PR bootstrap/49769
[official-gcc.git] / gcc / reload1.c
blob499412c0ba418068c60f539c5d7e9e4fe41e6523
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
27 #include "machmode.h"
28 #include "hard-reg-set.h"
29 #include "rtl-error.h"
30 #include "tm_p.h"
31 #include "obstack.h"
32 #include "insn-config.h"
33 #include "ggc.h"
34 #include "flags.h"
35 #include "function.h"
36 #include "expr.h"
37 #include "optabs.h"
38 #include "regs.h"
39 #include "addresses.h"
40 #include "basic-block.h"
41 #include "df.h"
42 #include "reload.h"
43 #include "recog.h"
44 #include "output.h"
45 #include "except.h"
46 #include "tree.h"
47 #include "ira.h"
48 #include "target.h"
49 #include "emit-rtl.h"
51 /* This file contains the reload pass of the compiler, which is
52 run after register allocation has been done. It checks that
53 each insn is valid (operands required to be in registers really
54 are in registers of the proper class) and fixes up invalid ones
55 by copying values temporarily into registers for the insns
56 that need them.
58 The results of register allocation are described by the vector
59 reg_renumber; the insns still contain pseudo regs, but reg_renumber
60 can be used to find which hard reg, if any, a pseudo reg is in.
62 The technique we always use is to free up a few hard regs that are
63 called ``reload regs'', and for each place where a pseudo reg
64 must be in a hard reg, copy it temporarily into one of the reload regs.
66 Reload regs are allocated locally for every instruction that needs
67 reloads. When there are pseudos which are allocated to a register that
68 has been chosen as a reload reg, such pseudos must be ``spilled''.
69 This means that they go to other hard regs, or to stack slots if no other
70 available hard regs can be found. Spilling can invalidate more
71 insns, requiring additional need for reloads, so we must keep checking
72 until the process stabilizes.
74 For machines with different classes of registers, we must keep track
75 of the register class needed for each reload, and make sure that
76 we allocate enough reload registers of each class.
78 The file reload.c contains the code that checks one insn for
79 validity and reports the reloads that it needs. This file
80 is in charge of scanning the entire rtl code, accumulating the
81 reload needs, spilling, assigning reload registers to use for
82 fixing up each insn, and generating the new insns to copy values
83 into the reload registers. */
85 struct target_reload default_target_reload;
86 #if SWITCHABLE_TARGET
87 struct target_reload *this_target_reload = &default_target_reload;
88 #endif
90 #define spill_indirect_levels \
91 (this_target_reload->x_spill_indirect_levels)
93 /* During reload_as_needed, element N contains a REG rtx for the hard reg
94 into which reg N has been reloaded (perhaps for a previous insn). */
95 static rtx *reg_last_reload_reg;
97 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
98 for an output reload that stores into reg N. */
99 static regset_head reg_has_output_reload;
101 /* Indicates which hard regs are reload-registers for an output reload
102 in the current insn. */
103 static HARD_REG_SET reg_is_output_reload;
105 /* Widest width in which each pseudo reg is referred to (via subreg). */
106 static unsigned int *reg_max_ref_width;
108 /* Vector to remember old contents of reg_renumber before spilling. */
109 static short *reg_old_renumber;
111 /* During reload_as_needed, element N contains the last pseudo regno reloaded
112 into hard register N. If that pseudo reg occupied more than one register,
113 reg_reloaded_contents points to that pseudo for each spill register in
114 use; all of these must remain set for an inheritance to occur. */
115 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
117 /* During reload_as_needed, element N contains the insn for which
118 hard register N was last used. Its contents are significant only
119 when reg_reloaded_valid is set for this register. */
120 static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
122 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
123 static HARD_REG_SET reg_reloaded_valid;
124 /* Indicate if the register was dead at the end of the reload.
125 This is only valid if reg_reloaded_contents is set and valid. */
126 static HARD_REG_SET reg_reloaded_dead;
128 /* Indicate whether the register's current value is one that is not
129 safe to retain across a call, even for registers that are normally
130 call-saved. This is only meaningful for members of reg_reloaded_valid. */
131 static HARD_REG_SET reg_reloaded_call_part_clobbered;
133 /* Number of spill-regs so far; number of valid elements of spill_regs. */
134 static int n_spills;
136 /* In parallel with spill_regs, contains REG rtx's for those regs.
137 Holds the last rtx used for any given reg, or 0 if it has never
138 been used for spilling yet. This rtx is reused, provided it has
139 the proper mode. */
140 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
142 /* In parallel with spill_regs, contains nonzero for a spill reg
143 that was stored after the last time it was used.
144 The precise value is the insn generated to do the store. */
145 static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
147 /* This is the register that was stored with spill_reg_store. This is a
148 copy of reload_out / reload_out_reg when the value was stored; if
149 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
150 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
152 /* This table is the inverse mapping of spill_regs:
153 indexed by hard reg number,
154 it contains the position of that reg in spill_regs,
155 or -1 for something that is not in spill_regs.
157 ?!? This is no longer accurate. */
158 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
160 /* This reg set indicates registers that can't be used as spill registers for
161 the currently processed insn. These are the hard registers which are live
162 during the insn, but not allocated to pseudos, as well as fixed
163 registers. */
164 static HARD_REG_SET bad_spill_regs;
166 /* These are the hard registers that can't be used as spill register for any
167 insn. This includes registers used for user variables and registers that
168 we can't eliminate. A register that appears in this set also can't be used
169 to retry register allocation. */
170 static HARD_REG_SET bad_spill_regs_global;
172 /* Describes order of use of registers for reloading
173 of spilled pseudo-registers. `n_spills' is the number of
174 elements that are actually valid; new ones are added at the end.
176 Both spill_regs and spill_reg_order are used on two occasions:
177 once during find_reload_regs, where they keep track of the spill registers
178 for a single insn, but also during reload_as_needed where they show all
179 the registers ever used by reload. For the latter case, the information
180 is calculated during finish_spills. */
181 static short spill_regs[FIRST_PSEUDO_REGISTER];
183 /* This vector of reg sets indicates, for each pseudo, which hard registers
184 may not be used for retrying global allocation because the register was
185 formerly spilled from one of them. If we allowed reallocating a pseudo to
186 a register that it was already allocated to, reload might not
187 terminate. */
188 static HARD_REG_SET *pseudo_previous_regs;
190 /* This vector of reg sets indicates, for each pseudo, which hard
191 registers may not be used for retrying global allocation because they
192 are used as spill registers during one of the insns in which the
193 pseudo is live. */
194 static HARD_REG_SET *pseudo_forbidden_regs;
196 /* All hard regs that have been used as spill registers for any insn are
197 marked in this set. */
198 static HARD_REG_SET used_spill_regs;
200 /* Index of last register assigned as a spill register. We allocate in
201 a round-robin fashion. */
202 static int last_spill_reg;
204 /* Record the stack slot for each spilled hard register. */
205 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
207 /* Width allocated so far for that stack slot. */
208 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
210 /* Record which pseudos needed to be spilled. */
211 static regset_head spilled_pseudos;
213 /* Record which pseudos changed their allocation in finish_spills. */
214 static regset_head changed_allocation_pseudos;
216 /* Used for communication between order_regs_for_reload and count_pseudo.
217 Used to avoid counting one pseudo twice. */
218 static regset_head pseudos_counted;
220 /* First uid used by insns created by reload in this function.
221 Used in find_equiv_reg. */
222 int reload_first_uid;
224 /* Flag set by local-alloc or global-alloc if anything is live in
225 a call-clobbered reg across calls. */
226 int caller_save_needed;
228 /* Set to 1 while reload_as_needed is operating.
229 Required by some machines to handle any generated moves differently. */
230 int reload_in_progress = 0;
232 /* This obstack is used for allocation of rtl during register elimination.
233 The allocated storage can be freed once find_reloads has processed the
234 insn. */
235 static struct obstack reload_obstack;
237 /* Points to the beginning of the reload_obstack. All insn_chain structures
238 are allocated first. */
239 static char *reload_startobj;
241 /* The point after all insn_chain structures. Used to quickly deallocate
242 memory allocated in copy_reloads during calculate_needs_all_insns. */
243 static char *reload_firstobj;
245 /* This points before all local rtl generated by register elimination.
246 Used to quickly free all memory after processing one insn. */
247 static char *reload_insn_firstobj;
249 /* List of insn_chain instructions, one for every insn that reload needs to
250 examine. */
251 struct insn_chain *reload_insn_chain;
253 /* TRUE if we potentially left dead insns in the insn stream and want to
254 run DCE immediately after reload, FALSE otherwise. */
255 static bool need_dce;
257 /* List of all insns needing reloads. */
258 static struct insn_chain *insns_need_reload;
260 /* This structure is used to record information about register eliminations.
261 Each array entry describes one possible way of eliminating a register
262 in favor of another. If there is more than one way of eliminating a
263 particular register, the most preferred should be specified first. */
265 struct elim_table
267 int from; /* Register number to be eliminated. */
268 int to; /* Register number used as replacement. */
269 HOST_WIDE_INT initial_offset; /* Initial difference between values. */
270 int can_eliminate; /* Nonzero if this elimination can be done. */
271 int can_eliminate_previous; /* Value returned by TARGET_CAN_ELIMINATE
272 target hook in previous scan over insns
273 made by reload. */
274 HOST_WIDE_INT offset; /* Current offset between the two regs. */
275 HOST_WIDE_INT previous_offset;/* Offset at end of previous insn. */
276 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
277 rtx from_rtx; /* REG rtx for the register to be eliminated.
278 We cannot simply compare the number since
279 we might then spuriously replace a hard
280 register corresponding to a pseudo
281 assigned to the reg to be eliminated. */
282 rtx to_rtx; /* REG rtx for the replacement. */
285 static struct elim_table *reg_eliminate = 0;
287 /* This is an intermediate structure to initialize the table. It has
288 exactly the members provided by ELIMINABLE_REGS. */
289 static const struct elim_table_1
291 const int from;
292 const int to;
293 } reg_eliminate_1[] =
295 /* If a set of eliminable registers was specified, define the table from it.
296 Otherwise, default to the normal case of the frame pointer being
297 replaced by the stack pointer. */
299 #ifdef ELIMINABLE_REGS
300 ELIMINABLE_REGS;
301 #else
302 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
303 #endif
305 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
307 /* Record the number of pending eliminations that have an offset not equal
308 to their initial offset. If nonzero, we use a new copy of each
309 replacement result in any insns encountered. */
310 int num_not_at_initial_offset;
312 /* Count the number of registers that we may be able to eliminate. */
313 static int num_eliminable;
314 /* And the number of registers that are equivalent to a constant that
315 can be eliminated to frame_pointer / arg_pointer + constant. */
316 static int num_eliminable_invariants;
318 /* For each label, we record the offset of each elimination. If we reach
319 a label by more than one path and an offset differs, we cannot do the
320 elimination. This information is indexed by the difference of the
321 number of the label and the first label number. We can't offset the
322 pointer itself as this can cause problems on machines with segmented
323 memory. The first table is an array of flags that records whether we
324 have yet encountered a label and the second table is an array of arrays,
325 one entry in the latter array for each elimination. */
327 static int first_label_num;
328 static char *offsets_known_at;
329 static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
331 VEC(reg_equivs_t,gc) *reg_equivs;
333 /* Stack of addresses where an rtx has been changed. We can undo the
334 changes by popping items off the stack and restoring the original
335 value at each location.
337 We use this simplistic undo capability rather than copy_rtx as copy_rtx
338 will not make a deep copy of a normally sharable rtx, such as
339 (const (plus (symbol_ref) (const_int))). If such an expression appears
340 as R1 in gen_reload_chain_without_interm_reg_p, then a shared
341 rtx expression would be changed. See PR 42431. */
343 typedef rtx *rtx_p;
344 DEF_VEC_P(rtx_p);
345 DEF_VEC_ALLOC_P(rtx_p,heap);
346 static VEC(rtx_p,heap) *substitute_stack;
348 /* Number of labels in the current function. */
350 static int num_labels;
352 static void replace_pseudos_in (rtx *, enum machine_mode, rtx);
353 static void maybe_fix_stack_asms (void);
354 static void copy_reloads (struct insn_chain *);
355 static void calculate_needs_all_insns (int);
356 static int find_reg (struct insn_chain *, int);
357 static void find_reload_regs (struct insn_chain *);
358 static void select_reload_regs (void);
359 static void delete_caller_save_insns (void);
361 static void spill_failure (rtx, enum reg_class);
362 static void count_spilled_pseudo (int, int, int);
363 static void delete_dead_insn (rtx);
364 static void alter_reg (int, int, bool);
365 static void set_label_offsets (rtx, rtx, int);
366 static void check_eliminable_occurrences (rtx);
367 static void elimination_effects (rtx, enum machine_mode);
368 static rtx eliminate_regs_1 (rtx, enum machine_mode, rtx, bool, bool);
369 static int eliminate_regs_in_insn (rtx, int);
370 static void update_eliminable_offsets (void);
371 static void mark_not_eliminable (rtx, const_rtx, void *);
372 static void set_initial_elim_offsets (void);
373 static bool verify_initial_elim_offsets (void);
374 static void set_initial_label_offsets (void);
375 static void set_offsets_for_label (rtx);
376 static void init_eliminable_invariants (rtx, bool);
377 static void init_elim_table (void);
378 static void free_reg_equiv (void);
379 static void update_eliminables (HARD_REG_SET *);
380 static void elimination_costs_in_insn (rtx);
381 static void spill_hard_reg (unsigned int, int);
382 static int finish_spills (int);
383 static void scan_paradoxical_subregs (rtx);
384 static void count_pseudo (int);
385 static void order_regs_for_reload (struct insn_chain *);
386 static void reload_as_needed (int);
387 static void forget_old_reloads_1 (rtx, const_rtx, void *);
388 static void forget_marked_reloads (regset);
389 static int reload_reg_class_lower (const void *, const void *);
390 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
391 enum machine_mode);
392 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
393 enum machine_mode);
394 static int reload_reg_free_p (unsigned int, int, enum reload_type);
395 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
396 rtx, rtx, int, int);
397 static int free_for_value_p (int, enum machine_mode, int, enum reload_type,
398 rtx, rtx, int, int);
399 static int reload_reg_reaches_end_p (unsigned int, int, enum reload_type);
400 static int allocate_reload_reg (struct insn_chain *, int, int);
401 static int conflicts_with_override (rtx);
402 static void failed_reload (rtx, int);
403 static int set_reload_reg (int, int);
404 static void choose_reload_regs_init (struct insn_chain *, rtx *);
405 static void choose_reload_regs (struct insn_chain *);
406 static void emit_input_reload_insns (struct insn_chain *, struct reload *,
407 rtx, int);
408 static void emit_output_reload_insns (struct insn_chain *, struct reload *,
409 int);
410 static void do_input_reload (struct insn_chain *, struct reload *, int);
411 static void do_output_reload (struct insn_chain *, struct reload *, int);
412 static void emit_reload_insns (struct insn_chain *);
413 static void delete_output_reload (rtx, int, int, rtx);
414 static void delete_address_reloads (rtx, rtx);
415 static void delete_address_reloads_1 (rtx, rtx, rtx);
416 static void inc_for_reload (rtx, rtx, rtx, int);
417 #ifdef AUTO_INC_DEC
418 static void add_auto_inc_notes (rtx, rtx);
419 #endif
420 static void substitute (rtx *, const_rtx, rtx);
421 static bool gen_reload_chain_without_interm_reg_p (int, int);
422 static int reloads_conflict (int, int);
423 static rtx gen_reload (rtx, rtx, int, enum reload_type);
424 static rtx emit_insn_if_valid_for_reload (rtx);
426 /* Initialize the reload pass. This is called at the beginning of compilation
427 and may be called again if the target is reinitialized. */
429 void
430 init_reload (void)
432 int i;
434 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
435 Set spill_indirect_levels to the number of levels such addressing is
436 permitted, zero if it is not permitted at all. */
438 rtx tem
439 = gen_rtx_MEM (Pmode,
440 gen_rtx_PLUS (Pmode,
441 gen_rtx_REG (Pmode,
442 LAST_VIRTUAL_REGISTER + 1),
443 GEN_INT (4)));
444 spill_indirect_levels = 0;
446 while (memory_address_p (QImode, tem))
448 spill_indirect_levels++;
449 tem = gen_rtx_MEM (Pmode, tem);
452 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
454 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
455 indirect_symref_ok = memory_address_p (QImode, tem);
457 /* See if reg+reg is a valid (and offsettable) address. */
459 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
461 tem = gen_rtx_PLUS (Pmode,
462 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
463 gen_rtx_REG (Pmode, i));
465 /* This way, we make sure that reg+reg is an offsettable address. */
466 tem = plus_constant (tem, 4);
468 if (memory_address_p (QImode, tem))
470 double_reg_address_ok = 1;
471 break;
475 /* Initialize obstack for our rtl allocation. */
476 gcc_obstack_init (&reload_obstack);
477 reload_startobj = XOBNEWVAR (&reload_obstack, char, 0);
479 INIT_REG_SET (&spilled_pseudos);
480 INIT_REG_SET (&changed_allocation_pseudos);
481 INIT_REG_SET (&pseudos_counted);
484 /* List of insn chains that are currently unused. */
485 static struct insn_chain *unused_insn_chains = 0;
487 /* Allocate an empty insn_chain structure. */
488 struct insn_chain *
489 new_insn_chain (void)
491 struct insn_chain *c;
493 if (unused_insn_chains == 0)
495 c = XOBNEW (&reload_obstack, struct insn_chain);
496 INIT_REG_SET (&c->live_throughout);
497 INIT_REG_SET (&c->dead_or_set);
499 else
501 c = unused_insn_chains;
502 unused_insn_chains = c->next;
504 c->is_caller_save_insn = 0;
505 c->need_operand_change = 0;
506 c->need_reload = 0;
507 c->need_elim = 0;
508 return c;
511 /* Small utility function to set all regs in hard reg set TO which are
512 allocated to pseudos in regset FROM. */
514 void
515 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
517 unsigned int regno;
518 reg_set_iterator rsi;
520 EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
522 int r = reg_renumber[regno];
524 if (r < 0)
526 /* reload_combine uses the information from DF_LIVE_IN,
527 which might still contain registers that have not
528 actually been allocated since they have an
529 equivalence. */
530 gcc_assert (ira_conflicts_p || reload_completed);
532 else
533 add_to_hard_reg_set (to, PSEUDO_REGNO_MODE (regno), r);
537 /* Replace all pseudos found in LOC with their corresponding
538 equivalences. */
540 static void
541 replace_pseudos_in (rtx *loc, enum machine_mode mem_mode, rtx usage)
543 rtx x = *loc;
544 enum rtx_code code;
545 const char *fmt;
546 int i, j;
548 if (! x)
549 return;
551 code = GET_CODE (x);
552 if (code == REG)
554 unsigned int regno = REGNO (x);
556 if (regno < FIRST_PSEUDO_REGISTER)
557 return;
559 x = eliminate_regs_1 (x, mem_mode, usage, true, false);
560 if (x != *loc)
562 *loc = x;
563 replace_pseudos_in (loc, mem_mode, usage);
564 return;
567 if (reg_equiv_constant (regno))
568 *loc = reg_equiv_constant (regno);
569 else if (reg_equiv_invariant (regno))
570 *loc = reg_equiv_invariant (regno);
571 else if (reg_equiv_mem (regno))
572 *loc = reg_equiv_mem (regno);
573 else if (reg_equiv_address (regno))
574 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address (regno));
575 else
577 gcc_assert (!REG_P (regno_reg_rtx[regno])
578 || REGNO (regno_reg_rtx[regno]) != regno);
579 *loc = regno_reg_rtx[regno];
582 return;
584 else if (code == MEM)
586 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
587 return;
590 /* Process each of our operands recursively. */
591 fmt = GET_RTX_FORMAT (code);
592 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
593 if (*fmt == 'e')
594 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
595 else if (*fmt == 'E')
596 for (j = 0; j < XVECLEN (x, i); j++)
597 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
600 /* Determine if the current function has an exception receiver block
601 that reaches the exit block via non-exceptional edges */
603 static bool
604 has_nonexceptional_receiver (void)
606 edge e;
607 edge_iterator ei;
608 basic_block *tos, *worklist, bb;
610 /* If we're not optimizing, then just err on the safe side. */
611 if (!optimize)
612 return true;
614 /* First determine which blocks can reach exit via normal paths. */
615 tos = worklist = XNEWVEC (basic_block, n_basic_blocks + 1);
617 FOR_EACH_BB (bb)
618 bb->flags &= ~BB_REACHABLE;
620 /* Place the exit block on our worklist. */
621 EXIT_BLOCK_PTR->flags |= BB_REACHABLE;
622 *tos++ = EXIT_BLOCK_PTR;
624 /* Iterate: find everything reachable from what we've already seen. */
625 while (tos != worklist)
627 bb = *--tos;
629 FOR_EACH_EDGE (e, ei, bb->preds)
630 if (!(e->flags & EDGE_ABNORMAL))
632 basic_block src = e->src;
634 if (!(src->flags & BB_REACHABLE))
636 src->flags |= BB_REACHABLE;
637 *tos++ = src;
641 free (worklist);
643 /* Now see if there's a reachable block with an exceptional incoming
644 edge. */
645 FOR_EACH_BB (bb)
646 if (bb->flags & BB_REACHABLE && bb_has_abnormal_pred (bb))
647 return true;
649 /* No exceptional block reached exit unexceptionally. */
650 return false;
653 /* Grow (or allocate) the REG_EQUIVS array from its current size (which may be
654 zero elements) to MAX_REG_NUM elements.
656 Initialize all new fields to NULL and update REG_EQUIVS_SIZE. */
657 void
658 grow_reg_equivs (void)
660 int old_size = VEC_length (reg_equivs_t, reg_equivs);
661 int max_regno = max_reg_num ();
662 int i;
664 VEC_reserve (reg_equivs_t, gc, reg_equivs, max_regno);
665 for (i = old_size; i < max_regno; i++)
667 VEC_quick_insert (reg_equivs_t, reg_equivs, i, 0);
668 memset (VEC_index (reg_equivs_t, reg_equivs, i), 0, sizeof (reg_equivs_t));
674 /* Global variables used by reload and its subroutines. */
676 /* The current basic block while in calculate_elim_costs_all_insns. */
677 static basic_block elim_bb;
679 /* Set during calculate_needs if an insn needs register elimination. */
680 static int something_needs_elimination;
681 /* Set during calculate_needs if an insn needs an operand changed. */
682 static int something_needs_operands_changed;
683 /* Set by alter_regs if we spilled a register to the stack. */
684 static bool something_was_spilled;
686 /* Nonzero means we couldn't get enough spill regs. */
687 static int failure;
689 /* Temporary array of pseudo-register number. */
690 static int *temp_pseudo_reg_arr;
692 /* Main entry point for the reload pass.
694 FIRST is the first insn of the function being compiled.
696 GLOBAL nonzero means we were called from global_alloc
697 and should attempt to reallocate any pseudoregs that we
698 displace from hard regs we will use for reloads.
699 If GLOBAL is zero, we do not have enough information to do that,
700 so any pseudo reg that is spilled must go to the stack.
702 Return value is TRUE if reload likely left dead insns in the
703 stream and a DCE pass should be run to elimiante them. Else the
704 return value is FALSE. */
706 bool
707 reload (rtx first, int global)
709 int i, n;
710 rtx insn;
711 struct elim_table *ep;
712 basic_block bb;
713 bool inserted;
715 /* Make sure even insns with volatile mem refs are recognizable. */
716 init_recog ();
718 failure = 0;
720 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
722 /* Make sure that the last insn in the chain
723 is not something that needs reloading. */
724 emit_note (NOTE_INSN_DELETED);
726 /* Enable find_equiv_reg to distinguish insns made by reload. */
727 reload_first_uid = get_max_uid ();
729 #ifdef SECONDARY_MEMORY_NEEDED
730 /* Initialize the secondary memory table. */
731 clear_secondary_mem ();
732 #endif
734 /* We don't have a stack slot for any spill reg yet. */
735 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
736 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
738 /* Initialize the save area information for caller-save, in case some
739 are needed. */
740 init_save_areas ();
742 /* Compute which hard registers are now in use
743 as homes for pseudo registers.
744 This is done here rather than (eg) in global_alloc
745 because this point is reached even if not optimizing. */
746 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
747 mark_home_live (i);
749 /* A function that has a nonlocal label that can reach the exit
750 block via non-exceptional paths must save all call-saved
751 registers. */
752 if (cfun->has_nonlocal_label
753 && has_nonexceptional_receiver ())
754 crtl->saves_all_registers = 1;
756 if (crtl->saves_all_registers)
757 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
758 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
759 df_set_regs_ever_live (i, true);
761 /* Find all the pseudo registers that didn't get hard regs
762 but do have known equivalent constants or memory slots.
763 These include parameters (known equivalent to parameter slots)
764 and cse'd or loop-moved constant memory addresses.
766 Record constant equivalents in reg_equiv_constant
767 so they will be substituted by find_reloads.
768 Record memory equivalents in reg_mem_equiv so they can
769 be substituted eventually by altering the REG-rtx's. */
771 grow_reg_equivs ();
772 reg_max_ref_width = XCNEWVEC (unsigned int, max_regno);
773 reg_old_renumber = XCNEWVEC (short, max_regno);
774 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
775 pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
776 pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
778 CLEAR_HARD_REG_SET (bad_spill_regs_global);
780 init_eliminable_invariants (first, true);
781 init_elim_table ();
783 /* Alter each pseudo-reg rtx to contain its hard reg number. Assign
784 stack slots to the pseudos that lack hard regs or equivalents.
785 Do not touch virtual registers. */
787 temp_pseudo_reg_arr = XNEWVEC (int, max_regno - LAST_VIRTUAL_REGISTER - 1);
788 for (n = 0, i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
789 temp_pseudo_reg_arr[n++] = i;
791 if (ira_conflicts_p)
792 /* Ask IRA to order pseudo-registers for better stack slot
793 sharing. */
794 ira_sort_regnos_for_alter_reg (temp_pseudo_reg_arr, n, reg_max_ref_width);
796 for (i = 0; i < n; i++)
797 alter_reg (temp_pseudo_reg_arr[i], -1, false);
799 /* If we have some registers we think can be eliminated, scan all insns to
800 see if there is an insn that sets one of these registers to something
801 other than itself plus a constant. If so, the register cannot be
802 eliminated. Doing this scan here eliminates an extra pass through the
803 main reload loop in the most common case where register elimination
804 cannot be done. */
805 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
806 if (INSN_P (insn))
807 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
809 maybe_fix_stack_asms ();
811 insns_need_reload = 0;
812 something_needs_elimination = 0;
814 /* Initialize to -1, which means take the first spill register. */
815 last_spill_reg = -1;
817 /* Spill any hard regs that we know we can't eliminate. */
818 CLEAR_HARD_REG_SET (used_spill_regs);
819 /* There can be multiple ways to eliminate a register;
820 they should be listed adjacently.
821 Elimination for any register fails only if all possible ways fail. */
822 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
824 int from = ep->from;
825 int can_eliminate = 0;
828 can_eliminate |= ep->can_eliminate;
829 ep++;
831 while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
832 if (! can_eliminate)
833 spill_hard_reg (from, 1);
836 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
837 if (frame_pointer_needed)
838 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
839 #endif
840 finish_spills (global);
842 /* From now on, we may need to generate moves differently. We may also
843 allow modifications of insns which cause them to not be recognized.
844 Any such modifications will be cleaned up during reload itself. */
845 reload_in_progress = 1;
847 /* This loop scans the entire function each go-round
848 and repeats until one repetition spills no additional hard regs. */
849 for (;;)
851 int something_changed;
852 int did_spill;
853 HOST_WIDE_INT starting_frame_size;
855 starting_frame_size = get_frame_size ();
856 something_was_spilled = false;
858 set_initial_elim_offsets ();
859 set_initial_label_offsets ();
861 /* For each pseudo register that has an equivalent location defined,
862 try to eliminate any eliminable registers (such as the frame pointer)
863 assuming initial offsets for the replacement register, which
864 is the normal case.
866 If the resulting location is directly addressable, substitute
867 the MEM we just got directly for the old REG.
869 If it is not addressable but is a constant or the sum of a hard reg
870 and constant, it is probably not addressable because the constant is
871 out of range, in that case record the address; we will generate
872 hairy code to compute the address in a register each time it is
873 needed. Similarly if it is a hard register, but one that is not
874 valid as an address register.
876 If the location is not addressable, but does not have one of the
877 above forms, assign a stack slot. We have to do this to avoid the
878 potential of producing lots of reloads if, e.g., a location involves
879 a pseudo that didn't get a hard register and has an equivalent memory
880 location that also involves a pseudo that didn't get a hard register.
882 Perhaps at some point we will improve reload_when_needed handling
883 so this problem goes away. But that's very hairy. */
885 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
886 if (reg_renumber[i] < 0 && reg_equiv_memory_loc (i))
888 rtx x = eliminate_regs (reg_equiv_memory_loc (i), VOIDmode,
889 NULL_RTX);
891 if (strict_memory_address_addr_space_p
892 (GET_MODE (regno_reg_rtx[i]), XEXP (x, 0),
893 MEM_ADDR_SPACE (x)))
894 reg_equiv_mem (i) = x, reg_equiv_address (i) = 0;
895 else if (CONSTANT_P (XEXP (x, 0))
896 || (REG_P (XEXP (x, 0))
897 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
898 || (GET_CODE (XEXP (x, 0)) == PLUS
899 && REG_P (XEXP (XEXP (x, 0), 0))
900 && (REGNO (XEXP (XEXP (x, 0), 0))
901 < FIRST_PSEUDO_REGISTER)
902 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
903 reg_equiv_address (i) = XEXP (x, 0), reg_equiv_mem (i) = 0;
904 else
906 /* Make a new stack slot. Then indicate that something
907 changed so we go back and recompute offsets for
908 eliminable registers because the allocation of memory
909 below might change some offset. reg_equiv_{mem,address}
910 will be set up for this pseudo on the next pass around
911 the loop. */
912 reg_equiv_memory_loc (i) = 0;
913 reg_equiv_init (i) = 0;
914 alter_reg (i, -1, true);
918 if (caller_save_needed)
919 setup_save_areas ();
921 /* If we allocated another stack slot, redo elimination bookkeeping. */
922 if (something_was_spilled || starting_frame_size != get_frame_size ())
923 continue;
924 if (starting_frame_size && crtl->stack_alignment_needed)
926 /* If we have a stack frame, we must align it now. The
927 stack size may be a part of the offset computation for
928 register elimination. So if this changes the stack size,
929 then repeat the elimination bookkeeping. We don't
930 realign when there is no stack, as that will cause a
931 stack frame when none is needed should
932 STARTING_FRAME_OFFSET not be already aligned to
933 STACK_BOUNDARY. */
934 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
935 if (starting_frame_size != get_frame_size ())
936 continue;
939 if (caller_save_needed)
941 save_call_clobbered_regs ();
942 /* That might have allocated new insn_chain structures. */
943 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
946 calculate_needs_all_insns (global);
948 if (! ira_conflicts_p)
949 /* Don't do it for IRA. We need this info because we don't
950 change live_throughout and dead_or_set for chains when IRA
951 is used. */
952 CLEAR_REG_SET (&spilled_pseudos);
954 did_spill = 0;
956 something_changed = 0;
958 /* If we allocated any new memory locations, make another pass
959 since it might have changed elimination offsets. */
960 if (something_was_spilled || starting_frame_size != get_frame_size ())
961 something_changed = 1;
963 /* Even if the frame size remained the same, we might still have
964 changed elimination offsets, e.g. if find_reloads called
965 force_const_mem requiring the back end to allocate a constant
966 pool base register that needs to be saved on the stack. */
967 else if (!verify_initial_elim_offsets ())
968 something_changed = 1;
971 HARD_REG_SET to_spill;
972 CLEAR_HARD_REG_SET (to_spill);
973 update_eliminables (&to_spill);
974 AND_COMPL_HARD_REG_SET (used_spill_regs, to_spill);
976 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
977 if (TEST_HARD_REG_BIT (to_spill, i))
979 spill_hard_reg (i, 1);
980 did_spill = 1;
982 /* Regardless of the state of spills, if we previously had
983 a register that we thought we could eliminate, but now can
984 not eliminate, we must run another pass.
986 Consider pseudos which have an entry in reg_equiv_* which
987 reference an eliminable register. We must make another pass
988 to update reg_equiv_* so that we do not substitute in the
989 old value from when we thought the elimination could be
990 performed. */
991 something_changed = 1;
995 select_reload_regs ();
996 if (failure)
997 goto failed;
999 if (insns_need_reload != 0 || did_spill)
1000 something_changed |= finish_spills (global);
1002 if (! something_changed)
1003 break;
1005 if (caller_save_needed)
1006 delete_caller_save_insns ();
1008 obstack_free (&reload_obstack, reload_firstobj);
1011 /* If global-alloc was run, notify it of any register eliminations we have
1012 done. */
1013 if (global)
1014 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1015 if (ep->can_eliminate)
1016 mark_elimination (ep->from, ep->to);
1018 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
1019 If that insn didn't set the register (i.e., it copied the register to
1020 memory), just delete that insn instead of the equivalencing insn plus
1021 anything now dead. If we call delete_dead_insn on that insn, we may
1022 delete the insn that actually sets the register if the register dies
1023 there and that is incorrect. */
1025 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1027 if (reg_renumber[i] < 0 && reg_equiv_init (i) != 0)
1029 rtx list;
1030 for (list = reg_equiv_init (i); list; list = XEXP (list, 1))
1032 rtx equiv_insn = XEXP (list, 0);
1034 /* If we already deleted the insn or if it may trap, we can't
1035 delete it. The latter case shouldn't happen, but can
1036 if an insn has a variable address, gets a REG_EH_REGION
1037 note added to it, and then gets converted into a load
1038 from a constant address. */
1039 if (NOTE_P (equiv_insn)
1040 || can_throw_internal (equiv_insn))
1042 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
1043 delete_dead_insn (equiv_insn);
1044 else
1045 SET_INSN_DELETED (equiv_insn);
1050 /* Use the reload registers where necessary
1051 by generating move instructions to move the must-be-register
1052 values into or out of the reload registers. */
1054 if (insns_need_reload != 0 || something_needs_elimination
1055 || something_needs_operands_changed)
1057 HOST_WIDE_INT old_frame_size = get_frame_size ();
1059 reload_as_needed (global);
1061 gcc_assert (old_frame_size == get_frame_size ());
1063 gcc_assert (verify_initial_elim_offsets ());
1066 /* If we were able to eliminate the frame pointer, show that it is no
1067 longer live at the start of any basic block. If it ls live by
1068 virtue of being in a pseudo, that pseudo will be marked live
1069 and hence the frame pointer will be known to be live via that
1070 pseudo. */
1072 if (! frame_pointer_needed)
1073 FOR_EACH_BB (bb)
1074 bitmap_clear_bit (df_get_live_in (bb), HARD_FRAME_POINTER_REGNUM);
1076 /* Come here (with failure set nonzero) if we can't get enough spill
1077 regs. */
1078 failed:
1080 CLEAR_REG_SET (&changed_allocation_pseudos);
1081 CLEAR_REG_SET (&spilled_pseudos);
1082 reload_in_progress = 0;
1084 /* Now eliminate all pseudo regs by modifying them into
1085 their equivalent memory references.
1086 The REG-rtx's for the pseudos are modified in place,
1087 so all insns that used to refer to them now refer to memory.
1089 For a reg that has a reg_equiv_address, all those insns
1090 were changed by reloading so that no insns refer to it any longer;
1091 but the DECL_RTL of a variable decl may refer to it,
1092 and if so this causes the debugging info to mention the variable. */
1094 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1096 rtx addr = 0;
1098 if (reg_equiv_mem (i))
1099 addr = XEXP (reg_equiv_mem (i), 0);
1101 if (reg_equiv_address (i))
1102 addr = reg_equiv_address (i);
1104 if (addr)
1106 if (reg_renumber[i] < 0)
1108 rtx reg = regno_reg_rtx[i];
1110 REG_USERVAR_P (reg) = 0;
1111 PUT_CODE (reg, MEM);
1112 XEXP (reg, 0) = addr;
1113 if (reg_equiv_memory_loc (i))
1114 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc (i));
1115 else
1117 MEM_IN_STRUCT_P (reg) = MEM_SCALAR_P (reg) = 0;
1118 MEM_ATTRS (reg) = 0;
1120 MEM_NOTRAP_P (reg) = 1;
1122 else if (reg_equiv_mem (i))
1123 XEXP (reg_equiv_mem (i), 0) = addr;
1126 /* We don't want complex addressing modes in debug insns
1127 if simpler ones will do, so delegitimize equivalences
1128 in debug insns. */
1129 if (MAY_HAVE_DEBUG_INSNS && reg_renumber[i] < 0)
1131 rtx reg = regno_reg_rtx[i];
1132 rtx equiv = 0;
1133 df_ref use, next;
1135 if (reg_equiv_constant (i))
1136 equiv = reg_equiv_constant (i);
1137 else if (reg_equiv_invariant (i))
1138 equiv = reg_equiv_invariant (i);
1139 else if (reg && MEM_P (reg))
1140 equiv = targetm.delegitimize_address (reg);
1141 else if (reg && REG_P (reg) && (int)REGNO (reg) != i)
1142 equiv = reg;
1144 if (equiv == reg)
1145 continue;
1147 for (use = DF_REG_USE_CHAIN (i); use; use = next)
1149 insn = DF_REF_INSN (use);
1151 /* Make sure the next ref is for a different instruction,
1152 so that we're not affected by the rescan. */
1153 next = DF_REF_NEXT_REG (use);
1154 while (next && DF_REF_INSN (next) == insn)
1155 next = DF_REF_NEXT_REG (next);
1157 if (DEBUG_INSN_P (insn))
1159 if (!equiv)
1161 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1162 df_insn_rescan_debug_internal (insn);
1164 else
1165 INSN_VAR_LOCATION_LOC (insn)
1166 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (insn),
1167 reg, equiv);
1173 /* We must set reload_completed now since the cleanup_subreg_operands call
1174 below will re-recognize each insn and reload may have generated insns
1175 which are only valid during and after reload. */
1176 reload_completed = 1;
1178 /* Make a pass over all the insns and delete all USEs which we inserted
1179 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1180 notes. Delete all CLOBBER insns, except those that refer to the return
1181 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1182 from misarranging variable-array code, and simplify (subreg (reg))
1183 operands. Strip and regenerate REG_INC notes that may have been moved
1184 around. */
1186 for (insn = first; insn; insn = NEXT_INSN (insn))
1187 if (INSN_P (insn))
1189 rtx *pnote;
1191 if (CALL_P (insn))
1192 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1193 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1195 if ((GET_CODE (PATTERN (insn)) == USE
1196 /* We mark with QImode USEs introduced by reload itself. */
1197 && (GET_MODE (insn) == QImode
1198 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1199 || (GET_CODE (PATTERN (insn)) == CLOBBER
1200 && (!MEM_P (XEXP (PATTERN (insn), 0))
1201 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1202 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1203 && XEXP (XEXP (PATTERN (insn), 0), 0)
1204 != stack_pointer_rtx))
1205 && (!REG_P (XEXP (PATTERN (insn), 0))
1206 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1208 delete_insn (insn);
1209 continue;
1212 /* Some CLOBBERs may survive until here and still reference unassigned
1213 pseudos with const equivalent, which may in turn cause ICE in later
1214 passes if the reference remains in place. */
1215 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1216 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1217 VOIDmode, PATTERN (insn));
1219 /* Discard obvious no-ops, even without -O. This optimization
1220 is fast and doesn't interfere with debugging. */
1221 if (NONJUMP_INSN_P (insn)
1222 && GET_CODE (PATTERN (insn)) == SET
1223 && REG_P (SET_SRC (PATTERN (insn)))
1224 && REG_P (SET_DEST (PATTERN (insn)))
1225 && (REGNO (SET_SRC (PATTERN (insn)))
1226 == REGNO (SET_DEST (PATTERN (insn)))))
1228 delete_insn (insn);
1229 continue;
1232 pnote = &REG_NOTES (insn);
1233 while (*pnote != 0)
1235 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1236 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1237 || REG_NOTE_KIND (*pnote) == REG_INC)
1238 *pnote = XEXP (*pnote, 1);
1239 else
1240 pnote = &XEXP (*pnote, 1);
1243 #ifdef AUTO_INC_DEC
1244 add_auto_inc_notes (insn, PATTERN (insn));
1245 #endif
1247 /* Simplify (subreg (reg)) if it appears as an operand. */
1248 cleanup_subreg_operands (insn);
1250 /* Clean up invalid ASMs so that they don't confuse later passes.
1251 See PR 21299. */
1252 if (asm_noperands (PATTERN (insn)) >= 0)
1254 extract_insn (insn);
1255 if (!constrain_operands (1))
1257 error_for_asm (insn,
1258 "%<asm%> operand has impossible constraints");
1259 delete_insn (insn);
1260 continue;
1265 /* If we are doing generic stack checking, give a warning if this
1266 function's frame size is larger than we expect. */
1267 if (flag_stack_check == GENERIC_STACK_CHECK)
1269 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1270 static int verbose_warned = 0;
1272 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1273 if (df_regs_ever_live_p (i) && ! fixed_regs[i] && call_used_regs[i])
1274 size += UNITS_PER_WORD;
1276 if (size > STACK_CHECK_MAX_FRAME_SIZE)
1278 warning (0, "frame size too large for reliable stack checking");
1279 if (! verbose_warned)
1281 warning (0, "try reducing the number of local variables");
1282 verbose_warned = 1;
1287 free (temp_pseudo_reg_arr);
1289 /* Indicate that we no longer have known memory locations or constants. */
1290 free_reg_equiv ();
1292 free (reg_max_ref_width);
1293 free (reg_old_renumber);
1294 free (pseudo_previous_regs);
1295 free (pseudo_forbidden_regs);
1297 CLEAR_HARD_REG_SET (used_spill_regs);
1298 for (i = 0; i < n_spills; i++)
1299 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1301 /* Free all the insn_chain structures at once. */
1302 obstack_free (&reload_obstack, reload_startobj);
1303 unused_insn_chains = 0;
1305 inserted = fixup_abnormal_edges ();
1307 /* We've possibly turned single trapping insn into multiple ones. */
1308 if (cfun->can_throw_non_call_exceptions)
1310 sbitmap blocks;
1311 blocks = sbitmap_alloc (last_basic_block);
1312 sbitmap_ones (blocks);
1313 find_many_sub_basic_blocks (blocks);
1314 sbitmap_free (blocks);
1317 if (inserted)
1318 commit_edge_insertions ();
1320 /* Replacing pseudos with their memory equivalents might have
1321 created shared rtx. Subsequent passes would get confused
1322 by this, so unshare everything here. */
1323 unshare_all_rtl_again (first);
1325 #ifdef STACK_BOUNDARY
1326 /* init_emit has set the alignment of the hard frame pointer
1327 to STACK_BOUNDARY. It is very likely no longer valid if
1328 the hard frame pointer was used for register allocation. */
1329 if (!frame_pointer_needed)
1330 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1331 #endif
1333 VEC_free (rtx_p, heap, substitute_stack);
1335 gcc_assert (bitmap_empty_p (&spilled_pseudos));
1337 reload_completed = !failure;
1339 return need_dce;
1342 /* Yet another special case. Unfortunately, reg-stack forces people to
1343 write incorrect clobbers in asm statements. These clobbers must not
1344 cause the register to appear in bad_spill_regs, otherwise we'll call
1345 fatal_insn later. We clear the corresponding regnos in the live
1346 register sets to avoid this.
1347 The whole thing is rather sick, I'm afraid. */
1349 static void
1350 maybe_fix_stack_asms (void)
1352 #ifdef STACK_REGS
1353 const char *constraints[MAX_RECOG_OPERANDS];
1354 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1355 struct insn_chain *chain;
1357 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1359 int i, noperands;
1360 HARD_REG_SET clobbered, allowed;
1361 rtx pat;
1363 if (! INSN_P (chain->insn)
1364 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1365 continue;
1366 pat = PATTERN (chain->insn);
1367 if (GET_CODE (pat) != PARALLEL)
1368 continue;
1370 CLEAR_HARD_REG_SET (clobbered);
1371 CLEAR_HARD_REG_SET (allowed);
1373 /* First, make a mask of all stack regs that are clobbered. */
1374 for (i = 0; i < XVECLEN (pat, 0); i++)
1376 rtx t = XVECEXP (pat, 0, i);
1377 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1378 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1381 /* Get the operand values and constraints out of the insn. */
1382 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1383 constraints, operand_mode, NULL);
1385 /* For every operand, see what registers are allowed. */
1386 for (i = 0; i < noperands; i++)
1388 const char *p = constraints[i];
1389 /* For every alternative, we compute the class of registers allowed
1390 for reloading in CLS, and merge its contents into the reg set
1391 ALLOWED. */
1392 int cls = (int) NO_REGS;
1394 for (;;)
1396 char c = *p;
1398 if (c == '\0' || c == ',' || c == '#')
1400 /* End of one alternative - mark the regs in the current
1401 class, and reset the class. */
1402 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1403 cls = NO_REGS;
1404 p++;
1405 if (c == '#')
1406 do {
1407 c = *p++;
1408 } while (c != '\0' && c != ',');
1409 if (c == '\0')
1410 break;
1411 continue;
1414 switch (c)
1416 case '=': case '+': case '*': case '%': case '?': case '!':
1417 case '0': case '1': case '2': case '3': case '4': case '<':
1418 case '>': case 'V': case 'o': case '&': case 'E': case 'F':
1419 case 's': case 'i': case 'n': case 'X': case 'I': case 'J':
1420 case 'K': case 'L': case 'M': case 'N': case 'O': case 'P':
1421 case TARGET_MEM_CONSTRAINT:
1422 break;
1424 case 'p':
1425 cls = (int) reg_class_subunion[cls]
1426 [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
1427 break;
1429 case 'g':
1430 case 'r':
1431 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1432 break;
1434 default:
1435 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1436 cls = (int) reg_class_subunion[cls]
1437 [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
1438 else
1439 cls = (int) reg_class_subunion[cls]
1440 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
1442 p += CONSTRAINT_LEN (c, p);
1445 /* Those of the registers which are clobbered, but allowed by the
1446 constraints, must be usable as reload registers. So clear them
1447 out of the life information. */
1448 AND_HARD_REG_SET (allowed, clobbered);
1449 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1450 if (TEST_HARD_REG_BIT (allowed, i))
1452 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1453 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1457 #endif
1460 /* Copy the global variables n_reloads and rld into the corresponding elts
1461 of CHAIN. */
1462 static void
1463 copy_reloads (struct insn_chain *chain)
1465 chain->n_reloads = n_reloads;
1466 chain->rld = XOBNEWVEC (&reload_obstack, struct reload, n_reloads);
1467 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1468 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1471 /* Walk the chain of insns, and determine for each whether it needs reloads
1472 and/or eliminations. Build the corresponding insns_need_reload list, and
1473 set something_needs_elimination as appropriate. */
1474 static void
1475 calculate_needs_all_insns (int global)
1477 struct insn_chain **pprev_reload = &insns_need_reload;
1478 struct insn_chain *chain, *next = 0;
1480 something_needs_elimination = 0;
1482 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1483 for (chain = reload_insn_chain; chain != 0; chain = next)
1485 rtx insn = chain->insn;
1487 next = chain->next;
1489 /* Clear out the shortcuts. */
1490 chain->n_reloads = 0;
1491 chain->need_elim = 0;
1492 chain->need_reload = 0;
1493 chain->need_operand_change = 0;
1495 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1496 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1497 what effects this has on the known offsets at labels. */
1499 if (LABEL_P (insn) || JUMP_P (insn)
1500 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1501 set_label_offsets (insn, insn, 0);
1503 if (INSN_P (insn))
1505 rtx old_body = PATTERN (insn);
1506 int old_code = INSN_CODE (insn);
1507 rtx old_notes = REG_NOTES (insn);
1508 int did_elimination = 0;
1509 int operands_changed = 0;
1510 rtx set = single_set (insn);
1512 /* Skip insns that only set an equivalence. */
1513 if (set && REG_P (SET_DEST (set))
1514 && reg_renumber[REGNO (SET_DEST (set))] < 0
1515 && (reg_equiv_constant (REGNO (SET_DEST (set)))
1516 || (reg_equiv_invariant (REGNO (SET_DEST (set)))))
1517 && reg_equiv_init (REGNO (SET_DEST (set))))
1518 continue;
1520 /* If needed, eliminate any eliminable registers. */
1521 if (num_eliminable || num_eliminable_invariants)
1522 did_elimination = eliminate_regs_in_insn (insn, 0);
1524 /* Analyze the instruction. */
1525 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1526 global, spill_reg_order);
1528 /* If a no-op set needs more than one reload, this is likely
1529 to be something that needs input address reloads. We
1530 can't get rid of this cleanly later, and it is of no use
1531 anyway, so discard it now.
1532 We only do this when expensive_optimizations is enabled,
1533 since this complements reload inheritance / output
1534 reload deletion, and it can make debugging harder. */
1535 if (flag_expensive_optimizations && n_reloads > 1)
1537 rtx set = single_set (insn);
1538 if (set
1540 ((SET_SRC (set) == SET_DEST (set)
1541 && REG_P (SET_SRC (set))
1542 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1543 || (REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))
1544 && reg_renumber[REGNO (SET_SRC (set))] < 0
1545 && reg_renumber[REGNO (SET_DEST (set))] < 0
1546 && reg_equiv_memory_loc (REGNO (SET_SRC (set))) != NULL
1547 && reg_equiv_memory_loc (REGNO (SET_DEST (set))) != NULL
1548 && rtx_equal_p (reg_equiv_memory_loc (REGNO (SET_SRC (set))),
1549 reg_equiv_memory_loc (REGNO (SET_DEST (set)))))))
1551 if (ira_conflicts_p)
1552 /* Inform IRA about the insn deletion. */
1553 ira_mark_memory_move_deletion (REGNO (SET_DEST (set)),
1554 REGNO (SET_SRC (set)));
1555 delete_insn (insn);
1556 /* Delete it from the reload chain. */
1557 if (chain->prev)
1558 chain->prev->next = next;
1559 else
1560 reload_insn_chain = next;
1561 if (next)
1562 next->prev = chain->prev;
1563 chain->next = unused_insn_chains;
1564 unused_insn_chains = chain;
1565 continue;
1568 if (num_eliminable)
1569 update_eliminable_offsets ();
1571 /* Remember for later shortcuts which insns had any reloads or
1572 register eliminations. */
1573 chain->need_elim = did_elimination;
1574 chain->need_reload = n_reloads > 0;
1575 chain->need_operand_change = operands_changed;
1577 /* Discard any register replacements done. */
1578 if (did_elimination)
1580 obstack_free (&reload_obstack, reload_insn_firstobj);
1581 PATTERN (insn) = old_body;
1582 INSN_CODE (insn) = old_code;
1583 REG_NOTES (insn) = old_notes;
1584 something_needs_elimination = 1;
1587 something_needs_operands_changed |= operands_changed;
1589 if (n_reloads != 0)
1591 copy_reloads (chain);
1592 *pprev_reload = chain;
1593 pprev_reload = &chain->next_need_reload;
1597 *pprev_reload = 0;
1600 /* This function is called from the register allocator to set up estimates
1601 for the cost of eliminating pseudos which have REG_EQUIV equivalences to
1602 an invariant. The structure is similar to calculate_needs_all_insns. */
1604 void
1605 calculate_elim_costs_all_insns (void)
1607 int *reg_equiv_init_cost;
1608 basic_block bb;
1609 int i;
1611 reg_equiv_init_cost = XCNEWVEC (int, max_regno);
1612 init_elim_table ();
1613 init_eliminable_invariants (get_insns (), false);
1615 set_initial_elim_offsets ();
1616 set_initial_label_offsets ();
1618 FOR_EACH_BB (bb)
1620 rtx insn;
1621 elim_bb = bb;
1623 FOR_BB_INSNS (bb, insn)
1625 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1626 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1627 what effects this has on the known offsets at labels. */
1629 if (LABEL_P (insn) || JUMP_P (insn)
1630 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1631 set_label_offsets (insn, insn, 0);
1633 if (INSN_P (insn))
1635 rtx set = single_set (insn);
1637 /* Skip insns that only set an equivalence. */
1638 if (set && REG_P (SET_DEST (set))
1639 && reg_renumber[REGNO (SET_DEST (set))] < 0
1640 && (reg_equiv_constant (REGNO (SET_DEST (set)))
1641 || reg_equiv_invariant (REGNO (SET_DEST (set)))))
1643 unsigned regno = REGNO (SET_DEST (set));
1644 rtx init = reg_equiv_init (regno);
1645 if (init)
1647 rtx t = eliminate_regs_1 (SET_SRC (set), VOIDmode, insn,
1648 false, true);
1649 int cost = rtx_cost (t, SET,
1650 optimize_bb_for_speed_p (bb));
1651 int freq = REG_FREQ_FROM_BB (bb);
1653 reg_equiv_init_cost[regno] = cost * freq;
1654 continue;
1657 /* If needed, eliminate any eliminable registers. */
1658 if (num_eliminable || num_eliminable_invariants)
1659 elimination_costs_in_insn (insn);
1661 if (num_eliminable)
1662 update_eliminable_offsets ();
1666 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1668 if (reg_equiv_invariant (i))
1670 if (reg_equiv_init (i))
1672 int cost = reg_equiv_init_cost[i];
1673 if (dump_file)
1674 fprintf (dump_file,
1675 "Reg %d has equivalence, initial gains %d\n", i, cost);
1676 if (cost != 0)
1677 ira_adjust_equiv_reg_cost (i, cost);
1679 else
1681 if (dump_file)
1682 fprintf (dump_file,
1683 "Reg %d had equivalence, but can't be eliminated\n",
1685 ira_adjust_equiv_reg_cost (i, 0);
1690 free (reg_equiv_init_cost);
1693 /* Comparison function for qsort to decide which of two reloads
1694 should be handled first. *P1 and *P2 are the reload numbers. */
1696 static int
1697 reload_reg_class_lower (const void *r1p, const void *r2p)
1699 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1700 int t;
1702 /* Consider required reloads before optional ones. */
1703 t = rld[r1].optional - rld[r2].optional;
1704 if (t != 0)
1705 return t;
1707 /* Count all solitary classes before non-solitary ones. */
1708 t = ((reg_class_size[(int) rld[r2].rclass] == 1)
1709 - (reg_class_size[(int) rld[r1].rclass] == 1));
1710 if (t != 0)
1711 return t;
1713 /* Aside from solitaires, consider all multi-reg groups first. */
1714 t = rld[r2].nregs - rld[r1].nregs;
1715 if (t != 0)
1716 return t;
1718 /* Consider reloads in order of increasing reg-class number. */
1719 t = (int) rld[r1].rclass - (int) rld[r2].rclass;
1720 if (t != 0)
1721 return t;
1723 /* If reloads are equally urgent, sort by reload number,
1724 so that the results of qsort leave nothing to chance. */
1725 return r1 - r2;
1728 /* The cost of spilling each hard reg. */
1729 static int spill_cost[FIRST_PSEUDO_REGISTER];
1731 /* When spilling multiple hard registers, we use SPILL_COST for the first
1732 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1733 only the first hard reg for a multi-reg pseudo. */
1734 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1736 /* Map of hard regno to pseudo regno currently occupying the hard
1737 reg. */
1738 static int hard_regno_to_pseudo_regno[FIRST_PSEUDO_REGISTER];
1740 /* Update the spill cost arrays, considering that pseudo REG is live. */
1742 static void
1743 count_pseudo (int reg)
1745 int freq = REG_FREQ (reg);
1746 int r = reg_renumber[reg];
1747 int nregs;
1749 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1750 || REGNO_REG_SET_P (&spilled_pseudos, reg)
1751 /* Ignore spilled pseudo-registers which can be here only if IRA
1752 is used. */
1753 || (ira_conflicts_p && r < 0))
1754 return;
1756 SET_REGNO_REG_SET (&pseudos_counted, reg);
1758 gcc_assert (r >= 0);
1760 spill_add_cost[r] += freq;
1761 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1762 while (nregs-- > 0)
1764 hard_regno_to_pseudo_regno[r + nregs] = reg;
1765 spill_cost[r + nregs] += freq;
1769 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1770 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1772 static void
1773 order_regs_for_reload (struct insn_chain *chain)
1775 unsigned i;
1776 HARD_REG_SET used_by_pseudos;
1777 HARD_REG_SET used_by_pseudos2;
1778 reg_set_iterator rsi;
1780 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1782 memset (spill_cost, 0, sizeof spill_cost);
1783 memset (spill_add_cost, 0, sizeof spill_add_cost);
1784 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1785 hard_regno_to_pseudo_regno[i] = -1;
1787 /* Count number of uses of each hard reg by pseudo regs allocated to it
1788 and then order them by decreasing use. First exclude hard registers
1789 that are live in or across this insn. */
1791 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1792 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1793 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1794 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1796 /* Now find out which pseudos are allocated to it, and update
1797 hard_reg_n_uses. */
1798 CLEAR_REG_SET (&pseudos_counted);
1800 EXECUTE_IF_SET_IN_REG_SET
1801 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1803 count_pseudo (i);
1805 EXECUTE_IF_SET_IN_REG_SET
1806 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1808 count_pseudo (i);
1810 CLEAR_REG_SET (&pseudos_counted);
1813 /* Vector of reload-numbers showing the order in which the reloads should
1814 be processed. */
1815 static short reload_order[MAX_RELOADS];
1817 /* This is used to keep track of the spill regs used in one insn. */
1818 static HARD_REG_SET used_spill_regs_local;
1820 /* We decided to spill hard register SPILLED, which has a size of
1821 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1822 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1823 update SPILL_COST/SPILL_ADD_COST. */
1825 static void
1826 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1828 int freq = REG_FREQ (reg);
1829 int r = reg_renumber[reg];
1830 int nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1832 /* Ignore spilled pseudo-registers which can be here only if IRA is
1833 used. */
1834 if ((ira_conflicts_p && r < 0)
1835 || REGNO_REG_SET_P (&spilled_pseudos, reg)
1836 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1837 return;
1839 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1841 spill_add_cost[r] -= freq;
1842 while (nregs-- > 0)
1844 hard_regno_to_pseudo_regno[r + nregs] = -1;
1845 spill_cost[r + nregs] -= freq;
1849 /* Find reload register to use for reload number ORDER. */
1851 static int
1852 find_reg (struct insn_chain *chain, int order)
1854 int rnum = reload_order[order];
1855 struct reload *rl = rld + rnum;
1856 int best_cost = INT_MAX;
1857 int best_reg = -1;
1858 unsigned int i, j, n;
1859 int k;
1860 HARD_REG_SET not_usable;
1861 HARD_REG_SET used_by_other_reload;
1862 reg_set_iterator rsi;
1863 static int regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1864 static int best_regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1866 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1867 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1868 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->rclass]);
1870 CLEAR_HARD_REG_SET (used_by_other_reload);
1871 for (k = 0; k < order; k++)
1873 int other = reload_order[k];
1875 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1876 for (j = 0; j < rld[other].nregs; j++)
1877 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1880 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1882 #ifdef REG_ALLOC_ORDER
1883 unsigned int regno = reg_alloc_order[i];
1884 #else
1885 unsigned int regno = i;
1886 #endif
1888 if (! TEST_HARD_REG_BIT (not_usable, regno)
1889 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1890 && HARD_REGNO_MODE_OK (regno, rl->mode))
1892 int this_cost = spill_cost[regno];
1893 int ok = 1;
1894 unsigned int this_nregs = hard_regno_nregs[regno][rl->mode];
1896 for (j = 1; j < this_nregs; j++)
1898 this_cost += spill_add_cost[regno + j];
1899 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1900 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1901 ok = 0;
1903 if (! ok)
1904 continue;
1906 if (ira_conflicts_p)
1908 /* Ask IRA to find a better pseudo-register for
1909 spilling. */
1910 for (n = j = 0; j < this_nregs; j++)
1912 int r = hard_regno_to_pseudo_regno[regno + j];
1914 if (r < 0)
1915 continue;
1916 if (n == 0 || regno_pseudo_regs[n - 1] != r)
1917 regno_pseudo_regs[n++] = r;
1919 regno_pseudo_regs[n++] = -1;
1920 if (best_reg < 0
1921 || ira_better_spill_reload_regno_p (regno_pseudo_regs,
1922 best_regno_pseudo_regs,
1923 rl->in, rl->out,
1924 chain->insn))
1926 best_reg = regno;
1927 for (j = 0;; j++)
1929 best_regno_pseudo_regs[j] = regno_pseudo_regs[j];
1930 if (regno_pseudo_regs[j] < 0)
1931 break;
1934 continue;
1937 if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1938 this_cost--;
1939 if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1940 this_cost--;
1941 if (this_cost < best_cost
1942 /* Among registers with equal cost, prefer caller-saved ones, or
1943 use REG_ALLOC_ORDER if it is defined. */
1944 || (this_cost == best_cost
1945 #ifdef REG_ALLOC_ORDER
1946 && (inv_reg_alloc_order[regno]
1947 < inv_reg_alloc_order[best_reg])
1948 #else
1949 && call_used_regs[regno]
1950 && ! call_used_regs[best_reg]
1951 #endif
1954 best_reg = regno;
1955 best_cost = this_cost;
1959 if (best_reg == -1)
1960 return 0;
1962 if (dump_file)
1963 fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1965 rl->nregs = hard_regno_nregs[best_reg][rl->mode];
1966 rl->regno = best_reg;
1968 EXECUTE_IF_SET_IN_REG_SET
1969 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1971 count_spilled_pseudo (best_reg, rl->nregs, j);
1974 EXECUTE_IF_SET_IN_REG_SET
1975 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
1977 count_spilled_pseudo (best_reg, rl->nregs, j);
1980 for (i = 0; i < rl->nregs; i++)
1982 gcc_assert (spill_cost[best_reg + i] == 0);
1983 gcc_assert (spill_add_cost[best_reg + i] == 0);
1984 gcc_assert (hard_regno_to_pseudo_regno[best_reg + i] == -1);
1985 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1987 return 1;
1990 /* Find more reload regs to satisfy the remaining need of an insn, which
1991 is given by CHAIN.
1992 Do it by ascending class number, since otherwise a reg
1993 might be spilled for a big class and might fail to count
1994 for a smaller class even though it belongs to that class. */
1996 static void
1997 find_reload_regs (struct insn_chain *chain)
1999 int i;
2001 /* In order to be certain of getting the registers we need,
2002 we must sort the reloads into order of increasing register class.
2003 Then our grabbing of reload registers will parallel the process
2004 that provided the reload registers. */
2005 for (i = 0; i < chain->n_reloads; i++)
2007 /* Show whether this reload already has a hard reg. */
2008 if (chain->rld[i].reg_rtx)
2010 int regno = REGNO (chain->rld[i].reg_rtx);
2011 chain->rld[i].regno = regno;
2012 chain->rld[i].nregs
2013 = hard_regno_nregs[regno][GET_MODE (chain->rld[i].reg_rtx)];
2015 else
2016 chain->rld[i].regno = -1;
2017 reload_order[i] = i;
2020 n_reloads = chain->n_reloads;
2021 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
2023 CLEAR_HARD_REG_SET (used_spill_regs_local);
2025 if (dump_file)
2026 fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
2028 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
2030 /* Compute the order of preference for hard registers to spill. */
2032 order_regs_for_reload (chain);
2034 for (i = 0; i < n_reloads; i++)
2036 int r = reload_order[i];
2038 /* Ignore reloads that got marked inoperative. */
2039 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
2040 && ! rld[r].optional
2041 && rld[r].regno == -1)
2042 if (! find_reg (chain, i))
2044 if (dump_file)
2045 fprintf (dump_file, "reload failure for reload %d\n", r);
2046 spill_failure (chain->insn, rld[r].rclass);
2047 failure = 1;
2048 return;
2052 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
2053 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
2055 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
2058 static void
2059 select_reload_regs (void)
2061 struct insn_chain *chain;
2063 /* Try to satisfy the needs for each insn. */
2064 for (chain = insns_need_reload; chain != 0;
2065 chain = chain->next_need_reload)
2066 find_reload_regs (chain);
2069 /* Delete all insns that were inserted by emit_caller_save_insns during
2070 this iteration. */
2071 static void
2072 delete_caller_save_insns (void)
2074 struct insn_chain *c = reload_insn_chain;
2076 while (c != 0)
2078 while (c != 0 && c->is_caller_save_insn)
2080 struct insn_chain *next = c->next;
2081 rtx insn = c->insn;
2083 if (c == reload_insn_chain)
2084 reload_insn_chain = next;
2085 delete_insn (insn);
2087 if (next)
2088 next->prev = c->prev;
2089 if (c->prev)
2090 c->prev->next = next;
2091 c->next = unused_insn_chains;
2092 unused_insn_chains = c;
2093 c = next;
2095 if (c != 0)
2096 c = c->next;
2100 /* Handle the failure to find a register to spill.
2101 INSN should be one of the insns which needed this particular spill reg. */
2103 static void
2104 spill_failure (rtx insn, enum reg_class rclass)
2106 if (asm_noperands (PATTERN (insn)) >= 0)
2107 error_for_asm (insn, "can%'t find a register in class %qs while "
2108 "reloading %<asm%>",
2109 reg_class_names[rclass]);
2110 else
2112 error ("unable to find a register to spill in class %qs",
2113 reg_class_names[rclass]);
2115 if (dump_file)
2117 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
2118 debug_reload_to_stream (dump_file);
2120 fatal_insn ("this is the insn:", insn);
2124 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
2125 data that is dead in INSN. */
2127 static void
2128 delete_dead_insn (rtx insn)
2130 rtx prev = prev_active_insn (insn);
2131 rtx prev_dest;
2133 /* If the previous insn sets a register that dies in our insn make
2134 a note that we want to run DCE immediately after reload.
2136 We used to delete the previous insn & recurse, but that's wrong for
2137 block local equivalences. Instead of trying to figure out the exact
2138 circumstances where we can delete the potentially dead insns, just
2139 let DCE do the job. */
2140 if (prev && GET_CODE (PATTERN (prev)) == SET
2141 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
2142 && reg_mentioned_p (prev_dest, PATTERN (insn))
2143 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
2144 && ! side_effects_p (SET_SRC (PATTERN (prev))))
2145 need_dce = 1;
2147 SET_INSN_DELETED (insn);
2150 /* Modify the home of pseudo-reg I.
2151 The new home is present in reg_renumber[I].
2153 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
2154 or it may be -1, meaning there is none or it is not relevant.
2155 This is used so that all pseudos spilled from a given hard reg
2156 can share one stack slot. */
2158 static void
2159 alter_reg (int i, int from_reg, bool dont_share_p)
2161 /* When outputting an inline function, this can happen
2162 for a reg that isn't actually used. */
2163 if (regno_reg_rtx[i] == 0)
2164 return;
2166 /* If the reg got changed to a MEM at rtl-generation time,
2167 ignore it. */
2168 if (!REG_P (regno_reg_rtx[i]))
2169 return;
2171 /* Modify the reg-rtx to contain the new hard reg
2172 number or else to contain its pseudo reg number. */
2173 SET_REGNO (regno_reg_rtx[i],
2174 reg_renumber[i] >= 0 ? reg_renumber[i] : i);
2176 /* If we have a pseudo that is needed but has no hard reg or equivalent,
2177 allocate a stack slot for it. */
2179 if (reg_renumber[i] < 0
2180 && REG_N_REFS (i) > 0
2181 && reg_equiv_constant (i) == 0
2182 && (reg_equiv_invariant (i) == 0
2183 || reg_equiv_init (i) == 0)
2184 && reg_equiv_memory_loc (i) == 0)
2186 rtx x = NULL_RTX;
2187 enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2188 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
2189 unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
2190 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
2191 unsigned int min_align = reg_max_ref_width[i] * BITS_PER_UNIT;
2192 int adjust = 0;
2194 something_was_spilled = true;
2196 if (ira_conflicts_p)
2198 /* Mark the spill for IRA. */
2199 SET_REGNO_REG_SET (&spilled_pseudos, i);
2200 if (!dont_share_p)
2201 x = ira_reuse_stack_slot (i, inherent_size, total_size);
2204 if (x)
2207 /* Each pseudo reg has an inherent size which comes from its own mode,
2208 and a total size which provides room for paradoxical subregs
2209 which refer to the pseudo reg in wider modes.
2211 We can use a slot already allocated if it provides both
2212 enough inherent space and enough total space.
2213 Otherwise, we allocate a new slot, making sure that it has no less
2214 inherent space, and no less total space, then the previous slot. */
2215 else if (from_reg == -1 || (!dont_share_p && ira_conflicts_p))
2217 rtx stack_slot;
2219 /* No known place to spill from => no slot to reuse. */
2220 x = assign_stack_local (mode, total_size,
2221 min_align > inherent_align
2222 || total_size > inherent_size ? -1 : 0);
2224 stack_slot = x;
2226 /* Cancel the big-endian correction done in assign_stack_local.
2227 Get the address of the beginning of the slot. This is so we
2228 can do a big-endian correction unconditionally below. */
2229 if (BYTES_BIG_ENDIAN)
2231 adjust = inherent_size - total_size;
2232 if (adjust)
2233 stack_slot
2234 = adjust_address_nv (x, mode_for_size (total_size
2235 * BITS_PER_UNIT,
2236 MODE_INT, 1),
2237 adjust);
2240 if (! dont_share_p && ira_conflicts_p)
2241 /* Inform IRA about allocation a new stack slot. */
2242 ira_mark_new_stack_slot (stack_slot, i, total_size);
2245 /* Reuse a stack slot if possible. */
2246 else if (spill_stack_slot[from_reg] != 0
2247 && spill_stack_slot_width[from_reg] >= total_size
2248 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2249 >= inherent_size)
2250 && MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
2251 x = spill_stack_slot[from_reg];
2253 /* Allocate a bigger slot. */
2254 else
2256 /* Compute maximum size needed, both for inherent size
2257 and for total size. */
2258 rtx stack_slot;
2260 if (spill_stack_slot[from_reg])
2262 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2263 > inherent_size)
2264 mode = GET_MODE (spill_stack_slot[from_reg]);
2265 if (spill_stack_slot_width[from_reg] > total_size)
2266 total_size = spill_stack_slot_width[from_reg];
2267 if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
2268 min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
2271 /* Make a slot with that size. */
2272 x = assign_stack_local (mode, total_size,
2273 min_align > inherent_align
2274 || total_size > inherent_size ? -1 : 0);
2275 stack_slot = x;
2277 /* Cancel the big-endian correction done in assign_stack_local.
2278 Get the address of the beginning of the slot. This is so we
2279 can do a big-endian correction unconditionally below. */
2280 if (BYTES_BIG_ENDIAN)
2282 adjust = GET_MODE_SIZE (mode) - total_size;
2283 if (adjust)
2284 stack_slot
2285 = adjust_address_nv (x, mode_for_size (total_size
2286 * BITS_PER_UNIT,
2287 MODE_INT, 1),
2288 adjust);
2291 spill_stack_slot[from_reg] = stack_slot;
2292 spill_stack_slot_width[from_reg] = total_size;
2295 /* On a big endian machine, the "address" of the slot
2296 is the address of the low part that fits its inherent mode. */
2297 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2298 adjust += (total_size - inherent_size);
2300 /* If we have any adjustment to make, or if the stack slot is the
2301 wrong mode, make a new stack slot. */
2302 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2304 /* Set all of the memory attributes as appropriate for a spill. */
2305 set_mem_attrs_for_spill (x);
2307 /* Save the stack slot for later. */
2308 reg_equiv_memory_loc (i) = x;
2312 /* Mark the slots in regs_ever_live for the hard regs used by
2313 pseudo-reg number REGNO, accessed in MODE. */
2315 static void
2316 mark_home_live_1 (int regno, enum machine_mode mode)
2318 int i, lim;
2320 i = reg_renumber[regno];
2321 if (i < 0)
2322 return;
2323 lim = end_hard_regno (mode, i);
2324 while (i < lim)
2325 df_set_regs_ever_live(i++, true);
2328 /* Mark the slots in regs_ever_live for the hard regs
2329 used by pseudo-reg number REGNO. */
2331 void
2332 mark_home_live (int regno)
2334 if (reg_renumber[regno] >= 0)
2335 mark_home_live_1 (regno, PSEUDO_REGNO_MODE (regno));
2338 /* This function handles the tracking of elimination offsets around branches.
2340 X is a piece of RTL being scanned.
2342 INSN is the insn that it came from, if any.
2344 INITIAL_P is nonzero if we are to set the offset to be the initial
2345 offset and zero if we are setting the offset of the label to be the
2346 current offset. */
2348 static void
2349 set_label_offsets (rtx x, rtx insn, int initial_p)
2351 enum rtx_code code = GET_CODE (x);
2352 rtx tem;
2353 unsigned int i;
2354 struct elim_table *p;
2356 switch (code)
2358 case LABEL_REF:
2359 if (LABEL_REF_NONLOCAL_P (x))
2360 return;
2362 x = XEXP (x, 0);
2364 /* ... fall through ... */
2366 case CODE_LABEL:
2367 /* If we know nothing about this label, set the desired offsets. Note
2368 that this sets the offset at a label to be the offset before a label
2369 if we don't know anything about the label. This is not correct for
2370 the label after a BARRIER, but is the best guess we can make. If
2371 we guessed wrong, we will suppress an elimination that might have
2372 been possible had we been able to guess correctly. */
2374 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2376 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2377 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2378 = (initial_p ? reg_eliminate[i].initial_offset
2379 : reg_eliminate[i].offset);
2380 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2383 /* Otherwise, if this is the definition of a label and it is
2384 preceded by a BARRIER, set our offsets to the known offset of
2385 that label. */
2387 else if (x == insn
2388 && (tem = prev_nonnote_insn (insn)) != 0
2389 && BARRIER_P (tem))
2390 set_offsets_for_label (insn);
2391 else
2392 /* If neither of the above cases is true, compare each offset
2393 with those previously recorded and suppress any eliminations
2394 where the offsets disagree. */
2396 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2397 if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2398 != (initial_p ? reg_eliminate[i].initial_offset
2399 : reg_eliminate[i].offset))
2400 reg_eliminate[i].can_eliminate = 0;
2402 return;
2404 case JUMP_INSN:
2405 set_label_offsets (PATTERN (insn), insn, initial_p);
2407 /* ... fall through ... */
2409 case INSN:
2410 case CALL_INSN:
2411 /* Any labels mentioned in REG_LABEL_OPERAND notes can be branched
2412 to indirectly and hence must have all eliminations at their
2413 initial offsets. */
2414 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2415 if (REG_NOTE_KIND (tem) == REG_LABEL_OPERAND)
2416 set_label_offsets (XEXP (tem, 0), insn, 1);
2417 return;
2419 case PARALLEL:
2420 case ADDR_VEC:
2421 case ADDR_DIFF_VEC:
2422 /* Each of the labels in the parallel or address vector must be
2423 at their initial offsets. We want the first field for PARALLEL
2424 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2426 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2427 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2428 insn, initial_p);
2429 return;
2431 case SET:
2432 /* We only care about setting PC. If the source is not RETURN,
2433 IF_THEN_ELSE, or a label, disable any eliminations not at
2434 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2435 isn't one of those possibilities. For branches to a label,
2436 call ourselves recursively.
2438 Note that this can disable elimination unnecessarily when we have
2439 a non-local goto since it will look like a non-constant jump to
2440 someplace in the current function. This isn't a significant
2441 problem since such jumps will normally be when all elimination
2442 pairs are back to their initial offsets. */
2444 if (SET_DEST (x) != pc_rtx)
2445 return;
2447 switch (GET_CODE (SET_SRC (x)))
2449 case PC:
2450 case RETURN:
2451 return;
2453 case LABEL_REF:
2454 set_label_offsets (SET_SRC (x), insn, initial_p);
2455 return;
2457 case IF_THEN_ELSE:
2458 tem = XEXP (SET_SRC (x), 1);
2459 if (GET_CODE (tem) == LABEL_REF)
2460 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2461 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2462 break;
2464 tem = XEXP (SET_SRC (x), 2);
2465 if (GET_CODE (tem) == LABEL_REF)
2466 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2467 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2468 break;
2469 return;
2471 default:
2472 break;
2475 /* If we reach here, all eliminations must be at their initial
2476 offset because we are doing a jump to a variable address. */
2477 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2478 if (p->offset != p->initial_offset)
2479 p->can_eliminate = 0;
2480 break;
2482 default:
2483 break;
2487 /* Called through for_each_rtx, this function examines every reg that occurs
2488 in PX and adjusts the costs for its elimination which are gathered by IRA.
2489 DATA is the insn in which PX occurs. We do not recurse into MEM
2490 expressions. */
2492 static int
2493 note_reg_elim_costly (rtx *px, void *data)
2495 rtx insn = (rtx)data;
2496 rtx x = *px;
2498 if (MEM_P (x))
2499 return -1;
2501 if (REG_P (x)
2502 && REGNO (x) >= FIRST_PSEUDO_REGISTER
2503 && reg_equiv_init (REGNO (x))
2504 && reg_equiv_invariant (REGNO (x)))
2506 rtx t = reg_equiv_invariant (REGNO (x));
2507 rtx new_rtx = eliminate_regs_1 (t, Pmode, insn, true, true);
2508 int cost = rtx_cost (new_rtx, SET, optimize_bb_for_speed_p (elim_bb));
2509 int freq = REG_FREQ_FROM_BB (elim_bb);
2511 if (cost != 0)
2512 ira_adjust_equiv_reg_cost (REGNO (x), -cost * freq);
2514 return 0;
2517 /* Scan X and replace any eliminable registers (such as fp) with a
2518 replacement (such as sp), plus an offset.
2520 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2521 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2522 MEM, we are allowed to replace a sum of a register and the constant zero
2523 with the register, which we cannot do outside a MEM. In addition, we need
2524 to record the fact that a register is referenced outside a MEM.
2526 If INSN is an insn, it is the insn containing X. If we replace a REG
2527 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2528 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2529 the REG is being modified.
2531 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2532 That's used when we eliminate in expressions stored in notes.
2533 This means, do not set ref_outside_mem even if the reference
2534 is outside of MEMs.
2536 If FOR_COSTS is true, we are being called before reload in order to
2537 estimate the costs of keeping registers with an equivalence unallocated.
2539 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2540 replacements done assuming all offsets are at their initial values. If
2541 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2542 encounter, return the actual location so that find_reloads will do
2543 the proper thing. */
2545 static rtx
2546 eliminate_regs_1 (rtx x, enum machine_mode mem_mode, rtx insn,
2547 bool may_use_invariant, bool for_costs)
2549 enum rtx_code code = GET_CODE (x);
2550 struct elim_table *ep;
2551 int regno;
2552 rtx new_rtx;
2553 int i, j;
2554 const char *fmt;
2555 int copied = 0;
2557 if (! current_function_decl)
2558 return x;
2560 switch (code)
2562 case CONST_INT:
2563 case CONST_DOUBLE:
2564 case CONST_FIXED:
2565 case CONST_VECTOR:
2566 case CONST:
2567 case SYMBOL_REF:
2568 case CODE_LABEL:
2569 case PC:
2570 case CC0:
2571 case ASM_INPUT:
2572 case ADDR_VEC:
2573 case ADDR_DIFF_VEC:
2574 case RETURN:
2575 return x;
2577 case REG:
2578 regno = REGNO (x);
2580 /* First handle the case where we encounter a bare register that
2581 is eliminable. Replace it with a PLUS. */
2582 if (regno < FIRST_PSEUDO_REGISTER)
2584 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2585 ep++)
2586 if (ep->from_rtx == x && ep->can_eliminate)
2587 return plus_constant (ep->to_rtx, ep->previous_offset);
2590 else if (reg_renumber && reg_renumber[regno] < 0
2591 && reg_equivs
2592 && reg_equiv_invariant (regno))
2594 if (may_use_invariant || (insn && DEBUG_INSN_P (insn)))
2595 return eliminate_regs_1 (copy_rtx (reg_equiv_invariant (regno)),
2596 mem_mode, insn, true, for_costs);
2597 /* There exists at least one use of REGNO that cannot be
2598 eliminated. Prevent the defining insn from being deleted. */
2599 reg_equiv_init (regno) = NULL_RTX;
2600 if (!for_costs)
2601 alter_reg (regno, -1, true);
2603 return x;
2605 /* You might think handling MINUS in a manner similar to PLUS is a
2606 good idea. It is not. It has been tried multiple times and every
2607 time the change has had to have been reverted.
2609 Other parts of reload know a PLUS is special (gen_reload for example)
2610 and require special code to handle code a reloaded PLUS operand.
2612 Also consider backends where the flags register is clobbered by a
2613 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2614 lea instruction comes to mind). If we try to reload a MINUS, we
2615 may kill the flags register that was holding a useful value.
2617 So, please before trying to handle MINUS, consider reload as a
2618 whole instead of this little section as well as the backend issues. */
2619 case PLUS:
2620 /* If this is the sum of an eliminable register and a constant, rework
2621 the sum. */
2622 if (REG_P (XEXP (x, 0))
2623 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2624 && CONSTANT_P (XEXP (x, 1)))
2626 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2627 ep++)
2628 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2630 /* The only time we want to replace a PLUS with a REG (this
2631 occurs when the constant operand of the PLUS is the negative
2632 of the offset) is when we are inside a MEM. We won't want
2633 to do so at other times because that would change the
2634 structure of the insn in a way that reload can't handle.
2635 We special-case the commonest situation in
2636 eliminate_regs_in_insn, so just replace a PLUS with a
2637 PLUS here, unless inside a MEM. */
2638 if (mem_mode != 0 && CONST_INT_P (XEXP (x, 1))
2639 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2640 return ep->to_rtx;
2641 else
2642 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2643 plus_constant (XEXP (x, 1),
2644 ep->previous_offset));
2647 /* If the register is not eliminable, we are done since the other
2648 operand is a constant. */
2649 return x;
2652 /* If this is part of an address, we want to bring any constant to the
2653 outermost PLUS. We will do this by doing register replacement in
2654 our operands and seeing if a constant shows up in one of them.
2656 Note that there is no risk of modifying the structure of the insn,
2657 since we only get called for its operands, thus we are either
2658 modifying the address inside a MEM, or something like an address
2659 operand of a load-address insn. */
2662 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2663 for_costs);
2664 rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2665 for_costs);
2667 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2669 /* If one side is a PLUS and the other side is a pseudo that
2670 didn't get a hard register but has a reg_equiv_constant,
2671 we must replace the constant here since it may no longer
2672 be in the position of any operand. */
2673 if (GET_CODE (new0) == PLUS && REG_P (new1)
2674 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2675 && reg_renumber[REGNO (new1)] < 0
2676 && reg_equivs
2677 && reg_equiv_constant (REGNO (new1)) != 0)
2678 new1 = reg_equiv_constant (REGNO (new1));
2679 else if (GET_CODE (new1) == PLUS && REG_P (new0)
2680 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2681 && reg_renumber[REGNO (new0)] < 0
2682 && reg_equiv_constant (REGNO (new0)) != 0)
2683 new0 = reg_equiv_constant (REGNO (new0));
2685 new_rtx = form_sum (GET_MODE (x), new0, new1);
2687 /* As above, if we are not inside a MEM we do not want to
2688 turn a PLUS into something else. We might try to do so here
2689 for an addition of 0 if we aren't optimizing. */
2690 if (! mem_mode && GET_CODE (new_rtx) != PLUS)
2691 return gen_rtx_PLUS (GET_MODE (x), new_rtx, const0_rtx);
2692 else
2693 return new_rtx;
2696 return x;
2698 case MULT:
2699 /* If this is the product of an eliminable register and a
2700 constant, apply the distribute law and move the constant out
2701 so that we have (plus (mult ..) ..). This is needed in order
2702 to keep load-address insns valid. This case is pathological.
2703 We ignore the possibility of overflow here. */
2704 if (REG_P (XEXP (x, 0))
2705 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2706 && CONST_INT_P (XEXP (x, 1)))
2707 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2708 ep++)
2709 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2711 if (! mem_mode
2712 /* Refs inside notes or in DEBUG_INSNs don't count for
2713 this purpose. */
2714 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2715 || GET_CODE (insn) == INSN_LIST
2716 || DEBUG_INSN_P (insn))))
2717 ep->ref_outside_mem = 1;
2719 return
2720 plus_constant (gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2721 ep->previous_offset * INTVAL (XEXP (x, 1)));
2724 /* ... fall through ... */
2726 case CALL:
2727 case COMPARE:
2728 /* See comments before PLUS about handling MINUS. */
2729 case MINUS:
2730 case DIV: case UDIV:
2731 case MOD: case UMOD:
2732 case AND: case IOR: case XOR:
2733 case ROTATERT: case ROTATE:
2734 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2735 case NE: case EQ:
2736 case GE: case GT: case GEU: case GTU:
2737 case LE: case LT: case LEU: case LTU:
2739 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2740 for_costs);
2741 rtx new1 = XEXP (x, 1)
2742 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false,
2743 for_costs) : 0;
2745 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2746 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2748 return x;
2750 case EXPR_LIST:
2751 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2752 if (XEXP (x, 0))
2754 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2755 for_costs);
2756 if (new_rtx != XEXP (x, 0))
2758 /* If this is a REG_DEAD note, it is not valid anymore.
2759 Using the eliminated version could result in creating a
2760 REG_DEAD note for the stack or frame pointer. */
2761 if (REG_NOTE_KIND (x) == REG_DEAD)
2762 return (XEXP (x, 1)
2763 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2764 for_costs)
2765 : NULL_RTX);
2767 x = alloc_reg_note (REG_NOTE_KIND (x), new_rtx, XEXP (x, 1));
2771 /* ... fall through ... */
2773 case INSN_LIST:
2774 /* Now do eliminations in the rest of the chain. If this was
2775 an EXPR_LIST, this might result in allocating more memory than is
2776 strictly needed, but it simplifies the code. */
2777 if (XEXP (x, 1))
2779 new_rtx = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2780 for_costs);
2781 if (new_rtx != XEXP (x, 1))
2782 return
2783 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new_rtx);
2785 return x;
2787 case PRE_INC:
2788 case POST_INC:
2789 case PRE_DEC:
2790 case POST_DEC:
2791 /* We do not support elimination of a register that is modified.
2792 elimination_effects has already make sure that this does not
2793 happen. */
2794 return x;
2796 case PRE_MODIFY:
2797 case POST_MODIFY:
2798 /* We do not support elimination of a register that is modified.
2799 elimination_effects has already make sure that this does not
2800 happen. The only remaining case we need to consider here is
2801 that the increment value may be an eliminable register. */
2802 if (GET_CODE (XEXP (x, 1)) == PLUS
2803 && XEXP (XEXP (x, 1), 0) == XEXP (x, 0))
2805 rtx new_rtx = eliminate_regs_1 (XEXP (XEXP (x, 1), 1), mem_mode,
2806 insn, true, for_costs);
2808 if (new_rtx != XEXP (XEXP (x, 1), 1))
2809 return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0),
2810 gen_rtx_PLUS (GET_MODE (x),
2811 XEXP (x, 0), new_rtx));
2813 return x;
2815 case STRICT_LOW_PART:
2816 case NEG: case NOT:
2817 case SIGN_EXTEND: case ZERO_EXTEND:
2818 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2819 case FLOAT: case FIX:
2820 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2821 case ABS:
2822 case SQRT:
2823 case FFS:
2824 case CLZ:
2825 case CTZ:
2826 case POPCOUNT:
2827 case PARITY:
2828 case BSWAP:
2829 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2830 for_costs);
2831 if (new_rtx != XEXP (x, 0))
2832 return gen_rtx_fmt_e (code, GET_MODE (x), new_rtx);
2833 return x;
2835 case SUBREG:
2836 /* Similar to above processing, but preserve SUBREG_BYTE.
2837 Convert (subreg (mem)) to (mem) if not paradoxical.
2838 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2839 pseudo didn't get a hard reg, we must replace this with the
2840 eliminated version of the memory location because push_reload
2841 may do the replacement in certain circumstances. */
2842 if (REG_P (SUBREG_REG (x))
2843 && !paradoxical_subreg_p (x)
2844 && reg_equivs
2845 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
2847 new_rtx = SUBREG_REG (x);
2849 else
2850 new_rtx = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false, for_costs);
2852 if (new_rtx != SUBREG_REG (x))
2854 int x_size = GET_MODE_SIZE (GET_MODE (x));
2855 int new_size = GET_MODE_SIZE (GET_MODE (new_rtx));
2857 if (MEM_P (new_rtx)
2858 && ((x_size < new_size
2859 #ifdef WORD_REGISTER_OPERATIONS
2860 /* On these machines, combine can create rtl of the form
2861 (set (subreg:m1 (reg:m2 R) 0) ...)
2862 where m1 < m2, and expects something interesting to
2863 happen to the entire word. Moreover, it will use the
2864 (reg:m2 R) later, expecting all bits to be preserved.
2865 So if the number of words is the same, preserve the
2866 subreg so that push_reload can see it. */
2867 && ! ((x_size - 1) / UNITS_PER_WORD
2868 == (new_size -1 ) / UNITS_PER_WORD)
2869 #endif
2871 || x_size == new_size)
2873 return adjust_address_nv (new_rtx, GET_MODE (x), SUBREG_BYTE (x));
2874 else
2875 return gen_rtx_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2878 return x;
2880 case MEM:
2881 /* Our only special processing is to pass the mode of the MEM to our
2882 recursive call and copy the flags. While we are here, handle this
2883 case more efficiently. */
2885 new_rtx = eliminate_regs_1 (XEXP (x, 0), GET_MODE (x), insn, true,
2886 for_costs);
2887 if (for_costs
2888 && memory_address_p (GET_MODE (x), XEXP (x, 0))
2889 && !memory_address_p (GET_MODE (x), new_rtx))
2890 for_each_rtx (&XEXP (x, 0), note_reg_elim_costly, insn);
2892 return replace_equiv_address_nv (x, new_rtx);
2894 case USE:
2895 /* Handle insn_list USE that a call to a pure function may generate. */
2896 new_rtx = eliminate_regs_1 (XEXP (x, 0), VOIDmode, insn, false,
2897 for_costs);
2898 if (new_rtx != XEXP (x, 0))
2899 return gen_rtx_USE (GET_MODE (x), new_rtx);
2900 return x;
2902 case CLOBBER:
2903 case ASM_OPERANDS:
2904 gcc_assert (insn && DEBUG_INSN_P (insn));
2905 break;
2907 case SET:
2908 gcc_unreachable ();
2910 default:
2911 break;
2914 /* Process each of our operands recursively. If any have changed, make a
2915 copy of the rtx. */
2916 fmt = GET_RTX_FORMAT (code);
2917 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2919 if (*fmt == 'e')
2921 new_rtx = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false,
2922 for_costs);
2923 if (new_rtx != XEXP (x, i) && ! copied)
2925 x = shallow_copy_rtx (x);
2926 copied = 1;
2928 XEXP (x, i) = new_rtx;
2930 else if (*fmt == 'E')
2932 int copied_vec = 0;
2933 for (j = 0; j < XVECLEN (x, i); j++)
2935 new_rtx = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false,
2936 for_costs);
2937 if (new_rtx != XVECEXP (x, i, j) && ! copied_vec)
2939 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2940 XVEC (x, i)->elem);
2941 if (! copied)
2943 x = shallow_copy_rtx (x);
2944 copied = 1;
2946 XVEC (x, i) = new_v;
2947 copied_vec = 1;
2949 XVECEXP (x, i, j) = new_rtx;
2954 return x;
2958 eliminate_regs (rtx x, enum machine_mode mem_mode, rtx insn)
2960 return eliminate_regs_1 (x, mem_mode, insn, false, false);
2963 /* Scan rtx X for modifications of elimination target registers. Update
2964 the table of eliminables to reflect the changed state. MEM_MODE is
2965 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2967 static void
2968 elimination_effects (rtx x, enum machine_mode mem_mode)
2970 enum rtx_code code = GET_CODE (x);
2971 struct elim_table *ep;
2972 int regno;
2973 int i, j;
2974 const char *fmt;
2976 switch (code)
2978 case CONST_INT:
2979 case CONST_DOUBLE:
2980 case CONST_FIXED:
2981 case CONST_VECTOR:
2982 case CONST:
2983 case SYMBOL_REF:
2984 case CODE_LABEL:
2985 case PC:
2986 case CC0:
2987 case ASM_INPUT:
2988 case ADDR_VEC:
2989 case ADDR_DIFF_VEC:
2990 case RETURN:
2991 return;
2993 case REG:
2994 regno = REGNO (x);
2996 /* First handle the case where we encounter a bare register that
2997 is eliminable. Replace it with a PLUS. */
2998 if (regno < FIRST_PSEUDO_REGISTER)
3000 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3001 ep++)
3002 if (ep->from_rtx == x && ep->can_eliminate)
3004 if (! mem_mode)
3005 ep->ref_outside_mem = 1;
3006 return;
3010 else if (reg_renumber[regno] < 0
3011 && reg_equivs != 0
3012 && reg_equiv_constant (regno)
3013 && ! function_invariant_p (reg_equiv_constant (regno)))
3014 elimination_effects (reg_equiv_constant (regno), mem_mode);
3015 return;
3017 case PRE_INC:
3018 case POST_INC:
3019 case PRE_DEC:
3020 case POST_DEC:
3021 case POST_MODIFY:
3022 case PRE_MODIFY:
3023 /* If we modify the source of an elimination rule, disable it. */
3024 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3025 if (ep->from_rtx == XEXP (x, 0))
3026 ep->can_eliminate = 0;
3028 /* If we modify the target of an elimination rule by adding a constant,
3029 update its offset. If we modify the target in any other way, we'll
3030 have to disable the rule as well. */
3031 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3032 if (ep->to_rtx == XEXP (x, 0))
3034 int size = GET_MODE_SIZE (mem_mode);
3036 /* If more bytes than MEM_MODE are pushed, account for them. */
3037 #ifdef PUSH_ROUNDING
3038 if (ep->to_rtx == stack_pointer_rtx)
3039 size = PUSH_ROUNDING (size);
3040 #endif
3041 if (code == PRE_DEC || code == POST_DEC)
3042 ep->offset += size;
3043 else if (code == PRE_INC || code == POST_INC)
3044 ep->offset -= size;
3045 else if (code == PRE_MODIFY || code == POST_MODIFY)
3047 if (GET_CODE (XEXP (x, 1)) == PLUS
3048 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
3049 && CONST_INT_P (XEXP (XEXP (x, 1), 1)))
3050 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
3051 else
3052 ep->can_eliminate = 0;
3056 /* These two aren't unary operators. */
3057 if (code == POST_MODIFY || code == PRE_MODIFY)
3058 break;
3060 /* Fall through to generic unary operation case. */
3061 case STRICT_LOW_PART:
3062 case NEG: case NOT:
3063 case SIGN_EXTEND: case ZERO_EXTEND:
3064 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3065 case FLOAT: case FIX:
3066 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3067 case ABS:
3068 case SQRT:
3069 case FFS:
3070 case CLZ:
3071 case CTZ:
3072 case POPCOUNT:
3073 case PARITY:
3074 case BSWAP:
3075 elimination_effects (XEXP (x, 0), mem_mode);
3076 return;
3078 case SUBREG:
3079 if (REG_P (SUBREG_REG (x))
3080 && (GET_MODE_SIZE (GET_MODE (x))
3081 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3082 && reg_equivs != 0
3083 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
3084 return;
3086 elimination_effects (SUBREG_REG (x), mem_mode);
3087 return;
3089 case USE:
3090 /* If using a register that is the source of an eliminate we still
3091 think can be performed, note it cannot be performed since we don't
3092 know how this register is used. */
3093 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3094 if (ep->from_rtx == XEXP (x, 0))
3095 ep->can_eliminate = 0;
3097 elimination_effects (XEXP (x, 0), mem_mode);
3098 return;
3100 case CLOBBER:
3101 /* If clobbering a register that is the replacement register for an
3102 elimination we still think can be performed, note that it cannot
3103 be performed. Otherwise, we need not be concerned about it. */
3104 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3105 if (ep->to_rtx == XEXP (x, 0))
3106 ep->can_eliminate = 0;
3108 elimination_effects (XEXP (x, 0), mem_mode);
3109 return;
3111 case SET:
3112 /* Check for setting a register that we know about. */
3113 if (REG_P (SET_DEST (x)))
3115 /* See if this is setting the replacement register for an
3116 elimination.
3118 If DEST is the hard frame pointer, we do nothing because we
3119 assume that all assignments to the frame pointer are for
3120 non-local gotos and are being done at a time when they are valid
3121 and do not disturb anything else. Some machines want to
3122 eliminate a fake argument pointer (or even a fake frame pointer)
3123 with either the real frame or the stack pointer. Assignments to
3124 the hard frame pointer must not prevent this elimination. */
3126 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3127 ep++)
3128 if (ep->to_rtx == SET_DEST (x)
3129 && SET_DEST (x) != hard_frame_pointer_rtx)
3131 /* If it is being incremented, adjust the offset. Otherwise,
3132 this elimination can't be done. */
3133 rtx src = SET_SRC (x);
3135 if (GET_CODE (src) == PLUS
3136 && XEXP (src, 0) == SET_DEST (x)
3137 && CONST_INT_P (XEXP (src, 1)))
3138 ep->offset -= INTVAL (XEXP (src, 1));
3139 else
3140 ep->can_eliminate = 0;
3144 elimination_effects (SET_DEST (x), VOIDmode);
3145 elimination_effects (SET_SRC (x), VOIDmode);
3146 return;
3148 case MEM:
3149 /* Our only special processing is to pass the mode of the MEM to our
3150 recursive call. */
3151 elimination_effects (XEXP (x, 0), GET_MODE (x));
3152 return;
3154 default:
3155 break;
3158 fmt = GET_RTX_FORMAT (code);
3159 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3161 if (*fmt == 'e')
3162 elimination_effects (XEXP (x, i), mem_mode);
3163 else if (*fmt == 'E')
3164 for (j = 0; j < XVECLEN (x, i); j++)
3165 elimination_effects (XVECEXP (x, i, j), mem_mode);
3169 /* Descend through rtx X and verify that no references to eliminable registers
3170 remain. If any do remain, mark the involved register as not
3171 eliminable. */
3173 static void
3174 check_eliminable_occurrences (rtx x)
3176 const char *fmt;
3177 int i;
3178 enum rtx_code code;
3180 if (x == 0)
3181 return;
3183 code = GET_CODE (x);
3185 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
3187 struct elim_table *ep;
3189 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3190 if (ep->from_rtx == x)
3191 ep->can_eliminate = 0;
3192 return;
3195 fmt = GET_RTX_FORMAT (code);
3196 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3198 if (*fmt == 'e')
3199 check_eliminable_occurrences (XEXP (x, i));
3200 else if (*fmt == 'E')
3202 int j;
3203 for (j = 0; j < XVECLEN (x, i); j++)
3204 check_eliminable_occurrences (XVECEXP (x, i, j));
3209 /* Scan INSN and eliminate all eliminable registers in it.
3211 If REPLACE is nonzero, do the replacement destructively. Also
3212 delete the insn as dead it if it is setting an eliminable register.
3214 If REPLACE is zero, do all our allocations in reload_obstack.
3216 If no eliminations were done and this insn doesn't require any elimination
3217 processing (these are not identical conditions: it might be updating sp,
3218 but not referencing fp; this needs to be seen during reload_as_needed so
3219 that the offset between fp and sp can be taken into consideration), zero
3220 is returned. Otherwise, 1 is returned. */
3222 static int
3223 eliminate_regs_in_insn (rtx insn, int replace)
3225 int icode = recog_memoized (insn);
3226 rtx old_body = PATTERN (insn);
3227 int insn_is_asm = asm_noperands (old_body) >= 0;
3228 rtx old_set = single_set (insn);
3229 rtx new_body;
3230 int val = 0;
3231 int i;
3232 rtx substed_operand[MAX_RECOG_OPERANDS];
3233 rtx orig_operand[MAX_RECOG_OPERANDS];
3234 struct elim_table *ep;
3235 rtx plus_src, plus_cst_src;
3237 if (! insn_is_asm && icode < 0)
3239 gcc_assert (GET_CODE (PATTERN (insn)) == USE
3240 || GET_CODE (PATTERN (insn)) == CLOBBER
3241 || GET_CODE (PATTERN (insn)) == ADDR_VEC
3242 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
3243 || GET_CODE (PATTERN (insn)) == ASM_INPUT
3244 || DEBUG_INSN_P (insn));
3245 if (DEBUG_INSN_P (insn))
3246 INSN_VAR_LOCATION_LOC (insn)
3247 = eliminate_regs (INSN_VAR_LOCATION_LOC (insn), VOIDmode, insn);
3248 return 0;
3251 if (old_set != 0 && REG_P (SET_DEST (old_set))
3252 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3254 /* Check for setting an eliminable register. */
3255 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3256 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3258 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
3259 /* If this is setting the frame pointer register to the
3260 hardware frame pointer register and this is an elimination
3261 that will be done (tested above), this insn is really
3262 adjusting the frame pointer downward to compensate for
3263 the adjustment done before a nonlocal goto. */
3264 if (ep->from == FRAME_POINTER_REGNUM
3265 && ep->to == HARD_FRAME_POINTER_REGNUM)
3267 rtx base = SET_SRC (old_set);
3268 rtx base_insn = insn;
3269 HOST_WIDE_INT offset = 0;
3271 while (base != ep->to_rtx)
3273 rtx prev_insn, prev_set;
3275 if (GET_CODE (base) == PLUS
3276 && CONST_INT_P (XEXP (base, 1)))
3278 offset += INTVAL (XEXP (base, 1));
3279 base = XEXP (base, 0);
3281 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
3282 && (prev_set = single_set (prev_insn)) != 0
3283 && rtx_equal_p (SET_DEST (prev_set), base))
3285 base = SET_SRC (prev_set);
3286 base_insn = prev_insn;
3288 else
3289 break;
3292 if (base == ep->to_rtx)
3294 rtx src
3295 = plus_constant (ep->to_rtx, offset - ep->offset);
3297 new_body = old_body;
3298 if (! replace)
3300 new_body = copy_insn (old_body);
3301 if (REG_NOTES (insn))
3302 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3304 PATTERN (insn) = new_body;
3305 old_set = single_set (insn);
3307 /* First see if this insn remains valid when we
3308 make the change. If not, keep the INSN_CODE
3309 the same and let reload fit it up. */
3310 validate_change (insn, &SET_SRC (old_set), src, 1);
3311 validate_change (insn, &SET_DEST (old_set),
3312 ep->to_rtx, 1);
3313 if (! apply_change_group ())
3315 SET_SRC (old_set) = src;
3316 SET_DEST (old_set) = ep->to_rtx;
3319 val = 1;
3320 goto done;
3323 #endif
3325 /* In this case this insn isn't serving a useful purpose. We
3326 will delete it in reload_as_needed once we know that this
3327 elimination is, in fact, being done.
3329 If REPLACE isn't set, we can't delete this insn, but needn't
3330 process it since it won't be used unless something changes. */
3331 if (replace)
3333 delete_dead_insn (insn);
3334 return 1;
3336 val = 1;
3337 goto done;
3341 /* We allow one special case which happens to work on all machines we
3342 currently support: a single set with the source or a REG_EQUAL
3343 note being a PLUS of an eliminable register and a constant. */
3344 plus_src = plus_cst_src = 0;
3345 if (old_set && REG_P (SET_DEST (old_set)))
3347 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3348 plus_src = SET_SRC (old_set);
3349 /* First see if the source is of the form (plus (...) CST). */
3350 if (plus_src
3351 && CONST_INT_P (XEXP (plus_src, 1)))
3352 plus_cst_src = plus_src;
3353 else if (REG_P (SET_SRC (old_set))
3354 || plus_src)
3356 /* Otherwise, see if we have a REG_EQUAL note of the form
3357 (plus (...) CST). */
3358 rtx links;
3359 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3361 if ((REG_NOTE_KIND (links) == REG_EQUAL
3362 || REG_NOTE_KIND (links) == REG_EQUIV)
3363 && GET_CODE (XEXP (links, 0)) == PLUS
3364 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3366 plus_cst_src = XEXP (links, 0);
3367 break;
3372 /* Check that the first operand of the PLUS is a hard reg or
3373 the lowpart subreg of one. */
3374 if (plus_cst_src)
3376 rtx reg = XEXP (plus_cst_src, 0);
3377 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
3378 reg = SUBREG_REG (reg);
3380 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
3381 plus_cst_src = 0;
3384 if (plus_cst_src)
3386 rtx reg = XEXP (plus_cst_src, 0);
3387 HOST_WIDE_INT offset = INTVAL (XEXP (plus_cst_src, 1));
3389 if (GET_CODE (reg) == SUBREG)
3390 reg = SUBREG_REG (reg);
3392 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3393 if (ep->from_rtx == reg && ep->can_eliminate)
3395 rtx to_rtx = ep->to_rtx;
3396 offset += ep->offset;
3397 offset = trunc_int_for_mode (offset, GET_MODE (plus_cst_src));
3399 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
3400 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
3401 to_rtx);
3402 /* If we have a nonzero offset, and the source is already
3403 a simple REG, the following transformation would
3404 increase the cost of the insn by replacing a simple REG
3405 with (plus (reg sp) CST). So try only when we already
3406 had a PLUS before. */
3407 if (offset == 0 || plus_src)
3409 rtx new_src = plus_constant (to_rtx, offset);
3411 new_body = old_body;
3412 if (! replace)
3414 new_body = copy_insn (old_body);
3415 if (REG_NOTES (insn))
3416 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3418 PATTERN (insn) = new_body;
3419 old_set = single_set (insn);
3421 /* First see if this insn remains valid when we make the
3422 change. If not, try to replace the whole pattern with
3423 a simple set (this may help if the original insn was a
3424 PARALLEL that was only recognized as single_set due to
3425 REG_UNUSED notes). If this isn't valid either, keep
3426 the INSN_CODE the same and let reload fix it up. */
3427 if (!validate_change (insn, &SET_SRC (old_set), new_src, 0))
3429 rtx new_pat = gen_rtx_SET (VOIDmode,
3430 SET_DEST (old_set), new_src);
3432 if (!validate_change (insn, &PATTERN (insn), new_pat, 0))
3433 SET_SRC (old_set) = new_src;
3436 else
3437 break;
3439 val = 1;
3440 /* This can't have an effect on elimination offsets, so skip right
3441 to the end. */
3442 goto done;
3446 /* Determine the effects of this insn on elimination offsets. */
3447 elimination_effects (old_body, VOIDmode);
3449 /* Eliminate all eliminable registers occurring in operands that
3450 can be handled by reload. */
3451 extract_insn (insn);
3452 for (i = 0; i < recog_data.n_operands; i++)
3454 orig_operand[i] = recog_data.operand[i];
3455 substed_operand[i] = recog_data.operand[i];
3457 /* For an asm statement, every operand is eliminable. */
3458 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3460 bool is_set_src, in_plus;
3462 /* Check for setting a register that we know about. */
3463 if (recog_data.operand_type[i] != OP_IN
3464 && REG_P (orig_operand[i]))
3466 /* If we are assigning to a register that can be eliminated, it
3467 must be as part of a PARALLEL, since the code above handles
3468 single SETs. We must indicate that we can no longer
3469 eliminate this reg. */
3470 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3471 ep++)
3472 if (ep->from_rtx == orig_operand[i])
3473 ep->can_eliminate = 0;
3476 /* Companion to the above plus substitution, we can allow
3477 invariants as the source of a plain move. */
3478 is_set_src = false;
3479 if (old_set
3480 && recog_data.operand_loc[i] == &SET_SRC (old_set))
3481 is_set_src = true;
3482 in_plus = false;
3483 if (plus_src
3484 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3485 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3486 in_plus = true;
3488 substed_operand[i]
3489 = eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3490 replace ? insn : NULL_RTX,
3491 is_set_src || in_plus, false);
3492 if (substed_operand[i] != orig_operand[i])
3493 val = 1;
3494 /* Terminate the search in check_eliminable_occurrences at
3495 this point. */
3496 *recog_data.operand_loc[i] = 0;
3498 /* If an output operand changed from a REG to a MEM and INSN is an
3499 insn, write a CLOBBER insn. */
3500 if (recog_data.operand_type[i] != OP_IN
3501 && REG_P (orig_operand[i])
3502 && MEM_P (substed_operand[i])
3503 && replace)
3504 emit_insn_after (gen_clobber (orig_operand[i]), insn);
3508 for (i = 0; i < recog_data.n_dups; i++)
3509 *recog_data.dup_loc[i]
3510 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3512 /* If any eliminable remain, they aren't eliminable anymore. */
3513 check_eliminable_occurrences (old_body);
3515 /* Substitute the operands; the new values are in the substed_operand
3516 array. */
3517 for (i = 0; i < recog_data.n_operands; i++)
3518 *recog_data.operand_loc[i] = substed_operand[i];
3519 for (i = 0; i < recog_data.n_dups; i++)
3520 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3522 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3523 re-recognize the insn. We do this in case we had a simple addition
3524 but now can do this as a load-address. This saves an insn in this
3525 common case.
3526 If re-recognition fails, the old insn code number will still be used,
3527 and some register operands may have changed into PLUS expressions.
3528 These will be handled by find_reloads by loading them into a register
3529 again. */
3531 if (val)
3533 /* If we aren't replacing things permanently and we changed something,
3534 make another copy to ensure that all the RTL is new. Otherwise
3535 things can go wrong if find_reload swaps commutative operands
3536 and one is inside RTL that has been copied while the other is not. */
3537 new_body = old_body;
3538 if (! replace)
3540 new_body = copy_insn (old_body);
3541 if (REG_NOTES (insn))
3542 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3544 PATTERN (insn) = new_body;
3546 /* If we had a move insn but now we don't, rerecognize it. This will
3547 cause spurious re-recognition if the old move had a PARALLEL since
3548 the new one still will, but we can't call single_set without
3549 having put NEW_BODY into the insn and the re-recognition won't
3550 hurt in this rare case. */
3551 /* ??? Why this huge if statement - why don't we just rerecognize the
3552 thing always? */
3553 if (! insn_is_asm
3554 && old_set != 0
3555 && ((REG_P (SET_SRC (old_set))
3556 && (GET_CODE (new_body) != SET
3557 || !REG_P (SET_SRC (new_body))))
3558 /* If this was a load from or store to memory, compare
3559 the MEM in recog_data.operand to the one in the insn.
3560 If they are not equal, then rerecognize the insn. */
3561 || (old_set != 0
3562 && ((MEM_P (SET_SRC (old_set))
3563 && SET_SRC (old_set) != recog_data.operand[1])
3564 || (MEM_P (SET_DEST (old_set))
3565 && SET_DEST (old_set) != recog_data.operand[0])))
3566 /* If this was an add insn before, rerecognize. */
3567 || GET_CODE (SET_SRC (old_set)) == PLUS))
3569 int new_icode = recog (PATTERN (insn), insn, 0);
3570 if (new_icode >= 0)
3571 INSN_CODE (insn) = new_icode;
3575 /* Restore the old body. If there were any changes to it, we made a copy
3576 of it while the changes were still in place, so we'll correctly return
3577 a modified insn below. */
3578 if (! replace)
3580 /* Restore the old body. */
3581 for (i = 0; i < recog_data.n_operands; i++)
3582 /* Restoring a top-level match_parallel would clobber the new_body
3583 we installed in the insn. */
3584 if (recog_data.operand_loc[i] != &PATTERN (insn))
3585 *recog_data.operand_loc[i] = orig_operand[i];
3586 for (i = 0; i < recog_data.n_dups; i++)
3587 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3590 /* Update all elimination pairs to reflect the status after the current
3591 insn. The changes we make were determined by the earlier call to
3592 elimination_effects.
3594 We also detect cases where register elimination cannot be done,
3595 namely, if a register would be both changed and referenced outside a MEM
3596 in the resulting insn since such an insn is often undefined and, even if
3597 not, we cannot know what meaning will be given to it. Note that it is
3598 valid to have a register used in an address in an insn that changes it
3599 (presumably with a pre- or post-increment or decrement).
3601 If anything changes, return nonzero. */
3603 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3605 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3606 ep->can_eliminate = 0;
3608 ep->ref_outside_mem = 0;
3610 if (ep->previous_offset != ep->offset)
3611 val = 1;
3614 done:
3615 /* If we changed something, perform elimination in REG_NOTES. This is
3616 needed even when REPLACE is zero because a REG_DEAD note might refer
3617 to a register that we eliminate and could cause a different number
3618 of spill registers to be needed in the final reload pass than in
3619 the pre-passes. */
3620 if (val && REG_NOTES (insn) != 0)
3621 REG_NOTES (insn)
3622 = eliminate_regs_1 (REG_NOTES (insn), VOIDmode, REG_NOTES (insn), true,
3623 false);
3625 return val;
3628 /* Like eliminate_regs_in_insn, but only estimate costs for the use of the
3629 register allocator. INSN is the instruction we need to examine, we perform
3630 eliminations in its operands and record cases where eliminating a reg with
3631 an invariant equivalence would add extra cost. */
3633 static void
3634 elimination_costs_in_insn (rtx insn)
3636 int icode = recog_memoized (insn);
3637 rtx old_body = PATTERN (insn);
3638 int insn_is_asm = asm_noperands (old_body) >= 0;
3639 rtx old_set = single_set (insn);
3640 int i;
3641 rtx orig_operand[MAX_RECOG_OPERANDS];
3642 rtx orig_dup[MAX_RECOG_OPERANDS];
3643 struct elim_table *ep;
3644 rtx plus_src, plus_cst_src;
3645 bool sets_reg_p;
3647 if (! insn_is_asm && icode < 0)
3649 gcc_assert (GET_CODE (PATTERN (insn)) == USE
3650 || GET_CODE (PATTERN (insn)) == CLOBBER
3651 || GET_CODE (PATTERN (insn)) == ADDR_VEC
3652 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
3653 || GET_CODE (PATTERN (insn)) == ASM_INPUT
3654 || DEBUG_INSN_P (insn));
3655 return;
3658 if (old_set != 0 && REG_P (SET_DEST (old_set))
3659 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3661 /* Check for setting an eliminable register. */
3662 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3663 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3664 return;
3667 /* We allow one special case which happens to work on all machines we
3668 currently support: a single set with the source or a REG_EQUAL
3669 note being a PLUS of an eliminable register and a constant. */
3670 plus_src = plus_cst_src = 0;
3671 sets_reg_p = false;
3672 if (old_set && REG_P (SET_DEST (old_set)))
3674 sets_reg_p = true;
3675 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3676 plus_src = SET_SRC (old_set);
3677 /* First see if the source is of the form (plus (...) CST). */
3678 if (plus_src
3679 && CONST_INT_P (XEXP (plus_src, 1)))
3680 plus_cst_src = plus_src;
3681 else if (REG_P (SET_SRC (old_set))
3682 || plus_src)
3684 /* Otherwise, see if we have a REG_EQUAL note of the form
3685 (plus (...) CST). */
3686 rtx links;
3687 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3689 if ((REG_NOTE_KIND (links) == REG_EQUAL
3690 || REG_NOTE_KIND (links) == REG_EQUIV)
3691 && GET_CODE (XEXP (links, 0)) == PLUS
3692 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3694 plus_cst_src = XEXP (links, 0);
3695 break;
3701 /* Determine the effects of this insn on elimination offsets. */
3702 elimination_effects (old_body, VOIDmode);
3704 /* Eliminate all eliminable registers occurring in operands that
3705 can be handled by reload. */
3706 extract_insn (insn);
3707 for (i = 0; i < recog_data.n_dups; i++)
3708 orig_dup[i] = *recog_data.dup_loc[i];
3710 for (i = 0; i < recog_data.n_operands; i++)
3712 orig_operand[i] = recog_data.operand[i];
3714 /* For an asm statement, every operand is eliminable. */
3715 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3717 bool is_set_src, in_plus;
3719 /* Check for setting a register that we know about. */
3720 if (recog_data.operand_type[i] != OP_IN
3721 && REG_P (orig_operand[i]))
3723 /* If we are assigning to a register that can be eliminated, it
3724 must be as part of a PARALLEL, since the code above handles
3725 single SETs. We must indicate that we can no longer
3726 eliminate this reg. */
3727 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3728 ep++)
3729 if (ep->from_rtx == orig_operand[i])
3730 ep->can_eliminate = 0;
3733 /* Companion to the above plus substitution, we can allow
3734 invariants as the source of a plain move. */
3735 is_set_src = false;
3736 if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
3737 is_set_src = true;
3738 if (is_set_src && !sets_reg_p)
3739 note_reg_elim_costly (&SET_SRC (old_set), insn);
3740 in_plus = false;
3741 if (plus_src && sets_reg_p
3742 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3743 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3744 in_plus = true;
3746 eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3747 NULL_RTX,
3748 is_set_src || in_plus, true);
3749 /* Terminate the search in check_eliminable_occurrences at
3750 this point. */
3751 *recog_data.operand_loc[i] = 0;
3755 for (i = 0; i < recog_data.n_dups; i++)
3756 *recog_data.dup_loc[i]
3757 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3759 /* If any eliminable remain, they aren't eliminable anymore. */
3760 check_eliminable_occurrences (old_body);
3762 /* Restore the old body. */
3763 for (i = 0; i < recog_data.n_operands; i++)
3764 *recog_data.operand_loc[i] = orig_operand[i];
3765 for (i = 0; i < recog_data.n_dups; i++)
3766 *recog_data.dup_loc[i] = orig_dup[i];
3768 /* Update all elimination pairs to reflect the status after the current
3769 insn. The changes we make were determined by the earlier call to
3770 elimination_effects. */
3772 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3774 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3775 ep->can_eliminate = 0;
3777 ep->ref_outside_mem = 0;
3780 return;
3783 /* Loop through all elimination pairs.
3784 Recalculate the number not at initial offset.
3786 Compute the maximum offset (minimum offset if the stack does not
3787 grow downward) for each elimination pair. */
3789 static void
3790 update_eliminable_offsets (void)
3792 struct elim_table *ep;
3794 num_not_at_initial_offset = 0;
3795 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3797 ep->previous_offset = ep->offset;
3798 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3799 num_not_at_initial_offset++;
3803 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3804 replacement we currently believe is valid, mark it as not eliminable if X
3805 modifies DEST in any way other than by adding a constant integer to it.
3807 If DEST is the frame pointer, we do nothing because we assume that
3808 all assignments to the hard frame pointer are nonlocal gotos and are being
3809 done at a time when they are valid and do not disturb anything else.
3810 Some machines want to eliminate a fake argument pointer with either the
3811 frame or stack pointer. Assignments to the hard frame pointer must not
3812 prevent this elimination.
3814 Called via note_stores from reload before starting its passes to scan
3815 the insns of the function. */
3817 static void
3818 mark_not_eliminable (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
3820 unsigned int i;
3822 /* A SUBREG of a hard register here is just changing its mode. We should
3823 not see a SUBREG of an eliminable hard register, but check just in
3824 case. */
3825 if (GET_CODE (dest) == SUBREG)
3826 dest = SUBREG_REG (dest);
3828 if (dest == hard_frame_pointer_rtx)
3829 return;
3831 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3832 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3833 && (GET_CODE (x) != SET
3834 || GET_CODE (SET_SRC (x)) != PLUS
3835 || XEXP (SET_SRC (x), 0) != dest
3836 || !CONST_INT_P (XEXP (SET_SRC (x), 1))))
3838 reg_eliminate[i].can_eliminate_previous
3839 = reg_eliminate[i].can_eliminate = 0;
3840 num_eliminable--;
3844 /* Verify that the initial elimination offsets did not change since the
3845 last call to set_initial_elim_offsets. This is used to catch cases
3846 where something illegal happened during reload_as_needed that could
3847 cause incorrect code to be generated if we did not check for it. */
3849 static bool
3850 verify_initial_elim_offsets (void)
3852 HOST_WIDE_INT t;
3854 if (!num_eliminable)
3855 return true;
3857 #ifdef ELIMINABLE_REGS
3859 struct elim_table *ep;
3861 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3863 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3864 if (t != ep->initial_offset)
3865 return false;
3868 #else
3869 INITIAL_FRAME_POINTER_OFFSET (t);
3870 if (t != reg_eliminate[0].initial_offset)
3871 return false;
3872 #endif
3874 return true;
3877 /* Reset all offsets on eliminable registers to their initial values. */
3879 static void
3880 set_initial_elim_offsets (void)
3882 struct elim_table *ep = reg_eliminate;
3884 #ifdef ELIMINABLE_REGS
3885 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3887 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3888 ep->previous_offset = ep->offset = ep->initial_offset;
3890 #else
3891 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3892 ep->previous_offset = ep->offset = ep->initial_offset;
3893 #endif
3895 num_not_at_initial_offset = 0;
3898 /* Subroutine of set_initial_label_offsets called via for_each_eh_label. */
3900 static void
3901 set_initial_eh_label_offset (rtx label)
3903 set_label_offsets (label, NULL_RTX, 1);
3906 /* Initialize the known label offsets.
3907 Set a known offset for each forced label to be at the initial offset
3908 of each elimination. We do this because we assume that all
3909 computed jumps occur from a location where each elimination is
3910 at its initial offset.
3911 For all other labels, show that we don't know the offsets. */
3913 static void
3914 set_initial_label_offsets (void)
3916 rtx x;
3917 memset (offsets_known_at, 0, num_labels);
3919 for (x = forced_labels; x; x = XEXP (x, 1))
3920 if (XEXP (x, 0))
3921 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3923 for_each_eh_label (set_initial_eh_label_offset);
3926 /* Set all elimination offsets to the known values for the code label given
3927 by INSN. */
3929 static void
3930 set_offsets_for_label (rtx insn)
3932 unsigned int i;
3933 int label_nr = CODE_LABEL_NUMBER (insn);
3934 struct elim_table *ep;
3936 num_not_at_initial_offset = 0;
3937 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3939 ep->offset = ep->previous_offset
3940 = offsets_at[label_nr - first_label_num][i];
3941 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3942 num_not_at_initial_offset++;
3946 /* See if anything that happened changes which eliminations are valid.
3947 For example, on the SPARC, whether or not the frame pointer can
3948 be eliminated can depend on what registers have been used. We need
3949 not check some conditions again (such as flag_omit_frame_pointer)
3950 since they can't have changed. */
3952 static void
3953 update_eliminables (HARD_REG_SET *pset)
3955 int previous_frame_pointer_needed = frame_pointer_needed;
3956 struct elim_table *ep;
3958 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3959 if ((ep->from == HARD_FRAME_POINTER_REGNUM
3960 && targetm.frame_pointer_required ())
3961 #ifdef ELIMINABLE_REGS
3962 || ! targetm.can_eliminate (ep->from, ep->to)
3963 #endif
3965 ep->can_eliminate = 0;
3967 /* Look for the case where we have discovered that we can't replace
3968 register A with register B and that means that we will now be
3969 trying to replace register A with register C. This means we can
3970 no longer replace register C with register B and we need to disable
3971 such an elimination, if it exists. This occurs often with A == ap,
3972 B == sp, and C == fp. */
3974 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3976 struct elim_table *op;
3977 int new_to = -1;
3979 if (! ep->can_eliminate && ep->can_eliminate_previous)
3981 /* Find the current elimination for ep->from, if there is a
3982 new one. */
3983 for (op = reg_eliminate;
3984 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3985 if (op->from == ep->from && op->can_eliminate)
3987 new_to = op->to;
3988 break;
3991 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3992 disable it. */
3993 for (op = reg_eliminate;
3994 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3995 if (op->from == new_to && op->to == ep->to)
3996 op->can_eliminate = 0;
4000 /* See if any registers that we thought we could eliminate the previous
4001 time are no longer eliminable. If so, something has changed and we
4002 must spill the register. Also, recompute the number of eliminable
4003 registers and see if the frame pointer is needed; it is if there is
4004 no elimination of the frame pointer that we can perform. */
4006 frame_pointer_needed = 1;
4007 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4009 if (ep->can_eliminate
4010 && ep->from == FRAME_POINTER_REGNUM
4011 && ep->to != HARD_FRAME_POINTER_REGNUM
4012 && (! SUPPORTS_STACK_ALIGNMENT
4013 || ! crtl->stack_realign_needed))
4014 frame_pointer_needed = 0;
4016 if (! ep->can_eliminate && ep->can_eliminate_previous)
4018 ep->can_eliminate_previous = 0;
4019 SET_HARD_REG_BIT (*pset, ep->from);
4020 num_eliminable--;
4024 /* If we didn't need a frame pointer last time, but we do now, spill
4025 the hard frame pointer. */
4026 if (frame_pointer_needed && ! previous_frame_pointer_needed)
4027 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
4030 /* Return true if X is used as the target register of an elimination. */
4032 bool
4033 elimination_target_reg_p (rtx x)
4035 struct elim_table *ep;
4037 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4038 if (ep->to_rtx == x && ep->can_eliminate)
4039 return true;
4041 return false;
4044 /* Initialize the table of registers to eliminate.
4045 Pre-condition: global flag frame_pointer_needed has been set before
4046 calling this function. */
4048 static void
4049 init_elim_table (void)
4051 struct elim_table *ep;
4052 #ifdef ELIMINABLE_REGS
4053 const struct elim_table_1 *ep1;
4054 #endif
4056 if (!reg_eliminate)
4057 reg_eliminate = XCNEWVEC (struct elim_table, NUM_ELIMINABLE_REGS);
4059 num_eliminable = 0;
4061 #ifdef ELIMINABLE_REGS
4062 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
4063 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
4065 ep->from = ep1->from;
4066 ep->to = ep1->to;
4067 ep->can_eliminate = ep->can_eliminate_previous
4068 = (targetm.can_eliminate (ep->from, ep->to)
4069 && ! (ep->to == STACK_POINTER_REGNUM
4070 && frame_pointer_needed
4071 && (! SUPPORTS_STACK_ALIGNMENT
4072 || ! stack_realign_fp)));
4074 #else
4075 reg_eliminate[0].from = reg_eliminate_1[0].from;
4076 reg_eliminate[0].to = reg_eliminate_1[0].to;
4077 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
4078 = ! frame_pointer_needed;
4079 #endif
4081 /* Count the number of eliminable registers and build the FROM and TO
4082 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
4083 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
4084 We depend on this. */
4085 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4087 num_eliminable += ep->can_eliminate;
4088 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
4089 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
4093 /* Find all the pseudo registers that didn't get hard regs
4094 but do have known equivalent constants or memory slots.
4095 These include parameters (known equivalent to parameter slots)
4096 and cse'd or loop-moved constant memory addresses.
4098 Record constant equivalents in reg_equiv_constant
4099 so they will be substituted by find_reloads.
4100 Record memory equivalents in reg_mem_equiv so they can
4101 be substituted eventually by altering the REG-rtx's. */
4103 static void
4104 init_eliminable_invariants (rtx first, bool do_subregs)
4106 int i;
4107 rtx insn;
4109 grow_reg_equivs ();
4110 if (do_subregs)
4111 reg_max_ref_width = XCNEWVEC (unsigned int, max_regno);
4112 else
4113 reg_max_ref_width = NULL;
4115 num_eliminable_invariants = 0;
4117 first_label_num = get_first_label_num ();
4118 num_labels = max_label_num () - first_label_num;
4120 /* Allocate the tables used to store offset information at labels. */
4121 offsets_known_at = XNEWVEC (char, num_labels);
4122 offsets_at = (HOST_WIDE_INT (*)[NUM_ELIMINABLE_REGS]) xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
4124 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
4125 to. If DO_SUBREGS is true, also find all paradoxical subregs and
4126 find largest such for each pseudo. FIRST is the head of the insn
4127 list. */
4129 for (insn = first; insn; insn = NEXT_INSN (insn))
4131 rtx set = single_set (insn);
4133 /* We may introduce USEs that we want to remove at the end, so
4134 we'll mark them with QImode. Make sure there are no
4135 previously-marked insns left by say regmove. */
4136 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
4137 && GET_MODE (insn) != VOIDmode)
4138 PUT_MODE (insn, VOIDmode);
4140 if (do_subregs && NONDEBUG_INSN_P (insn))
4141 scan_paradoxical_subregs (PATTERN (insn));
4143 if (set != 0 && REG_P (SET_DEST (set)))
4145 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
4146 rtx x;
4148 if (! note)
4149 continue;
4151 i = REGNO (SET_DEST (set));
4152 x = XEXP (note, 0);
4154 if (i <= LAST_VIRTUAL_REGISTER)
4155 continue;
4157 /* If flag_pic and we have constant, verify it's legitimate. */
4158 if (!CONSTANT_P (x)
4159 || !flag_pic || LEGITIMATE_PIC_OPERAND_P (x))
4161 /* It can happen that a REG_EQUIV note contains a MEM
4162 that is not a legitimate memory operand. As later
4163 stages of reload assume that all addresses found
4164 in the reg_equiv_* arrays were originally legitimate,
4165 we ignore such REG_EQUIV notes. */
4166 if (memory_operand (x, VOIDmode))
4168 /* Always unshare the equivalence, so we can
4169 substitute into this insn without touching the
4170 equivalence. */
4171 reg_equiv_memory_loc (i) = copy_rtx (x);
4173 else if (function_invariant_p (x))
4175 enum machine_mode mode;
4177 mode = GET_MODE (SET_DEST (set));
4178 if (GET_CODE (x) == PLUS)
4180 /* This is PLUS of frame pointer and a constant,
4181 and might be shared. Unshare it. */
4182 reg_equiv_invariant (i) = copy_rtx (x);
4183 num_eliminable_invariants++;
4185 else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
4187 reg_equiv_invariant (i) = x;
4188 num_eliminable_invariants++;
4190 else if (targetm.legitimate_constant_p (mode, x))
4191 reg_equiv_constant (i) = x;
4192 else
4194 reg_equiv_memory_loc (i) = force_const_mem (mode, x);
4195 if (! reg_equiv_memory_loc (i))
4196 reg_equiv_init (i) = NULL_RTX;
4199 else
4201 reg_equiv_init (i) = NULL_RTX;
4202 continue;
4205 else
4206 reg_equiv_init (i) = NULL_RTX;
4210 if (dump_file)
4211 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4212 if (reg_equiv_init (i))
4214 fprintf (dump_file, "init_insns for %u: ", i);
4215 print_inline_rtx (dump_file, reg_equiv_init (i), 20);
4216 fprintf (dump_file, "\n");
4220 /* Indicate that we no longer have known memory locations or constants.
4221 Free all data involved in tracking these. */
4223 static void
4224 free_reg_equiv (void)
4226 int i;
4229 free (offsets_known_at);
4230 free (offsets_at);
4231 offsets_at = 0;
4232 offsets_known_at = 0;
4234 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4235 if (reg_equiv_alt_mem_list (i))
4236 free_EXPR_LIST_list (&reg_equiv_alt_mem_list (i));
4237 VEC_free (reg_equivs_t, gc, reg_equivs);
4238 reg_equivs = NULL;
4242 /* Kick all pseudos out of hard register REGNO.
4244 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
4245 because we found we can't eliminate some register. In the case, no pseudos
4246 are allowed to be in the register, even if they are only in a block that
4247 doesn't require spill registers, unlike the case when we are spilling this
4248 hard reg to produce another spill register.
4250 Return nonzero if any pseudos needed to be kicked out. */
4252 static void
4253 spill_hard_reg (unsigned int regno, int cant_eliminate)
4255 int i;
4257 if (cant_eliminate)
4259 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
4260 df_set_regs_ever_live (regno, true);
4263 /* Spill every pseudo reg that was allocated to this reg
4264 or to something that overlaps this reg. */
4266 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4267 if (reg_renumber[i] >= 0
4268 && (unsigned int) reg_renumber[i] <= regno
4269 && end_hard_regno (PSEUDO_REGNO_MODE (i), reg_renumber[i]) > regno)
4270 SET_REGNO_REG_SET (&spilled_pseudos, i);
4273 /* After find_reload_regs has been run for all insn that need reloads,
4274 and/or spill_hard_regs was called, this function is used to actually
4275 spill pseudo registers and try to reallocate them. It also sets up the
4276 spill_regs array for use by choose_reload_regs. */
4278 static int
4279 finish_spills (int global)
4281 struct insn_chain *chain;
4282 int something_changed = 0;
4283 unsigned i;
4284 reg_set_iterator rsi;
4286 /* Build the spill_regs array for the function. */
4287 /* If there are some registers still to eliminate and one of the spill regs
4288 wasn't ever used before, additional stack space may have to be
4289 allocated to store this register. Thus, we may have changed the offset
4290 between the stack and frame pointers, so mark that something has changed.
4292 One might think that we need only set VAL to 1 if this is a call-used
4293 register. However, the set of registers that must be saved by the
4294 prologue is not identical to the call-used set. For example, the
4295 register used by the call insn for the return PC is a call-used register,
4296 but must be saved by the prologue. */
4298 n_spills = 0;
4299 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4300 if (TEST_HARD_REG_BIT (used_spill_regs, i))
4302 spill_reg_order[i] = n_spills;
4303 spill_regs[n_spills++] = i;
4304 if (num_eliminable && ! df_regs_ever_live_p (i))
4305 something_changed = 1;
4306 df_set_regs_ever_live (i, true);
4308 else
4309 spill_reg_order[i] = -1;
4311 EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
4312 if (! ira_conflicts_p || reg_renumber[i] >= 0)
4314 /* Record the current hard register the pseudo is allocated to
4315 in pseudo_previous_regs so we avoid reallocating it to the
4316 same hard reg in a later pass. */
4317 gcc_assert (reg_renumber[i] >= 0);
4319 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
4320 /* Mark it as no longer having a hard register home. */
4321 reg_renumber[i] = -1;
4322 if (ira_conflicts_p)
4323 /* Inform IRA about the change. */
4324 ira_mark_allocation_change (i);
4325 /* We will need to scan everything again. */
4326 something_changed = 1;
4329 /* Retry global register allocation if possible. */
4330 if (global && ira_conflicts_p)
4332 unsigned int n;
4334 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
4335 /* For every insn that needs reloads, set the registers used as spill
4336 regs in pseudo_forbidden_regs for every pseudo live across the
4337 insn. */
4338 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
4340 EXECUTE_IF_SET_IN_REG_SET
4341 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
4343 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4344 chain->used_spill_regs);
4346 EXECUTE_IF_SET_IN_REG_SET
4347 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
4349 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4350 chain->used_spill_regs);
4354 /* Retry allocating the pseudos spilled in IRA and the
4355 reload. For each reg, merge the various reg sets that
4356 indicate which hard regs can't be used, and call
4357 ira_reassign_pseudos. */
4358 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < (unsigned) max_regno; i++)
4359 if (reg_old_renumber[i] != reg_renumber[i])
4361 if (reg_renumber[i] < 0)
4362 temp_pseudo_reg_arr[n++] = i;
4363 else
4364 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
4366 if (ira_reassign_pseudos (temp_pseudo_reg_arr, n,
4367 bad_spill_regs_global,
4368 pseudo_forbidden_regs, pseudo_previous_regs,
4369 &spilled_pseudos))
4370 something_changed = 1;
4372 /* Fix up the register information in the insn chain.
4373 This involves deleting those of the spilled pseudos which did not get
4374 a new hard register home from the live_{before,after} sets. */
4375 for (chain = reload_insn_chain; chain; chain = chain->next)
4377 HARD_REG_SET used_by_pseudos;
4378 HARD_REG_SET used_by_pseudos2;
4380 if (! ira_conflicts_p)
4382 /* Don't do it for IRA because IRA and the reload still can
4383 assign hard registers to the spilled pseudos on next
4384 reload iterations. */
4385 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
4386 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
4388 /* Mark any unallocated hard regs as available for spills. That
4389 makes inheritance work somewhat better. */
4390 if (chain->need_reload)
4392 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
4393 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
4394 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
4396 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
4397 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
4398 /* Value of chain->used_spill_regs from previous iteration
4399 may be not included in the value calculated here because
4400 of possible removing caller-saves insns (see function
4401 delete_caller_save_insns. */
4402 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
4403 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
4407 CLEAR_REG_SET (&changed_allocation_pseudos);
4408 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
4409 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
4411 int regno = reg_renumber[i];
4412 if (reg_old_renumber[i] == regno)
4413 continue;
4415 SET_REGNO_REG_SET (&changed_allocation_pseudos, i);
4417 alter_reg (i, reg_old_renumber[i], false);
4418 reg_old_renumber[i] = regno;
4419 if (dump_file)
4421 if (regno == -1)
4422 fprintf (dump_file, " Register %d now on stack.\n\n", i);
4423 else
4424 fprintf (dump_file, " Register %d now in %d.\n\n",
4425 i, reg_renumber[i]);
4429 return something_changed;
4432 /* Find all paradoxical subregs within X and update reg_max_ref_width. */
4434 static void
4435 scan_paradoxical_subregs (rtx x)
4437 int i;
4438 const char *fmt;
4439 enum rtx_code code = GET_CODE (x);
4441 switch (code)
4443 case REG:
4444 case CONST_INT:
4445 case CONST:
4446 case SYMBOL_REF:
4447 case LABEL_REF:
4448 case CONST_DOUBLE:
4449 case CONST_FIXED:
4450 case CONST_VECTOR: /* shouldn't happen, but just in case. */
4451 case CC0:
4452 case PC:
4453 case USE:
4454 case CLOBBER:
4455 return;
4457 case SUBREG:
4458 if (REG_P (SUBREG_REG (x))
4459 && (GET_MODE_SIZE (GET_MODE (x))
4460 > reg_max_ref_width[REGNO (SUBREG_REG (x))]))
4462 reg_max_ref_width[REGNO (SUBREG_REG (x))]
4463 = GET_MODE_SIZE (GET_MODE (x));
4464 mark_home_live_1 (REGNO (SUBREG_REG (x)), GET_MODE (x));
4466 return;
4468 default:
4469 break;
4472 fmt = GET_RTX_FORMAT (code);
4473 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4475 if (fmt[i] == 'e')
4476 scan_paradoxical_subregs (XEXP (x, i));
4477 else if (fmt[i] == 'E')
4479 int j;
4480 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4481 scan_paradoxical_subregs (XVECEXP (x, i, j));
4486 /* *OP_PTR and *OTHER_PTR are two operands to a conceptual reload.
4487 If *OP_PTR is a paradoxical subreg, try to remove that subreg
4488 and apply the corresponding narrowing subreg to *OTHER_PTR.
4489 Return true if the operands were changed, false otherwise. */
4491 static bool
4492 strip_paradoxical_subreg (rtx *op_ptr, rtx *other_ptr)
4494 rtx op, inner, other, tem;
4496 op = *op_ptr;
4497 if (!paradoxical_subreg_p (op))
4498 return false;
4499 inner = SUBREG_REG (op);
4501 other = *other_ptr;
4502 tem = gen_lowpart_common (GET_MODE (inner), other);
4503 if (!tem)
4504 return false;
4506 /* If the lowpart operation turned a hard register into a subreg,
4507 rather than simplifying it to another hard register, then the
4508 mode change cannot be properly represented. For example, OTHER
4509 might be valid in its current mode, but not in the new one. */
4510 if (GET_CODE (tem) == SUBREG
4511 && REG_P (other)
4512 && HARD_REGISTER_P (other))
4513 return false;
4515 *op_ptr = inner;
4516 *other_ptr = tem;
4517 return true;
4520 /* A subroutine of reload_as_needed. If INSN has a REG_EH_REGION note,
4521 examine all of the reload insns between PREV and NEXT exclusive, and
4522 annotate all that may trap. */
4524 static void
4525 fixup_eh_region_note (rtx insn, rtx prev, rtx next)
4527 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
4528 if (note == NULL)
4529 return;
4530 if (!insn_could_throw_p (insn))
4531 remove_note (insn, note);
4532 copy_reg_eh_region_note_forward (note, NEXT_INSN (prev), next);
4535 /* Reload pseudo-registers into hard regs around each insn as needed.
4536 Additional register load insns are output before the insn that needs it
4537 and perhaps store insns after insns that modify the reloaded pseudo reg.
4539 reg_last_reload_reg and reg_reloaded_contents keep track of
4540 which registers are already available in reload registers.
4541 We update these for the reloads that we perform,
4542 as the insns are scanned. */
4544 static void
4545 reload_as_needed (int live_known)
4547 struct insn_chain *chain;
4548 #if defined (AUTO_INC_DEC)
4549 int i;
4550 #endif
4551 rtx x;
4553 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
4554 memset (spill_reg_store, 0, sizeof spill_reg_store);
4555 reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
4556 INIT_REG_SET (&reg_has_output_reload);
4557 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4558 CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
4560 set_initial_elim_offsets ();
4562 for (chain = reload_insn_chain; chain; chain = chain->next)
4564 rtx prev = 0;
4565 rtx insn = chain->insn;
4566 rtx old_next = NEXT_INSN (insn);
4567 #ifdef AUTO_INC_DEC
4568 rtx old_prev = PREV_INSN (insn);
4569 #endif
4571 /* If we pass a label, copy the offsets from the label information
4572 into the current offsets of each elimination. */
4573 if (LABEL_P (insn))
4574 set_offsets_for_label (insn);
4576 else if (INSN_P (insn))
4578 regset_head regs_to_forget;
4579 INIT_REG_SET (&regs_to_forget);
4580 note_stores (PATTERN (insn), forget_old_reloads_1, &regs_to_forget);
4582 /* If this is a USE and CLOBBER of a MEM, ensure that any
4583 references to eliminable registers have been removed. */
4585 if ((GET_CODE (PATTERN (insn)) == USE
4586 || GET_CODE (PATTERN (insn)) == CLOBBER)
4587 && MEM_P (XEXP (PATTERN (insn), 0)))
4588 XEXP (XEXP (PATTERN (insn), 0), 0)
4589 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
4590 GET_MODE (XEXP (PATTERN (insn), 0)),
4591 NULL_RTX);
4593 /* If we need to do register elimination processing, do so.
4594 This might delete the insn, in which case we are done. */
4595 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
4597 eliminate_regs_in_insn (insn, 1);
4598 if (NOTE_P (insn))
4600 update_eliminable_offsets ();
4601 CLEAR_REG_SET (&regs_to_forget);
4602 continue;
4606 /* If need_elim is nonzero but need_reload is zero, one might think
4607 that we could simply set n_reloads to 0. However, find_reloads
4608 could have done some manipulation of the insn (such as swapping
4609 commutative operands), and these manipulations are lost during
4610 the first pass for every insn that needs register elimination.
4611 So the actions of find_reloads must be redone here. */
4613 if (! chain->need_elim && ! chain->need_reload
4614 && ! chain->need_operand_change)
4615 n_reloads = 0;
4616 /* First find the pseudo regs that must be reloaded for this insn.
4617 This info is returned in the tables reload_... (see reload.h).
4618 Also modify the body of INSN by substituting RELOAD
4619 rtx's for those pseudo regs. */
4620 else
4622 CLEAR_REG_SET (&reg_has_output_reload);
4623 CLEAR_HARD_REG_SET (reg_is_output_reload);
4625 find_reloads (insn, 1, spill_indirect_levels, live_known,
4626 spill_reg_order);
4629 if (n_reloads > 0)
4631 rtx next = NEXT_INSN (insn);
4632 rtx p;
4634 prev = PREV_INSN (insn);
4636 /* Now compute which reload regs to reload them into. Perhaps
4637 reusing reload regs from previous insns, or else output
4638 load insns to reload them. Maybe output store insns too.
4639 Record the choices of reload reg in reload_reg_rtx. */
4640 choose_reload_regs (chain);
4642 /* Generate the insns to reload operands into or out of
4643 their reload regs. */
4644 emit_reload_insns (chain);
4646 /* Substitute the chosen reload regs from reload_reg_rtx
4647 into the insn's body (or perhaps into the bodies of other
4648 load and store insn that we just made for reloading
4649 and that we moved the structure into). */
4650 subst_reloads (insn);
4652 /* Adjust the exception region notes for loads and stores. */
4653 if (cfun->can_throw_non_call_exceptions && !CALL_P (insn))
4654 fixup_eh_region_note (insn, prev, next);
4656 /* If this was an ASM, make sure that all the reload insns
4657 we have generated are valid. If not, give an error
4658 and delete them. */
4659 if (asm_noperands (PATTERN (insn)) >= 0)
4660 for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
4661 if (p != insn && INSN_P (p)
4662 && GET_CODE (PATTERN (p)) != USE
4663 && (recog_memoized (p) < 0
4664 || (extract_insn (p), ! constrain_operands (1))))
4666 error_for_asm (insn,
4667 "%<asm%> operand requires "
4668 "impossible reload");
4669 delete_insn (p);
4673 if (num_eliminable && chain->need_elim)
4674 update_eliminable_offsets ();
4676 /* Any previously reloaded spilled pseudo reg, stored in this insn,
4677 is no longer validly lying around to save a future reload.
4678 Note that this does not detect pseudos that were reloaded
4679 for this insn in order to be stored in
4680 (obeying register constraints). That is correct; such reload
4681 registers ARE still valid. */
4682 forget_marked_reloads (&regs_to_forget);
4683 CLEAR_REG_SET (&regs_to_forget);
4685 /* There may have been CLOBBER insns placed after INSN. So scan
4686 between INSN and NEXT and use them to forget old reloads. */
4687 for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
4688 if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
4689 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
4691 #ifdef AUTO_INC_DEC
4692 /* Likewise for regs altered by auto-increment in this insn.
4693 REG_INC notes have been changed by reloading:
4694 find_reloads_address_1 records substitutions for them,
4695 which have been performed by subst_reloads above. */
4696 for (i = n_reloads - 1; i >= 0; i--)
4698 rtx in_reg = rld[i].in_reg;
4699 if (in_reg)
4701 enum rtx_code code = GET_CODE (in_reg);
4702 /* PRE_INC / PRE_DEC will have the reload register ending up
4703 with the same value as the stack slot, but that doesn't
4704 hold true for POST_INC / POST_DEC. Either we have to
4705 convert the memory access to a true POST_INC / POST_DEC,
4706 or we can't use the reload register for inheritance. */
4707 if ((code == POST_INC || code == POST_DEC)
4708 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4709 REGNO (rld[i].reg_rtx))
4710 /* Make sure it is the inc/dec pseudo, and not
4711 some other (e.g. output operand) pseudo. */
4712 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4713 == REGNO (XEXP (in_reg, 0))))
4716 rtx reload_reg = rld[i].reg_rtx;
4717 enum machine_mode mode = GET_MODE (reload_reg);
4718 int n = 0;
4719 rtx p;
4721 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4723 /* We really want to ignore REG_INC notes here, so
4724 use PATTERN (p) as argument to reg_set_p . */
4725 if (reg_set_p (reload_reg, PATTERN (p)))
4726 break;
4727 n = count_occurrences (PATTERN (p), reload_reg, 0);
4728 if (! n)
4729 continue;
4730 if (n == 1)
4732 rtx replace_reg
4733 = gen_rtx_fmt_e (code, mode, reload_reg);
4735 validate_replace_rtx_group (reload_reg,
4736 replace_reg, p);
4737 n = verify_changes (0);
4739 /* We must also verify that the constraints
4740 are met after the replacement. Make sure
4741 extract_insn is only called for an insn
4742 where the replacements were found to be
4743 valid so far. */
4744 if (n)
4746 extract_insn (p);
4747 n = constrain_operands (1);
4750 /* If the constraints were not met, then
4751 undo the replacement, else confirm it. */
4752 if (!n)
4753 cancel_changes (0);
4754 else
4755 confirm_change_group ();
4757 break;
4759 if (n == 1)
4761 add_reg_note (p, REG_INC, reload_reg);
4762 /* Mark this as having an output reload so that the
4763 REG_INC processing code below won't invalidate
4764 the reload for inheritance. */
4765 SET_HARD_REG_BIT (reg_is_output_reload,
4766 REGNO (reload_reg));
4767 SET_REGNO_REG_SET (&reg_has_output_reload,
4768 REGNO (XEXP (in_reg, 0)));
4770 else
4771 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4772 NULL);
4774 else if ((code == PRE_INC || code == PRE_DEC)
4775 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4776 REGNO (rld[i].reg_rtx))
4777 /* Make sure it is the inc/dec pseudo, and not
4778 some other (e.g. output operand) pseudo. */
4779 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4780 == REGNO (XEXP (in_reg, 0))))
4782 SET_HARD_REG_BIT (reg_is_output_reload,
4783 REGNO (rld[i].reg_rtx));
4784 SET_REGNO_REG_SET (&reg_has_output_reload,
4785 REGNO (XEXP (in_reg, 0)));
4787 else if (code == PRE_INC || code == PRE_DEC
4788 || code == POST_INC || code == POST_DEC)
4790 int in_regno = REGNO (XEXP (in_reg, 0));
4792 if (reg_last_reload_reg[in_regno] != NULL_RTX)
4794 int in_hard_regno;
4795 bool forget_p = true;
4797 in_hard_regno = REGNO (reg_last_reload_reg[in_regno]);
4798 if (TEST_HARD_REG_BIT (reg_reloaded_valid,
4799 in_hard_regno))
4801 for (x = old_prev ? NEXT_INSN (old_prev) : insn;
4802 x != old_next;
4803 x = NEXT_INSN (x))
4804 if (x == reg_reloaded_insn[in_hard_regno])
4806 forget_p = false;
4807 break;
4810 /* If for some reasons, we didn't set up
4811 reg_last_reload_reg in this insn,
4812 invalidate inheritance from previous
4813 insns for the incremented/decremented
4814 register. Such registers will be not in
4815 reg_has_output_reload. Invalidate it
4816 also if the corresponding element in
4817 reg_reloaded_insn is also
4818 invalidated. */
4819 if (forget_p)
4820 forget_old_reloads_1 (XEXP (in_reg, 0),
4821 NULL_RTX, NULL);
4826 /* If a pseudo that got a hard register is auto-incremented,
4827 we must purge records of copying it into pseudos without
4828 hard registers. */
4829 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
4830 if (REG_NOTE_KIND (x) == REG_INC)
4832 /* See if this pseudo reg was reloaded in this insn.
4833 If so, its last-reload info is still valid
4834 because it is based on this insn's reload. */
4835 for (i = 0; i < n_reloads; i++)
4836 if (rld[i].out == XEXP (x, 0))
4837 break;
4839 if (i == n_reloads)
4840 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4842 #endif
4844 /* A reload reg's contents are unknown after a label. */
4845 if (LABEL_P (insn))
4846 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4848 /* Don't assume a reload reg is still good after a call insn
4849 if it is a call-used reg, or if it contains a value that will
4850 be partially clobbered by the call. */
4851 else if (CALL_P (insn))
4853 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4854 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
4856 /* If this is a call to a setjmp-type function, we must not
4857 reuse any reload reg contents across the call; that will
4858 just be clobbered by other uses of the register in later
4859 code, before the longjmp. */
4860 if (find_reg_note (insn, REG_SETJMP, NULL_RTX))
4861 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4865 /* Clean up. */
4866 free (reg_last_reload_reg);
4867 CLEAR_REG_SET (&reg_has_output_reload);
4870 /* Discard all record of any value reloaded from X,
4871 or reloaded in X from someplace else;
4872 unless X is an output reload reg of the current insn.
4874 X may be a hard reg (the reload reg)
4875 or it may be a pseudo reg that was reloaded from.
4877 When DATA is non-NULL just mark the registers in regset
4878 to be forgotten later. */
4880 static void
4881 forget_old_reloads_1 (rtx x, const_rtx ignored ATTRIBUTE_UNUSED,
4882 void *data)
4884 unsigned int regno;
4885 unsigned int nr;
4886 regset regs = (regset) data;
4888 /* note_stores does give us subregs of hard regs,
4889 subreg_regno_offset requires a hard reg. */
4890 while (GET_CODE (x) == SUBREG)
4892 /* We ignore the subreg offset when calculating the regno,
4893 because we are using the entire underlying hard register
4894 below. */
4895 x = SUBREG_REG (x);
4898 if (!REG_P (x))
4899 return;
4901 regno = REGNO (x);
4903 if (regno >= FIRST_PSEUDO_REGISTER)
4904 nr = 1;
4905 else
4907 unsigned int i;
4909 nr = hard_regno_nregs[regno][GET_MODE (x)];
4910 /* Storing into a spilled-reg invalidates its contents.
4911 This can happen if a block-local pseudo is allocated to that reg
4912 and it wasn't spilled because this block's total need is 0.
4913 Then some insn might have an optional reload and use this reg. */
4914 if (!regs)
4915 for (i = 0; i < nr; i++)
4916 /* But don't do this if the reg actually serves as an output
4917 reload reg in the current instruction. */
4918 if (n_reloads == 0
4919 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4921 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4922 spill_reg_store[regno + i] = 0;
4926 if (regs)
4927 while (nr-- > 0)
4928 SET_REGNO_REG_SET (regs, regno + nr);
4929 else
4931 /* Since value of X has changed,
4932 forget any value previously copied from it. */
4934 while (nr-- > 0)
4935 /* But don't forget a copy if this is the output reload
4936 that establishes the copy's validity. */
4937 if (n_reloads == 0
4938 || !REGNO_REG_SET_P (&reg_has_output_reload, regno + nr))
4939 reg_last_reload_reg[regno + nr] = 0;
4943 /* Forget the reloads marked in regset by previous function. */
4944 static void
4945 forget_marked_reloads (regset regs)
4947 unsigned int reg;
4948 reg_set_iterator rsi;
4949 EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
4951 if (reg < FIRST_PSEUDO_REGISTER
4952 /* But don't do this if the reg actually serves as an output
4953 reload reg in the current instruction. */
4954 && (n_reloads == 0
4955 || ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
4957 CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
4958 spill_reg_store[reg] = 0;
4960 if (n_reloads == 0
4961 || !REGNO_REG_SET_P (&reg_has_output_reload, reg))
4962 reg_last_reload_reg[reg] = 0;
4966 /* The following HARD_REG_SETs indicate when each hard register is
4967 used for a reload of various parts of the current insn. */
4969 /* If reg is unavailable for all reloads. */
4970 static HARD_REG_SET reload_reg_unavailable;
4971 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4972 static HARD_REG_SET reload_reg_used;
4973 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4974 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4975 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4976 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4977 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4978 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4979 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4980 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4981 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4982 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4983 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4984 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
4985 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4986 static HARD_REG_SET reload_reg_used_in_op_addr;
4987 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4988 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
4989 /* If reg is in use for a RELOAD_FOR_INSN reload. */
4990 static HARD_REG_SET reload_reg_used_in_insn;
4991 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4992 static HARD_REG_SET reload_reg_used_in_other_addr;
4994 /* If reg is in use as a reload reg for any sort of reload. */
4995 static HARD_REG_SET reload_reg_used_at_all;
4997 /* If reg is use as an inherited reload. We just mark the first register
4998 in the group. */
4999 static HARD_REG_SET reload_reg_used_for_inherit;
5001 /* Records which hard regs are used in any way, either as explicit use or
5002 by being allocated to a pseudo during any point of the current insn. */
5003 static HARD_REG_SET reg_used_in_insn;
5005 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
5006 TYPE. MODE is used to indicate how many consecutive regs are
5007 actually used. */
5009 static void
5010 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
5011 enum machine_mode mode)
5013 switch (type)
5015 case RELOAD_OTHER:
5016 add_to_hard_reg_set (&reload_reg_used, mode, regno);
5017 break;
5019 case RELOAD_FOR_INPUT_ADDRESS:
5020 add_to_hard_reg_set (&reload_reg_used_in_input_addr[opnum], mode, regno);
5021 break;
5023 case RELOAD_FOR_INPADDR_ADDRESS:
5024 add_to_hard_reg_set (&reload_reg_used_in_inpaddr_addr[opnum], mode, regno);
5025 break;
5027 case RELOAD_FOR_OUTPUT_ADDRESS:
5028 add_to_hard_reg_set (&reload_reg_used_in_output_addr[opnum], mode, regno);
5029 break;
5031 case RELOAD_FOR_OUTADDR_ADDRESS:
5032 add_to_hard_reg_set (&reload_reg_used_in_outaddr_addr[opnum], mode, regno);
5033 break;
5035 case RELOAD_FOR_OPERAND_ADDRESS:
5036 add_to_hard_reg_set (&reload_reg_used_in_op_addr, mode, regno);
5037 break;
5039 case RELOAD_FOR_OPADDR_ADDR:
5040 add_to_hard_reg_set (&reload_reg_used_in_op_addr_reload, mode, regno);
5041 break;
5043 case RELOAD_FOR_OTHER_ADDRESS:
5044 add_to_hard_reg_set (&reload_reg_used_in_other_addr, mode, regno);
5045 break;
5047 case RELOAD_FOR_INPUT:
5048 add_to_hard_reg_set (&reload_reg_used_in_input[opnum], mode, regno);
5049 break;
5051 case RELOAD_FOR_OUTPUT:
5052 add_to_hard_reg_set (&reload_reg_used_in_output[opnum], mode, regno);
5053 break;
5055 case RELOAD_FOR_INSN:
5056 add_to_hard_reg_set (&reload_reg_used_in_insn, mode, regno);
5057 break;
5060 add_to_hard_reg_set (&reload_reg_used_at_all, mode, regno);
5063 /* Similarly, but show REGNO is no longer in use for a reload. */
5065 static void
5066 clear_reload_reg_in_use (unsigned int regno, int opnum,
5067 enum reload_type type, enum machine_mode mode)
5069 unsigned int nregs = hard_regno_nregs[regno][mode];
5070 unsigned int start_regno, end_regno, r;
5071 int i;
5072 /* A complication is that for some reload types, inheritance might
5073 allow multiple reloads of the same types to share a reload register.
5074 We set check_opnum if we have to check only reloads with the same
5075 operand number, and check_any if we have to check all reloads. */
5076 int check_opnum = 0;
5077 int check_any = 0;
5078 HARD_REG_SET *used_in_set;
5080 switch (type)
5082 case RELOAD_OTHER:
5083 used_in_set = &reload_reg_used;
5084 break;
5086 case RELOAD_FOR_INPUT_ADDRESS:
5087 used_in_set = &reload_reg_used_in_input_addr[opnum];
5088 break;
5090 case RELOAD_FOR_INPADDR_ADDRESS:
5091 check_opnum = 1;
5092 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
5093 break;
5095 case RELOAD_FOR_OUTPUT_ADDRESS:
5096 used_in_set = &reload_reg_used_in_output_addr[opnum];
5097 break;
5099 case RELOAD_FOR_OUTADDR_ADDRESS:
5100 check_opnum = 1;
5101 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
5102 break;
5104 case RELOAD_FOR_OPERAND_ADDRESS:
5105 used_in_set = &reload_reg_used_in_op_addr;
5106 break;
5108 case RELOAD_FOR_OPADDR_ADDR:
5109 check_any = 1;
5110 used_in_set = &reload_reg_used_in_op_addr_reload;
5111 break;
5113 case RELOAD_FOR_OTHER_ADDRESS:
5114 used_in_set = &reload_reg_used_in_other_addr;
5115 check_any = 1;
5116 break;
5118 case RELOAD_FOR_INPUT:
5119 used_in_set = &reload_reg_used_in_input[opnum];
5120 break;
5122 case RELOAD_FOR_OUTPUT:
5123 used_in_set = &reload_reg_used_in_output[opnum];
5124 break;
5126 case RELOAD_FOR_INSN:
5127 used_in_set = &reload_reg_used_in_insn;
5128 break;
5129 default:
5130 gcc_unreachable ();
5132 /* We resolve conflicts with remaining reloads of the same type by
5133 excluding the intervals of reload registers by them from the
5134 interval of freed reload registers. Since we only keep track of
5135 one set of interval bounds, we might have to exclude somewhat
5136 more than what would be necessary if we used a HARD_REG_SET here.
5137 But this should only happen very infrequently, so there should
5138 be no reason to worry about it. */
5140 start_regno = regno;
5141 end_regno = regno + nregs;
5142 if (check_opnum || check_any)
5144 for (i = n_reloads - 1; i >= 0; i--)
5146 if (rld[i].when_needed == type
5147 && (check_any || rld[i].opnum == opnum)
5148 && rld[i].reg_rtx)
5150 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
5151 unsigned int conflict_end
5152 = end_hard_regno (rld[i].mode, conflict_start);
5154 /* If there is an overlap with the first to-be-freed register,
5155 adjust the interval start. */
5156 if (conflict_start <= start_regno && conflict_end > start_regno)
5157 start_regno = conflict_end;
5158 /* Otherwise, if there is a conflict with one of the other
5159 to-be-freed registers, adjust the interval end. */
5160 if (conflict_start > start_regno && conflict_start < end_regno)
5161 end_regno = conflict_start;
5166 for (r = start_regno; r < end_regno; r++)
5167 CLEAR_HARD_REG_BIT (*used_in_set, r);
5170 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
5171 specified by OPNUM and TYPE. */
5173 static int
5174 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
5176 int i;
5178 /* In use for a RELOAD_OTHER means it's not available for anything. */
5179 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
5180 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5181 return 0;
5183 switch (type)
5185 case RELOAD_OTHER:
5186 /* In use for anything means we can't use it for RELOAD_OTHER. */
5187 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
5188 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5189 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5190 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5191 return 0;
5193 for (i = 0; i < reload_n_operands; i++)
5194 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5195 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5196 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5197 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5198 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5199 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5200 return 0;
5202 return 1;
5204 case RELOAD_FOR_INPUT:
5205 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5206 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
5207 return 0;
5209 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5210 return 0;
5212 /* If it is used for some other input, can't use it. */
5213 for (i = 0; i < reload_n_operands; i++)
5214 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5215 return 0;
5217 /* If it is used in a later operand's address, can't use it. */
5218 for (i = opnum + 1; i < reload_n_operands; i++)
5219 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5220 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5221 return 0;
5223 return 1;
5225 case RELOAD_FOR_INPUT_ADDRESS:
5226 /* Can't use a register if it is used for an input address for this
5227 operand or used as an input in an earlier one. */
5228 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
5229 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5230 return 0;
5232 for (i = 0; i < opnum; i++)
5233 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5234 return 0;
5236 return 1;
5238 case RELOAD_FOR_INPADDR_ADDRESS:
5239 /* Can't use a register if it is used for an input address
5240 for this operand or used as an input in an earlier
5241 one. */
5242 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5243 return 0;
5245 for (i = 0; i < opnum; i++)
5246 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5247 return 0;
5249 return 1;
5251 case RELOAD_FOR_OUTPUT_ADDRESS:
5252 /* Can't use a register if it is used for an output address for this
5253 operand or used as an output in this or a later operand. Note
5254 that multiple output operands are emitted in reverse order, so
5255 the conflicting ones are those with lower indices. */
5256 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
5257 return 0;
5259 for (i = 0; i <= opnum; i++)
5260 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5261 return 0;
5263 return 1;
5265 case RELOAD_FOR_OUTADDR_ADDRESS:
5266 /* Can't use a register if it is used for an output address
5267 for this operand or used as an output in this or a
5268 later operand. Note that multiple output operands are
5269 emitted in reverse order, so the conflicting ones are
5270 those with lower indices. */
5271 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5272 return 0;
5274 for (i = 0; i <= opnum; i++)
5275 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5276 return 0;
5278 return 1;
5280 case RELOAD_FOR_OPERAND_ADDRESS:
5281 for (i = 0; i < reload_n_operands; i++)
5282 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5283 return 0;
5285 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5286 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5288 case RELOAD_FOR_OPADDR_ADDR:
5289 for (i = 0; i < reload_n_operands; i++)
5290 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5291 return 0;
5293 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
5295 case RELOAD_FOR_OUTPUT:
5296 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
5297 outputs, or an operand address for this or an earlier output.
5298 Note that multiple output operands are emitted in reverse order,
5299 so the conflicting ones are those with higher indices. */
5300 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5301 return 0;
5303 for (i = 0; i < reload_n_operands; i++)
5304 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5305 return 0;
5307 for (i = opnum; i < reload_n_operands; i++)
5308 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5309 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5310 return 0;
5312 return 1;
5314 case RELOAD_FOR_INSN:
5315 for (i = 0; i < reload_n_operands; i++)
5316 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5317 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5318 return 0;
5320 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5321 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5323 case RELOAD_FOR_OTHER_ADDRESS:
5324 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
5326 default:
5327 gcc_unreachable ();
5331 /* Return 1 if the value in reload reg REGNO, as used by a reload
5332 needed for the part of the insn specified by OPNUM and TYPE,
5333 is still available in REGNO at the end of the insn.
5335 We can assume that the reload reg was already tested for availability
5336 at the time it is needed, and we should not check this again,
5337 in case the reg has already been marked in use. */
5339 static int
5340 reload_reg_reaches_end_p (unsigned int regno, int opnum, enum reload_type type)
5342 int i;
5344 switch (type)
5346 case RELOAD_OTHER:
5347 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
5348 its value must reach the end. */
5349 return 1;
5351 /* If this use is for part of the insn,
5352 its value reaches if no subsequent part uses the same register.
5353 Just like the above function, don't try to do this with lots
5354 of fallthroughs. */
5356 case RELOAD_FOR_OTHER_ADDRESS:
5357 /* Here we check for everything else, since these don't conflict
5358 with anything else and everything comes later. */
5360 for (i = 0; i < reload_n_operands; i++)
5361 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5362 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5363 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
5364 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5365 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5366 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5367 return 0;
5369 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5370 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5371 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5372 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
5374 case RELOAD_FOR_INPUT_ADDRESS:
5375 case RELOAD_FOR_INPADDR_ADDRESS:
5376 /* Similar, except that we check only for this and subsequent inputs
5377 and the address of only subsequent inputs and we do not need
5378 to check for RELOAD_OTHER objects since they are known not to
5379 conflict. */
5381 for (i = opnum; i < reload_n_operands; i++)
5382 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5383 return 0;
5385 for (i = opnum + 1; i < reload_n_operands; i++)
5386 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5387 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5388 return 0;
5390 for (i = 0; i < reload_n_operands; i++)
5391 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5392 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5393 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5394 return 0;
5396 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5397 return 0;
5399 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5400 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5401 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5403 case RELOAD_FOR_INPUT:
5404 /* Similar to input address, except we start at the next operand for
5405 both input and input address and we do not check for
5406 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
5407 would conflict. */
5409 for (i = opnum + 1; i < reload_n_operands; i++)
5410 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5411 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5412 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5413 return 0;
5415 /* ... fall through ... */
5417 case RELOAD_FOR_OPERAND_ADDRESS:
5418 /* Check outputs and their addresses. */
5420 for (i = 0; i < reload_n_operands; i++)
5421 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5422 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5423 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5424 return 0;
5426 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
5428 case RELOAD_FOR_OPADDR_ADDR:
5429 for (i = 0; i < reload_n_operands; i++)
5430 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5431 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5432 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5433 return 0;
5435 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5436 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5437 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5439 case RELOAD_FOR_INSN:
5440 /* These conflict with other outputs with RELOAD_OTHER. So
5441 we need only check for output addresses. */
5443 opnum = reload_n_operands;
5445 /* ... fall through ... */
5447 case RELOAD_FOR_OUTPUT:
5448 case RELOAD_FOR_OUTPUT_ADDRESS:
5449 case RELOAD_FOR_OUTADDR_ADDRESS:
5450 /* We already know these can't conflict with a later output. So the
5451 only thing to check are later output addresses.
5452 Note that multiple output operands are emitted in reverse order,
5453 so the conflicting ones are those with lower indices. */
5454 for (i = 0; i < opnum; i++)
5455 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5456 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5457 return 0;
5459 return 1;
5461 default:
5462 gcc_unreachable ();
5466 /* Like reload_reg_reaches_end_p, but check that the condition holds for
5467 every register in the range [REGNO, REGNO + NREGS). */
5469 static bool
5470 reload_regs_reach_end_p (unsigned int regno, int nregs,
5471 int opnum, enum reload_type type)
5473 int i;
5475 for (i = 0; i < nregs; i++)
5476 if (!reload_reg_reaches_end_p (regno + i, opnum, type))
5477 return false;
5478 return true;
5482 /* Returns whether R1 and R2 are uniquely chained: the value of one
5483 is used by the other, and that value is not used by any other
5484 reload for this insn. This is used to partially undo the decision
5485 made in find_reloads when in the case of multiple
5486 RELOAD_FOR_OPERAND_ADDRESS reloads it converts all
5487 RELOAD_FOR_OPADDR_ADDR reloads into RELOAD_FOR_OPERAND_ADDRESS
5488 reloads. This code tries to avoid the conflict created by that
5489 change. It might be cleaner to explicitly keep track of which
5490 RELOAD_FOR_OPADDR_ADDR reload is associated with which
5491 RELOAD_FOR_OPERAND_ADDRESS reload, rather than to try to detect
5492 this after the fact. */
5493 static bool
5494 reloads_unique_chain_p (int r1, int r2)
5496 int i;
5498 /* We only check input reloads. */
5499 if (! rld[r1].in || ! rld[r2].in)
5500 return false;
5502 /* Avoid anything with output reloads. */
5503 if (rld[r1].out || rld[r2].out)
5504 return false;
5506 /* "chained" means one reload is a component of the other reload,
5507 not the same as the other reload. */
5508 if (rld[r1].opnum != rld[r2].opnum
5509 || rtx_equal_p (rld[r1].in, rld[r2].in)
5510 || rld[r1].optional || rld[r2].optional
5511 || ! (reg_mentioned_p (rld[r1].in, rld[r2].in)
5512 || reg_mentioned_p (rld[r2].in, rld[r1].in)))
5513 return false;
5515 for (i = 0; i < n_reloads; i ++)
5516 /* Look for input reloads that aren't our two */
5517 if (i != r1 && i != r2 && rld[i].in)
5519 /* If our reload is mentioned at all, it isn't a simple chain. */
5520 if (reg_mentioned_p (rld[r1].in, rld[i].in))
5521 return false;
5523 return true;
5526 /* The recursive function change all occurrences of WHAT in *WHERE
5527 to REPL. */
5528 static void
5529 substitute (rtx *where, const_rtx what, rtx repl)
5531 const char *fmt;
5532 int i;
5533 enum rtx_code code;
5535 if (*where == 0)
5536 return;
5538 if (*where == what || rtx_equal_p (*where, what))
5540 /* Record the location of the changed rtx. */
5541 VEC_safe_push (rtx_p, heap, substitute_stack, where);
5542 *where = repl;
5543 return;
5546 code = GET_CODE (*where);
5547 fmt = GET_RTX_FORMAT (code);
5548 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5550 if (fmt[i] == 'E')
5552 int j;
5554 for (j = XVECLEN (*where, i) - 1; j >= 0; j--)
5555 substitute (&XVECEXP (*where, i, j), what, repl);
5557 else if (fmt[i] == 'e')
5558 substitute (&XEXP (*where, i), what, repl);
5562 /* The function returns TRUE if chain of reload R1 and R2 (in any
5563 order) can be evaluated without usage of intermediate register for
5564 the reload containing another reload. It is important to see
5565 gen_reload to understand what the function is trying to do. As an
5566 example, let us have reload chain
5568 r2: const
5569 r1: <something> + const
5571 and reload R2 got reload reg HR. The function returns true if
5572 there is a correct insn HR = HR + <something>. Otherwise,
5573 gen_reload will use intermediate register (and this is the reload
5574 reg for R1) to reload <something>.
5576 We need this function to find a conflict for chain reloads. In our
5577 example, if HR = HR + <something> is incorrect insn, then we cannot
5578 use HR as a reload register for R2. If we do use it then we get a
5579 wrong code:
5581 HR = const
5582 HR = <something>
5583 HR = HR + HR
5586 static bool
5587 gen_reload_chain_without_interm_reg_p (int r1, int r2)
5589 /* Assume other cases in gen_reload are not possible for
5590 chain reloads or do need an intermediate hard registers. */
5591 bool result = true;
5592 int regno, n, code;
5593 rtx out, in, insn;
5594 rtx last = get_last_insn ();
5596 /* Make r2 a component of r1. */
5597 if (reg_mentioned_p (rld[r1].in, rld[r2].in))
5599 n = r1;
5600 r1 = r2;
5601 r2 = n;
5603 gcc_assert (reg_mentioned_p (rld[r2].in, rld[r1].in));
5604 regno = rld[r1].regno >= 0 ? rld[r1].regno : rld[r2].regno;
5605 gcc_assert (regno >= 0);
5606 out = gen_rtx_REG (rld[r1].mode, regno);
5607 in = rld[r1].in;
5608 substitute (&in, rld[r2].in, gen_rtx_REG (rld[r2].mode, regno));
5610 /* If IN is a paradoxical SUBREG, remove it and try to put the
5611 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
5612 strip_paradoxical_subreg (&in, &out);
5614 if (GET_CODE (in) == PLUS
5615 && (REG_P (XEXP (in, 0))
5616 || GET_CODE (XEXP (in, 0)) == SUBREG
5617 || MEM_P (XEXP (in, 0)))
5618 && (REG_P (XEXP (in, 1))
5619 || GET_CODE (XEXP (in, 1)) == SUBREG
5620 || CONSTANT_P (XEXP (in, 1))
5621 || MEM_P (XEXP (in, 1))))
5623 insn = emit_insn (gen_rtx_SET (VOIDmode, out, in));
5624 code = recog_memoized (insn);
5625 result = false;
5627 if (code >= 0)
5629 extract_insn (insn);
5630 /* We want constrain operands to treat this insn strictly in
5631 its validity determination, i.e., the way it would after
5632 reload has completed. */
5633 result = constrain_operands (1);
5636 delete_insns_since (last);
5639 /* Restore the original value at each changed address within R1. */
5640 while (!VEC_empty (rtx_p, substitute_stack))
5642 rtx *where = VEC_pop (rtx_p, substitute_stack);
5643 *where = rld[r2].in;
5646 return result;
5649 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
5650 Return 0 otherwise.
5652 This function uses the same algorithm as reload_reg_free_p above. */
5654 static int
5655 reloads_conflict (int r1, int r2)
5657 enum reload_type r1_type = rld[r1].when_needed;
5658 enum reload_type r2_type = rld[r2].when_needed;
5659 int r1_opnum = rld[r1].opnum;
5660 int r2_opnum = rld[r2].opnum;
5662 /* RELOAD_OTHER conflicts with everything. */
5663 if (r2_type == RELOAD_OTHER)
5664 return 1;
5666 /* Otherwise, check conflicts differently for each type. */
5668 switch (r1_type)
5670 case RELOAD_FOR_INPUT:
5671 return (r2_type == RELOAD_FOR_INSN
5672 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
5673 || r2_type == RELOAD_FOR_OPADDR_ADDR
5674 || r2_type == RELOAD_FOR_INPUT
5675 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
5676 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
5677 && r2_opnum > r1_opnum));
5679 case RELOAD_FOR_INPUT_ADDRESS:
5680 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
5681 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5683 case RELOAD_FOR_INPADDR_ADDRESS:
5684 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
5685 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5687 case RELOAD_FOR_OUTPUT_ADDRESS:
5688 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
5689 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5691 case RELOAD_FOR_OUTADDR_ADDRESS:
5692 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
5693 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5695 case RELOAD_FOR_OPERAND_ADDRESS:
5696 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
5697 || (r2_type == RELOAD_FOR_OPERAND_ADDRESS
5698 && (!reloads_unique_chain_p (r1, r2)
5699 || !gen_reload_chain_without_interm_reg_p (r1, r2))));
5701 case RELOAD_FOR_OPADDR_ADDR:
5702 return (r2_type == RELOAD_FOR_INPUT
5703 || r2_type == RELOAD_FOR_OPADDR_ADDR);
5705 case RELOAD_FOR_OUTPUT:
5706 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
5707 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
5708 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
5709 && r2_opnum >= r1_opnum));
5711 case RELOAD_FOR_INSN:
5712 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
5713 || r2_type == RELOAD_FOR_INSN
5714 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
5716 case RELOAD_FOR_OTHER_ADDRESS:
5717 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
5719 case RELOAD_OTHER:
5720 return 1;
5722 default:
5723 gcc_unreachable ();
5727 /* Indexed by reload number, 1 if incoming value
5728 inherited from previous insns. */
5729 static char reload_inherited[MAX_RELOADS];
5731 /* For an inherited reload, this is the insn the reload was inherited from,
5732 if we know it. Otherwise, this is 0. */
5733 static rtx reload_inheritance_insn[MAX_RELOADS];
5735 /* If nonzero, this is a place to get the value of the reload,
5736 rather than using reload_in. */
5737 static rtx reload_override_in[MAX_RELOADS];
5739 /* For each reload, the hard register number of the register used,
5740 or -1 if we did not need a register for this reload. */
5741 static int reload_spill_index[MAX_RELOADS];
5743 /* Index X is the value of rld[X].reg_rtx, adjusted for the input mode. */
5744 static rtx reload_reg_rtx_for_input[MAX_RELOADS];
5746 /* Index X is the value of rld[X].reg_rtx, adjusted for the output mode. */
5747 static rtx reload_reg_rtx_for_output[MAX_RELOADS];
5749 /* Subroutine of free_for_value_p, used to check a single register.
5750 START_REGNO is the starting regno of the full reload register
5751 (possibly comprising multiple hard registers) that we are considering. */
5753 static int
5754 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
5755 enum reload_type type, rtx value, rtx out,
5756 int reloadnum, int ignore_address_reloads)
5758 int time1;
5759 /* Set if we see an input reload that must not share its reload register
5760 with any new earlyclobber, but might otherwise share the reload
5761 register with an output or input-output reload. */
5762 int check_earlyclobber = 0;
5763 int i;
5764 int copy = 0;
5766 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5767 return 0;
5769 if (out == const0_rtx)
5771 copy = 1;
5772 out = NULL_RTX;
5775 /* We use some pseudo 'time' value to check if the lifetimes of the
5776 new register use would overlap with the one of a previous reload
5777 that is not read-only or uses a different value.
5778 The 'time' used doesn't have to be linear in any shape or form, just
5779 monotonic.
5780 Some reload types use different 'buckets' for each operand.
5781 So there are MAX_RECOG_OPERANDS different time values for each
5782 such reload type.
5783 We compute TIME1 as the time when the register for the prospective
5784 new reload ceases to be live, and TIME2 for each existing
5785 reload as the time when that the reload register of that reload
5786 becomes live.
5787 Where there is little to be gained by exact lifetime calculations,
5788 we just make conservative assumptions, i.e. a longer lifetime;
5789 this is done in the 'default:' cases. */
5790 switch (type)
5792 case RELOAD_FOR_OTHER_ADDRESS:
5793 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
5794 time1 = copy ? 0 : 1;
5795 break;
5796 case RELOAD_OTHER:
5797 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
5798 break;
5799 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
5800 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
5801 respectively, to the time values for these, we get distinct time
5802 values. To get distinct time values for each operand, we have to
5803 multiply opnum by at least three. We round that up to four because
5804 multiply by four is often cheaper. */
5805 case RELOAD_FOR_INPADDR_ADDRESS:
5806 time1 = opnum * 4 + 2;
5807 break;
5808 case RELOAD_FOR_INPUT_ADDRESS:
5809 time1 = opnum * 4 + 3;
5810 break;
5811 case RELOAD_FOR_INPUT:
5812 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
5813 executes (inclusive). */
5814 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
5815 break;
5816 case RELOAD_FOR_OPADDR_ADDR:
5817 /* opnum * 4 + 4
5818 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
5819 time1 = MAX_RECOG_OPERANDS * 4 + 1;
5820 break;
5821 case RELOAD_FOR_OPERAND_ADDRESS:
5822 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
5823 is executed. */
5824 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
5825 break;
5826 case RELOAD_FOR_OUTADDR_ADDRESS:
5827 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
5828 break;
5829 case RELOAD_FOR_OUTPUT_ADDRESS:
5830 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
5831 break;
5832 default:
5833 time1 = MAX_RECOG_OPERANDS * 5 + 5;
5836 for (i = 0; i < n_reloads; i++)
5838 rtx reg = rld[i].reg_rtx;
5839 if (reg && REG_P (reg)
5840 && ((unsigned) regno - true_regnum (reg)
5841 <= hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] - (unsigned) 1)
5842 && i != reloadnum)
5844 rtx other_input = rld[i].in;
5846 /* If the other reload loads the same input value, that
5847 will not cause a conflict only if it's loading it into
5848 the same register. */
5849 if (true_regnum (reg) != start_regno)
5850 other_input = NULL_RTX;
5851 if (! other_input || ! rtx_equal_p (other_input, value)
5852 || rld[i].out || out)
5854 int time2;
5855 switch (rld[i].when_needed)
5857 case RELOAD_FOR_OTHER_ADDRESS:
5858 time2 = 0;
5859 break;
5860 case RELOAD_FOR_INPADDR_ADDRESS:
5861 /* find_reloads makes sure that a
5862 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
5863 by at most one - the first -
5864 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
5865 address reload is inherited, the address address reload
5866 goes away, so we can ignore this conflict. */
5867 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
5868 && ignore_address_reloads
5869 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
5870 Then the address address is still needed to store
5871 back the new address. */
5872 && ! rld[reloadnum].out)
5873 continue;
5874 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
5875 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
5876 reloads go away. */
5877 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5878 && ignore_address_reloads
5879 /* Unless we are reloading an auto_inc expression. */
5880 && ! rld[reloadnum].out)
5881 continue;
5882 time2 = rld[i].opnum * 4 + 2;
5883 break;
5884 case RELOAD_FOR_INPUT_ADDRESS:
5885 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5886 && ignore_address_reloads
5887 && ! rld[reloadnum].out)
5888 continue;
5889 time2 = rld[i].opnum * 4 + 3;
5890 break;
5891 case RELOAD_FOR_INPUT:
5892 time2 = rld[i].opnum * 4 + 4;
5893 check_earlyclobber = 1;
5894 break;
5895 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
5896 == MAX_RECOG_OPERAND * 4 */
5897 case RELOAD_FOR_OPADDR_ADDR:
5898 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
5899 && ignore_address_reloads
5900 && ! rld[reloadnum].out)
5901 continue;
5902 time2 = MAX_RECOG_OPERANDS * 4 + 1;
5903 break;
5904 case RELOAD_FOR_OPERAND_ADDRESS:
5905 time2 = MAX_RECOG_OPERANDS * 4 + 2;
5906 check_earlyclobber = 1;
5907 break;
5908 case RELOAD_FOR_INSN:
5909 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5910 break;
5911 case RELOAD_FOR_OUTPUT:
5912 /* All RELOAD_FOR_OUTPUT reloads become live just after the
5913 instruction is executed. */
5914 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5915 break;
5916 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
5917 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
5918 value. */
5919 case RELOAD_FOR_OUTADDR_ADDRESS:
5920 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
5921 && ignore_address_reloads
5922 && ! rld[reloadnum].out)
5923 continue;
5924 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
5925 break;
5926 case RELOAD_FOR_OUTPUT_ADDRESS:
5927 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
5928 break;
5929 case RELOAD_OTHER:
5930 /* If there is no conflict in the input part, handle this
5931 like an output reload. */
5932 if (! rld[i].in || rtx_equal_p (other_input, value))
5934 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5935 /* Earlyclobbered outputs must conflict with inputs. */
5936 if (earlyclobber_operand_p (rld[i].out))
5937 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5939 break;
5941 time2 = 1;
5942 /* RELOAD_OTHER might be live beyond instruction execution,
5943 but this is not obvious when we set time2 = 1. So check
5944 here if there might be a problem with the new reload
5945 clobbering the register used by the RELOAD_OTHER. */
5946 if (out)
5947 return 0;
5948 break;
5949 default:
5950 return 0;
5952 if ((time1 >= time2
5953 && (! rld[i].in || rld[i].out
5954 || ! rtx_equal_p (other_input, value)))
5955 || (out && rld[reloadnum].out_reg
5956 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
5957 return 0;
5962 /* Earlyclobbered outputs must conflict with inputs. */
5963 if (check_earlyclobber && out && earlyclobber_operand_p (out))
5964 return 0;
5966 return 1;
5969 /* Return 1 if the value in reload reg REGNO, as used by a reload
5970 needed for the part of the insn specified by OPNUM and TYPE,
5971 may be used to load VALUE into it.
5973 MODE is the mode in which the register is used, this is needed to
5974 determine how many hard regs to test.
5976 Other read-only reloads with the same value do not conflict
5977 unless OUT is nonzero and these other reloads have to live while
5978 output reloads live.
5979 If OUT is CONST0_RTX, this is a special case: it means that the
5980 test should not be for using register REGNO as reload register, but
5981 for copying from register REGNO into the reload register.
5983 RELOADNUM is the number of the reload we want to load this value for;
5984 a reload does not conflict with itself.
5986 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
5987 reloads that load an address for the very reload we are considering.
5989 The caller has to make sure that there is no conflict with the return
5990 register. */
5992 static int
5993 free_for_value_p (int regno, enum machine_mode mode, int opnum,
5994 enum reload_type type, rtx value, rtx out, int reloadnum,
5995 int ignore_address_reloads)
5997 int nregs = hard_regno_nregs[regno][mode];
5998 while (nregs-- > 0)
5999 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
6000 value, out, reloadnum,
6001 ignore_address_reloads))
6002 return 0;
6003 return 1;
6006 /* Return nonzero if the rtx X is invariant over the current function. */
6007 /* ??? Actually, the places where we use this expect exactly what is
6008 tested here, and not everything that is function invariant. In
6009 particular, the frame pointer and arg pointer are special cased;
6010 pic_offset_table_rtx is not, and we must not spill these things to
6011 memory. */
6014 function_invariant_p (const_rtx x)
6016 if (CONSTANT_P (x))
6017 return 1;
6018 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
6019 return 1;
6020 if (GET_CODE (x) == PLUS
6021 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
6022 && GET_CODE (XEXP (x, 1)) == CONST_INT)
6023 return 1;
6024 return 0;
6027 /* Determine whether the reload reg X overlaps any rtx'es used for
6028 overriding inheritance. Return nonzero if so. */
6030 static int
6031 conflicts_with_override (rtx x)
6033 int i;
6034 for (i = 0; i < n_reloads; i++)
6035 if (reload_override_in[i]
6036 && reg_overlap_mentioned_p (x, reload_override_in[i]))
6037 return 1;
6038 return 0;
6041 /* Give an error message saying we failed to find a reload for INSN,
6042 and clear out reload R. */
6043 static void
6044 failed_reload (rtx insn, int r)
6046 if (asm_noperands (PATTERN (insn)) < 0)
6047 /* It's the compiler's fault. */
6048 fatal_insn ("could not find a spill register", insn);
6050 /* It's the user's fault; the operand's mode and constraint
6051 don't match. Disable this reload so we don't crash in final. */
6052 error_for_asm (insn,
6053 "%<asm%> operand constraint incompatible with operand size");
6054 rld[r].in = 0;
6055 rld[r].out = 0;
6056 rld[r].reg_rtx = 0;
6057 rld[r].optional = 1;
6058 rld[r].secondary_p = 1;
6061 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
6062 for reload R. If it's valid, get an rtx for it. Return nonzero if
6063 successful. */
6064 static int
6065 set_reload_reg (int i, int r)
6067 /* regno is 'set but not used' if HARD_REGNO_MODE_OK doesn't use its first
6068 parameter. */
6069 int regno ATTRIBUTE_UNUSED;
6070 rtx reg = spill_reg_rtx[i];
6072 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
6073 spill_reg_rtx[i] = reg
6074 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
6076 regno = true_regnum (reg);
6078 /* Detect when the reload reg can't hold the reload mode.
6079 This used to be one `if', but Sequent compiler can't handle that. */
6080 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
6082 enum machine_mode test_mode = VOIDmode;
6083 if (rld[r].in)
6084 test_mode = GET_MODE (rld[r].in);
6085 /* If rld[r].in has VOIDmode, it means we will load it
6086 in whatever mode the reload reg has: to wit, rld[r].mode.
6087 We have already tested that for validity. */
6088 /* Aside from that, we need to test that the expressions
6089 to reload from or into have modes which are valid for this
6090 reload register. Otherwise the reload insns would be invalid. */
6091 if (! (rld[r].in != 0 && test_mode != VOIDmode
6092 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
6093 if (! (rld[r].out != 0
6094 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
6096 /* The reg is OK. */
6097 last_spill_reg = i;
6099 /* Mark as in use for this insn the reload regs we use
6100 for this. */
6101 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
6102 rld[r].when_needed, rld[r].mode);
6104 rld[r].reg_rtx = reg;
6105 reload_spill_index[r] = spill_regs[i];
6106 return 1;
6109 return 0;
6112 /* Find a spill register to use as a reload register for reload R.
6113 LAST_RELOAD is nonzero if this is the last reload for the insn being
6114 processed.
6116 Set rld[R].reg_rtx to the register allocated.
6118 We return 1 if successful, or 0 if we couldn't find a spill reg and
6119 we didn't change anything. */
6121 static int
6122 allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
6123 int last_reload)
6125 int i, pass, count;
6127 /* If we put this reload ahead, thinking it is a group,
6128 then insist on finding a group. Otherwise we can grab a
6129 reg that some other reload needs.
6130 (That can happen when we have a 68000 DATA_OR_FP_REG
6131 which is a group of data regs or one fp reg.)
6132 We need not be so restrictive if there are no more reloads
6133 for this insn.
6135 ??? Really it would be nicer to have smarter handling
6136 for that kind of reg class, where a problem like this is normal.
6137 Perhaps those classes should be avoided for reloading
6138 by use of more alternatives. */
6140 int force_group = rld[r].nregs > 1 && ! last_reload;
6142 /* If we want a single register and haven't yet found one,
6143 take any reg in the right class and not in use.
6144 If we want a consecutive group, here is where we look for it.
6146 We use three passes so we can first look for reload regs to
6147 reuse, which are already in use for other reloads in this insn,
6148 and only then use additional registers which are not "bad", then
6149 finally any register.
6151 I think that maximizing reuse is needed to make sure we don't
6152 run out of reload regs. Suppose we have three reloads, and
6153 reloads A and B can share regs. These need two regs.
6154 Suppose A and B are given different regs.
6155 That leaves none for C. */
6156 for (pass = 0; pass < 3; pass++)
6158 /* I is the index in spill_regs.
6159 We advance it round-robin between insns to use all spill regs
6160 equally, so that inherited reloads have a chance
6161 of leapfrogging each other. */
6163 i = last_spill_reg;
6165 for (count = 0; count < n_spills; count++)
6167 int rclass = (int) rld[r].rclass;
6168 int regnum;
6170 i++;
6171 if (i >= n_spills)
6172 i -= n_spills;
6173 regnum = spill_regs[i];
6175 if ((reload_reg_free_p (regnum, rld[r].opnum,
6176 rld[r].when_needed)
6177 || (rld[r].in
6178 /* We check reload_reg_used to make sure we
6179 don't clobber the return register. */
6180 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
6181 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
6182 rld[r].when_needed, rld[r].in,
6183 rld[r].out, r, 1)))
6184 && TEST_HARD_REG_BIT (reg_class_contents[rclass], regnum)
6185 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
6186 /* Look first for regs to share, then for unshared. But
6187 don't share regs used for inherited reloads; they are
6188 the ones we want to preserve. */
6189 && (pass
6190 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
6191 regnum)
6192 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
6193 regnum))))
6195 int nr = hard_regno_nregs[regnum][rld[r].mode];
6197 /* During the second pass we want to avoid reload registers
6198 which are "bad" for this reload. */
6199 if (pass == 1
6200 && ira_bad_reload_regno (regnum, rld[r].in, rld[r].out))
6201 continue;
6203 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
6204 (on 68000) got us two FP regs. If NR is 1,
6205 we would reject both of them. */
6206 if (force_group)
6207 nr = rld[r].nregs;
6208 /* If we need only one reg, we have already won. */
6209 if (nr == 1)
6211 /* But reject a single reg if we demand a group. */
6212 if (force_group)
6213 continue;
6214 break;
6216 /* Otherwise check that as many consecutive regs as we need
6217 are available here. */
6218 while (nr > 1)
6220 int regno = regnum + nr - 1;
6221 if (!(TEST_HARD_REG_BIT (reg_class_contents[rclass], regno)
6222 && spill_reg_order[regno] >= 0
6223 && reload_reg_free_p (regno, rld[r].opnum,
6224 rld[r].when_needed)))
6225 break;
6226 nr--;
6228 if (nr == 1)
6229 break;
6233 /* If we found something on the current pass, omit later passes. */
6234 if (count < n_spills)
6235 break;
6238 /* We should have found a spill register by now. */
6239 if (count >= n_spills)
6240 return 0;
6242 /* I is the index in SPILL_REG_RTX of the reload register we are to
6243 allocate. Get an rtx for it and find its register number. */
6245 return set_reload_reg (i, r);
6248 /* Initialize all the tables needed to allocate reload registers.
6249 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
6250 is the array we use to restore the reg_rtx field for every reload. */
6252 static void
6253 choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
6255 int i;
6257 for (i = 0; i < n_reloads; i++)
6258 rld[i].reg_rtx = save_reload_reg_rtx[i];
6260 memset (reload_inherited, 0, MAX_RELOADS);
6261 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
6262 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
6264 CLEAR_HARD_REG_SET (reload_reg_used);
6265 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
6266 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
6267 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
6268 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
6269 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
6271 CLEAR_HARD_REG_SET (reg_used_in_insn);
6273 HARD_REG_SET tmp;
6274 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
6275 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6276 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
6277 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6278 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
6279 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
6282 for (i = 0; i < reload_n_operands; i++)
6284 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
6285 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
6286 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
6287 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
6288 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
6289 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
6292 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
6294 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
6296 for (i = 0; i < n_reloads; i++)
6297 /* If we have already decided to use a certain register,
6298 don't use it in another way. */
6299 if (rld[i].reg_rtx)
6300 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
6301 rld[i].when_needed, rld[i].mode);
6304 /* Assign hard reg targets for the pseudo-registers we must reload
6305 into hard regs for this insn.
6306 Also output the instructions to copy them in and out of the hard regs.
6308 For machines with register classes, we are responsible for
6309 finding a reload reg in the proper class. */
6311 static void
6312 choose_reload_regs (struct insn_chain *chain)
6314 rtx insn = chain->insn;
6315 int i, j;
6316 unsigned int max_group_size = 1;
6317 enum reg_class group_class = NO_REGS;
6318 int pass, win, inheritance;
6320 rtx save_reload_reg_rtx[MAX_RELOADS];
6322 /* In order to be certain of getting the registers we need,
6323 we must sort the reloads into order of increasing register class.
6324 Then our grabbing of reload registers will parallel the process
6325 that provided the reload registers.
6327 Also note whether any of the reloads wants a consecutive group of regs.
6328 If so, record the maximum size of the group desired and what
6329 register class contains all the groups needed by this insn. */
6331 for (j = 0; j < n_reloads; j++)
6333 reload_order[j] = j;
6334 if (rld[j].reg_rtx != NULL_RTX)
6336 gcc_assert (REG_P (rld[j].reg_rtx)
6337 && HARD_REGISTER_P (rld[j].reg_rtx));
6338 reload_spill_index[j] = REGNO (rld[j].reg_rtx);
6340 else
6341 reload_spill_index[j] = -1;
6343 if (rld[j].nregs > 1)
6345 max_group_size = MAX (rld[j].nregs, max_group_size);
6346 group_class
6347 = reg_class_superunion[(int) rld[j].rclass][(int) group_class];
6350 save_reload_reg_rtx[j] = rld[j].reg_rtx;
6353 if (n_reloads > 1)
6354 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
6356 /* If -O, try first with inheritance, then turning it off.
6357 If not -O, don't do inheritance.
6358 Using inheritance when not optimizing leads to paradoxes
6359 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
6360 because one side of the comparison might be inherited. */
6361 win = 0;
6362 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
6364 choose_reload_regs_init (chain, save_reload_reg_rtx);
6366 /* Process the reloads in order of preference just found.
6367 Beyond this point, subregs can be found in reload_reg_rtx.
6369 This used to look for an existing reloaded home for all of the
6370 reloads, and only then perform any new reloads. But that could lose
6371 if the reloads were done out of reg-class order because a later
6372 reload with a looser constraint might have an old home in a register
6373 needed by an earlier reload with a tighter constraint.
6375 To solve this, we make two passes over the reloads, in the order
6376 described above. In the first pass we try to inherit a reload
6377 from a previous insn. If there is a later reload that needs a
6378 class that is a proper subset of the class being processed, we must
6379 also allocate a spill register during the first pass.
6381 Then make a second pass over the reloads to allocate any reloads
6382 that haven't been given registers yet. */
6384 for (j = 0; j < n_reloads; j++)
6386 int r = reload_order[j];
6387 rtx search_equiv = NULL_RTX;
6389 /* Ignore reloads that got marked inoperative. */
6390 if (rld[r].out == 0 && rld[r].in == 0
6391 && ! rld[r].secondary_p)
6392 continue;
6394 /* If find_reloads chose to use reload_in or reload_out as a reload
6395 register, we don't need to chose one. Otherwise, try even if it
6396 found one since we might save an insn if we find the value lying
6397 around.
6398 Try also when reload_in is a pseudo without a hard reg. */
6399 if (rld[r].in != 0 && rld[r].reg_rtx != 0
6400 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
6401 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
6402 && !MEM_P (rld[r].in)
6403 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
6404 continue;
6406 #if 0 /* No longer needed for correct operation.
6407 It might give better code, or might not; worth an experiment? */
6408 /* If this is an optional reload, we can't inherit from earlier insns
6409 until we are sure that any non-optional reloads have been allocated.
6410 The following code takes advantage of the fact that optional reloads
6411 are at the end of reload_order. */
6412 if (rld[r].optional != 0)
6413 for (i = 0; i < j; i++)
6414 if ((rld[reload_order[i]].out != 0
6415 || rld[reload_order[i]].in != 0
6416 || rld[reload_order[i]].secondary_p)
6417 && ! rld[reload_order[i]].optional
6418 && rld[reload_order[i]].reg_rtx == 0)
6419 allocate_reload_reg (chain, reload_order[i], 0);
6420 #endif
6422 /* First see if this pseudo is already available as reloaded
6423 for a previous insn. We cannot try to inherit for reloads
6424 that are smaller than the maximum number of registers needed
6425 for groups unless the register we would allocate cannot be used
6426 for the groups.
6428 We could check here to see if this is a secondary reload for
6429 an object that is already in a register of the desired class.
6430 This would avoid the need for the secondary reload register.
6431 But this is complex because we can't easily determine what
6432 objects might want to be loaded via this reload. So let a
6433 register be allocated here. In `emit_reload_insns' we suppress
6434 one of the loads in the case described above. */
6436 if (inheritance)
6438 int byte = 0;
6439 int regno = -1;
6440 enum machine_mode mode = VOIDmode;
6442 if (rld[r].in == 0)
6444 else if (REG_P (rld[r].in))
6446 regno = REGNO (rld[r].in);
6447 mode = GET_MODE (rld[r].in);
6449 else if (REG_P (rld[r].in_reg))
6451 regno = REGNO (rld[r].in_reg);
6452 mode = GET_MODE (rld[r].in_reg);
6454 else if (GET_CODE (rld[r].in_reg) == SUBREG
6455 && REG_P (SUBREG_REG (rld[r].in_reg)))
6457 regno = REGNO (SUBREG_REG (rld[r].in_reg));
6458 if (regno < FIRST_PSEUDO_REGISTER)
6459 regno = subreg_regno (rld[r].in_reg);
6460 else
6461 byte = SUBREG_BYTE (rld[r].in_reg);
6462 mode = GET_MODE (rld[r].in_reg);
6464 #ifdef AUTO_INC_DEC
6465 else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
6466 && REG_P (XEXP (rld[r].in_reg, 0)))
6468 regno = REGNO (XEXP (rld[r].in_reg, 0));
6469 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
6470 rld[r].out = rld[r].in;
6472 #endif
6473 #if 0
6474 /* This won't work, since REGNO can be a pseudo reg number.
6475 Also, it takes much more hair to keep track of all the things
6476 that can invalidate an inherited reload of part of a pseudoreg. */
6477 else if (GET_CODE (rld[r].in) == SUBREG
6478 && REG_P (SUBREG_REG (rld[r].in)))
6479 regno = subreg_regno (rld[r].in);
6480 #endif
6482 if (regno >= 0
6483 && reg_last_reload_reg[regno] != 0
6484 && (GET_MODE_SIZE (GET_MODE (reg_last_reload_reg[regno]))
6485 >= GET_MODE_SIZE (mode) + byte)
6486 #ifdef CANNOT_CHANGE_MODE_CLASS
6487 /* Verify that the register it's in can be used in
6488 mode MODE. */
6489 && !REG_CANNOT_CHANGE_MODE_P (REGNO (reg_last_reload_reg[regno]),
6490 GET_MODE (reg_last_reload_reg[regno]),
6491 mode)
6492 #endif
6495 enum reg_class rclass = rld[r].rclass, last_class;
6496 rtx last_reg = reg_last_reload_reg[regno];
6498 i = REGNO (last_reg);
6499 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
6500 last_class = REGNO_REG_CLASS (i);
6502 if (reg_reloaded_contents[i] == regno
6503 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
6504 && HARD_REGNO_MODE_OK (i, rld[r].mode)
6505 && (TEST_HARD_REG_BIT (reg_class_contents[(int) rclass], i)
6506 /* Even if we can't use this register as a reload
6507 register, we might use it for reload_override_in,
6508 if copying it to the desired class is cheap
6509 enough. */
6510 || ((register_move_cost (mode, last_class, rclass)
6511 < memory_move_cost (mode, rclass, true))
6512 && (secondary_reload_class (1, rclass, mode,
6513 last_reg)
6514 == NO_REGS)
6515 #ifdef SECONDARY_MEMORY_NEEDED
6516 && ! SECONDARY_MEMORY_NEEDED (last_class, rclass,
6517 mode)
6518 #endif
6521 && (rld[r].nregs == max_group_size
6522 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
6524 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
6525 rld[r].when_needed, rld[r].in,
6526 const0_rtx, r, 1))
6528 /* If a group is needed, verify that all the subsequent
6529 registers still have their values intact. */
6530 int nr = hard_regno_nregs[i][rld[r].mode];
6531 int k;
6533 for (k = 1; k < nr; k++)
6534 if (reg_reloaded_contents[i + k] != regno
6535 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
6536 break;
6538 if (k == nr)
6540 int i1;
6541 int bad_for_class;
6543 last_reg = (GET_MODE (last_reg) == mode
6544 ? last_reg : gen_rtx_REG (mode, i));
6546 bad_for_class = 0;
6547 for (k = 0; k < nr; k++)
6548 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6549 i+k);
6551 /* We found a register that contains the
6552 value we need. If this register is the
6553 same as an `earlyclobber' operand of the
6554 current insn, just mark it as a place to
6555 reload from since we can't use it as the
6556 reload register itself. */
6558 for (i1 = 0; i1 < n_earlyclobbers; i1++)
6559 if (reg_overlap_mentioned_for_reload_p
6560 (reg_last_reload_reg[regno],
6561 reload_earlyclobbers[i1]))
6562 break;
6564 if (i1 != n_earlyclobbers
6565 || ! (free_for_value_p (i, rld[r].mode,
6566 rld[r].opnum,
6567 rld[r].when_needed, rld[r].in,
6568 rld[r].out, r, 1))
6569 /* Don't use it if we'd clobber a pseudo reg. */
6570 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
6571 && rld[r].out
6572 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
6573 /* Don't clobber the frame pointer. */
6574 || (i == HARD_FRAME_POINTER_REGNUM
6575 && frame_pointer_needed
6576 && rld[r].out)
6577 /* Don't really use the inherited spill reg
6578 if we need it wider than we've got it. */
6579 || (GET_MODE_SIZE (rld[r].mode)
6580 > GET_MODE_SIZE (mode))
6581 || bad_for_class
6583 /* If find_reloads chose reload_out as reload
6584 register, stay with it - that leaves the
6585 inherited register for subsequent reloads. */
6586 || (rld[r].out && rld[r].reg_rtx
6587 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
6589 if (! rld[r].optional)
6591 reload_override_in[r] = last_reg;
6592 reload_inheritance_insn[r]
6593 = reg_reloaded_insn[i];
6596 else
6598 int k;
6599 /* We can use this as a reload reg. */
6600 /* Mark the register as in use for this part of
6601 the insn. */
6602 mark_reload_reg_in_use (i,
6603 rld[r].opnum,
6604 rld[r].when_needed,
6605 rld[r].mode);
6606 rld[r].reg_rtx = last_reg;
6607 reload_inherited[r] = 1;
6608 reload_inheritance_insn[r]
6609 = reg_reloaded_insn[i];
6610 reload_spill_index[r] = i;
6611 for (k = 0; k < nr; k++)
6612 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6613 i + k);
6620 /* Here's another way to see if the value is already lying around. */
6621 if (inheritance
6622 && rld[r].in != 0
6623 && ! reload_inherited[r]
6624 && rld[r].out == 0
6625 && (CONSTANT_P (rld[r].in)
6626 || GET_CODE (rld[r].in) == PLUS
6627 || REG_P (rld[r].in)
6628 || MEM_P (rld[r].in))
6629 && (rld[r].nregs == max_group_size
6630 || ! reg_classes_intersect_p (rld[r].rclass, group_class)))
6631 search_equiv = rld[r].in;
6633 if (search_equiv)
6635 rtx equiv
6636 = find_equiv_reg (search_equiv, insn, rld[r].rclass,
6637 -1, NULL, 0, rld[r].mode);
6638 int regno = 0;
6640 if (equiv != 0)
6642 if (REG_P (equiv))
6643 regno = REGNO (equiv);
6644 else
6646 /* This must be a SUBREG of a hard register.
6647 Make a new REG since this might be used in an
6648 address and not all machines support SUBREGs
6649 there. */
6650 gcc_assert (GET_CODE (equiv) == SUBREG);
6651 regno = subreg_regno (equiv);
6652 equiv = gen_rtx_REG (rld[r].mode, regno);
6653 /* If we choose EQUIV as the reload register, but the
6654 loop below decides to cancel the inheritance, we'll
6655 end up reloading EQUIV in rld[r].mode, not the mode
6656 it had originally. That isn't safe when EQUIV isn't
6657 available as a spill register since its value might
6658 still be live at this point. */
6659 for (i = regno; i < regno + (int) rld[r].nregs; i++)
6660 if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
6661 equiv = 0;
6665 /* If we found a spill reg, reject it unless it is free
6666 and of the desired class. */
6667 if (equiv != 0)
6669 int regs_used = 0;
6670 int bad_for_class = 0;
6671 int max_regno = regno + rld[r].nregs;
6673 for (i = regno; i < max_regno; i++)
6675 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
6677 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6681 if ((regs_used
6682 && ! free_for_value_p (regno, rld[r].mode,
6683 rld[r].opnum, rld[r].when_needed,
6684 rld[r].in, rld[r].out, r, 1))
6685 || bad_for_class)
6686 equiv = 0;
6689 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
6690 equiv = 0;
6692 /* We found a register that contains the value we need.
6693 If this register is the same as an `earlyclobber' operand
6694 of the current insn, just mark it as a place to reload from
6695 since we can't use it as the reload register itself. */
6697 if (equiv != 0)
6698 for (i = 0; i < n_earlyclobbers; i++)
6699 if (reg_overlap_mentioned_for_reload_p (equiv,
6700 reload_earlyclobbers[i]))
6702 if (! rld[r].optional)
6703 reload_override_in[r] = equiv;
6704 equiv = 0;
6705 break;
6708 /* If the equiv register we have found is explicitly clobbered
6709 in the current insn, it depends on the reload type if we
6710 can use it, use it for reload_override_in, or not at all.
6711 In particular, we then can't use EQUIV for a
6712 RELOAD_FOR_OUTPUT_ADDRESS reload. */
6714 if (equiv != 0)
6716 if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
6717 switch (rld[r].when_needed)
6719 case RELOAD_FOR_OTHER_ADDRESS:
6720 case RELOAD_FOR_INPADDR_ADDRESS:
6721 case RELOAD_FOR_INPUT_ADDRESS:
6722 case RELOAD_FOR_OPADDR_ADDR:
6723 break;
6724 case RELOAD_OTHER:
6725 case RELOAD_FOR_INPUT:
6726 case RELOAD_FOR_OPERAND_ADDRESS:
6727 if (! rld[r].optional)
6728 reload_override_in[r] = equiv;
6729 /* Fall through. */
6730 default:
6731 equiv = 0;
6732 break;
6734 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
6735 switch (rld[r].when_needed)
6737 case RELOAD_FOR_OTHER_ADDRESS:
6738 case RELOAD_FOR_INPADDR_ADDRESS:
6739 case RELOAD_FOR_INPUT_ADDRESS:
6740 case RELOAD_FOR_OPADDR_ADDR:
6741 case RELOAD_FOR_OPERAND_ADDRESS:
6742 case RELOAD_FOR_INPUT:
6743 break;
6744 case RELOAD_OTHER:
6745 if (! rld[r].optional)
6746 reload_override_in[r] = equiv;
6747 /* Fall through. */
6748 default:
6749 equiv = 0;
6750 break;
6754 /* If we found an equivalent reg, say no code need be generated
6755 to load it, and use it as our reload reg. */
6756 if (equiv != 0
6757 && (regno != HARD_FRAME_POINTER_REGNUM
6758 || !frame_pointer_needed))
6760 int nr = hard_regno_nregs[regno][rld[r].mode];
6761 int k;
6762 rld[r].reg_rtx = equiv;
6763 reload_spill_index[r] = regno;
6764 reload_inherited[r] = 1;
6766 /* If reg_reloaded_valid is not set for this register,
6767 there might be a stale spill_reg_store lying around.
6768 We must clear it, since otherwise emit_reload_insns
6769 might delete the store. */
6770 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
6771 spill_reg_store[regno] = NULL_RTX;
6772 /* If any of the hard registers in EQUIV are spill
6773 registers, mark them as in use for this insn. */
6774 for (k = 0; k < nr; k++)
6776 i = spill_reg_order[regno + k];
6777 if (i >= 0)
6779 mark_reload_reg_in_use (regno, rld[r].opnum,
6780 rld[r].when_needed,
6781 rld[r].mode);
6782 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6783 regno + k);
6789 /* If we found a register to use already, or if this is an optional
6790 reload, we are done. */
6791 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
6792 continue;
6794 #if 0
6795 /* No longer needed for correct operation. Might or might
6796 not give better code on the average. Want to experiment? */
6798 /* See if there is a later reload that has a class different from our
6799 class that intersects our class or that requires less register
6800 than our reload. If so, we must allocate a register to this
6801 reload now, since that reload might inherit a previous reload
6802 and take the only available register in our class. Don't do this
6803 for optional reloads since they will force all previous reloads
6804 to be allocated. Also don't do this for reloads that have been
6805 turned off. */
6807 for (i = j + 1; i < n_reloads; i++)
6809 int s = reload_order[i];
6811 if ((rld[s].in == 0 && rld[s].out == 0
6812 && ! rld[s].secondary_p)
6813 || rld[s].optional)
6814 continue;
6816 if ((rld[s].rclass != rld[r].rclass
6817 && reg_classes_intersect_p (rld[r].rclass,
6818 rld[s].rclass))
6819 || rld[s].nregs < rld[r].nregs)
6820 break;
6823 if (i == n_reloads)
6824 continue;
6826 allocate_reload_reg (chain, r, j == n_reloads - 1);
6827 #endif
6830 /* Now allocate reload registers for anything non-optional that
6831 didn't get one yet. */
6832 for (j = 0; j < n_reloads; j++)
6834 int r = reload_order[j];
6836 /* Ignore reloads that got marked inoperative. */
6837 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
6838 continue;
6840 /* Skip reloads that already have a register allocated or are
6841 optional. */
6842 if (rld[r].reg_rtx != 0 || rld[r].optional)
6843 continue;
6845 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
6846 break;
6849 /* If that loop got all the way, we have won. */
6850 if (j == n_reloads)
6852 win = 1;
6853 break;
6856 /* Loop around and try without any inheritance. */
6859 if (! win)
6861 /* First undo everything done by the failed attempt
6862 to allocate with inheritance. */
6863 choose_reload_regs_init (chain, save_reload_reg_rtx);
6865 /* Some sanity tests to verify that the reloads found in the first
6866 pass are identical to the ones we have now. */
6867 gcc_assert (chain->n_reloads == n_reloads);
6869 for (i = 0; i < n_reloads; i++)
6871 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
6872 continue;
6873 gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
6874 for (j = 0; j < n_spills; j++)
6875 if (spill_regs[j] == chain->rld[i].regno)
6876 if (! set_reload_reg (j, i))
6877 failed_reload (chain->insn, i);
6881 /* If we thought we could inherit a reload, because it seemed that
6882 nothing else wanted the same reload register earlier in the insn,
6883 verify that assumption, now that all reloads have been assigned.
6884 Likewise for reloads where reload_override_in has been set. */
6886 /* If doing expensive optimizations, do one preliminary pass that doesn't
6887 cancel any inheritance, but removes reloads that have been needed only
6888 for reloads that we know can be inherited. */
6889 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
6891 for (j = 0; j < n_reloads; j++)
6893 int r = reload_order[j];
6894 rtx check_reg;
6895 if (reload_inherited[r] && rld[r].reg_rtx)
6896 check_reg = rld[r].reg_rtx;
6897 else if (reload_override_in[r]
6898 && (REG_P (reload_override_in[r])
6899 || GET_CODE (reload_override_in[r]) == SUBREG))
6900 check_reg = reload_override_in[r];
6901 else
6902 continue;
6903 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
6904 rld[r].opnum, rld[r].when_needed, rld[r].in,
6905 (reload_inherited[r]
6906 ? rld[r].out : const0_rtx),
6907 r, 1))
6909 if (pass)
6910 continue;
6911 reload_inherited[r] = 0;
6912 reload_override_in[r] = 0;
6914 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
6915 reload_override_in, then we do not need its related
6916 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
6917 likewise for other reload types.
6918 We handle this by removing a reload when its only replacement
6919 is mentioned in reload_in of the reload we are going to inherit.
6920 A special case are auto_inc expressions; even if the input is
6921 inherited, we still need the address for the output. We can
6922 recognize them because they have RELOAD_OUT set to RELOAD_IN.
6923 If we succeeded removing some reload and we are doing a preliminary
6924 pass just to remove such reloads, make another pass, since the
6925 removal of one reload might allow us to inherit another one. */
6926 else if (rld[r].in
6927 && rld[r].out != rld[r].in
6928 && remove_address_replacements (rld[r].in) && pass)
6929 pass = 2;
6933 /* Now that reload_override_in is known valid,
6934 actually override reload_in. */
6935 for (j = 0; j < n_reloads; j++)
6936 if (reload_override_in[j])
6937 rld[j].in = reload_override_in[j];
6939 /* If this reload won't be done because it has been canceled or is
6940 optional and not inherited, clear reload_reg_rtx so other
6941 routines (such as subst_reloads) don't get confused. */
6942 for (j = 0; j < n_reloads; j++)
6943 if (rld[j].reg_rtx != 0
6944 && ((rld[j].optional && ! reload_inherited[j])
6945 || (rld[j].in == 0 && rld[j].out == 0
6946 && ! rld[j].secondary_p)))
6948 int regno = true_regnum (rld[j].reg_rtx);
6950 if (spill_reg_order[regno] >= 0)
6951 clear_reload_reg_in_use (regno, rld[j].opnum,
6952 rld[j].when_needed, rld[j].mode);
6953 rld[j].reg_rtx = 0;
6954 reload_spill_index[j] = -1;
6957 /* Record which pseudos and which spill regs have output reloads. */
6958 for (j = 0; j < n_reloads; j++)
6960 int r = reload_order[j];
6962 i = reload_spill_index[r];
6964 /* I is nonneg if this reload uses a register.
6965 If rld[r].reg_rtx is 0, this is an optional reload
6966 that we opted to ignore. */
6967 if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
6968 && rld[r].reg_rtx != 0)
6970 int nregno = REGNO (rld[r].out_reg);
6971 int nr = 1;
6973 if (nregno < FIRST_PSEUDO_REGISTER)
6974 nr = hard_regno_nregs[nregno][rld[r].mode];
6976 while (--nr >= 0)
6977 SET_REGNO_REG_SET (&reg_has_output_reload,
6978 nregno + nr);
6980 if (i >= 0)
6981 add_to_hard_reg_set (&reg_is_output_reload, rld[r].mode, i);
6983 gcc_assert (rld[r].when_needed == RELOAD_OTHER
6984 || rld[r].when_needed == RELOAD_FOR_OUTPUT
6985 || rld[r].when_needed == RELOAD_FOR_INSN);
6990 /* Deallocate the reload register for reload R. This is called from
6991 remove_address_replacements. */
6993 void
6994 deallocate_reload_reg (int r)
6996 int regno;
6998 if (! rld[r].reg_rtx)
6999 return;
7000 regno = true_regnum (rld[r].reg_rtx);
7001 rld[r].reg_rtx = 0;
7002 if (spill_reg_order[regno] >= 0)
7003 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
7004 rld[r].mode);
7005 reload_spill_index[r] = -1;
7008 /* These arrays are filled by emit_reload_insns and its subroutines. */
7009 static rtx input_reload_insns[MAX_RECOG_OPERANDS];
7010 static rtx other_input_address_reload_insns = 0;
7011 static rtx other_input_reload_insns = 0;
7012 static rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
7013 static rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7014 static rtx output_reload_insns[MAX_RECOG_OPERANDS];
7015 static rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
7016 static rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7017 static rtx operand_reload_insns = 0;
7018 static rtx other_operand_reload_insns = 0;
7019 static rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
7021 /* Values to be put in spill_reg_store are put here first. */
7022 static rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
7023 static HARD_REG_SET reg_reloaded_died;
7025 /* Check if *RELOAD_REG is suitable as an intermediate or scratch register
7026 of class NEW_CLASS with mode NEW_MODE. Or alternatively, if alt_reload_reg
7027 is nonzero, if that is suitable. On success, change *RELOAD_REG to the
7028 adjusted register, and return true. Otherwise, return false. */
7029 static bool
7030 reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
7031 enum reg_class new_class,
7032 enum machine_mode new_mode)
7035 rtx reg;
7037 for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
7039 unsigned regno = REGNO (reg);
7041 if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
7042 continue;
7043 if (GET_MODE (reg) != new_mode)
7045 if (!HARD_REGNO_MODE_OK (regno, new_mode))
7046 continue;
7047 if (hard_regno_nregs[regno][new_mode]
7048 > hard_regno_nregs[regno][GET_MODE (reg)])
7049 continue;
7050 reg = reload_adjust_reg_for_mode (reg, new_mode);
7052 *reload_reg = reg;
7053 return true;
7055 return false;
7058 /* Check if *RELOAD_REG is suitable as a scratch register for the reload
7059 pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
7060 nonzero, if that is suitable. On success, change *RELOAD_REG to the
7061 adjusted register, and return true. Otherwise, return false. */
7062 static bool
7063 reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
7064 enum insn_code icode)
7067 enum reg_class new_class = scratch_reload_class (icode);
7068 enum machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
7070 return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
7071 new_class, new_mode);
7074 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
7075 has the number J. OLD contains the value to be used as input. */
7077 static void
7078 emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
7079 rtx old, int j)
7081 rtx insn = chain->insn;
7082 rtx reloadreg;
7083 rtx oldequiv_reg = 0;
7084 rtx oldequiv = 0;
7085 int special = 0;
7086 enum machine_mode mode;
7087 rtx *where;
7089 /* delete_output_reload is only invoked properly if old contains
7090 the original pseudo register. Since this is replaced with a
7091 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
7092 find the pseudo in RELOAD_IN_REG. */
7093 if (reload_override_in[j]
7094 && REG_P (rl->in_reg))
7096 oldequiv = old;
7097 old = rl->in_reg;
7099 if (oldequiv == 0)
7100 oldequiv = old;
7101 else if (REG_P (oldequiv))
7102 oldequiv_reg = oldequiv;
7103 else if (GET_CODE (oldequiv) == SUBREG)
7104 oldequiv_reg = SUBREG_REG (oldequiv);
7106 reloadreg = reload_reg_rtx_for_input[j];
7107 mode = GET_MODE (reloadreg);
7109 /* If we are reloading from a register that was recently stored in
7110 with an output-reload, see if we can prove there was
7111 actually no need to store the old value in it. */
7113 if (optimize && REG_P (oldequiv)
7114 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
7115 && spill_reg_store[REGNO (oldequiv)]
7116 && REG_P (old)
7117 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
7118 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
7119 rl->out_reg)))
7120 delete_output_reload (insn, j, REGNO (oldequiv), reloadreg);
7122 /* Encapsulate OLDEQUIV into the reload mode, then load RELOADREG from
7123 OLDEQUIV. */
7125 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
7126 oldequiv = SUBREG_REG (oldequiv);
7127 if (GET_MODE (oldequiv) != VOIDmode
7128 && mode != GET_MODE (oldequiv))
7129 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
7131 /* Switch to the right place to emit the reload insns. */
7132 switch (rl->when_needed)
7134 case RELOAD_OTHER:
7135 where = &other_input_reload_insns;
7136 break;
7137 case RELOAD_FOR_INPUT:
7138 where = &input_reload_insns[rl->opnum];
7139 break;
7140 case RELOAD_FOR_INPUT_ADDRESS:
7141 where = &input_address_reload_insns[rl->opnum];
7142 break;
7143 case RELOAD_FOR_INPADDR_ADDRESS:
7144 where = &inpaddr_address_reload_insns[rl->opnum];
7145 break;
7146 case RELOAD_FOR_OUTPUT_ADDRESS:
7147 where = &output_address_reload_insns[rl->opnum];
7148 break;
7149 case RELOAD_FOR_OUTADDR_ADDRESS:
7150 where = &outaddr_address_reload_insns[rl->opnum];
7151 break;
7152 case RELOAD_FOR_OPERAND_ADDRESS:
7153 where = &operand_reload_insns;
7154 break;
7155 case RELOAD_FOR_OPADDR_ADDR:
7156 where = &other_operand_reload_insns;
7157 break;
7158 case RELOAD_FOR_OTHER_ADDRESS:
7159 where = &other_input_address_reload_insns;
7160 break;
7161 default:
7162 gcc_unreachable ();
7165 push_to_sequence (*where);
7167 /* Auto-increment addresses must be reloaded in a special way. */
7168 if (rl->out && ! rl->out_reg)
7170 /* We are not going to bother supporting the case where a
7171 incremented register can't be copied directly from
7172 OLDEQUIV since this seems highly unlikely. */
7173 gcc_assert (rl->secondary_in_reload < 0);
7175 if (reload_inherited[j])
7176 oldequiv = reloadreg;
7178 old = XEXP (rl->in_reg, 0);
7180 /* Prevent normal processing of this reload. */
7181 special = 1;
7182 /* Output a special code sequence for this case, and forget about
7183 spill reg information. */
7184 new_spill_reg_store[REGNO (reloadreg)] = NULL;
7185 inc_for_reload (reloadreg, oldequiv, rl->out, rl->inc);
7188 /* If we are reloading a pseudo-register that was set by the previous
7189 insn, see if we can get rid of that pseudo-register entirely
7190 by redirecting the previous insn into our reload register. */
7192 else if (optimize && REG_P (old)
7193 && REGNO (old) >= FIRST_PSEUDO_REGISTER
7194 && dead_or_set_p (insn, old)
7195 /* This is unsafe if some other reload
7196 uses the same reg first. */
7197 && ! conflicts_with_override (reloadreg)
7198 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
7199 rl->when_needed, old, rl->out, j, 0))
7201 rtx temp = PREV_INSN (insn);
7202 while (temp && (NOTE_P (temp) || DEBUG_INSN_P (temp)))
7203 temp = PREV_INSN (temp);
7204 if (temp
7205 && NONJUMP_INSN_P (temp)
7206 && GET_CODE (PATTERN (temp)) == SET
7207 && SET_DEST (PATTERN (temp)) == old
7208 /* Make sure we can access insn_operand_constraint. */
7209 && asm_noperands (PATTERN (temp)) < 0
7210 /* This is unsafe if operand occurs more than once in current
7211 insn. Perhaps some occurrences aren't reloaded. */
7212 && count_occurrences (PATTERN (insn), old, 0) == 1)
7214 rtx old = SET_DEST (PATTERN (temp));
7215 /* Store into the reload register instead of the pseudo. */
7216 SET_DEST (PATTERN (temp)) = reloadreg;
7218 /* Verify that resulting insn is valid. */
7219 extract_insn (temp);
7220 if (constrain_operands (1))
7222 /* If the previous insn is an output reload, the source is
7223 a reload register, and its spill_reg_store entry will
7224 contain the previous destination. This is now
7225 invalid. */
7226 if (REG_P (SET_SRC (PATTERN (temp)))
7227 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
7229 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7230 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7233 /* If these are the only uses of the pseudo reg,
7234 pretend for GDB it lives in the reload reg we used. */
7235 if (REG_N_DEATHS (REGNO (old)) == 1
7236 && REG_N_SETS (REGNO (old)) == 1)
7238 reg_renumber[REGNO (old)] = REGNO (reloadreg);
7239 if (ira_conflicts_p)
7240 /* Inform IRA about the change. */
7241 ira_mark_allocation_change (REGNO (old));
7242 alter_reg (REGNO (old), -1, false);
7244 special = 1;
7246 /* Adjust any debug insns between temp and insn. */
7247 while ((temp = NEXT_INSN (temp)) != insn)
7248 if (DEBUG_INSN_P (temp))
7249 replace_rtx (PATTERN (temp), old, reloadreg);
7250 else
7251 gcc_assert (NOTE_P (temp));
7253 else
7255 SET_DEST (PATTERN (temp)) = old;
7260 /* We can't do that, so output an insn to load RELOADREG. */
7262 /* If we have a secondary reload, pick up the secondary register
7263 and icode, if any. If OLDEQUIV and OLD are different or
7264 if this is an in-out reload, recompute whether or not we
7265 still need a secondary register and what the icode should
7266 be. If we still need a secondary register and the class or
7267 icode is different, go back to reloading from OLD if using
7268 OLDEQUIV means that we got the wrong type of register. We
7269 cannot have different class or icode due to an in-out reload
7270 because we don't make such reloads when both the input and
7271 output need secondary reload registers. */
7273 if (! special && rl->secondary_in_reload >= 0)
7275 rtx second_reload_reg = 0;
7276 rtx third_reload_reg = 0;
7277 int secondary_reload = rl->secondary_in_reload;
7278 rtx real_oldequiv = oldequiv;
7279 rtx real_old = old;
7280 rtx tmp;
7281 enum insn_code icode;
7282 enum insn_code tertiary_icode = CODE_FOR_nothing;
7284 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
7285 and similarly for OLD.
7286 See comments in get_secondary_reload in reload.c. */
7287 /* If it is a pseudo that cannot be replaced with its
7288 equivalent MEM, we must fall back to reload_in, which
7289 will have all the necessary substitutions registered.
7290 Likewise for a pseudo that can't be replaced with its
7291 equivalent constant.
7293 Take extra care for subregs of such pseudos. Note that
7294 we cannot use reg_equiv_mem in this case because it is
7295 not in the right mode. */
7297 tmp = oldequiv;
7298 if (GET_CODE (tmp) == SUBREG)
7299 tmp = SUBREG_REG (tmp);
7300 if (REG_P (tmp)
7301 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7302 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7303 || reg_equiv_constant (REGNO (tmp)) != 0))
7305 if (! reg_equiv_mem (REGNO (tmp))
7306 || num_not_at_initial_offset
7307 || GET_CODE (oldequiv) == SUBREG)
7308 real_oldequiv = rl->in;
7309 else
7310 real_oldequiv = reg_equiv_mem (REGNO (tmp));
7313 tmp = old;
7314 if (GET_CODE (tmp) == SUBREG)
7315 tmp = SUBREG_REG (tmp);
7316 if (REG_P (tmp)
7317 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7318 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7319 || reg_equiv_constant (REGNO (tmp)) != 0))
7321 if (! reg_equiv_mem (REGNO (tmp))
7322 || num_not_at_initial_offset
7323 || GET_CODE (old) == SUBREG)
7324 real_old = rl->in;
7325 else
7326 real_old = reg_equiv_mem (REGNO (tmp));
7329 second_reload_reg = rld[secondary_reload].reg_rtx;
7330 if (rld[secondary_reload].secondary_in_reload >= 0)
7332 int tertiary_reload = rld[secondary_reload].secondary_in_reload;
7334 third_reload_reg = rld[tertiary_reload].reg_rtx;
7335 tertiary_icode = rld[secondary_reload].secondary_in_icode;
7336 /* We'd have to add more code for quartary reloads. */
7337 gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
7339 icode = rl->secondary_in_icode;
7341 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
7342 || (rl->in != 0 && rl->out != 0))
7344 secondary_reload_info sri, sri2;
7345 enum reg_class new_class, new_t_class;
7347 sri.icode = CODE_FOR_nothing;
7348 sri.prev_sri = NULL;
7349 new_class
7350 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7351 rl->rclass, mode,
7352 &sri);
7354 if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
7355 second_reload_reg = 0;
7356 else if (new_class == NO_REGS)
7358 if (reload_adjust_reg_for_icode (&second_reload_reg,
7359 third_reload_reg,
7360 (enum insn_code) sri.icode))
7362 icode = (enum insn_code) sri.icode;
7363 third_reload_reg = 0;
7365 else
7367 oldequiv = old;
7368 real_oldequiv = real_old;
7371 else if (sri.icode != CODE_FOR_nothing)
7372 /* We currently lack a way to express this in reloads. */
7373 gcc_unreachable ();
7374 else
7376 sri2.icode = CODE_FOR_nothing;
7377 sri2.prev_sri = &sri;
7378 new_t_class
7379 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7380 new_class, mode,
7381 &sri);
7382 if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
7384 if (reload_adjust_reg_for_temp (&second_reload_reg,
7385 third_reload_reg,
7386 new_class, mode))
7388 third_reload_reg = 0;
7389 tertiary_icode = (enum insn_code) sri2.icode;
7391 else
7393 oldequiv = old;
7394 real_oldequiv = real_old;
7397 else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
7399 rtx intermediate = second_reload_reg;
7401 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7402 new_class, mode)
7403 && reload_adjust_reg_for_icode (&third_reload_reg, NULL,
7404 ((enum insn_code)
7405 sri2.icode)))
7407 second_reload_reg = intermediate;
7408 tertiary_icode = (enum insn_code) sri2.icode;
7410 else
7412 oldequiv = old;
7413 real_oldequiv = real_old;
7416 else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
7418 rtx intermediate = second_reload_reg;
7420 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7421 new_class, mode)
7422 && reload_adjust_reg_for_temp (&third_reload_reg, NULL,
7423 new_t_class, mode))
7425 second_reload_reg = intermediate;
7426 tertiary_icode = (enum insn_code) sri2.icode;
7428 else
7430 oldequiv = old;
7431 real_oldequiv = real_old;
7434 else
7436 /* This could be handled more intelligently too. */
7437 oldequiv = old;
7438 real_oldequiv = real_old;
7443 /* If we still need a secondary reload register, check
7444 to see if it is being used as a scratch or intermediate
7445 register and generate code appropriately. If we need
7446 a scratch register, use REAL_OLDEQUIV since the form of
7447 the insn may depend on the actual address if it is
7448 a MEM. */
7450 if (second_reload_reg)
7452 if (icode != CODE_FOR_nothing)
7454 /* We'd have to add extra code to handle this case. */
7455 gcc_assert (!third_reload_reg);
7457 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
7458 second_reload_reg));
7459 special = 1;
7461 else
7463 /* See if we need a scratch register to load the
7464 intermediate register (a tertiary reload). */
7465 if (tertiary_icode != CODE_FOR_nothing)
7467 emit_insn ((GEN_FCN (tertiary_icode)
7468 (second_reload_reg, real_oldequiv,
7469 third_reload_reg)));
7471 else if (third_reload_reg)
7473 gen_reload (third_reload_reg, real_oldequiv,
7474 rl->opnum,
7475 rl->when_needed);
7476 gen_reload (second_reload_reg, third_reload_reg,
7477 rl->opnum,
7478 rl->when_needed);
7480 else
7481 gen_reload (second_reload_reg, real_oldequiv,
7482 rl->opnum,
7483 rl->when_needed);
7485 oldequiv = second_reload_reg;
7490 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
7492 rtx real_oldequiv = oldequiv;
7494 if ((REG_P (oldequiv)
7495 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
7496 && (reg_equiv_memory_loc (REGNO (oldequiv)) != 0
7497 || reg_equiv_constant (REGNO (oldequiv)) != 0))
7498 || (GET_CODE (oldequiv) == SUBREG
7499 && REG_P (SUBREG_REG (oldequiv))
7500 && (REGNO (SUBREG_REG (oldequiv))
7501 >= FIRST_PSEUDO_REGISTER)
7502 && ((reg_equiv_memory_loc (REGNO (SUBREG_REG (oldequiv))) != 0)
7503 || (reg_equiv_constant (REGNO (SUBREG_REG (oldequiv))) != 0)))
7504 || (CONSTANT_P (oldequiv)
7505 && (targetm.preferred_reload_class (oldequiv,
7506 REGNO_REG_CLASS (REGNO (reloadreg)))
7507 == NO_REGS)))
7508 real_oldequiv = rl->in;
7509 gen_reload (reloadreg, real_oldequiv, rl->opnum,
7510 rl->when_needed);
7513 if (cfun->can_throw_non_call_exceptions)
7514 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7516 /* End this sequence. */
7517 *where = get_insns ();
7518 end_sequence ();
7520 /* Update reload_override_in so that delete_address_reloads_1
7521 can see the actual register usage. */
7522 if (oldequiv_reg)
7523 reload_override_in[j] = oldequiv;
7526 /* Generate insns to for the output reload RL, which is for the insn described
7527 by CHAIN and has the number J. */
7528 static void
7529 emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
7530 int j)
7532 rtx reloadreg;
7533 rtx insn = chain->insn;
7534 int special = 0;
7535 rtx old = rl->out;
7536 enum machine_mode mode;
7537 rtx p;
7538 rtx rl_reg_rtx;
7540 if (rl->when_needed == RELOAD_OTHER)
7541 start_sequence ();
7542 else
7543 push_to_sequence (output_reload_insns[rl->opnum]);
7545 rl_reg_rtx = reload_reg_rtx_for_output[j];
7546 mode = GET_MODE (rl_reg_rtx);
7548 reloadreg = rl_reg_rtx;
7550 /* If we need two reload regs, set RELOADREG to the intermediate
7551 one, since it will be stored into OLD. We might need a secondary
7552 register only for an input reload, so check again here. */
7554 if (rl->secondary_out_reload >= 0)
7556 rtx real_old = old;
7557 int secondary_reload = rl->secondary_out_reload;
7558 int tertiary_reload = rld[secondary_reload].secondary_out_reload;
7560 if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
7561 && reg_equiv_mem (REGNO (old)) != 0)
7562 real_old = reg_equiv_mem (REGNO (old));
7564 if (secondary_reload_class (0, rl->rclass, mode, real_old) != NO_REGS)
7566 rtx second_reloadreg = reloadreg;
7567 reloadreg = rld[secondary_reload].reg_rtx;
7569 /* See if RELOADREG is to be used as a scratch register
7570 or as an intermediate register. */
7571 if (rl->secondary_out_icode != CODE_FOR_nothing)
7573 /* We'd have to add extra code to handle this case. */
7574 gcc_assert (tertiary_reload < 0);
7576 emit_insn ((GEN_FCN (rl->secondary_out_icode)
7577 (real_old, second_reloadreg, reloadreg)));
7578 special = 1;
7580 else
7582 /* See if we need both a scratch and intermediate reload
7583 register. */
7585 enum insn_code tertiary_icode
7586 = rld[secondary_reload].secondary_out_icode;
7588 /* We'd have to add more code for quartary reloads. */
7589 gcc_assert (tertiary_reload < 0
7590 || rld[tertiary_reload].secondary_out_reload < 0);
7592 if (GET_MODE (reloadreg) != mode)
7593 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
7595 if (tertiary_icode != CODE_FOR_nothing)
7597 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7599 /* Copy primary reload reg to secondary reload reg.
7600 (Note that these have been swapped above, then
7601 secondary reload reg to OLD using our insn.) */
7603 /* If REAL_OLD is a paradoxical SUBREG, remove it
7604 and try to put the opposite SUBREG on
7605 RELOADREG. */
7606 strip_paradoxical_subreg (&real_old, &reloadreg);
7608 gen_reload (reloadreg, second_reloadreg,
7609 rl->opnum, rl->when_needed);
7610 emit_insn ((GEN_FCN (tertiary_icode)
7611 (real_old, reloadreg, third_reloadreg)));
7612 special = 1;
7615 else
7617 /* Copy between the reload regs here and then to
7618 OUT later. */
7620 gen_reload (reloadreg, second_reloadreg,
7621 rl->opnum, rl->when_needed);
7622 if (tertiary_reload >= 0)
7624 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7626 gen_reload (third_reloadreg, reloadreg,
7627 rl->opnum, rl->when_needed);
7628 reloadreg = third_reloadreg;
7635 /* Output the last reload insn. */
7636 if (! special)
7638 rtx set;
7640 /* Don't output the last reload if OLD is not the dest of
7641 INSN and is in the src and is clobbered by INSN. */
7642 if (! flag_expensive_optimizations
7643 || !REG_P (old)
7644 || !(set = single_set (insn))
7645 || rtx_equal_p (old, SET_DEST (set))
7646 || !reg_mentioned_p (old, SET_SRC (set))
7647 || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
7648 && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
7649 gen_reload (old, reloadreg, rl->opnum,
7650 rl->when_needed);
7653 /* Look at all insns we emitted, just to be safe. */
7654 for (p = get_insns (); p; p = NEXT_INSN (p))
7655 if (INSN_P (p))
7657 rtx pat = PATTERN (p);
7659 /* If this output reload doesn't come from a spill reg,
7660 clear any memory of reloaded copies of the pseudo reg.
7661 If this output reload comes from a spill reg,
7662 reg_has_output_reload will make this do nothing. */
7663 note_stores (pat, forget_old_reloads_1, NULL);
7665 if (reg_mentioned_p (rl_reg_rtx, pat))
7667 rtx set = single_set (insn);
7668 if (reload_spill_index[j] < 0
7669 && set
7670 && SET_SRC (set) == rl_reg_rtx)
7672 int src = REGNO (SET_SRC (set));
7674 reload_spill_index[j] = src;
7675 SET_HARD_REG_BIT (reg_is_output_reload, src);
7676 if (find_regno_note (insn, REG_DEAD, src))
7677 SET_HARD_REG_BIT (reg_reloaded_died, src);
7679 if (HARD_REGISTER_P (rl_reg_rtx))
7681 int s = rl->secondary_out_reload;
7682 set = single_set (p);
7683 /* If this reload copies only to the secondary reload
7684 register, the secondary reload does the actual
7685 store. */
7686 if (s >= 0 && set == NULL_RTX)
7687 /* We can't tell what function the secondary reload
7688 has and where the actual store to the pseudo is
7689 made; leave new_spill_reg_store alone. */
7691 else if (s >= 0
7692 && SET_SRC (set) == rl_reg_rtx
7693 && SET_DEST (set) == rld[s].reg_rtx)
7695 /* Usually the next instruction will be the
7696 secondary reload insn; if we can confirm
7697 that it is, setting new_spill_reg_store to
7698 that insn will allow an extra optimization. */
7699 rtx s_reg = rld[s].reg_rtx;
7700 rtx next = NEXT_INSN (p);
7701 rld[s].out = rl->out;
7702 rld[s].out_reg = rl->out_reg;
7703 set = single_set (next);
7704 if (set && SET_SRC (set) == s_reg
7705 && ! new_spill_reg_store[REGNO (s_reg)])
7707 SET_HARD_REG_BIT (reg_is_output_reload,
7708 REGNO (s_reg));
7709 new_spill_reg_store[REGNO (s_reg)] = next;
7712 else
7713 new_spill_reg_store[REGNO (rl_reg_rtx)] = p;
7718 if (rl->when_needed == RELOAD_OTHER)
7720 emit_insn (other_output_reload_insns[rl->opnum]);
7721 other_output_reload_insns[rl->opnum] = get_insns ();
7723 else
7724 output_reload_insns[rl->opnum] = get_insns ();
7726 if (cfun->can_throw_non_call_exceptions)
7727 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7729 end_sequence ();
7732 /* Do input reloading for reload RL, which is for the insn described by CHAIN
7733 and has the number J. */
7734 static void
7735 do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
7737 rtx insn = chain->insn;
7738 rtx old = (rl->in && MEM_P (rl->in)
7739 ? rl->in_reg : rl->in);
7740 rtx reg_rtx = rl->reg_rtx;
7742 if (old && reg_rtx)
7744 enum machine_mode mode;
7746 /* Determine the mode to reload in.
7747 This is very tricky because we have three to choose from.
7748 There is the mode the insn operand wants (rl->inmode).
7749 There is the mode of the reload register RELOADREG.
7750 There is the intrinsic mode of the operand, which we could find
7751 by stripping some SUBREGs.
7752 It turns out that RELOADREG's mode is irrelevant:
7753 we can change that arbitrarily.
7755 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
7756 then the reload reg may not support QImode moves, so use SImode.
7757 If foo is in memory due to spilling a pseudo reg, this is safe,
7758 because the QImode value is in the least significant part of a
7759 slot big enough for a SImode. If foo is some other sort of
7760 memory reference, then it is impossible to reload this case,
7761 so previous passes had better make sure this never happens.
7763 Then consider a one-word union which has SImode and one of its
7764 members is a float, being fetched as (SUBREG:SF union:SI).
7765 We must fetch that as SFmode because we could be loading into
7766 a float-only register. In this case OLD's mode is correct.
7768 Consider an immediate integer: it has VOIDmode. Here we need
7769 to get a mode from something else.
7771 In some cases, there is a fourth mode, the operand's
7772 containing mode. If the insn specifies a containing mode for
7773 this operand, it overrides all others.
7775 I am not sure whether the algorithm here is always right,
7776 but it does the right things in those cases. */
7778 mode = GET_MODE (old);
7779 if (mode == VOIDmode)
7780 mode = rl->inmode;
7782 /* We cannot use gen_lowpart_common since it can do the wrong thing
7783 when REG_RTX has a multi-word mode. Note that REG_RTX must
7784 always be a REG here. */
7785 if (GET_MODE (reg_rtx) != mode)
7786 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7788 reload_reg_rtx_for_input[j] = reg_rtx;
7790 if (old != 0
7791 /* AUTO_INC reloads need to be handled even if inherited. We got an
7792 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
7793 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
7794 && ! rtx_equal_p (reg_rtx, old)
7795 && reg_rtx != 0)
7796 emit_input_reload_insns (chain, rld + j, old, j);
7798 /* When inheriting a wider reload, we have a MEM in rl->in,
7799 e.g. inheriting a SImode output reload for
7800 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
7801 if (optimize && reload_inherited[j] && rl->in
7802 && MEM_P (rl->in)
7803 && MEM_P (rl->in_reg)
7804 && reload_spill_index[j] >= 0
7805 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
7806 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
7808 /* If we are reloading a register that was recently stored in with an
7809 output-reload, see if we can prove there was
7810 actually no need to store the old value in it. */
7812 if (optimize
7813 && (reload_inherited[j] || reload_override_in[j])
7814 && reg_rtx
7815 && REG_P (reg_rtx)
7816 && spill_reg_store[REGNO (reg_rtx)] != 0
7817 #if 0
7818 /* There doesn't seem to be any reason to restrict this to pseudos
7819 and doing so loses in the case where we are copying from a
7820 register of the wrong class. */
7821 && !HARD_REGISTER_P (spill_reg_stored_to[REGNO (reg_rtx)])
7822 #endif
7823 /* The insn might have already some references to stackslots
7824 replaced by MEMs, while reload_out_reg still names the
7825 original pseudo. */
7826 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (reg_rtx)])
7827 || rtx_equal_p (spill_reg_stored_to[REGNO (reg_rtx)], rl->out_reg)))
7828 delete_output_reload (insn, j, REGNO (reg_rtx), reg_rtx);
7831 /* Do output reloading for reload RL, which is for the insn described by
7832 CHAIN and has the number J.
7833 ??? At some point we need to support handling output reloads of
7834 JUMP_INSNs or insns that set cc0. */
7835 static void
7836 do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
7838 rtx note, old;
7839 rtx insn = chain->insn;
7840 /* If this is an output reload that stores something that is
7841 not loaded in this same reload, see if we can eliminate a previous
7842 store. */
7843 rtx pseudo = rl->out_reg;
7844 rtx reg_rtx = rl->reg_rtx;
7846 if (rl->out && reg_rtx)
7848 enum machine_mode mode;
7850 /* Determine the mode to reload in.
7851 See comments above (for input reloading). */
7852 mode = GET_MODE (rl->out);
7853 if (mode == VOIDmode)
7855 /* VOIDmode should never happen for an output. */
7856 if (asm_noperands (PATTERN (insn)) < 0)
7857 /* It's the compiler's fault. */
7858 fatal_insn ("VOIDmode on an output", insn);
7859 error_for_asm (insn, "output operand is constant in %<asm%>");
7860 /* Prevent crash--use something we know is valid. */
7861 mode = word_mode;
7862 rl->out = gen_rtx_REG (mode, REGNO (reg_rtx));
7864 if (GET_MODE (reg_rtx) != mode)
7865 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7867 reload_reg_rtx_for_output[j] = reg_rtx;
7869 if (pseudo
7870 && optimize
7871 && REG_P (pseudo)
7872 && ! rtx_equal_p (rl->in_reg, pseudo)
7873 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
7874 && reg_last_reload_reg[REGNO (pseudo)])
7876 int pseudo_no = REGNO (pseudo);
7877 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
7879 /* We don't need to test full validity of last_regno for
7880 inherit here; we only want to know if the store actually
7881 matches the pseudo. */
7882 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
7883 && reg_reloaded_contents[last_regno] == pseudo_no
7884 && spill_reg_store[last_regno]
7885 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
7886 delete_output_reload (insn, j, last_regno, reg_rtx);
7889 old = rl->out_reg;
7890 if (old == 0
7891 || reg_rtx == 0
7892 || rtx_equal_p (old, reg_rtx))
7893 return;
7895 /* An output operand that dies right away does need a reload,
7896 but need not be copied from it. Show the new location in the
7897 REG_UNUSED note. */
7898 if ((REG_P (old) || GET_CODE (old) == SCRATCH)
7899 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
7901 XEXP (note, 0) = reg_rtx;
7902 return;
7904 /* Likewise for a SUBREG of an operand that dies. */
7905 else if (GET_CODE (old) == SUBREG
7906 && REG_P (SUBREG_REG (old))
7907 && 0 != (note = find_reg_note (insn, REG_UNUSED,
7908 SUBREG_REG (old))))
7910 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old), reg_rtx);
7911 return;
7913 else if (GET_CODE (old) == SCRATCH)
7914 /* If we aren't optimizing, there won't be a REG_UNUSED note,
7915 but we don't want to make an output reload. */
7916 return;
7918 /* If is a JUMP_INSN, we can't support output reloads yet. */
7919 gcc_assert (NONJUMP_INSN_P (insn));
7921 emit_output_reload_insns (chain, rld + j, j);
7924 /* A reload copies values of MODE from register SRC to register DEST.
7925 Return true if it can be treated for inheritance purposes like a
7926 group of reloads, each one reloading a single hard register. The
7927 caller has already checked that (reg:MODE SRC) and (reg:MODE DEST)
7928 occupy the same number of hard registers. */
7930 static bool
7931 inherit_piecemeal_p (int dest ATTRIBUTE_UNUSED,
7932 int src ATTRIBUTE_UNUSED,
7933 enum machine_mode mode ATTRIBUTE_UNUSED)
7935 #ifdef CANNOT_CHANGE_MODE_CLASS
7936 return (!REG_CANNOT_CHANGE_MODE_P (dest, mode, reg_raw_mode[dest])
7937 && !REG_CANNOT_CHANGE_MODE_P (src, mode, reg_raw_mode[src]));
7938 #else
7939 return true;
7940 #endif
7943 /* Output insns to reload values in and out of the chosen reload regs. */
7945 static void
7946 emit_reload_insns (struct insn_chain *chain)
7948 rtx insn = chain->insn;
7950 int j;
7952 CLEAR_HARD_REG_SET (reg_reloaded_died);
7954 for (j = 0; j < reload_n_operands; j++)
7955 input_reload_insns[j] = input_address_reload_insns[j]
7956 = inpaddr_address_reload_insns[j]
7957 = output_reload_insns[j] = output_address_reload_insns[j]
7958 = outaddr_address_reload_insns[j]
7959 = other_output_reload_insns[j] = 0;
7960 other_input_address_reload_insns = 0;
7961 other_input_reload_insns = 0;
7962 operand_reload_insns = 0;
7963 other_operand_reload_insns = 0;
7965 /* Dump reloads into the dump file. */
7966 if (dump_file)
7968 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
7969 debug_reload_to_stream (dump_file);
7972 /* Now output the instructions to copy the data into and out of the
7973 reload registers. Do these in the order that the reloads were reported,
7974 since reloads of base and index registers precede reloads of operands
7975 and the operands may need the base and index registers reloaded. */
7977 for (j = 0; j < n_reloads; j++)
7979 if (rld[j].reg_rtx && HARD_REGISTER_P (rld[j].reg_rtx))
7981 unsigned int i;
7983 for (i = REGNO (rld[j].reg_rtx); i < END_REGNO (rld[j].reg_rtx); i++)
7984 new_spill_reg_store[i] = 0;
7987 do_input_reload (chain, rld + j, j);
7988 do_output_reload (chain, rld + j, j);
7991 /* Now write all the insns we made for reloads in the order expected by
7992 the allocation functions. Prior to the insn being reloaded, we write
7993 the following reloads:
7995 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
7997 RELOAD_OTHER reloads.
7999 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
8000 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
8001 RELOAD_FOR_INPUT reload for the operand.
8003 RELOAD_FOR_OPADDR_ADDRS reloads.
8005 RELOAD_FOR_OPERAND_ADDRESS reloads.
8007 After the insn being reloaded, we write the following:
8009 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
8010 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
8011 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
8012 reloads for the operand. The RELOAD_OTHER output reloads are
8013 output in descending order by reload number. */
8015 emit_insn_before (other_input_address_reload_insns, insn);
8016 emit_insn_before (other_input_reload_insns, insn);
8018 for (j = 0; j < reload_n_operands; j++)
8020 emit_insn_before (inpaddr_address_reload_insns[j], insn);
8021 emit_insn_before (input_address_reload_insns[j], insn);
8022 emit_insn_before (input_reload_insns[j], insn);
8025 emit_insn_before (other_operand_reload_insns, insn);
8026 emit_insn_before (operand_reload_insns, insn);
8028 for (j = 0; j < reload_n_operands; j++)
8030 rtx x = emit_insn_after (outaddr_address_reload_insns[j], insn);
8031 x = emit_insn_after (output_address_reload_insns[j], x);
8032 x = emit_insn_after (output_reload_insns[j], x);
8033 emit_insn_after (other_output_reload_insns[j], x);
8036 /* For all the spill regs newly reloaded in this instruction,
8037 record what they were reloaded from, so subsequent instructions
8038 can inherit the reloads.
8040 Update spill_reg_store for the reloads of this insn.
8041 Copy the elements that were updated in the loop above. */
8043 for (j = 0; j < n_reloads; j++)
8045 int r = reload_order[j];
8046 int i = reload_spill_index[r];
8048 /* If this is a non-inherited input reload from a pseudo, we must
8049 clear any memory of a previous store to the same pseudo. Only do
8050 something if there will not be an output reload for the pseudo
8051 being reloaded. */
8052 if (rld[r].in_reg != 0
8053 && ! (reload_inherited[r] || reload_override_in[r]))
8055 rtx reg = rld[r].in_reg;
8057 if (GET_CODE (reg) == SUBREG)
8058 reg = SUBREG_REG (reg);
8060 if (REG_P (reg)
8061 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
8062 && !REGNO_REG_SET_P (&reg_has_output_reload, REGNO (reg)))
8064 int nregno = REGNO (reg);
8066 if (reg_last_reload_reg[nregno])
8068 int last_regno = REGNO (reg_last_reload_reg[nregno]);
8070 if (reg_reloaded_contents[last_regno] == nregno)
8071 spill_reg_store[last_regno] = 0;
8076 /* I is nonneg if this reload used a register.
8077 If rld[r].reg_rtx is 0, this is an optional reload
8078 that we opted to ignore. */
8080 if (i >= 0 && rld[r].reg_rtx != 0)
8082 int nr = hard_regno_nregs[i][GET_MODE (rld[r].reg_rtx)];
8083 int k;
8085 /* For a multi register reload, we need to check if all or part
8086 of the value lives to the end. */
8087 for (k = 0; k < nr; k++)
8088 if (reload_reg_reaches_end_p (i + k, rld[r].opnum,
8089 rld[r].when_needed))
8090 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
8092 /* Maybe the spill reg contains a copy of reload_out. */
8093 if (rld[r].out != 0
8094 && (REG_P (rld[r].out)
8095 || (rld[r].out_reg
8096 ? REG_P (rld[r].out_reg)
8097 /* The reload value is an auto-modification of
8098 some kind. For PRE_INC, POST_INC, PRE_DEC
8099 and POST_DEC, we record an equivalence
8100 between the reload register and the operand
8101 on the optimistic assumption that we can make
8102 the equivalence hold. reload_as_needed must
8103 then either make it hold or invalidate the
8104 equivalence.
8106 PRE_MODIFY and POST_MODIFY addresses are reloaded
8107 somewhat differently, and allowing them here leads
8108 to problems. */
8109 : (GET_CODE (rld[r].out) != POST_MODIFY
8110 && GET_CODE (rld[r].out) != PRE_MODIFY))))
8112 rtx reg;
8113 enum machine_mode mode;
8114 int regno, nregs;
8116 reg = reload_reg_rtx_for_output[r];
8117 mode = GET_MODE (reg);
8118 regno = REGNO (reg);
8119 nregs = hard_regno_nregs[regno][mode];
8120 if (reload_regs_reach_end_p (regno, nregs, rld[r].opnum,
8121 rld[r].when_needed))
8123 rtx out = (REG_P (rld[r].out)
8124 ? rld[r].out
8125 : rld[r].out_reg
8126 ? rld[r].out_reg
8127 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
8128 int out_regno = REGNO (out);
8129 int out_nregs = (!HARD_REGISTER_NUM_P (out_regno) ? 1
8130 : hard_regno_nregs[out_regno][mode]);
8131 bool piecemeal;
8133 spill_reg_store[regno] = new_spill_reg_store[regno];
8134 spill_reg_stored_to[regno] = out;
8135 reg_last_reload_reg[out_regno] = reg;
8137 piecemeal = (HARD_REGISTER_NUM_P (out_regno)
8138 && nregs == out_nregs
8139 && inherit_piecemeal_p (out_regno, regno, mode));
8141 /* If OUT_REGNO is a hard register, it may occupy more than
8142 one register. If it does, say what is in the
8143 rest of the registers assuming that both registers
8144 agree on how many words the object takes. If not,
8145 invalidate the subsequent registers. */
8147 if (HARD_REGISTER_NUM_P (out_regno))
8148 for (k = 1; k < out_nregs; k++)
8149 reg_last_reload_reg[out_regno + k]
8150 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8152 /* Now do the inverse operation. */
8153 for (k = 0; k < nregs; k++)
8155 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8156 reg_reloaded_contents[regno + k]
8157 = (!HARD_REGISTER_NUM_P (out_regno) || !piecemeal
8158 ? out_regno
8159 : out_regno + k);
8160 reg_reloaded_insn[regno + k] = insn;
8161 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8162 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
8163 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8164 regno + k);
8165 else
8166 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8167 regno + k);
8171 /* Maybe the spill reg contains a copy of reload_in. Only do
8172 something if there will not be an output reload for
8173 the register being reloaded. */
8174 else if (rld[r].out_reg == 0
8175 && rld[r].in != 0
8176 && ((REG_P (rld[r].in)
8177 && !HARD_REGISTER_P (rld[r].in)
8178 && !REGNO_REG_SET_P (&reg_has_output_reload,
8179 REGNO (rld[r].in)))
8180 || (REG_P (rld[r].in_reg)
8181 && !REGNO_REG_SET_P (&reg_has_output_reload,
8182 REGNO (rld[r].in_reg))))
8183 && !reg_set_p (reload_reg_rtx_for_input[r], PATTERN (insn)))
8185 rtx reg;
8186 enum machine_mode mode;
8187 int regno, nregs;
8189 reg = reload_reg_rtx_for_input[r];
8190 mode = GET_MODE (reg);
8191 regno = REGNO (reg);
8192 nregs = hard_regno_nregs[regno][mode];
8193 if (reload_regs_reach_end_p (regno, nregs, rld[r].opnum,
8194 rld[r].when_needed))
8196 int in_regno;
8197 int in_nregs;
8198 rtx in;
8199 bool piecemeal;
8201 if (REG_P (rld[r].in)
8202 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
8203 in = rld[r].in;
8204 else if (REG_P (rld[r].in_reg))
8205 in = rld[r].in_reg;
8206 else
8207 in = XEXP (rld[r].in_reg, 0);
8208 in_regno = REGNO (in);
8210 in_nregs = (!HARD_REGISTER_NUM_P (in_regno) ? 1
8211 : hard_regno_nregs[in_regno][mode]);
8213 reg_last_reload_reg[in_regno] = reg;
8215 piecemeal = (HARD_REGISTER_NUM_P (in_regno)
8216 && nregs == in_nregs
8217 && inherit_piecemeal_p (regno, in_regno, mode));
8219 if (HARD_REGISTER_NUM_P (in_regno))
8220 for (k = 1; k < in_nregs; k++)
8221 reg_last_reload_reg[in_regno + k]
8222 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8224 /* Unless we inherited this reload, show we haven't
8225 recently done a store.
8226 Previous stores of inherited auto_inc expressions
8227 also have to be discarded. */
8228 if (! reload_inherited[r]
8229 || (rld[r].out && ! rld[r].out_reg))
8230 spill_reg_store[regno] = 0;
8232 for (k = 0; k < nregs; k++)
8234 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8235 reg_reloaded_contents[regno + k]
8236 = (!HARD_REGISTER_NUM_P (in_regno) || !piecemeal
8237 ? in_regno
8238 : in_regno + k);
8239 reg_reloaded_insn[regno + k] = insn;
8240 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8241 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
8242 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8243 regno + k);
8244 else
8245 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8246 regno + k);
8252 /* The following if-statement was #if 0'd in 1.34 (or before...).
8253 It's reenabled in 1.35 because supposedly nothing else
8254 deals with this problem. */
8256 /* If a register gets output-reloaded from a non-spill register,
8257 that invalidates any previous reloaded copy of it.
8258 But forget_old_reloads_1 won't get to see it, because
8259 it thinks only about the original insn. So invalidate it here.
8260 Also do the same thing for RELOAD_OTHER constraints where the
8261 output is discarded. */
8262 if (i < 0
8263 && ((rld[r].out != 0
8264 && (REG_P (rld[r].out)
8265 || (MEM_P (rld[r].out)
8266 && REG_P (rld[r].out_reg))))
8267 || (rld[r].out == 0 && rld[r].out_reg
8268 && REG_P (rld[r].out_reg))))
8270 rtx out = ((rld[r].out && REG_P (rld[r].out))
8271 ? rld[r].out : rld[r].out_reg);
8272 int out_regno = REGNO (out);
8273 enum machine_mode mode = GET_MODE (out);
8275 /* REG_RTX is now set or clobbered by the main instruction.
8276 As the comment above explains, forget_old_reloads_1 only
8277 sees the original instruction, and there is no guarantee
8278 that the original instruction also clobbered REG_RTX.
8279 For example, if find_reloads sees that the input side of
8280 a matched operand pair dies in this instruction, it may
8281 use the input register as the reload register.
8283 Calling forget_old_reloads_1 is a waste of effort if
8284 REG_RTX is also the output register.
8286 If we know that REG_RTX holds the value of a pseudo
8287 register, the code after the call will record that fact. */
8288 if (rld[r].reg_rtx && rld[r].reg_rtx != out)
8289 forget_old_reloads_1 (rld[r].reg_rtx, NULL_RTX, NULL);
8291 if (!HARD_REGISTER_NUM_P (out_regno))
8293 rtx src_reg, store_insn = NULL_RTX;
8295 reg_last_reload_reg[out_regno] = 0;
8297 /* If we can find a hard register that is stored, record
8298 the storing insn so that we may delete this insn with
8299 delete_output_reload. */
8300 src_reg = reload_reg_rtx_for_output[r];
8302 /* If this is an optional reload, try to find the source reg
8303 from an input reload. */
8304 if (! src_reg)
8306 rtx set = single_set (insn);
8307 if (set && SET_DEST (set) == rld[r].out)
8309 int k;
8311 src_reg = SET_SRC (set);
8312 store_insn = insn;
8313 for (k = 0; k < n_reloads; k++)
8315 if (rld[k].in == src_reg)
8317 src_reg = reload_reg_rtx_for_input[k];
8318 break;
8323 else
8324 store_insn = new_spill_reg_store[REGNO (src_reg)];
8325 if (src_reg && REG_P (src_reg)
8326 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
8328 int src_regno, src_nregs, k;
8329 rtx note;
8331 gcc_assert (GET_MODE (src_reg) == mode);
8332 src_regno = REGNO (src_reg);
8333 src_nregs = hard_regno_nregs[src_regno][mode];
8334 /* The place where to find a death note varies with
8335 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
8336 necessarily checked exactly in the code that moves
8337 notes, so just check both locations. */
8338 note = find_regno_note (insn, REG_DEAD, src_regno);
8339 if (! note && store_insn)
8340 note = find_regno_note (store_insn, REG_DEAD, src_regno);
8341 for (k = 0; k < src_nregs; k++)
8343 spill_reg_store[src_regno + k] = store_insn;
8344 spill_reg_stored_to[src_regno + k] = out;
8345 reg_reloaded_contents[src_regno + k] = out_regno;
8346 reg_reloaded_insn[src_regno + k] = store_insn;
8347 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + k);
8348 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + k);
8349 if (HARD_REGNO_CALL_PART_CLOBBERED (src_regno + k,
8350 mode))
8351 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8352 src_regno + k);
8353 else
8354 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8355 src_regno + k);
8356 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + k);
8357 if (note)
8358 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
8359 else
8360 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
8362 reg_last_reload_reg[out_regno] = src_reg;
8363 /* We have to set reg_has_output_reload here, or else
8364 forget_old_reloads_1 will clear reg_last_reload_reg
8365 right away. */
8366 SET_REGNO_REG_SET (&reg_has_output_reload,
8367 out_regno);
8370 else
8372 int k, out_nregs = hard_regno_nregs[out_regno][mode];
8374 for (k = 0; k < out_nregs; k++)
8375 reg_last_reload_reg[out_regno + k] = 0;
8379 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
8382 /* Go through the motions to emit INSN and test if it is strictly valid.
8383 Return the emitted insn if valid, else return NULL. */
8385 static rtx
8386 emit_insn_if_valid_for_reload (rtx insn)
8388 rtx last = get_last_insn ();
8389 int code;
8391 insn = emit_insn (insn);
8392 code = recog_memoized (insn);
8394 if (code >= 0)
8396 extract_insn (insn);
8397 /* We want constrain operands to treat this insn strictly in its
8398 validity determination, i.e., the way it would after reload has
8399 completed. */
8400 if (constrain_operands (1))
8401 return insn;
8404 delete_insns_since (last);
8405 return NULL;
8408 /* Emit code to perform a reload from IN (which may be a reload register) to
8409 OUT (which may also be a reload register). IN or OUT is from operand
8410 OPNUM with reload type TYPE.
8412 Returns first insn emitted. */
8414 static rtx
8415 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
8417 rtx last = get_last_insn ();
8418 rtx tem;
8420 /* If IN is a paradoxical SUBREG, remove it and try to put the
8421 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
8422 if (!strip_paradoxical_subreg (&in, &out))
8423 strip_paradoxical_subreg (&out, &in);
8425 /* How to do this reload can get quite tricky. Normally, we are being
8426 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
8427 register that didn't get a hard register. In that case we can just
8428 call emit_move_insn.
8430 We can also be asked to reload a PLUS that adds a register or a MEM to
8431 another register, constant or MEM. This can occur during frame pointer
8432 elimination and while reloading addresses. This case is handled by
8433 trying to emit a single insn to perform the add. If it is not valid,
8434 we use a two insn sequence.
8436 Or we can be asked to reload an unary operand that was a fragment of
8437 an addressing mode, into a register. If it isn't recognized as-is,
8438 we try making the unop operand and the reload-register the same:
8439 (set reg:X (unop:X expr:Y))
8440 -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
8442 Finally, we could be called to handle an 'o' constraint by putting
8443 an address into a register. In that case, we first try to do this
8444 with a named pattern of "reload_load_address". If no such pattern
8445 exists, we just emit a SET insn and hope for the best (it will normally
8446 be valid on machines that use 'o').
8448 This entire process is made complex because reload will never
8449 process the insns we generate here and so we must ensure that
8450 they will fit their constraints and also by the fact that parts of
8451 IN might be being reloaded separately and replaced with spill registers.
8452 Because of this, we are, in some sense, just guessing the right approach
8453 here. The one listed above seems to work.
8455 ??? At some point, this whole thing needs to be rethought. */
8457 if (GET_CODE (in) == PLUS
8458 && (REG_P (XEXP (in, 0))
8459 || GET_CODE (XEXP (in, 0)) == SUBREG
8460 || MEM_P (XEXP (in, 0)))
8461 && (REG_P (XEXP (in, 1))
8462 || GET_CODE (XEXP (in, 1)) == SUBREG
8463 || CONSTANT_P (XEXP (in, 1))
8464 || MEM_P (XEXP (in, 1))))
8466 /* We need to compute the sum of a register or a MEM and another
8467 register, constant, or MEM, and put it into the reload
8468 register. The best possible way of doing this is if the machine
8469 has a three-operand ADD insn that accepts the required operands.
8471 The simplest approach is to try to generate such an insn and see if it
8472 is recognized and matches its constraints. If so, it can be used.
8474 It might be better not to actually emit the insn unless it is valid,
8475 but we need to pass the insn as an operand to `recog' and
8476 `extract_insn' and it is simpler to emit and then delete the insn if
8477 not valid than to dummy things up. */
8479 rtx op0, op1, tem, insn;
8480 enum insn_code code;
8482 op0 = find_replacement (&XEXP (in, 0));
8483 op1 = find_replacement (&XEXP (in, 1));
8485 /* Since constraint checking is strict, commutativity won't be
8486 checked, so we need to do that here to avoid spurious failure
8487 if the add instruction is two-address and the second operand
8488 of the add is the same as the reload reg, which is frequently
8489 the case. If the insn would be A = B + A, rearrange it so
8490 it will be A = A + B as constrain_operands expects. */
8492 if (REG_P (XEXP (in, 1))
8493 && REGNO (out) == REGNO (XEXP (in, 1)))
8494 tem = op0, op0 = op1, op1 = tem;
8496 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
8497 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
8499 insn = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
8500 if (insn)
8501 return insn;
8503 /* If that failed, we must use a conservative two-insn sequence.
8505 Use a move to copy one operand into the reload register. Prefer
8506 to reload a constant, MEM or pseudo since the move patterns can
8507 handle an arbitrary operand. If OP1 is not a constant, MEM or
8508 pseudo and OP1 is not a valid operand for an add instruction, then
8509 reload OP1.
8511 After reloading one of the operands into the reload register, add
8512 the reload register to the output register.
8514 If there is another way to do this for a specific machine, a
8515 DEFINE_PEEPHOLE should be specified that recognizes the sequence
8516 we emit below. */
8518 code = optab_handler (add_optab, GET_MODE (out));
8520 if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
8521 || (REG_P (op1)
8522 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
8523 || (code != CODE_FOR_nothing
8524 && !insn_operand_matches (code, 2, op1)))
8525 tem = op0, op0 = op1, op1 = tem;
8527 gen_reload (out, op0, opnum, type);
8529 /* If OP0 and OP1 are the same, we can use OUT for OP1.
8530 This fixes a problem on the 32K where the stack pointer cannot
8531 be used as an operand of an add insn. */
8533 if (rtx_equal_p (op0, op1))
8534 op1 = out;
8536 insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
8537 if (insn)
8539 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
8540 set_unique_reg_note (insn, REG_EQUIV, in);
8541 return insn;
8544 /* If that failed, copy the address register to the reload register.
8545 Then add the constant to the reload register. */
8547 gcc_assert (!reg_overlap_mentioned_p (out, op0));
8548 gen_reload (out, op1, opnum, type);
8549 insn = emit_insn (gen_add2_insn (out, op0));
8550 set_unique_reg_note (insn, REG_EQUIV, in);
8553 #ifdef SECONDARY_MEMORY_NEEDED
8554 /* If we need a memory location to do the move, do it that way. */
8555 else if ((REG_P (in)
8556 || (GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))))
8557 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
8558 && (REG_P (out)
8559 || (GET_CODE (out) == SUBREG && REG_P (SUBREG_REG (out))))
8560 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
8561 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
8562 REGNO_REG_CLASS (reg_or_subregno (out)),
8563 GET_MODE (out)))
8565 /* Get the memory to use and rewrite both registers to its mode. */
8566 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
8568 if (GET_MODE (loc) != GET_MODE (out))
8569 out = gen_rtx_REG (GET_MODE (loc), REGNO (out));
8571 if (GET_MODE (loc) != GET_MODE (in))
8572 in = gen_rtx_REG (GET_MODE (loc), REGNO (in));
8574 gen_reload (loc, in, opnum, type);
8575 gen_reload (out, loc, opnum, type);
8577 #endif
8578 else if (REG_P (out) && UNARY_P (in))
8580 rtx insn;
8581 rtx op1;
8582 rtx out_moded;
8583 rtx set;
8585 op1 = find_replacement (&XEXP (in, 0));
8586 if (op1 != XEXP (in, 0))
8587 in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
8589 /* First, try a plain SET. */
8590 set = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
8591 if (set)
8592 return set;
8594 /* If that failed, move the inner operand to the reload
8595 register, and try the same unop with the inner expression
8596 replaced with the reload register. */
8598 if (GET_MODE (op1) != GET_MODE (out))
8599 out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
8600 else
8601 out_moded = out;
8603 gen_reload (out_moded, op1, opnum, type);
8605 insn
8606 = gen_rtx_SET (VOIDmode, out,
8607 gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
8608 out_moded));
8609 insn = emit_insn_if_valid_for_reload (insn);
8610 if (insn)
8612 set_unique_reg_note (insn, REG_EQUIV, in);
8613 return insn;
8616 fatal_insn ("failure trying to reload:", set);
8618 /* If IN is a simple operand, use gen_move_insn. */
8619 else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
8621 tem = emit_insn (gen_move_insn (out, in));
8622 /* IN may contain a LABEL_REF, if so add a REG_LABEL_OPERAND note. */
8623 mark_jump_label (in, tem, 0);
8626 #ifdef HAVE_reload_load_address
8627 else if (HAVE_reload_load_address)
8628 emit_insn (gen_reload_load_address (out, in));
8629 #endif
8631 /* Otherwise, just write (set OUT IN) and hope for the best. */
8632 else
8633 emit_insn (gen_rtx_SET (VOIDmode, out, in));
8635 /* Return the first insn emitted.
8636 We can not just return get_last_insn, because there may have
8637 been multiple instructions emitted. Also note that gen_move_insn may
8638 emit more than one insn itself, so we can not assume that there is one
8639 insn emitted per emit_insn_before call. */
8641 return last ? NEXT_INSN (last) : get_insns ();
8644 /* Delete a previously made output-reload whose result we now believe
8645 is not needed. First we double-check.
8647 INSN is the insn now being processed.
8648 LAST_RELOAD_REG is the hard register number for which we want to delete
8649 the last output reload.
8650 J is the reload-number that originally used REG. The caller has made
8651 certain that reload J doesn't use REG any longer for input.
8652 NEW_RELOAD_REG is reload register that reload J is using for REG. */
8654 static void
8655 delete_output_reload (rtx insn, int j, int last_reload_reg, rtx new_reload_reg)
8657 rtx output_reload_insn = spill_reg_store[last_reload_reg];
8658 rtx reg = spill_reg_stored_to[last_reload_reg];
8659 int k;
8660 int n_occurrences;
8661 int n_inherited = 0;
8662 rtx i1;
8663 rtx substed;
8664 unsigned regno;
8665 int nregs;
8667 /* It is possible that this reload has been only used to set another reload
8668 we eliminated earlier and thus deleted this instruction too. */
8669 if (INSN_DELETED_P (output_reload_insn))
8670 return;
8672 /* Get the raw pseudo-register referred to. */
8674 while (GET_CODE (reg) == SUBREG)
8675 reg = SUBREG_REG (reg);
8676 substed = reg_equiv_memory_loc (REGNO (reg));
8678 /* This is unsafe if the operand occurs more often in the current
8679 insn than it is inherited. */
8680 for (k = n_reloads - 1; k >= 0; k--)
8682 rtx reg2 = rld[k].in;
8683 if (! reg2)
8684 continue;
8685 if (MEM_P (reg2) || reload_override_in[k])
8686 reg2 = rld[k].in_reg;
8687 #ifdef AUTO_INC_DEC
8688 if (rld[k].out && ! rld[k].out_reg)
8689 reg2 = XEXP (rld[k].in_reg, 0);
8690 #endif
8691 while (GET_CODE (reg2) == SUBREG)
8692 reg2 = SUBREG_REG (reg2);
8693 if (rtx_equal_p (reg2, reg))
8695 if (reload_inherited[k] || reload_override_in[k] || k == j)
8696 n_inherited++;
8697 else
8698 return;
8701 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
8702 if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
8703 n_occurrences += count_occurrences (CALL_INSN_FUNCTION_USAGE (insn),
8704 reg, 0);
8705 if (substed)
8706 n_occurrences += count_occurrences (PATTERN (insn),
8707 eliminate_regs (substed, VOIDmode,
8708 NULL_RTX), 0);
8709 for (i1 = reg_equiv_alt_mem_list (REGNO (reg)); i1; i1 = XEXP (i1, 1))
8711 gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed));
8712 n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0);
8714 if (n_occurrences > n_inherited)
8715 return;
8717 regno = REGNO (reg);
8718 if (regno >= FIRST_PSEUDO_REGISTER)
8719 nregs = 1;
8720 else
8721 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
8723 /* If the pseudo-reg we are reloading is no longer referenced
8724 anywhere between the store into it and here,
8725 and we're within the same basic block, then the value can only
8726 pass through the reload reg and end up here.
8727 Otherwise, give up--return. */
8728 for (i1 = NEXT_INSN (output_reload_insn);
8729 i1 != insn; i1 = NEXT_INSN (i1))
8731 if (NOTE_INSN_BASIC_BLOCK_P (i1))
8732 return;
8733 if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
8734 && refers_to_regno_p (regno, regno + nregs, PATTERN (i1), NULL))
8736 /* If this is USE in front of INSN, we only have to check that
8737 there are no more references than accounted for by inheritance. */
8738 while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
8740 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
8741 i1 = NEXT_INSN (i1);
8743 if (n_occurrences <= n_inherited && i1 == insn)
8744 break;
8745 return;
8749 /* We will be deleting the insn. Remove the spill reg information. */
8750 for (k = hard_regno_nregs[last_reload_reg][GET_MODE (reg)]; k-- > 0; )
8752 spill_reg_store[last_reload_reg + k] = 0;
8753 spill_reg_stored_to[last_reload_reg + k] = 0;
8756 /* The caller has already checked that REG dies or is set in INSN.
8757 It has also checked that we are optimizing, and thus some
8758 inaccuracies in the debugging information are acceptable.
8759 So we could just delete output_reload_insn. But in some cases
8760 we can improve the debugging information without sacrificing
8761 optimization - maybe even improving the code: See if the pseudo
8762 reg has been completely replaced with reload regs. If so, delete
8763 the store insn and forget we had a stack slot for the pseudo. */
8764 if (rld[j].out != rld[j].in
8765 && REG_N_DEATHS (REGNO (reg)) == 1
8766 && REG_N_SETS (REGNO (reg)) == 1
8767 && REG_BASIC_BLOCK (REGNO (reg)) >= NUM_FIXED_BLOCKS
8768 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
8770 rtx i2;
8772 /* We know that it was used only between here and the beginning of
8773 the current basic block. (We also know that the last use before
8774 INSN was the output reload we are thinking of deleting, but never
8775 mind that.) Search that range; see if any ref remains. */
8776 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8778 rtx set = single_set (i2);
8780 /* Uses which just store in the pseudo don't count,
8781 since if they are the only uses, they are dead. */
8782 if (set != 0 && SET_DEST (set) == reg)
8783 continue;
8784 if (LABEL_P (i2)
8785 || JUMP_P (i2))
8786 break;
8787 if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
8788 && reg_mentioned_p (reg, PATTERN (i2)))
8790 /* Some other ref remains; just delete the output reload we
8791 know to be dead. */
8792 delete_address_reloads (output_reload_insn, insn);
8793 delete_insn (output_reload_insn);
8794 return;
8798 /* Delete the now-dead stores into this pseudo. Note that this
8799 loop also takes care of deleting output_reload_insn. */
8800 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8802 rtx set = single_set (i2);
8804 if (set != 0 && SET_DEST (set) == reg)
8806 delete_address_reloads (i2, insn);
8807 delete_insn (i2);
8809 if (LABEL_P (i2)
8810 || JUMP_P (i2))
8811 break;
8814 /* For the debugging info, say the pseudo lives in this reload reg. */
8815 reg_renumber[REGNO (reg)] = REGNO (new_reload_reg);
8816 if (ira_conflicts_p)
8817 /* Inform IRA about the change. */
8818 ira_mark_allocation_change (REGNO (reg));
8819 alter_reg (REGNO (reg), -1, false);
8821 else
8823 delete_address_reloads (output_reload_insn, insn);
8824 delete_insn (output_reload_insn);
8828 /* We are going to delete DEAD_INSN. Recursively delete loads of
8829 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
8830 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
8831 static void
8832 delete_address_reloads (rtx dead_insn, rtx current_insn)
8834 rtx set = single_set (dead_insn);
8835 rtx set2, dst, prev, next;
8836 if (set)
8838 rtx dst = SET_DEST (set);
8839 if (MEM_P (dst))
8840 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
8842 /* If we deleted the store from a reloaded post_{in,de}c expression,
8843 we can delete the matching adds. */
8844 prev = PREV_INSN (dead_insn);
8845 next = NEXT_INSN (dead_insn);
8846 if (! prev || ! next)
8847 return;
8848 set = single_set (next);
8849 set2 = single_set (prev);
8850 if (! set || ! set2
8851 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
8852 || !CONST_INT_P (XEXP (SET_SRC (set), 1))
8853 || !CONST_INT_P (XEXP (SET_SRC (set2), 1)))
8854 return;
8855 dst = SET_DEST (set);
8856 if (! rtx_equal_p (dst, SET_DEST (set2))
8857 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
8858 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
8859 || (INTVAL (XEXP (SET_SRC (set), 1))
8860 != -INTVAL (XEXP (SET_SRC (set2), 1))))
8861 return;
8862 delete_related_insns (prev);
8863 delete_related_insns (next);
8866 /* Subfunction of delete_address_reloads: process registers found in X. */
8867 static void
8868 delete_address_reloads_1 (rtx dead_insn, rtx x, rtx current_insn)
8870 rtx prev, set, dst, i2;
8871 int i, j;
8872 enum rtx_code code = GET_CODE (x);
8874 if (code != REG)
8876 const char *fmt = GET_RTX_FORMAT (code);
8877 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8879 if (fmt[i] == 'e')
8880 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
8881 else if (fmt[i] == 'E')
8883 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8884 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
8885 current_insn);
8888 return;
8891 if (spill_reg_order[REGNO (x)] < 0)
8892 return;
8894 /* Scan backwards for the insn that sets x. This might be a way back due
8895 to inheritance. */
8896 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
8898 code = GET_CODE (prev);
8899 if (code == CODE_LABEL || code == JUMP_INSN)
8900 return;
8901 if (!INSN_P (prev))
8902 continue;
8903 if (reg_set_p (x, PATTERN (prev)))
8904 break;
8905 if (reg_referenced_p (x, PATTERN (prev)))
8906 return;
8908 if (! prev || INSN_UID (prev) < reload_first_uid)
8909 return;
8910 /* Check that PREV only sets the reload register. */
8911 set = single_set (prev);
8912 if (! set)
8913 return;
8914 dst = SET_DEST (set);
8915 if (!REG_P (dst)
8916 || ! rtx_equal_p (dst, x))
8917 return;
8918 if (! reg_set_p (dst, PATTERN (dead_insn)))
8920 /* Check if DST was used in a later insn -
8921 it might have been inherited. */
8922 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
8924 if (LABEL_P (i2))
8925 break;
8926 if (! INSN_P (i2))
8927 continue;
8928 if (reg_referenced_p (dst, PATTERN (i2)))
8930 /* If there is a reference to the register in the current insn,
8931 it might be loaded in a non-inherited reload. If no other
8932 reload uses it, that means the register is set before
8933 referenced. */
8934 if (i2 == current_insn)
8936 for (j = n_reloads - 1; j >= 0; j--)
8937 if ((rld[j].reg_rtx == dst && reload_inherited[j])
8938 || reload_override_in[j] == dst)
8939 return;
8940 for (j = n_reloads - 1; j >= 0; j--)
8941 if (rld[j].in && rld[j].reg_rtx == dst)
8942 break;
8943 if (j >= 0)
8944 break;
8946 return;
8948 if (JUMP_P (i2))
8949 break;
8950 /* If DST is still live at CURRENT_INSN, check if it is used for
8951 any reload. Note that even if CURRENT_INSN sets DST, we still
8952 have to check the reloads. */
8953 if (i2 == current_insn)
8955 for (j = n_reloads - 1; j >= 0; j--)
8956 if ((rld[j].reg_rtx == dst && reload_inherited[j])
8957 || reload_override_in[j] == dst)
8958 return;
8959 /* ??? We can't finish the loop here, because dst might be
8960 allocated to a pseudo in this block if no reload in this
8961 block needs any of the classes containing DST - see
8962 spill_hard_reg. There is no easy way to tell this, so we
8963 have to scan till the end of the basic block. */
8965 if (reg_set_p (dst, PATTERN (i2)))
8966 break;
8969 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
8970 reg_reloaded_contents[REGNO (dst)] = -1;
8971 delete_insn (prev);
8974 /* Output reload-insns to reload VALUE into RELOADREG.
8975 VALUE is an autoincrement or autodecrement RTX whose operand
8976 is a register or memory location;
8977 so reloading involves incrementing that location.
8978 IN is either identical to VALUE, or some cheaper place to reload from.
8980 INC_AMOUNT is the number to increment or decrement by (always positive).
8981 This cannot be deduced from VALUE. */
8983 static void
8984 inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
8986 /* REG or MEM to be copied and incremented. */
8987 rtx incloc = find_replacement (&XEXP (value, 0));
8988 /* Nonzero if increment after copying. */
8989 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
8990 || GET_CODE (value) == POST_MODIFY);
8991 rtx last;
8992 rtx inc;
8993 rtx add_insn;
8994 int code;
8995 rtx real_in = in == value ? incloc : in;
8997 /* No hard register is equivalent to this register after
8998 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
8999 we could inc/dec that register as well (maybe even using it for
9000 the source), but I'm not sure it's worth worrying about. */
9001 if (REG_P (incloc))
9002 reg_last_reload_reg[REGNO (incloc)] = 0;
9004 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
9006 gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
9007 inc = find_replacement (&XEXP (XEXP (value, 1), 1));
9009 else
9011 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
9012 inc_amount = -inc_amount;
9014 inc = GEN_INT (inc_amount);
9017 /* If this is post-increment, first copy the location to the reload reg. */
9018 if (post && real_in != reloadreg)
9019 emit_insn (gen_move_insn (reloadreg, real_in));
9021 if (in == value)
9023 /* See if we can directly increment INCLOC. Use a method similar to
9024 that in gen_reload. */
9026 last = get_last_insn ();
9027 add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
9028 gen_rtx_PLUS (GET_MODE (incloc),
9029 incloc, inc)));
9031 code = recog_memoized (add_insn);
9032 if (code >= 0)
9034 extract_insn (add_insn);
9035 if (constrain_operands (1))
9037 /* If this is a pre-increment and we have incremented the value
9038 where it lives, copy the incremented value to RELOADREG to
9039 be used as an address. */
9041 if (! post)
9042 emit_insn (gen_move_insn (reloadreg, incloc));
9043 return;
9046 delete_insns_since (last);
9049 /* If couldn't do the increment directly, must increment in RELOADREG.
9050 The way we do this depends on whether this is pre- or post-increment.
9051 For pre-increment, copy INCLOC to the reload register, increment it
9052 there, then save back. */
9054 if (! post)
9056 if (in != reloadreg)
9057 emit_insn (gen_move_insn (reloadreg, real_in));
9058 emit_insn (gen_add2_insn (reloadreg, inc));
9059 emit_insn (gen_move_insn (incloc, reloadreg));
9061 else
9063 /* Postincrement.
9064 Because this might be a jump insn or a compare, and because RELOADREG
9065 may not be available after the insn in an input reload, we must do
9066 the incrementation before the insn being reloaded for.
9068 We have already copied IN to RELOADREG. Increment the copy in
9069 RELOADREG, save that back, then decrement RELOADREG so it has
9070 the original value. */
9072 emit_insn (gen_add2_insn (reloadreg, inc));
9073 emit_insn (gen_move_insn (incloc, reloadreg));
9074 if (CONST_INT_P (inc))
9075 emit_insn (gen_add2_insn (reloadreg, GEN_INT (-INTVAL (inc))));
9076 else
9077 emit_insn (gen_sub2_insn (reloadreg, inc));
9081 #ifdef AUTO_INC_DEC
9082 static void
9083 add_auto_inc_notes (rtx insn, rtx x)
9085 enum rtx_code code = GET_CODE (x);
9086 const char *fmt;
9087 int i, j;
9089 if (code == MEM && auto_inc_p (XEXP (x, 0)))
9091 add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
9092 return;
9095 /* Scan all the operand sub-expressions. */
9096 fmt = GET_RTX_FORMAT (code);
9097 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9099 if (fmt[i] == 'e')
9100 add_auto_inc_notes (insn, XEXP (x, i));
9101 else if (fmt[i] == 'E')
9102 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9103 add_auto_inc_notes (insn, XVECEXP (x, i, j));
9106 #endif