compiler, runtime: call gcWriteBarrier instead of writebarrierptr
[official-gcc.git] / gcc / tree-complex.c
blob93f274cd213cdbe5ce552f8c8ccf11eb2a46352f
1 /* Lower complex number operations to scalar operations.
2 Copyright (C) 2004-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "cfghooks.h"
28 #include "tree-pass.h"
29 #include "ssa.h"
30 #include "fold-const.h"
31 #include "stor-layout.h"
32 #include "tree-eh.h"
33 #include "gimplify.h"
34 #include "gimple-iterator.h"
35 #include "gimplify-me.h"
36 #include "tree-cfg.h"
37 #include "tree-dfa.h"
38 #include "tree-ssa.h"
39 #include "tree-ssa-propagate.h"
40 #include "tree-hasher.h"
41 #include "cfgloop.h"
42 #include "cfganal.h"
45 /* For each complex ssa name, a lattice value. We're interested in finding
46 out whether a complex number is degenerate in some way, having only real
47 or only complex parts. */
49 enum
51 UNINITIALIZED = 0,
52 ONLY_REAL = 1,
53 ONLY_IMAG = 2,
54 VARYING = 3
57 /* The type complex_lattice_t holds combinations of the above
58 constants. */
59 typedef int complex_lattice_t;
61 #define PAIR(a, b) ((a) << 2 | (b))
63 class complex_propagate : public ssa_propagation_engine
65 enum ssa_prop_result visit_stmt (gimple *, edge *, tree *) FINAL OVERRIDE;
66 enum ssa_prop_result visit_phi (gphi *) FINAL OVERRIDE;
69 static vec<complex_lattice_t> complex_lattice_values;
71 /* For each complex variable, a pair of variables for the components exists in
72 the hashtable. */
73 static int_tree_htab_type *complex_variable_components;
75 /* For each complex SSA_NAME, a pair of ssa names for the components. */
76 static vec<tree> complex_ssa_name_components;
78 /* Vector of PHI triplets (original complex PHI and corresponding real and
79 imag PHIs if real and/or imag PHIs contain temporarily
80 non-SSA_NAME/non-invariant args that need to be replaced by SSA_NAMEs. */
81 static vec<gphi *> phis_to_revisit;
83 /* Lookup UID in the complex_variable_components hashtable and return the
84 associated tree. */
85 static tree
86 cvc_lookup (unsigned int uid)
88 struct int_tree_map in;
89 in.uid = uid;
90 return complex_variable_components->find_with_hash (in, uid).to;
93 /* Insert the pair UID, TO into the complex_variable_components hashtable. */
95 static void
96 cvc_insert (unsigned int uid, tree to)
98 int_tree_map h;
99 int_tree_map *loc;
101 h.uid = uid;
102 loc = complex_variable_components->find_slot_with_hash (h, uid, INSERT);
103 loc->uid = uid;
104 loc->to = to;
107 /* Return true if T is not a zero constant. In the case of real values,
108 we're only interested in +0.0. */
110 static int
111 some_nonzerop (tree t)
113 int zerop = false;
115 /* Operations with real or imaginary part of a complex number zero
116 cannot be treated the same as operations with a real or imaginary
117 operand if we care about the signs of zeros in the result. */
118 if (TREE_CODE (t) == REAL_CST && !flag_signed_zeros)
119 zerop = real_identical (&TREE_REAL_CST (t), &dconst0);
120 else if (TREE_CODE (t) == FIXED_CST)
121 zerop = fixed_zerop (t);
122 else if (TREE_CODE (t) == INTEGER_CST)
123 zerop = integer_zerop (t);
125 return !zerop;
129 /* Compute a lattice value from the components of a complex type REAL
130 and IMAG. */
132 static complex_lattice_t
133 find_lattice_value_parts (tree real, tree imag)
135 int r, i;
136 complex_lattice_t ret;
138 r = some_nonzerop (real);
139 i = some_nonzerop (imag);
140 ret = r * ONLY_REAL + i * ONLY_IMAG;
142 /* ??? On occasion we could do better than mapping 0+0i to real, but we
143 certainly don't want to leave it UNINITIALIZED, which eventually gets
144 mapped to VARYING. */
145 if (ret == UNINITIALIZED)
146 ret = ONLY_REAL;
148 return ret;
152 /* Compute a lattice value from gimple_val T. */
154 static complex_lattice_t
155 find_lattice_value (tree t)
157 tree real, imag;
159 switch (TREE_CODE (t))
161 case SSA_NAME:
162 return complex_lattice_values[SSA_NAME_VERSION (t)];
164 case COMPLEX_CST:
165 real = TREE_REALPART (t);
166 imag = TREE_IMAGPART (t);
167 break;
169 default:
170 gcc_unreachable ();
173 return find_lattice_value_parts (real, imag);
176 /* Determine if LHS is something for which we're interested in seeing
177 simulation results. */
179 static bool
180 is_complex_reg (tree lhs)
182 return TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE && is_gimple_reg (lhs);
185 /* Mark the incoming parameters to the function as VARYING. */
187 static void
188 init_parameter_lattice_values (void)
190 tree parm, ssa_name;
192 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
193 if (is_complex_reg (parm)
194 && (ssa_name = ssa_default_def (cfun, parm)) != NULL_TREE)
195 complex_lattice_values[SSA_NAME_VERSION (ssa_name)] = VARYING;
198 /* Initialize simulation state for each statement. Return false if we
199 found no statements we want to simulate, and thus there's nothing
200 for the entire pass to do. */
202 static bool
203 init_dont_simulate_again (void)
205 basic_block bb;
206 bool saw_a_complex_op = false;
208 FOR_EACH_BB_FN (bb, cfun)
210 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
211 gsi_next (&gsi))
213 gphi *phi = gsi.phi ();
214 prop_set_simulate_again (phi,
215 is_complex_reg (gimple_phi_result (phi)));
218 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
219 gsi_next (&gsi))
221 gimple *stmt;
222 tree op0, op1;
223 bool sim_again_p;
225 stmt = gsi_stmt (gsi);
226 op0 = op1 = NULL_TREE;
228 /* Most control-altering statements must be initially
229 simulated, else we won't cover the entire cfg. */
230 sim_again_p = stmt_ends_bb_p (stmt);
232 switch (gimple_code (stmt))
234 case GIMPLE_CALL:
235 if (gimple_call_lhs (stmt))
236 sim_again_p = is_complex_reg (gimple_call_lhs (stmt));
237 break;
239 case GIMPLE_ASSIGN:
240 sim_again_p = is_complex_reg (gimple_assign_lhs (stmt));
241 if (gimple_assign_rhs_code (stmt) == REALPART_EXPR
242 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
243 op0 = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
244 else
245 op0 = gimple_assign_rhs1 (stmt);
246 if (gimple_num_ops (stmt) > 2)
247 op1 = gimple_assign_rhs2 (stmt);
248 break;
250 case GIMPLE_COND:
251 op0 = gimple_cond_lhs (stmt);
252 op1 = gimple_cond_rhs (stmt);
253 break;
255 default:
256 break;
259 if (op0 || op1)
260 switch (gimple_expr_code (stmt))
262 case EQ_EXPR:
263 case NE_EXPR:
264 case PLUS_EXPR:
265 case MINUS_EXPR:
266 case MULT_EXPR:
267 case TRUNC_DIV_EXPR:
268 case CEIL_DIV_EXPR:
269 case FLOOR_DIV_EXPR:
270 case ROUND_DIV_EXPR:
271 case RDIV_EXPR:
272 if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE
273 || TREE_CODE (TREE_TYPE (op1)) == COMPLEX_TYPE)
274 saw_a_complex_op = true;
275 break;
277 case NEGATE_EXPR:
278 case CONJ_EXPR:
279 if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE)
280 saw_a_complex_op = true;
281 break;
283 case REALPART_EXPR:
284 case IMAGPART_EXPR:
285 /* The total store transformation performed during
286 gimplification creates such uninitialized loads
287 and we need to lower the statement to be able
288 to fix things up. */
289 if (TREE_CODE (op0) == SSA_NAME
290 && ssa_undefined_value_p (op0))
291 saw_a_complex_op = true;
292 break;
294 default:
295 break;
298 prop_set_simulate_again (stmt, sim_again_p);
302 return saw_a_complex_op;
306 /* Evaluate statement STMT against the complex lattice defined above. */
308 enum ssa_prop_result
309 complex_propagate::visit_stmt (gimple *stmt, edge *taken_edge_p ATTRIBUTE_UNUSED,
310 tree *result_p)
312 complex_lattice_t new_l, old_l, op1_l, op2_l;
313 unsigned int ver;
314 tree lhs;
316 lhs = gimple_get_lhs (stmt);
317 /* Skip anything but GIMPLE_ASSIGN and GIMPLE_CALL with a lhs. */
318 if (!lhs)
319 return SSA_PROP_VARYING;
321 /* These conditions should be satisfied due to the initial filter
322 set up in init_dont_simulate_again. */
323 gcc_assert (TREE_CODE (lhs) == SSA_NAME);
324 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
326 *result_p = lhs;
327 ver = SSA_NAME_VERSION (lhs);
328 old_l = complex_lattice_values[ver];
330 switch (gimple_expr_code (stmt))
332 case SSA_NAME:
333 case COMPLEX_CST:
334 new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
335 break;
337 case COMPLEX_EXPR:
338 new_l = find_lattice_value_parts (gimple_assign_rhs1 (stmt),
339 gimple_assign_rhs2 (stmt));
340 break;
342 case PLUS_EXPR:
343 case MINUS_EXPR:
344 op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
345 op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
347 /* We've set up the lattice values such that IOR neatly
348 models addition. */
349 new_l = op1_l | op2_l;
350 break;
352 case MULT_EXPR:
353 case RDIV_EXPR:
354 case TRUNC_DIV_EXPR:
355 case CEIL_DIV_EXPR:
356 case FLOOR_DIV_EXPR:
357 case ROUND_DIV_EXPR:
358 op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
359 op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
361 /* Obviously, if either varies, so does the result. */
362 if (op1_l == VARYING || op2_l == VARYING)
363 new_l = VARYING;
364 /* Don't prematurely promote variables if we've not yet seen
365 their inputs. */
366 else if (op1_l == UNINITIALIZED)
367 new_l = op2_l;
368 else if (op2_l == UNINITIALIZED)
369 new_l = op1_l;
370 else
372 /* At this point both numbers have only one component. If the
373 numbers are of opposite kind, the result is imaginary,
374 otherwise the result is real. The add/subtract translates
375 the real/imag from/to 0/1; the ^ performs the comparison. */
376 new_l = ((op1_l - ONLY_REAL) ^ (op2_l - ONLY_REAL)) + ONLY_REAL;
378 /* Don't allow the lattice value to flip-flop indefinitely. */
379 new_l |= old_l;
381 break;
383 case NEGATE_EXPR:
384 case CONJ_EXPR:
385 new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
386 break;
388 default:
389 new_l = VARYING;
390 break;
393 /* If nothing changed this round, let the propagator know. */
394 if (new_l == old_l)
395 return SSA_PROP_NOT_INTERESTING;
397 complex_lattice_values[ver] = new_l;
398 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
401 /* Evaluate a PHI node against the complex lattice defined above. */
403 enum ssa_prop_result
404 complex_propagate::visit_phi (gphi *phi)
406 complex_lattice_t new_l, old_l;
407 unsigned int ver;
408 tree lhs;
409 int i;
411 lhs = gimple_phi_result (phi);
413 /* This condition should be satisfied due to the initial filter
414 set up in init_dont_simulate_again. */
415 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
417 /* We've set up the lattice values such that IOR neatly models PHI meet. */
418 new_l = UNINITIALIZED;
419 for (i = gimple_phi_num_args (phi) - 1; i >= 0; --i)
420 new_l |= find_lattice_value (gimple_phi_arg_def (phi, i));
422 ver = SSA_NAME_VERSION (lhs);
423 old_l = complex_lattice_values[ver];
425 if (new_l == old_l)
426 return SSA_PROP_NOT_INTERESTING;
428 complex_lattice_values[ver] = new_l;
429 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
432 /* Create one backing variable for a complex component of ORIG. */
434 static tree
435 create_one_component_var (tree type, tree orig, const char *prefix,
436 const char *suffix, enum tree_code code)
438 tree r = create_tmp_var (type, prefix);
440 DECL_SOURCE_LOCATION (r) = DECL_SOURCE_LOCATION (orig);
441 DECL_ARTIFICIAL (r) = 1;
443 if (DECL_NAME (orig) && !DECL_IGNORED_P (orig))
445 const char *name = IDENTIFIER_POINTER (DECL_NAME (orig));
446 name = ACONCAT ((name, suffix, NULL));
447 DECL_NAME (r) = get_identifier (name);
449 SET_DECL_DEBUG_EXPR (r, build1 (code, type, orig));
450 DECL_HAS_DEBUG_EXPR_P (r) = 1;
451 DECL_IGNORED_P (r) = 0;
452 TREE_NO_WARNING (r) = TREE_NO_WARNING (orig);
454 else
456 DECL_IGNORED_P (r) = 1;
457 TREE_NO_WARNING (r) = 1;
460 return r;
463 /* Retrieve a value for a complex component of VAR. */
465 static tree
466 get_component_var (tree var, bool imag_p)
468 size_t decl_index = DECL_UID (var) * 2 + imag_p;
469 tree ret = cvc_lookup (decl_index);
471 if (ret == NULL)
473 ret = create_one_component_var (TREE_TYPE (TREE_TYPE (var)), var,
474 imag_p ? "CI" : "CR",
475 imag_p ? "$imag" : "$real",
476 imag_p ? IMAGPART_EXPR : REALPART_EXPR);
477 cvc_insert (decl_index, ret);
480 return ret;
483 /* Retrieve a value for a complex component of SSA_NAME. */
485 static tree
486 get_component_ssa_name (tree ssa_name, bool imag_p)
488 complex_lattice_t lattice = find_lattice_value (ssa_name);
489 size_t ssa_name_index;
490 tree ret;
492 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
494 tree inner_type = TREE_TYPE (TREE_TYPE (ssa_name));
495 if (SCALAR_FLOAT_TYPE_P (inner_type))
496 return build_real (inner_type, dconst0);
497 else
498 return build_int_cst (inner_type, 0);
501 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
502 ret = complex_ssa_name_components[ssa_name_index];
503 if (ret == NULL)
505 if (SSA_NAME_VAR (ssa_name))
506 ret = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
507 else
508 ret = TREE_TYPE (TREE_TYPE (ssa_name));
509 ret = make_ssa_name (ret);
511 /* Copy some properties from the original. In particular, whether it
512 is used in an abnormal phi, and whether it's uninitialized. */
513 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ret)
514 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name);
515 if (SSA_NAME_IS_DEFAULT_DEF (ssa_name)
516 && TREE_CODE (SSA_NAME_VAR (ssa_name)) == VAR_DECL)
518 SSA_NAME_DEF_STMT (ret) = SSA_NAME_DEF_STMT (ssa_name);
519 set_ssa_default_def (cfun, SSA_NAME_VAR (ret), ret);
522 complex_ssa_name_components[ssa_name_index] = ret;
525 return ret;
528 /* Set a value for a complex component of SSA_NAME, return a
529 gimple_seq of stuff that needs doing. */
531 static gimple_seq
532 set_component_ssa_name (tree ssa_name, bool imag_p, tree value)
534 complex_lattice_t lattice = find_lattice_value (ssa_name);
535 size_t ssa_name_index;
536 tree comp;
537 gimple *last;
538 gimple_seq list;
540 /* We know the value must be zero, else there's a bug in our lattice
541 analysis. But the value may well be a variable known to contain
542 zero. We should be safe ignoring it. */
543 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
544 return NULL;
546 /* If we've already assigned an SSA_NAME to this component, then this
547 means that our walk of the basic blocks found a use before the set.
548 This is fine. Now we should create an initialization for the value
549 we created earlier. */
550 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
551 comp = complex_ssa_name_components[ssa_name_index];
552 if (comp)
555 /* If we've nothing assigned, and the value we're given is already stable,
556 then install that as the value for this SSA_NAME. This preemptively
557 copy-propagates the value, which avoids unnecessary memory allocation. */
558 else if (is_gimple_min_invariant (value)
559 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
561 complex_ssa_name_components[ssa_name_index] = value;
562 return NULL;
564 else if (TREE_CODE (value) == SSA_NAME
565 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
567 /* Replace an anonymous base value with the variable from cvc_lookup.
568 This should result in better debug info. */
569 if (SSA_NAME_VAR (ssa_name)
570 && (!SSA_NAME_VAR (value) || DECL_IGNORED_P (SSA_NAME_VAR (value)))
571 && !DECL_IGNORED_P (SSA_NAME_VAR (ssa_name)))
573 comp = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
574 replace_ssa_name_symbol (value, comp);
577 complex_ssa_name_components[ssa_name_index] = value;
578 return NULL;
581 /* Finally, we need to stabilize the result by installing the value into
582 a new ssa name. */
583 else
584 comp = get_component_ssa_name (ssa_name, imag_p);
586 /* Do all the work to assign VALUE to COMP. */
587 list = NULL;
588 value = force_gimple_operand (value, &list, false, NULL);
589 last = gimple_build_assign (comp, value);
590 gimple_seq_add_stmt (&list, last);
591 gcc_assert (SSA_NAME_DEF_STMT (comp) == last);
593 return list;
596 /* Extract the real or imaginary part of a complex variable or constant.
597 Make sure that it's a proper gimple_val and gimplify it if not.
598 Emit any new code before gsi. */
600 static tree
601 extract_component (gimple_stmt_iterator *gsi, tree t, bool imagpart_p,
602 bool gimple_p, bool phiarg_p = false)
604 switch (TREE_CODE (t))
606 case COMPLEX_CST:
607 return imagpart_p ? TREE_IMAGPART (t) : TREE_REALPART (t);
609 case COMPLEX_EXPR:
610 gcc_unreachable ();
612 case BIT_FIELD_REF:
614 tree inner_type = TREE_TYPE (TREE_TYPE (t));
615 t = unshare_expr (t);
616 TREE_TYPE (t) = inner_type;
617 TREE_OPERAND (t, 1) = TYPE_SIZE (inner_type);
618 if (imagpart_p)
619 TREE_OPERAND (t, 2) = size_binop (PLUS_EXPR, TREE_OPERAND (t, 2),
620 TYPE_SIZE (inner_type));
621 if (gimple_p)
622 t = force_gimple_operand_gsi (gsi, t, true, NULL, true,
623 GSI_SAME_STMT);
624 return t;
627 case VAR_DECL:
628 case RESULT_DECL:
629 case PARM_DECL:
630 case COMPONENT_REF:
631 case ARRAY_REF:
632 case VIEW_CONVERT_EXPR:
633 case MEM_REF:
635 tree inner_type = TREE_TYPE (TREE_TYPE (t));
637 t = build1 ((imagpart_p ? IMAGPART_EXPR : REALPART_EXPR),
638 inner_type, unshare_expr (t));
640 if (gimple_p)
641 t = force_gimple_operand_gsi (gsi, t, true, NULL, true,
642 GSI_SAME_STMT);
644 return t;
647 case SSA_NAME:
648 t = get_component_ssa_name (t, imagpart_p);
649 if (TREE_CODE (t) == SSA_NAME && SSA_NAME_DEF_STMT (t) == NULL)
650 gcc_assert (phiarg_p);
651 return t;
653 default:
654 gcc_unreachable ();
658 /* Update the complex components of the ssa name on the lhs of STMT. */
660 static void
661 update_complex_components (gimple_stmt_iterator *gsi, gimple *stmt, tree r,
662 tree i)
664 tree lhs;
665 gimple_seq list;
667 lhs = gimple_get_lhs (stmt);
669 list = set_component_ssa_name (lhs, false, r);
670 if (list)
671 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
673 list = set_component_ssa_name (lhs, true, i);
674 if (list)
675 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
678 static void
679 update_complex_components_on_edge (edge e, tree lhs, tree r, tree i)
681 gimple_seq list;
683 list = set_component_ssa_name (lhs, false, r);
684 if (list)
685 gsi_insert_seq_on_edge (e, list);
687 list = set_component_ssa_name (lhs, true, i);
688 if (list)
689 gsi_insert_seq_on_edge (e, list);
693 /* Update an assignment to a complex variable in place. */
695 static void
696 update_complex_assignment (gimple_stmt_iterator *gsi, tree r, tree i)
698 gimple *stmt;
700 gimple_assign_set_rhs_with_ops (gsi, COMPLEX_EXPR, r, i);
701 stmt = gsi_stmt (*gsi);
702 update_stmt (stmt);
703 if (maybe_clean_eh_stmt (stmt))
704 gimple_purge_dead_eh_edges (gimple_bb (stmt));
706 update_complex_components (gsi, gsi_stmt (*gsi), r, i);
710 /* Generate code at the entry point of the function to initialize the
711 component variables for a complex parameter. */
713 static void
714 update_parameter_components (void)
716 edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
717 tree parm;
719 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
721 tree type = TREE_TYPE (parm);
722 tree ssa_name, r, i;
724 if (TREE_CODE (type) != COMPLEX_TYPE || !is_gimple_reg (parm))
725 continue;
727 type = TREE_TYPE (type);
728 ssa_name = ssa_default_def (cfun, parm);
729 if (!ssa_name)
730 continue;
732 r = build1 (REALPART_EXPR, type, ssa_name);
733 i = build1 (IMAGPART_EXPR, type, ssa_name);
734 update_complex_components_on_edge (entry_edge, ssa_name, r, i);
738 /* Generate code to set the component variables of a complex variable
739 to match the PHI statements in block BB. */
741 static void
742 update_phi_components (basic_block bb)
744 gphi_iterator gsi;
746 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
748 gphi *phi = gsi.phi ();
750 if (is_complex_reg (gimple_phi_result (phi)))
752 gphi *p[2] = { NULL, NULL };
753 unsigned int i, j, n;
754 bool revisit_phi = false;
756 for (j = 0; j < 2; j++)
758 tree l = get_component_ssa_name (gimple_phi_result (phi), j > 0);
759 if (TREE_CODE (l) == SSA_NAME)
760 p[j] = create_phi_node (l, bb);
763 for (i = 0, n = gimple_phi_num_args (phi); i < n; ++i)
765 tree comp, arg = gimple_phi_arg_def (phi, i);
766 for (j = 0; j < 2; j++)
767 if (p[j])
769 comp = extract_component (NULL, arg, j > 0, false, true);
770 if (TREE_CODE (comp) == SSA_NAME
771 && SSA_NAME_DEF_STMT (comp) == NULL)
773 /* For the benefit of any gimple simplification during
774 this pass that might walk SSA_NAME def stmts,
775 don't add SSA_NAMEs without definitions into the
776 PHI arguments, but put a decl in there instead
777 temporarily, and revisit this PHI later on. */
778 if (SSA_NAME_VAR (comp))
779 comp = SSA_NAME_VAR (comp);
780 else
781 comp = create_tmp_reg (TREE_TYPE (comp),
782 get_name (comp));
783 revisit_phi = true;
785 SET_PHI_ARG_DEF (p[j], i, comp);
789 if (revisit_phi)
791 phis_to_revisit.safe_push (phi);
792 phis_to_revisit.safe_push (p[0]);
793 phis_to_revisit.safe_push (p[1]);
799 /* Expand a complex move to scalars. */
801 static void
802 expand_complex_move (gimple_stmt_iterator *gsi, tree type)
804 tree inner_type = TREE_TYPE (type);
805 tree r, i, lhs, rhs;
806 gimple *stmt = gsi_stmt (*gsi);
808 if (is_gimple_assign (stmt))
810 lhs = gimple_assign_lhs (stmt);
811 if (gimple_num_ops (stmt) == 2)
812 rhs = gimple_assign_rhs1 (stmt);
813 else
814 rhs = NULL_TREE;
816 else if (is_gimple_call (stmt))
818 lhs = gimple_call_lhs (stmt);
819 rhs = NULL_TREE;
821 else
822 gcc_unreachable ();
824 if (TREE_CODE (lhs) == SSA_NAME)
826 if (is_ctrl_altering_stmt (stmt))
828 edge e;
830 /* The value is not assigned on the exception edges, so we need not
831 concern ourselves there. We do need to update on the fallthru
832 edge. Find it. */
833 e = find_fallthru_edge (gsi_bb (*gsi)->succs);
834 if (!e)
835 gcc_unreachable ();
837 r = build1 (REALPART_EXPR, inner_type, lhs);
838 i = build1 (IMAGPART_EXPR, inner_type, lhs);
839 update_complex_components_on_edge (e, lhs, r, i);
841 else if (is_gimple_call (stmt)
842 || gimple_has_side_effects (stmt)
843 || gimple_assign_rhs_code (stmt) == PAREN_EXPR)
845 r = build1 (REALPART_EXPR, inner_type, lhs);
846 i = build1 (IMAGPART_EXPR, inner_type, lhs);
847 update_complex_components (gsi, stmt, r, i);
849 else
851 if (gimple_assign_rhs_code (stmt) != COMPLEX_EXPR)
853 r = extract_component (gsi, rhs, 0, true);
854 i = extract_component (gsi, rhs, 1, true);
856 else
858 r = gimple_assign_rhs1 (stmt);
859 i = gimple_assign_rhs2 (stmt);
861 update_complex_assignment (gsi, r, i);
864 else if (rhs && TREE_CODE (rhs) == SSA_NAME && !TREE_SIDE_EFFECTS (lhs))
866 tree x;
867 gimple *t;
868 location_t loc;
870 loc = gimple_location (stmt);
871 r = extract_component (gsi, rhs, 0, false);
872 i = extract_component (gsi, rhs, 1, false);
874 x = build1 (REALPART_EXPR, inner_type, unshare_expr (lhs));
875 t = gimple_build_assign (x, r);
876 gimple_set_location (t, loc);
877 gsi_insert_before (gsi, t, GSI_SAME_STMT);
879 if (stmt == gsi_stmt (*gsi))
881 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
882 gimple_assign_set_lhs (stmt, x);
883 gimple_assign_set_rhs1 (stmt, i);
885 else
887 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
888 t = gimple_build_assign (x, i);
889 gimple_set_location (t, loc);
890 gsi_insert_before (gsi, t, GSI_SAME_STMT);
892 stmt = gsi_stmt (*gsi);
893 gcc_assert (gimple_code (stmt) == GIMPLE_RETURN);
894 gimple_return_set_retval (as_a <greturn *> (stmt), lhs);
897 update_stmt (stmt);
901 /* Expand complex addition to scalars:
902 a + b = (ar + br) + i(ai + bi)
903 a - b = (ar - br) + i(ai + bi)
906 static void
907 expand_complex_addition (gimple_stmt_iterator *gsi, tree inner_type,
908 tree ar, tree ai, tree br, tree bi,
909 enum tree_code code,
910 complex_lattice_t al, complex_lattice_t bl)
912 tree rr, ri;
914 switch (PAIR (al, bl))
916 case PAIR (ONLY_REAL, ONLY_REAL):
917 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
918 ri = ai;
919 break;
921 case PAIR (ONLY_REAL, ONLY_IMAG):
922 rr = ar;
923 if (code == MINUS_EXPR)
924 ri = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, bi);
925 else
926 ri = bi;
927 break;
929 case PAIR (ONLY_IMAG, ONLY_REAL):
930 if (code == MINUS_EXPR)
931 rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ar, br);
932 else
933 rr = br;
934 ri = ai;
935 break;
937 case PAIR (ONLY_IMAG, ONLY_IMAG):
938 rr = ar;
939 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
940 break;
942 case PAIR (VARYING, ONLY_REAL):
943 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
944 ri = ai;
945 break;
947 case PAIR (VARYING, ONLY_IMAG):
948 rr = ar;
949 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
950 break;
952 case PAIR (ONLY_REAL, VARYING):
953 if (code == MINUS_EXPR)
954 goto general;
955 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
956 ri = bi;
957 break;
959 case PAIR (ONLY_IMAG, VARYING):
960 if (code == MINUS_EXPR)
961 goto general;
962 rr = br;
963 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
964 break;
966 case PAIR (VARYING, VARYING):
967 general:
968 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
969 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
970 break;
972 default:
973 gcc_unreachable ();
976 update_complex_assignment (gsi, rr, ri);
979 /* Expand a complex multiplication or division to a libcall to the c99
980 compliant routines. TYPE is the complex type of the operation.
981 If INPLACE_P replace the statement at GSI with
982 the libcall and return NULL_TREE. Else insert the call, assign its
983 result to an output variable and return that variable. If INPLACE_P
984 is true then the statement being replaced should be an assignment
985 statement. */
987 static tree
988 expand_complex_libcall (gimple_stmt_iterator *gsi, tree type, tree ar, tree ai,
989 tree br, tree bi, enum tree_code code, bool inplace_p)
991 machine_mode mode;
992 enum built_in_function bcode;
993 tree fn, lhs;
994 gcall *stmt;
996 mode = TYPE_MODE (type);
997 gcc_assert (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT);
999 if (code == MULT_EXPR)
1000 bcode = ((enum built_in_function)
1001 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
1002 else if (code == RDIV_EXPR)
1003 bcode = ((enum built_in_function)
1004 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
1005 else
1006 gcc_unreachable ();
1007 fn = builtin_decl_explicit (bcode);
1008 stmt = gimple_build_call (fn, 4, ar, ai, br, bi);
1010 if (inplace_p)
1012 gimple *old_stmt = gsi_stmt (*gsi);
1013 gimple_call_set_nothrow (stmt, !stmt_could_throw_p (old_stmt));
1014 lhs = gimple_assign_lhs (old_stmt);
1015 gimple_call_set_lhs (stmt, lhs);
1016 gsi_replace (gsi, stmt, true);
1018 type = TREE_TYPE (type);
1019 if (stmt_can_throw_internal (stmt))
1021 edge_iterator ei;
1022 edge e;
1023 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
1024 if (!(e->flags & EDGE_EH))
1025 break;
1026 basic_block bb = split_edge (e);
1027 gimple_stmt_iterator gsi2 = gsi_start_bb (bb);
1028 update_complex_components (&gsi2, stmt,
1029 build1 (REALPART_EXPR, type, lhs),
1030 build1 (IMAGPART_EXPR, type, lhs));
1031 return NULL_TREE;
1033 else
1034 update_complex_components (gsi, stmt,
1035 build1 (REALPART_EXPR, type, lhs),
1036 build1 (IMAGPART_EXPR, type, lhs));
1037 SSA_NAME_DEF_STMT (lhs) = stmt;
1038 return NULL_TREE;
1041 gimple_call_set_nothrow (stmt, true);
1042 lhs = make_ssa_name (type);
1043 gimple_call_set_lhs (stmt, lhs);
1044 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1046 return lhs;
1049 /* Perform a complex multiplication on two complex constants A, B represented
1050 by AR, AI, BR, BI of type TYPE.
1051 The operation we want is: a * b = (ar*br - ai*bi) + i(ar*bi + br*ai).
1052 Insert the GIMPLE statements into GSI. Store the real and imaginary
1053 components of the result into RR and RI. */
1055 static void
1056 expand_complex_multiplication_components (gimple_stmt_iterator *gsi,
1057 tree type, tree ar, tree ai,
1058 tree br, tree bi,
1059 tree *rr, tree *ri)
1061 tree t1, t2, t3, t4;
1063 t1 = gimplify_build2 (gsi, MULT_EXPR, type, ar, br);
1064 t2 = gimplify_build2 (gsi, MULT_EXPR, type, ai, bi);
1065 t3 = gimplify_build2 (gsi, MULT_EXPR, type, ar, bi);
1067 /* Avoid expanding redundant multiplication for the common
1068 case of squaring a complex number. */
1069 if (ar == br && ai == bi)
1070 t4 = t3;
1071 else
1072 t4 = gimplify_build2 (gsi, MULT_EXPR, type, ai, br);
1074 *rr = gimplify_build2 (gsi, MINUS_EXPR, type, t1, t2);
1075 *ri = gimplify_build2 (gsi, PLUS_EXPR, type, t3, t4);
1078 /* Expand complex multiplication to scalars:
1079 a * b = (ar*br - ai*bi) + i(ar*bi + br*ai)
1082 static void
1083 expand_complex_multiplication (gimple_stmt_iterator *gsi, tree type,
1084 tree ar, tree ai, tree br, tree bi,
1085 complex_lattice_t al, complex_lattice_t bl)
1087 tree rr, ri;
1088 tree inner_type = TREE_TYPE (type);
1090 if (al < bl)
1092 complex_lattice_t tl;
1093 rr = ar, ar = br, br = rr;
1094 ri = ai, ai = bi, bi = ri;
1095 tl = al, al = bl, bl = tl;
1098 switch (PAIR (al, bl))
1100 case PAIR (ONLY_REAL, ONLY_REAL):
1101 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1102 ri = ai;
1103 break;
1105 case PAIR (ONLY_IMAG, ONLY_REAL):
1106 rr = ar;
1107 if (TREE_CODE (ai) == REAL_CST
1108 && real_identical (&TREE_REAL_CST (ai), &dconst1))
1109 ri = br;
1110 else
1111 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1112 break;
1114 case PAIR (ONLY_IMAG, ONLY_IMAG):
1115 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1116 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
1117 ri = ar;
1118 break;
1120 case PAIR (VARYING, ONLY_REAL):
1121 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1122 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1123 break;
1125 case PAIR (VARYING, ONLY_IMAG):
1126 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1127 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
1128 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1129 break;
1131 case PAIR (VARYING, VARYING):
1132 if (flag_complex_method == 2 && SCALAR_FLOAT_TYPE_P (inner_type))
1134 /* If optimizing for size or not at all just do a libcall.
1135 Same if there are exception-handling edges or signaling NaNs. */
1136 if (optimize == 0 || optimize_bb_for_size_p (gsi_bb (*gsi))
1137 || stmt_can_throw_internal (gsi_stmt (*gsi))
1138 || flag_signaling_nans)
1140 expand_complex_libcall (gsi, type, ar, ai, br, bi,
1141 MULT_EXPR, true);
1142 return;
1145 /* Else, expand x = a * b into
1146 x = (ar*br - ai*bi) + i(ar*bi + br*ai);
1147 if (isunordered (__real__ x, __imag__ x))
1148 x = __muldc3 (a, b); */
1150 tree tmpr, tmpi;
1151 expand_complex_multiplication_components (gsi, inner_type, ar, ai,
1152 br, bi, &tmpr, &tmpi);
1154 gimple *check
1155 = gimple_build_cond (UNORDERED_EXPR, tmpr, tmpi,
1156 NULL_TREE, NULL_TREE);
1158 basic_block orig_bb = gsi_bb (*gsi);
1159 /* We want to keep track of the original complex multiplication
1160 statement as we're going to modify it later in
1161 update_complex_assignment. Make sure that insert_cond_bb leaves
1162 that statement in the join block. */
1163 gsi_prev (gsi);
1164 basic_block cond_bb
1165 = insert_cond_bb (gsi_bb (*gsi), gsi_stmt (*gsi), check,
1166 profile_probability::very_unlikely ());
1169 gimple_stmt_iterator cond_bb_gsi = gsi_last_bb (cond_bb);
1170 gsi_insert_after (&cond_bb_gsi, gimple_build_nop (), GSI_NEW_STMT);
1172 tree libcall_res
1173 = expand_complex_libcall (&cond_bb_gsi, type, ar, ai, br,
1174 bi, MULT_EXPR, false);
1175 tree cond_real = gimplify_build1 (&cond_bb_gsi, REALPART_EXPR,
1176 inner_type, libcall_res);
1177 tree cond_imag = gimplify_build1 (&cond_bb_gsi, IMAGPART_EXPR,
1178 inner_type, libcall_res);
1180 basic_block join_bb = single_succ_edge (cond_bb)->dest;
1181 *gsi = gsi_start_nondebug_after_labels_bb (join_bb);
1183 /* We have a conditional block with some assignments in cond_bb.
1184 Wire up the PHIs to wrap up. */
1185 rr = make_ssa_name (inner_type);
1186 ri = make_ssa_name (inner_type);
1187 edge cond_to_join = single_succ_edge (cond_bb);
1188 edge orig_to_join = find_edge (orig_bb, join_bb);
1190 gphi *real_phi = create_phi_node (rr, gsi_bb (*gsi));
1191 add_phi_arg (real_phi, cond_real, cond_to_join,
1192 UNKNOWN_LOCATION);
1193 add_phi_arg (real_phi, tmpr, orig_to_join, UNKNOWN_LOCATION);
1195 gphi *imag_phi = create_phi_node (ri, gsi_bb (*gsi));
1196 add_phi_arg (imag_phi, cond_imag, cond_to_join,
1197 UNKNOWN_LOCATION);
1198 add_phi_arg (imag_phi, tmpi, orig_to_join, UNKNOWN_LOCATION);
1200 else
1201 /* If we are not worrying about NaNs expand to
1202 (ar*br - ai*bi) + i(ar*bi + br*ai) directly. */
1203 expand_complex_multiplication_components (gsi, inner_type, ar, ai,
1204 br, bi, &rr, &ri);
1205 break;
1207 default:
1208 gcc_unreachable ();
1211 update_complex_assignment (gsi, rr, ri);
1214 /* Keep this algorithm in sync with fold-const.c:const_binop().
1216 Expand complex division to scalars, straightforward algorithm.
1217 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1218 t = br*br + bi*bi
1221 static void
1222 expand_complex_div_straight (gimple_stmt_iterator *gsi, tree inner_type,
1223 tree ar, tree ai, tree br, tree bi,
1224 enum tree_code code)
1226 tree rr, ri, div, t1, t2, t3;
1228 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, br);
1229 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, bi);
1230 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
1232 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1233 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1234 t3 = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
1235 rr = gimplify_build2 (gsi, code, inner_type, t3, div);
1237 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1238 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1239 t3 = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
1240 ri = gimplify_build2 (gsi, code, inner_type, t3, div);
1242 update_complex_assignment (gsi, rr, ri);
1245 /* Keep this algorithm in sync with fold-const.c:const_binop().
1247 Expand complex division to scalars, modified algorithm to minimize
1248 overflow with wide input ranges. */
1250 static void
1251 expand_complex_div_wide (gimple_stmt_iterator *gsi, tree inner_type,
1252 tree ar, tree ai, tree br, tree bi,
1253 enum tree_code code)
1255 tree rr, ri, ratio, div, t1, t2, tr, ti, compare;
1256 basic_block bb_cond, bb_true, bb_false, bb_join;
1257 gimple *stmt;
1259 /* Examine |br| < |bi|, and branch. */
1260 t1 = gimplify_build1 (gsi, ABS_EXPR, inner_type, br);
1261 t2 = gimplify_build1 (gsi, ABS_EXPR, inner_type, bi);
1262 compare = fold_build2_loc (gimple_location (gsi_stmt (*gsi)),
1263 LT_EXPR, boolean_type_node, t1, t2);
1264 STRIP_NOPS (compare);
1266 bb_cond = bb_true = bb_false = bb_join = NULL;
1267 rr = ri = tr = ti = NULL;
1268 if (TREE_CODE (compare) != INTEGER_CST)
1270 edge e;
1271 gimple *stmt;
1272 tree cond, tmp;
1274 tmp = make_ssa_name (boolean_type_node);
1275 stmt = gimple_build_assign (tmp, compare);
1276 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1278 cond = fold_build2_loc (gimple_location (stmt),
1279 EQ_EXPR, boolean_type_node, tmp, boolean_true_node);
1280 stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
1281 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1283 /* Split the original block, and create the TRUE and FALSE blocks. */
1284 e = split_block (gsi_bb (*gsi), stmt);
1285 bb_cond = e->src;
1286 bb_join = e->dest;
1287 bb_true = create_empty_bb (bb_cond);
1288 bb_false = create_empty_bb (bb_true);
1289 bb_true->count = bb_false->count
1290 = bb_cond->count.apply_probability (profile_probability::even ());
1292 /* Wire the blocks together. */
1293 e->flags = EDGE_TRUE_VALUE;
1294 /* TODO: With value profile we could add an historgram to determine real
1295 branch outcome. */
1296 e->probability = profile_probability::even ();
1297 redirect_edge_succ (e, bb_true);
1298 edge e2 = make_edge (bb_cond, bb_false, EDGE_FALSE_VALUE);
1299 e2->probability = profile_probability::even ();
1300 make_single_succ_edge (bb_true, bb_join, EDGE_FALLTHRU);
1301 make_single_succ_edge (bb_false, bb_join, EDGE_FALLTHRU);
1302 add_bb_to_loop (bb_true, bb_cond->loop_father);
1303 add_bb_to_loop (bb_false, bb_cond->loop_father);
1305 /* Update dominance info. Note that bb_join's data was
1306 updated by split_block. */
1307 if (dom_info_available_p (CDI_DOMINATORS))
1309 set_immediate_dominator (CDI_DOMINATORS, bb_true, bb_cond);
1310 set_immediate_dominator (CDI_DOMINATORS, bb_false, bb_cond);
1313 rr = create_tmp_reg (inner_type);
1314 ri = create_tmp_reg (inner_type);
1317 /* In the TRUE branch, we compute
1318 ratio = br/bi;
1319 div = (br * ratio) + bi;
1320 tr = (ar * ratio) + ai;
1321 ti = (ai * ratio) - ar;
1322 tr = tr / div;
1323 ti = ti / div; */
1324 if (bb_true || integer_nonzerop (compare))
1326 if (bb_true)
1328 *gsi = gsi_last_bb (bb_true);
1329 gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
1332 ratio = gimplify_build2 (gsi, code, inner_type, br, bi);
1334 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, ratio);
1335 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, bi);
1337 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1338 tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ai);
1340 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1341 ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, ar);
1343 tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1344 ti = gimplify_build2 (gsi, code, inner_type, ti, div);
1346 if (bb_true)
1348 stmt = gimple_build_assign (rr, tr);
1349 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1350 stmt = gimple_build_assign (ri, ti);
1351 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1352 gsi_remove (gsi, true);
1356 /* In the FALSE branch, we compute
1357 ratio = d/c;
1358 divisor = (d * ratio) + c;
1359 tr = (b * ratio) + a;
1360 ti = b - (a * ratio);
1361 tr = tr / div;
1362 ti = ti / div; */
1363 if (bb_false || integer_zerop (compare))
1365 if (bb_false)
1367 *gsi = gsi_last_bb (bb_false);
1368 gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
1371 ratio = gimplify_build2 (gsi, code, inner_type, bi, br);
1373 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, ratio);
1374 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, br);
1376 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1377 tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ar);
1379 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1380 ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, t1);
1382 tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1383 ti = gimplify_build2 (gsi, code, inner_type, ti, div);
1385 if (bb_false)
1387 stmt = gimple_build_assign (rr, tr);
1388 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1389 stmt = gimple_build_assign (ri, ti);
1390 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1391 gsi_remove (gsi, true);
1395 if (bb_join)
1396 *gsi = gsi_start_bb (bb_join);
1397 else
1398 rr = tr, ri = ti;
1400 update_complex_assignment (gsi, rr, ri);
1403 /* Expand complex division to scalars. */
1405 static void
1406 expand_complex_division (gimple_stmt_iterator *gsi, tree type,
1407 tree ar, tree ai, tree br, tree bi,
1408 enum tree_code code,
1409 complex_lattice_t al, complex_lattice_t bl)
1411 tree rr, ri;
1413 tree inner_type = TREE_TYPE (type);
1414 switch (PAIR (al, bl))
1416 case PAIR (ONLY_REAL, ONLY_REAL):
1417 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
1418 ri = ai;
1419 break;
1421 case PAIR (ONLY_REAL, ONLY_IMAG):
1422 rr = ai;
1423 ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1424 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
1425 break;
1427 case PAIR (ONLY_IMAG, ONLY_REAL):
1428 rr = ar;
1429 ri = gimplify_build2 (gsi, code, inner_type, ai, br);
1430 break;
1432 case PAIR (ONLY_IMAG, ONLY_IMAG):
1433 rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
1434 ri = ar;
1435 break;
1437 case PAIR (VARYING, ONLY_REAL):
1438 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
1439 ri = gimplify_build2 (gsi, code, inner_type, ai, br);
1440 break;
1442 case PAIR (VARYING, ONLY_IMAG):
1443 rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
1444 ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1445 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
1446 break;
1448 case PAIR (ONLY_REAL, VARYING):
1449 case PAIR (ONLY_IMAG, VARYING):
1450 case PAIR (VARYING, VARYING):
1451 switch (flag_complex_method)
1453 case 0:
1454 /* straightforward implementation of complex divide acceptable. */
1455 expand_complex_div_straight (gsi, inner_type, ar, ai, br, bi, code);
1456 break;
1458 case 2:
1459 if (SCALAR_FLOAT_TYPE_P (inner_type))
1461 expand_complex_libcall (gsi, type, ar, ai, br, bi, code, true);
1462 break;
1464 /* FALLTHRU */
1466 case 1:
1467 /* wide ranges of inputs must work for complex divide. */
1468 expand_complex_div_wide (gsi, inner_type, ar, ai, br, bi, code);
1469 break;
1471 default:
1472 gcc_unreachable ();
1474 return;
1476 default:
1477 gcc_unreachable ();
1480 update_complex_assignment (gsi, rr, ri);
1483 /* Expand complex negation to scalars:
1484 -a = (-ar) + i(-ai)
1487 static void
1488 expand_complex_negation (gimple_stmt_iterator *gsi, tree inner_type,
1489 tree ar, tree ai)
1491 tree rr, ri;
1493 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ar);
1494 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
1496 update_complex_assignment (gsi, rr, ri);
1499 /* Expand complex conjugate to scalars:
1500 ~a = (ar) + i(-ai)
1503 static void
1504 expand_complex_conjugate (gimple_stmt_iterator *gsi, tree inner_type,
1505 tree ar, tree ai)
1507 tree ri;
1509 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
1511 update_complex_assignment (gsi, ar, ri);
1514 /* Expand complex comparison (EQ or NE only). */
1516 static void
1517 expand_complex_comparison (gimple_stmt_iterator *gsi, tree ar, tree ai,
1518 tree br, tree bi, enum tree_code code)
1520 tree cr, ci, cc, type;
1521 gimple *stmt;
1523 cr = gimplify_build2 (gsi, code, boolean_type_node, ar, br);
1524 ci = gimplify_build2 (gsi, code, boolean_type_node, ai, bi);
1525 cc = gimplify_build2 (gsi,
1526 (code == EQ_EXPR ? TRUTH_AND_EXPR : TRUTH_OR_EXPR),
1527 boolean_type_node, cr, ci);
1529 stmt = gsi_stmt (*gsi);
1531 switch (gimple_code (stmt))
1533 case GIMPLE_RETURN:
1535 greturn *return_stmt = as_a <greturn *> (stmt);
1536 type = TREE_TYPE (gimple_return_retval (return_stmt));
1537 gimple_return_set_retval (return_stmt, fold_convert (type, cc));
1539 break;
1541 case GIMPLE_ASSIGN:
1542 type = TREE_TYPE (gimple_assign_lhs (stmt));
1543 gimple_assign_set_rhs_from_tree (gsi, fold_convert (type, cc));
1544 stmt = gsi_stmt (*gsi);
1545 break;
1547 case GIMPLE_COND:
1549 gcond *cond_stmt = as_a <gcond *> (stmt);
1550 gimple_cond_set_code (cond_stmt, EQ_EXPR);
1551 gimple_cond_set_lhs (cond_stmt, cc);
1552 gimple_cond_set_rhs (cond_stmt, boolean_true_node);
1554 break;
1556 default:
1557 gcc_unreachable ();
1560 update_stmt (stmt);
1563 /* Expand inline asm that sets some complex SSA_NAMEs. */
1565 static void
1566 expand_complex_asm (gimple_stmt_iterator *gsi)
1568 gasm *stmt = as_a <gasm *> (gsi_stmt (*gsi));
1569 unsigned int i;
1571 for (i = 0; i < gimple_asm_noutputs (stmt); ++i)
1573 tree link = gimple_asm_output_op (stmt, i);
1574 tree op = TREE_VALUE (link);
1575 if (TREE_CODE (op) == SSA_NAME
1576 && TREE_CODE (TREE_TYPE (op)) == COMPLEX_TYPE)
1578 tree type = TREE_TYPE (op);
1579 tree inner_type = TREE_TYPE (type);
1580 tree r = build1 (REALPART_EXPR, inner_type, op);
1581 tree i = build1 (IMAGPART_EXPR, inner_type, op);
1582 gimple_seq list = set_component_ssa_name (op, false, r);
1584 if (list)
1585 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
1587 list = set_component_ssa_name (op, true, i);
1588 if (list)
1589 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
1594 /* Process one statement. If we identify a complex operation, expand it. */
1596 static void
1597 expand_complex_operations_1 (gimple_stmt_iterator *gsi)
1599 gimple *stmt = gsi_stmt (*gsi);
1600 tree type, inner_type, lhs;
1601 tree ac, ar, ai, bc, br, bi;
1602 complex_lattice_t al, bl;
1603 enum tree_code code;
1605 if (gimple_code (stmt) == GIMPLE_ASM)
1607 expand_complex_asm (gsi);
1608 return;
1611 lhs = gimple_get_lhs (stmt);
1612 if (!lhs && gimple_code (stmt) != GIMPLE_COND)
1613 return;
1615 type = TREE_TYPE (gimple_op (stmt, 0));
1616 code = gimple_expr_code (stmt);
1618 /* Initial filter for operations we handle. */
1619 switch (code)
1621 case PLUS_EXPR:
1622 case MINUS_EXPR:
1623 case MULT_EXPR:
1624 case TRUNC_DIV_EXPR:
1625 case CEIL_DIV_EXPR:
1626 case FLOOR_DIV_EXPR:
1627 case ROUND_DIV_EXPR:
1628 case RDIV_EXPR:
1629 case NEGATE_EXPR:
1630 case CONJ_EXPR:
1631 if (TREE_CODE (type) != COMPLEX_TYPE)
1632 return;
1633 inner_type = TREE_TYPE (type);
1634 break;
1636 case EQ_EXPR:
1637 case NE_EXPR:
1638 /* Note, both GIMPLE_ASSIGN and GIMPLE_COND may have an EQ_EXPR
1639 subcode, so we need to access the operands using gimple_op. */
1640 inner_type = TREE_TYPE (gimple_op (stmt, 1));
1641 if (TREE_CODE (inner_type) != COMPLEX_TYPE)
1642 return;
1643 break;
1645 default:
1647 tree rhs;
1649 /* GIMPLE_COND may also fallthru here, but we do not need to
1650 do anything with it. */
1651 if (gimple_code (stmt) == GIMPLE_COND)
1652 return;
1654 if (TREE_CODE (type) == COMPLEX_TYPE)
1655 expand_complex_move (gsi, type);
1656 else if (is_gimple_assign (stmt)
1657 && (gimple_assign_rhs_code (stmt) == REALPART_EXPR
1658 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
1659 && TREE_CODE (lhs) == SSA_NAME)
1661 rhs = gimple_assign_rhs1 (stmt);
1662 rhs = extract_component (gsi, TREE_OPERAND (rhs, 0),
1663 gimple_assign_rhs_code (stmt)
1664 == IMAGPART_EXPR,
1665 false);
1666 gimple_assign_set_rhs_from_tree (gsi, rhs);
1667 stmt = gsi_stmt (*gsi);
1668 update_stmt (stmt);
1671 return;
1674 /* Extract the components of the two complex values. Make sure and
1675 handle the common case of the same value used twice specially. */
1676 if (is_gimple_assign (stmt))
1678 ac = gimple_assign_rhs1 (stmt);
1679 bc = (gimple_num_ops (stmt) > 2) ? gimple_assign_rhs2 (stmt) : NULL;
1681 /* GIMPLE_CALL can not get here. */
1682 else
1684 ac = gimple_cond_lhs (stmt);
1685 bc = gimple_cond_rhs (stmt);
1688 ar = extract_component (gsi, ac, false, true);
1689 ai = extract_component (gsi, ac, true, true);
1691 if (ac == bc)
1692 br = ar, bi = ai;
1693 else if (bc)
1695 br = extract_component (gsi, bc, 0, true);
1696 bi = extract_component (gsi, bc, 1, true);
1698 else
1699 br = bi = NULL_TREE;
1701 al = find_lattice_value (ac);
1702 if (al == UNINITIALIZED)
1703 al = VARYING;
1705 if (TREE_CODE_CLASS (code) == tcc_unary)
1706 bl = UNINITIALIZED;
1707 else if (ac == bc)
1708 bl = al;
1709 else
1711 bl = find_lattice_value (bc);
1712 if (bl == UNINITIALIZED)
1713 bl = VARYING;
1716 switch (code)
1718 case PLUS_EXPR:
1719 case MINUS_EXPR:
1720 expand_complex_addition (gsi, inner_type, ar, ai, br, bi, code, al, bl);
1721 break;
1723 case MULT_EXPR:
1724 expand_complex_multiplication (gsi, type, ar, ai, br, bi, al, bl);
1725 break;
1727 case TRUNC_DIV_EXPR:
1728 case CEIL_DIV_EXPR:
1729 case FLOOR_DIV_EXPR:
1730 case ROUND_DIV_EXPR:
1731 case RDIV_EXPR:
1732 expand_complex_division (gsi, type, ar, ai, br, bi, code, al, bl);
1733 break;
1735 case NEGATE_EXPR:
1736 expand_complex_negation (gsi, inner_type, ar, ai);
1737 break;
1739 case CONJ_EXPR:
1740 expand_complex_conjugate (gsi, inner_type, ar, ai);
1741 break;
1743 case EQ_EXPR:
1744 case NE_EXPR:
1745 expand_complex_comparison (gsi, ar, ai, br, bi, code);
1746 break;
1748 default:
1749 gcc_unreachable ();
1754 /* Entry point for complex operation lowering during optimization. */
1756 static unsigned int
1757 tree_lower_complex (void)
1759 gimple_stmt_iterator gsi;
1760 basic_block bb;
1761 int n_bbs, i;
1762 int *rpo;
1764 if (!init_dont_simulate_again ())
1765 return 0;
1767 complex_lattice_values.create (num_ssa_names);
1768 complex_lattice_values.safe_grow_cleared (num_ssa_names);
1770 init_parameter_lattice_values ();
1771 class complex_propagate complex_propagate;
1772 complex_propagate.ssa_propagate ();
1774 complex_variable_components = new int_tree_htab_type (10);
1776 complex_ssa_name_components.create (2 * num_ssa_names);
1777 complex_ssa_name_components.safe_grow_cleared (2 * num_ssa_names);
1779 update_parameter_components ();
1781 rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
1782 n_bbs = pre_and_rev_post_order_compute (NULL, rpo, false);
1783 for (i = 0; i < n_bbs; i++)
1785 bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
1786 if (!bb)
1787 continue;
1788 update_phi_components (bb);
1789 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1790 expand_complex_operations_1 (&gsi);
1793 free (rpo);
1795 if (!phis_to_revisit.is_empty ())
1797 unsigned int n = phis_to_revisit.length ();
1798 for (unsigned int j = 0; j < n; j += 3)
1799 for (unsigned int k = 0; k < 2; k++)
1800 if (gphi *phi = phis_to_revisit[j + k + 1])
1802 unsigned int m = gimple_phi_num_args (phi);
1803 for (unsigned int l = 0; l < m; ++l)
1805 tree op = gimple_phi_arg_def (phi, l);
1806 if (TREE_CODE (op) == SSA_NAME
1807 || is_gimple_min_invariant (op))
1808 continue;
1809 tree arg = gimple_phi_arg_def (phis_to_revisit[j], l);
1810 op = extract_component (NULL, arg, k > 0, false, false);
1811 SET_PHI_ARG_DEF (phi, l, op);
1814 phis_to_revisit.release ();
1817 gsi_commit_edge_inserts ();
1819 delete complex_variable_components;
1820 complex_variable_components = NULL;
1821 complex_ssa_name_components.release ();
1822 complex_lattice_values.release ();
1823 return 0;
1826 namespace {
1828 const pass_data pass_data_lower_complex =
1830 GIMPLE_PASS, /* type */
1831 "cplxlower", /* name */
1832 OPTGROUP_NONE, /* optinfo_flags */
1833 TV_NONE, /* tv_id */
1834 PROP_ssa, /* properties_required */
1835 PROP_gimple_lcx, /* properties_provided */
1836 0, /* properties_destroyed */
1837 0, /* todo_flags_start */
1838 TODO_update_ssa, /* todo_flags_finish */
1841 class pass_lower_complex : public gimple_opt_pass
1843 public:
1844 pass_lower_complex (gcc::context *ctxt)
1845 : gimple_opt_pass (pass_data_lower_complex, ctxt)
1848 /* opt_pass methods: */
1849 opt_pass * clone () { return new pass_lower_complex (m_ctxt); }
1850 virtual unsigned int execute (function *) { return tree_lower_complex (); }
1852 }; // class pass_lower_complex
1854 } // anon namespace
1856 gimple_opt_pass *
1857 make_pass_lower_complex (gcc::context *ctxt)
1859 return new pass_lower_complex (ctxt);
1863 namespace {
1865 const pass_data pass_data_lower_complex_O0 =
1867 GIMPLE_PASS, /* type */
1868 "cplxlower0", /* name */
1869 OPTGROUP_NONE, /* optinfo_flags */
1870 TV_NONE, /* tv_id */
1871 PROP_cfg, /* properties_required */
1872 PROP_gimple_lcx, /* properties_provided */
1873 0, /* properties_destroyed */
1874 0, /* todo_flags_start */
1875 TODO_update_ssa, /* todo_flags_finish */
1878 class pass_lower_complex_O0 : public gimple_opt_pass
1880 public:
1881 pass_lower_complex_O0 (gcc::context *ctxt)
1882 : gimple_opt_pass (pass_data_lower_complex_O0, ctxt)
1885 /* opt_pass methods: */
1886 virtual bool gate (function *fun)
1888 /* With errors, normal optimization passes are not run. If we don't
1889 lower complex operations at all, rtl expansion will abort. */
1890 return !(fun->curr_properties & PROP_gimple_lcx);
1893 virtual unsigned int execute (function *) { return tree_lower_complex (); }
1895 }; // class pass_lower_complex_O0
1897 } // anon namespace
1899 gimple_opt_pass *
1900 make_pass_lower_complex_O0 (gcc::context *ctxt)
1902 return new pass_lower_complex_O0 (ctxt);