1 /* Optimize jump instructions, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997
3 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 /* This is the pathetic reminder of old fame of the jump-optimization pass
23 of the compiler. Now it contains basically set of utility function to
26 Each CODE_LABEL has a count of the times it is used
27 stored in the LABEL_NUSES internal field, and each JUMP_INSN
28 has one label that it refers to stored in the
29 JUMP_LABEL internal field. With this we can detect labels that
30 become unused because of the deletion of all the jumps that
31 formerly used them. The JUMP_LABEL info is sometimes looked
34 The subroutines delete_insn, redirect_jump, and invert_jump are used
35 from other passes as well. */
42 #include "hard-reg-set.h"
44 #include "insn-config.h"
45 #include "insn-attr.h"
55 /* Optimize jump y; x: ... y: jumpif... x?
56 Don't know if it is worth bothering with. */
57 /* Optimize two cases of conditional jump to conditional jump?
58 This can never delete any instruction or make anything dead,
59 or even change what is live at any point.
60 So perhaps let combiner do it. */
62 static int init_label_info
PARAMS ((rtx
));
63 static void mark_all_labels
PARAMS ((rtx
));
64 static int duplicate_loop_exit_test
PARAMS ((rtx
));
65 static void delete_computation
PARAMS ((rtx
));
66 static void redirect_exp_1
PARAMS ((rtx
*, rtx
, rtx
, rtx
));
67 static int redirect_exp
PARAMS ((rtx
, rtx
, rtx
));
68 static void invert_exp_1
PARAMS ((rtx
));
69 static int invert_exp
PARAMS ((rtx
));
70 static int returnjump_p_1
PARAMS ((rtx
*, void *));
71 static void delete_prior_computation
PARAMS ((rtx
, rtx
));
73 /* Alternate entry into the jump optimizer. This entry point only rebuilds
74 the JUMP_LABEL field in jumping insns and REG_LABEL notes in non-jumping
77 rebuild_jump_labels (f
)
83 max_uid
= init_label_info (f
) + 1;
87 /* Keep track of labels used from static data; we don't track them
88 closely enough to delete them here, so make sure their reference
89 count doesn't drop to zero. */
91 for (insn
= forced_labels
; insn
; insn
= XEXP (insn
, 1))
92 if (GET_CODE (XEXP (insn
, 0)) == CODE_LABEL
)
93 LABEL_NUSES (XEXP (insn
, 0))++;
96 /* Some old code expects exactly one BARRIER as the NEXT_INSN of a
97 non-fallthru insn. This is not generally true, as multiple barriers
98 may have crept in, or the BARRIER may be separated from the last
99 real insn by one or more NOTEs.
101 This simple pass moves barriers and removes duplicates so that the
107 rtx insn
, next
, prev
;
108 for (insn
= get_insns (); insn
; insn
= next
)
110 next
= NEXT_INSN (insn
);
111 if (GET_CODE (insn
) == BARRIER
)
113 prev
= prev_nonnote_insn (insn
);
114 if (GET_CODE (prev
) == BARRIER
)
115 delete_barrier (insn
);
116 else if (prev
!= PREV_INSN (insn
))
117 reorder_insns (insn
, insn
, prev
);
123 copy_loop_headers (f
)
127 /* Now iterate optimizing jumps until nothing changes over one pass. */
128 for (insn
= f
; insn
; insn
= next
)
132 next
= NEXT_INSN (insn
);
134 /* See if this is a NOTE_INSN_LOOP_BEG followed by an unconditional
135 jump. Try to optimize by duplicating the loop exit test if so.
136 This is only safe immediately after regscan, because it uses
137 the values of regno_first_uid and regno_last_uid. */
138 if (GET_CODE (insn
) == NOTE
139 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_BEG
140 && (temp1
= next_nonnote_insn (insn
)) != 0
141 && any_uncondjump_p (temp1
) && onlyjump_p (temp1
))
143 temp
= PREV_INSN (insn
);
144 if (duplicate_loop_exit_test (insn
))
146 next
= NEXT_INSN (temp
);
153 purge_line_number_notes (f
)
158 /* Delete extraneous line number notes.
159 Note that two consecutive notes for different lines are not really
160 extraneous. There should be some indication where that line belonged,
161 even if it became empty. */
163 for (insn
= f
; insn
; insn
= NEXT_INSN (insn
))
164 if (GET_CODE (insn
) == NOTE
)
166 if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_FUNCTION_BEG
)
167 /* Any previous line note was for the prologue; gdb wants a new
168 note after the prologue even if it is for the same line. */
169 last_note
= NULL_RTX
;
170 else if (NOTE_LINE_NUMBER (insn
) >= 0)
172 /* Delete this note if it is identical to previous note. */
174 && NOTE_SOURCE_FILE (insn
) == NOTE_SOURCE_FILE (last_note
)
175 && NOTE_LINE_NUMBER (insn
) == NOTE_LINE_NUMBER (last_note
))
177 delete_related_insns (insn
);
186 /* Initialize LABEL_NUSES and JUMP_LABEL fields. Delete any REG_LABEL
187 notes whose labels don't occur in the insn any more. Returns the
188 largest INSN_UID found. */
196 for (insn
= f
; insn
; insn
= NEXT_INSN (insn
))
198 if (GET_CODE (insn
) == CODE_LABEL
)
199 LABEL_NUSES (insn
) = (LABEL_PRESERVE_P (insn
) != 0);
200 else if (GET_CODE (insn
) == JUMP_INSN
)
201 JUMP_LABEL (insn
) = 0;
202 else if (GET_CODE (insn
) == INSN
|| GET_CODE (insn
) == CALL_INSN
)
206 for (note
= REG_NOTES (insn
); note
; note
= next
)
208 next
= XEXP (note
, 1);
209 if (REG_NOTE_KIND (note
) == REG_LABEL
210 && ! reg_mentioned_p (XEXP (note
, 0), PATTERN (insn
)))
211 remove_note (insn
, note
);
214 if (INSN_UID (insn
) > largest_uid
)
215 largest_uid
= INSN_UID (insn
);
221 /* Mark the label each jump jumps to.
222 Combine consecutive labels, and count uses of labels. */
230 for (insn
= f
; insn
; insn
= NEXT_INSN (insn
))
233 if (GET_CODE (insn
) == CALL_INSN
234 && GET_CODE (PATTERN (insn
)) == CALL_PLACEHOLDER
)
236 mark_all_labels (XEXP (PATTERN (insn
), 0));
237 mark_all_labels (XEXP (PATTERN (insn
), 1));
238 mark_all_labels (XEXP (PATTERN (insn
), 2));
240 /* Canonicalize the tail recursion label attached to the
241 CALL_PLACEHOLDER insn. */
242 if (XEXP (PATTERN (insn
), 3))
244 rtx label_ref
= gen_rtx_LABEL_REF (VOIDmode
,
245 XEXP (PATTERN (insn
), 3));
246 mark_jump_label (label_ref
, insn
, 0);
247 XEXP (PATTERN (insn
), 3) = XEXP (label_ref
, 0);
253 mark_jump_label (PATTERN (insn
), insn
, 0);
254 if (! INSN_DELETED_P (insn
) && GET_CODE (insn
) == JUMP_INSN
)
256 /* When we know the LABEL_REF contained in a REG used in
257 an indirect jump, we'll have a REG_LABEL note so that
258 flow can tell where it's going. */
259 if (JUMP_LABEL (insn
) == 0)
261 rtx label_note
= find_reg_note (insn
, REG_LABEL
, NULL_RTX
);
264 /* But a LABEL_REF around the REG_LABEL note, so
265 that we can canonicalize it. */
266 rtx label_ref
= gen_rtx_LABEL_REF (VOIDmode
,
267 XEXP (label_note
, 0));
269 mark_jump_label (label_ref
, insn
, 0);
270 XEXP (label_note
, 0) = XEXP (label_ref
, 0);
271 JUMP_LABEL (insn
) = XEXP (label_note
, 0);
278 /* LOOP_START is a NOTE_INSN_LOOP_BEG note that is followed by an unconditional
279 jump. Assume that this unconditional jump is to the exit test code. If
280 the code is sufficiently simple, make a copy of it before INSN,
281 followed by a jump to the exit of the loop. Then delete the unconditional
284 Return 1 if we made the change, else 0.
286 This is only safe immediately after a regscan pass because it uses the
287 values of regno_first_uid and regno_last_uid. */
290 duplicate_loop_exit_test (loop_start
)
293 rtx insn
, set
, reg
, p
, link
;
294 rtx copy
= 0, first_copy
= 0;
296 rtx exitcode
= NEXT_INSN (JUMP_LABEL (next_nonnote_insn (loop_start
)));
298 int max_reg
= max_reg_num ();
300 rtx loop_pre_header_label
;
302 /* Scan the exit code. We do not perform this optimization if any insn:
306 has a REG_RETVAL or REG_LIBCALL note (hard to adjust)
307 is a NOTE_INSN_LOOP_BEG because this means we have a nested loop
308 is a NOTE_INSN_BLOCK_{BEG,END} because duplicating these notes
311 We also do not do this if we find an insn with ASM_OPERANDS. While
312 this restriction should not be necessary, copying an insn with
313 ASM_OPERANDS can confuse asm_noperands in some cases.
315 Also, don't do this if the exit code is more than 20 insns. */
317 for (insn
= exitcode
;
319 && ! (GET_CODE (insn
) == NOTE
320 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_END
);
321 insn
= NEXT_INSN (insn
))
323 switch (GET_CODE (insn
))
329 /* We could be in front of the wrong NOTE_INSN_LOOP_END if there is
330 a jump immediately after the loop start that branches outside
331 the loop but within an outer loop, near the exit test.
332 If we copied this exit test and created a phony
333 NOTE_INSN_LOOP_VTOP, this could make instructions immediately
334 before the exit test look like these could be safely moved
335 out of the loop even if they actually may be never executed.
336 This can be avoided by checking here for NOTE_INSN_LOOP_CONT. */
338 if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_BEG
339 || NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_CONT
)
343 && (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_BLOCK_BEG
344 || NOTE_LINE_NUMBER (insn
) == NOTE_INSN_BLOCK_END
))
345 /* If we were to duplicate this code, we would not move
346 the BLOCK notes, and so debugging the moved code would
347 be difficult. Thus, we only move the code with -O2 or
354 /* The code below would grossly mishandle REG_WAS_0 notes,
355 so get rid of them here. */
356 while ((p
= find_reg_note (insn
, REG_WAS_0
, NULL_RTX
)) != 0)
357 remove_note (insn
, p
);
359 || find_reg_note (insn
, REG_RETVAL
, NULL_RTX
)
360 || find_reg_note (insn
, REG_LIBCALL
, NULL_RTX
))
368 /* Unless INSN is zero, we can do the optimization. */
374 /* See if any insn sets a register only used in the loop exit code and
375 not a user variable. If so, replace it with a new register. */
376 for (insn
= exitcode
; insn
!= lastexit
; insn
= NEXT_INSN (insn
))
377 if (GET_CODE (insn
) == INSN
378 && (set
= single_set (insn
)) != 0
379 && ((reg
= SET_DEST (set
), GET_CODE (reg
) == REG
)
380 || (GET_CODE (reg
) == SUBREG
381 && (reg
= SUBREG_REG (reg
), GET_CODE (reg
) == REG
)))
382 && REGNO (reg
) >= FIRST_PSEUDO_REGISTER
383 && REGNO_FIRST_UID (REGNO (reg
)) == INSN_UID (insn
))
385 for (p
= NEXT_INSN (insn
); p
!= lastexit
; p
= NEXT_INSN (p
))
386 if (REGNO_LAST_UID (REGNO (reg
)) == INSN_UID (p
))
391 /* We can do the replacement. Allocate reg_map if this is the
392 first replacement we found. */
394 reg_map
= (rtx
*) xcalloc (max_reg
, sizeof (rtx
));
396 REG_LOOP_TEST_P (reg
) = 1;
398 reg_map
[REGNO (reg
)] = gen_reg_rtx (GET_MODE (reg
));
401 loop_pre_header_label
= gen_label_rtx ();
403 /* Now copy each insn. */
404 for (insn
= exitcode
; insn
!= lastexit
; insn
= NEXT_INSN (insn
))
406 switch (GET_CODE (insn
))
409 copy
= emit_barrier_before (loop_start
);
412 /* Only copy line-number notes. */
413 if (NOTE_LINE_NUMBER (insn
) >= 0)
415 copy
= emit_note_before (NOTE_LINE_NUMBER (insn
), loop_start
);
416 NOTE_SOURCE_FILE (copy
) = NOTE_SOURCE_FILE (insn
);
421 copy
= emit_insn_before (copy_insn (PATTERN (insn
)), loop_start
);
423 replace_regs (PATTERN (copy
), reg_map
, max_reg
, 1);
425 mark_jump_label (PATTERN (copy
), copy
, 0);
427 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
429 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
430 if (REG_NOTE_KIND (link
) != REG_LABEL
)
432 if (GET_CODE (link
) == EXPR_LIST
)
434 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link
),
439 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link
),
444 if (reg_map
&& REG_NOTES (copy
))
445 replace_regs (REG_NOTES (copy
), reg_map
, max_reg
, 1);
449 copy
= emit_jump_insn_before (copy_insn (PATTERN (insn
)),
452 replace_regs (PATTERN (copy
), reg_map
, max_reg
, 1);
453 mark_jump_label (PATTERN (copy
), copy
, 0);
454 if (REG_NOTES (insn
))
456 REG_NOTES (copy
) = copy_insn_1 (REG_NOTES (insn
));
458 replace_regs (REG_NOTES (copy
), reg_map
, max_reg
, 1);
461 /* Predict conditional jump that do make loop looping as taken.
462 Other jumps are probably exit conditions, so predict
464 if (any_condjump_p (copy
))
466 rtx label
= JUMP_LABEL (copy
);
469 /* The jump_insn after loop_start should be followed
470 by barrier and loopback label. */
471 if (prev_nonnote_insn (label
)
472 && (prev_nonnote_insn (prev_nonnote_insn (label
))
473 == next_nonnote_insn (loop_start
)))
475 predict_insn_def (copy
, PRED_LOOP_HEADER
, TAKEN
);
476 /* To keep pre-header, we need to redirect all loop
477 entrances before the LOOP_BEG note. */
478 redirect_jump (copy
, loop_pre_header_label
, 0);
481 predict_insn_def (copy
, PRED_LOOP_HEADER
, NOT_TAKEN
);
490 /* Record the first insn we copied. We need it so that we can
491 scan the copied insns for new pseudo registers. */
496 /* Now clean up by emitting a jump to the end label and deleting the jump
497 at the start of the loop. */
498 if (! copy
|| GET_CODE (copy
) != BARRIER
)
500 copy
= emit_jump_insn_before (gen_jump (get_label_after (insn
)),
503 /* Record the first insn we copied. We need it so that we can
504 scan the copied insns for new pseudo registers. This may not
505 be strictly necessary since we should have copied at least one
506 insn above. But I am going to be safe. */
510 mark_jump_label (PATTERN (copy
), copy
, 0);
511 emit_barrier_before (loop_start
);
514 emit_label_before (loop_pre_header_label
, loop_start
);
516 /* Now scan from the first insn we copied to the last insn we copied
517 (copy) for new pseudo registers. Do this after the code to jump to
518 the end label since that might create a new pseudo too. */
519 reg_scan_update (first_copy
, copy
, max_reg
);
521 /* Mark the exit code as the virtual top of the converted loop. */
522 emit_note_before (NOTE_INSN_LOOP_VTOP
, exitcode
);
524 delete_related_insns (next_nonnote_insn (loop_start
));
533 /* Move all block-beg, block-end, loop-beg, loop-cont, loop-vtop, loop-end,
534 notes between START and END out before START. START and END may be such
535 notes. Returns the values of the new starting and ending insns, which
536 may be different if the original ones were such notes.
537 Return true if there were only such notes and no real instructions. */
540 squeeze_notes (startp
, endp
)
550 rtx past_end
= NEXT_INSN (end
);
552 for (insn
= start
; insn
!= past_end
; insn
= next
)
554 next
= NEXT_INSN (insn
);
555 if (GET_CODE (insn
) == NOTE
556 && (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_BLOCK_END
557 || NOTE_LINE_NUMBER (insn
) == NOTE_INSN_BLOCK_BEG
558 || NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_BEG
559 || NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_END
560 || NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_CONT
561 || NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_VTOP
))
567 rtx prev
= PREV_INSN (insn
);
568 PREV_INSN (insn
) = PREV_INSN (start
);
569 NEXT_INSN (insn
) = start
;
570 NEXT_INSN (PREV_INSN (insn
)) = insn
;
571 PREV_INSN (NEXT_INSN (insn
)) = insn
;
572 NEXT_INSN (prev
) = next
;
573 PREV_INSN (next
) = prev
;
580 /* There were no real instructions. */
581 if (start
== past_end
)
591 /* Return the label before INSN, or put a new label there. */
594 get_label_before (insn
)
599 /* Find an existing label at this point
600 or make a new one if there is none. */
601 label
= prev_nonnote_insn (insn
);
603 if (label
== 0 || GET_CODE (label
) != CODE_LABEL
)
605 rtx prev
= PREV_INSN (insn
);
607 label
= gen_label_rtx ();
608 emit_label_after (label
, prev
);
609 LABEL_NUSES (label
) = 0;
614 /* Return the label after INSN, or put a new label there. */
617 get_label_after (insn
)
622 /* Find an existing label at this point
623 or make a new one if there is none. */
624 label
= next_nonnote_insn (insn
);
626 if (label
== 0 || GET_CODE (label
) != CODE_LABEL
)
628 label
= gen_label_rtx ();
629 emit_label_after (label
, insn
);
630 LABEL_NUSES (label
) = 0;
635 /* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
636 of reversed comparison if it is possible to do so. Otherwise return UNKNOWN.
637 UNKNOWN may be returned in case we are having CC_MODE compare and we don't
638 know whether it's source is floating point or integer comparison. Machine
639 description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
640 to help this function avoid overhead in these cases. */
642 reversed_comparison_code_parts (code
, arg0
, arg1
, insn
)
643 rtx insn
, arg0
, arg1
;
646 enum machine_mode mode
;
648 /* If this is not actually a comparison, we can't reverse it. */
649 if (GET_RTX_CLASS (code
) != '<')
652 mode
= GET_MODE (arg0
);
653 if (mode
== VOIDmode
)
654 mode
= GET_MODE (arg1
);
656 /* First see if machine description supply us way to reverse the comparison.
657 Give it priority over everything else to allow machine description to do
659 #ifdef REVERSIBLE_CC_MODE
660 if (GET_MODE_CLASS (mode
) == MODE_CC
661 && REVERSIBLE_CC_MODE (mode
))
663 #ifdef REVERSE_CONDITION
664 return REVERSE_CONDITION (code
, mode
);
666 return reverse_condition (code
);
670 /* Try a few special cases based on the comparison code. */
679 /* It is always safe to reverse EQ and NE, even for the floating
680 point. Similary the unsigned comparisons are never used for
681 floating point so we can reverse them in the default way. */
682 return reverse_condition (code
);
687 /* In case we already see unordered comparison, we can be sure to
688 be dealing with floating point so we don't need any more tests. */
689 return reverse_condition_maybe_unordered (code
);
694 /* We don't have safe way to reverse these yet. */
700 if (GET_MODE_CLASS (mode
) == MODE_CC
707 /* Try to search for the comparison to determine the real mode.
708 This code is expensive, but with sane machine description it
709 will be never used, since REVERSIBLE_CC_MODE will return true
714 for (prev
= prev_nonnote_insn (insn
);
715 prev
!= 0 && GET_CODE (prev
) != CODE_LABEL
;
716 prev
= prev_nonnote_insn (prev
))
718 rtx set
= set_of (arg0
, prev
);
719 if (set
&& GET_CODE (set
) == SET
720 && rtx_equal_p (SET_DEST (set
), arg0
))
722 rtx src
= SET_SRC (set
);
724 if (GET_CODE (src
) == COMPARE
)
726 rtx comparison
= src
;
727 arg0
= XEXP (src
, 0);
728 mode
= GET_MODE (arg0
);
729 if (mode
== VOIDmode
)
730 mode
= GET_MODE (XEXP (comparison
, 1));
733 /* We can get past reg-reg moves. This may be useful for model
734 of i387 comparisons that first move flag registers around. */
741 /* If register is clobbered in some ununderstandable way,
748 /* Test for an integer condition, or a floating-point comparison
749 in which NaNs can be ignored. */
750 if (GET_CODE (arg0
) == CONST_INT
751 || (GET_MODE (arg0
) != VOIDmode
752 && GET_MODE_CLASS (mode
) != MODE_CC
753 && !HONOR_NANS (mode
)))
754 return reverse_condition (code
);
759 /* An wrapper around the previous function to take COMPARISON as rtx
760 expression. This simplifies many callers. */
762 reversed_comparison_code (comparison
, insn
)
763 rtx comparison
, insn
;
765 if (GET_RTX_CLASS (GET_CODE (comparison
)) != '<')
767 return reversed_comparison_code_parts (GET_CODE (comparison
),
768 XEXP (comparison
, 0),
769 XEXP (comparison
, 1), insn
);
772 /* Given an rtx-code for a comparison, return the code for the negated
773 comparison. If no such code exists, return UNKNOWN.
775 WATCH OUT! reverse_condition is not safe to use on a jump that might
776 be acting on the results of an IEEE floating point comparison, because
777 of the special treatment of non-signaling nans in comparisons.
778 Use reversed_comparison_code instead. */
781 reverse_condition (code
)
824 /* Similar, but we're allowed to generate unordered comparisons, which
825 makes it safe for IEEE floating-point. Of course, we have to recognize
826 that the target will support them too... */
829 reverse_condition_maybe_unordered (code
)
868 /* Similar, but return the code when two operands of a comparison are swapped.
869 This IS safe for IEEE floating-point. */
872 swap_condition (code
)
915 /* Given a comparison CODE, return the corresponding unsigned comparison.
916 If CODE is an equality comparison or already an unsigned comparison,
920 unsigned_condition (code
)
947 /* Similarly, return the signed version of a comparison. */
950 signed_condition (code
)
977 /* Return non-zero if CODE1 is more strict than CODE2, i.e., if the
978 truth of CODE1 implies the truth of CODE2. */
981 comparison_dominates_p (code1
, code2
)
982 enum rtx_code code1
, code2
;
984 /* UNKNOWN comparison codes can happen as a result of trying to revert
986 They can't match anything, so we have to reject them here. */
987 if (code1
== UNKNOWN
|| code2
== UNKNOWN
)
996 if (code2
== UNLE
|| code2
== UNGE
)
1001 if (code2
== LE
|| code2
== LEU
|| code2
== GE
|| code2
== GEU
1002 || code2
== ORDERED
)
1007 if (code2
== UNLE
|| code2
== NE
)
1012 if (code2
== LE
|| code2
== NE
|| code2
== ORDERED
|| code2
== LTGT
)
1017 if (code2
== UNGE
|| code2
== NE
)
1022 if (code2
== GE
|| code2
== NE
|| code2
== ORDERED
|| code2
== LTGT
)
1028 if (code2
== ORDERED
)
1033 if (code2
== NE
|| code2
== ORDERED
)
1038 if (code2
== LEU
|| code2
== NE
)
1043 if (code2
== GEU
|| code2
== NE
)
1048 if (code2
== NE
|| code2
== UNEQ
|| code2
== UNLE
|| code2
== UNLT
1049 || code2
== UNGE
|| code2
== UNGT
)
1060 /* Return 1 if INSN is an unconditional jump and nothing else. */
1066 return (GET_CODE (insn
) == JUMP_INSN
1067 && GET_CODE (PATTERN (insn
)) == SET
1068 && GET_CODE (SET_DEST (PATTERN (insn
))) == PC
1069 && GET_CODE (SET_SRC (PATTERN (insn
))) == LABEL_REF
);
1072 /* Return nonzero if INSN is a (possibly) conditional jump
1075 Use this function is deprecated, since we need to support combined
1076 branch and compare insns. Use any_condjump_p instead whenever possible. */
1082 rtx x
= PATTERN (insn
);
1084 if (GET_CODE (x
) != SET
1085 || GET_CODE (SET_DEST (x
)) != PC
)
1089 if (GET_CODE (x
) == LABEL_REF
)
1092 return (GET_CODE (x
) == IF_THEN_ELSE
1093 && ((GET_CODE (XEXP (x
, 2)) == PC
1094 && (GET_CODE (XEXP (x
, 1)) == LABEL_REF
1095 || GET_CODE (XEXP (x
, 1)) == RETURN
))
1096 || (GET_CODE (XEXP (x
, 1)) == PC
1097 && (GET_CODE (XEXP (x
, 2)) == LABEL_REF
1098 || GET_CODE (XEXP (x
, 2)) == RETURN
))));
1103 /* Return nonzero if INSN is a (possibly) conditional jump inside a
1106 Use this function is deprecated, since we need to support combined
1107 branch and compare insns. Use any_condjump_p instead whenever possible. */
1110 condjump_in_parallel_p (insn
)
1113 rtx x
= PATTERN (insn
);
1115 if (GET_CODE (x
) != PARALLEL
)
1118 x
= XVECEXP (x
, 0, 0);
1120 if (GET_CODE (x
) != SET
)
1122 if (GET_CODE (SET_DEST (x
)) != PC
)
1124 if (GET_CODE (SET_SRC (x
)) == LABEL_REF
)
1126 if (GET_CODE (SET_SRC (x
)) != IF_THEN_ELSE
)
1128 if (XEXP (SET_SRC (x
), 2) == pc_rtx
1129 && (GET_CODE (XEXP (SET_SRC (x
), 1)) == LABEL_REF
1130 || GET_CODE (XEXP (SET_SRC (x
), 1)) == RETURN
))
1132 if (XEXP (SET_SRC (x
), 1) == pc_rtx
1133 && (GET_CODE (XEXP (SET_SRC (x
), 2)) == LABEL_REF
1134 || GET_CODE (XEXP (SET_SRC (x
), 2)) == RETURN
))
1139 /* Return set of PC, otherwise NULL. */
1146 if (GET_CODE (insn
) != JUMP_INSN
)
1148 pat
= PATTERN (insn
);
1150 /* The set is allowed to appear either as the insn pattern or
1151 the first set in a PARALLEL. */
1152 if (GET_CODE (pat
) == PARALLEL
)
1153 pat
= XVECEXP (pat
, 0, 0);
1154 if (GET_CODE (pat
) == SET
&& GET_CODE (SET_DEST (pat
)) == PC
)
1160 /* Return true when insn is an unconditional direct jump,
1161 possibly bundled inside a PARALLEL. */
1164 any_uncondjump_p (insn
)
1167 rtx x
= pc_set (insn
);
1170 if (GET_CODE (SET_SRC (x
)) != LABEL_REF
)
1175 /* Return true when insn is a conditional jump. This function works for
1176 instructions containing PC sets in PARALLELs. The instruction may have
1177 various other effects so before removing the jump you must verify
1180 Note that unlike condjump_p it returns false for unconditional jumps. */
1183 any_condjump_p (insn
)
1186 rtx x
= pc_set (insn
);
1191 if (GET_CODE (SET_SRC (x
)) != IF_THEN_ELSE
)
1194 a
= GET_CODE (XEXP (SET_SRC (x
), 1));
1195 b
= GET_CODE (XEXP (SET_SRC (x
), 2));
1197 return ((b
== PC
&& (a
== LABEL_REF
|| a
== RETURN
))
1198 || (a
== PC
&& (b
== LABEL_REF
|| b
== RETURN
)));
1201 /* Return the label of a conditional jump. */
1204 condjump_label (insn
)
1207 rtx x
= pc_set (insn
);
1212 if (GET_CODE (x
) == LABEL_REF
)
1214 if (GET_CODE (x
) != IF_THEN_ELSE
)
1216 if (XEXP (x
, 2) == pc_rtx
&& GET_CODE (XEXP (x
, 1)) == LABEL_REF
)
1218 if (XEXP (x
, 1) == pc_rtx
&& GET_CODE (XEXP (x
, 2)) == LABEL_REF
)
1223 /* Return true if INSN is a (possibly conditional) return insn. */
1226 returnjump_p_1 (loc
, data
)
1228 void *data ATTRIBUTE_UNUSED
;
1232 return x
&& (GET_CODE (x
) == RETURN
1233 || (GET_CODE (x
) == SET
&& SET_IS_RETURN_P (x
)));
1240 if (GET_CODE (insn
) != JUMP_INSN
)
1242 return for_each_rtx (&PATTERN (insn
), returnjump_p_1
, NULL
);
1245 /* Return true if INSN is a jump that only transfers control and
1254 if (GET_CODE (insn
) != JUMP_INSN
)
1257 set
= single_set (insn
);
1260 if (GET_CODE (SET_DEST (set
)) != PC
)
1262 if (side_effects_p (SET_SRC (set
)))
1270 /* Return non-zero if X is an RTX that only sets the condition codes
1271 and has no side effects. */
1284 return sets_cc0_p (x
) == 1 && ! side_effects_p (x
);
1287 /* Return 1 if X is an RTX that does nothing but set the condition codes
1288 and CLOBBER or USE registers.
1289 Return -1 if X does explicitly set the condition codes,
1290 but also does other things. */
1303 if (GET_CODE (x
) == SET
&& SET_DEST (x
) == cc0_rtx
)
1305 if (GET_CODE (x
) == PARALLEL
)
1309 int other_things
= 0;
1310 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
1312 if (GET_CODE (XVECEXP (x
, 0, i
)) == SET
1313 && SET_DEST (XVECEXP (x
, 0, i
)) == cc0_rtx
)
1315 else if (GET_CODE (XVECEXP (x
, 0, i
)) == SET
)
1318 return ! sets_cc0
? 0 : other_things
? -1 : 1;
1324 /* Follow any unconditional jump at LABEL;
1325 return the ultimate label reached by any such chain of jumps.
1326 If LABEL is not followed by a jump, return LABEL.
1327 If the chain loops or we can't find end, return LABEL,
1328 since that tells caller to avoid changing the insn.
1330 If RELOAD_COMPLETED is 0, we do not chain across a NOTE_INSN_LOOP_BEG or
1331 a USE or CLOBBER. */
1334 follow_jumps (label
)
1344 && (insn
= next_active_insn (value
)) != 0
1345 && GET_CODE (insn
) == JUMP_INSN
1346 && ((JUMP_LABEL (insn
) != 0 && any_uncondjump_p (insn
)
1347 && onlyjump_p (insn
))
1348 || GET_CODE (PATTERN (insn
)) == RETURN
)
1349 && (next
= NEXT_INSN (insn
))
1350 && GET_CODE (next
) == BARRIER
);
1353 /* Don't chain through the insn that jumps into a loop
1354 from outside the loop,
1355 since that would create multiple loop entry jumps
1356 and prevent loop optimization. */
1358 if (!reload_completed
)
1359 for (tem
= value
; tem
!= insn
; tem
= NEXT_INSN (tem
))
1360 if (GET_CODE (tem
) == NOTE
1361 && (NOTE_LINE_NUMBER (tem
) == NOTE_INSN_LOOP_BEG
1362 /* ??? Optional. Disables some optimizations, but makes
1363 gcov output more accurate with -O. */
1364 || (flag_test_coverage
&& NOTE_LINE_NUMBER (tem
) > 0)))
1367 /* If we have found a cycle, make the insn jump to itself. */
1368 if (JUMP_LABEL (insn
) == label
)
1371 tem
= next_active_insn (JUMP_LABEL (insn
));
1372 if (tem
&& (GET_CODE (PATTERN (tem
)) == ADDR_VEC
1373 || GET_CODE (PATTERN (tem
)) == ADDR_DIFF_VEC
))
1376 value
= JUMP_LABEL (insn
);
1384 /* Find all CODE_LABELs referred to in X, and increment their use counts.
1385 If INSN is a JUMP_INSN and there is at least one CODE_LABEL referenced
1386 in INSN, then store one of them in JUMP_LABEL (INSN).
1387 If INSN is an INSN or a CALL_INSN and there is at least one CODE_LABEL
1388 referenced in INSN, add a REG_LABEL note containing that label to INSN.
1389 Also, when there are consecutive labels, canonicalize on the last of them.
1391 Note that two labels separated by a loop-beginning note
1392 must be kept distinct if we have not yet done loop-optimization,
1393 because the gap between them is where loop-optimize
1394 will want to move invariant code to. CROSS_JUMP tells us
1395 that loop-optimization is done with. */
1398 mark_jump_label (x
, insn
, in_mem
)
1403 RTX_CODE code
= GET_CODE (x
);
1427 /* If this is a constant-pool reference, see if it is a label. */
1428 if (CONSTANT_POOL_ADDRESS_P (x
))
1429 mark_jump_label (get_pool_constant (x
), insn
, in_mem
);
1434 rtx label
= XEXP (x
, 0);
1436 /* Ignore remaining references to unreachable labels that
1437 have been deleted. */
1438 if (GET_CODE (label
) == NOTE
1439 && NOTE_LINE_NUMBER (label
) == NOTE_INSN_DELETED_LABEL
)
1442 if (GET_CODE (label
) != CODE_LABEL
)
1445 /* Ignore references to labels of containing functions. */
1446 if (LABEL_REF_NONLOCAL_P (x
))
1449 XEXP (x
, 0) = label
;
1450 if (! insn
|| ! INSN_DELETED_P (insn
))
1451 ++LABEL_NUSES (label
);
1455 if (GET_CODE (insn
) == JUMP_INSN
)
1456 JUMP_LABEL (insn
) = label
;
1459 /* Add a REG_LABEL note for LABEL unless there already
1460 is one. All uses of a label, except for labels
1461 that are the targets of jumps, must have a
1463 if (! find_reg_note (insn
, REG_LABEL
, label
))
1464 REG_NOTES (insn
) = gen_rtx_INSN_LIST (REG_LABEL
, label
,
1471 /* Do walk the labels in a vector, but not the first operand of an
1472 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
1475 if (! INSN_DELETED_P (insn
))
1477 int eltnum
= code
== ADDR_DIFF_VEC
? 1 : 0;
1479 for (i
= 0; i
< XVECLEN (x
, eltnum
); i
++)
1480 mark_jump_label (XVECEXP (x
, eltnum
, i
), NULL_RTX
, in_mem
);
1488 fmt
= GET_RTX_FORMAT (code
);
1489 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1492 mark_jump_label (XEXP (x
, i
), insn
, in_mem
);
1493 else if (fmt
[i
] == 'E')
1496 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1497 mark_jump_label (XVECEXP (x
, i
, j
), insn
, in_mem
);
1502 /* If all INSN does is set the pc, delete it,
1503 and delete the insn that set the condition codes for it
1504 if that's what the previous thing was. */
1510 rtx set
= single_set (insn
);
1512 if (set
&& GET_CODE (SET_DEST (set
)) == PC
)
1513 delete_computation (insn
);
1516 /* Verify INSN is a BARRIER and delete it. */
1519 delete_barrier (insn
)
1522 if (GET_CODE (insn
) != BARRIER
)
1528 /* Recursively delete prior insns that compute the value (used only by INSN
1529 which the caller is deleting) stored in the register mentioned by NOTE
1530 which is a REG_DEAD note associated with INSN. */
1533 delete_prior_computation (note
, insn
)
1538 rtx reg
= XEXP (note
, 0);
1540 for (our_prev
= prev_nonnote_insn (insn
);
1541 our_prev
&& (GET_CODE (our_prev
) == INSN
1542 || GET_CODE (our_prev
) == CALL_INSN
);
1543 our_prev
= prev_nonnote_insn (our_prev
))
1545 rtx pat
= PATTERN (our_prev
);
1547 /* If we reach a CALL which is not calling a const function
1548 or the callee pops the arguments, then give up. */
1549 if (GET_CODE (our_prev
) == CALL_INSN
1550 && (! CONST_OR_PURE_CALL_P (our_prev
)
1551 || GET_CODE (pat
) != SET
|| GET_CODE (SET_SRC (pat
)) != CALL
))
1554 /* If we reach a SEQUENCE, it is too complex to try to
1555 do anything with it, so give up. */
1556 if (GET_CODE (pat
) == SEQUENCE
)
1559 if (GET_CODE (pat
) == USE
1560 && GET_CODE (XEXP (pat
, 0)) == INSN
)
1561 /* reorg creates USEs that look like this. We leave them
1562 alone because reorg needs them for its own purposes. */
1565 if (reg_set_p (reg
, pat
))
1567 if (side_effects_p (pat
) && GET_CODE (our_prev
) != CALL_INSN
)
1570 if (GET_CODE (pat
) == PARALLEL
)
1572 /* If we find a SET of something else, we can't
1577 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
1579 rtx part
= XVECEXP (pat
, 0, i
);
1581 if (GET_CODE (part
) == SET
1582 && SET_DEST (part
) != reg
)
1586 if (i
== XVECLEN (pat
, 0))
1587 delete_computation (our_prev
);
1589 else if (GET_CODE (pat
) == SET
1590 && GET_CODE (SET_DEST (pat
)) == REG
)
1592 int dest_regno
= REGNO (SET_DEST (pat
));
1595 + (dest_regno
< FIRST_PSEUDO_REGISTER
1596 ? HARD_REGNO_NREGS (dest_regno
,
1597 GET_MODE (SET_DEST (pat
))) : 1));
1598 int regno
= REGNO (reg
);
1601 + (regno
< FIRST_PSEUDO_REGISTER
1602 ? HARD_REGNO_NREGS (regno
, GET_MODE (reg
)) : 1));
1604 if (dest_regno
>= regno
1605 && dest_endregno
<= endregno
)
1606 delete_computation (our_prev
);
1608 /* We may have a multi-word hard register and some, but not
1609 all, of the words of the register are needed in subsequent
1610 insns. Write REG_UNUSED notes for those parts that were not
1612 else if (dest_regno
<= regno
1613 && dest_endregno
>= endregno
)
1617 REG_NOTES (our_prev
)
1618 = gen_rtx_EXPR_LIST (REG_UNUSED
, reg
,
1619 REG_NOTES (our_prev
));
1621 for (i
= dest_regno
; i
< dest_endregno
; i
++)
1622 if (! find_regno_note (our_prev
, REG_UNUSED
, i
))
1625 if (i
== dest_endregno
)
1626 delete_computation (our_prev
);
1633 /* If PAT references the register that dies here, it is an
1634 additional use. Hence any prior SET isn't dead. However, this
1635 insn becomes the new place for the REG_DEAD note. */
1636 if (reg_overlap_mentioned_p (reg
, pat
))
1638 XEXP (note
, 1) = REG_NOTES (our_prev
);
1639 REG_NOTES (our_prev
) = note
;
1645 /* Delete INSN and recursively delete insns that compute values used only
1646 by INSN. This uses the REG_DEAD notes computed during flow analysis.
1647 If we are running before flow.c, we need do nothing since flow.c will
1648 delete dead code. We also can't know if the registers being used are
1649 dead or not at this point.
1651 Otherwise, look at all our REG_DEAD notes. If a previous insn does
1652 nothing other than set a register that dies in this insn, we can delete
1655 On machines with CC0, if CC0 is used in this insn, we may be able to
1656 delete the insn that set it. */
1659 delete_computation (insn
)
1665 if (reg_referenced_p (cc0_rtx
, PATTERN (insn
)))
1667 rtx prev
= prev_nonnote_insn (insn
);
1668 /* We assume that at this stage
1669 CC's are always set explicitly
1670 and always immediately before the jump that
1671 will use them. So if the previous insn
1672 exists to set the CC's, delete it
1673 (unless it performs auto-increments, etc.). */
1674 if (prev
&& GET_CODE (prev
) == INSN
1675 && sets_cc0_p (PATTERN (prev
)))
1677 if (sets_cc0_p (PATTERN (prev
)) > 0
1678 && ! side_effects_p (PATTERN (prev
)))
1679 delete_computation (prev
);
1681 /* Otherwise, show that cc0 won't be used. */
1682 REG_NOTES (prev
) = gen_rtx_EXPR_LIST (REG_UNUSED
,
1683 cc0_rtx
, REG_NOTES (prev
));
1688 for (note
= REG_NOTES (insn
); note
; note
= next
)
1690 next
= XEXP (note
, 1);
1692 if (REG_NOTE_KIND (note
) != REG_DEAD
1693 /* Verify that the REG_NOTE is legitimate. */
1694 || GET_CODE (XEXP (note
, 0)) != REG
)
1697 delete_prior_computation (note
, insn
);
1700 delete_related_insns (insn
);
1703 /* Delete insn INSN from the chain of insns and update label ref counts
1704 and delete insns now unreachable.
1706 Returns the first insn after INSN that was not deleted.
1708 Usage of this instruction is deprecated. Use delete_insn instead and
1709 subsequent cfg_cleanup pass to delete unreachable code if needed. */
1712 delete_related_insns (insn
)
1715 int was_code_label
= (GET_CODE (insn
) == CODE_LABEL
);
1717 rtx next
= NEXT_INSN (insn
), prev
= PREV_INSN (insn
);
1719 while (next
&& INSN_DELETED_P (next
))
1720 next
= NEXT_INSN (next
);
1722 /* This insn is already deleted => return first following nondeleted. */
1723 if (INSN_DELETED_P (insn
))
1728 /* If instruction is followed by a barrier,
1729 delete the barrier too. */
1731 if (next
!= 0 && GET_CODE (next
) == BARRIER
)
1734 /* If deleting a jump, decrement the count of the label,
1735 and delete the label if it is now unused. */
1737 if (GET_CODE (insn
) == JUMP_INSN
&& JUMP_LABEL (insn
))
1739 rtx lab
= JUMP_LABEL (insn
), lab_next
;
1741 if (LABEL_NUSES (lab
) == 0)
1743 /* This can delete NEXT or PREV,
1744 either directly if NEXT is JUMP_LABEL (INSN),
1745 or indirectly through more levels of jumps. */
1746 delete_related_insns (lab
);
1748 /* I feel a little doubtful about this loop,
1749 but I see no clean and sure alternative way
1750 to find the first insn after INSN that is not now deleted.
1751 I hope this works. */
1752 while (next
&& INSN_DELETED_P (next
))
1753 next
= NEXT_INSN (next
);
1756 else if ((lab_next
= next_nonnote_insn (lab
)) != NULL
1757 && GET_CODE (lab_next
) == JUMP_INSN
1758 && (GET_CODE (PATTERN (lab_next
)) == ADDR_VEC
1759 || GET_CODE (PATTERN (lab_next
)) == ADDR_DIFF_VEC
))
1761 /* If we're deleting the tablejump, delete the dispatch table.
1762 We may not be able to kill the label immediately preceding
1763 just yet, as it might be referenced in code leading up to
1765 delete_related_insns (lab_next
);
1769 /* Likewise if we're deleting a dispatch table. */
1771 if (GET_CODE (insn
) == JUMP_INSN
1772 && (GET_CODE (PATTERN (insn
)) == ADDR_VEC
1773 || GET_CODE (PATTERN (insn
)) == ADDR_DIFF_VEC
))
1775 rtx pat
= PATTERN (insn
);
1776 int i
, diff_vec_p
= GET_CODE (pat
) == ADDR_DIFF_VEC
;
1777 int len
= XVECLEN (pat
, diff_vec_p
);
1779 for (i
= 0; i
< len
; i
++)
1780 if (LABEL_NUSES (XEXP (XVECEXP (pat
, diff_vec_p
, i
), 0)) == 0)
1781 delete_related_insns (XEXP (XVECEXP (pat
, diff_vec_p
, i
), 0));
1782 while (next
&& INSN_DELETED_P (next
))
1783 next
= NEXT_INSN (next
);
1787 /* Likewise for an ordinary INSN / CALL_INSN with a REG_LABEL note. */
1788 if (GET_CODE (insn
) == INSN
|| GET_CODE (insn
) == CALL_INSN
)
1789 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
1790 if (REG_NOTE_KIND (note
) == REG_LABEL
1791 /* This could also be a NOTE_INSN_DELETED_LABEL note. */
1792 && GET_CODE (XEXP (note
, 0)) == CODE_LABEL
)
1793 if (LABEL_NUSES (XEXP (note
, 0)) == 0)
1794 delete_related_insns (XEXP (note
, 0));
1796 while (prev
&& (INSN_DELETED_P (prev
) || GET_CODE (prev
) == NOTE
))
1797 prev
= PREV_INSN (prev
);
1799 /* If INSN was a label and a dispatch table follows it,
1800 delete the dispatch table. The tablejump must have gone already.
1801 It isn't useful to fall through into a table. */
1804 && NEXT_INSN (insn
) != 0
1805 && GET_CODE (NEXT_INSN (insn
)) == JUMP_INSN
1806 && (GET_CODE (PATTERN (NEXT_INSN (insn
))) == ADDR_VEC
1807 || GET_CODE (PATTERN (NEXT_INSN (insn
))) == ADDR_DIFF_VEC
))
1808 next
= delete_related_insns (NEXT_INSN (insn
));
1810 /* If INSN was a label, delete insns following it if now unreachable. */
1812 if (was_code_label
&& prev
&& GET_CODE (prev
) == BARRIER
)
1816 && (GET_RTX_CLASS (code
= GET_CODE (next
)) == 'i'
1817 || code
== NOTE
|| code
== BARRIER
1818 || (code
== CODE_LABEL
&& INSN_DELETED_P (next
))))
1821 && NOTE_LINE_NUMBER (next
) != NOTE_INSN_FUNCTION_END
)
1822 next
= NEXT_INSN (next
);
1823 /* Keep going past other deleted labels to delete what follows. */
1824 else if (code
== CODE_LABEL
&& INSN_DELETED_P (next
))
1825 next
= NEXT_INSN (next
);
1827 /* Note: if this deletes a jump, it can cause more
1828 deletion of unreachable code, after a different label.
1829 As long as the value from this recursive call is correct,
1830 this invocation functions correctly. */
1831 next
= delete_related_insns (next
);
1838 /* Advance from INSN till reaching something not deleted
1839 then return that. May return INSN itself. */
1842 next_nondeleted_insn (insn
)
1845 while (INSN_DELETED_P (insn
))
1846 insn
= NEXT_INSN (insn
);
1850 /* Delete a range of insns from FROM to TO, inclusive.
1851 This is for the sake of peephole optimization, so assume
1852 that whatever these insns do will still be done by a new
1853 peephole insn that will replace them. */
1856 delete_for_peephole (from
, to
)
1863 rtx next
= NEXT_INSN (insn
);
1864 rtx prev
= PREV_INSN (insn
);
1866 if (GET_CODE (insn
) != NOTE
)
1868 INSN_DELETED_P (insn
) = 1;
1870 /* Patch this insn out of the chain. */
1871 /* We don't do this all at once, because we
1872 must preserve all NOTEs. */
1874 NEXT_INSN (prev
) = next
;
1877 PREV_INSN (next
) = prev
;
1885 /* Note that if TO is an unconditional jump
1886 we *do not* delete the BARRIER that follows,
1887 since the peephole that replaces this sequence
1888 is also an unconditional jump in that case. */
1891 /* We have determined that INSN is never reached, and are about to
1892 delete it. Print a warning if the user asked for one.
1894 To try to make this warning more useful, this should only be called
1895 once per basic block not reached, and it only warns when the basic
1896 block contains more than one line from the current function, and
1897 contains at least one operation. CSE and inlining can duplicate insns,
1898 so it's possible to get spurious warnings from this. */
1901 never_reached_warning (avoided_insn
, finish
)
1902 rtx avoided_insn
, finish
;
1905 rtx a_line_note
= NULL
;
1906 int two_avoided_lines
= 0, contains_insn
= 0, reached_end
= 0;
1908 if (! warn_notreached
)
1911 /* Scan forwards, looking at LINE_NUMBER notes, until
1912 we hit a LABEL or we run out of insns. */
1914 for (insn
= avoided_insn
; insn
!= NULL
; insn
= NEXT_INSN (insn
))
1916 if (finish
== NULL
&& GET_CODE (insn
) == CODE_LABEL
)
1919 if (GET_CODE (insn
) == NOTE
/* A line number note? */
1920 && NOTE_LINE_NUMBER (insn
) >= 0)
1922 if (a_line_note
== NULL
)
1925 two_avoided_lines
|= (NOTE_LINE_NUMBER (a_line_note
)
1926 != NOTE_LINE_NUMBER (insn
));
1928 else if (INSN_P (insn
))
1938 if (two_avoided_lines
&& contains_insn
)
1939 warning_with_file_and_line (NOTE_SOURCE_FILE (a_line_note
),
1940 NOTE_LINE_NUMBER (a_line_note
),
1941 "will never be executed");
1944 /* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
1945 NLABEL as a return. Accrue modifications into the change group. */
1948 redirect_exp_1 (loc
, olabel
, nlabel
, insn
)
1954 RTX_CODE code
= GET_CODE (x
);
1958 if (code
== LABEL_REF
)
1960 if (XEXP (x
, 0) == olabel
)
1964 n
= gen_rtx_LABEL_REF (VOIDmode
, nlabel
);
1966 n
= gen_rtx_RETURN (VOIDmode
);
1968 validate_change (insn
, loc
, n
, 1);
1972 else if (code
== RETURN
&& olabel
== 0)
1974 x
= gen_rtx_LABEL_REF (VOIDmode
, nlabel
);
1975 if (loc
== &PATTERN (insn
))
1976 x
= gen_rtx_SET (VOIDmode
, pc_rtx
, x
);
1977 validate_change (insn
, loc
, x
, 1);
1981 if (code
== SET
&& nlabel
== 0 && SET_DEST (x
) == pc_rtx
1982 && GET_CODE (SET_SRC (x
)) == LABEL_REF
1983 && XEXP (SET_SRC (x
), 0) == olabel
)
1985 validate_change (insn
, loc
, gen_rtx_RETURN (VOIDmode
), 1);
1989 fmt
= GET_RTX_FORMAT (code
);
1990 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1993 redirect_exp_1 (&XEXP (x
, i
), olabel
, nlabel
, insn
);
1994 else if (fmt
[i
] == 'E')
1997 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1998 redirect_exp_1 (&XVECEXP (x
, i
, j
), olabel
, nlabel
, insn
);
2003 /* Similar, but apply the change group and report success or failure. */
2006 redirect_exp (olabel
, nlabel
, insn
)
2012 if (GET_CODE (PATTERN (insn
)) == PARALLEL
)
2013 loc
= &XVECEXP (PATTERN (insn
), 0, 0);
2015 loc
= &PATTERN (insn
);
2017 redirect_exp_1 (loc
, olabel
, nlabel
, insn
);
2018 if (num_validated_changes () == 0)
2021 return apply_change_group ();
2024 /* Make JUMP go to NLABEL instead of where it jumps now. Accrue
2025 the modifications into the change group. Return false if we did
2026 not see how to do that. */
2029 redirect_jump_1 (jump
, nlabel
)
2032 int ochanges
= num_validated_changes ();
2035 if (GET_CODE (PATTERN (jump
)) == PARALLEL
)
2036 loc
= &XVECEXP (PATTERN (jump
), 0, 0);
2038 loc
= &PATTERN (jump
);
2040 redirect_exp_1 (loc
, JUMP_LABEL (jump
), nlabel
, jump
);
2041 return num_validated_changes () > ochanges
;
2044 /* Make JUMP go to NLABEL instead of where it jumps now. If the old
2045 jump target label is unused as a result, it and the code following
2048 If NLABEL is zero, we are to turn the jump into a (possibly conditional)
2051 The return value will be 1 if the change was made, 0 if it wasn't
2052 (this can only occur for NLABEL == 0). */
2055 redirect_jump (jump
, nlabel
, delete_unused
)
2059 rtx olabel
= JUMP_LABEL (jump
);
2061 if (nlabel
== olabel
)
2064 if (! redirect_exp (olabel
, nlabel
, jump
))
2067 JUMP_LABEL (jump
) = nlabel
;
2069 ++LABEL_NUSES (nlabel
);
2071 /* If we're eliding the jump over exception cleanups at the end of a
2072 function, move the function end note so that -Wreturn-type works. */
2073 if (olabel
&& nlabel
2074 && NEXT_INSN (olabel
)
2075 && GET_CODE (NEXT_INSN (olabel
)) == NOTE
2076 && NOTE_LINE_NUMBER (NEXT_INSN (olabel
)) == NOTE_INSN_FUNCTION_END
)
2077 emit_note_after (NOTE_INSN_FUNCTION_END
, nlabel
);
2079 if (olabel
&& --LABEL_NUSES (olabel
) == 0 && delete_unused
2080 /* Undefined labels will remain outside the insn stream. */
2081 && INSN_UID (olabel
))
2082 delete_related_insns (olabel
);
2087 /* Invert the jump condition of rtx X contained in jump insn, INSN.
2088 Accrue the modifications into the change group. */
2095 rtx x
= pc_set (insn
);
2101 code
= GET_CODE (x
);
2103 if (code
== IF_THEN_ELSE
)
2105 rtx comp
= XEXP (x
, 0);
2107 enum rtx_code reversed_code
;
2109 /* We can do this in two ways: The preferable way, which can only
2110 be done if this is not an integer comparison, is to reverse
2111 the comparison code. Otherwise, swap the THEN-part and ELSE-part
2112 of the IF_THEN_ELSE. If we can't do either, fail. */
2114 reversed_code
= reversed_comparison_code (comp
, insn
);
2116 if (reversed_code
!= UNKNOWN
)
2118 validate_change (insn
, &XEXP (x
, 0),
2119 gen_rtx_fmt_ee (reversed_code
,
2120 GET_MODE (comp
), XEXP (comp
, 0),
2127 validate_change (insn
, &XEXP (x
, 1), XEXP (x
, 2), 1);
2128 validate_change (insn
, &XEXP (x
, 2), tem
, 1);
2134 /* Invert the jump condition of conditional jump insn, INSN.
2136 Return 1 if we can do so, 0 if we cannot find a way to do so that
2137 matches a pattern. */
2143 invert_exp_1 (insn
);
2144 if (num_validated_changes () == 0)
2147 return apply_change_group ();
2150 /* Invert the condition of the jump JUMP, and make it jump to label
2151 NLABEL instead of where it jumps now. Accrue changes into the
2152 change group. Return false if we didn't see how to perform the
2153 inversion and redirection. */
2156 invert_jump_1 (jump
, nlabel
)
2161 ochanges
= num_validated_changes ();
2162 invert_exp_1 (jump
);
2163 if (num_validated_changes () == ochanges
)
2166 return redirect_jump_1 (jump
, nlabel
);
2169 /* Invert the condition of the jump JUMP, and make it jump to label
2170 NLABEL instead of where it jumps now. Return true if successful. */
2173 invert_jump (jump
, nlabel
, delete_unused
)
2177 /* We have to either invert the condition and change the label or
2178 do neither. Either operation could fail. We first try to invert
2179 the jump. If that succeeds, we try changing the label. If that fails,
2180 we invert the jump back to what it was. */
2182 if (! invert_exp (jump
))
2185 if (redirect_jump (jump
, nlabel
, delete_unused
))
2187 invert_br_probabilities (jump
);
2192 if (! invert_exp (jump
))
2193 /* This should just be putting it back the way it was. */
2200 /* Like rtx_equal_p except that it considers two REGs as equal
2201 if they renumber to the same value and considers two commutative
2202 operations to be the same if the order of the operands has been
2205 ??? Addition is not commutative on the PA due to the weird implicit
2206 space register selection rules for memory addresses. Therefore, we
2207 don't consider a + b == b + a.
2209 We could/should make this test a little tighter. Possibly only
2210 disabling it on the PA via some backend macro or only disabling this
2211 case when the PLUS is inside a MEM. */
2214 rtx_renumbered_equal_p (x
, y
)
2218 RTX_CODE code
= GET_CODE (x
);
2224 if ((code
== REG
|| (code
== SUBREG
&& GET_CODE (SUBREG_REG (x
)) == REG
))
2225 && (GET_CODE (y
) == REG
|| (GET_CODE (y
) == SUBREG
2226 && GET_CODE (SUBREG_REG (y
)) == REG
)))
2228 int reg_x
= -1, reg_y
= -1;
2229 int byte_x
= 0, byte_y
= 0;
2231 if (GET_MODE (x
) != GET_MODE (y
))
2234 /* If we haven't done any renumbering, don't
2235 make any assumptions. */
2236 if (reg_renumber
== 0)
2237 return rtx_equal_p (x
, y
);
2241 reg_x
= REGNO (SUBREG_REG (x
));
2242 byte_x
= SUBREG_BYTE (x
);
2244 if (reg_renumber
[reg_x
] >= 0)
2246 reg_x
= subreg_regno_offset (reg_renumber
[reg_x
],
2247 GET_MODE (SUBREG_REG (x
)),
2256 if (reg_renumber
[reg_x
] >= 0)
2257 reg_x
= reg_renumber
[reg_x
];
2260 if (GET_CODE (y
) == SUBREG
)
2262 reg_y
= REGNO (SUBREG_REG (y
));
2263 byte_y
= SUBREG_BYTE (y
);
2265 if (reg_renumber
[reg_y
] >= 0)
2267 reg_y
= subreg_regno_offset (reg_renumber
[reg_y
],
2268 GET_MODE (SUBREG_REG (y
)),
2277 if (reg_renumber
[reg_y
] >= 0)
2278 reg_y
= reg_renumber
[reg_y
];
2281 return reg_x
>= 0 && reg_x
== reg_y
&& byte_x
== byte_y
;
2284 /* Now we have disposed of all the cases
2285 in which different rtx codes can match. */
2286 if (code
!= GET_CODE (y
))
2298 return INTVAL (x
) == INTVAL (y
);
2301 /* We can't assume nonlocal labels have their following insns yet. */
2302 if (LABEL_REF_NONLOCAL_P (x
) || LABEL_REF_NONLOCAL_P (y
))
2303 return XEXP (x
, 0) == XEXP (y
, 0);
2305 /* Two label-refs are equivalent if they point at labels
2306 in the same position in the instruction stream. */
2307 return (next_real_insn (XEXP (x
, 0))
2308 == next_real_insn (XEXP (y
, 0)));
2311 return XSTR (x
, 0) == XSTR (y
, 0);
2314 /* If we didn't match EQ equality above, they aren't the same. */
2321 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2323 if (GET_MODE (x
) != GET_MODE (y
))
2326 /* For commutative operations, the RTX match if the operand match in any
2327 order. Also handle the simple binary and unary cases without a loop.
2329 ??? Don't consider PLUS a commutative operator; see comments above. */
2330 if ((code
== EQ
|| code
== NE
|| GET_RTX_CLASS (code
) == 'c')
2332 return ((rtx_renumbered_equal_p (XEXP (x
, 0), XEXP (y
, 0))
2333 && rtx_renumbered_equal_p (XEXP (x
, 1), XEXP (y
, 1)))
2334 || (rtx_renumbered_equal_p (XEXP (x
, 0), XEXP (y
, 1))
2335 && rtx_renumbered_equal_p (XEXP (x
, 1), XEXP (y
, 0))));
2336 else if (GET_RTX_CLASS (code
) == '<' || GET_RTX_CLASS (code
) == '2')
2337 return (rtx_renumbered_equal_p (XEXP (x
, 0), XEXP (y
, 0))
2338 && rtx_renumbered_equal_p (XEXP (x
, 1), XEXP (y
, 1)));
2339 else if (GET_RTX_CLASS (code
) == '1')
2340 return rtx_renumbered_equal_p (XEXP (x
, 0), XEXP (y
, 0));
2342 /* Compare the elements. If any pair of corresponding elements
2343 fail to match, return 0 for the whole things. */
2345 fmt
= GET_RTX_FORMAT (code
);
2346 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2352 if (XWINT (x
, i
) != XWINT (y
, i
))
2357 if (XINT (x
, i
) != XINT (y
, i
))
2362 if (XTREE (x
, i
) != XTREE (y
, i
))
2367 if (strcmp (XSTR (x
, i
), XSTR (y
, i
)))
2372 if (! rtx_renumbered_equal_p (XEXP (x
, i
), XEXP (y
, i
)))
2377 if (XEXP (x
, i
) != XEXP (y
, i
))
2384 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
2386 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
2387 if (!rtx_renumbered_equal_p (XVECEXP (x
, i
, j
), XVECEXP (y
, i
, j
)))
2398 /* If X is a hard register or equivalent to one or a subregister of one,
2399 return the hard register number. If X is a pseudo register that was not
2400 assigned a hard register, return the pseudo register number. Otherwise,
2401 return -1. Any rtx is valid for X. */
2407 if (GET_CODE (x
) == REG
)
2409 if (REGNO (x
) >= FIRST_PSEUDO_REGISTER
&& reg_renumber
[REGNO (x
)] >= 0)
2410 return reg_renumber
[REGNO (x
)];
2413 if (GET_CODE (x
) == SUBREG
)
2415 int base
= true_regnum (SUBREG_REG (x
));
2416 if (base
>= 0 && base
< FIRST_PSEUDO_REGISTER
)
2417 return base
+ subreg_regno_offset (REGNO (SUBREG_REG (x
)),
2418 GET_MODE (SUBREG_REG (x
)),
2419 SUBREG_BYTE (x
), GET_MODE (x
));