1 /* Subroutines used by or related to instruction recognition.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
25 #include "coretypes.h"
27 #include "rtl-error.h"
29 #include "insn-config.h"
30 #include "insn-attr.h"
31 #include "hard-reg-set.h"
34 #include "addresses.h"
38 #include "basic-block.h"
43 #include "tree-pass.h"
46 #ifndef STACK_PUSH_CODE
47 #ifdef STACK_GROWS_DOWNWARD
48 #define STACK_PUSH_CODE PRE_DEC
50 #define STACK_PUSH_CODE PRE_INC
54 #ifndef STACK_POP_CODE
55 #ifdef STACK_GROWS_DOWNWARD
56 #define STACK_POP_CODE POST_INC
58 #define STACK_POP_CODE POST_DEC
62 #ifndef HAVE_ATTR_enabled
64 get_attr_enabled (rtx insn ATTRIBUTE_UNUSED
)
70 static void validate_replace_rtx_1 (rtx
*, rtx
, rtx
, rtx
, bool);
71 static void validate_replace_src_1 (rtx
*, void *);
72 static rtx
split_insn (rtx
);
74 /* Nonzero means allow operands to be volatile.
75 This should be 0 if you are generating rtl, such as if you are calling
76 the functions in optabs.c and expmed.c (most of the time).
77 This should be 1 if all valid insns need to be recognized,
78 such as in reginfo.c and final.c and reload.c.
80 init_recog and init_recog_no_volatile are responsible for setting this. */
84 struct recog_data recog_data
;
86 /* Contains a vector of operand_alternative structures for every operand.
87 Set up by preprocess_constraints. */
88 struct operand_alternative recog_op_alt
[MAX_RECOG_OPERANDS
][MAX_RECOG_ALTERNATIVES
];
90 /* On return from `constrain_operands', indicate which alternative
93 int which_alternative
;
95 /* Nonzero after end of reload pass.
96 Set to 1 or 0 by toplev.c.
97 Controls the significance of (SUBREG (MEM)). */
101 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
102 int epilogue_completed
;
104 /* Initialize data used by the function `recog'.
105 This must be called once in the compilation of a function
106 before any insn recognition may be done in the function. */
109 init_recog_no_volatile (void)
121 /* Check that X is an insn-body for an `asm' with operands
122 and that the operands mentioned in it are legitimate. */
125 check_asm_operands (rtx x
)
129 const char **constraints
;
132 /* Post-reload, be more strict with things. */
133 if (reload_completed
)
135 /* ??? Doh! We've not got the wrapping insn. Cook one up. */
136 extract_insn (make_insn_raw (x
));
137 constrain_operands (1);
138 return which_alternative
>= 0;
141 noperands
= asm_noperands (x
);
147 operands
= XALLOCAVEC (rtx
, noperands
);
148 constraints
= XALLOCAVEC (const char *, noperands
);
150 decode_asm_operands (x
, operands
, NULL
, constraints
, NULL
, NULL
);
152 for (i
= 0; i
< noperands
; i
++)
154 const char *c
= constraints
[i
];
157 if (! asm_operand_ok (operands
[i
], c
, constraints
))
164 /* Static data for the next two routines. */
166 typedef struct change_t
175 static change_t
*changes
;
176 static int changes_allocated
;
178 static int num_changes
= 0;
180 /* Validate a proposed change to OBJECT. LOC is the location in the rtl
181 at which NEW_RTX will be placed. If OBJECT is zero, no validation is done,
182 the change is simply made.
184 Two types of objects are supported: If OBJECT is a MEM, memory_address_p
185 will be called with the address and mode as parameters. If OBJECT is
186 an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
189 IN_GROUP is nonzero if this is part of a group of changes that must be
190 performed as a group. In that case, the changes will be stored. The
191 function `apply_change_group' will validate and apply the changes.
193 If IN_GROUP is zero, this is a single change. Try to recognize the insn
194 or validate the memory reference with the change applied. If the result
195 is not valid for the machine, suppress the change and return zero.
196 Otherwise, perform the change and return 1. */
199 validate_change_1 (rtx object
, rtx
*loc
, rtx new_rtx
, bool in_group
, bool unshare
)
203 if (old
== new_rtx
|| rtx_equal_p (old
, new_rtx
))
206 gcc_assert (in_group
!= 0 || num_changes
== 0);
210 /* Save the information describing this change. */
211 if (num_changes
>= changes_allocated
)
213 if (changes_allocated
== 0)
214 /* This value allows for repeated substitutions inside complex
215 indexed addresses, or changes in up to 5 insns. */
216 changes_allocated
= MAX_RECOG_OPERANDS
* 5;
218 changes_allocated
*= 2;
220 changes
= XRESIZEVEC (change_t
, changes
, changes_allocated
);
223 changes
[num_changes
].object
= object
;
224 changes
[num_changes
].loc
= loc
;
225 changes
[num_changes
].old
= old
;
226 changes
[num_changes
].unshare
= unshare
;
228 if (object
&& !MEM_P (object
))
230 /* Set INSN_CODE to force rerecognition of insn. Save old code in
232 changes
[num_changes
].old_code
= INSN_CODE (object
);
233 INSN_CODE (object
) = -1;
238 /* If we are making a group of changes, return 1. Otherwise, validate the
239 change group we made. */
244 return apply_change_group ();
247 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
251 validate_change (rtx object
, rtx
*loc
, rtx new_rtx
, bool in_group
)
253 return validate_change_1 (object
, loc
, new_rtx
, in_group
, false);
256 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
260 validate_unshare_change (rtx object
, rtx
*loc
, rtx new_rtx
, bool in_group
)
262 return validate_change_1 (object
, loc
, new_rtx
, in_group
, true);
266 /* Keep X canonicalized if some changes have made it non-canonical; only
267 modifies the operands of X, not (for example) its code. Simplifications
268 are not the job of this routine.
270 Return true if anything was changed. */
272 canonicalize_change_group (rtx insn
, rtx x
)
274 if (COMMUTATIVE_P (x
)
275 && swap_commutative_operands_p (XEXP (x
, 0), XEXP (x
, 1)))
277 /* Oops, the caller has made X no longer canonical.
278 Let's redo the changes in the correct order. */
279 rtx tem
= XEXP (x
, 0);
280 validate_unshare_change (insn
, &XEXP (x
, 0), XEXP (x
, 1), 1);
281 validate_unshare_change (insn
, &XEXP (x
, 1), tem
, 1);
289 /* This subroutine of apply_change_group verifies whether the changes to INSN
290 were valid; i.e. whether INSN can still be recognized. */
293 insn_invalid_p (rtx insn
)
295 rtx pat
= PATTERN (insn
);
296 int num_clobbers
= 0;
297 /* If we are before reload and the pattern is a SET, see if we can add
299 int icode
= recog (pat
, insn
,
300 (GET_CODE (pat
) == SET
301 && ! reload_completed
&& ! reload_in_progress
)
302 ? &num_clobbers
: 0);
303 int is_asm
= icode
< 0 && asm_noperands (PATTERN (insn
)) >= 0;
306 /* If this is an asm and the operand aren't legal, then fail. Likewise if
307 this is not an asm and the insn wasn't recognized. */
308 if ((is_asm
&& ! check_asm_operands (PATTERN (insn
)))
309 || (!is_asm
&& icode
< 0))
312 /* If we have to add CLOBBERs, fail if we have to add ones that reference
313 hard registers since our callers can't know if they are live or not.
314 Otherwise, add them. */
315 if (num_clobbers
> 0)
319 if (added_clobbers_hard_reg_p (icode
))
322 newpat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (num_clobbers
+ 1));
323 XVECEXP (newpat
, 0, 0) = pat
;
324 add_clobbers (newpat
, icode
);
325 PATTERN (insn
) = pat
= newpat
;
328 /* After reload, verify that all constraints are satisfied. */
329 if (reload_completed
)
333 if (! constrain_operands (1))
337 INSN_CODE (insn
) = icode
;
341 /* Return number of changes made and not validated yet. */
343 num_changes_pending (void)
348 /* Tentatively apply the changes numbered NUM and up.
349 Return 1 if all changes are valid, zero otherwise. */
352 verify_changes (int num
)
355 rtx last_validated
= NULL_RTX
;
357 /* The changes have been applied and all INSN_CODEs have been reset to force
360 The changes are valid if we aren't given an object, or if we are
361 given a MEM and it still is a valid address, or if this is in insn
362 and it is recognized. In the latter case, if reload has completed,
363 we also require that the operands meet the constraints for
366 for (i
= num
; i
< num_changes
; i
++)
368 rtx object
= changes
[i
].object
;
370 /* If there is no object to test or if it is the same as the one we
371 already tested, ignore it. */
372 if (object
== 0 || object
== last_validated
)
377 if (! memory_address_addr_space_p (GET_MODE (object
),
379 MEM_ADDR_SPACE (object
)))
382 else if (REG_P (changes
[i
].old
)
383 && asm_noperands (PATTERN (object
)) > 0
384 && REG_EXPR (changes
[i
].old
) != NULL_TREE
385 && DECL_ASSEMBLER_NAME_SET_P (REG_EXPR (changes
[i
].old
))
386 && DECL_REGISTER (REG_EXPR (changes
[i
].old
)))
388 /* Don't allow changes of hard register operands to inline
389 assemblies if they have been defined as register asm ("x"). */
392 else if (DEBUG_INSN_P (object
))
394 else if (insn_invalid_p (object
))
396 rtx pat
= PATTERN (object
);
398 /* Perhaps we couldn't recognize the insn because there were
399 extra CLOBBERs at the end. If so, try to re-recognize
400 without the last CLOBBER (later iterations will cause each of
401 them to be eliminated, in turn). But don't do this if we
402 have an ASM_OPERAND. */
403 if (GET_CODE (pat
) == PARALLEL
404 && GET_CODE (XVECEXP (pat
, 0, XVECLEN (pat
, 0) - 1)) == CLOBBER
405 && asm_noperands (PATTERN (object
)) < 0)
409 if (XVECLEN (pat
, 0) == 2)
410 newpat
= XVECEXP (pat
, 0, 0);
416 = gen_rtx_PARALLEL (VOIDmode
,
417 rtvec_alloc (XVECLEN (pat
, 0) - 1));
418 for (j
= 0; j
< XVECLEN (newpat
, 0); j
++)
419 XVECEXP (newpat
, 0, j
) = XVECEXP (pat
, 0, j
);
422 /* Add a new change to this group to replace the pattern
423 with this new pattern. Then consider this change
424 as having succeeded. The change we added will
425 cause the entire call to fail if things remain invalid.
427 Note that this can lose if a later change than the one
428 we are processing specified &XVECEXP (PATTERN (object), 0, X)
429 but this shouldn't occur. */
431 validate_change (object
, &PATTERN (object
), newpat
, 1);
434 else if (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
435 || GET_CODE (pat
) == VAR_LOCATION
)
436 /* If this insn is a CLOBBER or USE, it is always valid, but is
442 last_validated
= object
;
445 return (i
== num_changes
);
448 /* A group of changes has previously been issued with validate_change
449 and verified with verify_changes. Call df_insn_rescan for each of
450 the insn changed and clear num_changes. */
453 confirm_change_group (void)
456 rtx last_object
= NULL
;
458 for (i
= 0; i
< num_changes
; i
++)
460 rtx object
= changes
[i
].object
;
462 if (changes
[i
].unshare
)
463 *changes
[i
].loc
= copy_rtx (*changes
[i
].loc
);
465 /* Avoid unnecessary rescanning when multiple changes to same instruction
469 if (object
!= last_object
&& last_object
&& INSN_P (last_object
))
470 df_insn_rescan (last_object
);
471 last_object
= object
;
475 if (last_object
&& INSN_P (last_object
))
476 df_insn_rescan (last_object
);
480 /* Apply a group of changes previously issued with `validate_change'.
481 If all changes are valid, call confirm_change_group and return 1,
482 otherwise, call cancel_changes and return 0. */
485 apply_change_group (void)
487 if (verify_changes (0))
489 confirm_change_group ();
500 /* Return the number of changes so far in the current group. */
503 num_validated_changes (void)
508 /* Retract the changes numbered NUM and up. */
511 cancel_changes (int num
)
515 /* Back out all the changes. Do this in the opposite order in which
517 for (i
= num_changes
- 1; i
>= num
; i
--)
519 *changes
[i
].loc
= changes
[i
].old
;
520 if (changes
[i
].object
&& !MEM_P (changes
[i
].object
))
521 INSN_CODE (changes
[i
].object
) = changes
[i
].old_code
;
526 /* A subroutine of validate_replace_rtx_1 that tries to simplify the resulting
530 simplify_while_replacing (rtx
*loc
, rtx to
, rtx object
,
531 enum machine_mode op0_mode
)
534 enum rtx_code code
= GET_CODE (x
);
537 if (SWAPPABLE_OPERANDS_P (x
)
538 && swap_commutative_operands_p (XEXP (x
, 0), XEXP (x
, 1)))
540 validate_unshare_change (object
, loc
,
541 gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x
) ? code
542 : swap_condition (code
),
543 GET_MODE (x
), XEXP (x
, 1),
552 /* If we have a PLUS whose second operand is now a CONST_INT, use
553 simplify_gen_binary to try to simplify it.
554 ??? We may want later to remove this, once simplification is
555 separated from this function. */
556 if (CONST_INT_P (XEXP (x
, 1)) && XEXP (x
, 1) == to
)
557 validate_change (object
, loc
,
559 (PLUS
, GET_MODE (x
), XEXP (x
, 0), XEXP (x
, 1)), 1);
562 if (CONST_INT_P (XEXP (x
, 1))
563 || GET_CODE (XEXP (x
, 1)) == CONST_DOUBLE
)
564 validate_change (object
, loc
,
566 (PLUS
, GET_MODE (x
), XEXP (x
, 0),
567 simplify_gen_unary (NEG
,
568 GET_MODE (x
), XEXP (x
, 1),
573 if (GET_MODE (XEXP (x
, 0)) == VOIDmode
)
575 new_rtx
= simplify_gen_unary (code
, GET_MODE (x
), XEXP (x
, 0),
577 /* If any of the above failed, substitute in something that
578 we know won't be recognized. */
580 new_rtx
= gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
581 validate_change (object
, loc
, new_rtx
, 1);
585 /* All subregs possible to simplify should be simplified. */
586 new_rtx
= simplify_subreg (GET_MODE (x
), SUBREG_REG (x
), op0_mode
,
589 /* Subregs of VOIDmode operands are incorrect. */
590 if (!new_rtx
&& GET_MODE (SUBREG_REG (x
)) == VOIDmode
)
591 new_rtx
= gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
593 validate_change (object
, loc
, new_rtx
, 1);
597 /* If we are replacing a register with memory, try to change the memory
598 to be the mode required for memory in extract operations (this isn't
599 likely to be an insertion operation; if it was, nothing bad will
600 happen, we might just fail in some cases). */
602 if (MEM_P (XEXP (x
, 0))
603 && CONST_INT_P (XEXP (x
, 1))
604 && CONST_INT_P (XEXP (x
, 2))
605 && !mode_dependent_address_p (XEXP (XEXP (x
, 0), 0))
606 && !MEM_VOLATILE_P (XEXP (x
, 0)))
608 enum machine_mode wanted_mode
= VOIDmode
;
609 enum machine_mode is_mode
= GET_MODE (XEXP (x
, 0));
610 int pos
= INTVAL (XEXP (x
, 2));
612 if (GET_CODE (x
) == ZERO_EXTRACT
)
614 enum machine_mode new_mode
615 = mode_for_extraction (EP_extzv
, 1);
616 if (new_mode
!= MAX_MACHINE_MODE
)
617 wanted_mode
= new_mode
;
619 else if (GET_CODE (x
) == SIGN_EXTRACT
)
621 enum machine_mode new_mode
622 = mode_for_extraction (EP_extv
, 1);
623 if (new_mode
!= MAX_MACHINE_MODE
)
624 wanted_mode
= new_mode
;
627 /* If we have a narrower mode, we can do something. */
628 if (wanted_mode
!= VOIDmode
629 && GET_MODE_SIZE (wanted_mode
) < GET_MODE_SIZE (is_mode
))
631 int offset
= pos
/ BITS_PER_UNIT
;
634 /* If the bytes and bits are counted differently, we
635 must adjust the offset. */
636 if (BYTES_BIG_ENDIAN
!= BITS_BIG_ENDIAN
)
638 (GET_MODE_SIZE (is_mode
) - GET_MODE_SIZE (wanted_mode
) -
641 gcc_assert (GET_MODE_PRECISION (wanted_mode
)
642 == GET_MODE_BITSIZE (wanted_mode
));
643 pos
%= GET_MODE_BITSIZE (wanted_mode
);
645 newmem
= adjust_address_nv (XEXP (x
, 0), wanted_mode
, offset
);
647 validate_change (object
, &XEXP (x
, 2), GEN_INT (pos
), 1);
648 validate_change (object
, &XEXP (x
, 0), newmem
, 1);
659 /* Replace every occurrence of FROM in X with TO. Mark each change with
660 validate_change passing OBJECT. */
663 validate_replace_rtx_1 (rtx
*loc
, rtx from
, rtx to
, rtx object
,
670 enum machine_mode op0_mode
= VOIDmode
;
671 int prev_changes
= num_changes
;
677 fmt
= GET_RTX_FORMAT (code
);
679 op0_mode
= GET_MODE (XEXP (x
, 0));
681 /* X matches FROM if it is the same rtx or they are both referring to the
682 same register in the same mode. Avoid calling rtx_equal_p unless the
683 operands look similar. */
686 || (REG_P (x
) && REG_P (from
)
687 && GET_MODE (x
) == GET_MODE (from
)
688 && REGNO (x
) == REGNO (from
))
689 || (GET_CODE (x
) == GET_CODE (from
) && GET_MODE (x
) == GET_MODE (from
)
690 && rtx_equal_p (x
, from
)))
692 validate_unshare_change (object
, loc
, to
, 1);
696 /* Call ourself recursively to perform the replacements.
697 We must not replace inside already replaced expression, otherwise we
698 get infinite recursion for replacements like (reg X)->(subreg (reg X))
699 done by regmove, so we must special case shared ASM_OPERANDS. */
701 if (GET_CODE (x
) == PARALLEL
)
703 for (j
= XVECLEN (x
, 0) - 1; j
>= 0; j
--)
705 if (j
&& GET_CODE (XVECEXP (x
, 0, j
)) == SET
706 && GET_CODE (SET_SRC (XVECEXP (x
, 0, j
))) == ASM_OPERANDS
)
708 /* Verify that operands are really shared. */
709 gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x
, 0, 0)))
710 == ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP
712 validate_replace_rtx_1 (&SET_DEST (XVECEXP (x
, 0, j
)),
713 from
, to
, object
, simplify
);
716 validate_replace_rtx_1 (&XVECEXP (x
, 0, j
), from
, to
, object
,
721 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
724 validate_replace_rtx_1 (&XEXP (x
, i
), from
, to
, object
, simplify
);
725 else if (fmt
[i
] == 'E')
726 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
727 validate_replace_rtx_1 (&XVECEXP (x
, i
, j
), from
, to
, object
,
731 /* If we didn't substitute, there is nothing more to do. */
732 if (num_changes
== prev_changes
)
735 /* Allow substituted expression to have different mode. This is used by
736 regmove to change mode of pseudo register. */
737 if (fmt
[0] == 'e' && GET_MODE (XEXP (x
, 0)) != VOIDmode
)
738 op0_mode
= GET_MODE (XEXP (x
, 0));
740 /* Do changes needed to keep rtx consistent. Don't do any other
741 simplifications, as it is not our job. */
743 simplify_while_replacing (loc
, to
, object
, op0_mode
);
746 /* Try replacing every occurrence of FROM in subexpression LOC of INSN
747 with TO. After all changes have been made, validate by seeing
748 if INSN is still valid. */
751 validate_replace_rtx_subexp (rtx from
, rtx to
, rtx insn
, rtx
*loc
)
753 validate_replace_rtx_1 (loc
, from
, to
, insn
, true);
754 return apply_change_group ();
757 /* Try replacing every occurrence of FROM in INSN with TO. After all
758 changes have been made, validate by seeing if INSN is still valid. */
761 validate_replace_rtx (rtx from
, rtx to
, rtx insn
)
763 validate_replace_rtx_1 (&PATTERN (insn
), from
, to
, insn
, true);
764 return apply_change_group ();
767 /* Try replacing every occurrence of FROM in WHERE with TO. Assume that WHERE
768 is a part of INSN. After all changes have been made, validate by seeing if
770 validate_replace_rtx (from, to, insn) is equivalent to
771 validate_replace_rtx_part (from, to, &PATTERN (insn), insn). */
774 validate_replace_rtx_part (rtx from
, rtx to
, rtx
*where
, rtx insn
)
776 validate_replace_rtx_1 (where
, from
, to
, insn
, true);
777 return apply_change_group ();
780 /* Same as above, but do not simplify rtx afterwards. */
782 validate_replace_rtx_part_nosimplify (rtx from
, rtx to
, rtx
*where
,
785 validate_replace_rtx_1 (where
, from
, to
, insn
, false);
786 return apply_change_group ();
790 /* Try replacing every occurrence of FROM in INSN with TO. This also
791 will replace in REG_EQUAL and REG_EQUIV notes. */
794 validate_replace_rtx_group (rtx from
, rtx to
, rtx insn
)
797 validate_replace_rtx_1 (&PATTERN (insn
), from
, to
, insn
, true);
798 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
799 if (REG_NOTE_KIND (note
) == REG_EQUAL
800 || REG_NOTE_KIND (note
) == REG_EQUIV
)
801 validate_replace_rtx_1 (&XEXP (note
, 0), from
, to
, insn
, true);
804 /* Function called by note_uses to replace used subexpressions. */
805 struct validate_replace_src_data
807 rtx from
; /* Old RTX */
808 rtx to
; /* New RTX */
809 rtx insn
; /* Insn in which substitution is occurring. */
813 validate_replace_src_1 (rtx
*x
, void *data
)
815 struct validate_replace_src_data
*d
816 = (struct validate_replace_src_data
*) data
;
818 validate_replace_rtx_1 (x
, d
->from
, d
->to
, d
->insn
, true);
821 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
825 validate_replace_src_group (rtx from
, rtx to
, rtx insn
)
827 struct validate_replace_src_data d
;
832 note_uses (&PATTERN (insn
), validate_replace_src_1
, &d
);
835 /* Try simplify INSN.
836 Invoke simplify_rtx () on every SET_SRC and SET_DEST inside the INSN's
837 pattern and return true if something was simplified. */
840 validate_simplify_insn (rtx insn
)
846 pat
= PATTERN (insn
);
848 if (GET_CODE (pat
) == SET
)
850 newpat
= simplify_rtx (SET_SRC (pat
));
851 if (newpat
&& !rtx_equal_p (SET_SRC (pat
), newpat
))
852 validate_change (insn
, &SET_SRC (pat
), newpat
, 1);
853 newpat
= simplify_rtx (SET_DEST (pat
));
854 if (newpat
&& !rtx_equal_p (SET_DEST (pat
), newpat
))
855 validate_change (insn
, &SET_DEST (pat
), newpat
, 1);
857 else if (GET_CODE (pat
) == PARALLEL
)
858 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
860 rtx s
= XVECEXP (pat
, 0, i
);
862 if (GET_CODE (XVECEXP (pat
, 0, i
)) == SET
)
864 newpat
= simplify_rtx (SET_SRC (s
));
865 if (newpat
&& !rtx_equal_p (SET_SRC (s
), newpat
))
866 validate_change (insn
, &SET_SRC (s
), newpat
, 1);
867 newpat
= simplify_rtx (SET_DEST (s
));
868 if (newpat
&& !rtx_equal_p (SET_DEST (s
), newpat
))
869 validate_change (insn
, &SET_DEST (s
), newpat
, 1);
872 return ((num_changes_pending () > 0) && (apply_change_group () > 0));
876 /* Return 1 if the insn using CC0 set by INSN does not contain
877 any ordered tests applied to the condition codes.
878 EQ and NE tests do not count. */
881 next_insn_tests_no_inequality (rtx insn
)
883 rtx next
= next_cc0_user (insn
);
885 /* If there is no next insn, we have to take the conservative choice. */
889 return (INSN_P (next
)
890 && ! inequality_comparisons_p (PATTERN (next
)));
894 /* Return 1 if OP is a valid general operand for machine mode MODE.
895 This is either a register reference, a memory reference,
896 or a constant. In the case of a memory reference, the address
897 is checked for general validity for the target machine.
899 Register and memory references must have mode MODE in order to be valid,
900 but some constants have no machine mode and are valid for any mode.
902 If MODE is VOIDmode, OP is checked for validity for whatever mode
905 The main use of this function is as a predicate in match_operand
906 expressions in the machine description.
908 For an explanation of this function's behavior for registers of
909 class NO_REGS, see the comment for `register_operand'. */
912 general_operand (rtx op
, enum machine_mode mode
)
914 enum rtx_code code
= GET_CODE (op
);
916 if (mode
== VOIDmode
)
917 mode
= GET_MODE (op
);
919 /* Don't accept CONST_INT or anything similar
920 if the caller wants something floating. */
921 if (GET_MODE (op
) == VOIDmode
&& mode
!= VOIDmode
922 && GET_MODE_CLASS (mode
) != MODE_INT
923 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
928 && trunc_int_for_mode (INTVAL (op
), mode
) != INTVAL (op
))
932 return ((GET_MODE (op
) == VOIDmode
|| GET_MODE (op
) == mode
934 && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (op
))
935 && targetm
.legitimate_constant_p (mode
== VOIDmode
939 /* Except for certain constants with VOIDmode, already checked for,
940 OP's mode must match MODE if MODE specifies a mode. */
942 if (GET_MODE (op
) != mode
)
947 rtx sub
= SUBREG_REG (op
);
949 #ifdef INSN_SCHEDULING
950 /* On machines that have insn scheduling, we want all memory
951 reference to be explicit, so outlaw paradoxical SUBREGs.
952 However, we must allow them after reload so that they can
953 get cleaned up by cleanup_subreg_operands. */
954 if (!reload_completed
&& MEM_P (sub
)
955 && GET_MODE_SIZE (mode
) > GET_MODE_SIZE (GET_MODE (sub
)))
958 /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
959 may result in incorrect reference. We should simplify all valid
960 subregs of MEM anyway. But allow this after reload because we
961 might be called from cleanup_subreg_operands.
963 ??? This is a kludge. */
964 if (!reload_completed
&& SUBREG_BYTE (op
) != 0
968 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
969 create such rtl, and we must reject it. */
970 if (SCALAR_FLOAT_MODE_P (GET_MODE (op
))
971 && GET_MODE_SIZE (GET_MODE (op
)) > GET_MODE_SIZE (GET_MODE (sub
)))
975 code
= GET_CODE (op
);
979 /* A register whose class is NO_REGS is not a general operand. */
980 return (REGNO (op
) >= FIRST_PSEUDO_REGISTER
981 || REGNO_REG_CLASS (REGNO (op
)) != NO_REGS
);
985 rtx y
= XEXP (op
, 0);
987 if (! volatile_ok
&& MEM_VOLATILE_P (op
))
990 /* Use the mem's mode, since it will be reloaded thus. */
991 if (memory_address_addr_space_p (GET_MODE (op
), y
, MEM_ADDR_SPACE (op
)))
998 /* Return 1 if OP is a valid memory address for a memory reference
1001 The main use of this function is as a predicate in match_operand
1002 expressions in the machine description. */
1005 address_operand (rtx op
, enum machine_mode mode
)
1007 return memory_address_p (mode
, op
);
1010 /* Return 1 if OP is a register reference of mode MODE.
1011 If MODE is VOIDmode, accept a register in any mode.
1013 The main use of this function is as a predicate in match_operand
1014 expressions in the machine description.
1016 As a special exception, registers whose class is NO_REGS are
1017 not accepted by `register_operand'. The reason for this change
1018 is to allow the representation of special architecture artifacts
1019 (such as a condition code register) without extending the rtl
1020 definitions. Since registers of class NO_REGS cannot be used
1021 as registers in any case where register classes are examined,
1022 it is most consistent to keep this function from accepting them. */
1025 register_operand (rtx op
, enum machine_mode mode
)
1027 if (GET_MODE (op
) != mode
&& mode
!= VOIDmode
)
1030 if (GET_CODE (op
) == SUBREG
)
1032 rtx sub
= SUBREG_REG (op
);
1034 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1035 because it is guaranteed to be reloaded into one.
1036 Just make sure the MEM is valid in itself.
1037 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1038 but currently it does result from (SUBREG (REG)...) where the
1039 reg went on the stack.) */
1040 if (! reload_completed
&& MEM_P (sub
))
1041 return general_operand (op
, mode
);
1043 #ifdef CANNOT_CHANGE_MODE_CLASS
1045 && REGNO (sub
) < FIRST_PSEUDO_REGISTER
1046 && REG_CANNOT_CHANGE_MODE_P (REGNO (sub
), GET_MODE (sub
), mode
)
1047 && GET_MODE_CLASS (GET_MODE (sub
)) != MODE_COMPLEX_INT
1048 && GET_MODE_CLASS (GET_MODE (sub
)) != MODE_COMPLEX_FLOAT
)
1052 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
1053 create such rtl, and we must reject it. */
1054 if (SCALAR_FLOAT_MODE_P (GET_MODE (op
))
1055 && GET_MODE_SIZE (GET_MODE (op
)) > GET_MODE_SIZE (GET_MODE (sub
)))
1061 /* We don't consider registers whose class is NO_REGS
1062 to be a register operand. */
1064 && (REGNO (op
) >= FIRST_PSEUDO_REGISTER
1065 || REGNO_REG_CLASS (REGNO (op
)) != NO_REGS
));
1068 /* Return 1 for a register in Pmode; ignore the tested mode. */
1071 pmode_register_operand (rtx op
, enum machine_mode mode ATTRIBUTE_UNUSED
)
1073 return register_operand (op
, Pmode
);
1076 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1077 or a hard register. */
1080 scratch_operand (rtx op
, enum machine_mode mode
)
1082 if (GET_MODE (op
) != mode
&& mode
!= VOIDmode
)
1085 return (GET_CODE (op
) == SCRATCH
1087 && REGNO (op
) < FIRST_PSEUDO_REGISTER
));
1090 /* Return 1 if OP is a valid immediate operand for mode MODE.
1092 The main use of this function is as a predicate in match_operand
1093 expressions in the machine description. */
1096 immediate_operand (rtx op
, enum machine_mode mode
)
1098 /* Don't accept CONST_INT or anything similar
1099 if the caller wants something floating. */
1100 if (GET_MODE (op
) == VOIDmode
&& mode
!= VOIDmode
1101 && GET_MODE_CLASS (mode
) != MODE_INT
1102 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
1105 if (CONST_INT_P (op
)
1107 && trunc_int_for_mode (INTVAL (op
), mode
) != INTVAL (op
))
1110 return (CONSTANT_P (op
)
1111 && (GET_MODE (op
) == mode
|| mode
== VOIDmode
1112 || GET_MODE (op
) == VOIDmode
)
1113 && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (op
))
1114 && targetm
.legitimate_constant_p (mode
== VOIDmode
1119 /* Returns 1 if OP is an operand that is a CONST_INT. */
1122 const_int_operand (rtx op
, enum machine_mode mode
)
1124 if (!CONST_INT_P (op
))
1127 if (mode
!= VOIDmode
1128 && trunc_int_for_mode (INTVAL (op
), mode
) != INTVAL (op
))
1134 /* Returns 1 if OP is an operand that is a constant integer or constant
1135 floating-point number. */
1138 const_double_operand (rtx op
, enum machine_mode mode
)
1140 /* Don't accept CONST_INT or anything similar
1141 if the caller wants something floating. */
1142 if (GET_MODE (op
) == VOIDmode
&& mode
!= VOIDmode
1143 && GET_MODE_CLASS (mode
) != MODE_INT
1144 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
1147 return ((GET_CODE (op
) == CONST_DOUBLE
|| CONST_INT_P (op
))
1148 && (mode
== VOIDmode
|| GET_MODE (op
) == mode
1149 || GET_MODE (op
) == VOIDmode
));
1152 /* Return 1 if OP is a general operand that is not an immediate operand. */
1155 nonimmediate_operand (rtx op
, enum machine_mode mode
)
1157 return (general_operand (op
, mode
) && ! CONSTANT_P (op
));
1160 /* Return 1 if OP is a register reference or immediate value of mode MODE. */
1163 nonmemory_operand (rtx op
, enum machine_mode mode
)
1165 if (CONSTANT_P (op
))
1166 return immediate_operand (op
, mode
);
1168 if (GET_MODE (op
) != mode
&& mode
!= VOIDmode
)
1171 if (GET_CODE (op
) == SUBREG
)
1173 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1174 because it is guaranteed to be reloaded into one.
1175 Just make sure the MEM is valid in itself.
1176 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1177 but currently it does result from (SUBREG (REG)...) where the
1178 reg went on the stack.) */
1179 if (! reload_completed
&& MEM_P (SUBREG_REG (op
)))
1180 return general_operand (op
, mode
);
1181 op
= SUBREG_REG (op
);
1184 /* We don't consider registers whose class is NO_REGS
1185 to be a register operand. */
1187 && (REGNO (op
) >= FIRST_PSEUDO_REGISTER
1188 || REGNO_REG_CLASS (REGNO (op
)) != NO_REGS
));
1191 /* Return 1 if OP is a valid operand that stands for pushing a
1192 value of mode MODE onto the stack.
1194 The main use of this function is as a predicate in match_operand
1195 expressions in the machine description. */
1198 push_operand (rtx op
, enum machine_mode mode
)
1200 unsigned int rounded_size
= GET_MODE_SIZE (mode
);
1202 #ifdef PUSH_ROUNDING
1203 rounded_size
= PUSH_ROUNDING (rounded_size
);
1209 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1214 if (rounded_size
== GET_MODE_SIZE (mode
))
1216 if (GET_CODE (op
) != STACK_PUSH_CODE
)
1221 if (GET_CODE (op
) != PRE_MODIFY
1222 || GET_CODE (XEXP (op
, 1)) != PLUS
1223 || XEXP (XEXP (op
, 1), 0) != XEXP (op
, 0)
1224 || !CONST_INT_P (XEXP (XEXP (op
, 1), 1))
1225 #ifdef STACK_GROWS_DOWNWARD
1226 || INTVAL (XEXP (XEXP (op
, 1), 1)) != - (int) rounded_size
1228 || INTVAL (XEXP (XEXP (op
, 1), 1)) != (int) rounded_size
1234 return XEXP (op
, 0) == stack_pointer_rtx
;
1237 /* Return 1 if OP is a valid operand that stands for popping a
1238 value of mode MODE off the stack.
1240 The main use of this function is as a predicate in match_operand
1241 expressions in the machine description. */
1244 pop_operand (rtx op
, enum machine_mode mode
)
1249 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1254 if (GET_CODE (op
) != STACK_POP_CODE
)
1257 return XEXP (op
, 0) == stack_pointer_rtx
;
1260 /* Return 1 if ADDR is a valid memory address
1261 for mode MODE in address space AS. */
1264 memory_address_addr_space_p (enum machine_mode mode ATTRIBUTE_UNUSED
,
1265 rtx addr
, addr_space_t as
)
1267 #ifdef GO_IF_LEGITIMATE_ADDRESS
1268 gcc_assert (ADDR_SPACE_GENERIC_P (as
));
1269 GO_IF_LEGITIMATE_ADDRESS (mode
, addr
, win
);
1275 return targetm
.addr_space
.legitimate_address_p (mode
, addr
, 0, as
);
1279 /* Return 1 if OP is a valid memory reference with mode MODE,
1280 including a valid address.
1282 The main use of this function is as a predicate in match_operand
1283 expressions in the machine description. */
1286 memory_operand (rtx op
, enum machine_mode mode
)
1290 if (! reload_completed
)
1291 /* Note that no SUBREG is a memory operand before end of reload pass,
1292 because (SUBREG (MEM...)) forces reloading into a register. */
1293 return MEM_P (op
) && general_operand (op
, mode
);
1295 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1299 if (GET_CODE (inner
) == SUBREG
)
1300 inner
= SUBREG_REG (inner
);
1302 return (MEM_P (inner
) && general_operand (op
, mode
));
1305 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1306 that is, a memory reference whose address is a general_operand. */
1309 indirect_operand (rtx op
, enum machine_mode mode
)
1311 /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
1312 if (! reload_completed
1313 && GET_CODE (op
) == SUBREG
&& MEM_P (SUBREG_REG (op
)))
1315 int offset
= SUBREG_BYTE (op
);
1316 rtx inner
= SUBREG_REG (op
);
1318 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1321 /* The only way that we can have a general_operand as the resulting
1322 address is if OFFSET is zero and the address already is an operand
1323 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1326 return ((offset
== 0 && general_operand (XEXP (inner
, 0), Pmode
))
1327 || (GET_CODE (XEXP (inner
, 0)) == PLUS
1328 && CONST_INT_P (XEXP (XEXP (inner
, 0), 1))
1329 && INTVAL (XEXP (XEXP (inner
, 0), 1)) == -offset
1330 && general_operand (XEXP (XEXP (inner
, 0), 0), Pmode
)));
1334 && memory_operand (op
, mode
)
1335 && general_operand (XEXP (op
, 0), Pmode
));
1338 /* Return 1 if this is an ordered comparison operator (not including
1339 ORDERED and UNORDERED). */
1342 ordered_comparison_operator (rtx op
, enum machine_mode mode
)
1344 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1346 switch (GET_CODE (op
))
1364 /* Return 1 if this is a comparison operator. This allows the use of
1365 MATCH_OPERATOR to recognize all the branch insns. */
1368 comparison_operator (rtx op
, enum machine_mode mode
)
1370 return ((mode
== VOIDmode
|| GET_MODE (op
) == mode
)
1371 && COMPARISON_P (op
));
1374 /* If BODY is an insn body that uses ASM_OPERANDS, return it. */
1377 extract_asm_operands (rtx body
)
1380 switch (GET_CODE (body
))
1386 /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
1387 tmp
= SET_SRC (body
);
1388 if (GET_CODE (tmp
) == ASM_OPERANDS
)
1393 tmp
= XVECEXP (body
, 0, 0);
1394 if (GET_CODE (tmp
) == ASM_OPERANDS
)
1396 if (GET_CODE (tmp
) == SET
)
1398 tmp
= SET_SRC (tmp
);
1399 if (GET_CODE (tmp
) == ASM_OPERANDS
)
1410 /* If BODY is an insn body that uses ASM_OPERANDS,
1411 return the number of operands (both input and output) in the insn.
1412 Otherwise return -1. */
1415 asm_noperands (const_rtx body
)
1417 rtx asm_op
= extract_asm_operands (CONST_CAST_RTX (body
));
1423 if (GET_CODE (body
) == SET
)
1425 else if (GET_CODE (body
) == PARALLEL
)
1428 if (GET_CODE (XVECEXP (body
, 0, 0)) == SET
)
1430 /* Multiple output operands, or 1 output plus some clobbers:
1432 [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
1433 /* Count backwards through CLOBBERs to determine number of SETs. */
1434 for (i
= XVECLEN (body
, 0); i
> 0; i
--)
1436 if (GET_CODE (XVECEXP (body
, 0, i
- 1)) == SET
)
1438 if (GET_CODE (XVECEXP (body
, 0, i
- 1)) != CLOBBER
)
1442 /* N_SETS is now number of output operands. */
1445 /* Verify that all the SETs we have
1446 came from a single original asm_operands insn
1447 (so that invalid combinations are blocked). */
1448 for (i
= 0; i
< n_sets
; i
++)
1450 rtx elt
= XVECEXP (body
, 0, i
);
1451 if (GET_CODE (elt
) != SET
)
1453 if (GET_CODE (SET_SRC (elt
)) != ASM_OPERANDS
)
1455 /* If these ASM_OPERANDS rtx's came from different original insns
1456 then they aren't allowed together. */
1457 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt
))
1458 != ASM_OPERANDS_INPUT_VEC (asm_op
))
1464 /* 0 outputs, but some clobbers:
1465 body is [(asm_operands ...) (clobber (reg ...))...]. */
1466 /* Make sure all the other parallel things really are clobbers. */
1467 for (i
= XVECLEN (body
, 0) - 1; i
> 0; i
--)
1468 if (GET_CODE (XVECEXP (body
, 0, i
)) != CLOBBER
)
1473 return (ASM_OPERANDS_INPUT_LENGTH (asm_op
)
1474 + ASM_OPERANDS_LABEL_LENGTH (asm_op
) + n_sets
);
1477 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1478 copy its operands (both input and output) into the vector OPERANDS,
1479 the locations of the operands within the insn into the vector OPERAND_LOCS,
1480 and the constraints for the operands into CONSTRAINTS.
1481 Write the modes of the operands into MODES.
1482 Return the assembler-template.
1484 If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1485 we don't store that info. */
1488 decode_asm_operands (rtx body
, rtx
*operands
, rtx
**operand_locs
,
1489 const char **constraints
, enum machine_mode
*modes
,
1492 int nbase
= 0, n
, i
;
1495 switch (GET_CODE (body
))
1498 /* Zero output asm: BODY is (asm_operands ...). */
1503 /* Single output asm: BODY is (set OUTPUT (asm_operands ...)). */
1504 asmop
= SET_SRC (body
);
1506 /* The output is in the SET.
1507 Its constraint is in the ASM_OPERANDS itself. */
1509 operands
[0] = SET_DEST (body
);
1511 operand_locs
[0] = &SET_DEST (body
);
1513 constraints
[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop
);
1515 modes
[0] = GET_MODE (SET_DEST (body
));
1521 int nparallel
= XVECLEN (body
, 0); /* Includes CLOBBERs. */
1523 asmop
= XVECEXP (body
, 0, 0);
1524 if (GET_CODE (asmop
) == SET
)
1526 asmop
= SET_SRC (asmop
);
1528 /* At least one output, plus some CLOBBERs. The outputs are in
1529 the SETs. Their constraints are in the ASM_OPERANDS itself. */
1530 for (i
= 0; i
< nparallel
; i
++)
1532 if (GET_CODE (XVECEXP (body
, 0, i
)) == CLOBBER
)
1533 break; /* Past last SET */
1535 operands
[i
] = SET_DEST (XVECEXP (body
, 0, i
));
1537 operand_locs
[i
] = &SET_DEST (XVECEXP (body
, 0, i
));
1539 constraints
[i
] = XSTR (SET_SRC (XVECEXP (body
, 0, i
)), 1);
1541 modes
[i
] = GET_MODE (SET_DEST (XVECEXP (body
, 0, i
)));
1552 n
= ASM_OPERANDS_INPUT_LENGTH (asmop
);
1553 for (i
= 0; i
< n
; i
++)
1556 operand_locs
[nbase
+ i
] = &ASM_OPERANDS_INPUT (asmop
, i
);
1558 operands
[nbase
+ i
] = ASM_OPERANDS_INPUT (asmop
, i
);
1560 constraints
[nbase
+ i
] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop
, i
);
1562 modes
[nbase
+ i
] = ASM_OPERANDS_INPUT_MODE (asmop
, i
);
1566 n
= ASM_OPERANDS_LABEL_LENGTH (asmop
);
1567 for (i
= 0; i
< n
; i
++)
1570 operand_locs
[nbase
+ i
] = &ASM_OPERANDS_LABEL (asmop
, i
);
1572 operands
[nbase
+ i
] = ASM_OPERANDS_LABEL (asmop
, i
);
1574 constraints
[nbase
+ i
] = "";
1576 modes
[nbase
+ i
] = Pmode
;
1580 *loc
= ASM_OPERANDS_SOURCE_LOCATION (asmop
);
1582 return ASM_OPERANDS_TEMPLATE (asmop
);
1585 /* Check if an asm_operand matches its constraints.
1586 Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
1589 asm_operand_ok (rtx op
, const char *constraint
, const char **constraints
)
1593 bool incdec_ok
= false;
1596 /* Use constrain_operands after reload. */
1597 gcc_assert (!reload_completed
);
1599 /* Empty constraint string is the same as "X,...,X", i.e. X for as
1600 many alternatives as required to match the other operands. */
1601 if (*constraint
== '\0')
1606 char c
= *constraint
;
1623 case '0': case '1': case '2': case '3': case '4':
1624 case '5': case '6': case '7': case '8': case '9':
1625 /* If caller provided constraints pointer, look up
1626 the maching constraint. Otherwise, our caller should have
1627 given us the proper matching constraint, but we can't
1628 actually fail the check if they didn't. Indicate that
1629 results are inconclusive. */
1633 unsigned long match
;
1635 match
= strtoul (constraint
, &end
, 10);
1637 result
= asm_operand_ok (op
, constraints
[match
], NULL
);
1638 constraint
= (const char *) end
;
1644 while (ISDIGIT (*constraint
));
1651 if (address_operand (op
, VOIDmode
))
1655 case TARGET_MEM_CONSTRAINT
:
1656 case 'V': /* non-offsettable */
1657 if (memory_operand (op
, VOIDmode
))
1661 case 'o': /* offsettable */
1662 if (offsettable_nonstrict_memref_p (op
))
1667 /* ??? Before auto-inc-dec, auto inc/dec insns are not supposed to exist,
1668 excepting those that expand_call created. Further, on some
1669 machines which do not have generalized auto inc/dec, an inc/dec
1670 is not a memory_operand.
1672 Match any memory and hope things are resolved after reload. */
1676 || GET_CODE (XEXP (op
, 0)) == PRE_DEC
1677 || GET_CODE (XEXP (op
, 0)) == POST_DEC
))
1687 || GET_CODE (XEXP (op
, 0)) == PRE_INC
1688 || GET_CODE (XEXP (op
, 0)) == POST_INC
))
1697 if (GET_CODE (op
) == CONST_DOUBLE
1698 || (GET_CODE (op
) == CONST_VECTOR
1699 && GET_MODE_CLASS (GET_MODE (op
)) == MODE_VECTOR_FLOAT
))
1704 if (GET_CODE (op
) == CONST_DOUBLE
1705 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op
, 'G', constraint
))
1709 if (GET_CODE (op
) == CONST_DOUBLE
1710 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op
, 'H', constraint
))
1715 if (CONST_INT_P (op
)
1716 || (GET_CODE (op
) == CONST_DOUBLE
1717 && GET_MODE (op
) == VOIDmode
))
1722 if (CONSTANT_P (op
) && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (op
)))
1727 if (CONST_INT_P (op
)
1728 || (GET_CODE (op
) == CONST_DOUBLE
1729 && GET_MODE (op
) == VOIDmode
))
1734 if (CONST_INT_P (op
)
1735 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'I', constraint
))
1739 if (CONST_INT_P (op
)
1740 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'J', constraint
))
1744 if (CONST_INT_P (op
)
1745 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'K', constraint
))
1749 if (CONST_INT_P (op
)
1750 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'L', constraint
))
1754 if (CONST_INT_P (op
)
1755 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'M', constraint
))
1759 if (CONST_INT_P (op
)
1760 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'N', constraint
))
1764 if (CONST_INT_P (op
)
1765 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'O', constraint
))
1769 if (CONST_INT_P (op
)
1770 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'P', constraint
))
1779 if (general_operand (op
, VOIDmode
))
1784 /* For all other letters, we first check for a register class,
1785 otherwise it is an EXTRA_CONSTRAINT. */
1786 if (REG_CLASS_FROM_CONSTRAINT (c
, constraint
) != NO_REGS
)
1789 if (GET_MODE (op
) == BLKmode
)
1791 if (register_operand (op
, VOIDmode
))
1794 #ifdef EXTRA_CONSTRAINT_STR
1795 else if (EXTRA_MEMORY_CONSTRAINT (c
, constraint
))
1796 /* Every memory operand can be reloaded to fit. */
1797 result
= result
|| memory_operand (op
, VOIDmode
);
1798 else if (EXTRA_ADDRESS_CONSTRAINT (c
, constraint
))
1799 /* Every address operand can be reloaded to fit. */
1800 result
= result
|| address_operand (op
, VOIDmode
);
1801 else if (EXTRA_CONSTRAINT_STR (op
, c
, constraint
))
1806 len
= CONSTRAINT_LEN (c
, constraint
);
1809 while (--len
&& *constraint
);
1815 /* For operands without < or > constraints reject side-effects. */
1816 if (!incdec_ok
&& result
&& MEM_P (op
))
1817 switch (GET_CODE (XEXP (op
, 0)))
1834 /* Given an rtx *P, if it is a sum containing an integer constant term,
1835 return the location (type rtx *) of the pointer to that constant term.
1836 Otherwise, return a null pointer. */
1839 find_constant_term_loc (rtx
*p
)
1842 enum rtx_code code
= GET_CODE (*p
);
1844 /* If *P IS such a constant term, P is its location. */
1846 if (code
== CONST_INT
|| code
== SYMBOL_REF
|| code
== LABEL_REF
1850 /* Otherwise, if not a sum, it has no constant term. */
1852 if (GET_CODE (*p
) != PLUS
)
1855 /* If one of the summands is constant, return its location. */
1857 if (XEXP (*p
, 0) && CONSTANT_P (XEXP (*p
, 0))
1858 && XEXP (*p
, 1) && CONSTANT_P (XEXP (*p
, 1)))
1861 /* Otherwise, check each summand for containing a constant term. */
1863 if (XEXP (*p
, 0) != 0)
1865 tem
= find_constant_term_loc (&XEXP (*p
, 0));
1870 if (XEXP (*p
, 1) != 0)
1872 tem
= find_constant_term_loc (&XEXP (*p
, 1));
1880 /* Return 1 if OP is a memory reference
1881 whose address contains no side effects
1882 and remains valid after the addition
1883 of a positive integer less than the
1884 size of the object being referenced.
1886 We assume that the original address is valid and do not check it.
1888 This uses strict_memory_address_p as a subroutine, so
1889 don't use it before reload. */
1892 offsettable_memref_p (rtx op
)
1894 return ((MEM_P (op
))
1895 && offsettable_address_addr_space_p (1, GET_MODE (op
), XEXP (op
, 0),
1896 MEM_ADDR_SPACE (op
)));
1899 /* Similar, but don't require a strictly valid mem ref:
1900 consider pseudo-regs valid as index or base regs. */
1903 offsettable_nonstrict_memref_p (rtx op
)
1905 return ((MEM_P (op
))
1906 && offsettable_address_addr_space_p (0, GET_MODE (op
), XEXP (op
, 0),
1907 MEM_ADDR_SPACE (op
)));
1910 /* Return 1 if Y is a memory address which contains no side effects
1911 and would remain valid for address space AS after the addition of
1912 a positive integer less than the size of that mode.
1914 We assume that the original address is valid and do not check it.
1915 We do check that it is valid for narrower modes.
1917 If STRICTP is nonzero, we require a strictly valid address,
1918 for the sake of use in reload.c. */
1921 offsettable_address_addr_space_p (int strictp
, enum machine_mode mode
, rtx y
,
1924 enum rtx_code ycode
= GET_CODE (y
);
1928 int (*addressp
) (enum machine_mode
, rtx
, addr_space_t
) =
1929 (strictp
? strict_memory_address_addr_space_p
1930 : memory_address_addr_space_p
);
1931 unsigned int mode_sz
= GET_MODE_SIZE (mode
);
1933 if (CONSTANT_ADDRESS_P (y
))
1936 /* Adjusting an offsettable address involves changing to a narrower mode.
1937 Make sure that's OK. */
1939 if (mode_dependent_address_p (y
))
1942 /* ??? How much offset does an offsettable BLKmode reference need?
1943 Clearly that depends on the situation in which it's being used.
1944 However, the current situation in which we test 0xffffffff is
1945 less than ideal. Caveat user. */
1947 mode_sz
= BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
;
1949 /* If the expression contains a constant term,
1950 see if it remains valid when max possible offset is added. */
1952 if ((ycode
== PLUS
) && (y2
= find_constant_term_loc (&y1
)))
1957 *y2
= plus_constant (*y2
, mode_sz
- 1);
1958 /* Use QImode because an odd displacement may be automatically invalid
1959 for any wider mode. But it should be valid for a single byte. */
1960 good
= (*addressp
) (QImode
, y
, as
);
1962 /* In any case, restore old contents of memory. */
1967 if (GET_RTX_CLASS (ycode
) == RTX_AUTOINC
)
1970 /* The offset added here is chosen as the maximum offset that
1971 any instruction could need to add when operating on something
1972 of the specified mode. We assume that if Y and Y+c are
1973 valid addresses then so is Y+d for all 0<d<c. adjust_address will
1974 go inside a LO_SUM here, so we do so as well. */
1975 if (GET_CODE (y
) == LO_SUM
1977 && mode_sz
<= GET_MODE_ALIGNMENT (mode
) / BITS_PER_UNIT
)
1978 z
= gen_rtx_LO_SUM (GET_MODE (y
), XEXP (y
, 0),
1979 plus_constant (XEXP (y
, 1), mode_sz
- 1));
1981 z
= plus_constant (y
, mode_sz
- 1);
1983 /* Use QImode because an odd displacement may be automatically invalid
1984 for any wider mode. But it should be valid for a single byte. */
1985 return (*addressp
) (QImode
, z
, as
);
1988 /* Return 1 if ADDR is an address-expression whose effect depends
1989 on the mode of the memory reference it is used in.
1991 Autoincrement addressing is a typical example of mode-dependence
1992 because the amount of the increment depends on the mode. */
1995 mode_dependent_address_p (rtx addr
)
1997 /* Auto-increment addressing with anything other than post_modify
1998 or pre_modify always introduces a mode dependency. Catch such
1999 cases now instead of deferring to the target. */
2000 if (GET_CODE (addr
) == PRE_INC
2001 || GET_CODE (addr
) == POST_INC
2002 || GET_CODE (addr
) == PRE_DEC
2003 || GET_CODE (addr
) == POST_DEC
)
2006 return targetm
.mode_dependent_address_p (addr
);
2009 /* Like extract_insn, but save insn extracted and don't extract again, when
2010 called again for the same insn expecting that recog_data still contain the
2011 valid information. This is used primary by gen_attr infrastructure that
2012 often does extract insn again and again. */
2014 extract_insn_cached (rtx insn
)
2016 if (recog_data
.insn
== insn
&& INSN_CODE (insn
) >= 0)
2018 extract_insn (insn
);
2019 recog_data
.insn
= insn
;
2022 /* Do cached extract_insn, constrain_operands and complain about failures.
2023 Used by insn_attrtab. */
2025 extract_constrain_insn_cached (rtx insn
)
2027 extract_insn_cached (insn
);
2028 if (which_alternative
== -1
2029 && !constrain_operands (reload_completed
))
2030 fatal_insn_not_found (insn
);
2033 /* Do cached constrain_operands and complain about failures. */
2035 constrain_operands_cached (int strict
)
2037 if (which_alternative
== -1)
2038 return constrain_operands (strict
);
2043 /* Analyze INSN and fill in recog_data. */
2046 extract_insn (rtx insn
)
2051 rtx body
= PATTERN (insn
);
2053 recog_data
.n_operands
= 0;
2054 recog_data
.n_alternatives
= 0;
2055 recog_data
.n_dups
= 0;
2056 recog_data
.is_asm
= false;
2058 switch (GET_CODE (body
))
2069 if (GET_CODE (SET_SRC (body
)) == ASM_OPERANDS
)
2074 if ((GET_CODE (XVECEXP (body
, 0, 0)) == SET
2075 && GET_CODE (SET_SRC (XVECEXP (body
, 0, 0))) == ASM_OPERANDS
)
2076 || GET_CODE (XVECEXP (body
, 0, 0)) == ASM_OPERANDS
)
2082 recog_data
.n_operands
= noperands
= asm_noperands (body
);
2085 /* This insn is an `asm' with operands. */
2087 /* expand_asm_operands makes sure there aren't too many operands. */
2088 gcc_assert (noperands
<= MAX_RECOG_OPERANDS
);
2090 /* Now get the operand values and constraints out of the insn. */
2091 decode_asm_operands (body
, recog_data
.operand
,
2092 recog_data
.operand_loc
,
2093 recog_data
.constraints
,
2094 recog_data
.operand_mode
, NULL
);
2095 memset (recog_data
.is_operator
, 0, sizeof recog_data
.is_operator
);
2098 const char *p
= recog_data
.constraints
[0];
2099 recog_data
.n_alternatives
= 1;
2101 recog_data
.n_alternatives
+= (*p
++ == ',');
2103 recog_data
.is_asm
= true;
2106 fatal_insn_not_found (insn
);
2110 /* Ordinary insn: recognize it, get the operands via insn_extract
2111 and get the constraints. */
2113 icode
= recog_memoized (insn
);
2115 fatal_insn_not_found (insn
);
2117 recog_data
.n_operands
= noperands
= insn_data
[icode
].n_operands
;
2118 recog_data
.n_alternatives
= insn_data
[icode
].n_alternatives
;
2119 recog_data
.n_dups
= insn_data
[icode
].n_dups
;
2121 insn_extract (insn
);
2123 for (i
= 0; i
< noperands
; i
++)
2125 recog_data
.constraints
[i
] = insn_data
[icode
].operand
[i
].constraint
;
2126 recog_data
.is_operator
[i
] = insn_data
[icode
].operand
[i
].is_operator
;
2127 recog_data
.operand_mode
[i
] = insn_data
[icode
].operand
[i
].mode
;
2128 /* VOIDmode match_operands gets mode from their real operand. */
2129 if (recog_data
.operand_mode
[i
] == VOIDmode
)
2130 recog_data
.operand_mode
[i
] = GET_MODE (recog_data
.operand
[i
]);
2133 for (i
= 0; i
< noperands
; i
++)
2134 recog_data
.operand_type
[i
]
2135 = (recog_data
.constraints
[i
][0] == '=' ? OP_OUT
2136 : recog_data
.constraints
[i
][0] == '+' ? OP_INOUT
2139 gcc_assert (recog_data
.n_alternatives
<= MAX_RECOG_ALTERNATIVES
);
2141 if (INSN_CODE (insn
) < 0)
2142 for (i
= 0; i
< recog_data
.n_alternatives
; i
++)
2143 recog_data
.alternative_enabled_p
[i
] = true;
2146 recog_data
.insn
= insn
;
2147 for (i
= 0; i
< recog_data
.n_alternatives
; i
++)
2149 which_alternative
= i
;
2150 recog_data
.alternative_enabled_p
[i
] = get_attr_enabled (insn
);
2154 recog_data
.insn
= NULL
;
2155 which_alternative
= -1;
2158 /* After calling extract_insn, you can use this function to extract some
2159 information from the constraint strings into a more usable form.
2160 The collected data is stored in recog_op_alt. */
2162 preprocess_constraints (void)
2166 for (i
= 0; i
< recog_data
.n_operands
; i
++)
2167 memset (recog_op_alt
[i
], 0, (recog_data
.n_alternatives
2168 * sizeof (struct operand_alternative
)));
2170 for (i
= 0; i
< recog_data
.n_operands
; i
++)
2173 struct operand_alternative
*op_alt
;
2174 const char *p
= recog_data
.constraints
[i
];
2176 op_alt
= recog_op_alt
[i
];
2178 for (j
= 0; j
< recog_data
.n_alternatives
; j
++)
2180 op_alt
[j
].cl
= NO_REGS
;
2181 op_alt
[j
].constraint
= p
;
2182 op_alt
[j
].matches
= -1;
2183 op_alt
[j
].matched
= -1;
2185 if (!recog_data
.alternative_enabled_p
[j
])
2187 p
= skip_alternative (p
);
2191 if (*p
== '\0' || *p
== ',')
2193 op_alt
[j
].anything_ok
= 1;
2203 while (c
!= ',' && c
!= '\0');
2204 if (c
== ',' || c
== '\0')
2212 case '=': case '+': case '*': case '%':
2213 case 'E': case 'F': case 'G': case 'H':
2214 case 's': case 'i': case 'n':
2215 case 'I': case 'J': case 'K': case 'L':
2216 case 'M': case 'N': case 'O': case 'P':
2217 /* These don't say anything we care about. */
2221 op_alt
[j
].reject
+= 6;
2224 op_alt
[j
].reject
+= 600;
2227 op_alt
[j
].earlyclobber
= 1;
2230 case '0': case '1': case '2': case '3': case '4':
2231 case '5': case '6': case '7': case '8': case '9':
2234 op_alt
[j
].matches
= strtoul (p
, &end
, 10);
2235 recog_op_alt
[op_alt
[j
].matches
][j
].matched
= i
;
2240 case TARGET_MEM_CONSTRAINT
:
2241 op_alt
[j
].memory_ok
= 1;
2244 op_alt
[j
].decmem_ok
= 1;
2247 op_alt
[j
].incmem_ok
= 1;
2250 op_alt
[j
].nonoffmem_ok
= 1;
2253 op_alt
[j
].offmem_ok
= 1;
2256 op_alt
[j
].anything_ok
= 1;
2260 op_alt
[j
].is_address
= 1;
2261 op_alt
[j
].cl
= reg_class_subunion
[(int) op_alt
[j
].cl
]
2262 [(int) base_reg_class (VOIDmode
, ADDRESS
, SCRATCH
)];
2268 reg_class_subunion
[(int) op_alt
[j
].cl
][(int) GENERAL_REGS
];
2272 if (EXTRA_MEMORY_CONSTRAINT (c
, p
))
2274 op_alt
[j
].memory_ok
= 1;
2277 if (EXTRA_ADDRESS_CONSTRAINT (c
, p
))
2279 op_alt
[j
].is_address
= 1;
2281 = (reg_class_subunion
2282 [(int) op_alt
[j
].cl
]
2283 [(int) base_reg_class (VOIDmode
, ADDRESS
,
2289 = (reg_class_subunion
2290 [(int) op_alt
[j
].cl
]
2291 [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c
, p
)]);
2294 p
+= CONSTRAINT_LEN (c
, p
);
2300 /* Check the operands of an insn against the insn's operand constraints
2301 and return 1 if they are valid.
2302 The information about the insn's operands, constraints, operand modes
2303 etc. is obtained from the global variables set up by extract_insn.
2305 WHICH_ALTERNATIVE is set to a number which indicates which
2306 alternative of constraints was matched: 0 for the first alternative,
2307 1 for the next, etc.
2309 In addition, when two operands are required to match
2310 and it happens that the output operand is (reg) while the
2311 input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2312 make the output operand look like the input.
2313 This is because the output operand is the one the template will print.
2315 This is used in final, just before printing the assembler code and by
2316 the routines that determine an insn's attribute.
2318 If STRICT is a positive nonzero value, it means that we have been
2319 called after reload has been completed. In that case, we must
2320 do all checks strictly. If it is zero, it means that we have been called
2321 before reload has completed. In that case, we first try to see if we can
2322 find an alternative that matches strictly. If not, we try again, this
2323 time assuming that reload will fix up the insn. This provides a "best
2324 guess" for the alternative and is used to compute attributes of insns prior
2325 to reload. A negative value of STRICT is used for this internal call. */
2333 constrain_operands (int strict
)
2335 const char *constraints
[MAX_RECOG_OPERANDS
];
2336 int matching_operands
[MAX_RECOG_OPERANDS
];
2337 int earlyclobber
[MAX_RECOG_OPERANDS
];
2340 struct funny_match funny_match
[MAX_RECOG_OPERANDS
];
2341 int funny_match_index
;
2343 which_alternative
= 0;
2344 if (recog_data
.n_operands
== 0 || recog_data
.n_alternatives
== 0)
2347 for (c
= 0; c
< recog_data
.n_operands
; c
++)
2349 constraints
[c
] = recog_data
.constraints
[c
];
2350 matching_operands
[c
] = -1;
2355 int seen_earlyclobber_at
= -1;
2358 funny_match_index
= 0;
2360 if (!recog_data
.alternative_enabled_p
[which_alternative
])
2364 for (i
= 0; i
< recog_data
.n_operands
; i
++)
2365 constraints
[i
] = skip_alternative (constraints
[i
]);
2367 which_alternative
++;
2371 for (opno
= 0; opno
< recog_data
.n_operands
; opno
++)
2373 rtx op
= recog_data
.operand
[opno
];
2374 enum machine_mode mode
= GET_MODE (op
);
2375 const char *p
= constraints
[opno
];
2381 earlyclobber
[opno
] = 0;
2383 /* A unary operator may be accepted by the predicate, but it
2384 is irrelevant for matching constraints. */
2388 if (GET_CODE (op
) == SUBREG
)
2390 if (REG_P (SUBREG_REG (op
))
2391 && REGNO (SUBREG_REG (op
)) < FIRST_PSEUDO_REGISTER
)
2392 offset
= subreg_regno_offset (REGNO (SUBREG_REG (op
)),
2393 GET_MODE (SUBREG_REG (op
)),
2396 op
= SUBREG_REG (op
);
2399 /* An empty constraint or empty alternative
2400 allows anything which matched the pattern. */
2401 if (*p
== 0 || *p
== ',')
2405 switch (c
= *p
, len
= CONSTRAINT_LEN (c
, p
), c
)
2414 case '?': case '!': case '*': case '%':
2419 /* Ignore rest of this alternative as far as
2420 constraint checking is concerned. */
2423 while (*p
&& *p
!= ',');
2428 earlyclobber
[opno
] = 1;
2429 if (seen_earlyclobber_at
< 0)
2430 seen_earlyclobber_at
= opno
;
2433 case '0': case '1': case '2': case '3': case '4':
2434 case '5': case '6': case '7': case '8': case '9':
2436 /* This operand must be the same as a previous one.
2437 This kind of constraint is used for instructions such
2438 as add when they take only two operands.
2440 Note that the lower-numbered operand is passed first.
2442 If we are not testing strictly, assume that this
2443 constraint will be satisfied. */
2448 match
= strtoul (p
, &end
, 10);
2455 rtx op1
= recog_data
.operand
[match
];
2456 rtx op2
= recog_data
.operand
[opno
];
2458 /* A unary operator may be accepted by the predicate,
2459 but it is irrelevant for matching constraints. */
2461 op1
= XEXP (op1
, 0);
2463 op2
= XEXP (op2
, 0);
2465 val
= operands_match_p (op1
, op2
);
2468 matching_operands
[opno
] = match
;
2469 matching_operands
[match
] = opno
;
2474 /* If output is *x and input is *--x, arrange later
2475 to change the output to *--x as well, since the
2476 output op is the one that will be printed. */
2477 if (val
== 2 && strict
> 0)
2479 funny_match
[funny_match_index
].this_op
= opno
;
2480 funny_match
[funny_match_index
++].other
= match
;
2487 /* p is used for address_operands. When we are called by
2488 gen_reload, no one will have checked that the address is
2489 strictly valid, i.e., that all pseudos requiring hard regs
2490 have gotten them. */
2492 || (strict_memory_address_p (recog_data
.operand_mode
[opno
],
2497 /* No need to check general_operand again;
2498 it was done in insn-recog.c. Well, except that reload
2499 doesn't check the validity of its replacements, but
2500 that should only matter when there's a bug. */
2502 /* Anything goes unless it is a REG and really has a hard reg
2503 but the hard reg is not in the class GENERAL_REGS. */
2507 || GENERAL_REGS
== ALL_REGS
2508 || (reload_in_progress
2509 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)
2510 || reg_fits_class_p (op
, GENERAL_REGS
, offset
, mode
))
2513 else if (strict
< 0 || general_operand (op
, mode
))
2518 /* This is used for a MATCH_SCRATCH in the cases when
2519 we don't actually need anything. So anything goes
2524 case TARGET_MEM_CONSTRAINT
:
2525 /* Memory operands must be valid, to the extent
2526 required by STRICT. */
2530 && !strict_memory_address_addr_space_p
2531 (GET_MODE (op
), XEXP (op
, 0),
2532 MEM_ADDR_SPACE (op
)))
2535 && !memory_address_addr_space_p
2536 (GET_MODE (op
), XEXP (op
, 0),
2537 MEM_ADDR_SPACE (op
)))
2541 /* Before reload, accept what reload can turn into mem. */
2542 else if (strict
< 0 && CONSTANT_P (op
))
2544 /* During reload, accept a pseudo */
2545 else if (reload_in_progress
&& REG_P (op
)
2546 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)
2552 && (GET_CODE (XEXP (op
, 0)) == PRE_DEC
2553 || GET_CODE (XEXP (op
, 0)) == POST_DEC
))
2559 && (GET_CODE (XEXP (op
, 0)) == PRE_INC
2560 || GET_CODE (XEXP (op
, 0)) == POST_INC
))
2566 if (GET_CODE (op
) == CONST_DOUBLE
2567 || (GET_CODE (op
) == CONST_VECTOR
2568 && GET_MODE_CLASS (GET_MODE (op
)) == MODE_VECTOR_FLOAT
))
2574 if (GET_CODE (op
) == CONST_DOUBLE
2575 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op
, c
, p
))
2580 if (CONST_INT_P (op
)
2581 || (GET_CODE (op
) == CONST_DOUBLE
2582 && GET_MODE (op
) == VOIDmode
))
2585 if (CONSTANT_P (op
))
2590 if (CONST_INT_P (op
)
2591 || (GET_CODE (op
) == CONST_DOUBLE
2592 && GET_MODE (op
) == VOIDmode
))
2604 if (CONST_INT_P (op
)
2605 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), c
, p
))
2611 && ((strict
> 0 && ! offsettable_memref_p (op
))
2613 && !(CONSTANT_P (op
) || MEM_P (op
)))
2614 || (reload_in_progress
2616 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
))))
2621 if ((strict
> 0 && offsettable_memref_p (op
))
2622 || (strict
== 0 && offsettable_nonstrict_memref_p (op
))
2623 /* Before reload, accept what reload can handle. */
2625 && (CONSTANT_P (op
) || MEM_P (op
)))
2626 /* During reload, accept a pseudo */
2627 || (reload_in_progress
&& REG_P (op
)
2628 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
))
2637 ? GENERAL_REGS
: REG_CLASS_FROM_CONSTRAINT (c
, p
));
2643 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)
2644 || (strict
== 0 && GET_CODE (op
) == SCRATCH
)
2646 && reg_fits_class_p (op
, cl
, offset
, mode
)))
2649 #ifdef EXTRA_CONSTRAINT_STR
2650 else if (EXTRA_CONSTRAINT_STR (op
, c
, p
))
2653 else if (EXTRA_MEMORY_CONSTRAINT (c
, p
)
2654 /* Every memory operand can be reloaded to fit. */
2655 && ((strict
< 0 && MEM_P (op
))
2656 /* Before reload, accept what reload can turn
2658 || (strict
< 0 && CONSTANT_P (op
))
2659 /* During reload, accept a pseudo */
2660 || (reload_in_progress
&& REG_P (op
)
2661 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)))
2663 else if (EXTRA_ADDRESS_CONSTRAINT (c
, p
)
2664 /* Every address operand can be reloaded to fit. */
2671 while (p
+= len
, c
);
2673 constraints
[opno
] = p
;
2674 /* If this operand did not win somehow,
2675 this alternative loses. */
2679 /* This alternative won; the operands are ok.
2680 Change whichever operands this alternative says to change. */
2685 /* See if any earlyclobber operand conflicts with some other
2688 if (strict
> 0 && seen_earlyclobber_at
>= 0)
2689 for (eopno
= seen_earlyclobber_at
;
2690 eopno
< recog_data
.n_operands
;
2692 /* Ignore earlyclobber operands now in memory,
2693 because we would often report failure when we have
2694 two memory operands, one of which was formerly a REG. */
2695 if (earlyclobber
[eopno
]
2696 && REG_P (recog_data
.operand
[eopno
]))
2697 for (opno
= 0; opno
< recog_data
.n_operands
; opno
++)
2698 if ((MEM_P (recog_data
.operand
[opno
])
2699 || recog_data
.operand_type
[opno
] != OP_OUT
)
2701 /* Ignore things like match_operator operands. */
2702 && *recog_data
.constraints
[opno
] != 0
2703 && ! (matching_operands
[opno
] == eopno
2704 && operands_match_p (recog_data
.operand
[opno
],
2705 recog_data
.operand
[eopno
]))
2706 && ! safe_from_earlyclobber (recog_data
.operand
[opno
],
2707 recog_data
.operand
[eopno
]))
2712 while (--funny_match_index
>= 0)
2714 recog_data
.operand
[funny_match
[funny_match_index
].other
]
2715 = recog_data
.operand
[funny_match
[funny_match_index
].this_op
];
2719 /* For operands without < or > constraints reject side-effects. */
2720 if (recog_data
.is_asm
)
2722 for (opno
= 0; opno
< recog_data
.n_operands
; opno
++)
2723 if (MEM_P (recog_data
.operand
[opno
]))
2724 switch (GET_CODE (XEXP (recog_data
.operand
[opno
], 0)))
2732 if (strchr (recog_data
.constraints
[opno
], '<') == NULL
2733 && strchr (recog_data
.constraints
[opno
], '>')
2746 which_alternative
++;
2748 while (which_alternative
< recog_data
.n_alternatives
);
2750 which_alternative
= -1;
2751 /* If we are about to reject this, but we are not to test strictly,
2752 try a very loose test. Only return failure if it fails also. */
2754 return constrain_operands (-1);
2759 /* Return true iff OPERAND (assumed to be a REG rtx)
2760 is a hard reg in class CLASS when its regno is offset by OFFSET
2761 and changed to mode MODE.
2762 If REG occupies multiple hard regs, all of them must be in CLASS. */
2765 reg_fits_class_p (const_rtx operand
, reg_class_t cl
, int offset
,
2766 enum machine_mode mode
)
2768 int regno
= REGNO (operand
);
2773 return (HARD_REGISTER_NUM_P (regno
)
2774 && in_hard_reg_set_p (reg_class_contents
[(int) cl
],
2775 mode
, regno
+ offset
));
2778 /* Split single instruction. Helper function for split_all_insns and
2779 split_all_insns_noflow. Return last insn in the sequence if successful,
2780 or NULL if unsuccessful. */
2783 split_insn (rtx insn
)
2785 /* Split insns here to get max fine-grain parallelism. */
2786 rtx first
= PREV_INSN (insn
);
2787 rtx last
= try_split (PATTERN (insn
), insn
, 1);
2788 rtx insn_set
, last_set
, note
;
2793 /* If the original instruction was a single set that was known to be
2794 equivalent to a constant, see if we can say the same about the last
2795 instruction in the split sequence. The two instructions must set
2796 the same destination. */
2797 insn_set
= single_set (insn
);
2800 last_set
= single_set (last
);
2801 if (last_set
&& rtx_equal_p (SET_DEST (last_set
), SET_DEST (insn_set
)))
2803 note
= find_reg_equal_equiv_note (insn
);
2804 if (note
&& CONSTANT_P (XEXP (note
, 0)))
2805 set_unique_reg_note (last
, REG_EQUAL
, XEXP (note
, 0));
2806 else if (CONSTANT_P (SET_SRC (insn_set
)))
2807 set_unique_reg_note (last
, REG_EQUAL
, SET_SRC (insn_set
));
2811 /* try_split returns the NOTE that INSN became. */
2812 SET_INSN_DELETED (insn
);
2814 /* ??? Coddle to md files that generate subregs in post-reload
2815 splitters instead of computing the proper hard register. */
2816 if (reload_completed
&& first
!= last
)
2818 first
= NEXT_INSN (first
);
2822 cleanup_subreg_operands (first
);
2825 first
= NEXT_INSN (first
);
2832 /* Split all insns in the function. If UPD_LIFE, update life info after. */
2835 split_all_insns (void)
2841 blocks
= sbitmap_alloc (last_basic_block
);
2842 sbitmap_zero (blocks
);
2845 FOR_EACH_BB_REVERSE (bb
)
2848 bool finish
= false;
2850 rtl_profile_for_bb (bb
);
2851 for (insn
= BB_HEAD (bb
); !finish
; insn
= next
)
2853 /* Can't use `next_real_insn' because that might go across
2854 CODE_LABELS and short-out basic blocks. */
2855 next
= NEXT_INSN (insn
);
2856 finish
= (insn
== BB_END (bb
));
2859 rtx set
= single_set (insn
);
2861 /* Don't split no-op move insns. These should silently
2862 disappear later in final. Splitting such insns would
2863 break the code that handles LIBCALL blocks. */
2864 if (set
&& set_noop_p (set
))
2866 /* Nops get in the way while scheduling, so delete them
2867 now if register allocation has already been done. It
2868 is too risky to try to do this before register
2869 allocation, and there are unlikely to be very many
2870 nops then anyways. */
2871 if (reload_completed
)
2872 delete_insn_and_edges (insn
);
2876 if (split_insn (insn
))
2878 SET_BIT (blocks
, bb
->index
);
2886 default_rtl_profile ();
2888 find_many_sub_basic_blocks (blocks
);
2890 #ifdef ENABLE_CHECKING
2891 verify_flow_info ();
2894 sbitmap_free (blocks
);
2897 /* Same as split_all_insns, but do not expect CFG to be available.
2898 Used by machine dependent reorg passes. */
2901 split_all_insns_noflow (void)
2905 for (insn
= get_insns (); insn
; insn
= next
)
2907 next
= NEXT_INSN (insn
);
2910 /* Don't split no-op move insns. These should silently
2911 disappear later in final. Splitting such insns would
2912 break the code that handles LIBCALL blocks. */
2913 rtx set
= single_set (insn
);
2914 if (set
&& set_noop_p (set
))
2916 /* Nops get in the way while scheduling, so delete them
2917 now if register allocation has already been done. It
2918 is too risky to try to do this before register
2919 allocation, and there are unlikely to be very many
2922 ??? Should we use delete_insn when the CFG isn't valid? */
2923 if (reload_completed
)
2924 delete_insn_and_edges (insn
);
2933 #ifdef HAVE_peephole2
2934 struct peep2_insn_data
2940 static struct peep2_insn_data peep2_insn_data
[MAX_INSNS_PER_PEEP2
+ 1];
2941 static int peep2_current
;
2943 static bool peep2_do_rebuild_jump_labels
;
2944 static bool peep2_do_cleanup_cfg
;
2946 /* The number of instructions available to match a peep2. */
2947 int peep2_current_count
;
2949 /* A non-insn marker indicating the last insn of the block.
2950 The live_before regset for this element is correct, indicating
2951 DF_LIVE_OUT for the block. */
2952 #define PEEP2_EOB pc_rtx
2954 /* Wrap N to fit into the peep2_insn_data buffer. */
2957 peep2_buf_position (int n
)
2959 if (n
>= MAX_INSNS_PER_PEEP2
+ 1)
2960 n
-= MAX_INSNS_PER_PEEP2
+ 1;
2964 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
2965 does not exist. Used by the recognizer to find the next insn to match
2966 in a multi-insn pattern. */
2969 peep2_next_insn (int n
)
2971 gcc_assert (n
<= peep2_current_count
);
2973 n
= peep2_buf_position (peep2_current
+ n
);
2975 return peep2_insn_data
[n
].insn
;
2978 /* Return true if REGNO is dead before the Nth non-note insn
2982 peep2_regno_dead_p (int ofs
, int regno
)
2984 gcc_assert (ofs
< MAX_INSNS_PER_PEEP2
+ 1);
2986 ofs
= peep2_buf_position (peep2_current
+ ofs
);
2988 gcc_assert (peep2_insn_data
[ofs
].insn
!= NULL_RTX
);
2990 return ! REGNO_REG_SET_P (peep2_insn_data
[ofs
].live_before
, regno
);
2993 /* Similarly for a REG. */
2996 peep2_reg_dead_p (int ofs
, rtx reg
)
3000 gcc_assert (ofs
< MAX_INSNS_PER_PEEP2
+ 1);
3002 ofs
= peep2_buf_position (peep2_current
+ ofs
);
3004 gcc_assert (peep2_insn_data
[ofs
].insn
!= NULL_RTX
);
3006 regno
= REGNO (reg
);
3007 n
= hard_regno_nregs
[regno
][GET_MODE (reg
)];
3009 if (REGNO_REG_SET_P (peep2_insn_data
[ofs
].live_before
, regno
+ n
))
3014 /* Try to find a hard register of mode MODE, matching the register class in
3015 CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
3016 remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
3017 in which case the only condition is that the register must be available
3018 before CURRENT_INSN.
3019 Registers that already have bits set in REG_SET will not be considered.
3021 If an appropriate register is available, it will be returned and the
3022 corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
3026 peep2_find_free_register (int from
, int to
, const char *class_str
,
3027 enum machine_mode mode
, HARD_REG_SET
*reg_set
)
3029 static int search_ofs
;
3034 gcc_assert (from
< MAX_INSNS_PER_PEEP2
+ 1);
3035 gcc_assert (to
< MAX_INSNS_PER_PEEP2
+ 1);
3037 from
= peep2_buf_position (peep2_current
+ from
);
3038 to
= peep2_buf_position (peep2_current
+ to
);
3040 gcc_assert (peep2_insn_data
[from
].insn
!= NULL_RTX
);
3041 REG_SET_TO_HARD_REG_SET (live
, peep2_insn_data
[from
].live_before
);
3045 HARD_REG_SET this_live
;
3047 from
= peep2_buf_position (from
+ 1);
3048 gcc_assert (peep2_insn_data
[from
].insn
!= NULL_RTX
);
3049 REG_SET_TO_HARD_REG_SET (this_live
, peep2_insn_data
[from
].live_before
);
3050 IOR_HARD_REG_SET (live
, this_live
);
3053 cl
= (class_str
[0] == 'r' ? GENERAL_REGS
3054 : REG_CLASS_FROM_CONSTRAINT (class_str
[0], class_str
));
3056 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
3058 int raw_regno
, regno
, success
, j
;
3060 /* Distribute the free registers as much as possible. */
3061 raw_regno
= search_ofs
+ i
;
3062 if (raw_regno
>= FIRST_PSEUDO_REGISTER
)
3063 raw_regno
-= FIRST_PSEUDO_REGISTER
;
3064 #ifdef REG_ALLOC_ORDER
3065 regno
= reg_alloc_order
[raw_regno
];
3070 /* Don't allocate fixed registers. */
3071 if (fixed_regs
[regno
])
3073 /* Don't allocate global registers. */
3074 if (global_regs
[regno
])
3076 /* Make sure the register is of the right class. */
3077 if (! TEST_HARD_REG_BIT (reg_class_contents
[cl
], regno
))
3079 /* And can support the mode we need. */
3080 if (! HARD_REGNO_MODE_OK (regno
, mode
))
3082 /* And that we don't create an extra save/restore. */
3083 if (! call_used_regs
[regno
] && ! df_regs_ever_live_p (regno
))
3085 if (! targetm
.hard_regno_scratch_ok (regno
))
3088 /* And we don't clobber traceback for noreturn functions. */
3089 if ((regno
== FRAME_POINTER_REGNUM
|| regno
== HARD_FRAME_POINTER_REGNUM
)
3090 && (! reload_completed
|| frame_pointer_needed
))
3094 for (j
= hard_regno_nregs
[regno
][mode
] - 1; j
>= 0; j
--)
3096 if (TEST_HARD_REG_BIT (*reg_set
, regno
+ j
)
3097 || TEST_HARD_REG_BIT (live
, regno
+ j
))
3105 add_to_hard_reg_set (reg_set
, mode
, regno
);
3107 /* Start the next search with the next register. */
3108 if (++raw_regno
>= FIRST_PSEUDO_REGISTER
)
3110 search_ofs
= raw_regno
;
3112 return gen_rtx_REG (mode
, regno
);
3120 /* Forget all currently tracked instructions, only remember current
3124 peep2_reinit_state (regset live
)
3128 /* Indicate that all slots except the last holds invalid data. */
3129 for (i
= 0; i
< MAX_INSNS_PER_PEEP2
; ++i
)
3130 peep2_insn_data
[i
].insn
= NULL_RTX
;
3131 peep2_current_count
= 0;
3133 /* Indicate that the last slot contains live_after data. */
3134 peep2_insn_data
[MAX_INSNS_PER_PEEP2
].insn
= PEEP2_EOB
;
3135 peep2_current
= MAX_INSNS_PER_PEEP2
;
3137 COPY_REG_SET (peep2_insn_data
[MAX_INSNS_PER_PEEP2
].live_before
, live
);
3140 /* While scanning basic block BB, we found a match of length MATCH_LEN,
3141 starting at INSN. Perform the replacement, removing the old insns and
3142 replacing them with ATTEMPT. Returns the last insn emitted, or NULL
3143 if the replacement is rejected. */
3146 peep2_attempt (basic_block bb
, rtx insn
, int match_len
, rtx attempt
)
3149 rtx last
, note
, before_try
, x
;
3150 rtx old_insn
, new_insn
;
3151 bool was_call
= false;
3153 /* If we are splittind an RTX_FRAME_RELATED_P insn, do not allow it to
3154 match more than one insn, or to be split into more than one insn. */
3155 old_insn
= peep2_insn_data
[peep2_current
].insn
;
3156 if (RTX_FRAME_RELATED_P (old_insn
))
3158 bool any_note
= false;
3163 /* Look for one "active" insn. I.e. ignore any "clobber" insns that
3164 may be in the stream for the purpose of register allocation. */
3165 if (active_insn_p (attempt
))
3168 new_insn
= next_active_insn (attempt
);
3169 if (next_active_insn (new_insn
))
3172 /* We have a 1-1 replacement. Copy over any frame-related info. */
3173 RTX_FRAME_RELATED_P (new_insn
) = 1;
3175 /* Allow the backend to fill in a note during the split. */
3176 for (note
= REG_NOTES (new_insn
); note
; note
= XEXP (note
, 1))
3177 switch (REG_NOTE_KIND (note
))
3179 case REG_FRAME_RELATED_EXPR
:
3180 case REG_CFA_DEF_CFA
:
3181 case REG_CFA_ADJUST_CFA
:
3182 case REG_CFA_OFFSET
:
3183 case REG_CFA_REGISTER
:
3184 case REG_CFA_EXPRESSION
:
3185 case REG_CFA_RESTORE
:
3186 case REG_CFA_SET_VDRAP
:
3193 /* If the backend didn't supply a note, copy one over. */
3195 for (note
= REG_NOTES (old_insn
); note
; note
= XEXP (note
, 1))
3196 switch (REG_NOTE_KIND (note
))
3198 case REG_FRAME_RELATED_EXPR
:
3199 case REG_CFA_DEF_CFA
:
3200 case REG_CFA_ADJUST_CFA
:
3201 case REG_CFA_OFFSET
:
3202 case REG_CFA_REGISTER
:
3203 case REG_CFA_EXPRESSION
:
3204 case REG_CFA_RESTORE
:
3205 case REG_CFA_SET_VDRAP
:
3206 add_reg_note (new_insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3213 /* If there still isn't a note, make sure the unwind info sees the
3214 same expression as before the split. */
3217 rtx old_set
, new_set
;
3219 /* The old insn had better have been simple, or annotated. */
3220 old_set
= single_set (old_insn
);
3221 gcc_assert (old_set
!= NULL
);
3223 new_set
= single_set (new_insn
);
3224 if (!new_set
|| !rtx_equal_p (new_set
, old_set
))
3225 add_reg_note (new_insn
, REG_FRAME_RELATED_EXPR
, old_set
);
3228 /* Copy prologue/epilogue status. This is required in order to keep
3229 proper placement of EPILOGUE_BEG and the DW_CFA_remember_state. */
3230 maybe_copy_prologue_epilogue_insn (old_insn
, new_insn
);
3233 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3234 in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3235 cfg-related call notes. */
3236 for (i
= 0; i
<= match_len
; ++i
)
3240 j
= peep2_buf_position (peep2_current
+ i
);
3241 old_insn
= peep2_insn_data
[j
].insn
;
3242 if (!CALL_P (old_insn
))
3247 while (new_insn
!= NULL_RTX
)
3249 if (CALL_P (new_insn
))
3251 new_insn
= NEXT_INSN (new_insn
);
3254 gcc_assert (new_insn
!= NULL_RTX
);
3256 CALL_INSN_FUNCTION_USAGE (new_insn
)
3257 = CALL_INSN_FUNCTION_USAGE (old_insn
);
3259 for (note
= REG_NOTES (old_insn
);
3261 note
= XEXP (note
, 1))
3262 switch (REG_NOTE_KIND (note
))
3266 add_reg_note (new_insn
, REG_NOTE_KIND (note
),
3270 /* Discard all other reg notes. */
3274 /* Croak if there is another call in the sequence. */
3275 while (++i
<= match_len
)
3277 j
= peep2_buf_position (peep2_current
+ i
);
3278 old_insn
= peep2_insn_data
[j
].insn
;
3279 gcc_assert (!CALL_P (old_insn
));
3284 i
= peep2_buf_position (peep2_current
+ match_len
);
3286 note
= find_reg_note (peep2_insn_data
[i
].insn
, REG_EH_REGION
, NULL_RTX
);
3288 /* Replace the old sequence with the new. */
3289 last
= emit_insn_after_setloc (attempt
,
3290 peep2_insn_data
[i
].insn
,
3291 INSN_LOCATOR (peep2_insn_data
[i
].insn
));
3292 before_try
= PREV_INSN (insn
);
3293 delete_insn_chain (insn
, peep2_insn_data
[i
].insn
, false);
3295 /* Re-insert the EH_REGION notes. */
3296 if (note
|| (was_call
&& nonlocal_goto_handler_labels
))
3301 FOR_EACH_EDGE (eh_edge
, ei
, bb
->succs
)
3302 if (eh_edge
->flags
& (EDGE_EH
| EDGE_ABNORMAL_CALL
))
3306 copy_reg_eh_region_note_backward (note
, last
, before_try
);
3309 for (x
= last
; x
!= before_try
; x
= PREV_INSN (x
))
3310 if (x
!= BB_END (bb
)
3311 && (can_throw_internal (x
)
3312 || can_nonlocal_goto (x
)))
3317 nfte
= split_block (bb
, x
);
3318 flags
= (eh_edge
->flags
3319 & (EDGE_EH
| EDGE_ABNORMAL
));
3321 flags
|= EDGE_ABNORMAL_CALL
;
3322 nehe
= make_edge (nfte
->src
, eh_edge
->dest
,
3325 nehe
->probability
= eh_edge
->probability
;
3327 = REG_BR_PROB_BASE
- nehe
->probability
;
3329 peep2_do_cleanup_cfg
|= purge_dead_edges (nfte
->dest
);
3334 /* Converting possibly trapping insn to non-trapping is
3335 possible. Zap dummy outgoing edges. */
3336 peep2_do_cleanup_cfg
|= purge_dead_edges (bb
);
3339 /* If we generated a jump instruction, it won't have
3340 JUMP_LABEL set. Recompute after we're done. */
3341 for (x
= last
; x
!= before_try
; x
= PREV_INSN (x
))
3344 peep2_do_rebuild_jump_labels
= true;
3351 /* After performing a replacement in basic block BB, fix up the life
3352 information in our buffer. LAST is the last of the insns that we
3353 emitted as a replacement. PREV is the insn before the start of
3354 the replacement. MATCH_LEN is the number of instructions that were
3355 matched, and which now need to be replaced in the buffer. */
3358 peep2_update_life (basic_block bb
, int match_len
, rtx last
, rtx prev
)
3360 int i
= peep2_buf_position (peep2_current
+ match_len
+ 1);
3364 INIT_REG_SET (&live
);
3365 COPY_REG_SET (&live
, peep2_insn_data
[i
].live_before
);
3367 gcc_assert (peep2_current_count
>= match_len
+ 1);
3368 peep2_current_count
-= match_len
+ 1;
3376 if (peep2_current_count
< MAX_INSNS_PER_PEEP2
)
3378 peep2_current_count
++;
3380 i
= MAX_INSNS_PER_PEEP2
;
3381 peep2_insn_data
[i
].insn
= x
;
3382 df_simulate_one_insn_backwards (bb
, x
, &live
);
3383 COPY_REG_SET (peep2_insn_data
[i
].live_before
, &live
);
3389 CLEAR_REG_SET (&live
);
3394 /* Add INSN, which is in BB, at the end of the peep2 insn buffer if possible.
3395 Return true if we added it, false otherwise. The caller will try to match
3396 peepholes against the buffer if we return false; otherwise it will try to
3397 add more instructions to the buffer. */
3400 peep2_fill_buffer (basic_block bb
, rtx insn
, regset live
)
3404 /* Once we have filled the maximum number of insns the buffer can hold,
3405 allow the caller to match the insns against peepholes. We wait until
3406 the buffer is full in case the target has similar peepholes of different
3407 length; we always want to match the longest if possible. */
3408 if (peep2_current_count
== MAX_INSNS_PER_PEEP2
)
3411 /* If an insn has RTX_FRAME_RELATED_P set, do not allow it to be matched with
3412 any other pattern, lest it change the semantics of the frame info. */
3413 if (RTX_FRAME_RELATED_P (insn
))
3415 /* Let the buffer drain first. */
3416 if (peep2_current_count
> 0)
3418 /* Now the insn will be the only thing in the buffer. */
3421 pos
= peep2_buf_position (peep2_current
+ peep2_current_count
);
3422 peep2_insn_data
[pos
].insn
= insn
;
3423 COPY_REG_SET (peep2_insn_data
[pos
].live_before
, live
);
3424 peep2_current_count
++;
3426 df_simulate_one_insn_forwards (bb
, insn
, live
);
3430 /* Perform the peephole2 optimization pass. */
3433 peephole2_optimize (void)
3440 peep2_do_cleanup_cfg
= false;
3441 peep2_do_rebuild_jump_labels
= false;
3443 df_set_flags (DF_LR_RUN_DCE
);
3444 df_note_add_problem ();
3447 /* Initialize the regsets we're going to use. */
3448 for (i
= 0; i
< MAX_INSNS_PER_PEEP2
+ 1; ++i
)
3449 peep2_insn_data
[i
].live_before
= BITMAP_ALLOC (®_obstack
);
3450 live
= BITMAP_ALLOC (®_obstack
);
3452 FOR_EACH_BB_REVERSE (bb
)
3454 bool past_end
= false;
3457 rtl_profile_for_bb (bb
);
3459 /* Start up propagation. */
3460 bitmap_copy (live
, DF_LR_IN (bb
));
3461 df_simulate_initialize_forwards (bb
, live
);
3462 peep2_reinit_state (live
);
3464 insn
= BB_HEAD (bb
);
3470 if (!past_end
&& !NONDEBUG_INSN_P (insn
))
3473 insn
= NEXT_INSN (insn
);
3474 if (insn
== NEXT_INSN (BB_END (bb
)))
3478 if (!past_end
&& peep2_fill_buffer (bb
, insn
, live
))
3481 /* If we did not fill an empty buffer, it signals the end of the
3483 if (peep2_current_count
== 0)
3486 /* The buffer filled to the current maximum, so try to match. */
3488 pos
= peep2_buf_position (peep2_current
+ peep2_current_count
);
3489 peep2_insn_data
[pos
].insn
= PEEP2_EOB
;
3490 COPY_REG_SET (peep2_insn_data
[pos
].live_before
, live
);
3492 /* Match the peephole. */
3493 head
= peep2_insn_data
[peep2_current
].insn
;
3494 attempt
= peephole2_insns (PATTERN (head
), head
, &match_len
);
3495 if (attempt
!= NULL
)
3497 rtx last
= peep2_attempt (bb
, head
, match_len
, attempt
);
3500 peep2_update_life (bb
, match_len
, last
, PREV_INSN (attempt
));
3505 /* No match: advance the buffer by one insn. */
3506 peep2_current
= peep2_buf_position (peep2_current
+ 1);
3507 peep2_current_count
--;
3511 default_rtl_profile ();
3512 for (i
= 0; i
< MAX_INSNS_PER_PEEP2
+ 1; ++i
)
3513 BITMAP_FREE (peep2_insn_data
[i
].live_before
);
3515 if (peep2_do_rebuild_jump_labels
)
3516 rebuild_jump_labels (get_insns ());
3518 #endif /* HAVE_peephole2 */
3520 /* Common predicates for use with define_bypass. */
3522 /* True if the dependency between OUT_INSN and IN_INSN is on the store
3523 data not the address operand(s) of the store. IN_INSN and OUT_INSN
3524 must be either a single_set or a PARALLEL with SETs inside. */
3527 store_data_bypass_p (rtx out_insn
, rtx in_insn
)
3529 rtx out_set
, in_set
;
3530 rtx out_pat
, in_pat
;
3531 rtx out_exp
, in_exp
;
3534 in_set
= single_set (in_insn
);
3537 if (!MEM_P (SET_DEST (in_set
)))
3540 out_set
= single_set (out_insn
);
3543 if (reg_mentioned_p (SET_DEST (out_set
), SET_DEST (in_set
)))
3548 out_pat
= PATTERN (out_insn
);
3550 if (GET_CODE (out_pat
) != PARALLEL
)
3553 for (i
= 0; i
< XVECLEN (out_pat
, 0); i
++)
3555 out_exp
= XVECEXP (out_pat
, 0, i
);
3557 if (GET_CODE (out_exp
) == CLOBBER
)
3560 gcc_assert (GET_CODE (out_exp
) == SET
);
3562 if (reg_mentioned_p (SET_DEST (out_exp
), SET_DEST (in_set
)))
3569 in_pat
= PATTERN (in_insn
);
3570 gcc_assert (GET_CODE (in_pat
) == PARALLEL
);
3572 for (i
= 0; i
< XVECLEN (in_pat
, 0); i
++)
3574 in_exp
= XVECEXP (in_pat
, 0, i
);
3576 if (GET_CODE (in_exp
) == CLOBBER
)
3579 gcc_assert (GET_CODE (in_exp
) == SET
);
3581 if (!MEM_P (SET_DEST (in_exp
)))
3584 out_set
= single_set (out_insn
);
3587 if (reg_mentioned_p (SET_DEST (out_set
), SET_DEST (in_exp
)))
3592 out_pat
= PATTERN (out_insn
);
3593 gcc_assert (GET_CODE (out_pat
) == PARALLEL
);
3595 for (j
= 0; j
< XVECLEN (out_pat
, 0); j
++)
3597 out_exp
= XVECEXP (out_pat
, 0, j
);
3599 if (GET_CODE (out_exp
) == CLOBBER
)
3602 gcc_assert (GET_CODE (out_exp
) == SET
);
3604 if (reg_mentioned_p (SET_DEST (out_exp
), SET_DEST (in_exp
)))
3614 /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
3615 condition, and not the THEN or ELSE branch. OUT_INSN may be either a single
3616 or multiple set; IN_INSN should be single_set for truth, but for convenience
3617 of insn categorization may be any JUMP or CALL insn. */
3620 if_test_bypass_p (rtx out_insn
, rtx in_insn
)
3622 rtx out_set
, in_set
;
3624 in_set
= single_set (in_insn
);
3627 gcc_assert (JUMP_P (in_insn
) || CALL_P (in_insn
));
3631 if (GET_CODE (SET_SRC (in_set
)) != IF_THEN_ELSE
)
3633 in_set
= SET_SRC (in_set
);
3635 out_set
= single_set (out_insn
);
3638 if (reg_mentioned_p (SET_DEST (out_set
), XEXP (in_set
, 1))
3639 || reg_mentioned_p (SET_DEST (out_set
), XEXP (in_set
, 2)))
3647 out_pat
= PATTERN (out_insn
);
3648 gcc_assert (GET_CODE (out_pat
) == PARALLEL
);
3650 for (i
= 0; i
< XVECLEN (out_pat
, 0); i
++)
3652 rtx exp
= XVECEXP (out_pat
, 0, i
);
3654 if (GET_CODE (exp
) == CLOBBER
)
3657 gcc_assert (GET_CODE (exp
) == SET
);
3659 if (reg_mentioned_p (SET_DEST (out_set
), XEXP (in_set
, 1))
3660 || reg_mentioned_p (SET_DEST (out_set
), XEXP (in_set
, 2)))
3669 gate_handle_peephole2 (void)
3671 return (optimize
> 0 && flag_peephole2
);
3675 rest_of_handle_peephole2 (void)
3677 #ifdef HAVE_peephole2
3678 peephole2_optimize ();
3683 struct rtl_opt_pass pass_peephole2
=
3687 "peephole2", /* name */
3688 gate_handle_peephole2
, /* gate */
3689 rest_of_handle_peephole2
, /* execute */
3692 0, /* static_pass_number */
3693 TV_PEEPHOLE2
, /* tv_id */
3694 0, /* properties_required */
3695 0, /* properties_provided */
3696 0, /* properties_destroyed */
3697 0, /* todo_flags_start */
3698 TODO_df_finish
| TODO_verify_rtl_sharing
|
3699 0 /* todo_flags_finish */
3704 rest_of_handle_split_all_insns (void)
3710 struct rtl_opt_pass pass_split_all_insns
=
3714 "split1", /* name */
3716 rest_of_handle_split_all_insns
, /* execute */
3719 0, /* static_pass_number */
3720 TV_NONE
, /* tv_id */
3721 0, /* properties_required */
3722 0, /* properties_provided */
3723 0, /* properties_destroyed */
3724 0, /* todo_flags_start */
3725 0 /* todo_flags_finish */
3730 rest_of_handle_split_after_reload (void)
3732 /* If optimizing, then go ahead and split insns now. */
3740 struct rtl_opt_pass pass_split_after_reload
=
3744 "split2", /* name */
3746 rest_of_handle_split_after_reload
, /* execute */
3749 0, /* static_pass_number */
3750 TV_NONE
, /* tv_id */
3751 0, /* properties_required */
3752 0, /* properties_provided */
3753 0, /* properties_destroyed */
3754 0, /* todo_flags_start */
3755 0 /* todo_flags_finish */
3760 gate_handle_split_before_regstack (void)
3762 #if defined (HAVE_ATTR_length) && defined (STACK_REGS)
3763 /* If flow2 creates new instructions which need splitting
3764 and scheduling after reload is not done, they might not be
3765 split until final which doesn't allow splitting
3766 if HAVE_ATTR_length. */
3767 # ifdef INSN_SCHEDULING
3768 return (optimize
&& !flag_schedule_insns_after_reload
);
3778 rest_of_handle_split_before_regstack (void)
3784 struct rtl_opt_pass pass_split_before_regstack
=
3788 "split3", /* name */
3789 gate_handle_split_before_regstack
, /* gate */
3790 rest_of_handle_split_before_regstack
, /* execute */
3793 0, /* static_pass_number */
3794 TV_NONE
, /* tv_id */
3795 0, /* properties_required */
3796 0, /* properties_provided */
3797 0, /* properties_destroyed */
3798 0, /* todo_flags_start */
3799 0 /* todo_flags_finish */
3804 gate_handle_split_before_sched2 (void)
3806 #ifdef INSN_SCHEDULING
3807 return optimize
> 0 && flag_schedule_insns_after_reload
;
3814 rest_of_handle_split_before_sched2 (void)
3816 #ifdef INSN_SCHEDULING
3822 struct rtl_opt_pass pass_split_before_sched2
=
3826 "split4", /* name */
3827 gate_handle_split_before_sched2
, /* gate */
3828 rest_of_handle_split_before_sched2
, /* execute */
3831 0, /* static_pass_number */
3832 TV_NONE
, /* tv_id */
3833 0, /* properties_required */
3834 0, /* properties_provided */
3835 0, /* properties_destroyed */
3836 0, /* todo_flags_start */
3837 TODO_verify_flow
/* todo_flags_finish */
3841 /* The placement of the splitting that we do for shorten_branches
3842 depends on whether regstack is used by the target or not. */
3844 gate_do_final_split (void)
3846 #if defined (HAVE_ATTR_length) && !defined (STACK_REGS)
3853 struct rtl_opt_pass pass_split_for_shorten_branches
=
3857 "split5", /* name */
3858 gate_do_final_split
, /* gate */
3859 split_all_insns_noflow
, /* execute */
3862 0, /* static_pass_number */
3863 TV_NONE
, /* tv_id */
3864 0, /* properties_required */
3865 0, /* properties_provided */
3866 0, /* properties_destroyed */
3867 0, /* todo_flags_start */
3868 TODO_verify_rtl_sharing
/* todo_flags_finish */