1 /* Alias analysis for GNU C
2 Copyright (C) 1997-2015 Free Software Foundation, Inc.
3 Contributed by John Carr (jfc@mit.edu).
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
29 #include "fold-const.h"
31 #include "hard-reg-set.h"
34 #include "insn-config.h"
44 #include "diagnostic-core.h"
45 #include "alloc-pool.h"
47 #include "langhooks.h"
51 #include "dominance.h"
55 #include "basic-block.h"
57 #include "tree-ssa-alias.h"
58 #include "internal-fn.h"
59 #include "gimple-expr.h"
61 #include "gimple-ssa.h"
64 /* The aliasing API provided here solves related but different problems:
66 Say there exists (in c)
80 Consider the four questions:
82 Can a store to x1 interfere with px2->y1?
83 Can a store to x1 interfere with px2->z2?
84 Can a store to x1 change the value pointed to by with py?
85 Can a store to x1 change the value pointed to by with pz?
87 The answer to these questions can be yes, yes, yes, and maybe.
89 The first two questions can be answered with a simple examination
90 of the type system. If structure X contains a field of type Y then
91 a store through a pointer to an X can overwrite any field that is
92 contained (recursively) in an X (unless we know that px1 != px2).
94 The last two questions can be solved in the same way as the first
95 two questions but this is too conservative. The observation is
96 that in some cases we can know which (if any) fields are addressed
97 and if those addresses are used in bad ways. This analysis may be
98 language specific. In C, arbitrary operations may be applied to
99 pointers. However, there is some indication that this may be too
100 conservative for some C++ types.
102 The pass ipa-type-escape does this analysis for the types whose
103 instances do not escape across the compilation boundary.
105 Historically in GCC, these two problems were combined and a single
106 data structure that was used to represent the solution to these
107 problems. We now have two similar but different data structures,
108 The data structure to solve the last two questions is similar to
109 the first, but does not contain the fields whose address are never
110 taken. For types that do escape the compilation unit, the data
111 structures will have identical information.
114 /* The alias sets assigned to MEMs assist the back-end in determining
115 which MEMs can alias which other MEMs. In general, two MEMs in
116 different alias sets cannot alias each other, with one important
117 exception. Consider something like:
119 struct S { int i; double d; };
121 a store to an `S' can alias something of either type `int' or type
122 `double'. (However, a store to an `int' cannot alias a `double'
123 and vice versa.) We indicate this via a tree structure that looks
131 (The arrows are directed and point downwards.)
132 In this situation we say the alias set for `struct S' is the
133 `superset' and that those for `int' and `double' are `subsets'.
135 To see whether two alias sets can point to the same memory, we must
136 see if either alias set is a subset of the other. We need not trace
137 past immediate descendants, however, since we propagate all
138 grandchildren up one level.
140 Alias set zero is implicitly a superset of all other alias sets.
141 However, this is no actual entry for alias set zero. It is an
142 error to attempt to explicitly construct a subset of zero. */
144 struct alias_set_hash
: int_hash
<int, INT_MIN
, INT_MIN
+ 1> {};
146 struct GTY(()) alias_set_entry_d
{
147 /* The alias set number, as stored in MEM_ALIAS_SET. */
148 alias_set_type alias_set
;
150 /* The children of the alias set. These are not just the immediate
151 children, but, in fact, all descendants. So, if we have:
153 struct T { struct S s; float f; }
155 continuing our example above, the children here will be all of
156 `int', `double', `float', and `struct S'. */
157 hash_map
<alias_set_hash
, int> *children
;
159 /* Nonzero if would have a child of zero: this effectively makes this
160 alias set the same as alias set zero. */
162 /* Nonzero if alias set corresponds to pointer type itself (i.e. not to
163 aggregate contaiing pointer.
164 This is used for a special case where we need an universal pointer type
165 compatible with all other pointer types. */
167 /* Nonzero if is_pointer or if one of childs have has_pointer set. */
170 typedef struct alias_set_entry_d
*alias_set_entry
;
172 static int rtx_equal_for_memref_p (const_rtx
, const_rtx
);
173 static int memrefs_conflict_p (int, rtx
, int, rtx
, HOST_WIDE_INT
);
174 static void record_set (rtx
, const_rtx
, void *);
175 static int base_alias_check (rtx
, rtx
, rtx
, rtx
, machine_mode
,
177 static rtx
find_base_value (rtx
);
178 static int mems_in_disjoint_alias_sets_p (const_rtx
, const_rtx
);
179 static alias_set_entry
get_alias_set_entry (alias_set_type
);
180 static tree
decl_for_component_ref (tree
);
181 static int write_dependence_p (const_rtx
,
182 const_rtx
, machine_mode
, rtx
,
185 static void memory_modified_1 (rtx
, const_rtx
, void *);
187 /* Query statistics for the different low-level disambiguators.
188 A high-level query may trigger multiple of them. */
191 unsigned long long num_alias_zero
;
192 unsigned long long num_same_alias_set
;
193 unsigned long long num_same_objects
;
194 unsigned long long num_volatile
;
195 unsigned long long num_dag
;
196 unsigned long long num_universal
;
197 unsigned long long num_disambiguated
;
201 /* Set up all info needed to perform alias analysis on memory references. */
203 /* Returns the size in bytes of the mode of X. */
204 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
206 /* Cap the number of passes we make over the insns propagating alias
207 information through set chains.
208 ??? 10 is a completely arbitrary choice. This should be based on the
209 maximum loop depth in the CFG, but we do not have this information
210 available (even if current_loops _is_ available). */
211 #define MAX_ALIAS_LOOP_PASSES 10
213 /* reg_base_value[N] gives an address to which register N is related.
214 If all sets after the first add or subtract to the current value
215 or otherwise modify it so it does not point to a different top level
216 object, reg_base_value[N] is equal to the address part of the source
219 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
220 expressions represent three types of base:
222 1. incoming arguments. There is just one ADDRESS to represent all
223 arguments, since we do not know at this level whether accesses
224 based on different arguments can alias. The ADDRESS has id 0.
226 2. stack_pointer_rtx, frame_pointer_rtx, hard_frame_pointer_rtx
227 (if distinct from frame_pointer_rtx) and arg_pointer_rtx.
228 Each of these rtxes has a separate ADDRESS associated with it,
229 each with a negative id.
231 GCC is (and is required to be) precise in which register it
232 chooses to access a particular region of stack. We can therefore
233 assume that accesses based on one of these rtxes do not alias
234 accesses based on another of these rtxes.
236 3. bases that are derived from malloc()ed memory (REG_NOALIAS).
237 Each such piece of memory has a separate ADDRESS associated
238 with it, each with an id greater than 0.
240 Accesses based on one ADDRESS do not alias accesses based on other
241 ADDRESSes. Accesses based on ADDRESSes in groups (2) and (3) do not
242 alias globals either; the ADDRESSes have Pmode to indicate this.
243 The ADDRESS in group (1) _may_ alias globals; it has VOIDmode to
246 static GTY(()) vec
<rtx
, va_gc
> *reg_base_value
;
247 static rtx
*new_reg_base_value
;
249 /* The single VOIDmode ADDRESS that represents all argument bases.
251 static GTY(()) rtx arg_base_value
;
253 /* Used to allocate unique ids to each REG_NOALIAS ADDRESS. */
254 static int unique_id
;
256 /* We preserve the copy of old array around to avoid amount of garbage
257 produced. About 8% of garbage produced were attributed to this
259 static GTY((deletable
)) vec
<rtx
, va_gc
> *old_reg_base_value
;
261 /* Values of XINT (address, 0) of Pmode ADDRESS rtxes for special
263 #define UNIQUE_BASE_VALUE_SP -1
264 #define UNIQUE_BASE_VALUE_ARGP -2
265 #define UNIQUE_BASE_VALUE_FP -3
266 #define UNIQUE_BASE_VALUE_HFP -4
268 #define static_reg_base_value \
269 (this_target_rtl->x_static_reg_base_value)
271 #define REG_BASE_VALUE(X) \
272 (REGNO (X) < vec_safe_length (reg_base_value) \
273 ? (*reg_base_value)[REGNO (X)] : 0)
275 /* Vector indexed by N giving the initial (unchanging) value known for
276 pseudo-register N. This vector is initialized in init_alias_analysis,
277 and does not change until end_alias_analysis is called. */
278 static GTY(()) vec
<rtx
, va_gc
> *reg_known_value
;
280 /* Vector recording for each reg_known_value whether it is due to a
281 REG_EQUIV note. Future passes (viz., reload) may replace the
282 pseudo with the equivalent expression and so we account for the
283 dependences that would be introduced if that happens.
285 The REG_EQUIV notes created in assign_parms may mention the arg
286 pointer, and there are explicit insns in the RTL that modify the
287 arg pointer. Thus we must ensure that such insns don't get
288 scheduled across each other because that would invalidate the
289 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
290 wrong, but solving the problem in the scheduler will likely give
291 better code, so we do it here. */
292 static sbitmap reg_known_equiv_p
;
294 /* True when scanning insns from the start of the rtl to the
295 NOTE_INSN_FUNCTION_BEG note. */
296 static bool copying_arguments
;
299 /* The splay-tree used to store the various alias set entries. */
300 static GTY (()) vec
<alias_set_entry
, va_gc
> *alias_sets
;
302 /* Build a decomposed reference object for querying the alias-oracle
303 from the MEM rtx and store it in *REF.
304 Returns false if MEM is not suitable for the alias-oracle. */
307 ao_ref_from_mem (ao_ref
*ref
, const_rtx mem
)
309 tree expr
= MEM_EXPR (mem
);
315 ao_ref_init (ref
, expr
);
317 /* Get the base of the reference and see if we have to reject or
319 base
= ao_ref_base (ref
);
320 if (base
== NULL_TREE
)
323 /* The tree oracle doesn't like bases that are neither decls
324 nor indirect references of SSA names. */
326 || (TREE_CODE (base
) == MEM_REF
327 && TREE_CODE (TREE_OPERAND (base
, 0)) == SSA_NAME
)
328 || (TREE_CODE (base
) == TARGET_MEM_REF
329 && TREE_CODE (TMR_BASE (base
)) == SSA_NAME
)))
332 /* If this is a reference based on a partitioned decl replace the
333 base with a MEM_REF of the pointer representative we
334 created during stack slot partitioning. */
335 if (TREE_CODE (base
) == VAR_DECL
336 && ! is_global_var (base
)
337 && cfun
->gimple_df
->decls_to_pointers
!= NULL
)
339 tree
*namep
= cfun
->gimple_df
->decls_to_pointers
->get (base
);
341 ref
->base
= build_simple_mem_ref (*namep
);
344 ref
->ref_alias_set
= MEM_ALIAS_SET (mem
);
346 /* If MEM_OFFSET or MEM_SIZE are unknown what we got from MEM_EXPR
347 is conservative, so trust it. */
348 if (!MEM_OFFSET_KNOWN_P (mem
)
349 || !MEM_SIZE_KNOWN_P (mem
))
352 /* If the base decl is a parameter we can have negative MEM_OFFSET in
353 case of promoted subregs on bigendian targets. Trust the MEM_EXPR
355 if (MEM_OFFSET (mem
) < 0
356 && (MEM_SIZE (mem
) + MEM_OFFSET (mem
)) * BITS_PER_UNIT
== ref
->size
)
359 /* Otherwise continue and refine size and offset we got from analyzing
360 MEM_EXPR by using MEM_SIZE and MEM_OFFSET. */
362 ref
->offset
+= MEM_OFFSET (mem
) * BITS_PER_UNIT
;
363 ref
->size
= MEM_SIZE (mem
) * BITS_PER_UNIT
;
365 /* The MEM may extend into adjacent fields, so adjust max_size if
367 if (ref
->max_size
!= -1
368 && ref
->size
> ref
->max_size
)
369 ref
->max_size
= ref
->size
;
371 /* If MEM_OFFSET and MEM_SIZE get us outside of the base object of
372 the MEM_EXPR punt. This happens for STRICT_ALIGNMENT targets a lot. */
373 if (MEM_EXPR (mem
) != get_spill_slot_decl (false)
375 || (DECL_P (ref
->base
)
376 && (DECL_SIZE (ref
->base
) == NULL_TREE
377 || TREE_CODE (DECL_SIZE (ref
->base
)) != INTEGER_CST
378 || wi::ltu_p (wi::to_offset (DECL_SIZE (ref
->base
)),
379 ref
->offset
+ ref
->size
)))))
385 /* Query the alias-oracle on whether the two memory rtx X and MEM may
386 alias. If TBAA_P is set also apply TBAA. Returns true if the
387 two rtxen may alias, false otherwise. */
390 rtx_refs_may_alias_p (const_rtx x
, const_rtx mem
, bool tbaa_p
)
394 if (!ao_ref_from_mem (&ref1
, x
)
395 || !ao_ref_from_mem (&ref2
, mem
))
398 return refs_may_alias_p_1 (&ref1
, &ref2
,
400 && MEM_ALIAS_SET (x
) != 0
401 && MEM_ALIAS_SET (mem
) != 0);
404 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
405 such an entry, or NULL otherwise. */
407 static inline alias_set_entry
408 get_alias_set_entry (alias_set_type alias_set
)
410 return (*alias_sets
)[alias_set
];
413 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
414 the two MEMs cannot alias each other. */
417 mems_in_disjoint_alias_sets_p (const_rtx mem1
, const_rtx mem2
)
419 return (flag_strict_aliasing
420 && ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1
),
421 MEM_ALIAS_SET (mem2
)));
424 /* Return true if the first alias set is a subset of the second. */
427 alias_set_subset_of (alias_set_type set1
, alias_set_type set2
)
429 alias_set_entry ase2
;
431 /* Everything is a subset of the "aliases everything" set. */
435 /* Check if set1 is a subset of set2. */
436 ase2
= get_alias_set_entry (set2
);
438 && (ase2
->has_zero_child
439 || (ase2
->children
&& ase2
->children
->get (set1
))))
442 /* As a special case we consider alias set of "void *" to be both subset
443 and superset of every alias set of a pointer. This extra symmetry does
444 not matter for alias_sets_conflict_p but it makes aliasing_component_refs_p
445 to return true on the following testcase:
448 char **ptr2=(char **)&ptr;
451 Additionally if a set contains universal pointer, we consider every pointer
452 to be a subset of it, but we do not represent this explicitely - doing so
453 would require us to update transitive closure each time we introduce new
454 pointer type. This makes aliasing_component_refs_p to return true
455 on the following testcase:
457 struct a {void *ptr;}
458 char **ptr = (char **)&a.ptr;
461 This makes void * truly universal pointer type. See pointer handling in
462 get_alias_set for more details. */
463 if (ase2
&& ase2
->has_pointer
)
465 alias_set_entry ase1
= get_alias_set_entry (set1
);
467 if (ase1
&& ase1
->is_pointer
)
469 alias_set_type voidptr_set
= TYPE_ALIAS_SET (ptr_type_node
);
470 /* If one is ptr_type_node and other is pointer, then we consider
471 them subset of each other. */
472 if (set1
== voidptr_set
|| set2
== voidptr_set
)
474 /* If SET2 contains universal pointer's alias set, then we consdier
475 every (non-universal) pointer. */
476 if (ase2
->children
&& set1
!= voidptr_set
477 && ase2
->children
->get (voidptr_set
))
484 /* Return 1 if the two specified alias sets may conflict. */
487 alias_sets_conflict_p (alias_set_type set1
, alias_set_type set2
)
489 alias_set_entry ase1
;
490 alias_set_entry ase2
;
493 if (alias_sets_must_conflict_p (set1
, set2
))
496 /* See if the first alias set is a subset of the second. */
497 ase1
= get_alias_set_entry (set1
);
499 && ase1
->children
&& ase1
->children
->get (set2
))
501 ++alias_stats
.num_dag
;
505 /* Now do the same, but with the alias sets reversed. */
506 ase2
= get_alias_set_entry (set2
);
508 && ase2
->children
&& ase2
->children
->get (set1
))
510 ++alias_stats
.num_dag
;
514 /* We want void * to be compatible with any other pointer without
515 really dropping it to alias set 0. Doing so would make it
516 compatible with all non-pointer types too.
518 This is not strictly necessary by the C/C++ language
519 standards, but avoids common type punning mistakes. In
520 addition to that, we need the existence of such universal
521 pointer to implement Fortran's C_PTR type (which is defined as
522 type compatible with all C pointers). */
523 if (ase1
&& ase2
&& ase1
->has_pointer
&& ase2
->has_pointer
)
525 alias_set_type voidptr_set
= TYPE_ALIAS_SET (ptr_type_node
);
527 /* If one of the sets corresponds to universal pointer,
528 we consider it to conflict with anything that is
529 or contains pointer. */
530 if (set1
== voidptr_set
|| set2
== voidptr_set
)
532 ++alias_stats
.num_universal
;
535 /* If one of sets is (non-universal) pointer and the other
536 contains universal pointer, we also get conflict. */
537 if (ase1
->is_pointer
&& set2
!= voidptr_set
538 && ase2
->children
&& ase2
->children
->get (voidptr_set
))
540 ++alias_stats
.num_universal
;
543 if (ase2
->is_pointer
&& set1
!= voidptr_set
544 && ase1
->children
&& ase1
->children
->get (voidptr_set
))
546 ++alias_stats
.num_universal
;
551 ++alias_stats
.num_disambiguated
;
553 /* The two alias sets are distinct and neither one is the
554 child of the other. Therefore, they cannot conflict. */
558 /* Return 1 if the two specified alias sets will always conflict. */
561 alias_sets_must_conflict_p (alias_set_type set1
, alias_set_type set2
)
563 if (set1
== 0 || set2
== 0)
565 ++alias_stats
.num_alias_zero
;
570 ++alias_stats
.num_same_alias_set
;
577 /* Return 1 if any MEM object of type T1 will always conflict (using the
578 dependency routines in this file) with any MEM object of type T2.
579 This is used when allocating temporary storage. If T1 and/or T2 are
580 NULL_TREE, it means we know nothing about the storage. */
583 objects_must_conflict_p (tree t1
, tree t2
)
585 alias_set_type set1
, set2
;
587 /* If neither has a type specified, we don't know if they'll conflict
588 because we may be using them to store objects of various types, for
589 example the argument and local variables areas of inlined functions. */
590 if (t1
== 0 && t2
== 0)
593 /* If they are the same type, they must conflict. */
596 ++alias_stats
.num_same_objects
;
599 /* Likewise if both are volatile. */
600 if (t1
!= 0 && TYPE_VOLATILE (t1
) && t2
!= 0 && TYPE_VOLATILE (t2
))
602 ++alias_stats
.num_volatile
;
606 set1
= t1
? get_alias_set (t1
) : 0;
607 set2
= t2
? get_alias_set (t2
) : 0;
609 /* We can't use alias_sets_conflict_p because we must make sure
610 that every subtype of t1 will conflict with every subtype of
611 t2 for which a pair of subobjects of these respective subtypes
612 overlaps on the stack. */
613 return alias_sets_must_conflict_p (set1
, set2
);
616 /* Return the outermost parent of component present in the chain of
617 component references handled by get_inner_reference in T with the
619 - the component is non-addressable, or
620 - the parent has alias set zero,
621 or NULL_TREE if no such parent exists. In the former cases, the alias
622 set of this parent is the alias set that must be used for T itself. */
625 component_uses_parent_alias_set_from (const_tree t
)
627 const_tree found
= NULL_TREE
;
629 while (handled_component_p (t
))
631 switch (TREE_CODE (t
))
634 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t
, 1)))
639 case ARRAY_RANGE_REF
:
640 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t
, 0))))
649 case VIEW_CONVERT_EXPR
:
650 /* Bitfields and casts are never addressable. */
658 if (get_alias_set (TREE_TYPE (TREE_OPERAND (t
, 0))) == 0)
661 t
= TREE_OPERAND (t
, 0);
665 return TREE_OPERAND (found
, 0);
671 /* Return whether the pointer-type T effective for aliasing may
672 access everything and thus the reference has to be assigned
676 ref_all_alias_ptr_type_p (const_tree t
)
678 return (TREE_CODE (TREE_TYPE (t
)) == VOID_TYPE
679 || TYPE_REF_CAN_ALIAS_ALL (t
));
682 /* Return the alias set for the memory pointed to by T, which may be
683 either a type or an expression. Return -1 if there is nothing
684 special about dereferencing T. */
686 static alias_set_type
687 get_deref_alias_set_1 (tree t
)
689 /* All we care about is the type. */
693 /* If we have an INDIRECT_REF via a void pointer, we don't
694 know anything about what that might alias. Likewise if the
695 pointer is marked that way. */
696 if (ref_all_alias_ptr_type_p (t
))
702 /* Return the alias set for the memory pointed to by T, which may be
703 either a type or an expression. */
706 get_deref_alias_set (tree t
)
708 /* If we're not doing any alias analysis, just assume everything
709 aliases everything else. */
710 if (!flag_strict_aliasing
)
713 alias_set_type set
= get_deref_alias_set_1 (t
);
715 /* Fall back to the alias-set of the pointed-to type. */
720 set
= get_alias_set (TREE_TYPE (t
));
726 /* Return the pointer-type relevant for TBAA purposes from the
727 memory reference tree *T or NULL_TREE in which case *T is
728 adjusted to point to the outermost component reference that
729 can be used for assigning an alias set. */
732 reference_alias_ptr_type_1 (tree
*t
)
736 /* Get the base object of the reference. */
738 while (handled_component_p (inner
))
740 /* If there is a VIEW_CONVERT_EXPR in the chain we cannot use
741 the type of any component references that wrap it to
742 determine the alias-set. */
743 if (TREE_CODE (inner
) == VIEW_CONVERT_EXPR
)
744 *t
= TREE_OPERAND (inner
, 0);
745 inner
= TREE_OPERAND (inner
, 0);
748 /* Handle pointer dereferences here, they can override the
750 if (INDIRECT_REF_P (inner
)
751 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner
, 0))))
752 return TREE_TYPE (TREE_OPERAND (inner
, 0));
753 else if (TREE_CODE (inner
) == TARGET_MEM_REF
)
754 return TREE_TYPE (TMR_OFFSET (inner
));
755 else if (TREE_CODE (inner
) == MEM_REF
756 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner
, 1))))
757 return TREE_TYPE (TREE_OPERAND (inner
, 1));
759 /* If the innermost reference is a MEM_REF that has a
760 conversion embedded treat it like a VIEW_CONVERT_EXPR above,
761 using the memory access type for determining the alias-set. */
762 if (TREE_CODE (inner
) == MEM_REF
763 && (TYPE_MAIN_VARIANT (TREE_TYPE (inner
))
765 (TREE_TYPE (TREE_TYPE (TREE_OPERAND (inner
, 1))))))
766 return TREE_TYPE (TREE_OPERAND (inner
, 1));
768 /* Otherwise, pick up the outermost object that we could have
770 tree tem
= component_uses_parent_alias_set_from (*t
);
777 /* Return the pointer-type relevant for TBAA purposes from the
778 gimple memory reference tree T. This is the type to be used for
779 the offset operand of MEM_REF or TARGET_MEM_REF replacements of T
780 and guarantees that get_alias_set will return the same alias
781 set for T and the replacement. */
784 reference_alias_ptr_type (tree t
)
786 tree ptype
= reference_alias_ptr_type_1 (&t
);
787 /* If there is a given pointer type for aliasing purposes, return it. */
788 if (ptype
!= NULL_TREE
)
791 /* Otherwise build one from the outermost component reference we
793 if (TREE_CODE (t
) == MEM_REF
794 || TREE_CODE (t
) == TARGET_MEM_REF
)
795 return TREE_TYPE (TREE_OPERAND (t
, 1));
797 return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (t
)));
800 /* Return whether the pointer-types T1 and T2 used to determine
801 two alias sets of two references will yield the same answer
802 from get_deref_alias_set. */
805 alias_ptr_types_compatible_p (tree t1
, tree t2
)
807 if (TYPE_MAIN_VARIANT (t1
) == TYPE_MAIN_VARIANT (t2
))
810 if (ref_all_alias_ptr_type_p (t1
)
811 || ref_all_alias_ptr_type_p (t2
))
814 return (TYPE_MAIN_VARIANT (TREE_TYPE (t1
))
815 == TYPE_MAIN_VARIANT (TREE_TYPE (t2
)));
818 /* Create emptry alias set entry. */
821 init_alias_set_entry (alias_set_type set
)
823 alias_set_entry ase
= ggc_alloc
<alias_set_entry_d
> ();
824 ase
->alias_set
= set
;
825 ase
->children
= NULL
;
826 ase
->has_zero_child
= false;
827 ase
->is_pointer
= false;
828 ase
->has_pointer
= false;
829 gcc_checking_assert (!get_alias_set_entry (set
));
830 (*alias_sets
)[set
] = ase
;
834 /* Return the alias set for T, which may be either a type or an
835 expression. Call language-specific routine for help, if needed. */
838 get_alias_set (tree t
)
842 /* If we're not doing any alias analysis, just assume everything
843 aliases everything else. Also return 0 if this or its type is
845 if (! flag_strict_aliasing
|| t
== error_mark_node
847 && (TREE_TYPE (t
) == 0 || TREE_TYPE (t
) == error_mark_node
)))
850 /* We can be passed either an expression or a type. This and the
851 language-specific routine may make mutually-recursive calls to each other
852 to figure out what to do. At each juncture, we see if this is a tree
853 that the language may need to handle specially. First handle things that
857 /* Give the language a chance to do something with this tree
858 before we look at it. */
860 set
= lang_hooks
.get_alias_set (t
);
864 /* Get the alias pointer-type to use or the outermost object
865 that we could have a pointer to. */
866 tree ptype
= reference_alias_ptr_type_1 (&t
);
868 return get_deref_alias_set (ptype
);
870 /* If we've already determined the alias set for a decl, just return
871 it. This is necessary for C++ anonymous unions, whose component
872 variables don't look like union members (boo!). */
873 if (TREE_CODE (t
) == VAR_DECL
874 && DECL_RTL_SET_P (t
) && MEM_P (DECL_RTL (t
)))
875 return MEM_ALIAS_SET (DECL_RTL (t
));
877 /* Now all we care about is the type. */
881 /* Variant qualifiers don't affect the alias set, so get the main
883 t
= TYPE_MAIN_VARIANT (t
);
885 /* Always use the canonical type as well. If this is a type that
886 requires structural comparisons to identify compatible types
887 use alias set zero. */
888 if (TYPE_STRUCTURAL_EQUALITY_P (t
))
890 /* Allow the language to specify another alias set for this
892 set
= lang_hooks
.get_alias_set (t
);
898 t
= TYPE_CANONICAL (t
);
900 /* The canonical type should not require structural equality checks. */
901 gcc_checking_assert (!TYPE_STRUCTURAL_EQUALITY_P (t
));
903 /* If this is a type with a known alias set, return it. */
904 if (TYPE_ALIAS_SET_KNOWN_P (t
))
905 return TYPE_ALIAS_SET (t
);
907 /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
908 if (!COMPLETE_TYPE_P (t
))
910 /* For arrays with unknown size the conservative answer is the
911 alias set of the element type. */
912 if (TREE_CODE (t
) == ARRAY_TYPE
)
913 return get_alias_set (TREE_TYPE (t
));
915 /* But return zero as a conservative answer for incomplete types. */
919 /* See if the language has special handling for this type. */
920 set
= lang_hooks
.get_alias_set (t
);
924 /* There are no objects of FUNCTION_TYPE, so there's no point in
925 using up an alias set for them. (There are, of course, pointers
926 and references to functions, but that's different.) */
927 else if (TREE_CODE (t
) == FUNCTION_TYPE
|| TREE_CODE (t
) == METHOD_TYPE
)
930 /* Unless the language specifies otherwise, let vector types alias
931 their components. This avoids some nasty type punning issues in
932 normal usage. And indeed lets vectors be treated more like an
934 else if (TREE_CODE (t
) == VECTOR_TYPE
)
935 set
= get_alias_set (TREE_TYPE (t
));
937 /* Unless the language specifies otherwise, treat array types the
938 same as their components. This avoids the asymmetry we get
939 through recording the components. Consider accessing a
940 character(kind=1) through a reference to a character(kind=1)[1:1].
941 Or consider if we want to assign integer(kind=4)[0:D.1387] and
942 integer(kind=4)[4] the same alias set or not.
943 Just be pragmatic here and make sure the array and its element
944 type get the same alias set assigned. */
945 else if (TREE_CODE (t
) == ARRAY_TYPE
&& !TYPE_NONALIASED_COMPONENT (t
))
946 set
= get_alias_set (TREE_TYPE (t
));
948 /* From the former common C and C++ langhook implementation:
950 Unfortunately, there is no canonical form of a pointer type.
951 In particular, if we have `typedef int I', then `int *', and
952 `I *' are different types. So, we have to pick a canonical
953 representative. We do this below.
955 Technically, this approach is actually more conservative that
956 it needs to be. In particular, `const int *' and `int *'
957 should be in different alias sets, according to the C and C++
958 standard, since their types are not the same, and so,
959 technically, an `int **' and `const int **' cannot point at
962 But, the standard is wrong. In particular, this code is
967 const int* const* cipp = ipp;
968 And, it doesn't make sense for that to be legal unless you
969 can dereference IPP and CIPP. So, we ignore cv-qualifiers on
970 the pointed-to types. This issue has been reported to the
973 For this reason go to canonical type of the unqalified pointer type.
974 Until GCC 6 this code set all pointers sets to have alias set of
975 ptr_type_node but that is a bad idea, because it prevents disabiguations
976 in between pointers. For Firefox this accounts about 20% of all
977 disambiguations in the program. */
978 else if (POINTER_TYPE_P (t
) && t
!= ptr_type_node
&& !in_lto_p
)
981 auto_vec
<bool, 8> reference
;
983 /* Unnest all pointers and references.
984 We also want to make pointer to array equivalent to pointer to its
985 element. So skip all array types, too. */
986 for (p
= t
; POINTER_TYPE_P (p
)
987 || (TREE_CODE (p
) == ARRAY_TYPE
&& !TYPE_NONALIASED_COMPONENT (p
));
990 if (TREE_CODE (p
) == REFERENCE_TYPE
)
991 reference
.safe_push (true);
992 if (TREE_CODE (p
) == POINTER_TYPE
)
993 reference
.safe_push (false);
995 p
= TYPE_MAIN_VARIANT (p
);
997 /* Make void * compatible with char * and also void **.
998 Programs are commonly violating TBAA by this.
1000 We also make void * to conflict with every pointer
1001 (see record_component_aliases) and thus it is safe it to use it for
1002 pointers to types with TYPE_STRUCTURAL_EQUALITY_P. */
1003 if (TREE_CODE (p
) == VOID_TYPE
|| TYPE_STRUCTURAL_EQUALITY_P (p
))
1004 set
= get_alias_set (ptr_type_node
);
1007 /* Rebuild pointer type from starting from canonical types using
1008 unqualified pointers and references only. This way all such
1009 pointers will have the same alias set and will conflict with
1012 Most of time we already have pointers or references of a given type.
1013 If not we build new one just to be sure that if someone later
1014 (probably only middle-end can, as we should assign all alias
1015 classes only after finishing translation unit) builds the pointer
1016 type, the canonical type will match. */
1017 p
= TYPE_CANONICAL (p
);
1018 while (!reference
.is_empty ())
1020 if (reference
.pop ())
1021 p
= build_reference_type (p
);
1023 p
= build_pointer_type (p
);
1024 p
= TYPE_CANONICAL (TYPE_MAIN_VARIANT (p
));
1026 gcc_checking_assert (TYPE_CANONICAL (p
) == p
);
1028 /* Assign the alias set to both p and t.
1029 We can not call get_alias_set (p) here as that would trigger
1030 infinite recursion when p == t. In other cases it would just
1031 trigger unnecesary legwork of rebuilding the pointer again. */
1032 if (TYPE_ALIAS_SET_KNOWN_P (p
))
1033 set
= TYPE_ALIAS_SET (p
);
1036 set
= new_alias_set ();
1037 TYPE_ALIAS_SET (p
) = set
;
1041 /* In LTO the rules above needs to be part of canonical type machinery.
1042 For now just punt. */
1043 else if (POINTER_TYPE_P (t
)
1044 && t
!= TYPE_CANONICAL (ptr_type_node
) && in_lto_p
)
1045 set
= get_alias_set (TYPE_CANONICAL (ptr_type_node
));
1047 /* Otherwise make a new alias set for this type. */
1050 /* Each canonical type gets its own alias set, so canonical types
1051 shouldn't form a tree. It doesn't really matter for types
1052 we handle specially above, so only check it where it possibly
1053 would result in a bogus alias set. */
1054 gcc_checking_assert (TYPE_CANONICAL (t
) == t
);
1056 set
= new_alias_set ();
1059 TYPE_ALIAS_SET (t
) = set
;
1061 /* If this is an aggregate type or a complex type, we must record any
1062 component aliasing information. */
1063 if (AGGREGATE_TYPE_P (t
) || TREE_CODE (t
) == COMPLEX_TYPE
)
1064 record_component_aliases (t
);
1066 /* We treat pointer types specially in alias_set_subset_of. */
1067 if (POINTER_TYPE_P (t
) && set
)
1069 alias_set_entry ase
= get_alias_set_entry (set
);
1071 ase
= init_alias_set_entry (set
);
1072 ase
->is_pointer
= true;
1073 ase
->has_pointer
= true;
1079 /* Return a brand-new alias set. */
1082 new_alias_set (void)
1084 if (flag_strict_aliasing
)
1086 if (alias_sets
== 0)
1087 vec_safe_push (alias_sets
, (alias_set_entry
) 0);
1088 vec_safe_push (alias_sets
, (alias_set_entry
) 0);
1089 return alias_sets
->length () - 1;
1095 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
1096 not everything that aliases SUPERSET also aliases SUBSET. For example,
1097 in C, a store to an `int' can alias a load of a structure containing an
1098 `int', and vice versa. But it can't alias a load of a 'double' member
1099 of the same structure. Here, the structure would be the SUPERSET and
1100 `int' the SUBSET. This relationship is also described in the comment at
1101 the beginning of this file.
1103 This function should be called only once per SUPERSET/SUBSET pair.
1105 It is illegal for SUPERSET to be zero; everything is implicitly a
1106 subset of alias set zero. */
1109 record_alias_subset (alias_set_type superset
, alias_set_type subset
)
1111 alias_set_entry superset_entry
;
1112 alias_set_entry subset_entry
;
1114 /* It is possible in complex type situations for both sets to be the same,
1115 in which case we can ignore this operation. */
1116 if (superset
== subset
)
1119 gcc_assert (superset
);
1121 superset_entry
= get_alias_set_entry (superset
);
1122 if (superset_entry
== 0)
1124 /* Create an entry for the SUPERSET, so that we have a place to
1125 attach the SUBSET. */
1126 superset_entry
= init_alias_set_entry (superset
);
1130 superset_entry
->has_zero_child
= 1;
1133 subset_entry
= get_alias_set_entry (subset
);
1134 if (!superset_entry
->children
)
1135 superset_entry
->children
1136 = hash_map
<alias_set_hash
, int>::create_ggc (64);
1137 /* If there is an entry for the subset, enter all of its children
1138 (if they are not already present) as children of the SUPERSET. */
1141 if (subset_entry
->has_zero_child
)
1142 superset_entry
->has_zero_child
= true;
1143 if (subset_entry
->has_pointer
)
1144 superset_entry
->has_pointer
= true;
1146 if (subset_entry
->children
)
1148 hash_map
<alias_set_hash
, int>::iterator iter
1149 = subset_entry
->children
->begin ();
1150 for (; iter
!= subset_entry
->children
->end (); ++iter
)
1151 superset_entry
->children
->put ((*iter
).first
, (*iter
).second
);
1155 /* Enter the SUBSET itself as a child of the SUPERSET. */
1156 superset_entry
->children
->put (subset
, 0);
1160 /* Record that component types of TYPE, if any, are part of that type for
1161 aliasing purposes. For record types, we only record component types
1162 for fields that are not marked non-addressable. For array types, we
1163 only record the component type if it is not marked non-aliased. */
1166 record_component_aliases (tree type
)
1168 alias_set_type superset
= get_alias_set (type
);
1174 switch (TREE_CODE (type
))
1178 case QUAL_UNION_TYPE
:
1179 for (field
= TYPE_FIELDS (type
); field
!= 0; field
= DECL_CHAIN (field
))
1180 if (TREE_CODE (field
) == FIELD_DECL
&& !DECL_NONADDRESSABLE_P (field
))
1181 record_alias_subset (superset
, get_alias_set (TREE_TYPE (field
)));
1185 record_alias_subset (superset
, get_alias_set (TREE_TYPE (type
)));
1188 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1196 /* Allocate an alias set for use in storing and reading from the varargs
1199 static GTY(()) alias_set_type varargs_set
= -1;
1202 get_varargs_alias_set (void)
1205 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
1206 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
1207 consistently use the varargs alias set for loads from the varargs
1208 area. So don't use it anywhere. */
1211 if (varargs_set
== -1)
1212 varargs_set
= new_alias_set ();
1218 /* Likewise, but used for the fixed portions of the frame, e.g., register
1221 static GTY(()) alias_set_type frame_set
= -1;
1224 get_frame_alias_set (void)
1226 if (frame_set
== -1)
1227 frame_set
= new_alias_set ();
1232 /* Create a new, unique base with id ID. */
1235 unique_base_value (HOST_WIDE_INT id
)
1237 return gen_rtx_ADDRESS (Pmode
, id
);
1240 /* Return true if accesses based on any other base value cannot alias
1241 those based on X. */
1244 unique_base_value_p (rtx x
)
1246 return GET_CODE (x
) == ADDRESS
&& GET_MODE (x
) == Pmode
;
1249 /* Return true if X is known to be a base value. */
1252 known_base_value_p (rtx x
)
1254 switch (GET_CODE (x
))
1261 /* Arguments may or may not be bases; we don't know for sure. */
1262 return GET_MODE (x
) != VOIDmode
;
1269 /* Inside SRC, the source of a SET, find a base address. */
1272 find_base_value (rtx src
)
1276 #if defined (FIND_BASE_TERM)
1277 /* Try machine-dependent ways to find the base term. */
1278 src
= FIND_BASE_TERM (src
);
1281 switch (GET_CODE (src
))
1288 regno
= REGNO (src
);
1289 /* At the start of a function, argument registers have known base
1290 values which may be lost later. Returning an ADDRESS
1291 expression here allows optimization based on argument values
1292 even when the argument registers are used for other purposes. */
1293 if (regno
< FIRST_PSEUDO_REGISTER
&& copying_arguments
)
1294 return new_reg_base_value
[regno
];
1296 /* If a pseudo has a known base value, return it. Do not do this
1297 for non-fixed hard regs since it can result in a circular
1298 dependency chain for registers which have values at function entry.
1300 The test above is not sufficient because the scheduler may move
1301 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
1302 if ((regno
>= FIRST_PSEUDO_REGISTER
|| fixed_regs
[regno
])
1303 && regno
< vec_safe_length (reg_base_value
))
1305 /* If we're inside init_alias_analysis, use new_reg_base_value
1306 to reduce the number of relaxation iterations. */
1307 if (new_reg_base_value
&& new_reg_base_value
[regno
]
1308 && DF_REG_DEF_COUNT (regno
) == 1)
1309 return new_reg_base_value
[regno
];
1311 if ((*reg_base_value
)[regno
])
1312 return (*reg_base_value
)[regno
];
1318 /* Check for an argument passed in memory. Only record in the
1319 copying-arguments block; it is too hard to track changes
1321 if (copying_arguments
1322 && (XEXP (src
, 0) == arg_pointer_rtx
1323 || (GET_CODE (XEXP (src
, 0)) == PLUS
1324 && XEXP (XEXP (src
, 0), 0) == arg_pointer_rtx
)))
1325 return arg_base_value
;
1329 src
= XEXP (src
, 0);
1330 if (GET_CODE (src
) != PLUS
&& GET_CODE (src
) != MINUS
)
1333 /* ... fall through ... */
1338 rtx temp
, src_0
= XEXP (src
, 0), src_1
= XEXP (src
, 1);
1340 /* If either operand is a REG that is a known pointer, then it
1342 if (REG_P (src_0
) && REG_POINTER (src_0
))
1343 return find_base_value (src_0
);
1344 if (REG_P (src_1
) && REG_POINTER (src_1
))
1345 return find_base_value (src_1
);
1347 /* If either operand is a REG, then see if we already have
1348 a known value for it. */
1351 temp
= find_base_value (src_0
);
1358 temp
= find_base_value (src_1
);
1363 /* If either base is named object or a special address
1364 (like an argument or stack reference), then use it for the
1366 if (src_0
!= 0 && known_base_value_p (src_0
))
1369 if (src_1
!= 0 && known_base_value_p (src_1
))
1372 /* Guess which operand is the base address:
1373 If either operand is a symbol, then it is the base. If
1374 either operand is a CONST_INT, then the other is the base. */
1375 if (CONST_INT_P (src_1
) || CONSTANT_P (src_0
))
1376 return find_base_value (src_0
);
1377 else if (CONST_INT_P (src_0
) || CONSTANT_P (src_1
))
1378 return find_base_value (src_1
);
1384 /* The standard form is (lo_sum reg sym) so look only at the
1386 return find_base_value (XEXP (src
, 1));
1389 /* If the second operand is constant set the base
1390 address to the first operand. */
1391 if (CONST_INT_P (XEXP (src
, 1)) && INTVAL (XEXP (src
, 1)) != 0)
1392 return find_base_value (XEXP (src
, 0));
1396 /* As we do not know which address space the pointer is referring to, we can
1397 handle this only if the target does not support different pointer or
1398 address modes depending on the address space. */
1399 if (!target_default_pointer_address_modes_p ())
1401 if (GET_MODE_SIZE (GET_MODE (src
)) < GET_MODE_SIZE (Pmode
))
1411 return find_base_value (XEXP (src
, 0));
1414 case SIGN_EXTEND
: /* used for NT/Alpha pointers */
1415 /* As we do not know which address space the pointer is referring to, we can
1416 handle this only if the target does not support different pointer or
1417 address modes depending on the address space. */
1418 if (!target_default_pointer_address_modes_p ())
1422 rtx temp
= find_base_value (XEXP (src
, 0));
1424 if (temp
!= 0 && CONSTANT_P (temp
))
1425 temp
= convert_memory_address (Pmode
, temp
);
1437 /* Called from init_alias_analysis indirectly through note_stores,
1438 or directly if DEST is a register with a REG_NOALIAS note attached.
1439 SET is null in the latter case. */
1441 /* While scanning insns to find base values, reg_seen[N] is nonzero if
1442 register N has been set in this function. */
1443 static sbitmap reg_seen
;
1446 record_set (rtx dest
, const_rtx set
, void *data ATTRIBUTE_UNUSED
)
1455 regno
= REGNO (dest
);
1457 gcc_checking_assert (regno
< reg_base_value
->length ());
1459 n
= REG_NREGS (dest
);
1464 bitmap_set_bit (reg_seen
, regno
+ n
);
1465 new_reg_base_value
[regno
+ n
] = 0;
1472 /* A CLOBBER wipes out any old value but does not prevent a previously
1473 unset register from acquiring a base address (i.e. reg_seen is not
1475 if (GET_CODE (set
) == CLOBBER
)
1477 new_reg_base_value
[regno
] = 0;
1480 src
= SET_SRC (set
);
1484 /* There's a REG_NOALIAS note against DEST. */
1485 if (bitmap_bit_p (reg_seen
, regno
))
1487 new_reg_base_value
[regno
] = 0;
1490 bitmap_set_bit (reg_seen
, regno
);
1491 new_reg_base_value
[regno
] = unique_base_value (unique_id
++);
1495 /* If this is not the first set of REGNO, see whether the new value
1496 is related to the old one. There are two cases of interest:
1498 (1) The register might be assigned an entirely new value
1499 that has the same base term as the original set.
1501 (2) The set might be a simple self-modification that
1502 cannot change REGNO's base value.
1504 If neither case holds, reject the original base value as invalid.
1505 Note that the following situation is not detected:
1507 extern int x, y; int *p = &x; p += (&y-&x);
1509 ANSI C does not allow computing the difference of addresses
1510 of distinct top level objects. */
1511 if (new_reg_base_value
[regno
] != 0
1512 && find_base_value (src
) != new_reg_base_value
[regno
])
1513 switch (GET_CODE (src
))
1517 if (XEXP (src
, 0) != dest
&& XEXP (src
, 1) != dest
)
1518 new_reg_base_value
[regno
] = 0;
1521 /* If the value we add in the PLUS is also a valid base value,
1522 this might be the actual base value, and the original value
1525 rtx other
= NULL_RTX
;
1527 if (XEXP (src
, 0) == dest
)
1528 other
= XEXP (src
, 1);
1529 else if (XEXP (src
, 1) == dest
)
1530 other
= XEXP (src
, 0);
1532 if (! other
|| find_base_value (other
))
1533 new_reg_base_value
[regno
] = 0;
1537 if (XEXP (src
, 0) != dest
|| !CONST_INT_P (XEXP (src
, 1)))
1538 new_reg_base_value
[regno
] = 0;
1541 new_reg_base_value
[regno
] = 0;
1544 /* If this is the first set of a register, record the value. */
1545 else if ((regno
>= FIRST_PSEUDO_REGISTER
|| ! fixed_regs
[regno
])
1546 && ! bitmap_bit_p (reg_seen
, regno
) && new_reg_base_value
[regno
] == 0)
1547 new_reg_base_value
[regno
] = find_base_value (src
);
1549 bitmap_set_bit (reg_seen
, regno
);
1552 /* Return REG_BASE_VALUE for REGNO. Selective scheduler uses this to avoid
1553 using hard registers with non-null REG_BASE_VALUE for renaming. */
1555 get_reg_base_value (unsigned int regno
)
1557 return (*reg_base_value
)[regno
];
1560 /* If a value is known for REGNO, return it. */
1563 get_reg_known_value (unsigned int regno
)
1565 if (regno
>= FIRST_PSEUDO_REGISTER
)
1567 regno
-= FIRST_PSEUDO_REGISTER
;
1568 if (regno
< vec_safe_length (reg_known_value
))
1569 return (*reg_known_value
)[regno
];
1577 set_reg_known_value (unsigned int regno
, rtx val
)
1579 if (regno
>= FIRST_PSEUDO_REGISTER
)
1581 regno
-= FIRST_PSEUDO_REGISTER
;
1582 if (regno
< vec_safe_length (reg_known_value
))
1583 (*reg_known_value
)[regno
] = val
;
1587 /* Similarly for reg_known_equiv_p. */
1590 get_reg_known_equiv_p (unsigned int regno
)
1592 if (regno
>= FIRST_PSEUDO_REGISTER
)
1594 regno
-= FIRST_PSEUDO_REGISTER
;
1595 if (regno
< vec_safe_length (reg_known_value
))
1596 return bitmap_bit_p (reg_known_equiv_p
, regno
);
1602 set_reg_known_equiv_p (unsigned int regno
, bool val
)
1604 if (regno
>= FIRST_PSEUDO_REGISTER
)
1606 regno
-= FIRST_PSEUDO_REGISTER
;
1607 if (regno
< vec_safe_length (reg_known_value
))
1610 bitmap_set_bit (reg_known_equiv_p
, regno
);
1612 bitmap_clear_bit (reg_known_equiv_p
, regno
);
1618 /* Returns a canonical version of X, from the point of view alias
1619 analysis. (For example, if X is a MEM whose address is a register,
1620 and the register has a known value (say a SYMBOL_REF), then a MEM
1621 whose address is the SYMBOL_REF is returned.) */
1626 /* Recursively look for equivalences. */
1627 if (REG_P (x
) && REGNO (x
) >= FIRST_PSEUDO_REGISTER
)
1629 rtx t
= get_reg_known_value (REGNO (x
));
1633 return canon_rtx (t
);
1636 if (GET_CODE (x
) == PLUS
)
1638 rtx x0
= canon_rtx (XEXP (x
, 0));
1639 rtx x1
= canon_rtx (XEXP (x
, 1));
1641 if (x0
!= XEXP (x
, 0) || x1
!= XEXP (x
, 1))
1643 if (CONST_INT_P (x0
))
1644 return plus_constant (GET_MODE (x
), x1
, INTVAL (x0
));
1645 else if (CONST_INT_P (x1
))
1646 return plus_constant (GET_MODE (x
), x0
, INTVAL (x1
));
1647 return gen_rtx_PLUS (GET_MODE (x
), x0
, x1
);
1651 /* This gives us much better alias analysis when called from
1652 the loop optimizer. Note we want to leave the original
1653 MEM alone, but need to return the canonicalized MEM with
1654 all the flags with their original values. */
1656 x
= replace_equiv_address_nv (x
, canon_rtx (XEXP (x
, 0)));
1661 /* Return 1 if X and Y are identical-looking rtx's.
1662 Expect that X and Y has been already canonicalized.
1664 We use the data in reg_known_value above to see if two registers with
1665 different numbers are, in fact, equivalent. */
1668 rtx_equal_for_memref_p (const_rtx x
, const_rtx y
)
1675 if (x
== 0 && y
== 0)
1677 if (x
== 0 || y
== 0)
1683 code
= GET_CODE (x
);
1684 /* Rtx's of different codes cannot be equal. */
1685 if (code
!= GET_CODE (y
))
1688 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1689 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1691 if (GET_MODE (x
) != GET_MODE (y
))
1694 /* Some RTL can be compared without a recursive examination. */
1698 return REGNO (x
) == REGNO (y
);
1701 return LABEL_REF_LABEL (x
) == LABEL_REF_LABEL (y
);
1704 return XSTR (x
, 0) == XSTR (y
, 0);
1707 /* This is magic, don't go through canonicalization et al. */
1708 return rtx_equal_p (ENTRY_VALUE_EXP (x
), ENTRY_VALUE_EXP (y
));
1712 /* Pointer equality guarantees equality for these nodes. */
1719 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1721 return ((rtx_equal_for_memref_p (XEXP (x
, 0), XEXP (y
, 0))
1722 && rtx_equal_for_memref_p (XEXP (x
, 1), XEXP (y
, 1)))
1723 || (rtx_equal_for_memref_p (XEXP (x
, 0), XEXP (y
, 1))
1724 && rtx_equal_for_memref_p (XEXP (x
, 1), XEXP (y
, 0))));
1725 /* For commutative operations, the RTX match if the operand match in any
1726 order. Also handle the simple binary and unary cases without a loop. */
1727 if (COMMUTATIVE_P (x
))
1729 rtx xop0
= canon_rtx (XEXP (x
, 0));
1730 rtx yop0
= canon_rtx (XEXP (y
, 0));
1731 rtx yop1
= canon_rtx (XEXP (y
, 1));
1733 return ((rtx_equal_for_memref_p (xop0
, yop0
)
1734 && rtx_equal_for_memref_p (canon_rtx (XEXP (x
, 1)), yop1
))
1735 || (rtx_equal_for_memref_p (xop0
, yop1
)
1736 && rtx_equal_for_memref_p (canon_rtx (XEXP (x
, 1)), yop0
)));
1738 else if (NON_COMMUTATIVE_P (x
))
1740 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x
, 0)),
1741 canon_rtx (XEXP (y
, 0)))
1742 && rtx_equal_for_memref_p (canon_rtx (XEXP (x
, 1)),
1743 canon_rtx (XEXP (y
, 1))));
1745 else if (UNARY_P (x
))
1746 return rtx_equal_for_memref_p (canon_rtx (XEXP (x
, 0)),
1747 canon_rtx (XEXP (y
, 0)));
1749 /* Compare the elements. If any pair of corresponding elements
1750 fail to match, return 0 for the whole things.
1752 Limit cases to types which actually appear in addresses. */
1754 fmt
= GET_RTX_FORMAT (code
);
1755 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1760 if (XINT (x
, i
) != XINT (y
, i
))
1765 /* Two vectors must have the same length. */
1766 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
1769 /* And the corresponding elements must match. */
1770 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1771 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x
, i
, j
)),
1772 canon_rtx (XVECEXP (y
, i
, j
))) == 0)
1777 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x
, i
)),
1778 canon_rtx (XEXP (y
, i
))) == 0)
1782 /* This can happen for asm operands. */
1784 if (strcmp (XSTR (x
, i
), XSTR (y
, i
)))
1788 /* This can happen for an asm which clobbers memory. */
1792 /* It is believed that rtx's at this level will never
1793 contain anything but integers and other rtx's,
1794 except for within LABEL_REFs and SYMBOL_REFs. */
1803 find_base_term (rtx x
)
1806 struct elt_loc_list
*l
, *f
;
1809 #if defined (FIND_BASE_TERM)
1810 /* Try machine-dependent ways to find the base term. */
1811 x
= FIND_BASE_TERM (x
);
1814 switch (GET_CODE (x
))
1817 return REG_BASE_VALUE (x
);
1820 /* As we do not know which address space the pointer is referring to, we can
1821 handle this only if the target does not support different pointer or
1822 address modes depending on the address space. */
1823 if (!target_default_pointer_address_modes_p ())
1825 if (GET_MODE_SIZE (GET_MODE (x
)) < GET_MODE_SIZE (Pmode
))
1835 return find_base_term (XEXP (x
, 0));
1838 case SIGN_EXTEND
: /* Used for Alpha/NT pointers */
1839 /* As we do not know which address space the pointer is referring to, we can
1840 handle this only if the target does not support different pointer or
1841 address modes depending on the address space. */
1842 if (!target_default_pointer_address_modes_p ())
1846 rtx temp
= find_base_term (XEXP (x
, 0));
1848 if (temp
!= 0 && CONSTANT_P (temp
))
1849 temp
= convert_memory_address (Pmode
, temp
);
1855 val
= CSELIB_VAL_PTR (x
);
1861 if (cselib_sp_based_value_p (val
))
1862 return static_reg_base_value
[STACK_POINTER_REGNUM
];
1865 /* Temporarily reset val->locs to avoid infinite recursion. */
1868 for (l
= f
; l
; l
= l
->next
)
1869 if (GET_CODE (l
->loc
) == VALUE
1870 && CSELIB_VAL_PTR (l
->loc
)->locs
1871 && !CSELIB_VAL_PTR (l
->loc
)->locs
->next
1872 && CSELIB_VAL_PTR (l
->loc
)->locs
->loc
== x
)
1874 else if ((ret
= find_base_term (l
->loc
)) != 0)
1881 /* The standard form is (lo_sum reg sym) so look only at the
1883 return find_base_term (XEXP (x
, 1));
1887 if (GET_CODE (x
) != PLUS
&& GET_CODE (x
) != MINUS
)
1893 rtx tmp1
= XEXP (x
, 0);
1894 rtx tmp2
= XEXP (x
, 1);
1896 /* This is a little bit tricky since we have to determine which of
1897 the two operands represents the real base address. Otherwise this
1898 routine may return the index register instead of the base register.
1900 That may cause us to believe no aliasing was possible, when in
1901 fact aliasing is possible.
1903 We use a few simple tests to guess the base register. Additional
1904 tests can certainly be added. For example, if one of the operands
1905 is a shift or multiply, then it must be the index register and the
1906 other operand is the base register. */
1908 if (tmp1
== pic_offset_table_rtx
&& CONSTANT_P (tmp2
))
1909 return find_base_term (tmp2
);
1911 /* If either operand is known to be a pointer, then prefer it
1912 to determine the base term. */
1913 if (REG_P (tmp1
) && REG_POINTER (tmp1
))
1915 else if (REG_P (tmp2
) && REG_POINTER (tmp2
))
1916 std::swap (tmp1
, tmp2
);
1917 /* If second argument is constant which has base term, prefer it
1918 over variable tmp1. See PR64025. */
1919 else if (CONSTANT_P (tmp2
) && !CONST_INT_P (tmp2
))
1920 std::swap (tmp1
, tmp2
);
1922 /* Go ahead and find the base term for both operands. If either base
1923 term is from a pointer or is a named object or a special address
1924 (like an argument or stack reference), then use it for the
1926 rtx base
= find_base_term (tmp1
);
1927 if (base
!= NULL_RTX
1928 && ((REG_P (tmp1
) && REG_POINTER (tmp1
))
1929 || known_base_value_p (base
)))
1931 base
= find_base_term (tmp2
);
1932 if (base
!= NULL_RTX
1933 && ((REG_P (tmp2
) && REG_POINTER (tmp2
))
1934 || known_base_value_p (base
)))
1937 /* We could not determine which of the two operands was the
1938 base register and which was the index. So we can determine
1939 nothing from the base alias check. */
1944 if (CONST_INT_P (XEXP (x
, 1)) && INTVAL (XEXP (x
, 1)) != 0)
1945 return find_base_term (XEXP (x
, 0));
1957 /* Return true if accesses to address X may alias accesses based
1958 on the stack pointer. */
1961 may_be_sp_based_p (rtx x
)
1963 rtx base
= find_base_term (x
);
1964 return !base
|| base
== static_reg_base_value
[STACK_POINTER_REGNUM
];
1967 /* Return 0 if the addresses X and Y are known to point to different
1968 objects, 1 if they might be pointers to the same object. */
1971 base_alias_check (rtx x
, rtx x_base
, rtx y
, rtx y_base
,
1972 machine_mode x_mode
, machine_mode y_mode
)
1974 /* If the address itself has no known base see if a known equivalent
1975 value has one. If either address still has no known base, nothing
1976 is known about aliasing. */
1981 if (! flag_expensive_optimizations
|| (x_c
= canon_rtx (x
)) == x
)
1984 x_base
= find_base_term (x_c
);
1992 if (! flag_expensive_optimizations
|| (y_c
= canon_rtx (y
)) == y
)
1995 y_base
= find_base_term (y_c
);
2000 /* If the base addresses are equal nothing is known about aliasing. */
2001 if (rtx_equal_p (x_base
, y_base
))
2004 /* The base addresses are different expressions. If they are not accessed
2005 via AND, there is no conflict. We can bring knowledge of object
2006 alignment into play here. For example, on alpha, "char a, b;" can
2007 alias one another, though "char a; long b;" cannot. AND addesses may
2008 implicitly alias surrounding objects; i.e. unaligned access in DImode
2009 via AND address can alias all surrounding object types except those
2010 with aligment 8 or higher. */
2011 if (GET_CODE (x
) == AND
&& GET_CODE (y
) == AND
)
2013 if (GET_CODE (x
) == AND
2014 && (!CONST_INT_P (XEXP (x
, 1))
2015 || (int) GET_MODE_UNIT_SIZE (y_mode
) < -INTVAL (XEXP (x
, 1))))
2017 if (GET_CODE (y
) == AND
2018 && (!CONST_INT_P (XEXP (y
, 1))
2019 || (int) GET_MODE_UNIT_SIZE (x_mode
) < -INTVAL (XEXP (y
, 1))))
2022 /* Differing symbols not accessed via AND never alias. */
2023 if (GET_CODE (x_base
) != ADDRESS
&& GET_CODE (y_base
) != ADDRESS
)
2026 if (unique_base_value_p (x_base
) || unique_base_value_p (y_base
))
2032 /* Return TRUE if EXPR refers to a VALUE whose uid is greater than
2036 refs_newer_value_p (const_rtx expr
, rtx v
)
2038 int minuid
= CSELIB_VAL_PTR (v
)->uid
;
2039 subrtx_iterator::array_type array
;
2040 FOR_EACH_SUBRTX (iter
, array
, expr
, NONCONST
)
2041 if (GET_CODE (*iter
) == VALUE
&& CSELIB_VAL_PTR (*iter
)->uid
> minuid
)
2046 /* Convert the address X into something we can use. This is done by returning
2047 it unchanged unless it is a value; in the latter case we call cselib to get
2048 a more useful rtx. */
2054 struct elt_loc_list
*l
;
2056 if (GET_CODE (x
) != VALUE
)
2058 v
= CSELIB_VAL_PTR (x
);
2061 bool have_equivs
= cselib_have_permanent_equivalences ();
2063 v
= canonical_cselib_val (v
);
2064 for (l
= v
->locs
; l
; l
= l
->next
)
2065 if (CONSTANT_P (l
->loc
))
2067 for (l
= v
->locs
; l
; l
= l
->next
)
2068 if (!REG_P (l
->loc
) && !MEM_P (l
->loc
)
2069 /* Avoid infinite recursion when potentially dealing with
2070 var-tracking artificial equivalences, by skipping the
2071 equivalences themselves, and not choosing expressions
2072 that refer to newer VALUEs. */
2074 || (GET_CODE (l
->loc
) != VALUE
2075 && !refs_newer_value_p (l
->loc
, x
))))
2079 for (l
= v
->locs
; l
; l
= l
->next
)
2081 || (GET_CODE (l
->loc
) != VALUE
2082 && !refs_newer_value_p (l
->loc
, x
)))
2084 /* Return the canonical value. */
2088 return v
->locs
->loc
;
2093 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
2094 where SIZE is the size in bytes of the memory reference. If ADDR
2095 is not modified by the memory reference then ADDR is returned. */
2098 addr_side_effect_eval (rtx addr
, int size
, int n_refs
)
2102 switch (GET_CODE (addr
))
2105 offset
= (n_refs
+ 1) * size
;
2108 offset
= -(n_refs
+ 1) * size
;
2111 offset
= n_refs
* size
;
2114 offset
= -n_refs
* size
;
2122 addr
= gen_rtx_PLUS (GET_MODE (addr
), XEXP (addr
, 0),
2123 gen_int_mode (offset
, GET_MODE (addr
)));
2125 addr
= XEXP (addr
, 0);
2126 addr
= canon_rtx (addr
);
2131 /* Return TRUE if an object X sized at XSIZE bytes and another object
2132 Y sized at YSIZE bytes, starting C bytes after X, may overlap. If
2133 any of the sizes is zero, assume an overlap, otherwise use the
2134 absolute value of the sizes as the actual sizes. */
2137 offset_overlap_p (HOST_WIDE_INT c
, int xsize
, int ysize
)
2139 return (xsize
== 0 || ysize
== 0
2142 : (abs (ysize
) > -c
)));
2145 /* Return one if X and Y (memory addresses) reference the
2146 same location in memory or if the references overlap.
2147 Return zero if they do not overlap, else return
2148 minus one in which case they still might reference the same location.
2150 C is an offset accumulator. When
2151 C is nonzero, we are testing aliases between X and Y + C.
2152 XSIZE is the size in bytes of the X reference,
2153 similarly YSIZE is the size in bytes for Y.
2154 Expect that canon_rtx has been already called for X and Y.
2156 If XSIZE or YSIZE is zero, we do not know the amount of memory being
2157 referenced (the reference was BLKmode), so make the most pessimistic
2160 If XSIZE or YSIZE is negative, we may access memory outside the object
2161 being referenced as a side effect. This can happen when using AND to
2162 align memory references, as is done on the Alpha.
2164 Nice to notice that varying addresses cannot conflict with fp if no
2165 local variables had their addresses taken, but that's too hard now.
2167 ??? Contrary to the tree alias oracle this does not return
2168 one for X + non-constant and Y + non-constant when X and Y are equal.
2169 If that is fixed the TBAA hack for union type-punning can be removed. */
2172 memrefs_conflict_p (int xsize
, rtx x
, int ysize
, rtx y
, HOST_WIDE_INT c
)
2174 if (GET_CODE (x
) == VALUE
)
2178 struct elt_loc_list
*l
= NULL
;
2179 if (CSELIB_VAL_PTR (x
))
2180 for (l
= canonical_cselib_val (CSELIB_VAL_PTR (x
))->locs
;
2182 if (REG_P (l
->loc
) && rtx_equal_for_memref_p (l
->loc
, y
))
2189 /* Don't call get_addr if y is the same VALUE. */
2193 if (GET_CODE (y
) == VALUE
)
2197 struct elt_loc_list
*l
= NULL
;
2198 if (CSELIB_VAL_PTR (y
))
2199 for (l
= canonical_cselib_val (CSELIB_VAL_PTR (y
))->locs
;
2201 if (REG_P (l
->loc
) && rtx_equal_for_memref_p (l
->loc
, x
))
2208 /* Don't call get_addr if x is the same VALUE. */
2212 if (GET_CODE (x
) == HIGH
)
2214 else if (GET_CODE (x
) == LO_SUM
)
2217 x
= addr_side_effect_eval (x
, abs (xsize
), 0);
2218 if (GET_CODE (y
) == HIGH
)
2220 else if (GET_CODE (y
) == LO_SUM
)
2223 y
= addr_side_effect_eval (y
, abs (ysize
), 0);
2225 if (rtx_equal_for_memref_p (x
, y
))
2227 return offset_overlap_p (c
, xsize
, ysize
);
2230 /* This code used to check for conflicts involving stack references and
2231 globals but the base address alias code now handles these cases. */
2233 if (GET_CODE (x
) == PLUS
)
2235 /* The fact that X is canonicalized means that this
2236 PLUS rtx is canonicalized. */
2237 rtx x0
= XEXP (x
, 0);
2238 rtx x1
= XEXP (x
, 1);
2240 if (GET_CODE (y
) == PLUS
)
2242 /* The fact that Y is canonicalized means that this
2243 PLUS rtx is canonicalized. */
2244 rtx y0
= XEXP (y
, 0);
2245 rtx y1
= XEXP (y
, 1);
2247 if (rtx_equal_for_memref_p (x1
, y1
))
2248 return memrefs_conflict_p (xsize
, x0
, ysize
, y0
, c
);
2249 if (rtx_equal_for_memref_p (x0
, y0
))
2250 return memrefs_conflict_p (xsize
, x1
, ysize
, y1
, c
);
2251 if (CONST_INT_P (x1
))
2253 if (CONST_INT_P (y1
))
2254 return memrefs_conflict_p (xsize
, x0
, ysize
, y0
,
2255 c
- INTVAL (x1
) + INTVAL (y1
));
2257 return memrefs_conflict_p (xsize
, x0
, ysize
, y
,
2260 else if (CONST_INT_P (y1
))
2261 return memrefs_conflict_p (xsize
, x
, ysize
, y0
, c
+ INTVAL (y1
));
2265 else if (CONST_INT_P (x1
))
2266 return memrefs_conflict_p (xsize
, x0
, ysize
, y
, c
- INTVAL (x1
));
2268 else if (GET_CODE (y
) == PLUS
)
2270 /* The fact that Y is canonicalized means that this
2271 PLUS rtx is canonicalized. */
2272 rtx y0
= XEXP (y
, 0);
2273 rtx y1
= XEXP (y
, 1);
2275 if (CONST_INT_P (y1
))
2276 return memrefs_conflict_p (xsize
, x
, ysize
, y0
, c
+ INTVAL (y1
));
2281 if (GET_CODE (x
) == GET_CODE (y
))
2282 switch (GET_CODE (x
))
2286 /* Handle cases where we expect the second operands to be the
2287 same, and check only whether the first operand would conflict
2290 rtx x1
= canon_rtx (XEXP (x
, 1));
2291 rtx y1
= canon_rtx (XEXP (y
, 1));
2292 if (! rtx_equal_for_memref_p (x1
, y1
))
2294 x0
= canon_rtx (XEXP (x
, 0));
2295 y0
= canon_rtx (XEXP (y
, 0));
2296 if (rtx_equal_for_memref_p (x0
, y0
))
2297 return offset_overlap_p (c
, xsize
, ysize
);
2299 /* Can't properly adjust our sizes. */
2300 if (!CONST_INT_P (x1
))
2302 xsize
/= INTVAL (x1
);
2303 ysize
/= INTVAL (x1
);
2305 return memrefs_conflict_p (xsize
, x0
, ysize
, y0
, c
);
2312 /* Deal with alignment ANDs by adjusting offset and size so as to
2313 cover the maximum range, without taking any previously known
2314 alignment into account. Make a size negative after such an
2315 adjustments, so that, if we end up with e.g. two SYMBOL_REFs, we
2316 assume a potential overlap, because they may end up in contiguous
2317 memory locations and the stricter-alignment access may span over
2319 if (GET_CODE (x
) == AND
&& CONST_INT_P (XEXP (x
, 1)))
2321 HOST_WIDE_INT sc
= INTVAL (XEXP (x
, 1));
2322 unsigned HOST_WIDE_INT uc
= sc
;
2323 if (sc
< 0 && -uc
== (uc
& -uc
))
2330 return memrefs_conflict_p (xsize
, canon_rtx (XEXP (x
, 0)),
2334 if (GET_CODE (y
) == AND
&& CONST_INT_P (XEXP (y
, 1)))
2336 HOST_WIDE_INT sc
= INTVAL (XEXP (y
, 1));
2337 unsigned HOST_WIDE_INT uc
= sc
;
2338 if (sc
< 0 && -uc
== (uc
& -uc
))
2345 return memrefs_conflict_p (xsize
, x
,
2346 ysize
, canon_rtx (XEXP (y
, 0)), c
);
2352 if (CONST_INT_P (x
) && CONST_INT_P (y
))
2354 c
+= (INTVAL (y
) - INTVAL (x
));
2355 return offset_overlap_p (c
, xsize
, ysize
);
2358 if (GET_CODE (x
) == CONST
)
2360 if (GET_CODE (y
) == CONST
)
2361 return memrefs_conflict_p (xsize
, canon_rtx (XEXP (x
, 0)),
2362 ysize
, canon_rtx (XEXP (y
, 0)), c
);
2364 return memrefs_conflict_p (xsize
, canon_rtx (XEXP (x
, 0)),
2367 if (GET_CODE (y
) == CONST
)
2368 return memrefs_conflict_p (xsize
, x
, ysize
,
2369 canon_rtx (XEXP (y
, 0)), c
);
2371 /* Assume a potential overlap for symbolic addresses that went
2372 through alignment adjustments (i.e., that have negative
2373 sizes), because we can't know how far they are from each
2376 return (xsize
< 0 || ysize
< 0 || offset_overlap_p (c
, xsize
, ysize
));
2384 /* Functions to compute memory dependencies.
2386 Since we process the insns in execution order, we can build tables
2387 to keep track of what registers are fixed (and not aliased), what registers
2388 are varying in known ways, and what registers are varying in unknown
2391 If both memory references are volatile, then there must always be a
2392 dependence between the two references, since their order can not be
2393 changed. A volatile and non-volatile reference can be interchanged
2396 We also must allow AND addresses, because they may generate accesses
2397 outside the object being referenced. This is used to generate aligned
2398 addresses from unaligned addresses, for instance, the alpha
2399 storeqi_unaligned pattern. */
2401 /* Read dependence: X is read after read in MEM takes place. There can
2402 only be a dependence here if both reads are volatile, or if either is
2403 an explicit barrier. */
2406 read_dependence (const_rtx mem
, const_rtx x
)
2408 if (MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
))
2410 if (MEM_ALIAS_SET (x
) == ALIAS_SET_MEMORY_BARRIER
2411 || MEM_ALIAS_SET (mem
) == ALIAS_SET_MEMORY_BARRIER
)
2416 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
2419 decl_for_component_ref (tree x
)
2423 x
= TREE_OPERAND (x
, 0);
2425 while (x
&& TREE_CODE (x
) == COMPONENT_REF
);
2427 return x
&& DECL_P (x
) ? x
: NULL_TREE
;
2430 /* Walk up the COMPONENT_REF list in X and adjust *OFFSET to compensate
2431 for the offset of the field reference. *KNOWN_P says whether the
2435 adjust_offset_for_component_ref (tree x
, bool *known_p
,
2436 HOST_WIDE_INT
*offset
)
2442 tree xoffset
= component_ref_field_offset (x
);
2443 tree field
= TREE_OPERAND (x
, 1);
2444 if (TREE_CODE (xoffset
) != INTEGER_CST
)
2451 = (wi::to_offset (xoffset
)
2452 + wi::lrshift (wi::to_offset (DECL_FIELD_BIT_OFFSET (field
)),
2453 LOG2_BITS_PER_UNIT
));
2454 if (!wi::fits_uhwi_p (woffset
))
2459 *offset
+= woffset
.to_uhwi ();
2461 x
= TREE_OPERAND (x
, 0);
2463 while (x
&& TREE_CODE (x
) == COMPONENT_REF
);
2466 /* Return nonzero if we can determine the exprs corresponding to memrefs
2467 X and Y and they do not overlap.
2468 If LOOP_VARIANT is set, skip offset-based disambiguation */
2471 nonoverlapping_memrefs_p (const_rtx x
, const_rtx y
, bool loop_invariant
)
2473 tree exprx
= MEM_EXPR (x
), expry
= MEM_EXPR (y
);
2476 bool moffsetx_known_p
, moffsety_known_p
;
2477 HOST_WIDE_INT moffsetx
= 0, moffsety
= 0;
2478 HOST_WIDE_INT offsetx
= 0, offsety
= 0, sizex
, sizey
, tem
;
2480 /* Unless both have exprs, we can't tell anything. */
2481 if (exprx
== 0 || expry
== 0)
2484 /* For spill-slot accesses make sure we have valid offsets. */
2485 if ((exprx
== get_spill_slot_decl (false)
2486 && ! MEM_OFFSET_KNOWN_P (x
))
2487 || (expry
== get_spill_slot_decl (false)
2488 && ! MEM_OFFSET_KNOWN_P (y
)))
2491 /* If the field reference test failed, look at the DECLs involved. */
2492 moffsetx_known_p
= MEM_OFFSET_KNOWN_P (x
);
2493 if (moffsetx_known_p
)
2494 moffsetx
= MEM_OFFSET (x
);
2495 if (TREE_CODE (exprx
) == COMPONENT_REF
)
2497 tree t
= decl_for_component_ref (exprx
);
2500 adjust_offset_for_component_ref (exprx
, &moffsetx_known_p
, &moffsetx
);
2504 moffsety_known_p
= MEM_OFFSET_KNOWN_P (y
);
2505 if (moffsety_known_p
)
2506 moffsety
= MEM_OFFSET (y
);
2507 if (TREE_CODE (expry
) == COMPONENT_REF
)
2509 tree t
= decl_for_component_ref (expry
);
2512 adjust_offset_for_component_ref (expry
, &moffsety_known_p
, &moffsety
);
2516 if (! DECL_P (exprx
) || ! DECL_P (expry
))
2519 /* With invalid code we can end up storing into the constant pool.
2520 Bail out to avoid ICEing when creating RTL for this.
2521 See gfortran.dg/lto/20091028-2_0.f90. */
2522 if (TREE_CODE (exprx
) == CONST_DECL
2523 || TREE_CODE (expry
) == CONST_DECL
)
2526 rtlx
= DECL_RTL (exprx
);
2527 rtly
= DECL_RTL (expry
);
2529 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2530 can't overlap unless they are the same because we never reuse that part
2531 of the stack frame used for locals for spilled pseudos. */
2532 if ((!MEM_P (rtlx
) || !MEM_P (rtly
))
2533 && ! rtx_equal_p (rtlx
, rtly
))
2536 /* If we have MEMs referring to different address spaces (which can
2537 potentially overlap), we cannot easily tell from the addresses
2538 whether the references overlap. */
2539 if (MEM_P (rtlx
) && MEM_P (rtly
)
2540 && MEM_ADDR_SPACE (rtlx
) != MEM_ADDR_SPACE (rtly
))
2543 /* Get the base and offsets of both decls. If either is a register, we
2544 know both are and are the same, so use that as the base. The only
2545 we can avoid overlap is if we can deduce that they are nonoverlapping
2546 pieces of that decl, which is very rare. */
2547 basex
= MEM_P (rtlx
) ? XEXP (rtlx
, 0) : rtlx
;
2548 if (GET_CODE (basex
) == PLUS
&& CONST_INT_P (XEXP (basex
, 1)))
2549 offsetx
= INTVAL (XEXP (basex
, 1)), basex
= XEXP (basex
, 0);
2551 basey
= MEM_P (rtly
) ? XEXP (rtly
, 0) : rtly
;
2552 if (GET_CODE (basey
) == PLUS
&& CONST_INT_P (XEXP (basey
, 1)))
2553 offsety
= INTVAL (XEXP (basey
, 1)), basey
= XEXP (basey
, 0);
2555 /* If the bases are different, we know they do not overlap if both
2556 are constants or if one is a constant and the other a pointer into the
2557 stack frame. Otherwise a different base means we can't tell if they
2559 if (! rtx_equal_p (basex
, basey
))
2560 return ((CONSTANT_P (basex
) && CONSTANT_P (basey
))
2561 || (CONSTANT_P (basex
) && REG_P (basey
)
2562 && REGNO_PTR_FRAME_P (REGNO (basey
)))
2563 || (CONSTANT_P (basey
) && REG_P (basex
)
2564 && REGNO_PTR_FRAME_P (REGNO (basex
))));
2566 /* Offset based disambiguation not appropriate for loop invariant */
2570 sizex
= (!MEM_P (rtlx
) ? (int) GET_MODE_SIZE (GET_MODE (rtlx
))
2571 : MEM_SIZE_KNOWN_P (rtlx
) ? MEM_SIZE (rtlx
)
2573 sizey
= (!MEM_P (rtly
) ? (int) GET_MODE_SIZE (GET_MODE (rtly
))
2574 : MEM_SIZE_KNOWN_P (rtly
) ? MEM_SIZE (rtly
)
2577 /* If we have an offset for either memref, it can update the values computed
2579 if (moffsetx_known_p
)
2580 offsetx
+= moffsetx
, sizex
-= moffsetx
;
2581 if (moffsety_known_p
)
2582 offsety
+= moffsety
, sizey
-= moffsety
;
2584 /* If a memref has both a size and an offset, we can use the smaller size.
2585 We can't do this if the offset isn't known because we must view this
2586 memref as being anywhere inside the DECL's MEM. */
2587 if (MEM_SIZE_KNOWN_P (x
) && moffsetx_known_p
)
2588 sizex
= MEM_SIZE (x
);
2589 if (MEM_SIZE_KNOWN_P (y
) && moffsety_known_p
)
2590 sizey
= MEM_SIZE (y
);
2592 /* Put the values of the memref with the lower offset in X's values. */
2593 if (offsetx
> offsety
)
2595 tem
= offsetx
, offsetx
= offsety
, offsety
= tem
;
2596 tem
= sizex
, sizex
= sizey
, sizey
= tem
;
2599 /* If we don't know the size of the lower-offset value, we can't tell
2600 if they conflict. Otherwise, we do the test. */
2601 return sizex
>= 0 && offsety
>= offsetx
+ sizex
;
2604 /* Helper for true_dependence and canon_true_dependence.
2605 Checks for true dependence: X is read after store in MEM takes place.
2607 If MEM_CANONICALIZED is FALSE, then X_ADDR and MEM_ADDR should be
2608 NULL_RTX, and the canonical addresses of MEM and X are both computed
2609 here. If MEM_CANONICALIZED, then MEM must be already canonicalized.
2611 If X_ADDR is non-NULL, it is used in preference of XEXP (x, 0).
2613 Returns 1 if there is a true dependence, 0 otherwise. */
2616 true_dependence_1 (const_rtx mem
, machine_mode mem_mode
, rtx mem_addr
,
2617 const_rtx x
, rtx x_addr
, bool mem_canonicalized
)
2623 gcc_checking_assert (mem_canonicalized
? (mem_addr
!= NULL_RTX
)
2624 : (mem_addr
== NULL_RTX
&& x_addr
== NULL_RTX
));
2626 if (MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
))
2629 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2630 This is used in epilogue deallocation functions, and in cselib. */
2631 if (GET_MODE (x
) == BLKmode
&& GET_CODE (XEXP (x
, 0)) == SCRATCH
)
2633 if (GET_MODE (mem
) == BLKmode
&& GET_CODE (XEXP (mem
, 0)) == SCRATCH
)
2635 if (MEM_ALIAS_SET (x
) == ALIAS_SET_MEMORY_BARRIER
2636 || MEM_ALIAS_SET (mem
) == ALIAS_SET_MEMORY_BARRIER
)
2640 x_addr
= XEXP (x
, 0);
2641 x_addr
= get_addr (x_addr
);
2645 mem_addr
= XEXP (mem
, 0);
2646 if (mem_mode
== VOIDmode
)
2647 mem_mode
= GET_MODE (mem
);
2649 true_mem_addr
= get_addr (mem_addr
);
2651 /* Read-only memory is by definition never modified, and therefore can't
2652 conflict with anything. However, don't assume anything when AND
2653 addresses are involved and leave to the code below to determine
2654 dependence. We don't expect to find read-only set on MEM, but
2655 stupid user tricks can produce them, so don't die. */
2656 if (MEM_READONLY_P (x
)
2657 && GET_CODE (x_addr
) != AND
2658 && GET_CODE (true_mem_addr
) != AND
)
2661 /* If we have MEMs referring to different address spaces (which can
2662 potentially overlap), we cannot easily tell from the addresses
2663 whether the references overlap. */
2664 if (MEM_ADDR_SPACE (mem
) != MEM_ADDR_SPACE (x
))
2667 base
= find_base_term (x_addr
);
2668 if (base
&& (GET_CODE (base
) == LABEL_REF
2669 || (GET_CODE (base
) == SYMBOL_REF
2670 && CONSTANT_POOL_ADDRESS_P (base
))))
2673 rtx mem_base
= find_base_term (true_mem_addr
);
2674 if (! base_alias_check (x_addr
, base
, true_mem_addr
, mem_base
,
2675 GET_MODE (x
), mem_mode
))
2678 x_addr
= canon_rtx (x_addr
);
2679 if (!mem_canonicalized
)
2680 mem_addr
= canon_rtx (true_mem_addr
);
2682 if ((ret
= memrefs_conflict_p (GET_MODE_SIZE (mem_mode
), mem_addr
,
2683 SIZE_FOR_MODE (x
), x_addr
, 0)) != -1)
2686 if (mems_in_disjoint_alias_sets_p (x
, mem
))
2689 if (nonoverlapping_memrefs_p (mem
, x
, false))
2692 return rtx_refs_may_alias_p (x
, mem
, true);
2695 /* True dependence: X is read after store in MEM takes place. */
2698 true_dependence (const_rtx mem
, machine_mode mem_mode
, const_rtx x
)
2700 return true_dependence_1 (mem
, mem_mode
, NULL_RTX
,
2701 x
, NULL_RTX
, /*mem_canonicalized=*/false);
2704 /* Canonical true dependence: X is read after store in MEM takes place.
2705 Variant of true_dependence which assumes MEM has already been
2706 canonicalized (hence we no longer do that here).
2707 The mem_addr argument has been added, since true_dependence_1 computed
2708 this value prior to canonicalizing. */
2711 canon_true_dependence (const_rtx mem
, machine_mode mem_mode
, rtx mem_addr
,
2712 const_rtx x
, rtx x_addr
)
2714 return true_dependence_1 (mem
, mem_mode
, mem_addr
,
2715 x
, x_addr
, /*mem_canonicalized=*/true);
2718 /* Returns nonzero if a write to X might alias a previous read from
2719 (or, if WRITEP is true, a write to) MEM.
2720 If X_CANONCALIZED is true, then X_ADDR is the canonicalized address of X,
2721 and X_MODE the mode for that access.
2722 If MEM_CANONICALIZED is true, MEM is canonicalized. */
2725 write_dependence_p (const_rtx mem
,
2726 const_rtx x
, machine_mode x_mode
, rtx x_addr
,
2727 bool mem_canonicalized
, bool x_canonicalized
, bool writep
)
2730 rtx true_mem_addr
, true_x_addr
;
2734 gcc_checking_assert (x_canonicalized
2735 ? (x_addr
!= NULL_RTX
&& x_mode
!= VOIDmode
)
2736 : (x_addr
== NULL_RTX
&& x_mode
== VOIDmode
));
2738 if (MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
))
2741 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2742 This is used in epilogue deallocation functions. */
2743 if (GET_MODE (x
) == BLKmode
&& GET_CODE (XEXP (x
, 0)) == SCRATCH
)
2745 if (GET_MODE (mem
) == BLKmode
&& GET_CODE (XEXP (mem
, 0)) == SCRATCH
)
2747 if (MEM_ALIAS_SET (x
) == ALIAS_SET_MEMORY_BARRIER
2748 || MEM_ALIAS_SET (mem
) == ALIAS_SET_MEMORY_BARRIER
)
2752 x_addr
= XEXP (x
, 0);
2753 true_x_addr
= get_addr (x_addr
);
2755 mem_addr
= XEXP (mem
, 0);
2756 true_mem_addr
= get_addr (mem_addr
);
2758 /* A read from read-only memory can't conflict with read-write memory.
2759 Don't assume anything when AND addresses are involved and leave to
2760 the code below to determine dependence. */
2762 && MEM_READONLY_P (mem
)
2763 && GET_CODE (true_x_addr
) != AND
2764 && GET_CODE (true_mem_addr
) != AND
)
2767 /* If we have MEMs referring to different address spaces (which can
2768 potentially overlap), we cannot easily tell from the addresses
2769 whether the references overlap. */
2770 if (MEM_ADDR_SPACE (mem
) != MEM_ADDR_SPACE (x
))
2773 base
= find_base_term (true_mem_addr
);
2776 && (GET_CODE (base
) == LABEL_REF
2777 || (GET_CODE (base
) == SYMBOL_REF
2778 && CONSTANT_POOL_ADDRESS_P (base
))))
2781 rtx x_base
= find_base_term (true_x_addr
);
2782 if (! base_alias_check (true_x_addr
, x_base
, true_mem_addr
, base
,
2783 GET_MODE (x
), GET_MODE (mem
)))
2786 if (!x_canonicalized
)
2788 x_addr
= canon_rtx (true_x_addr
);
2789 x_mode
= GET_MODE (x
);
2791 if (!mem_canonicalized
)
2792 mem_addr
= canon_rtx (true_mem_addr
);
2794 if ((ret
= memrefs_conflict_p (SIZE_FOR_MODE (mem
), mem_addr
,
2795 GET_MODE_SIZE (x_mode
), x_addr
, 0)) != -1)
2798 if (nonoverlapping_memrefs_p (x
, mem
, false))
2801 return rtx_refs_may_alias_p (x
, mem
, false);
2804 /* Anti dependence: X is written after read in MEM takes place. */
2807 anti_dependence (const_rtx mem
, const_rtx x
)
2809 return write_dependence_p (mem
, x
, VOIDmode
, NULL_RTX
,
2810 /*mem_canonicalized=*/false,
2811 /*x_canonicalized*/false, /*writep=*/false);
2814 /* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
2815 Also, consider X in X_MODE (which might be from an enclosing
2816 STRICT_LOW_PART / ZERO_EXTRACT).
2817 If MEM_CANONICALIZED is true, MEM is canonicalized. */
2820 canon_anti_dependence (const_rtx mem
, bool mem_canonicalized
,
2821 const_rtx x
, machine_mode x_mode
, rtx x_addr
)
2823 return write_dependence_p (mem
, x
, x_mode
, x_addr
,
2824 mem_canonicalized
, /*x_canonicalized=*/true,
2828 /* Output dependence: X is written after store in MEM takes place. */
2831 output_dependence (const_rtx mem
, const_rtx x
)
2833 return write_dependence_p (mem
, x
, VOIDmode
, NULL_RTX
,
2834 /*mem_canonicalized=*/false,
2835 /*x_canonicalized*/false, /*writep=*/true);
2840 /* Check whether X may be aliased with MEM. Don't do offset-based
2841 memory disambiguation & TBAA. */
2843 may_alias_p (const_rtx mem
, const_rtx x
)
2845 rtx x_addr
, mem_addr
;
2847 if (MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
))
2850 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2851 This is used in epilogue deallocation functions. */
2852 if (GET_MODE (x
) == BLKmode
&& GET_CODE (XEXP (x
, 0)) == SCRATCH
)
2854 if (GET_MODE (mem
) == BLKmode
&& GET_CODE (XEXP (mem
, 0)) == SCRATCH
)
2856 if (MEM_ALIAS_SET (x
) == ALIAS_SET_MEMORY_BARRIER
2857 || MEM_ALIAS_SET (mem
) == ALIAS_SET_MEMORY_BARRIER
)
2860 x_addr
= XEXP (x
, 0);
2861 x_addr
= get_addr (x_addr
);
2863 mem_addr
= XEXP (mem
, 0);
2864 mem_addr
= get_addr (mem_addr
);
2866 /* Read-only memory is by definition never modified, and therefore can't
2867 conflict with anything. However, don't assume anything when AND
2868 addresses are involved and leave to the code below to determine
2869 dependence. We don't expect to find read-only set on MEM, but
2870 stupid user tricks can produce them, so don't die. */
2871 if (MEM_READONLY_P (x
)
2872 && GET_CODE (x_addr
) != AND
2873 && GET_CODE (mem_addr
) != AND
)
2876 /* If we have MEMs referring to different address spaces (which can
2877 potentially overlap), we cannot easily tell from the addresses
2878 whether the references overlap. */
2879 if (MEM_ADDR_SPACE (mem
) != MEM_ADDR_SPACE (x
))
2882 rtx x_base
= find_base_term (x_addr
);
2883 rtx mem_base
= find_base_term (mem_addr
);
2884 if (! base_alias_check (x_addr
, x_base
, mem_addr
, mem_base
,
2885 GET_MODE (x
), GET_MODE (mem_addr
)))
2888 if (nonoverlapping_memrefs_p (mem
, x
, true))
2891 /* TBAA not valid for loop_invarint */
2892 return rtx_refs_may_alias_p (x
, mem
, false);
2896 init_alias_target (void)
2900 if (!arg_base_value
)
2901 arg_base_value
= gen_rtx_ADDRESS (VOIDmode
, 0);
2903 memset (static_reg_base_value
, 0, sizeof static_reg_base_value
);
2905 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2906 /* Check whether this register can hold an incoming pointer
2907 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2908 numbers, so translate if necessary due to register windows. */
2909 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i
))
2910 && HARD_REGNO_MODE_OK (i
, Pmode
))
2911 static_reg_base_value
[i
] = arg_base_value
;
2913 static_reg_base_value
[STACK_POINTER_REGNUM
]
2914 = unique_base_value (UNIQUE_BASE_VALUE_SP
);
2915 static_reg_base_value
[ARG_POINTER_REGNUM
]
2916 = unique_base_value (UNIQUE_BASE_VALUE_ARGP
);
2917 static_reg_base_value
[FRAME_POINTER_REGNUM
]
2918 = unique_base_value (UNIQUE_BASE_VALUE_FP
);
2919 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
)
2920 static_reg_base_value
[HARD_FRAME_POINTER_REGNUM
]
2921 = unique_base_value (UNIQUE_BASE_VALUE_HFP
);
2924 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2925 to be memory reference. */
2926 static bool memory_modified
;
2928 memory_modified_1 (rtx x
, const_rtx pat ATTRIBUTE_UNUSED
, void *data
)
2932 if (anti_dependence (x
, (const_rtx
)data
) || output_dependence (x
, (const_rtx
)data
))
2933 memory_modified
= true;
2938 /* Return true when INSN possibly modify memory contents of MEM
2939 (i.e. address can be modified). */
2941 memory_modified_in_insn_p (const_rtx mem
, const_rtx insn
)
2945 memory_modified
= false;
2946 note_stores (PATTERN (insn
), memory_modified_1
, CONST_CAST_RTX(mem
));
2947 return memory_modified
;
2950 /* Return TRUE if the destination of a set is rtx identical to
2953 set_dest_equal_p (const_rtx set
, const_rtx item
)
2955 rtx dest
= SET_DEST (set
);
2956 return rtx_equal_p (dest
, item
);
2959 /* Like memory_modified_in_insn_p, but return TRUE if INSN will
2960 *DEFINITELY* modify the memory contents of MEM. */
2962 memory_must_be_modified_in_insn_p (const_rtx mem
, const_rtx insn
)
2966 insn
= PATTERN (insn
);
2967 if (GET_CODE (insn
) == SET
)
2968 return set_dest_equal_p (insn
, mem
);
2969 else if (GET_CODE (insn
) == PARALLEL
)
2972 for (i
= 0; i
< XVECLEN (insn
, 0); i
++)
2974 rtx sub
= XVECEXP (insn
, 0, i
);
2975 if (GET_CODE (sub
) == SET
2976 && set_dest_equal_p (sub
, mem
))
2983 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2987 init_alias_analysis (void)
2989 unsigned int maxreg
= max_reg_num ();
2998 timevar_push (TV_ALIAS_ANALYSIS
);
3000 vec_safe_grow_cleared (reg_known_value
, maxreg
- FIRST_PSEUDO_REGISTER
);
3001 reg_known_equiv_p
= sbitmap_alloc (maxreg
- FIRST_PSEUDO_REGISTER
);
3002 bitmap_clear (reg_known_equiv_p
);
3004 /* If we have memory allocated from the previous run, use it. */
3005 if (old_reg_base_value
)
3006 reg_base_value
= old_reg_base_value
;
3009 reg_base_value
->truncate (0);
3011 vec_safe_grow_cleared (reg_base_value
, maxreg
);
3013 new_reg_base_value
= XNEWVEC (rtx
, maxreg
);
3014 reg_seen
= sbitmap_alloc (maxreg
);
3016 /* The basic idea is that each pass through this loop will use the
3017 "constant" information from the previous pass to propagate alias
3018 information through another level of assignments.
3020 The propagation is done on the CFG in reverse post-order, to propagate
3021 things forward as far as possible in each iteration.
3023 This could get expensive if the assignment chains are long. Maybe
3024 we should throttle the number of iterations, possibly based on
3025 the optimization level or flag_expensive_optimizations.
3027 We could propagate more information in the first pass by making use
3028 of DF_REG_DEF_COUNT to determine immediately that the alias information
3029 for a pseudo is "constant".
3031 A program with an uninitialized variable can cause an infinite loop
3032 here. Instead of doing a full dataflow analysis to detect such problems
3033 we just cap the number of iterations for the loop.
3035 The state of the arrays for the set chain in question does not matter
3036 since the program has undefined behavior. */
3038 rpo
= XNEWVEC (int, n_basic_blocks_for_fn (cfun
));
3039 rpo_cnt
= pre_and_rev_post_order_compute (NULL
, rpo
, false);
3041 /* The prologue/epilogue insns are not threaded onto the
3042 insn chain until after reload has completed. Thus,
3043 there is no sense wasting time checking if INSN is in
3044 the prologue/epilogue until after reload has completed. */
3045 bool could_be_prologue_epilogue
= ((targetm
.have_prologue ()
3046 || targetm
.have_epilogue ())
3047 && reload_completed
);
3052 /* Assume nothing will change this iteration of the loop. */
3055 /* We want to assign the same IDs each iteration of this loop, so
3056 start counting from one each iteration of the loop. */
3059 /* We're at the start of the function each iteration through the
3060 loop, so we're copying arguments. */
3061 copying_arguments
= true;
3063 /* Wipe the potential alias information clean for this pass. */
3064 memset (new_reg_base_value
, 0, maxreg
* sizeof (rtx
));
3066 /* Wipe the reg_seen array clean. */
3067 bitmap_clear (reg_seen
);
3069 /* Initialize the alias information for this pass. */
3070 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
3071 if (static_reg_base_value
[i
])
3073 new_reg_base_value
[i
] = static_reg_base_value
[i
];
3074 bitmap_set_bit (reg_seen
, i
);
3077 /* Walk the insns adding values to the new_reg_base_value array. */
3078 for (i
= 0; i
< rpo_cnt
; i
++)
3080 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, rpo
[i
]);
3081 FOR_BB_INSNS (bb
, insn
)
3083 if (NONDEBUG_INSN_P (insn
))
3087 if (could_be_prologue_epilogue
3088 && prologue_epilogue_contains (insn
))
3091 /* If this insn has a noalias note, process it, Otherwise,
3092 scan for sets. A simple set will have no side effects
3093 which could change the base value of any other register. */
3095 if (GET_CODE (PATTERN (insn
)) == SET
3096 && REG_NOTES (insn
) != 0
3097 && find_reg_note (insn
, REG_NOALIAS
, NULL_RTX
))
3098 record_set (SET_DEST (PATTERN (insn
)), NULL_RTX
, NULL
);
3100 note_stores (PATTERN (insn
), record_set
, NULL
);
3102 set
= single_set (insn
);
3105 && REG_P (SET_DEST (set
))
3106 && REGNO (SET_DEST (set
)) >= FIRST_PSEUDO_REGISTER
)
3108 unsigned int regno
= REGNO (SET_DEST (set
));
3109 rtx src
= SET_SRC (set
);
3112 note
= find_reg_equal_equiv_note (insn
);
3113 if (note
&& REG_NOTE_KIND (note
) == REG_EQUAL
3114 && DF_REG_DEF_COUNT (regno
) != 1)
3117 if (note
!= NULL_RTX
3118 && GET_CODE (XEXP (note
, 0)) != EXPR_LIST
3119 && ! rtx_varies_p (XEXP (note
, 0), 1)
3120 && ! reg_overlap_mentioned_p (SET_DEST (set
),
3123 set_reg_known_value (regno
, XEXP (note
, 0));
3124 set_reg_known_equiv_p (regno
,
3125 REG_NOTE_KIND (note
) == REG_EQUIV
);
3127 else if (DF_REG_DEF_COUNT (regno
) == 1
3128 && GET_CODE (src
) == PLUS
3129 && REG_P (XEXP (src
, 0))
3130 && (t
= get_reg_known_value (REGNO (XEXP (src
, 0))))
3131 && CONST_INT_P (XEXP (src
, 1)))
3133 t
= plus_constant (GET_MODE (src
), t
,
3134 INTVAL (XEXP (src
, 1)));
3135 set_reg_known_value (regno
, t
);
3136 set_reg_known_equiv_p (regno
, false);
3138 else if (DF_REG_DEF_COUNT (regno
) == 1
3139 && ! rtx_varies_p (src
, 1))
3141 set_reg_known_value (regno
, src
);
3142 set_reg_known_equiv_p (regno
, false);
3146 else if (NOTE_P (insn
)
3147 && NOTE_KIND (insn
) == NOTE_INSN_FUNCTION_BEG
)
3148 copying_arguments
= false;
3152 /* Now propagate values from new_reg_base_value to reg_base_value. */
3153 gcc_assert (maxreg
== (unsigned int) max_reg_num ());
3155 for (ui
= 0; ui
< maxreg
; ui
++)
3157 if (new_reg_base_value
[ui
]
3158 && new_reg_base_value
[ui
] != (*reg_base_value
)[ui
]
3159 && ! rtx_equal_p (new_reg_base_value
[ui
], (*reg_base_value
)[ui
]))
3161 (*reg_base_value
)[ui
] = new_reg_base_value
[ui
];
3166 while (changed
&& ++pass
< MAX_ALIAS_LOOP_PASSES
);
3169 /* Fill in the remaining entries. */
3170 FOR_EACH_VEC_ELT (*reg_known_value
, i
, val
)
3172 int regno
= i
+ FIRST_PSEUDO_REGISTER
;
3174 set_reg_known_value (regno
, regno_reg_rtx
[regno
]);
3178 free (new_reg_base_value
);
3179 new_reg_base_value
= 0;
3180 sbitmap_free (reg_seen
);
3182 timevar_pop (TV_ALIAS_ANALYSIS
);
3185 /* Equate REG_BASE_VALUE (reg1) to REG_BASE_VALUE (reg2).
3186 Special API for var-tracking pass purposes. */
3189 vt_equate_reg_base_value (const_rtx reg1
, const_rtx reg2
)
3191 (*reg_base_value
)[REGNO (reg1
)] = REG_BASE_VALUE (reg2
);
3195 end_alias_analysis (void)
3197 old_reg_base_value
= reg_base_value
;
3198 vec_free (reg_known_value
);
3199 sbitmap_free (reg_known_equiv_p
);
3203 dump_alias_stats_in_alias_c (FILE *s
)
3205 fprintf (s
, " TBAA oracle: %llu disambiguations %llu queries\n"
3206 " %llu are in alias set 0\n"
3207 " %llu queries asked about the same object\n"
3208 " %llu queries asked about the same alias set\n"
3209 " %llu access volatile\n"
3210 " %llu are dependent in the DAG\n"
3211 " %llu are aritificially in conflict with void *\n",
3212 alias_stats
.num_disambiguated
,
3213 alias_stats
.num_alias_zero
+ alias_stats
.num_same_alias_set
3214 + alias_stats
.num_same_objects
+ alias_stats
.num_volatile
3215 + alias_stats
.num_dag
+ alias_stats
.num_disambiguated
3216 + alias_stats
.num_universal
,
3217 alias_stats
.num_alias_zero
, alias_stats
.num_same_alias_set
,
3218 alias_stats
.num_same_objects
, alias_stats
.num_volatile
,
3219 alias_stats
.num_dag
, alias_stats
.num_universal
);
3221 #include "gt-alias.h"