p, stmt);
414 /* Return the number of nondebug immediate uses of VAR. */
415 static inline unsigned int
416 num_imm_uses (const_tree var)
418 const ssa_use_operand_t *const start = &(SSA_NAME_IMM_USE_NODE (var));
419 const ssa_use_operand_t *ptr;
420 unsigned int num = 0;
422 if (!MAY_HAVE_DEBUG_STMTS)
423 for (ptr = start->next; ptr != start; ptr = ptr->next)
424 num++;
425 else
426 for (ptr = start->next; ptr != start; ptr = ptr->next)
427 if (!is_gimple_debug (USE_STMT (ptr)))
428 num++;
430 return num;
433 /* Return the tree pointed-to by USE. */
434 static inline tree
435 get_use_from_ptr (use_operand_p use)
437 return *(use->use);
440 /* Return the tree pointed-to by DEF. */
441 static inline tree
442 get_def_from_ptr (def_operand_p def)
444 return *def;
447 /* Return a use_operand_p pointer for argument I of PHI node GS. */
449 static inline use_operand_p
450 gimple_phi_arg_imm_use_ptr (gimple gs, int i)
452 return &gimple_phi_arg (gs, i)->imm_use;
455 /* Return the tree operand for argument I of PHI node GS. */
457 static inline tree
458 gimple_phi_arg_def (gimple gs, size_t index)
460 struct phi_arg_d *pd = gimple_phi_arg (gs, index);
461 return get_use_from_ptr (&pd->imm_use);
464 /* Return a pointer to the tree operand for argument I of PHI node GS. */
466 static inline tree *
467 gimple_phi_arg_def_ptr (gimple gs, size_t index)
469 return &gimple_phi_arg (gs, index)->def;
472 /* Return the edge associated with argument I of phi node GS. */
474 static inline edge
475 gimple_phi_arg_edge (gimple gs, size_t i)
477 return EDGE_PRED (gimple_bb (gs), i);
480 /* Return the source location of gimple argument I of phi node GS. */
482 static inline source_location
483 gimple_phi_arg_location (gimple gs, size_t i)
485 return gimple_phi_arg (gs, i)->locus;
488 /* Return the source location of the argument on edge E of phi node GS. */
490 static inline source_location
491 gimple_phi_arg_location_from_edge (gimple gs, edge e)
493 return gimple_phi_arg (gs, e->dest_idx)->locus;
496 /* Set the source location of gimple argument I of phi node GS to LOC. */
498 static inline void
499 gimple_phi_arg_set_location (gimple gs, size_t i, source_location loc)
501 gimple_phi_arg (gs, i)->locus = loc;
504 /* Return TRUE if argument I of phi node GS has a location record. */
506 static inline bool
507 gimple_phi_arg_has_location (gimple gs, size_t i)
509 return gimple_phi_arg_location (gs, i) != UNKNOWN_LOCATION;
513 /* Return the PHI nodes for basic block BB, or NULL if there are no
514 PHI nodes. */
515 static inline gimple_seq
516 phi_nodes (const_basic_block bb)
518 gcc_checking_assert (!(bb->flags & BB_RTL));
519 if (!bb->il.gimple)
520 return NULL;
521 return bb->il.gimple->phi_nodes;
524 /* Set PHI nodes of a basic block BB to SEQ. */
526 static inline void
527 set_phi_nodes (basic_block bb, gimple_seq seq)
529 gimple_stmt_iterator i;
531 gcc_checking_assert (!(bb->flags & BB_RTL));
532 bb->il.gimple->phi_nodes = seq;
533 if (seq)
534 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
535 gimple_set_bb (gsi_stmt (i), bb);
538 /* Return the phi argument which contains the specified use. */
540 static inline int
541 phi_arg_index_from_use (use_operand_p use)
543 struct phi_arg_d *element, *root;
544 size_t index;
545 gimple phi;
547 /* Since the use is the first thing in a PHI argument element, we can
548 calculate its index based on casting it to an argument, and performing
549 pointer arithmetic. */
551 phi = USE_STMT (use);
553 element = (struct phi_arg_d *)use;
554 root = gimple_phi_arg (phi, 0);
555 index = element - root;
557 /* Make sure the calculation doesn't have any leftover bytes. If it does,
558 then imm_use is likely not the first element in phi_arg_d. */
559 gcc_checking_assert ((((char *)element - (char *)root)
560 % sizeof (struct phi_arg_d)) == 0
561 && index < gimple_phi_capacity (phi));
563 return index;
566 /* Mark VAR as used, so that it'll be preserved during rtl expansion. */
568 static inline void
569 set_is_used (tree var)
571 var_ann_t ann = get_var_ann (var);
572 ann->used = true;
575 /* Clear VAR's used flag. */
577 static inline void
578 clear_is_used (tree var)
580 var_ann_t ann = var_ann (var);
581 ann->used = false;
584 /* Return true if VAR is marked as used. */
586 static inline bool
587 is_used_p (tree var)
589 var_ann_t ann = var_ann (var);
590 return ann->used;
593 /* Return true if T (assumed to be a DECL) is a global variable.
594 A variable is considered global if its storage is not automatic. */
596 static inline bool
597 is_global_var (const_tree t)
599 return (TREE_STATIC (t) || DECL_EXTERNAL (t));
603 /* Return true if VAR may be aliased. A variable is considered as
604 maybe aliased if it has its address taken by the local TU
605 or possibly by another TU and might be modified through a pointer. */
607 static inline bool
608 may_be_aliased (const_tree var)
610 return (TREE_CODE (var) != CONST_DECL
611 && !((TREE_STATIC (var) || TREE_PUBLIC (var) || DECL_EXTERNAL (var))
612 && TREE_READONLY (var)
613 && !TYPE_NEEDS_CONSTRUCTING (TREE_TYPE (var)))
614 && (TREE_PUBLIC (var)
615 || DECL_EXTERNAL (var)
616 || TREE_ADDRESSABLE (var)));
620 /* PHI nodes should contain only ssa_names and invariants. A test
621 for ssa_name is definitely simpler; don't let invalid contents
622 slip in in the meantime. */
624 static inline bool
625 phi_ssa_name_p (const_tree t)
627 if (TREE_CODE (t) == SSA_NAME)
628 return true;
629 gcc_checking_assert (is_gimple_min_invariant (t));
630 return false;
634 /* Returns the loop of the statement STMT. */
636 static inline struct loop *
637 loop_containing_stmt (gimple stmt)
639 basic_block bb = gimple_bb (stmt);
640 if (!bb)
641 return NULL;
643 return bb->loop_father;
647 /* ----------------------------------------------------------------------- */
649 /* The following set of routines are used to iterator over various type of
650 SSA operands. */
652 /* Return true if PTR is finished iterating. */
653 static inline bool
654 op_iter_done (const ssa_op_iter *ptr)
656 return ptr->done;
659 /* Get the next iterator use value for PTR. */
660 static inline use_operand_p
661 op_iter_next_use (ssa_op_iter *ptr)
663 use_operand_p use_p;
664 gcc_checking_assert (ptr->iter_type == ssa_op_iter_use);
665 if (ptr->uses)
667 use_p = USE_OP_PTR (ptr->uses);
668 ptr->uses = ptr->uses->next;
669 return use_p;
671 if (ptr->phi_i < ptr->num_phi)
673 return PHI_ARG_DEF_PTR (ptr->phi_stmt, (ptr->phi_i)++);
675 ptr->done = true;
676 return NULL_USE_OPERAND_P;
679 /* Get the next iterator def value for PTR. */
680 static inline def_operand_p
681 op_iter_next_def (ssa_op_iter *ptr)
683 def_operand_p def_p;
684 gcc_checking_assert (ptr->iter_type == ssa_op_iter_def);
685 if (ptr->defs)
687 def_p = DEF_OP_PTR (ptr->defs);
688 ptr->defs = ptr->defs->next;
689 return def_p;
691 ptr->done = true;
692 return NULL_DEF_OPERAND_P;
695 /* Get the next iterator tree value for PTR. */
696 static inline tree
697 op_iter_next_tree (ssa_op_iter *ptr)
699 tree val;
700 gcc_checking_assert (ptr->iter_type == ssa_op_iter_tree);
701 if (ptr->uses)
703 val = USE_OP (ptr->uses);
704 ptr->uses = ptr->uses->next;
705 return val;
707 if (ptr->defs)
709 val = DEF_OP (ptr->defs);
710 ptr->defs = ptr->defs->next;
711 return val;
714 ptr->done = true;
715 return NULL_TREE;
720 /* This functions clears the iterator PTR, and marks it done. This is normally
721 used to prevent warnings in the compile about might be uninitialized
722 components. */
724 static inline void
725 clear_and_done_ssa_iter (ssa_op_iter *ptr)
727 ptr->defs = NULL;
728 ptr->uses = NULL;
729 ptr->iter_type = ssa_op_iter_none;
730 ptr->phi_i = 0;
731 ptr->num_phi = 0;
732 ptr->phi_stmt = NULL;
733 ptr->done = true;
736 /* Initialize the iterator PTR to the virtual defs in STMT. */
737 static inline void
738 op_iter_init (ssa_op_iter *ptr, gimple stmt, int flags)
740 /* PHI nodes require a different iterator initialization path. We
741 do not support iterating over virtual defs or uses without
742 iterating over defs or uses at the same time. */
743 gcc_checking_assert (gimple_code (stmt) != GIMPLE_PHI
744 && (!(flags & SSA_OP_VDEF) || (flags & SSA_OP_DEF))
745 && (!(flags & SSA_OP_VUSE) || (flags & SSA_OP_USE)));
746 ptr->defs = (flags & (SSA_OP_DEF|SSA_OP_VDEF)) ? gimple_def_ops (stmt) : NULL;
747 if (!(flags & SSA_OP_VDEF)
748 && ptr->defs
749 && gimple_vdef (stmt) != NULL_TREE)
750 ptr->defs = ptr->defs->next;
751 ptr->uses = (flags & (SSA_OP_USE|SSA_OP_VUSE)) ? gimple_use_ops (stmt) : NULL;
752 if (!(flags & SSA_OP_VUSE)
753 && ptr->uses
754 && gimple_vuse (stmt) != NULL_TREE)
755 ptr->uses = ptr->uses->next;
756 ptr->done = false;
758 ptr->phi_i = 0;
759 ptr->num_phi = 0;
760 ptr->phi_stmt = NULL;
763 /* Initialize iterator PTR to the use operands in STMT based on FLAGS. Return
764 the first use. */
765 static inline use_operand_p
766 op_iter_init_use (ssa_op_iter *ptr, gimple stmt, int flags)
768 gcc_checking_assert ((flags & SSA_OP_ALL_DEFS) == 0
769 && (flags & SSA_OP_USE));
770 op_iter_init (ptr, stmt, flags);
771 ptr->iter_type = ssa_op_iter_use;
772 return op_iter_next_use (ptr);
775 /* Initialize iterator PTR to the def operands in STMT based on FLAGS. Return
776 the first def. */
777 static inline def_operand_p
778 op_iter_init_def (ssa_op_iter *ptr, gimple stmt, int flags)
780 gcc_checking_assert ((flags & SSA_OP_ALL_USES) == 0
781 && (flags & SSA_OP_DEF));
782 op_iter_init (ptr, stmt, flags);
783 ptr->iter_type = ssa_op_iter_def;
784 return op_iter_next_def (ptr);
787 /* Initialize iterator PTR to the operands in STMT based on FLAGS. Return
788 the first operand as a tree. */
789 static inline tree
790 op_iter_init_tree (ssa_op_iter *ptr, gimple stmt, int flags)
792 op_iter_init (ptr, stmt, flags);
793 ptr->iter_type = ssa_op_iter_tree;
794 return op_iter_next_tree (ptr);
798 /* If there is a single operand in STMT matching FLAGS, return it. Otherwise
799 return NULL. */
800 static inline tree
801 single_ssa_tree_operand (gimple stmt, int flags)
803 tree var;
804 ssa_op_iter iter;
806 var = op_iter_init_tree (&iter, stmt, flags);
807 if (op_iter_done (&iter))
808 return NULL_TREE;
809 op_iter_next_tree (&iter);
810 if (op_iter_done (&iter))
811 return var;
812 return NULL_TREE;
816 /* If there is a single operand in STMT matching FLAGS, return it. Otherwise
817 return NULL. */
818 static inline use_operand_p
819 single_ssa_use_operand (gimple stmt, int flags)
821 use_operand_p var;
822 ssa_op_iter iter;
824 var = op_iter_init_use (&iter, stmt, flags);
825 if (op_iter_done (&iter))
826 return NULL_USE_OPERAND_P;
827 op_iter_next_use (&iter);
828 if (op_iter_done (&iter))
829 return var;
830 return NULL_USE_OPERAND_P;
835 /* If there is a single operand in STMT matching FLAGS, return it. Otherwise
836 return NULL. */
837 static inline def_operand_p
838 single_ssa_def_operand (gimple stmt, int flags)
840 def_operand_p var;
841 ssa_op_iter iter;
843 var = op_iter_init_def (&iter, stmt, flags);
844 if (op_iter_done (&iter))
845 return NULL_DEF_OPERAND_P;
846 op_iter_next_def (&iter);
847 if (op_iter_done (&iter))
848 return var;
849 return NULL_DEF_OPERAND_P;
853 /* Return true if there are zero operands in STMT matching the type
854 given in FLAGS. */
855 static inline bool
856 zero_ssa_operands (gimple stmt, int flags)
858 ssa_op_iter iter;
860 op_iter_init_tree (&iter, stmt, flags);
861 return op_iter_done (&iter);
865 /* Return the number of operands matching FLAGS in STMT. */
866 static inline int
867 num_ssa_operands (gimple stmt, int flags)
869 ssa_op_iter iter;
870 tree t;
871 int num = 0;
873 gcc_checking_assert (gimple_code (stmt) != GIMPLE_PHI);
874 FOR_EACH_SSA_TREE_OPERAND (t, stmt, iter, flags)
875 num++;
876 return num;
879 static inline use_operand_p
880 op_iter_init_phiuse (ssa_op_iter *ptr, gimple phi, int flags);
882 /* Delink all immediate_use information for STMT. */
883 static inline void
884 delink_stmt_imm_use (gimple stmt)
886 ssa_op_iter iter;
887 use_operand_p use_p;
889 if (ssa_operands_active ())
890 FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_ALL_USES)
891 delink_imm_use (use_p);
895 /* If there is a single DEF in the PHI node which matches FLAG, return it.
896 Otherwise return NULL_DEF_OPERAND_P. */
897 static inline tree
898 single_phi_def (gimple stmt, int flags)
900 tree def = PHI_RESULT (stmt);
901 if ((flags & SSA_OP_DEF) && is_gimple_reg (def))
902 return def;
903 if ((flags & SSA_OP_VIRTUAL_DEFS) && !is_gimple_reg (def))
904 return def;
905 return NULL_TREE;
908 /* Initialize the iterator PTR for uses matching FLAGS in PHI. FLAGS should
909 be either SSA_OP_USES or SSA_OP_VIRTUAL_USES. */
910 static inline use_operand_p
911 op_iter_init_phiuse (ssa_op_iter *ptr, gimple phi, int flags)
913 tree phi_def = gimple_phi_result (phi);
914 int comp;
916 clear_and_done_ssa_iter (ptr);
917 ptr->done = false;
919 gcc_checking_assert ((flags & (SSA_OP_USE | SSA_OP_VIRTUAL_USES)) != 0);
921 comp = (is_gimple_reg (phi_def) ? SSA_OP_USE : SSA_OP_VIRTUAL_USES);
923 /* If the PHI node doesn't the operand type we care about, we're done. */
924 if ((flags & comp) == 0)
926 ptr->done = true;
927 return NULL_USE_OPERAND_P;
930 ptr->phi_stmt = phi;
931 ptr->num_phi = gimple_phi_num_args (phi);
932 ptr->iter_type = ssa_op_iter_use;
933 return op_iter_next_use (ptr);
937 /* Start an iterator for a PHI definition. */
939 static inline def_operand_p
940 op_iter_init_phidef (ssa_op_iter *ptr, gimple phi, int flags)
942 tree phi_def = PHI_RESULT (phi);
943 int comp;
945 clear_and_done_ssa_iter (ptr);
946 ptr->done = false;
948 gcc_checking_assert ((flags & (SSA_OP_DEF | SSA_OP_VIRTUAL_DEFS)) != 0);
950 comp = (is_gimple_reg (phi_def) ? SSA_OP_DEF : SSA_OP_VIRTUAL_DEFS);
952 /* If the PHI node doesn't have the operand type we care about,
953 we're done. */
954 if ((flags & comp) == 0)
956 ptr->done = true;
957 return NULL_DEF_OPERAND_P;
960 ptr->iter_type = ssa_op_iter_def;
961 /* The first call to op_iter_next_def will terminate the iterator since
962 all the fields are NULL. Simply return the result here as the first and
963 therefore only result. */
964 return PHI_RESULT_PTR (phi);
967 /* Return true is IMM has reached the end of the immediate use stmt list. */
969 static inline bool
970 end_imm_use_stmt_p (const imm_use_iterator *imm)
972 return (imm->imm_use == imm->end_p);
975 /* Finished the traverse of an immediate use stmt list IMM by removing the
976 placeholder node from the list. */
978 static inline void
979 end_imm_use_stmt_traverse (imm_use_iterator *imm)
981 delink_imm_use (&(imm->iter_node));
984 /* Immediate use traversal of uses within a stmt require that all the
985 uses on a stmt be sequentially listed. This routine is used to build up
986 this sequential list by adding USE_P to the end of the current list
987 currently delimited by HEAD and LAST_P. The new LAST_P value is
988 returned. */
990 static inline use_operand_p
991 move_use_after_head (use_operand_p use_p, use_operand_p head,
992 use_operand_p last_p)
994 gcc_checking_assert (USE_FROM_PTR (use_p) == USE_FROM_PTR (head));
995 /* Skip head when we find it. */
996 if (use_p != head)
998 /* If use_p is already linked in after last_p, continue. */
999 if (last_p->next == use_p)
1000 last_p = use_p;
1001 else
1003 /* Delink from current location, and link in at last_p. */
1004 delink_imm_use (use_p);
1005 link_imm_use_to_list (use_p, last_p);
1006 last_p = use_p;
1009 return last_p;
1013 /* This routine will relink all uses with the same stmt as HEAD into the list
1014 immediately following HEAD for iterator IMM. */
1016 static inline void
1017 link_use_stmts_after (use_operand_p head, imm_use_iterator *imm)
1019 use_operand_p use_p;
1020 use_operand_p last_p = head;
1021 gimple head_stmt = USE_STMT (head);
1022 tree use = USE_FROM_PTR (head);
1023 ssa_op_iter op_iter;
1024 int flag;
1026 /* Only look at virtual or real uses, depending on the type of HEAD. */
1027 flag = (is_gimple_reg (use) ? SSA_OP_USE : SSA_OP_VIRTUAL_USES);
1029 if (gimple_code (head_stmt) == GIMPLE_PHI)
1031 FOR_EACH_PHI_ARG (use_p, head_stmt, op_iter, flag)
1032 if (USE_FROM_PTR (use_p) == use)
1033 last_p = move_use_after_head (use_p, head, last_p);
1035 else
1037 if (flag == SSA_OP_USE)
1039 FOR_EACH_SSA_USE_OPERAND (use_p, head_stmt, op_iter, flag)
1040 if (USE_FROM_PTR (use_p) == use)
1041 last_p = move_use_after_head (use_p, head, last_p);
1043 else if ((use_p = gimple_vuse_op (head_stmt)) != NULL_USE_OPERAND_P)
1045 if (USE_FROM_PTR (use_p) == use)
1046 last_p = move_use_after_head (use_p, head, last_p);
1049 /* Link iter node in after last_p. */
1050 if (imm->iter_node.prev != NULL)
1051 delink_imm_use (&imm->iter_node);
1052 link_imm_use_to_list (&(imm->iter_node), last_p);
1055 /* Initialize IMM to traverse over uses of VAR. Return the first statement. */
1056 static inline gimple
1057 first_imm_use_stmt (imm_use_iterator *imm, tree var)
1059 imm->end_p = &(SSA_NAME_IMM_USE_NODE (var));
1060 imm->imm_use = imm->end_p->next;
1061 imm->next_imm_name = NULL_USE_OPERAND_P;
1063 /* iter_node is used as a marker within the immediate use list to indicate
1064 where the end of the current stmt's uses are. Initialize it to NULL
1065 stmt and use, which indicates a marker node. */
1066 imm->iter_node.prev = NULL_USE_OPERAND_P;
1067 imm->iter_node.next = NULL_USE_OPERAND_P;
1068 imm->iter_node.loc.stmt = NULL;
1069 imm->iter_node.use = NULL;
1071 if (end_imm_use_stmt_p (imm))
1072 return NULL;
1074 link_use_stmts_after (imm->imm_use, imm);
1076 return USE_STMT (imm->imm_use);
1079 /* Bump IMM to the next stmt which has a use of var. */
1081 static inline gimple
1082 next_imm_use_stmt (imm_use_iterator *imm)
1084 imm->imm_use = imm->iter_node.next;
1085 if (end_imm_use_stmt_p (imm))
1087 if (imm->iter_node.prev != NULL)
1088 delink_imm_use (&imm->iter_node);
1089 return NULL;
1092 link_use_stmts_after (imm->imm_use, imm);
1093 return USE_STMT (imm->imm_use);
1096 /* This routine will return the first use on the stmt IMM currently refers
1097 to. */
1099 static inline use_operand_p
1100 first_imm_use_on_stmt (imm_use_iterator *imm)
1102 imm->next_imm_name = imm->imm_use->next;
1103 return imm->imm_use;
1106 /* Return TRUE if the last use on the stmt IMM refers to has been visited. */
1108 static inline bool
1109 end_imm_use_on_stmt_p (const imm_use_iterator *imm)
1111 return (imm->imm_use == &(imm->iter_node));
1114 /* Bump to the next use on the stmt IMM refers to, return NULL if done. */
1116 static inline use_operand_p
1117 next_imm_use_on_stmt (imm_use_iterator *imm)
1119 imm->imm_use = imm->next_imm_name;
1120 if (end_imm_use_on_stmt_p (imm))
1121 return NULL_USE_OPERAND_P;
1122 else
1124 imm->next_imm_name = imm->imm_use->next;
1125 return imm->imm_use;
1129 /* Return true if VAR cannot be modified by the program. */
1131 static inline bool
1132 unmodifiable_var_p (const_tree var)
1134 if (TREE_CODE (var) == SSA_NAME)
1135 var = SSA_NAME_VAR (var);
1137 return TREE_READONLY (var) && (TREE_STATIC (var) || DECL_EXTERNAL (var));
1140 /* Return true if REF, a handled component reference, has an ARRAY_REF
1141 somewhere in it. */
1143 static inline bool
1144 ref_contains_array_ref (const_tree ref)
1146 gcc_checking_assert (handled_component_p (ref));
1148 do {
1149 if (TREE_CODE (ref) == ARRAY_REF)
1150 return true;
1151 ref = TREE_OPERAND (ref, 0);
1152 } while (handled_component_p (ref));
1154 return false;
1157 /* Return true if REF has an VIEW_CONVERT_EXPR somewhere in it. */
1159 static inline bool
1160 contains_view_convert_expr_p (const_tree ref)
1162 while (handled_component_p (ref))
1164 if (TREE_CODE (ref) == VIEW_CONVERT_EXPR)
1165 return true;
1166 ref = TREE_OPERAND (ref, 0);
1169 return false;
1172 /* Return true, if the two ranges [POS1, SIZE1] and [POS2, SIZE2]
1173 overlap. SIZE1 and/or SIZE2 can be (unsigned)-1 in which case the
1174 range is open-ended. Otherwise return false. */
1176 static inline bool
1177 ranges_overlap_p (unsigned HOST_WIDE_INT pos1,
1178 unsigned HOST_WIDE_INT size1,
1179 unsigned HOST_WIDE_INT pos2,
1180 unsigned HOST_WIDE_INT size2)
1182 if (pos1 >= pos2
1183 && (size2 == (unsigned HOST_WIDE_INT)-1
1184 || pos1 < (pos2 + size2)))
1185 return true;
1186 if (pos2 >= pos1
1187 && (size1 == (unsigned HOST_WIDE_INT)-1
1188 || pos2 < (pos1 + size1)))
1189 return true;
1191 return false;
1194 /* Accessor to tree-ssa-operands.c caches. */
1195 static inline struct ssa_operands *
1196 gimple_ssa_operands (const struct function *fun)
1198 return &fun->gimple_df->ssa_operands;
1201 /* Given an edge_var_map V, return the PHI arg definition. */
1203 static inline tree
1204 redirect_edge_var_map_def (edge_var_map *v)
1206 return v->def;
1209 /* Given an edge_var_map V, return the PHI result. */
1211 static inline tree
1212 redirect_edge_var_map_result (edge_var_map *v)
1214 return v->result;
1217 /* Given an edge_var_map V, return the PHI arg location. */
1219 static inline source_location
1220 redirect_edge_var_map_location (edge_var_map *v)
1222 return v->locus;
1226 /* Return an SSA_NAME node for variable VAR defined in statement STMT
1227 in function cfun. */
1229 static inline tree
1230 make_ssa_name (tree var, gimple stmt)
1232 return make_ssa_name_fn (cfun, var, stmt);
1235 /* Returns the base object and a constant BITS_PER_UNIT offset in *POFFSET that
1236 denotes the starting address of the memory access EXP.
1237 Returns NULL_TREE if the offset is not constant or any component
1238 is not BITS_PER_UNIT-aligned.
1239 VALUEIZE if non-NULL is used to valueize SSA names. It should return
1240 its argument or a constant if the argument is known to be constant. */
1242 static inline tree
1243 get_addr_base_and_unit_offset_1 (tree exp, HOST_WIDE_INT *poffset,
1244 tree (*valueize) (tree))
1246 HOST_WIDE_INT byte_offset = 0;
1248 /* Compute cumulative byte-offset for nested component-refs and array-refs,
1249 and find the ultimate containing object. */
1250 while (1)
1252 switch (TREE_CODE (exp))
1254 case BIT_FIELD_REF:
1255 return NULL_TREE;
1257 case COMPONENT_REF:
1259 tree field = TREE_OPERAND (exp, 1);
1260 tree this_offset = component_ref_field_offset (exp);
1261 HOST_WIDE_INT hthis_offset;
1263 if (!this_offset
1264 || TREE_CODE (this_offset) != INTEGER_CST
1265 || (TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (field))
1266 % BITS_PER_UNIT))
1267 return NULL_TREE;
1269 hthis_offset = TREE_INT_CST_LOW (this_offset);
1270 hthis_offset += (TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (field))
1271 / BITS_PER_UNIT);
1272 byte_offset += hthis_offset;
1274 break;
1276 case ARRAY_REF:
1277 case ARRAY_RANGE_REF:
1279 tree index = TREE_OPERAND (exp, 1);
1280 tree low_bound, unit_size;
1282 if (valueize
1283 && TREE_CODE (index) == SSA_NAME)
1284 index = (*valueize) (index);
1286 /* If the resulting bit-offset is constant, track it. */
1287 if (TREE_CODE (index) == INTEGER_CST
1288 && (low_bound = array_ref_low_bound (exp),
1289 TREE_CODE (low_bound) == INTEGER_CST)
1290 && (unit_size = array_ref_element_size (exp),
1291 TREE_CODE (unit_size) == INTEGER_CST))
1293 HOST_WIDE_INT hindex = TREE_INT_CST_LOW (index);
1295 hindex -= TREE_INT_CST_LOW (low_bound);
1296 hindex *= TREE_INT_CST_LOW (unit_size);
1297 byte_offset += hindex;
1299 else
1300 return NULL_TREE;
1302 break;
1304 case REALPART_EXPR:
1305 break;
1307 case IMAGPART_EXPR:
1308 byte_offset += TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (exp)));
1309 break;
1311 case VIEW_CONVERT_EXPR:
1312 break;
1314 case MEM_REF:
1316 tree base = TREE_OPERAND (exp, 0);
1317 if (valueize
1318 && TREE_CODE (base) == SSA_NAME)
1319 base = (*valueize) (base);
1321 /* Hand back the decl for MEM[&decl, off]. */
1322 if (TREE_CODE (base) == ADDR_EXPR)
1324 if (!integer_zerop (TREE_OPERAND (exp, 1)))
1326 double_int off = mem_ref_offset (exp);
1327 gcc_assert (off.high == -1 || off.high == 0);
1328 byte_offset += double_int_to_shwi (off);
1330 exp = TREE_OPERAND (base, 0);
1332 goto done;
1335 case TARGET_MEM_REF:
1337 tree base = TREE_OPERAND (exp, 0);
1338 if (valueize
1339 && TREE_CODE (base) == SSA_NAME)
1340 base = (*valueize) (base);
1342 /* Hand back the decl for MEM[&decl, off]. */
1343 if (TREE_CODE (base) == ADDR_EXPR)
1345 if (TMR_INDEX (exp) || TMR_INDEX2 (exp))
1346 return NULL_TREE;
1347 if (!integer_zerop (TMR_OFFSET (exp)))
1349 double_int off = mem_ref_offset (exp);
1350 gcc_assert (off.high == -1 || off.high == 0);
1351 byte_offset += double_int_to_shwi (off);
1353 exp = TREE_OPERAND (base, 0);
1355 goto done;
1358 default:
1359 goto done;
1362 exp = TREE_OPERAND (exp, 0);
1364 done:
1366 *poffset = byte_offset;
1367 return exp;
1370 #endif /* _TREE_FLOW_INLINE_H */