2002-04-30 Mark Mitchell <mark@codesourcery.com>
[official-gcc.git] / gcc / flow.c
blob380c3d3421d7e4700d12066097a133040330f59c
1 /* Data flow analysis for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file contains the data flow analysis pass of the compiler. It
23 computes data flow information which tells combine_instructions
24 which insns to consider combining and controls register allocation.
26 Additional data flow information that is too bulky to record is
27 generated during the analysis, and is used at that time to create
28 autoincrement and autodecrement addressing.
30 The first step is dividing the function into basic blocks.
31 find_basic_blocks does this. Then life_analysis determines
32 where each register is live and where it is dead.
34 ** find_basic_blocks **
36 find_basic_blocks divides the current function's rtl into basic
37 blocks and constructs the CFG. The blocks are recorded in the
38 basic_block_info array; the CFG exists in the edge structures
39 referenced by the blocks.
41 find_basic_blocks also finds any unreachable loops and deletes them.
43 ** life_analysis **
45 life_analysis is called immediately after find_basic_blocks.
46 It uses the basic block information to determine where each
47 hard or pseudo register is live.
49 ** live-register info **
51 The information about where each register is live is in two parts:
52 the REG_NOTES of insns, and the vector basic_block->global_live_at_start.
54 basic_block->global_live_at_start has an element for each basic
55 block, and the element is a bit-vector with a bit for each hard or
56 pseudo register. The bit is 1 if the register is live at the
57 beginning of the basic block.
59 Two types of elements can be added to an insn's REG_NOTES.
60 A REG_DEAD note is added to an insn's REG_NOTES for any register
61 that meets both of two conditions: The value in the register is not
62 needed in subsequent insns and the insn does not replace the value in
63 the register (in the case of multi-word hard registers, the value in
64 each register must be replaced by the insn to avoid a REG_DEAD note).
66 In the vast majority of cases, an object in a REG_DEAD note will be
67 used somewhere in the insn. The (rare) exception to this is if an
68 insn uses a multi-word hard register and only some of the registers are
69 needed in subsequent insns. In that case, REG_DEAD notes will be
70 provided for those hard registers that are not subsequently needed.
71 Partial REG_DEAD notes of this type do not occur when an insn sets
72 only some of the hard registers used in such a multi-word operand;
73 omitting REG_DEAD notes for objects stored in an insn is optional and
74 the desire to do so does not justify the complexity of the partial
75 REG_DEAD notes.
77 REG_UNUSED notes are added for each register that is set by the insn
78 but is unused subsequently (if every register set by the insn is unused
79 and the insn does not reference memory or have some other side-effect,
80 the insn is deleted instead). If only part of a multi-word hard
81 register is used in a subsequent insn, REG_UNUSED notes are made for
82 the parts that will not be used.
84 To determine which registers are live after any insn, one can
85 start from the beginning of the basic block and scan insns, noting
86 which registers are set by each insn and which die there.
88 ** Other actions of life_analysis **
90 life_analysis sets up the LOG_LINKS fields of insns because the
91 information needed to do so is readily available.
93 life_analysis deletes insns whose only effect is to store a value
94 that is never used.
96 life_analysis notices cases where a reference to a register as
97 a memory address can be combined with a preceding or following
98 incrementation or decrementation of the register. The separate
99 instruction to increment or decrement is deleted and the address
100 is changed to a POST_INC or similar rtx.
102 Each time an incrementing or decrementing address is created,
103 a REG_INC element is added to the insn's REG_NOTES list.
105 life_analysis fills in certain vectors containing information about
106 register usage: REG_N_REFS, REG_N_DEATHS, REG_N_SETS, REG_LIVE_LENGTH,
107 REG_N_CALLS_CROSSED and REG_BASIC_BLOCK.
109 life_analysis sets current_function_sp_is_unchanging if the function
110 doesn't modify the stack pointer. */
112 /* TODO:
114 Split out from life_analysis:
115 - local property discovery (bb->local_live, bb->local_set)
116 - global property computation
117 - log links creation
118 - pre/post modify transformation
121 #include "config.h"
122 #include "system.h"
123 #include "tree.h"
124 #include "rtl.h"
125 #include "tm_p.h"
126 #include "hard-reg-set.h"
127 #include "basic-block.h"
128 #include "insn-config.h"
129 #include "regs.h"
130 #include "flags.h"
131 #include "output.h"
132 #include "function.h"
133 #include "except.h"
134 #include "toplev.h"
135 #include "recog.h"
136 #include "expr.h"
137 #include "ssa.h"
138 #include "timevar.h"
140 #include "obstack.h"
141 #include "splay-tree.h"
143 #define obstack_chunk_alloc xmalloc
144 #define obstack_chunk_free free
146 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
147 the stack pointer does not matter. The value is tested only in
148 functions that have frame pointers.
149 No definition is equivalent to always zero. */
150 #ifndef EXIT_IGNORE_STACK
151 #define EXIT_IGNORE_STACK 0
152 #endif
154 #ifndef HAVE_epilogue
155 #define HAVE_epilogue 0
156 #endif
157 #ifndef HAVE_prologue
158 #define HAVE_prologue 0
159 #endif
160 #ifndef HAVE_sibcall_epilogue
161 #define HAVE_sibcall_epilogue 0
162 #endif
164 #ifndef LOCAL_REGNO
165 #define LOCAL_REGNO(REGNO) 0
166 #endif
167 #ifndef EPILOGUE_USES
168 #define EPILOGUE_USES(REGNO) 0
169 #endif
170 #ifndef EH_USES
171 #define EH_USES(REGNO) 0
172 #endif
174 #ifdef HAVE_conditional_execution
175 #ifndef REVERSE_CONDEXEC_PREDICATES_P
176 #define REVERSE_CONDEXEC_PREDICATES_P(x, y) ((x) == reverse_condition (y))
177 #endif
178 #endif
180 /* Nonzero if the second flow pass has completed. */
181 int flow2_completed;
183 /* Maximum register number used in this function, plus one. */
185 int max_regno;
187 /* Indexed by n, giving various register information */
189 varray_type reg_n_info;
191 /* Size of a regset for the current function,
192 in (1) bytes and (2) elements. */
194 int regset_bytes;
195 int regset_size;
197 /* Regset of regs live when calls to `setjmp'-like functions happen. */
198 /* ??? Does this exist only for the setjmp-clobbered warning message? */
200 regset regs_live_at_setjmp;
202 /* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
203 that have to go in the same hard reg.
204 The first two regs in the list are a pair, and the next two
205 are another pair, etc. */
206 rtx regs_may_share;
208 /* Callback that determines if it's ok for a function to have no
209 noreturn attribute. */
210 int (*lang_missing_noreturn_ok_p) PARAMS ((tree));
212 /* Set of registers that may be eliminable. These are handled specially
213 in updating regs_ever_live. */
215 static HARD_REG_SET elim_reg_set;
217 /* Holds information for tracking conditional register life information. */
218 struct reg_cond_life_info
220 /* A boolean expression of conditions under which a register is dead. */
221 rtx condition;
222 /* Conditions under which a register is dead at the basic block end. */
223 rtx orig_condition;
225 /* A boolean expression of conditions under which a register has been
226 stored into. */
227 rtx stores;
229 /* ??? Could store mask of bytes that are dead, so that we could finally
230 track lifetimes of multi-word registers accessed via subregs. */
233 /* For use in communicating between propagate_block and its subroutines.
234 Holds all information needed to compute life and def-use information. */
236 struct propagate_block_info
238 /* The basic block we're considering. */
239 basic_block bb;
241 /* Bit N is set if register N is conditionally or unconditionally live. */
242 regset reg_live;
244 /* Bit N is set if register N is set this insn. */
245 regset new_set;
247 /* Element N is the next insn that uses (hard or pseudo) register N
248 within the current basic block; or zero, if there is no such insn. */
249 rtx *reg_next_use;
251 /* Contains a list of all the MEMs we are tracking for dead store
252 elimination. */
253 rtx mem_set_list;
255 /* If non-null, record the set of registers set unconditionally in the
256 basic block. */
257 regset local_set;
259 /* If non-null, record the set of registers set conditionally in the
260 basic block. */
261 regset cond_local_set;
263 #ifdef HAVE_conditional_execution
264 /* Indexed by register number, holds a reg_cond_life_info for each
265 register that is not unconditionally live or dead. */
266 splay_tree reg_cond_dead;
268 /* Bit N is set if register N is in an expression in reg_cond_dead. */
269 regset reg_cond_reg;
270 #endif
272 /* The length of mem_set_list. */
273 int mem_set_list_len;
275 /* Non-zero if the value of CC0 is live. */
276 int cc0_live;
278 /* Flags controling the set of information propagate_block collects. */
279 int flags;
282 /* Number of dead insns removed. */
283 static int ndead;
285 /* Maximum length of pbi->mem_set_list before we start dropping
286 new elements on the floor. */
287 #define MAX_MEM_SET_LIST_LEN 100
289 /* Forward declarations */
290 static int verify_wide_reg_1 PARAMS ((rtx *, void *));
291 static void verify_wide_reg PARAMS ((int, basic_block));
292 static void verify_local_live_at_start PARAMS ((regset, basic_block));
293 static void notice_stack_pointer_modification_1 PARAMS ((rtx, rtx, void *));
294 static void notice_stack_pointer_modification PARAMS ((rtx));
295 static void mark_reg PARAMS ((rtx, void *));
296 static void mark_regs_live_at_end PARAMS ((regset));
297 static int set_phi_alternative_reg PARAMS ((rtx, int, int, void *));
298 static void calculate_global_regs_live PARAMS ((sbitmap, sbitmap, int));
299 static void propagate_block_delete_insn PARAMS ((rtx));
300 static rtx propagate_block_delete_libcall PARAMS ((rtx, rtx));
301 static int insn_dead_p PARAMS ((struct propagate_block_info *,
302 rtx, int, rtx));
303 static int libcall_dead_p PARAMS ((struct propagate_block_info *,
304 rtx, rtx));
305 static void mark_set_regs PARAMS ((struct propagate_block_info *,
306 rtx, rtx));
307 static void mark_set_1 PARAMS ((struct propagate_block_info *,
308 enum rtx_code, rtx, rtx,
309 rtx, int));
310 static int find_regno_partial PARAMS ((rtx *, void *));
312 #ifdef HAVE_conditional_execution
313 static int mark_regno_cond_dead PARAMS ((struct propagate_block_info *,
314 int, rtx));
315 static void free_reg_cond_life_info PARAMS ((splay_tree_value));
316 static int flush_reg_cond_reg_1 PARAMS ((splay_tree_node, void *));
317 static void flush_reg_cond_reg PARAMS ((struct propagate_block_info *,
318 int));
319 static rtx elim_reg_cond PARAMS ((rtx, unsigned int));
320 static rtx ior_reg_cond PARAMS ((rtx, rtx, int));
321 static rtx not_reg_cond PARAMS ((rtx));
322 static rtx and_reg_cond PARAMS ((rtx, rtx, int));
323 #endif
324 #ifdef AUTO_INC_DEC
325 static void attempt_auto_inc PARAMS ((struct propagate_block_info *,
326 rtx, rtx, rtx, rtx, rtx));
327 static void find_auto_inc PARAMS ((struct propagate_block_info *,
328 rtx, rtx));
329 static int try_pre_increment_1 PARAMS ((struct propagate_block_info *,
330 rtx));
331 static int try_pre_increment PARAMS ((rtx, rtx, HOST_WIDE_INT));
332 #endif
333 static void mark_used_reg PARAMS ((struct propagate_block_info *,
334 rtx, rtx, rtx));
335 static void mark_used_regs PARAMS ((struct propagate_block_info *,
336 rtx, rtx, rtx));
337 void dump_flow_info PARAMS ((FILE *));
338 void debug_flow_info PARAMS ((void));
339 static void add_to_mem_set_list PARAMS ((struct propagate_block_info *,
340 rtx));
341 static void invalidate_mems_from_autoinc PARAMS ((struct propagate_block_info *,
342 rtx));
343 static void invalidate_mems_from_set PARAMS ((struct propagate_block_info *,
344 rtx));
345 static void clear_log_links PARAMS ((sbitmap));
348 void
349 check_function_return_warnings ()
351 if (warn_missing_noreturn
352 && !TREE_THIS_VOLATILE (cfun->decl)
353 && EXIT_BLOCK_PTR->pred == NULL
354 && (lang_missing_noreturn_ok_p
355 && !lang_missing_noreturn_ok_p (cfun->decl)))
356 warning ("function might be possible candidate for attribute `noreturn'");
358 /* If we have a path to EXIT, then we do return. */
359 if (TREE_THIS_VOLATILE (cfun->decl)
360 && EXIT_BLOCK_PTR->pred != NULL)
361 warning ("`noreturn' function does return");
363 /* If the clobber_return_insn appears in some basic block, then we
364 do reach the end without returning a value. */
365 else if (warn_return_type
366 && cfun->x_clobber_return_insn != NULL
367 && EXIT_BLOCK_PTR->pred != NULL)
369 int max_uid = get_max_uid ();
371 /* If clobber_return_insn was excised by jump1, then renumber_insns
372 can make max_uid smaller than the number still recorded in our rtx.
373 That's fine, since this is a quick way of verifying that the insn
374 is no longer in the chain. */
375 if (INSN_UID (cfun->x_clobber_return_insn) < max_uid)
377 /* Recompute insn->block mapping, since the initial mapping is
378 set before we delete unreachable blocks. */
379 if (BLOCK_FOR_INSN (cfun->x_clobber_return_insn) != NULL)
380 warning ("control reaches end of non-void function");
385 /* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
386 note associated with the BLOCK. */
389 first_insn_after_basic_block_note (block)
390 basic_block block;
392 rtx insn;
394 /* Get the first instruction in the block. */
395 insn = block->head;
397 if (insn == NULL_RTX)
398 return NULL_RTX;
399 if (GET_CODE (insn) == CODE_LABEL)
400 insn = NEXT_INSN (insn);
401 if (!NOTE_INSN_BASIC_BLOCK_P (insn))
402 abort ();
404 return NEXT_INSN (insn);
407 /* Perform data flow analysis.
408 F is the first insn of the function; FLAGS is a set of PROP_* flags
409 to be used in accumulating flow info. */
411 void
412 life_analysis (f, file, flags)
413 rtx f;
414 FILE *file;
415 int flags;
417 #ifdef ELIMINABLE_REGS
418 int i;
419 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
420 #endif
422 /* Record which registers will be eliminated. We use this in
423 mark_used_regs. */
425 CLEAR_HARD_REG_SET (elim_reg_set);
427 #ifdef ELIMINABLE_REGS
428 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
429 SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
430 #else
431 SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
432 #endif
434 if (! optimize)
435 flags &= ~(PROP_LOG_LINKS | PROP_AUTOINC | PROP_ALLOW_CFG_CHANGES);
437 /* The post-reload life analysis have (on a global basis) the same
438 registers live as was computed by reload itself. elimination
439 Otherwise offsets and such may be incorrect.
441 Reload will make some registers as live even though they do not
442 appear in the rtl.
444 We don't want to create new auto-incs after reload, since they
445 are unlikely to be useful and can cause problems with shared
446 stack slots. */
447 if (reload_completed)
448 flags &= ~(PROP_REG_INFO | PROP_AUTOINC);
450 /* We want alias analysis information for local dead store elimination. */
451 if (optimize && (flags & PROP_SCAN_DEAD_CODE))
452 init_alias_analysis ();
454 /* Always remove no-op moves. Do this before other processing so
455 that we don't have to keep re-scanning them. */
456 delete_noop_moves (f);
458 /* Some targets can emit simpler epilogues if they know that sp was
459 not ever modified during the function. After reload, of course,
460 we've already emitted the epilogue so there's no sense searching. */
461 if (! reload_completed)
462 notice_stack_pointer_modification (f);
464 /* Allocate and zero out data structures that will record the
465 data from lifetime analysis. */
466 allocate_reg_life_data ();
467 allocate_bb_life_data ();
469 /* Find the set of registers live on function exit. */
470 mark_regs_live_at_end (EXIT_BLOCK_PTR->global_live_at_start);
472 /* "Update" life info from zero. It'd be nice to begin the
473 relaxation with just the exit and noreturn blocks, but that set
474 is not immediately handy. */
476 if (flags & PROP_REG_INFO)
477 memset (regs_ever_live, 0, sizeof (regs_ever_live));
478 update_life_info (NULL, UPDATE_LIFE_GLOBAL, flags);
480 /* Clean up. */
481 if (optimize && (flags & PROP_SCAN_DEAD_CODE))
482 end_alias_analysis ();
484 if (file)
485 dump_flow_info (file);
487 free_basic_block_vars (1);
489 #ifdef ENABLE_CHECKING
491 rtx insn;
493 /* Search for any REG_LABEL notes which reference deleted labels. */
494 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
496 rtx inote = find_reg_note (insn, REG_LABEL, NULL_RTX);
498 if (inote && GET_CODE (inote) == NOTE_INSN_DELETED_LABEL)
499 abort ();
502 #endif
503 /* Removing dead insns should've made jumptables really dead. */
504 delete_dead_jumptables ();
507 /* A subroutine of verify_wide_reg, called through for_each_rtx.
508 Search for REGNO. If found, return 2 if it is not wider than
509 word_mode. */
511 static int
512 verify_wide_reg_1 (px, pregno)
513 rtx *px;
514 void *pregno;
516 rtx x = *px;
517 unsigned int regno = *(int *) pregno;
519 if (GET_CODE (x) == REG && REGNO (x) == regno)
521 if (GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD)
522 return 2;
523 return 1;
525 return 0;
528 /* A subroutine of verify_local_live_at_start. Search through insns
529 of BB looking for register REGNO. */
531 static void
532 verify_wide_reg (regno, bb)
533 int regno;
534 basic_block bb;
536 rtx head = bb->head, end = bb->end;
538 while (1)
540 if (INSN_P (head))
542 int r = for_each_rtx (&PATTERN (head), verify_wide_reg_1, &regno);
543 if (r == 1)
544 return;
545 if (r == 2)
546 break;
548 if (head == end)
549 break;
550 head = NEXT_INSN (head);
553 if (rtl_dump_file)
555 fprintf (rtl_dump_file, "Register %d died unexpectedly.\n", regno);
556 dump_bb (bb, rtl_dump_file);
558 abort ();
561 /* A subroutine of update_life_info. Verify that there are no untoward
562 changes in live_at_start during a local update. */
564 static void
565 verify_local_live_at_start (new_live_at_start, bb)
566 regset new_live_at_start;
567 basic_block bb;
569 if (reload_completed)
571 /* After reload, there are no pseudos, nor subregs of multi-word
572 registers. The regsets should exactly match. */
573 if (! REG_SET_EQUAL_P (new_live_at_start, bb->global_live_at_start))
575 if (rtl_dump_file)
577 fprintf (rtl_dump_file,
578 "live_at_start mismatch in bb %d, aborting\nNew:\n",
579 bb->index);
580 debug_bitmap_file (rtl_dump_file, new_live_at_start);
581 fputs ("Old:\n", rtl_dump_file);
582 dump_bb (bb, rtl_dump_file);
584 abort ();
587 else
589 int i;
591 /* Find the set of changed registers. */
592 XOR_REG_SET (new_live_at_start, bb->global_live_at_start);
594 EXECUTE_IF_SET_IN_REG_SET (new_live_at_start, 0, i,
596 /* No registers should die. */
597 if (REGNO_REG_SET_P (bb->global_live_at_start, i))
599 if (rtl_dump_file)
601 fprintf (rtl_dump_file,
602 "Register %d died unexpectedly.\n", i);
603 dump_bb (bb, rtl_dump_file);
605 abort ();
608 /* Verify that the now-live register is wider than word_mode. */
609 verify_wide_reg (i, bb);
614 /* Updates life information starting with the basic blocks set in BLOCKS.
615 If BLOCKS is null, consider it to be the universal set.
617 If EXTENT is UPDATE_LIFE_LOCAL, such as after splitting or peepholeing,
618 we are only expecting local modifications to basic blocks. If we find
619 extra registers live at the beginning of a block, then we either killed
620 useful data, or we have a broken split that wants data not provided.
621 If we find registers removed from live_at_start, that means we have
622 a broken peephole that is killing a register it shouldn't.
624 ??? This is not true in one situation -- when a pre-reload splitter
625 generates subregs of a multi-word pseudo, current life analysis will
626 lose the kill. So we _can_ have a pseudo go live. How irritating.
628 Including PROP_REG_INFO does not properly refresh regs_ever_live
629 unless the caller resets it to zero. */
632 update_life_info (blocks, extent, prop_flags)
633 sbitmap blocks;
634 enum update_life_extent extent;
635 int prop_flags;
637 regset tmp;
638 regset_head tmp_head;
639 int i;
640 int stabilized_prop_flags = prop_flags;
642 tmp = INITIALIZE_REG_SET (tmp_head);
643 ndead = 0;
645 timevar_push ((extent == UPDATE_LIFE_LOCAL || blocks)
646 ? TV_LIFE_UPDATE : TV_LIFE);
648 /* Changes to the CFG are only allowed when
649 doing a global update for the entire CFG. */
650 if ((prop_flags & PROP_ALLOW_CFG_CHANGES)
651 && (extent == UPDATE_LIFE_LOCAL || blocks))
652 abort ();
654 /* For a global update, we go through the relaxation process again. */
655 if (extent != UPDATE_LIFE_LOCAL)
657 for ( ; ; )
659 int changed = 0;
661 calculate_global_regs_live (blocks, blocks,
662 prop_flags & (PROP_SCAN_DEAD_CODE
663 | PROP_ALLOW_CFG_CHANGES));
665 if ((prop_flags & (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
666 != (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
667 break;
669 /* Removing dead code may allow the CFG to be simplified which
670 in turn may allow for further dead code detection / removal. */
671 for (i = n_basic_blocks - 1; i >= 0; --i)
673 basic_block bb = BASIC_BLOCK (i);
675 COPY_REG_SET (tmp, bb->global_live_at_end);
676 changed |= propagate_block (bb, tmp, NULL, NULL,
677 prop_flags & (PROP_SCAN_DEAD_CODE
678 | PROP_KILL_DEAD_CODE));
681 /* Don't pass PROP_SCAN_DEAD_CODE or PROP_KILL_DEAD_CODE to
682 subsequent propagate_block calls, since removing or acting as
683 removing dead code can affect global register liveness, which
684 is supposed to be finalized for this call after this loop. */
685 stabilized_prop_flags
686 &= ~(PROP_SCAN_DEAD_CODE | PROP_KILL_DEAD_CODE);
688 if (! changed)
689 break;
691 /* We repeat regardless of what cleanup_cfg says. If there were
692 instructions deleted above, that might have been only a
693 partial improvement (see MAX_MEM_SET_LIST_LEN usage).
694 Further improvement may be possible. */
695 cleanup_cfg (CLEANUP_EXPENSIVE);
698 /* If asked, remove notes from the blocks we'll update. */
699 if (extent == UPDATE_LIFE_GLOBAL_RM_NOTES)
700 count_or_remove_death_notes (blocks, 1);
703 /* Clear log links in case we are asked to (re)compute them. */
704 if (prop_flags & PROP_LOG_LINKS)
705 clear_log_links (blocks);
707 if (blocks)
709 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
711 basic_block bb = BASIC_BLOCK (i);
713 COPY_REG_SET (tmp, bb->global_live_at_end);
714 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
716 if (extent == UPDATE_LIFE_LOCAL)
717 verify_local_live_at_start (tmp, bb);
720 else
722 for (i = n_basic_blocks - 1; i >= 0; --i)
724 basic_block bb = BASIC_BLOCK (i);
726 COPY_REG_SET (tmp, bb->global_live_at_end);
728 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
730 if (extent == UPDATE_LIFE_LOCAL)
731 verify_local_live_at_start (tmp, bb);
735 FREE_REG_SET (tmp);
737 if (prop_flags & PROP_REG_INFO)
739 /* The only pseudos that are live at the beginning of the function
740 are those that were not set anywhere in the function. local-alloc
741 doesn't know how to handle these correctly, so mark them as not
742 local to any one basic block. */
743 EXECUTE_IF_SET_IN_REG_SET (ENTRY_BLOCK_PTR->global_live_at_end,
744 FIRST_PSEUDO_REGISTER, i,
745 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
747 /* We have a problem with any pseudoreg that lives across the setjmp.
748 ANSI says that if a user variable does not change in value between
749 the setjmp and the longjmp, then the longjmp preserves it. This
750 includes longjmp from a place where the pseudo appears dead.
751 (In principle, the value still exists if it is in scope.)
752 If the pseudo goes in a hard reg, some other value may occupy
753 that hard reg where this pseudo is dead, thus clobbering the pseudo.
754 Conclusion: such a pseudo must not go in a hard reg. */
755 EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
756 FIRST_PSEUDO_REGISTER, i,
758 if (regno_reg_rtx[i] != 0)
760 REG_LIVE_LENGTH (i) = -1;
761 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
765 timevar_pop ((extent == UPDATE_LIFE_LOCAL || blocks)
766 ? TV_LIFE_UPDATE : TV_LIFE);
767 if (ndead && rtl_dump_file)
768 fprintf (rtl_dump_file, "deleted %i dead insns\n", ndead);
769 return ndead;
772 /* Update life information in all blocks where BB_DIRTY is set. */
775 update_life_info_in_dirty_blocks (extent, prop_flags)
776 enum update_life_extent extent;
777 int prop_flags;
779 sbitmap update_life_blocks = sbitmap_alloc (n_basic_blocks);
780 int block_num;
781 int n = 0;
782 int retval = 0;
784 sbitmap_zero (update_life_blocks);
785 for (block_num = 0; block_num < n_basic_blocks; block_num++)
786 if (BASIC_BLOCK (block_num)->flags & BB_DIRTY)
788 SET_BIT (update_life_blocks, block_num);
789 n++;
792 if (n)
793 retval = update_life_info (update_life_blocks, extent, prop_flags);
795 sbitmap_free (update_life_blocks);
796 return retval;
799 /* Free the variables allocated by find_basic_blocks.
801 KEEP_HEAD_END_P is non-zero if basic_block_info is not to be freed. */
803 void
804 free_basic_block_vars (keep_head_end_p)
805 int keep_head_end_p;
807 if (! keep_head_end_p)
809 if (basic_block_info)
811 clear_edges ();
812 VARRAY_FREE (basic_block_info);
814 n_basic_blocks = 0;
816 ENTRY_BLOCK_PTR->aux = NULL;
817 ENTRY_BLOCK_PTR->global_live_at_end = NULL;
818 EXIT_BLOCK_PTR->aux = NULL;
819 EXIT_BLOCK_PTR->global_live_at_start = NULL;
823 /* Delete any insns that copy a register to itself. */
826 delete_noop_moves (f)
827 rtx f ATTRIBUTE_UNUSED;
829 int i;
830 rtx insn, next;
831 basic_block bb;
832 int nnoops = 0;
834 for (i = 0; i < n_basic_blocks; i++)
836 bb = BASIC_BLOCK (i);
837 for (insn = bb->head; insn != NEXT_INSN (bb->end); insn = next)
839 next = NEXT_INSN (insn);
840 if (INSN_P (insn) && noop_move_p (insn))
842 rtx note;
844 /* If we're about to remove the first insn of a libcall
845 then move the libcall note to the next real insn and
846 update the retval note. */
847 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX))
848 && XEXP (note, 0) != insn)
850 rtx new_libcall_insn = next_real_insn (insn);
851 rtx retval_note = find_reg_note (XEXP (note, 0),
852 REG_RETVAL, NULL_RTX);
853 REG_NOTES (new_libcall_insn)
854 = gen_rtx_INSN_LIST (REG_LIBCALL, XEXP (note, 0),
855 REG_NOTES (new_libcall_insn));
856 XEXP (retval_note, 0) = new_libcall_insn;
859 delete_insn_and_edges (insn);
860 nnoops++;
864 if (nnoops && rtl_dump_file)
865 fprintf (rtl_dump_file, "deleted %i noop moves", nnoops);
866 return nnoops;
869 /* Delete any jump tables never referenced. We can't delete them at the
870 time of removing tablejump insn as they are referenced by the preceding
871 insns computing the destination, so we delay deleting and garbagecollect
872 them once life information is computed. */
873 void
874 delete_dead_jumptables ()
876 rtx insn, next;
877 for (insn = get_insns (); insn; insn = next)
879 next = NEXT_INSN (insn);
880 if (GET_CODE (insn) == CODE_LABEL
881 && LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
882 && GET_CODE (next) == JUMP_INSN
883 && (GET_CODE (PATTERN (next)) == ADDR_VEC
884 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
886 if (rtl_dump_file)
887 fprintf (rtl_dump_file, "Dead jumptable %i removed\n", INSN_UID (insn));
888 delete_insn (NEXT_INSN (insn));
889 delete_insn (insn);
890 next = NEXT_INSN (next);
895 /* Determine if the stack pointer is constant over the life of the function.
896 Only useful before prologues have been emitted. */
898 static void
899 notice_stack_pointer_modification_1 (x, pat, data)
900 rtx x;
901 rtx pat ATTRIBUTE_UNUSED;
902 void *data ATTRIBUTE_UNUSED;
904 if (x == stack_pointer_rtx
905 /* The stack pointer is only modified indirectly as the result
906 of a push until later in flow. See the comments in rtl.texi
907 regarding Embedded Side-Effects on Addresses. */
908 || (GET_CODE (x) == MEM
909 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == 'a'
910 && XEXP (XEXP (x, 0), 0) == stack_pointer_rtx))
911 current_function_sp_is_unchanging = 0;
914 static void
915 notice_stack_pointer_modification (f)
916 rtx f;
918 rtx insn;
920 /* Assume that the stack pointer is unchanging if alloca hasn't
921 been used. */
922 current_function_sp_is_unchanging = !current_function_calls_alloca;
923 if (! current_function_sp_is_unchanging)
924 return;
926 for (insn = f; insn; insn = NEXT_INSN (insn))
928 if (INSN_P (insn))
930 /* Check if insn modifies the stack pointer. */
931 note_stores (PATTERN (insn), notice_stack_pointer_modification_1,
932 NULL);
933 if (! current_function_sp_is_unchanging)
934 return;
939 /* Mark a register in SET. Hard registers in large modes get all
940 of their component registers set as well. */
942 static void
943 mark_reg (reg, xset)
944 rtx reg;
945 void *xset;
947 regset set = (regset) xset;
948 int regno = REGNO (reg);
950 if (GET_MODE (reg) == BLKmode)
951 abort ();
953 SET_REGNO_REG_SET (set, regno);
954 if (regno < FIRST_PSEUDO_REGISTER)
956 int n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
957 while (--n > 0)
958 SET_REGNO_REG_SET (set, regno + n);
962 /* Mark those regs which are needed at the end of the function as live
963 at the end of the last basic block. */
965 static void
966 mark_regs_live_at_end (set)
967 regset set;
969 unsigned int i;
971 /* If exiting needs the right stack value, consider the stack pointer
972 live at the end of the function. */
973 if ((HAVE_epilogue && reload_completed)
974 || ! EXIT_IGNORE_STACK
975 || (! FRAME_POINTER_REQUIRED
976 && ! current_function_calls_alloca
977 && flag_omit_frame_pointer)
978 || current_function_sp_is_unchanging)
980 SET_REGNO_REG_SET (set, STACK_POINTER_REGNUM);
983 /* Mark the frame pointer if needed at the end of the function. If
984 we end up eliminating it, it will be removed from the live list
985 of each basic block by reload. */
987 if (! reload_completed || frame_pointer_needed)
989 SET_REGNO_REG_SET (set, FRAME_POINTER_REGNUM);
990 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
991 /* If they are different, also mark the hard frame pointer as live. */
992 if (! LOCAL_REGNO (HARD_FRAME_POINTER_REGNUM))
993 SET_REGNO_REG_SET (set, HARD_FRAME_POINTER_REGNUM);
994 #endif
997 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
998 /* Many architectures have a GP register even without flag_pic.
999 Assume the pic register is not in use, or will be handled by
1000 other means, if it is not fixed. */
1001 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
1002 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
1003 SET_REGNO_REG_SET (set, PIC_OFFSET_TABLE_REGNUM);
1004 #endif
1006 /* Mark all global registers, and all registers used by the epilogue
1007 as being live at the end of the function since they may be
1008 referenced by our caller. */
1009 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1010 if (global_regs[i] || EPILOGUE_USES (i))
1011 SET_REGNO_REG_SET (set, i);
1013 if (HAVE_epilogue && reload_completed)
1015 /* Mark all call-saved registers that we actually used. */
1016 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1017 if (regs_ever_live[i] && ! LOCAL_REGNO (i)
1018 && ! TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1019 SET_REGNO_REG_SET (set, i);
1022 #ifdef EH_RETURN_DATA_REGNO
1023 /* Mark the registers that will contain data for the handler. */
1024 if (reload_completed && current_function_calls_eh_return)
1025 for (i = 0; ; ++i)
1027 unsigned regno = EH_RETURN_DATA_REGNO(i);
1028 if (regno == INVALID_REGNUM)
1029 break;
1030 SET_REGNO_REG_SET (set, regno);
1032 #endif
1033 #ifdef EH_RETURN_STACKADJ_RTX
1034 if ((! HAVE_epilogue || ! reload_completed)
1035 && current_function_calls_eh_return)
1037 rtx tmp = EH_RETURN_STACKADJ_RTX;
1038 if (tmp && REG_P (tmp))
1039 mark_reg (tmp, set);
1041 #endif
1042 #ifdef EH_RETURN_HANDLER_RTX
1043 if ((! HAVE_epilogue || ! reload_completed)
1044 && current_function_calls_eh_return)
1046 rtx tmp = EH_RETURN_HANDLER_RTX;
1047 if (tmp && REG_P (tmp))
1048 mark_reg (tmp, set);
1050 #endif
1052 /* Mark function return value. */
1053 diddle_return_value (mark_reg, set);
1056 /* Callback function for for_each_successor_phi. DATA is a regset.
1057 Sets the SRC_REGNO, the regno of the phi alternative for phi node
1058 INSN, in the regset. */
1060 static int
1061 set_phi_alternative_reg (insn, dest_regno, src_regno, data)
1062 rtx insn ATTRIBUTE_UNUSED;
1063 int dest_regno ATTRIBUTE_UNUSED;
1064 int src_regno;
1065 void *data;
1067 regset live = (regset) data;
1068 SET_REGNO_REG_SET (live, src_regno);
1069 return 0;
1072 /* Propagate global life info around the graph of basic blocks. Begin
1073 considering blocks with their corresponding bit set in BLOCKS_IN.
1074 If BLOCKS_IN is null, consider it the universal set.
1076 BLOCKS_OUT is set for every block that was changed. */
1078 static void
1079 calculate_global_regs_live (blocks_in, blocks_out, flags)
1080 sbitmap blocks_in, blocks_out;
1081 int flags;
1083 basic_block *queue, *qhead, *qtail, *qend;
1084 regset tmp, new_live_at_end, call_used;
1085 regset_head tmp_head, call_used_head;
1086 regset_head new_live_at_end_head;
1087 int i;
1089 /* Some passes used to forget clear aux field of basic block causing
1090 sick behaviour here. */
1091 #ifdef ENABLE_CHECKING
1092 if (ENTRY_BLOCK_PTR->aux || EXIT_BLOCK_PTR->aux)
1093 abort ();
1094 for (i = 0; i < n_basic_blocks; i++)
1095 if (BASIC_BLOCK (i)->aux)
1096 abort ();
1097 #endif
1099 tmp = INITIALIZE_REG_SET (tmp_head);
1100 new_live_at_end = INITIALIZE_REG_SET (new_live_at_end_head);
1101 call_used = INITIALIZE_REG_SET (call_used_head);
1103 /* Inconveniently, this is only readily available in hard reg set form. */
1104 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1105 if (call_used_regs[i])
1106 SET_REGNO_REG_SET (call_used, i);
1108 /* Create a worklist. Allocate an extra slot for ENTRY_BLOCK, and one
1109 because the `head == tail' style test for an empty queue doesn't
1110 work with a full queue. */
1111 queue = (basic_block *) xmalloc ((n_basic_blocks + 2) * sizeof (*queue));
1112 qtail = queue;
1113 qhead = qend = queue + n_basic_blocks + 2;
1115 /* Queue the blocks set in the initial mask. Do this in reverse block
1116 number order so that we are more likely for the first round to do
1117 useful work. We use AUX non-null to flag that the block is queued. */
1118 if (blocks_in)
1120 /* Clear out the garbage that might be hanging out in bb->aux. */
1121 for (i = n_basic_blocks - 1; i >= 0; --i)
1122 BASIC_BLOCK (i)->aux = NULL;
1124 EXECUTE_IF_SET_IN_SBITMAP (blocks_in, 0, i,
1126 basic_block bb = BASIC_BLOCK (i);
1127 *--qhead = bb;
1128 bb->aux = bb;
1131 else
1133 for (i = 0; i < n_basic_blocks; ++i)
1135 basic_block bb = BASIC_BLOCK (i);
1136 *--qhead = bb;
1137 bb->aux = bb;
1141 /* We clean aux when we remove the initially-enqueued bbs, but we
1142 don't enqueue ENTRY and EXIT initially, so clean them upfront and
1143 unconditionally. */
1144 ENTRY_BLOCK_PTR->aux = EXIT_BLOCK_PTR->aux = NULL;
1146 if (blocks_out)
1147 sbitmap_zero (blocks_out);
1149 /* We work through the queue until there are no more blocks. What
1150 is live at the end of this block is precisely the union of what
1151 is live at the beginning of all its successors. So, we set its
1152 GLOBAL_LIVE_AT_END field based on the GLOBAL_LIVE_AT_START field
1153 for its successors. Then, we compute GLOBAL_LIVE_AT_START for
1154 this block by walking through the instructions in this block in
1155 reverse order and updating as we go. If that changed
1156 GLOBAL_LIVE_AT_START, we add the predecessors of the block to the
1157 queue; they will now need to recalculate GLOBAL_LIVE_AT_END.
1159 We are guaranteed to terminate, because GLOBAL_LIVE_AT_START
1160 never shrinks. If a register appears in GLOBAL_LIVE_AT_START, it
1161 must either be live at the end of the block, or used within the
1162 block. In the latter case, it will certainly never disappear
1163 from GLOBAL_LIVE_AT_START. In the former case, the register
1164 could go away only if it disappeared from GLOBAL_LIVE_AT_START
1165 for one of the successor blocks. By induction, that cannot
1166 occur. */
1167 while (qhead != qtail)
1169 int rescan, changed;
1170 basic_block bb;
1171 edge e;
1173 bb = *qhead++;
1174 if (qhead == qend)
1175 qhead = queue;
1176 bb->aux = NULL;
1178 /* Begin by propagating live_at_start from the successor blocks. */
1179 CLEAR_REG_SET (new_live_at_end);
1181 if (bb->succ)
1182 for (e = bb->succ; e; e = e->succ_next)
1184 basic_block sb = e->dest;
1186 /* Call-clobbered registers die across exception and
1187 call edges. */
1188 /* ??? Abnormal call edges ignored for the moment, as this gets
1189 confused by sibling call edges, which crashes reg-stack. */
1190 if (e->flags & EDGE_EH)
1192 bitmap_operation (tmp, sb->global_live_at_start,
1193 call_used, BITMAP_AND_COMPL);
1194 IOR_REG_SET (new_live_at_end, tmp);
1196 else
1197 IOR_REG_SET (new_live_at_end, sb->global_live_at_start);
1199 /* If a target saves one register in another (instead of on
1200 the stack) the save register will need to be live for EH. */
1201 if (e->flags & EDGE_EH)
1202 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1203 if (EH_USES (i))
1204 SET_REGNO_REG_SET (new_live_at_end, i);
1206 else
1208 /* This might be a noreturn function that throws. And
1209 even if it isn't, getting the unwind info right helps
1210 debugging. */
1211 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1212 if (EH_USES (i))
1213 SET_REGNO_REG_SET (new_live_at_end, i);
1216 /* The all-important stack pointer must always be live. */
1217 SET_REGNO_REG_SET (new_live_at_end, STACK_POINTER_REGNUM);
1219 /* Before reload, there are a few registers that must be forced
1220 live everywhere -- which might not already be the case for
1221 blocks within infinite loops. */
1222 if (! reload_completed)
1224 /* Any reference to any pseudo before reload is a potential
1225 reference of the frame pointer. */
1226 SET_REGNO_REG_SET (new_live_at_end, FRAME_POINTER_REGNUM);
1228 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1229 /* Pseudos with argument area equivalences may require
1230 reloading via the argument pointer. */
1231 if (fixed_regs[ARG_POINTER_REGNUM])
1232 SET_REGNO_REG_SET (new_live_at_end, ARG_POINTER_REGNUM);
1233 #endif
1235 /* Any constant, or pseudo with constant equivalences, may
1236 require reloading from memory using the pic register. */
1237 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
1238 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
1239 SET_REGNO_REG_SET (new_live_at_end, PIC_OFFSET_TABLE_REGNUM);
1242 /* Regs used in phi nodes are not included in
1243 global_live_at_start, since they are live only along a
1244 particular edge. Set those regs that are live because of a
1245 phi node alternative corresponding to this particular block. */
1246 if (in_ssa_form)
1247 for_each_successor_phi (bb, &set_phi_alternative_reg,
1248 new_live_at_end);
1250 if (bb == ENTRY_BLOCK_PTR)
1252 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1253 continue;
1256 /* On our first pass through this block, we'll go ahead and continue.
1257 Recognize first pass by local_set NULL. On subsequent passes, we
1258 get to skip out early if live_at_end wouldn't have changed. */
1260 if (bb->local_set == NULL)
1262 bb->local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1263 bb->cond_local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1264 rescan = 1;
1266 else
1268 /* If any bits were removed from live_at_end, we'll have to
1269 rescan the block. This wouldn't be necessary if we had
1270 precalculated local_live, however with PROP_SCAN_DEAD_CODE
1271 local_live is really dependent on live_at_end. */
1272 CLEAR_REG_SET (tmp);
1273 rescan = bitmap_operation (tmp, bb->global_live_at_end,
1274 new_live_at_end, BITMAP_AND_COMPL);
1276 if (! rescan)
1278 /* If any of the registers in the new live_at_end set are
1279 conditionally set in this basic block, we must rescan.
1280 This is because conditional lifetimes at the end of the
1281 block do not just take the live_at_end set into account,
1282 but also the liveness at the start of each successor
1283 block. We can miss changes in those sets if we only
1284 compare the new live_at_end against the previous one. */
1285 CLEAR_REG_SET (tmp);
1286 rescan = bitmap_operation (tmp, new_live_at_end,
1287 bb->cond_local_set, BITMAP_AND);
1290 if (! rescan)
1292 /* Find the set of changed bits. Take this opportunity
1293 to notice that this set is empty and early out. */
1294 CLEAR_REG_SET (tmp);
1295 changed = bitmap_operation (tmp, bb->global_live_at_end,
1296 new_live_at_end, BITMAP_XOR);
1297 if (! changed)
1298 continue;
1300 /* If any of the changed bits overlap with local_set,
1301 we'll have to rescan the block. Detect overlap by
1302 the AND with ~local_set turning off bits. */
1303 rescan = bitmap_operation (tmp, tmp, bb->local_set,
1304 BITMAP_AND_COMPL);
1308 /* Let our caller know that BB changed enough to require its
1309 death notes updated. */
1310 if (blocks_out)
1311 SET_BIT (blocks_out, bb->index);
1313 if (! rescan)
1315 /* Add to live_at_start the set of all registers in
1316 new_live_at_end that aren't in the old live_at_end. */
1318 bitmap_operation (tmp, new_live_at_end, bb->global_live_at_end,
1319 BITMAP_AND_COMPL);
1320 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1322 changed = bitmap_operation (bb->global_live_at_start,
1323 bb->global_live_at_start,
1324 tmp, BITMAP_IOR);
1325 if (! changed)
1326 continue;
1328 else
1330 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1332 /* Rescan the block insn by insn to turn (a copy of) live_at_end
1333 into live_at_start. */
1334 propagate_block (bb, new_live_at_end, bb->local_set,
1335 bb->cond_local_set, flags);
1337 /* If live_at start didn't change, no need to go farther. */
1338 if (REG_SET_EQUAL_P (bb->global_live_at_start, new_live_at_end))
1339 continue;
1341 COPY_REG_SET (bb->global_live_at_start, new_live_at_end);
1344 /* Queue all predecessors of BB so that we may re-examine
1345 their live_at_end. */
1346 for (e = bb->pred; e; e = e->pred_next)
1348 basic_block pb = e->src;
1349 if (pb->aux == NULL)
1351 *qtail++ = pb;
1352 if (qtail == qend)
1353 qtail = queue;
1354 pb->aux = pb;
1359 FREE_REG_SET (tmp);
1360 FREE_REG_SET (new_live_at_end);
1361 FREE_REG_SET (call_used);
1363 if (blocks_out)
1365 EXECUTE_IF_SET_IN_SBITMAP (blocks_out, 0, i,
1367 basic_block bb = BASIC_BLOCK (i);
1368 FREE_REG_SET (bb->local_set);
1369 FREE_REG_SET (bb->cond_local_set);
1372 else
1374 for (i = n_basic_blocks - 1; i >= 0; --i)
1376 basic_block bb = BASIC_BLOCK (i);
1377 FREE_REG_SET (bb->local_set);
1378 FREE_REG_SET (bb->cond_local_set);
1382 free (queue);
1386 /* This structure is used to pass parameters to an from the
1387 the function find_regno_partial(). It is used to pass in the
1388 register number we are looking, as well as to return any rtx
1389 we find. */
1391 typedef struct {
1392 unsigned regno_to_find;
1393 rtx retval;
1394 } find_regno_partial_param;
1397 /* Find the rtx for the reg numbers specified in 'data' if it is
1398 part of an expression which only uses part of the register. Return
1399 it in the structure passed in. */
1400 static int
1401 find_regno_partial (ptr, data)
1402 rtx *ptr;
1403 void *data;
1405 find_regno_partial_param *param = (find_regno_partial_param *)data;
1406 unsigned reg = param->regno_to_find;
1407 param->retval = NULL_RTX;
1409 if (*ptr == NULL_RTX)
1410 return 0;
1412 switch (GET_CODE (*ptr))
1414 case ZERO_EXTRACT:
1415 case SIGN_EXTRACT:
1416 case STRICT_LOW_PART:
1417 if (GET_CODE (XEXP (*ptr, 0)) == REG && REGNO (XEXP (*ptr, 0)) == reg)
1419 param->retval = XEXP (*ptr, 0);
1420 return 1;
1422 break;
1424 case SUBREG:
1425 if (GET_CODE (SUBREG_REG (*ptr)) == REG
1426 && REGNO (SUBREG_REG (*ptr)) == reg)
1428 param->retval = SUBREG_REG (*ptr);
1429 return 1;
1431 break;
1433 default:
1434 break;
1437 return 0;
1440 /* Process all immediate successors of the entry block looking for pseudo
1441 registers which are live on entry. Find all of those whose first
1442 instance is a partial register reference of some kind, and initialize
1443 them to 0 after the entry block. This will prevent bit sets within
1444 registers whose value is unknown, and may contain some kind of sticky
1445 bits we don't want. */
1448 initialize_uninitialized_subregs ()
1450 rtx insn;
1451 edge e;
1452 int reg, did_something = 0;
1453 find_regno_partial_param param;
1455 for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
1457 basic_block bb = e->dest;
1458 regset map = bb->global_live_at_start;
1459 EXECUTE_IF_SET_IN_REG_SET (map,
1460 FIRST_PSEUDO_REGISTER, reg,
1462 int uid = REGNO_FIRST_UID (reg);
1463 rtx i;
1465 /* Find an insn which mentions the register we are looking for.
1466 Its preferable to have an instance of the register's rtl since
1467 there may be various flags set which we need to duplicate.
1468 If we can't find it, its probably an automatic whose initial
1469 value doesn't matter, or hopefully something we don't care about. */
1470 for (i = get_insns (); i && INSN_UID (i) != uid; i = NEXT_INSN (i))
1472 if (i != NULL_RTX)
1474 /* Found the insn, now get the REG rtx, if we can. */
1475 param.regno_to_find = reg;
1476 for_each_rtx (&i, find_regno_partial, &param);
1477 if (param.retval != NULL_RTX)
1479 insn = gen_move_insn (param.retval,
1480 CONST0_RTX (GET_MODE (param.retval)));
1481 insert_insn_on_edge (insn, e);
1482 did_something = 1;
1488 if (did_something)
1489 commit_edge_insertions ();
1490 return did_something;
1494 /* Subroutines of life analysis. */
1496 /* Allocate the permanent data structures that represent the results
1497 of life analysis. Not static since used also for stupid life analysis. */
1499 void
1500 allocate_bb_life_data ()
1502 int i;
1504 for (i = 0; i < n_basic_blocks; i++)
1506 basic_block bb = BASIC_BLOCK (i);
1508 bb->global_live_at_start = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1509 bb->global_live_at_end = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1512 ENTRY_BLOCK_PTR->global_live_at_end
1513 = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1514 EXIT_BLOCK_PTR->global_live_at_start
1515 = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1517 regs_live_at_setjmp = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1520 void
1521 allocate_reg_life_data ()
1523 int i;
1525 max_regno = max_reg_num ();
1527 /* Recalculate the register space, in case it has grown. Old style
1528 vector oriented regsets would set regset_{size,bytes} here also. */
1529 allocate_reg_info (max_regno, FALSE, FALSE);
1531 /* Reset all the data we'll collect in propagate_block and its
1532 subroutines. */
1533 for (i = 0; i < max_regno; i++)
1535 REG_N_SETS (i) = 0;
1536 REG_N_REFS (i) = 0;
1537 REG_N_DEATHS (i) = 0;
1538 REG_N_CALLS_CROSSED (i) = 0;
1539 REG_LIVE_LENGTH (i) = 0;
1540 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
1544 /* Delete dead instructions for propagate_block. */
1546 static void
1547 propagate_block_delete_insn (insn)
1548 rtx insn;
1550 rtx inote = find_reg_note (insn, REG_LABEL, NULL_RTX);
1552 /* If the insn referred to a label, and that label was attached to
1553 an ADDR_VEC, it's safe to delete the ADDR_VEC. In fact, it's
1554 pretty much mandatory to delete it, because the ADDR_VEC may be
1555 referencing labels that no longer exist.
1557 INSN may reference a deleted label, particularly when a jump
1558 table has been optimized into a direct jump. There's no
1559 real good way to fix up the reference to the deleted label
1560 when the label is deleted, so we just allow it here.
1562 After dead code elimination is complete, we do search for
1563 any REG_LABEL notes which reference deleted labels as a
1564 sanity check. */
1566 if (inote && GET_CODE (inote) == CODE_LABEL)
1568 rtx label = XEXP (inote, 0);
1569 rtx next;
1571 /* The label may be forced if it has been put in the constant
1572 pool. If that is the only use we must discard the table
1573 jump following it, but not the label itself. */
1574 if (LABEL_NUSES (label) == 1 + LABEL_PRESERVE_P (label)
1575 && (next = next_nonnote_insn (label)) != NULL
1576 && GET_CODE (next) == JUMP_INSN
1577 && (GET_CODE (PATTERN (next)) == ADDR_VEC
1578 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
1580 rtx pat = PATTERN (next);
1581 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1582 int len = XVECLEN (pat, diff_vec_p);
1583 int i;
1585 for (i = 0; i < len; i++)
1586 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))--;
1588 delete_insn_and_edges (next);
1589 ndead++;
1593 delete_insn_and_edges (insn);
1594 ndead++;
1597 /* Delete dead libcalls for propagate_block. Return the insn
1598 before the libcall. */
1600 static rtx
1601 propagate_block_delete_libcall ( insn, note)
1602 rtx insn, note;
1604 rtx first = XEXP (note, 0);
1605 rtx before = PREV_INSN (first);
1607 delete_insn_chain_and_edges (first, insn);
1608 ndead++;
1609 return before;
1612 /* Update the life-status of regs for one insn. Return the previous insn. */
1615 propagate_one_insn (pbi, insn)
1616 struct propagate_block_info *pbi;
1617 rtx insn;
1619 rtx prev = PREV_INSN (insn);
1620 int flags = pbi->flags;
1621 int insn_is_dead = 0;
1622 int libcall_is_dead = 0;
1623 rtx note;
1624 int i;
1626 if (! INSN_P (insn))
1627 return prev;
1629 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1630 if (flags & PROP_SCAN_DEAD_CODE)
1632 insn_is_dead = insn_dead_p (pbi, PATTERN (insn), 0, REG_NOTES (insn));
1633 libcall_is_dead = (insn_is_dead && note != 0
1634 && libcall_dead_p (pbi, note, insn));
1637 /* If an instruction consists of just dead store(s) on final pass,
1638 delete it. */
1639 if ((flags & PROP_KILL_DEAD_CODE) && insn_is_dead)
1641 /* If we're trying to delete a prologue or epilogue instruction
1642 that isn't flagged as possibly being dead, something is wrong.
1643 But if we are keeping the stack pointer depressed, we might well
1644 be deleting insns that are used to compute the amount to update
1645 it by, so they are fine. */
1646 if (reload_completed
1647 && !(TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1648 && (TYPE_RETURNS_STACK_DEPRESSED
1649 (TREE_TYPE (current_function_decl))))
1650 && (((HAVE_epilogue || HAVE_prologue)
1651 && prologue_epilogue_contains (insn))
1652 || (HAVE_sibcall_epilogue
1653 && sibcall_epilogue_contains (insn)))
1654 && find_reg_note (insn, REG_MAYBE_DEAD, NULL_RTX) == 0)
1655 fatal_insn ("Attempt to delete prologue/epilogue insn:", insn);
1657 /* Record sets. Do this even for dead instructions, since they
1658 would have killed the values if they hadn't been deleted. */
1659 mark_set_regs (pbi, PATTERN (insn), insn);
1661 /* CC0 is now known to be dead. Either this insn used it,
1662 in which case it doesn't anymore, or clobbered it,
1663 so the next insn can't use it. */
1664 pbi->cc0_live = 0;
1666 if (libcall_is_dead)
1667 prev = propagate_block_delete_libcall ( insn, note);
1668 else
1669 propagate_block_delete_insn (insn);
1671 return prev;
1674 /* See if this is an increment or decrement that can be merged into
1675 a following memory address. */
1676 #ifdef AUTO_INC_DEC
1678 rtx x = single_set (insn);
1680 /* Does this instruction increment or decrement a register? */
1681 if ((flags & PROP_AUTOINC)
1682 && x != 0
1683 && GET_CODE (SET_DEST (x)) == REG
1684 && (GET_CODE (SET_SRC (x)) == PLUS
1685 || GET_CODE (SET_SRC (x)) == MINUS)
1686 && XEXP (SET_SRC (x), 0) == SET_DEST (x)
1687 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
1688 /* Ok, look for a following memory ref we can combine with.
1689 If one is found, change the memory ref to a PRE_INC
1690 or PRE_DEC, cancel this insn, and return 1.
1691 Return 0 if nothing has been done. */
1692 && try_pre_increment_1 (pbi, insn))
1693 return prev;
1695 #endif /* AUTO_INC_DEC */
1697 CLEAR_REG_SET (pbi->new_set);
1699 /* If this is not the final pass, and this insn is copying the value of
1700 a library call and it's dead, don't scan the insns that perform the
1701 library call, so that the call's arguments are not marked live. */
1702 if (libcall_is_dead)
1704 /* Record the death of the dest reg. */
1705 mark_set_regs (pbi, PATTERN (insn), insn);
1707 insn = XEXP (note, 0);
1708 return PREV_INSN (insn);
1710 else if (GET_CODE (PATTERN (insn)) == SET
1711 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
1712 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
1713 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
1714 && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
1715 /* We have an insn to pop a constant amount off the stack.
1716 (Such insns use PLUS regardless of the direction of the stack,
1717 and any insn to adjust the stack by a constant is always a pop.)
1718 These insns, if not dead stores, have no effect on life. */
1720 else
1722 rtx note;
1723 /* Any regs live at the time of a call instruction must not go
1724 in a register clobbered by calls. Find all regs now live and
1725 record this for them. */
1727 if (GET_CODE (insn) == CALL_INSN && (flags & PROP_REG_INFO))
1728 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
1729 { REG_N_CALLS_CROSSED (i)++; });
1731 /* Record sets. Do this even for dead instructions, since they
1732 would have killed the values if they hadn't been deleted. */
1733 mark_set_regs (pbi, PATTERN (insn), insn);
1735 if (GET_CODE (insn) == CALL_INSN)
1737 int i;
1738 rtx note, cond;
1740 cond = NULL_RTX;
1741 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1742 cond = COND_EXEC_TEST (PATTERN (insn));
1744 /* Non-constant calls clobber memory. */
1745 if (! CONST_OR_PURE_CALL_P (insn))
1747 free_EXPR_LIST_list (&pbi->mem_set_list);
1748 pbi->mem_set_list_len = 0;
1751 /* There may be extra registers to be clobbered. */
1752 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1753 note;
1754 note = XEXP (note, 1))
1755 if (GET_CODE (XEXP (note, 0)) == CLOBBER)
1756 mark_set_1 (pbi, CLOBBER, XEXP (XEXP (note, 0), 0),
1757 cond, insn, pbi->flags);
1759 /* Calls change all call-used and global registers. */
1760 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1761 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1763 /* We do not want REG_UNUSED notes for these registers. */
1764 mark_set_1 (pbi, CLOBBER, gen_rtx_REG (reg_raw_mode[i], i),
1765 cond, insn,
1766 pbi->flags & ~(PROP_DEATH_NOTES | PROP_REG_INFO));
1770 /* If an insn doesn't use CC0, it becomes dead since we assume
1771 that every insn clobbers it. So show it dead here;
1772 mark_used_regs will set it live if it is referenced. */
1773 pbi->cc0_live = 0;
1775 /* Record uses. */
1776 if (! insn_is_dead)
1777 mark_used_regs (pbi, PATTERN (insn), NULL_RTX, insn);
1778 if ((flags & PROP_EQUAL_NOTES)
1779 && ((note = find_reg_note (insn, REG_EQUAL, NULL_RTX))
1780 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX))))
1781 mark_used_regs (pbi, XEXP (note, 0), NULL_RTX, insn);
1783 /* Sometimes we may have inserted something before INSN (such as a move)
1784 when we make an auto-inc. So ensure we will scan those insns. */
1785 #ifdef AUTO_INC_DEC
1786 prev = PREV_INSN (insn);
1787 #endif
1789 if (! insn_is_dead && GET_CODE (insn) == CALL_INSN)
1791 int i;
1792 rtx note, cond;
1794 cond = NULL_RTX;
1795 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1796 cond = COND_EXEC_TEST (PATTERN (insn));
1798 /* Calls use their arguments. */
1799 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1800 note;
1801 note = XEXP (note, 1))
1802 if (GET_CODE (XEXP (note, 0)) == USE)
1803 mark_used_regs (pbi, XEXP (XEXP (note, 0), 0),
1804 cond, insn);
1806 /* The stack ptr is used (honorarily) by a CALL insn. */
1807 SET_REGNO_REG_SET (pbi->reg_live, STACK_POINTER_REGNUM);
1809 /* Calls may also reference any of the global registers,
1810 so they are made live. */
1811 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1812 if (global_regs[i])
1813 mark_used_reg (pbi, gen_rtx_REG (reg_raw_mode[i], i),
1814 cond, insn);
1818 /* On final pass, update counts of how many insns in which each reg
1819 is live. */
1820 if (flags & PROP_REG_INFO)
1821 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
1822 { REG_LIVE_LENGTH (i)++; });
1824 return prev;
1827 /* Initialize a propagate_block_info struct for public consumption.
1828 Note that the structure itself is opaque to this file, but that
1829 the user can use the regsets provided here. */
1831 struct propagate_block_info *
1832 init_propagate_block_info (bb, live, local_set, cond_local_set, flags)
1833 basic_block bb;
1834 regset live, local_set, cond_local_set;
1835 int flags;
1837 struct propagate_block_info *pbi = xmalloc (sizeof (*pbi));
1839 pbi->bb = bb;
1840 pbi->reg_live = live;
1841 pbi->mem_set_list = NULL_RTX;
1842 pbi->mem_set_list_len = 0;
1843 pbi->local_set = local_set;
1844 pbi->cond_local_set = cond_local_set;
1845 pbi->cc0_live = 0;
1846 pbi->flags = flags;
1848 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
1849 pbi->reg_next_use = (rtx *) xcalloc (max_reg_num (), sizeof (rtx));
1850 else
1851 pbi->reg_next_use = NULL;
1853 pbi->new_set = BITMAP_XMALLOC ();
1855 #ifdef HAVE_conditional_execution
1856 pbi->reg_cond_dead = splay_tree_new (splay_tree_compare_ints, NULL,
1857 free_reg_cond_life_info);
1858 pbi->reg_cond_reg = BITMAP_XMALLOC ();
1860 /* If this block ends in a conditional branch, for each register live
1861 from one side of the branch and not the other, record the register
1862 as conditionally dead. */
1863 if (GET_CODE (bb->end) == JUMP_INSN
1864 && any_condjump_p (bb->end))
1866 regset_head diff_head;
1867 regset diff = INITIALIZE_REG_SET (diff_head);
1868 basic_block bb_true, bb_false;
1869 rtx cond_true, cond_false, set_src;
1870 int i;
1872 /* Identify the successor blocks. */
1873 bb_true = bb->succ->dest;
1874 if (bb->succ->succ_next != NULL)
1876 bb_false = bb->succ->succ_next->dest;
1878 if (bb->succ->flags & EDGE_FALLTHRU)
1880 basic_block t = bb_false;
1881 bb_false = bb_true;
1882 bb_true = t;
1884 else if (! (bb->succ->succ_next->flags & EDGE_FALLTHRU))
1885 abort ();
1887 else
1889 /* This can happen with a conditional jump to the next insn. */
1890 if (JUMP_LABEL (bb->end) != bb_true->head)
1891 abort ();
1893 /* Simplest way to do nothing. */
1894 bb_false = bb_true;
1897 /* Extract the condition from the branch. */
1898 set_src = SET_SRC (pc_set (bb->end));
1899 cond_true = XEXP (set_src, 0);
1900 cond_false = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond_true)),
1901 GET_MODE (cond_true), XEXP (cond_true, 0),
1902 XEXP (cond_true, 1));
1903 if (GET_CODE (XEXP (set_src, 1)) == PC)
1905 rtx t = cond_false;
1906 cond_false = cond_true;
1907 cond_true = t;
1910 /* Compute which register lead different lives in the successors. */
1911 if (bitmap_operation (diff, bb_true->global_live_at_start,
1912 bb_false->global_live_at_start, BITMAP_XOR))
1914 rtx reg = XEXP (cond_true, 0);
1916 if (GET_CODE (reg) == SUBREG)
1917 reg = SUBREG_REG (reg);
1919 if (GET_CODE (reg) != REG)
1920 abort ();
1922 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (reg));
1924 /* For each such register, mark it conditionally dead. */
1925 EXECUTE_IF_SET_IN_REG_SET
1926 (diff, 0, i,
1928 struct reg_cond_life_info *rcli;
1929 rtx cond;
1931 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
1933 if (REGNO_REG_SET_P (bb_true->global_live_at_start, i))
1934 cond = cond_false;
1935 else
1936 cond = cond_true;
1937 rcli->condition = cond;
1938 rcli->stores = const0_rtx;
1939 rcli->orig_condition = cond;
1941 splay_tree_insert (pbi->reg_cond_dead, i,
1942 (splay_tree_value) rcli);
1946 FREE_REG_SET (diff);
1948 #endif
1950 /* If this block has no successors, any stores to the frame that aren't
1951 used later in the block are dead. So make a pass over the block
1952 recording any such that are made and show them dead at the end. We do
1953 a very conservative and simple job here. */
1954 if (optimize
1955 && ! (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1956 && (TYPE_RETURNS_STACK_DEPRESSED
1957 (TREE_TYPE (current_function_decl))))
1958 && (flags & PROP_SCAN_DEAD_CODE)
1959 && (bb->succ == NULL
1960 || (bb->succ->succ_next == NULL
1961 && bb->succ->dest == EXIT_BLOCK_PTR
1962 && ! current_function_calls_eh_return)))
1964 rtx insn, set;
1965 for (insn = bb->end; insn != bb->head; insn = PREV_INSN (insn))
1966 if (GET_CODE (insn) == INSN
1967 && (set = single_set (insn))
1968 && GET_CODE (SET_DEST (set)) == MEM)
1970 rtx mem = SET_DEST (set);
1971 rtx canon_mem = canon_rtx (mem);
1973 /* This optimization is performed by faking a store to the
1974 memory at the end of the block. This doesn't work for
1975 unchanging memories because multiple stores to unchanging
1976 memory is illegal and alias analysis doesn't consider it. */
1977 if (RTX_UNCHANGING_P (canon_mem))
1978 continue;
1980 if (XEXP (canon_mem, 0) == frame_pointer_rtx
1981 || (GET_CODE (XEXP (canon_mem, 0)) == PLUS
1982 && XEXP (XEXP (canon_mem, 0), 0) == frame_pointer_rtx
1983 && GET_CODE (XEXP (XEXP (canon_mem, 0), 1)) == CONST_INT))
1984 add_to_mem_set_list (pbi, canon_mem);
1988 return pbi;
1991 /* Release a propagate_block_info struct. */
1993 void
1994 free_propagate_block_info (pbi)
1995 struct propagate_block_info *pbi;
1997 free_EXPR_LIST_list (&pbi->mem_set_list);
1999 BITMAP_XFREE (pbi->new_set);
2001 #ifdef HAVE_conditional_execution
2002 splay_tree_delete (pbi->reg_cond_dead);
2003 BITMAP_XFREE (pbi->reg_cond_reg);
2004 #endif
2006 if (pbi->reg_next_use)
2007 free (pbi->reg_next_use);
2009 free (pbi);
2012 /* Compute the registers live at the beginning of a basic block BB from
2013 those live at the end.
2015 When called, REG_LIVE contains those live at the end. On return, it
2016 contains those live at the beginning.
2018 LOCAL_SET, if non-null, will be set with all registers killed
2019 unconditionally by this basic block.
2020 Likewise, COND_LOCAL_SET, if non-null, will be set with all registers
2021 killed conditionally by this basic block. If there is any unconditional
2022 set of a register, then the corresponding bit will be set in LOCAL_SET
2023 and cleared in COND_LOCAL_SET.
2024 It is valid for LOCAL_SET and COND_LOCAL_SET to be the same set. In this
2025 case, the resulting set will be equal to the union of the two sets that
2026 would otherwise be computed.
2028 Return non-zero if an INSN is deleted (i.e. by dead code removal). */
2031 propagate_block (bb, live, local_set, cond_local_set, flags)
2032 basic_block bb;
2033 regset live;
2034 regset local_set;
2035 regset cond_local_set;
2036 int flags;
2038 struct propagate_block_info *pbi;
2039 rtx insn, prev;
2040 int changed;
2042 pbi = init_propagate_block_info (bb, live, local_set, cond_local_set, flags);
2044 if (flags & PROP_REG_INFO)
2046 int i;
2048 /* Process the regs live at the end of the block.
2049 Mark them as not local to any one basic block. */
2050 EXECUTE_IF_SET_IN_REG_SET (live, 0, i,
2051 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
2054 /* Scan the block an insn at a time from end to beginning. */
2056 changed = 0;
2057 for (insn = bb->end;; insn = prev)
2059 /* If this is a call to `setjmp' et al, warn if any
2060 non-volatile datum is live. */
2061 if ((flags & PROP_REG_INFO)
2062 && GET_CODE (insn) == CALL_INSN
2063 && find_reg_note (insn, REG_SETJMP, NULL))
2064 IOR_REG_SET (regs_live_at_setjmp, pbi->reg_live);
2066 prev = propagate_one_insn (pbi, insn);
2067 changed |= NEXT_INSN (prev) != insn;
2069 if (insn == bb->head)
2070 break;
2073 free_propagate_block_info (pbi);
2075 return changed;
2078 /* Return 1 if X (the body of an insn, or part of it) is just dead stores
2079 (SET expressions whose destinations are registers dead after the insn).
2080 NEEDED is the regset that says which regs are alive after the insn.
2082 Unless CALL_OK is non-zero, an insn is needed if it contains a CALL.
2084 If X is the entire body of an insn, NOTES contains the reg notes
2085 pertaining to the insn. */
2087 static int
2088 insn_dead_p (pbi, x, call_ok, notes)
2089 struct propagate_block_info *pbi;
2090 rtx x;
2091 int call_ok;
2092 rtx notes ATTRIBUTE_UNUSED;
2094 enum rtx_code code = GET_CODE (x);
2096 #ifdef AUTO_INC_DEC
2097 /* As flow is invoked after combine, we must take existing AUTO_INC
2098 expressions into account. */
2099 for (; notes; notes = XEXP (notes, 1))
2101 if (REG_NOTE_KIND (notes) == REG_INC)
2103 int regno = REGNO (XEXP (notes, 0));
2105 /* Don't delete insns to set global regs. */
2106 if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2107 || REGNO_REG_SET_P (pbi->reg_live, regno))
2108 return 0;
2111 #endif
2113 /* If setting something that's a reg or part of one,
2114 see if that register's altered value will be live. */
2116 if (code == SET)
2118 rtx r = SET_DEST (x);
2120 #ifdef HAVE_cc0
2121 if (GET_CODE (r) == CC0)
2122 return ! pbi->cc0_live;
2123 #endif
2125 /* A SET that is a subroutine call cannot be dead. */
2126 if (GET_CODE (SET_SRC (x)) == CALL)
2128 if (! call_ok)
2129 return 0;
2132 /* Don't eliminate loads from volatile memory or volatile asms. */
2133 else if (volatile_refs_p (SET_SRC (x)))
2134 return 0;
2136 if (GET_CODE (r) == MEM)
2138 rtx temp, canon_r;
2140 if (MEM_VOLATILE_P (r) || GET_MODE (r) == BLKmode)
2141 return 0;
2143 canon_r = canon_rtx (r);
2145 /* Walk the set of memory locations we are currently tracking
2146 and see if one is an identical match to this memory location.
2147 If so, this memory write is dead (remember, we're walking
2148 backwards from the end of the block to the start). Since
2149 rtx_equal_p does not check the alias set or flags, we also
2150 must have the potential for them to conflict (anti_dependence). */
2151 for (temp = pbi->mem_set_list; temp != 0; temp = XEXP (temp, 1))
2152 if (anti_dependence (r, XEXP (temp, 0)))
2154 rtx mem = XEXP (temp, 0);
2156 if (rtx_equal_p (XEXP (canon_r, 0), XEXP (mem, 0))
2157 && (GET_MODE_SIZE (GET_MODE (canon_r))
2158 <= GET_MODE_SIZE (GET_MODE (mem))))
2159 return 1;
2161 #ifdef AUTO_INC_DEC
2162 /* Check if memory reference matches an auto increment. Only
2163 post increment/decrement or modify are valid. */
2164 if (GET_MODE (mem) == GET_MODE (r)
2165 && (GET_CODE (XEXP (mem, 0)) == POST_DEC
2166 || GET_CODE (XEXP (mem, 0)) == POST_INC
2167 || GET_CODE (XEXP (mem, 0)) == POST_MODIFY)
2168 && GET_MODE (XEXP (mem, 0)) == GET_MODE (r)
2169 && rtx_equal_p (XEXP (XEXP (mem, 0), 0), XEXP (r, 0)))
2170 return 1;
2171 #endif
2174 else
2176 while (GET_CODE (r) == SUBREG
2177 || GET_CODE (r) == STRICT_LOW_PART
2178 || GET_CODE (r) == ZERO_EXTRACT)
2179 r = XEXP (r, 0);
2181 if (GET_CODE (r) == REG)
2183 int regno = REGNO (r);
2185 /* Obvious. */
2186 if (REGNO_REG_SET_P (pbi->reg_live, regno))
2187 return 0;
2189 /* If this is a hard register, verify that subsequent
2190 words are not needed. */
2191 if (regno < FIRST_PSEUDO_REGISTER)
2193 int n = HARD_REGNO_NREGS (regno, GET_MODE (r));
2195 while (--n > 0)
2196 if (REGNO_REG_SET_P (pbi->reg_live, regno+n))
2197 return 0;
2200 /* Don't delete insns to set global regs. */
2201 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2202 return 0;
2204 /* Make sure insns to set the stack pointer aren't deleted. */
2205 if (regno == STACK_POINTER_REGNUM)
2206 return 0;
2208 /* ??? These bits might be redundant with the force live bits
2209 in calculate_global_regs_live. We would delete from
2210 sequential sets; whether this actually affects real code
2211 for anything but the stack pointer I don't know. */
2212 /* Make sure insns to set the frame pointer aren't deleted. */
2213 if (regno == FRAME_POINTER_REGNUM
2214 && (! reload_completed || frame_pointer_needed))
2215 return 0;
2216 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2217 if (regno == HARD_FRAME_POINTER_REGNUM
2218 && (! reload_completed || frame_pointer_needed))
2219 return 0;
2220 #endif
2222 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2223 /* Make sure insns to set arg pointer are never deleted
2224 (if the arg pointer isn't fixed, there will be a USE
2225 for it, so we can treat it normally). */
2226 if (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2227 return 0;
2228 #endif
2230 /* Otherwise, the set is dead. */
2231 return 1;
2236 /* If performing several activities, insn is dead if each activity
2237 is individually dead. Also, CLOBBERs and USEs can be ignored; a
2238 CLOBBER or USE that's inside a PARALLEL doesn't make the insn
2239 worth keeping. */
2240 else if (code == PARALLEL)
2242 int i = XVECLEN (x, 0);
2244 for (i--; i >= 0; i--)
2245 if (GET_CODE (XVECEXP (x, 0, i)) != CLOBBER
2246 && GET_CODE (XVECEXP (x, 0, i)) != USE
2247 && ! insn_dead_p (pbi, XVECEXP (x, 0, i), call_ok, NULL_RTX))
2248 return 0;
2250 return 1;
2253 /* A CLOBBER of a pseudo-register that is dead serves no purpose. That
2254 is not necessarily true for hard registers. */
2255 else if (code == CLOBBER && GET_CODE (XEXP (x, 0)) == REG
2256 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER
2257 && ! REGNO_REG_SET_P (pbi->reg_live, REGNO (XEXP (x, 0))))
2258 return 1;
2260 /* We do not check other CLOBBER or USE here. An insn consisting of just
2261 a CLOBBER or just a USE should not be deleted. */
2262 return 0;
2265 /* If INSN is the last insn in a libcall, and assuming INSN is dead,
2266 return 1 if the entire library call is dead.
2267 This is true if INSN copies a register (hard or pseudo)
2268 and if the hard return reg of the call insn is dead.
2269 (The caller should have tested the destination of the SET inside
2270 INSN already for death.)
2272 If this insn doesn't just copy a register, then we don't
2273 have an ordinary libcall. In that case, cse could not have
2274 managed to substitute the source for the dest later on,
2275 so we can assume the libcall is dead.
2277 PBI is the block info giving pseudoregs live before this insn.
2278 NOTE is the REG_RETVAL note of the insn. */
2280 static int
2281 libcall_dead_p (pbi, note, insn)
2282 struct propagate_block_info *pbi;
2283 rtx note;
2284 rtx insn;
2286 rtx x = single_set (insn);
2288 if (x)
2290 rtx r = SET_SRC (x);
2292 if (GET_CODE (r) == REG)
2294 rtx call = XEXP (note, 0);
2295 rtx call_pat;
2296 int i;
2298 /* Find the call insn. */
2299 while (call != insn && GET_CODE (call) != CALL_INSN)
2300 call = NEXT_INSN (call);
2302 /* If there is none, do nothing special,
2303 since ordinary death handling can understand these insns. */
2304 if (call == insn)
2305 return 0;
2307 /* See if the hard reg holding the value is dead.
2308 If this is a PARALLEL, find the call within it. */
2309 call_pat = PATTERN (call);
2310 if (GET_CODE (call_pat) == PARALLEL)
2312 for (i = XVECLEN (call_pat, 0) - 1; i >= 0; i--)
2313 if (GET_CODE (XVECEXP (call_pat, 0, i)) == SET
2314 && GET_CODE (SET_SRC (XVECEXP (call_pat, 0, i))) == CALL)
2315 break;
2317 /* This may be a library call that is returning a value
2318 via invisible pointer. Do nothing special, since
2319 ordinary death handling can understand these insns. */
2320 if (i < 0)
2321 return 0;
2323 call_pat = XVECEXP (call_pat, 0, i);
2326 return insn_dead_p (pbi, call_pat, 1, REG_NOTES (call));
2329 return 1;
2332 /* Return 1 if register REGNO was used before it was set, i.e. if it is
2333 live at function entry. Don't count global register variables, variables
2334 in registers that can be used for function arg passing, or variables in
2335 fixed hard registers. */
2338 regno_uninitialized (regno)
2339 unsigned int regno;
2341 if (n_basic_blocks == 0
2342 || (regno < FIRST_PSEUDO_REGISTER
2343 && (global_regs[regno]
2344 || fixed_regs[regno]
2345 || FUNCTION_ARG_REGNO_P (regno))))
2346 return 0;
2348 return REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start, regno);
2351 /* 1 if register REGNO was alive at a place where `setjmp' was called
2352 and was set more than once or is an argument.
2353 Such regs may be clobbered by `longjmp'. */
2356 regno_clobbered_at_setjmp (regno)
2357 int regno;
2359 if (n_basic_blocks == 0)
2360 return 0;
2362 return ((REG_N_SETS (regno) > 1
2363 || REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start, regno))
2364 && REGNO_REG_SET_P (regs_live_at_setjmp, regno));
2367 /* Add MEM to PBI->MEM_SET_LIST. MEM should be canonical. Respect the
2368 maximal list size; look for overlaps in mode and select the largest. */
2369 static void
2370 add_to_mem_set_list (pbi, mem)
2371 struct propagate_block_info *pbi;
2372 rtx mem;
2374 rtx i;
2376 /* We don't know how large a BLKmode store is, so we must not
2377 take them into consideration. */
2378 if (GET_MODE (mem) == BLKmode)
2379 return;
2381 for (i = pbi->mem_set_list; i ; i = XEXP (i, 1))
2383 rtx e = XEXP (i, 0);
2384 if (rtx_equal_p (XEXP (mem, 0), XEXP (e, 0)))
2386 if (GET_MODE_SIZE (GET_MODE (mem)) > GET_MODE_SIZE (GET_MODE (e)))
2388 #ifdef AUTO_INC_DEC
2389 /* If we must store a copy of the mem, we can just modify
2390 the mode of the stored copy. */
2391 if (pbi->flags & PROP_AUTOINC)
2392 PUT_MODE (e, GET_MODE (mem));
2393 else
2394 #endif
2395 XEXP (i, 0) = mem;
2397 return;
2401 if (pbi->mem_set_list_len < MAX_MEM_SET_LIST_LEN)
2403 #ifdef AUTO_INC_DEC
2404 /* Store a copy of mem, otherwise the address may be
2405 scrogged by find_auto_inc. */
2406 if (pbi->flags & PROP_AUTOINC)
2407 mem = shallow_copy_rtx (mem);
2408 #endif
2409 pbi->mem_set_list = alloc_EXPR_LIST (0, mem, pbi->mem_set_list);
2410 pbi->mem_set_list_len++;
2414 /* INSN references memory, possibly using autoincrement addressing modes.
2415 Find any entries on the mem_set_list that need to be invalidated due
2416 to an address change. */
2418 static void
2419 invalidate_mems_from_autoinc (pbi, insn)
2420 struct propagate_block_info *pbi;
2421 rtx insn;
2423 rtx note = REG_NOTES (insn);
2424 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2425 if (REG_NOTE_KIND (note) == REG_INC)
2426 invalidate_mems_from_set (pbi, XEXP (note, 0));
2429 /* EXP is a REG. Remove any dependent entries from pbi->mem_set_list. */
2431 static void
2432 invalidate_mems_from_set (pbi, exp)
2433 struct propagate_block_info *pbi;
2434 rtx exp;
2436 rtx temp = pbi->mem_set_list;
2437 rtx prev = NULL_RTX;
2438 rtx next;
2440 while (temp)
2442 next = XEXP (temp, 1);
2443 if (reg_overlap_mentioned_p (exp, XEXP (temp, 0)))
2445 /* Splice this entry out of the list. */
2446 if (prev)
2447 XEXP (prev, 1) = next;
2448 else
2449 pbi->mem_set_list = next;
2450 free_EXPR_LIST_node (temp);
2451 pbi->mem_set_list_len--;
2453 else
2454 prev = temp;
2455 temp = next;
2459 /* Process the registers that are set within X. Their bits are set to
2460 1 in the regset DEAD, because they are dead prior to this insn.
2462 If INSN is nonzero, it is the insn being processed.
2464 FLAGS is the set of operations to perform. */
2466 static void
2467 mark_set_regs (pbi, x, insn)
2468 struct propagate_block_info *pbi;
2469 rtx x, insn;
2471 rtx cond = NULL_RTX;
2472 rtx link;
2473 enum rtx_code code;
2475 if (insn)
2476 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2478 if (REG_NOTE_KIND (link) == REG_INC)
2479 mark_set_1 (pbi, SET, XEXP (link, 0),
2480 (GET_CODE (x) == COND_EXEC
2481 ? COND_EXEC_TEST (x) : NULL_RTX),
2482 insn, pbi->flags);
2484 retry:
2485 switch (code = GET_CODE (x))
2487 case SET:
2488 case CLOBBER:
2489 mark_set_1 (pbi, code, SET_DEST (x), cond, insn, pbi->flags);
2490 return;
2492 case COND_EXEC:
2493 cond = COND_EXEC_TEST (x);
2494 x = COND_EXEC_CODE (x);
2495 goto retry;
2497 case PARALLEL:
2499 int i;
2501 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
2503 rtx sub = XVECEXP (x, 0, i);
2504 switch (code = GET_CODE (sub))
2506 case COND_EXEC:
2507 if (cond != NULL_RTX)
2508 abort ();
2510 cond = COND_EXEC_TEST (sub);
2511 sub = COND_EXEC_CODE (sub);
2512 if (GET_CODE (sub) != SET && GET_CODE (sub) != CLOBBER)
2513 break;
2514 /* Fall through. */
2516 case SET:
2517 case CLOBBER:
2518 mark_set_1 (pbi, code, SET_DEST (sub), cond, insn, pbi->flags);
2519 break;
2521 default:
2522 break;
2525 break;
2528 default:
2529 break;
2533 /* Process a single set, which appears in INSN. REG (which may not
2534 actually be a REG, it may also be a SUBREG, PARALLEL, etc.) is
2535 being set using the CODE (which may be SET, CLOBBER, or COND_EXEC).
2536 If the set is conditional (because it appear in a COND_EXEC), COND
2537 will be the condition. */
2539 static void
2540 mark_set_1 (pbi, code, reg, cond, insn, flags)
2541 struct propagate_block_info *pbi;
2542 enum rtx_code code;
2543 rtx reg, cond, insn;
2544 int flags;
2546 int regno_first = -1, regno_last = -1;
2547 unsigned long not_dead = 0;
2548 int i;
2550 /* Modifying just one hardware register of a multi-reg value or just a
2551 byte field of a register does not mean the value from before this insn
2552 is now dead. Of course, if it was dead after it's unused now. */
2554 switch (GET_CODE (reg))
2556 case PARALLEL:
2557 /* Some targets place small structures in registers for return values of
2558 functions. We have to detect this case specially here to get correct
2559 flow information. */
2560 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
2561 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
2562 mark_set_1 (pbi, code, XEXP (XVECEXP (reg, 0, i), 0), cond, insn,
2563 flags);
2564 return;
2566 case ZERO_EXTRACT:
2567 case SIGN_EXTRACT:
2568 case STRICT_LOW_PART:
2569 /* ??? Assumes STRICT_LOW_PART not used on multi-word registers. */
2571 reg = XEXP (reg, 0);
2572 while (GET_CODE (reg) == SUBREG
2573 || GET_CODE (reg) == ZERO_EXTRACT
2574 || GET_CODE (reg) == SIGN_EXTRACT
2575 || GET_CODE (reg) == STRICT_LOW_PART);
2576 if (GET_CODE (reg) == MEM)
2577 break;
2578 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live, REGNO (reg));
2579 /* Fall through. */
2581 case REG:
2582 regno_last = regno_first = REGNO (reg);
2583 if (regno_first < FIRST_PSEUDO_REGISTER)
2584 regno_last += HARD_REGNO_NREGS (regno_first, GET_MODE (reg)) - 1;
2585 break;
2587 case SUBREG:
2588 if (GET_CODE (SUBREG_REG (reg)) == REG)
2590 enum machine_mode outer_mode = GET_MODE (reg);
2591 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (reg));
2593 /* Identify the range of registers affected. This is moderately
2594 tricky for hard registers. See alter_subreg. */
2596 regno_last = regno_first = REGNO (SUBREG_REG (reg));
2597 if (regno_first < FIRST_PSEUDO_REGISTER)
2599 regno_first += subreg_regno_offset (regno_first, inner_mode,
2600 SUBREG_BYTE (reg),
2601 outer_mode);
2602 regno_last = (regno_first
2603 + HARD_REGNO_NREGS (regno_first, outer_mode) - 1);
2605 /* Since we've just adjusted the register number ranges, make
2606 sure REG matches. Otherwise some_was_live will be clear
2607 when it shouldn't have been, and we'll create incorrect
2608 REG_UNUSED notes. */
2609 reg = gen_rtx_REG (outer_mode, regno_first);
2611 else
2613 /* If the number of words in the subreg is less than the number
2614 of words in the full register, we have a well-defined partial
2615 set. Otherwise the high bits are undefined.
2617 This is only really applicable to pseudos, since we just took
2618 care of multi-word hard registers. */
2619 if (((GET_MODE_SIZE (outer_mode)
2620 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
2621 < ((GET_MODE_SIZE (inner_mode)
2622 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
2623 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live,
2624 regno_first);
2626 reg = SUBREG_REG (reg);
2629 else
2630 reg = SUBREG_REG (reg);
2631 break;
2633 default:
2634 break;
2637 /* If this set is a MEM, then it kills any aliased writes.
2638 If this set is a REG, then it kills any MEMs which use the reg. */
2639 if (optimize && (flags & PROP_SCAN_DEAD_CODE))
2641 if (GET_CODE (reg) == REG)
2642 invalidate_mems_from_set (pbi, reg);
2644 /* If the memory reference had embedded side effects (autoincrement
2645 address modes. Then we may need to kill some entries on the
2646 memory set list. */
2647 if (insn && GET_CODE (reg) == MEM)
2648 invalidate_mems_from_autoinc (pbi, insn);
2650 if (GET_CODE (reg) == MEM && ! side_effects_p (reg)
2651 /* ??? With more effort we could track conditional memory life. */
2652 && ! cond
2653 /* There are no REG_INC notes for SP, so we can't assume we'll see
2654 everything that invalidates it. To be safe, don't eliminate any
2655 stores though SP; none of them should be redundant anyway. */
2656 && ! reg_mentioned_p (stack_pointer_rtx, reg))
2657 add_to_mem_set_list (pbi, canon_rtx (reg));
2660 if (GET_CODE (reg) == REG
2661 && ! (regno_first == FRAME_POINTER_REGNUM
2662 && (! reload_completed || frame_pointer_needed))
2663 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2664 && ! (regno_first == HARD_FRAME_POINTER_REGNUM
2665 && (! reload_completed || frame_pointer_needed))
2666 #endif
2667 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2668 && ! (regno_first == ARG_POINTER_REGNUM && fixed_regs[regno_first])
2669 #endif
2672 int some_was_live = 0, some_was_dead = 0;
2674 for (i = regno_first; i <= regno_last; ++i)
2676 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
2677 if (pbi->local_set)
2679 /* Order of the set operation matters here since both
2680 sets may be the same. */
2681 CLEAR_REGNO_REG_SET (pbi->cond_local_set, i);
2682 if (cond != NULL_RTX
2683 && ! REGNO_REG_SET_P (pbi->local_set, i))
2684 SET_REGNO_REG_SET (pbi->cond_local_set, i);
2685 else
2686 SET_REGNO_REG_SET (pbi->local_set, i);
2688 if (code != CLOBBER)
2689 SET_REGNO_REG_SET (pbi->new_set, i);
2691 some_was_live |= needed_regno;
2692 some_was_dead |= ! needed_regno;
2695 #ifdef HAVE_conditional_execution
2696 /* Consider conditional death in deciding that the register needs
2697 a death note. */
2698 if (some_was_live && ! not_dead
2699 /* The stack pointer is never dead. Well, not strictly true,
2700 but it's very difficult to tell from here. Hopefully
2701 combine_stack_adjustments will fix up the most egregious
2702 errors. */
2703 && regno_first != STACK_POINTER_REGNUM)
2705 for (i = regno_first; i <= regno_last; ++i)
2706 if (! mark_regno_cond_dead (pbi, i, cond))
2707 not_dead |= ((unsigned long) 1) << (i - regno_first);
2709 #endif
2711 /* Additional data to record if this is the final pass. */
2712 if (flags & (PROP_LOG_LINKS | PROP_REG_INFO
2713 | PROP_DEATH_NOTES | PROP_AUTOINC))
2715 rtx y;
2716 int blocknum = pbi->bb->index;
2718 y = NULL_RTX;
2719 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2721 y = pbi->reg_next_use[regno_first];
2723 /* The next use is no longer next, since a store intervenes. */
2724 for (i = regno_first; i <= regno_last; ++i)
2725 pbi->reg_next_use[i] = 0;
2728 if (flags & PROP_REG_INFO)
2730 for (i = regno_first; i <= regno_last; ++i)
2732 /* Count (weighted) references, stores, etc. This counts a
2733 register twice if it is modified, but that is correct. */
2734 REG_N_SETS (i) += 1;
2735 REG_N_REFS (i) += 1;
2736 REG_FREQ (i) += REG_FREQ_FROM_BB (pbi->bb);
2738 /* The insns where a reg is live are normally counted
2739 elsewhere, but we want the count to include the insn
2740 where the reg is set, and the normal counting mechanism
2741 would not count it. */
2742 REG_LIVE_LENGTH (i) += 1;
2745 /* If this is a hard reg, record this function uses the reg. */
2746 if (regno_first < FIRST_PSEUDO_REGISTER)
2748 for (i = regno_first; i <= regno_last; i++)
2749 regs_ever_live[i] = 1;
2751 else
2753 /* Keep track of which basic blocks each reg appears in. */
2754 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
2755 REG_BASIC_BLOCK (regno_first) = blocknum;
2756 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
2757 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
2761 if (! some_was_dead)
2763 if (flags & PROP_LOG_LINKS)
2765 /* Make a logical link from the next following insn
2766 that uses this register, back to this insn.
2767 The following insns have already been processed.
2769 We don't build a LOG_LINK for hard registers containing
2770 in ASM_OPERANDs. If these registers get replaced,
2771 we might wind up changing the semantics of the insn,
2772 even if reload can make what appear to be valid
2773 assignments later. */
2774 if (y && (BLOCK_NUM (y) == blocknum)
2775 && (regno_first >= FIRST_PSEUDO_REGISTER
2776 || asm_noperands (PATTERN (y)) < 0))
2777 LOG_LINKS (y) = alloc_INSN_LIST (insn, LOG_LINKS (y));
2780 else if (not_dead)
2782 else if (! some_was_live)
2784 if (flags & PROP_REG_INFO)
2785 REG_N_DEATHS (regno_first) += 1;
2787 if (flags & PROP_DEATH_NOTES)
2789 /* Note that dead stores have already been deleted
2790 when possible. If we get here, we have found a
2791 dead store that cannot be eliminated (because the
2792 same insn does something useful). Indicate this
2793 by marking the reg being set as dying here. */
2794 REG_NOTES (insn)
2795 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2798 else
2800 if (flags & PROP_DEATH_NOTES)
2802 /* This is a case where we have a multi-word hard register
2803 and some, but not all, of the words of the register are
2804 needed in subsequent insns. Write REG_UNUSED notes
2805 for those parts that were not needed. This case should
2806 be rare. */
2808 for (i = regno_first; i <= regno_last; ++i)
2809 if (! REGNO_REG_SET_P (pbi->reg_live, i))
2810 REG_NOTES (insn)
2811 = alloc_EXPR_LIST (REG_UNUSED,
2812 gen_rtx_REG (reg_raw_mode[i], i),
2813 REG_NOTES (insn));
2818 /* Mark the register as being dead. */
2819 if (some_was_live
2820 /* The stack pointer is never dead. Well, not strictly true,
2821 but it's very difficult to tell from here. Hopefully
2822 combine_stack_adjustments will fix up the most egregious
2823 errors. */
2824 && regno_first != STACK_POINTER_REGNUM)
2826 for (i = regno_first; i <= regno_last; ++i)
2827 if (!(not_dead & (((unsigned long) 1) << (i - regno_first))))
2828 CLEAR_REGNO_REG_SET (pbi->reg_live, i);
2831 else if (GET_CODE (reg) == REG)
2833 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2834 pbi->reg_next_use[regno_first] = 0;
2837 /* If this is the last pass and this is a SCRATCH, show it will be dying
2838 here and count it. */
2839 else if (GET_CODE (reg) == SCRATCH)
2841 if (flags & PROP_DEATH_NOTES)
2842 REG_NOTES (insn)
2843 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2847 #ifdef HAVE_conditional_execution
2848 /* Mark REGNO conditionally dead.
2849 Return true if the register is now unconditionally dead. */
2851 static int
2852 mark_regno_cond_dead (pbi, regno, cond)
2853 struct propagate_block_info *pbi;
2854 int regno;
2855 rtx cond;
2857 /* If this is a store to a predicate register, the value of the
2858 predicate is changing, we don't know that the predicate as seen
2859 before is the same as that seen after. Flush all dependent
2860 conditions from reg_cond_dead. This will make all such
2861 conditionally live registers unconditionally live. */
2862 if (REGNO_REG_SET_P (pbi->reg_cond_reg, regno))
2863 flush_reg_cond_reg (pbi, regno);
2865 /* If this is an unconditional store, remove any conditional
2866 life that may have existed. */
2867 if (cond == NULL_RTX)
2868 splay_tree_remove (pbi->reg_cond_dead, regno);
2869 else
2871 splay_tree_node node;
2872 struct reg_cond_life_info *rcli;
2873 rtx ncond;
2875 /* Otherwise this is a conditional set. Record that fact.
2876 It may have been conditionally used, or there may be a
2877 subsequent set with a complimentary condition. */
2879 node = splay_tree_lookup (pbi->reg_cond_dead, regno);
2880 if (node == NULL)
2882 /* The register was unconditionally live previously.
2883 Record the current condition as the condition under
2884 which it is dead. */
2885 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
2886 rcli->condition = cond;
2887 rcli->stores = cond;
2888 rcli->orig_condition = const0_rtx;
2889 splay_tree_insert (pbi->reg_cond_dead, regno,
2890 (splay_tree_value) rcli);
2892 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2894 /* Not unconditionally dead. */
2895 return 0;
2897 else
2899 /* The register was conditionally live previously.
2900 Add the new condition to the old. */
2901 rcli = (struct reg_cond_life_info *) node->value;
2902 ncond = rcli->condition;
2903 ncond = ior_reg_cond (ncond, cond, 1);
2904 if (rcli->stores == const0_rtx)
2905 rcli->stores = cond;
2906 else if (rcli->stores != const1_rtx)
2907 rcli->stores = ior_reg_cond (rcli->stores, cond, 1);
2909 /* If the register is now unconditionally dead, remove the entry
2910 in the splay_tree. A register is unconditionally dead if the
2911 dead condition ncond is true. A register is also unconditionally
2912 dead if the sum of all conditional stores is an unconditional
2913 store (stores is true), and the dead condition is identically the
2914 same as the original dead condition initialized at the end of
2915 the block. This is a pointer compare, not an rtx_equal_p
2916 compare. */
2917 if (ncond == const1_rtx
2918 || (ncond == rcli->orig_condition && rcli->stores == const1_rtx))
2919 splay_tree_remove (pbi->reg_cond_dead, regno);
2920 else
2922 rcli->condition = ncond;
2924 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2926 /* Not unconditionally dead. */
2927 return 0;
2932 return 1;
2935 /* Called from splay_tree_delete for pbi->reg_cond_life. */
2937 static void
2938 free_reg_cond_life_info (value)
2939 splay_tree_value value;
2941 struct reg_cond_life_info *rcli = (struct reg_cond_life_info *) value;
2942 free (rcli);
2945 /* Helper function for flush_reg_cond_reg. */
2947 static int
2948 flush_reg_cond_reg_1 (node, data)
2949 splay_tree_node node;
2950 void *data;
2952 struct reg_cond_life_info *rcli;
2953 int *xdata = (int *) data;
2954 unsigned int regno = xdata[0];
2956 /* Don't need to search if last flushed value was farther on in
2957 the in-order traversal. */
2958 if (xdata[1] >= (int) node->key)
2959 return 0;
2961 /* Splice out portions of the expression that refer to regno. */
2962 rcli = (struct reg_cond_life_info *) node->value;
2963 rcli->condition = elim_reg_cond (rcli->condition, regno);
2964 if (rcli->stores != const0_rtx && rcli->stores != const1_rtx)
2965 rcli->stores = elim_reg_cond (rcli->stores, regno);
2967 /* If the entire condition is now false, signal the node to be removed. */
2968 if (rcli->condition == const0_rtx)
2970 xdata[1] = node->key;
2971 return -1;
2973 else if (rcli->condition == const1_rtx)
2974 abort ();
2976 return 0;
2979 /* Flush all (sub) expressions referring to REGNO from REG_COND_LIVE. */
2981 static void
2982 flush_reg_cond_reg (pbi, regno)
2983 struct propagate_block_info *pbi;
2984 int regno;
2986 int pair[2];
2988 pair[0] = regno;
2989 pair[1] = -1;
2990 while (splay_tree_foreach (pbi->reg_cond_dead,
2991 flush_reg_cond_reg_1, pair) == -1)
2992 splay_tree_remove (pbi->reg_cond_dead, pair[1]);
2994 CLEAR_REGNO_REG_SET (pbi->reg_cond_reg, regno);
2997 /* Logical arithmetic on predicate conditions. IOR, NOT and AND.
2998 For ior/and, the ADD flag determines whether we want to add the new
2999 condition X to the old one unconditionally. If it is zero, we will
3000 only return a new expression if X allows us to simplify part of
3001 OLD, otherwise we return NULL to the caller.
3002 If ADD is nonzero, we will return a new condition in all cases. The
3003 toplevel caller of one of these functions should always pass 1 for
3004 ADD. */
3006 static rtx
3007 ior_reg_cond (old, x, add)
3008 rtx old, x;
3009 int add;
3011 rtx op0, op1;
3013 if (GET_RTX_CLASS (GET_CODE (old)) == '<')
3015 if (GET_RTX_CLASS (GET_CODE (x)) == '<'
3016 && REVERSE_CONDEXEC_PREDICATES_P (GET_CODE (x), GET_CODE (old))
3017 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3018 return const1_rtx;
3019 if (GET_CODE (x) == GET_CODE (old)
3020 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3021 return old;
3022 if (! add)
3023 return NULL;
3024 return gen_rtx_IOR (0, old, x);
3027 switch (GET_CODE (old))
3029 case IOR:
3030 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3031 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3032 if (op0 != NULL || op1 != NULL)
3034 if (op0 == const0_rtx)
3035 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3036 if (op1 == const0_rtx)
3037 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3038 if (op0 == const1_rtx || op1 == const1_rtx)
3039 return const1_rtx;
3040 if (op0 == NULL)
3041 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3042 else if (rtx_equal_p (x, op0))
3043 /* (x | A) | x ~ (x | A). */
3044 return old;
3045 if (op1 == NULL)
3046 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3047 else if (rtx_equal_p (x, op1))
3048 /* (A | x) | x ~ (A | x). */
3049 return old;
3050 return gen_rtx_IOR (0, op0, op1);
3052 if (! add)
3053 return NULL;
3054 return gen_rtx_IOR (0, old, x);
3056 case AND:
3057 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3058 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3059 if (op0 != NULL || op1 != NULL)
3061 if (op0 == const1_rtx)
3062 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3063 if (op1 == const1_rtx)
3064 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3065 if (op0 == const0_rtx || op1 == const0_rtx)
3066 return const0_rtx;
3067 if (op0 == NULL)
3068 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3069 else if (rtx_equal_p (x, op0))
3070 /* (x & A) | x ~ x. */
3071 return op0;
3072 if (op1 == NULL)
3073 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3074 else if (rtx_equal_p (x, op1))
3075 /* (A & x) | x ~ x. */
3076 return op1;
3077 return gen_rtx_AND (0, op0, op1);
3079 if (! add)
3080 return NULL;
3081 return gen_rtx_IOR (0, old, x);
3083 case NOT:
3084 op0 = and_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3085 if (op0 != NULL)
3086 return not_reg_cond (op0);
3087 if (! add)
3088 return NULL;
3089 return gen_rtx_IOR (0, old, x);
3091 default:
3092 abort ();
3096 static rtx
3097 not_reg_cond (x)
3098 rtx x;
3100 enum rtx_code x_code;
3102 if (x == const0_rtx)
3103 return const1_rtx;
3104 else if (x == const1_rtx)
3105 return const0_rtx;
3106 x_code = GET_CODE (x);
3107 if (x_code == NOT)
3108 return XEXP (x, 0);
3109 if (GET_RTX_CLASS (x_code) == '<'
3110 && GET_CODE (XEXP (x, 0)) == REG)
3112 if (XEXP (x, 1) != const0_rtx)
3113 abort ();
3115 return gen_rtx_fmt_ee (reverse_condition (x_code),
3116 VOIDmode, XEXP (x, 0), const0_rtx);
3118 return gen_rtx_NOT (0, x);
3121 static rtx
3122 and_reg_cond (old, x, add)
3123 rtx old, x;
3124 int add;
3126 rtx op0, op1;
3128 if (GET_RTX_CLASS (GET_CODE (old)) == '<')
3130 if (GET_RTX_CLASS (GET_CODE (x)) == '<'
3131 && GET_CODE (x) == reverse_condition (GET_CODE (old))
3132 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3133 return const0_rtx;
3134 if (GET_CODE (x) == GET_CODE (old)
3135 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3136 return old;
3137 if (! add)
3138 return NULL;
3139 return gen_rtx_AND (0, old, x);
3142 switch (GET_CODE (old))
3144 case IOR:
3145 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3146 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3147 if (op0 != NULL || op1 != NULL)
3149 if (op0 == const0_rtx)
3150 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3151 if (op1 == const0_rtx)
3152 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3153 if (op0 == const1_rtx || op1 == const1_rtx)
3154 return const1_rtx;
3155 if (op0 == NULL)
3156 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3157 else if (rtx_equal_p (x, op0))
3158 /* (x | A) & x ~ x. */
3159 return op0;
3160 if (op1 == NULL)
3161 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3162 else if (rtx_equal_p (x, op1))
3163 /* (A | x) & x ~ x. */
3164 return op1;
3165 return gen_rtx_IOR (0, op0, op1);
3167 if (! add)
3168 return NULL;
3169 return gen_rtx_AND (0, old, x);
3171 case AND:
3172 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3173 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3174 if (op0 != NULL || op1 != NULL)
3176 if (op0 == const1_rtx)
3177 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3178 if (op1 == const1_rtx)
3179 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3180 if (op0 == const0_rtx || op1 == const0_rtx)
3181 return const0_rtx;
3182 if (op0 == NULL)
3183 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3184 else if (rtx_equal_p (x, op0))
3185 /* (x & A) & x ~ (x & A). */
3186 return old;
3187 if (op1 == NULL)
3188 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3189 else if (rtx_equal_p (x, op1))
3190 /* (A & x) & x ~ (A & x). */
3191 return old;
3192 return gen_rtx_AND (0, op0, op1);
3194 if (! add)
3195 return NULL;
3196 return gen_rtx_AND (0, old, x);
3198 case NOT:
3199 op0 = ior_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3200 if (op0 != NULL)
3201 return not_reg_cond (op0);
3202 if (! add)
3203 return NULL;
3204 return gen_rtx_AND (0, old, x);
3206 default:
3207 abort ();
3211 /* Given a condition X, remove references to reg REGNO and return the
3212 new condition. The removal will be done so that all conditions
3213 involving REGNO are considered to evaluate to false. This function
3214 is used when the value of REGNO changes. */
3216 static rtx
3217 elim_reg_cond (x, regno)
3218 rtx x;
3219 unsigned int regno;
3221 rtx op0, op1;
3223 if (GET_RTX_CLASS (GET_CODE (x)) == '<')
3225 if (REGNO (XEXP (x, 0)) == regno)
3226 return const0_rtx;
3227 return x;
3230 switch (GET_CODE (x))
3232 case AND:
3233 op0 = elim_reg_cond (XEXP (x, 0), regno);
3234 op1 = elim_reg_cond (XEXP (x, 1), regno);
3235 if (op0 == const0_rtx || op1 == const0_rtx)
3236 return const0_rtx;
3237 if (op0 == const1_rtx)
3238 return op1;
3239 if (op1 == const1_rtx)
3240 return op0;
3241 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3242 return x;
3243 return gen_rtx_AND (0, op0, op1);
3245 case IOR:
3246 op0 = elim_reg_cond (XEXP (x, 0), regno);
3247 op1 = elim_reg_cond (XEXP (x, 1), regno);
3248 if (op0 == const1_rtx || op1 == const1_rtx)
3249 return const1_rtx;
3250 if (op0 == const0_rtx)
3251 return op1;
3252 if (op1 == const0_rtx)
3253 return op0;
3254 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3255 return x;
3256 return gen_rtx_IOR (0, op0, op1);
3258 case NOT:
3259 op0 = elim_reg_cond (XEXP (x, 0), regno);
3260 if (op0 == const0_rtx)
3261 return const1_rtx;
3262 if (op0 == const1_rtx)
3263 return const0_rtx;
3264 if (op0 != XEXP (x, 0))
3265 return not_reg_cond (op0);
3266 return x;
3268 default:
3269 abort ();
3272 #endif /* HAVE_conditional_execution */
3274 #ifdef AUTO_INC_DEC
3276 /* Try to substitute the auto-inc expression INC as the address inside
3277 MEM which occurs in INSN. Currently, the address of MEM is an expression
3278 involving INCR_REG, and INCR is the next use of INCR_REG; it is an insn
3279 that has a single set whose source is a PLUS of INCR_REG and something
3280 else. */
3282 static void
3283 attempt_auto_inc (pbi, inc, insn, mem, incr, incr_reg)
3284 struct propagate_block_info *pbi;
3285 rtx inc, insn, mem, incr, incr_reg;
3287 int regno = REGNO (incr_reg);
3288 rtx set = single_set (incr);
3289 rtx q = SET_DEST (set);
3290 rtx y = SET_SRC (set);
3291 int opnum = XEXP (y, 0) == incr_reg ? 0 : 1;
3293 /* Make sure this reg appears only once in this insn. */
3294 if (count_occurrences (PATTERN (insn), incr_reg, 1) != 1)
3295 return;
3297 if (dead_or_set_p (incr, incr_reg)
3298 /* Mustn't autoinc an eliminable register. */
3299 && (regno >= FIRST_PSEUDO_REGISTER
3300 || ! TEST_HARD_REG_BIT (elim_reg_set, regno)))
3302 /* This is the simple case. Try to make the auto-inc. If
3303 we can't, we are done. Otherwise, we will do any
3304 needed updates below. */
3305 if (! validate_change (insn, &XEXP (mem, 0), inc, 0))
3306 return;
3308 else if (GET_CODE (q) == REG
3309 /* PREV_INSN used here to check the semi-open interval
3310 [insn,incr). */
3311 && ! reg_used_between_p (q, PREV_INSN (insn), incr)
3312 /* We must also check for sets of q as q may be
3313 a call clobbered hard register and there may
3314 be a call between PREV_INSN (insn) and incr. */
3315 && ! reg_set_between_p (q, PREV_INSN (insn), incr))
3317 /* We have *p followed sometime later by q = p+size.
3318 Both p and q must be live afterward,
3319 and q is not used between INSN and its assignment.
3320 Change it to q = p, ...*q..., q = q+size.
3321 Then fall into the usual case. */
3322 rtx insns, temp;
3324 start_sequence ();
3325 emit_move_insn (q, incr_reg);
3326 insns = get_insns ();
3327 end_sequence ();
3329 /* If we can't make the auto-inc, or can't make the
3330 replacement into Y, exit. There's no point in making
3331 the change below if we can't do the auto-inc and doing
3332 so is not correct in the pre-inc case. */
3334 XEXP (inc, 0) = q;
3335 validate_change (insn, &XEXP (mem, 0), inc, 1);
3336 validate_change (incr, &XEXP (y, opnum), q, 1);
3337 if (! apply_change_group ())
3338 return;
3340 /* We now know we'll be doing this change, so emit the
3341 new insn(s) and do the updates. */
3342 emit_insns_before (insns, insn);
3344 if (pbi->bb->head == insn)
3345 pbi->bb->head = insns;
3347 /* INCR will become a NOTE and INSN won't contain a
3348 use of INCR_REG. If a use of INCR_REG was just placed in
3349 the insn before INSN, make that the next use.
3350 Otherwise, invalidate it. */
3351 if (GET_CODE (PREV_INSN (insn)) == INSN
3352 && GET_CODE (PATTERN (PREV_INSN (insn))) == SET
3353 && SET_SRC (PATTERN (PREV_INSN (insn))) == incr_reg)
3354 pbi->reg_next_use[regno] = PREV_INSN (insn);
3355 else
3356 pbi->reg_next_use[regno] = 0;
3358 incr_reg = q;
3359 regno = REGNO (q);
3361 /* REGNO is now used in INCR which is below INSN, but
3362 it previously wasn't live here. If we don't mark
3363 it as live, we'll put a REG_DEAD note for it
3364 on this insn, which is incorrect. */
3365 SET_REGNO_REG_SET (pbi->reg_live, regno);
3367 /* If there are any calls between INSN and INCR, show
3368 that REGNO now crosses them. */
3369 for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
3370 if (GET_CODE (temp) == CALL_INSN)
3371 REG_N_CALLS_CROSSED (regno)++;
3373 /* Invalidate alias info for Q since we just changed its value. */
3374 clear_reg_alias_info (q);
3376 else
3377 return;
3379 /* If we haven't returned, it means we were able to make the
3380 auto-inc, so update the status. First, record that this insn
3381 has an implicit side effect. */
3383 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, incr_reg, REG_NOTES (insn));
3385 /* Modify the old increment-insn to simply copy
3386 the already-incremented value of our register. */
3387 if (! validate_change (incr, &SET_SRC (set), incr_reg, 0))
3388 abort ();
3390 /* If that makes it a no-op (copying the register into itself) delete
3391 it so it won't appear to be a "use" and a "set" of this
3392 register. */
3393 if (REGNO (SET_DEST (set)) == REGNO (incr_reg))
3395 /* If the original source was dead, it's dead now. */
3396 rtx note;
3398 while ((note = find_reg_note (incr, REG_DEAD, NULL_RTX)) != NULL_RTX)
3400 remove_note (incr, note);
3401 if (XEXP (note, 0) != incr_reg)
3402 CLEAR_REGNO_REG_SET (pbi->reg_live, REGNO (XEXP (note, 0)));
3405 PUT_CODE (incr, NOTE);
3406 NOTE_LINE_NUMBER (incr) = NOTE_INSN_DELETED;
3407 NOTE_SOURCE_FILE (incr) = 0;
3410 if (regno >= FIRST_PSEUDO_REGISTER)
3412 /* Count an extra reference to the reg. When a reg is
3413 incremented, spilling it is worse, so we want to make
3414 that less likely. */
3415 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
3417 /* Count the increment as a setting of the register,
3418 even though it isn't a SET in rtl. */
3419 REG_N_SETS (regno)++;
3423 /* X is a MEM found in INSN. See if we can convert it into an auto-increment
3424 reference. */
3426 static void
3427 find_auto_inc (pbi, x, insn)
3428 struct propagate_block_info *pbi;
3429 rtx x;
3430 rtx insn;
3432 rtx addr = XEXP (x, 0);
3433 HOST_WIDE_INT offset = 0;
3434 rtx set, y, incr, inc_val;
3435 int regno;
3436 int size = GET_MODE_SIZE (GET_MODE (x));
3438 if (GET_CODE (insn) == JUMP_INSN)
3439 return;
3441 /* Here we detect use of an index register which might be good for
3442 postincrement, postdecrement, preincrement, or predecrement. */
3444 if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
3445 offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);
3447 if (GET_CODE (addr) != REG)
3448 return;
3450 regno = REGNO (addr);
3452 /* Is the next use an increment that might make auto-increment? */
3453 incr = pbi->reg_next_use[regno];
3454 if (incr == 0 || BLOCK_NUM (incr) != BLOCK_NUM (insn))
3455 return;
3456 set = single_set (incr);
3457 if (set == 0 || GET_CODE (set) != SET)
3458 return;
3459 y = SET_SRC (set);
3461 if (GET_CODE (y) != PLUS)
3462 return;
3464 if (REG_P (XEXP (y, 0)) && REGNO (XEXP (y, 0)) == REGNO (addr))
3465 inc_val = XEXP (y, 1);
3466 else if (REG_P (XEXP (y, 1)) && REGNO (XEXP (y, 1)) == REGNO (addr))
3467 inc_val = XEXP (y, 0);
3468 else
3469 return;
3471 if (GET_CODE (inc_val) == CONST_INT)
3473 if (HAVE_POST_INCREMENT
3474 && (INTVAL (inc_val) == size && offset == 0))
3475 attempt_auto_inc (pbi, gen_rtx_POST_INC (Pmode, addr), insn, x,
3476 incr, addr);
3477 else if (HAVE_POST_DECREMENT
3478 && (INTVAL (inc_val) == -size && offset == 0))
3479 attempt_auto_inc (pbi, gen_rtx_POST_DEC (Pmode, addr), insn, x,
3480 incr, addr);
3481 else if (HAVE_PRE_INCREMENT
3482 && (INTVAL (inc_val) == size && offset == size))
3483 attempt_auto_inc (pbi, gen_rtx_PRE_INC (Pmode, addr), insn, x,
3484 incr, addr);
3485 else if (HAVE_PRE_DECREMENT
3486 && (INTVAL (inc_val) == -size && offset == -size))
3487 attempt_auto_inc (pbi, gen_rtx_PRE_DEC (Pmode, addr), insn, x,
3488 incr, addr);
3489 else if (HAVE_POST_MODIFY_DISP && offset == 0)
3490 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3491 gen_rtx_PLUS (Pmode,
3492 addr,
3493 inc_val)),
3494 insn, x, incr, addr);
3496 else if (GET_CODE (inc_val) == REG
3497 && ! reg_set_between_p (inc_val, PREV_INSN (insn),
3498 NEXT_INSN (incr)))
3501 if (HAVE_POST_MODIFY_REG && offset == 0)
3502 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3503 gen_rtx_PLUS (Pmode,
3504 addr,
3505 inc_val)),
3506 insn, x, incr, addr);
3510 #endif /* AUTO_INC_DEC */
3512 static void
3513 mark_used_reg (pbi, reg, cond, insn)
3514 struct propagate_block_info *pbi;
3515 rtx reg;
3516 rtx cond ATTRIBUTE_UNUSED;
3517 rtx insn;
3519 unsigned int regno_first, regno_last, i;
3520 int some_was_live, some_was_dead, some_not_set;
3522 regno_last = regno_first = REGNO (reg);
3523 if (regno_first < FIRST_PSEUDO_REGISTER)
3524 regno_last += HARD_REGNO_NREGS (regno_first, GET_MODE (reg)) - 1;
3526 /* Find out if any of this register is live after this instruction. */
3527 some_was_live = some_was_dead = 0;
3528 for (i = regno_first; i <= regno_last; ++i)
3530 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
3531 some_was_live |= needed_regno;
3532 some_was_dead |= ! needed_regno;
3535 /* Find out if any of the register was set this insn. */
3536 some_not_set = 0;
3537 for (i = regno_first; i <= regno_last; ++i)
3538 some_not_set |= ! REGNO_REG_SET_P (pbi->new_set, i);
3540 if (pbi->flags & (PROP_LOG_LINKS | PROP_AUTOINC))
3542 /* Record where each reg is used, so when the reg is set we know
3543 the next insn that uses it. */
3544 pbi->reg_next_use[regno_first] = insn;
3547 if (pbi->flags & PROP_REG_INFO)
3549 if (regno_first < FIRST_PSEUDO_REGISTER)
3551 /* If this is a register we are going to try to eliminate,
3552 don't mark it live here. If we are successful in
3553 eliminating it, it need not be live unless it is used for
3554 pseudos, in which case it will have been set live when it
3555 was allocated to the pseudos. If the register will not
3556 be eliminated, reload will set it live at that point.
3558 Otherwise, record that this function uses this register. */
3559 /* ??? The PPC backend tries to "eliminate" on the pic
3560 register to itself. This should be fixed. In the mean
3561 time, hack around it. */
3563 if (! (TEST_HARD_REG_BIT (elim_reg_set, regno_first)
3564 && (regno_first == FRAME_POINTER_REGNUM
3565 || regno_first == ARG_POINTER_REGNUM)))
3566 for (i = regno_first; i <= regno_last; ++i)
3567 regs_ever_live[i] = 1;
3569 else
3571 /* Keep track of which basic block each reg appears in. */
3573 int blocknum = pbi->bb->index;
3574 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
3575 REG_BASIC_BLOCK (regno_first) = blocknum;
3576 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
3577 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
3579 /* Count (weighted) number of uses of each reg. */
3580 REG_FREQ (regno_first) += REG_FREQ_FROM_BB (pbi->bb);
3581 REG_N_REFS (regno_first)++;
3585 /* Record and count the insns in which a reg dies. If it is used in
3586 this insn and was dead below the insn then it dies in this insn.
3587 If it was set in this insn, we do not make a REG_DEAD note;
3588 likewise if we already made such a note. */
3589 if ((pbi->flags & (PROP_DEATH_NOTES | PROP_REG_INFO))
3590 && some_was_dead
3591 && some_not_set)
3593 /* Check for the case where the register dying partially
3594 overlaps the register set by this insn. */
3595 if (regno_first != regno_last)
3596 for (i = regno_first; i <= regno_last; ++i)
3597 some_was_live |= REGNO_REG_SET_P (pbi->new_set, i);
3599 /* If none of the words in X is needed, make a REG_DEAD note.
3600 Otherwise, we must make partial REG_DEAD notes. */
3601 if (! some_was_live)
3603 if ((pbi->flags & PROP_DEATH_NOTES)
3604 && ! find_regno_note (insn, REG_DEAD, regno_first))
3605 REG_NOTES (insn)
3606 = alloc_EXPR_LIST (REG_DEAD, reg, REG_NOTES (insn));
3608 if (pbi->flags & PROP_REG_INFO)
3609 REG_N_DEATHS (regno_first)++;
3611 else
3613 /* Don't make a REG_DEAD note for a part of a register
3614 that is set in the insn. */
3615 for (i = regno_first; i <= regno_last; ++i)
3616 if (! REGNO_REG_SET_P (pbi->reg_live, i)
3617 && ! dead_or_set_regno_p (insn, i))
3618 REG_NOTES (insn)
3619 = alloc_EXPR_LIST (REG_DEAD,
3620 gen_rtx_REG (reg_raw_mode[i], i),
3621 REG_NOTES (insn));
3625 /* Mark the register as being live. */
3626 for (i = regno_first; i <= regno_last; ++i)
3628 #ifdef HAVE_conditional_execution
3629 int this_was_live = REGNO_REG_SET_P (pbi->reg_live, i);
3630 #endif
3632 SET_REGNO_REG_SET (pbi->reg_live, i);
3634 #ifdef HAVE_conditional_execution
3635 /* If this is a conditional use, record that fact. If it is later
3636 conditionally set, we'll know to kill the register. */
3637 if (cond != NULL_RTX)
3639 splay_tree_node node;
3640 struct reg_cond_life_info *rcli;
3641 rtx ncond;
3643 if (this_was_live)
3645 node = splay_tree_lookup (pbi->reg_cond_dead, i);
3646 if (node == NULL)
3648 /* The register was unconditionally live previously.
3649 No need to do anything. */
3651 else
3653 /* The register was conditionally live previously.
3654 Subtract the new life cond from the old death cond. */
3655 rcli = (struct reg_cond_life_info *) node->value;
3656 ncond = rcli->condition;
3657 ncond = and_reg_cond (ncond, not_reg_cond (cond), 1);
3659 /* If the register is now unconditionally live,
3660 remove the entry in the splay_tree. */
3661 if (ncond == const0_rtx)
3662 splay_tree_remove (pbi->reg_cond_dead, i);
3663 else
3665 rcli->condition = ncond;
3666 SET_REGNO_REG_SET (pbi->reg_cond_reg,
3667 REGNO (XEXP (cond, 0)));
3671 else
3673 /* The register was not previously live at all. Record
3674 the condition under which it is still dead. */
3675 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
3676 rcli->condition = not_reg_cond (cond);
3677 rcli->stores = const0_rtx;
3678 rcli->orig_condition = const0_rtx;
3679 splay_tree_insert (pbi->reg_cond_dead, i,
3680 (splay_tree_value) rcli);
3682 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
3685 else if (this_was_live)
3687 /* The register may have been conditionally live previously, but
3688 is now unconditionally live. Remove it from the conditionally
3689 dead list, so that a conditional set won't cause us to think
3690 it dead. */
3691 splay_tree_remove (pbi->reg_cond_dead, i);
3693 #endif
3697 /* Scan expression X and store a 1-bit in NEW_LIVE for each reg it uses.
3698 This is done assuming the registers needed from X are those that
3699 have 1-bits in PBI->REG_LIVE.
3701 INSN is the containing instruction. If INSN is dead, this function
3702 is not called. */
3704 static void
3705 mark_used_regs (pbi, x, cond, insn)
3706 struct propagate_block_info *pbi;
3707 rtx x, cond, insn;
3709 RTX_CODE code;
3710 int regno;
3711 int flags = pbi->flags;
3713 retry:
3714 if (!x)
3715 return;
3716 code = GET_CODE (x);
3717 switch (code)
3719 case LABEL_REF:
3720 case SYMBOL_REF:
3721 case CONST_INT:
3722 case CONST:
3723 case CONST_DOUBLE:
3724 case CONST_VECTOR:
3725 case PC:
3726 case ADDR_VEC:
3727 case ADDR_DIFF_VEC:
3728 return;
3730 #ifdef HAVE_cc0
3731 case CC0:
3732 pbi->cc0_live = 1;
3733 return;
3734 #endif
3736 case CLOBBER:
3737 /* If we are clobbering a MEM, mark any registers inside the address
3738 as being used. */
3739 if (GET_CODE (XEXP (x, 0)) == MEM)
3740 mark_used_regs (pbi, XEXP (XEXP (x, 0), 0), cond, insn);
3741 return;
3743 case MEM:
3744 /* Don't bother watching stores to mems if this is not the
3745 final pass. We'll not be deleting dead stores this round. */
3746 if (optimize && (flags & PROP_SCAN_DEAD_CODE))
3748 /* Invalidate the data for the last MEM stored, but only if MEM is
3749 something that can be stored into. */
3750 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3751 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
3752 /* Needn't clear the memory set list. */
3754 else
3756 rtx temp = pbi->mem_set_list;
3757 rtx prev = NULL_RTX;
3758 rtx next;
3760 while (temp)
3762 next = XEXP (temp, 1);
3763 if (anti_dependence (XEXP (temp, 0), x))
3765 /* Splice temp out of the list. */
3766 if (prev)
3767 XEXP (prev, 1) = next;
3768 else
3769 pbi->mem_set_list = next;
3770 free_EXPR_LIST_node (temp);
3771 pbi->mem_set_list_len--;
3773 else
3774 prev = temp;
3775 temp = next;
3779 /* If the memory reference had embedded side effects (autoincrement
3780 address modes. Then we may need to kill some entries on the
3781 memory set list. */
3782 if (insn)
3783 invalidate_mems_from_autoinc (pbi, insn);
3786 #ifdef AUTO_INC_DEC
3787 if (flags & PROP_AUTOINC)
3788 find_auto_inc (pbi, x, insn);
3789 #endif
3790 break;
3792 case SUBREG:
3793 #ifdef CLASS_CANNOT_CHANGE_MODE
3794 if (GET_CODE (SUBREG_REG (x)) == REG
3795 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER
3796 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (x),
3797 GET_MODE (SUBREG_REG (x))))
3798 REG_CHANGES_MODE (REGNO (SUBREG_REG (x))) = 1;
3799 #endif
3801 /* While we're here, optimize this case. */
3802 x = SUBREG_REG (x);
3803 if (GET_CODE (x) != REG)
3804 goto retry;
3805 /* Fall through. */
3807 case REG:
3808 /* See a register other than being set => mark it as needed. */
3809 mark_used_reg (pbi, x, cond, insn);
3810 return;
3812 case SET:
3814 rtx testreg = SET_DEST (x);
3815 int mark_dest = 0;
3817 /* If storing into MEM, don't show it as being used. But do
3818 show the address as being used. */
3819 if (GET_CODE (testreg) == MEM)
3821 #ifdef AUTO_INC_DEC
3822 if (flags & PROP_AUTOINC)
3823 find_auto_inc (pbi, testreg, insn);
3824 #endif
3825 mark_used_regs (pbi, XEXP (testreg, 0), cond, insn);
3826 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3827 return;
3830 /* Storing in STRICT_LOW_PART is like storing in a reg
3831 in that this SET might be dead, so ignore it in TESTREG.
3832 but in some other ways it is like using the reg.
3834 Storing in a SUBREG or a bit field is like storing the entire
3835 register in that if the register's value is not used
3836 then this SET is not needed. */
3837 while (GET_CODE (testreg) == STRICT_LOW_PART
3838 || GET_CODE (testreg) == ZERO_EXTRACT
3839 || GET_CODE (testreg) == SIGN_EXTRACT
3840 || GET_CODE (testreg) == SUBREG)
3842 #ifdef CLASS_CANNOT_CHANGE_MODE
3843 if (GET_CODE (testreg) == SUBREG
3844 && GET_CODE (SUBREG_REG (testreg)) == REG
3845 && REGNO (SUBREG_REG (testreg)) >= FIRST_PSEUDO_REGISTER
3846 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (testreg)),
3847 GET_MODE (testreg)))
3848 REG_CHANGES_MODE (REGNO (SUBREG_REG (testreg))) = 1;
3849 #endif
3851 /* Modifying a single register in an alternate mode
3852 does not use any of the old value. But these other
3853 ways of storing in a register do use the old value. */
3854 if (GET_CODE (testreg) == SUBREG
3855 && !((REG_BYTES (SUBREG_REG (testreg))
3856 + UNITS_PER_WORD - 1) / UNITS_PER_WORD
3857 > (REG_BYTES (testreg)
3858 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
3860 else
3861 mark_dest = 1;
3863 testreg = XEXP (testreg, 0);
3866 /* If this is a store into a register or group of registers,
3867 recursively scan the value being stored. */
3869 if ((GET_CODE (testreg) == PARALLEL
3870 && GET_MODE (testreg) == BLKmode)
3871 || (GET_CODE (testreg) == REG
3872 && (regno = REGNO (testreg),
3873 ! (regno == FRAME_POINTER_REGNUM
3874 && (! reload_completed || frame_pointer_needed)))
3875 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
3876 && ! (regno == HARD_FRAME_POINTER_REGNUM
3877 && (! reload_completed || frame_pointer_needed))
3878 #endif
3879 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3880 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
3881 #endif
3884 if (mark_dest)
3885 mark_used_regs (pbi, SET_DEST (x), cond, insn);
3886 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3887 return;
3890 break;
3892 case ASM_OPERANDS:
3893 case UNSPEC_VOLATILE:
3894 case TRAP_IF:
3895 case ASM_INPUT:
3897 /* Traditional and volatile asm instructions must be considered to use
3898 and clobber all hard registers, all pseudo-registers and all of
3899 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
3901 Consider for instance a volatile asm that changes the fpu rounding
3902 mode. An insn should not be moved across this even if it only uses
3903 pseudo-regs because it might give an incorrectly rounded result.
3905 ?!? Unfortunately, marking all hard registers as live causes massive
3906 problems for the register allocator and marking all pseudos as live
3907 creates mountains of uninitialized variable warnings.
3909 So for now, just clear the memory set list and mark any regs
3910 we can find in ASM_OPERANDS as used. */
3911 if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
3913 free_EXPR_LIST_list (&pbi->mem_set_list);
3914 pbi->mem_set_list_len = 0;
3917 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
3918 We can not just fall through here since then we would be confused
3919 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
3920 traditional asms unlike their normal usage. */
3921 if (code == ASM_OPERANDS)
3923 int j;
3925 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
3926 mark_used_regs (pbi, ASM_OPERANDS_INPUT (x, j), cond, insn);
3928 break;
3931 case COND_EXEC:
3932 if (cond != NULL_RTX)
3933 abort ();
3935 mark_used_regs (pbi, COND_EXEC_TEST (x), NULL_RTX, insn);
3937 cond = COND_EXEC_TEST (x);
3938 x = COND_EXEC_CODE (x);
3939 goto retry;
3941 case PHI:
3942 /* We _do_not_ want to scan operands of phi nodes. Operands of
3943 a phi function are evaluated only when control reaches this
3944 block along a particular edge. Therefore, regs that appear
3945 as arguments to phi should not be added to the global live at
3946 start. */
3947 return;
3949 default:
3950 break;
3953 /* Recursively scan the operands of this expression. */
3956 const char * const fmt = GET_RTX_FORMAT (code);
3957 int i;
3959 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3961 if (fmt[i] == 'e')
3963 /* Tail recursive case: save a function call level. */
3964 if (i == 0)
3966 x = XEXP (x, 0);
3967 goto retry;
3969 mark_used_regs (pbi, XEXP (x, i), cond, insn);
3971 else if (fmt[i] == 'E')
3973 int j;
3974 for (j = 0; j < XVECLEN (x, i); j++)
3975 mark_used_regs (pbi, XVECEXP (x, i, j), cond, insn);
3981 #ifdef AUTO_INC_DEC
3983 static int
3984 try_pre_increment_1 (pbi, insn)
3985 struct propagate_block_info *pbi;
3986 rtx insn;
3988 /* Find the next use of this reg. If in same basic block,
3989 make it do pre-increment or pre-decrement if appropriate. */
3990 rtx x = single_set (insn);
3991 HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
3992 * INTVAL (XEXP (SET_SRC (x), 1)));
3993 int regno = REGNO (SET_DEST (x));
3994 rtx y = pbi->reg_next_use[regno];
3995 if (y != 0
3996 && SET_DEST (x) != stack_pointer_rtx
3997 && BLOCK_NUM (y) == BLOCK_NUM (insn)
3998 /* Don't do this if the reg dies, or gets set in y; a standard addressing
3999 mode would be better. */
4000 && ! dead_or_set_p (y, SET_DEST (x))
4001 && try_pre_increment (y, SET_DEST (x), amount))
4003 /* We have found a suitable auto-increment and already changed
4004 insn Y to do it. So flush this increment instruction. */
4005 propagate_block_delete_insn (insn);
4007 /* Count a reference to this reg for the increment insn we are
4008 deleting. When a reg is incremented, spilling it is worse,
4009 so we want to make that less likely. */
4010 if (regno >= FIRST_PSEUDO_REGISTER)
4012 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
4013 REG_N_SETS (regno)++;
4016 /* Flush any remembered memories depending on the value of
4017 the incremented register. */
4018 invalidate_mems_from_set (pbi, SET_DEST (x));
4020 return 1;
4022 return 0;
4025 /* Try to change INSN so that it does pre-increment or pre-decrement
4026 addressing on register REG in order to add AMOUNT to REG.
4027 AMOUNT is negative for pre-decrement.
4028 Returns 1 if the change could be made.
4029 This checks all about the validity of the result of modifying INSN. */
4031 static int
4032 try_pre_increment (insn, reg, amount)
4033 rtx insn, reg;
4034 HOST_WIDE_INT amount;
4036 rtx use;
4038 /* Nonzero if we can try to make a pre-increment or pre-decrement.
4039 For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
4040 int pre_ok = 0;
4041 /* Nonzero if we can try to make a post-increment or post-decrement.
4042 For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
4043 It is possible for both PRE_OK and POST_OK to be nonzero if the machine
4044 supports both pre-inc and post-inc, or both pre-dec and post-dec. */
4045 int post_ok = 0;
4047 /* Nonzero if the opportunity actually requires post-inc or post-dec. */
4048 int do_post = 0;
4050 /* From the sign of increment, see which possibilities are conceivable
4051 on this target machine. */
4052 if (HAVE_PRE_INCREMENT && amount > 0)
4053 pre_ok = 1;
4054 if (HAVE_POST_INCREMENT && amount > 0)
4055 post_ok = 1;
4057 if (HAVE_PRE_DECREMENT && amount < 0)
4058 pre_ok = 1;
4059 if (HAVE_POST_DECREMENT && amount < 0)
4060 post_ok = 1;
4062 if (! (pre_ok || post_ok))
4063 return 0;
4065 /* It is not safe to add a side effect to a jump insn
4066 because if the incremented register is spilled and must be reloaded
4067 there would be no way to store the incremented value back in memory. */
4069 if (GET_CODE (insn) == JUMP_INSN)
4070 return 0;
4072 use = 0;
4073 if (pre_ok)
4074 use = find_use_as_address (PATTERN (insn), reg, 0);
4075 if (post_ok && (use == 0 || use == (rtx) (size_t) 1))
4077 use = find_use_as_address (PATTERN (insn), reg, -amount);
4078 do_post = 1;
4081 if (use == 0 || use == (rtx) (size_t) 1)
4082 return 0;
4084 if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
4085 return 0;
4087 /* See if this combination of instruction and addressing mode exists. */
4088 if (! validate_change (insn, &XEXP (use, 0),
4089 gen_rtx_fmt_e (amount > 0
4090 ? (do_post ? POST_INC : PRE_INC)
4091 : (do_post ? POST_DEC : PRE_DEC),
4092 Pmode, reg), 0))
4093 return 0;
4095 /* Record that this insn now has an implicit side effect on X. */
4096 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, reg, REG_NOTES (insn));
4097 return 1;
4100 #endif /* AUTO_INC_DEC */
4102 /* Find the place in the rtx X where REG is used as a memory address.
4103 Return the MEM rtx that so uses it.
4104 If PLUSCONST is nonzero, search instead for a memory address equivalent to
4105 (plus REG (const_int PLUSCONST)).
4107 If such an address does not appear, return 0.
4108 If REG appears more than once, or is used other than in such an address,
4109 return (rtx) 1. */
4112 find_use_as_address (x, reg, plusconst)
4113 rtx x;
4114 rtx reg;
4115 HOST_WIDE_INT plusconst;
4117 enum rtx_code code = GET_CODE (x);
4118 const char * const fmt = GET_RTX_FORMAT (code);
4119 int i;
4120 rtx value = 0;
4121 rtx tem;
4123 if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
4124 return x;
4126 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
4127 && XEXP (XEXP (x, 0), 0) == reg
4128 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4129 && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
4130 return x;
4132 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
4134 /* If REG occurs inside a MEM used in a bit-field reference,
4135 that is unacceptable. */
4136 if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
4137 return (rtx) (size_t) 1;
4140 if (x == reg)
4141 return (rtx) (size_t) 1;
4143 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4145 if (fmt[i] == 'e')
4147 tem = find_use_as_address (XEXP (x, i), reg, plusconst);
4148 if (value == 0)
4149 value = tem;
4150 else if (tem != 0)
4151 return (rtx) (size_t) 1;
4153 else if (fmt[i] == 'E')
4155 int j;
4156 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4158 tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
4159 if (value == 0)
4160 value = tem;
4161 else if (tem != 0)
4162 return (rtx) (size_t) 1;
4167 return value;
4170 /* Write information about registers and basic blocks into FILE.
4171 This is part of making a debugging dump. */
4173 void
4174 dump_regset (r, outf)
4175 regset r;
4176 FILE *outf;
4178 int i;
4179 if (r == NULL)
4181 fputs (" (nil)", outf);
4182 return;
4185 EXECUTE_IF_SET_IN_REG_SET (r, 0, i,
4187 fprintf (outf, " %d", i);
4188 if (i < FIRST_PSEUDO_REGISTER)
4189 fprintf (outf, " [%s]",
4190 reg_names[i]);
4194 /* Print a human-reaable representation of R on the standard error
4195 stream. This function is designed to be used from within the
4196 debugger. */
4198 void
4199 debug_regset (r)
4200 regset r;
4202 dump_regset (r, stderr);
4203 putc ('\n', stderr);
4206 /* Recompute register set/reference counts immediately prior to register
4207 allocation.
4209 This avoids problems with set/reference counts changing to/from values
4210 which have special meanings to the register allocators.
4212 Additionally, the reference counts are the primary component used by the
4213 register allocators to prioritize pseudos for allocation to hard regs.
4214 More accurate reference counts generally lead to better register allocation.
4216 F is the first insn to be scanned.
4218 LOOP_STEP denotes how much loop_depth should be incremented per
4219 loop nesting level in order to increase the ref count more for
4220 references in a loop.
4222 It might be worthwhile to update REG_LIVE_LENGTH, REG_BASIC_BLOCK and
4223 possibly other information which is used by the register allocators. */
4225 void
4226 recompute_reg_usage (f, loop_step)
4227 rtx f ATTRIBUTE_UNUSED;
4228 int loop_step ATTRIBUTE_UNUSED;
4230 allocate_reg_life_data ();
4231 update_life_info (NULL, UPDATE_LIFE_LOCAL, PROP_REG_INFO);
4234 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from a set of
4235 blocks. If BLOCKS is NULL, assume the universal set. Returns a count
4236 of the number of registers that died. */
4239 count_or_remove_death_notes (blocks, kill)
4240 sbitmap blocks;
4241 int kill;
4243 int i, count = 0;
4245 for (i = n_basic_blocks - 1; i >= 0; --i)
4247 basic_block bb;
4248 rtx insn;
4250 if (blocks && ! TEST_BIT (blocks, i))
4251 continue;
4253 bb = BASIC_BLOCK (i);
4255 for (insn = bb->head;; insn = NEXT_INSN (insn))
4257 if (INSN_P (insn))
4259 rtx *pprev = &REG_NOTES (insn);
4260 rtx link = *pprev;
4262 while (link)
4264 switch (REG_NOTE_KIND (link))
4266 case REG_DEAD:
4267 if (GET_CODE (XEXP (link, 0)) == REG)
4269 rtx reg = XEXP (link, 0);
4270 int n;
4272 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
4273 n = 1;
4274 else
4275 n = HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg));
4276 count += n;
4278 /* Fall through. */
4280 case REG_UNUSED:
4281 if (kill)
4283 rtx next = XEXP (link, 1);
4284 free_EXPR_LIST_node (link);
4285 *pprev = link = next;
4286 break;
4288 /* Fall through. */
4290 default:
4291 pprev = &XEXP (link, 1);
4292 link = *pprev;
4293 break;
4298 if (insn == bb->end)
4299 break;
4303 return count;
4305 /* Clear LOG_LINKS fields of insns in a selected blocks or whole chain
4306 if blocks is NULL. */
4308 static void
4309 clear_log_links (blocks)
4310 sbitmap blocks;
4312 rtx insn;
4313 int i;
4315 if (!blocks)
4317 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4318 if (INSN_P (insn))
4319 free_INSN_LIST_list (&LOG_LINKS (insn));
4321 else
4322 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
4324 basic_block bb = BASIC_BLOCK (i);
4326 for (insn = bb->head; insn != NEXT_INSN (bb->end);
4327 insn = NEXT_INSN (insn))
4328 if (INSN_P (insn))
4329 free_INSN_LIST_list (&LOG_LINKS (insn));
4333 /* Given a register bitmap, turn on the bits in a HARD_REG_SET that
4334 correspond to the hard registers, if any, set in that map. This
4335 could be done far more efficiently by having all sorts of special-cases
4336 with moving single words, but probably isn't worth the trouble. */
4338 void
4339 reg_set_to_hard_reg_set (to, from)
4340 HARD_REG_SET *to;
4341 bitmap from;
4343 int i;
4345 EXECUTE_IF_SET_IN_BITMAP
4346 (from, 0, i,
4348 if (i >= FIRST_PSEUDO_REGISTER)
4349 return;
4350 SET_HARD_REG_BIT (*to, i);