cselib.c (cselib_current_insn_in_libcall): New static variable.
[official-gcc.git] / gcc / stor-layout.c
blob70eecc07a1c7023187383e1525ddbe4691450369
1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1996, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "tree.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "flags.h"
31 #include "function.h"
32 #include "expr.h"
33 #include "toplev.h"
34 #include "ggc.h"
35 #include "target.h"
36 #include "langhooks.h"
38 /* Set to one when set_sizetype has been called. */
39 static int sizetype_set;
41 /* List of types created before set_sizetype has been called. We do not
42 make this a GGC root since we want these nodes to be reclaimed. */
43 static tree early_type_list;
45 /* Data type for the expressions representing sizes of data types.
46 It is the first integer type laid out. */
47 tree sizetype_tab[(int) TYPE_KIND_LAST];
49 /* If nonzero, this is an upper limit on alignment of structure fields.
50 The value is measured in bits. */
51 unsigned int maximum_field_alignment;
53 /* If nonzero, the alignment of a bitstring or (power-)set value, in bits.
54 May be overridden by front-ends. */
55 unsigned int set_alignment = 0;
57 /* Nonzero if all REFERENCE_TYPEs are internal and hence should be
58 allocated in Pmode, not ptr_mode. Set only by internal_reference_types
59 called only by a front end. */
60 static int reference_types_internal = 0;
62 static void finalize_record_size PARAMS ((record_layout_info));
63 static void finalize_type_size PARAMS ((tree));
64 static void place_union_field PARAMS ((record_layout_info, tree));
65 static int excess_unit_span PARAMS ((HOST_WIDE_INT, HOST_WIDE_INT,
66 HOST_WIDE_INT, HOST_WIDE_INT,
67 tree));
68 static unsigned int update_alignment_for_field
69 PARAMS ((record_layout_info, tree,
70 unsigned int));
71 extern void debug_rli PARAMS ((record_layout_info));
73 /* SAVE_EXPRs for sizes of types and decls, waiting to be expanded. */
75 static GTY(()) tree pending_sizes;
77 /* Nonzero means cannot safely call expand_expr now,
78 so put variable sizes onto `pending_sizes' instead. */
80 int immediate_size_expand;
82 /* Show that REFERENCE_TYPES are internal and should be Pmode. Called only
83 by front end. */
85 void
86 internal_reference_types ()
88 reference_types_internal = 1;
91 /* Get a list of all the objects put on the pending sizes list. */
93 tree
94 get_pending_sizes ()
96 tree chain = pending_sizes;
97 tree t;
99 /* Put each SAVE_EXPR into the current function. */
100 for (t = chain; t; t = TREE_CHAIN (t))
101 SAVE_EXPR_CONTEXT (TREE_VALUE (t)) = current_function_decl;
103 pending_sizes = 0;
104 return chain;
107 /* Return nonzero if EXPR is present on the pending sizes list. */
110 is_pending_size (expr)
111 tree expr;
113 tree t;
115 for (t = pending_sizes; t; t = TREE_CHAIN (t))
116 if (TREE_VALUE (t) == expr)
117 return 1;
118 return 0;
121 /* Add EXPR to the pending sizes list. */
123 void
124 put_pending_size (expr)
125 tree expr;
127 /* Strip any simple arithmetic from EXPR to see if it has an underlying
128 SAVE_EXPR. */
129 while (TREE_CODE_CLASS (TREE_CODE (expr)) == '1'
130 || (TREE_CODE_CLASS (TREE_CODE (expr)) == '2'
131 && TREE_CONSTANT (TREE_OPERAND (expr, 1))))
132 expr = TREE_OPERAND (expr, 0);
134 if (TREE_CODE (expr) == SAVE_EXPR)
135 pending_sizes = tree_cons (NULL_TREE, expr, pending_sizes);
138 /* Put a chain of objects into the pending sizes list, which must be
139 empty. */
141 void
142 put_pending_sizes (chain)
143 tree chain;
145 if (pending_sizes)
146 abort ();
148 pending_sizes = chain;
151 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
152 to serve as the actual size-expression for a type or decl. */
154 tree
155 variable_size (size)
156 tree size;
158 /* If the language-processor is to take responsibility for variable-sized
159 items (e.g., languages which have elaboration procedures like Ada),
160 just return SIZE unchanged. Likewise for self-referential sizes and
161 constant sizes. */
162 if (TREE_CONSTANT (size)
163 || (*lang_hooks.decls.global_bindings_p) () < 0
164 || contains_placeholder_p (size))
165 return size;
167 size = save_expr (size);
169 /* If an array with a variable number of elements is declared, and
170 the elements require destruction, we will emit a cleanup for the
171 array. That cleanup is run both on normal exit from the block
172 and in the exception-handler for the block. Normally, when code
173 is used in both ordinary code and in an exception handler it is
174 `unsaved', i.e., all SAVE_EXPRs are recalculated. However, we do
175 not wish to do that here; the array-size is the same in both
176 places. */
177 if (TREE_CODE (size) == SAVE_EXPR)
178 SAVE_EXPR_PERSISTENT_P (size) = 1;
180 if ((*lang_hooks.decls.global_bindings_p) ())
182 if (TREE_CONSTANT (size))
183 error ("type size can't be explicitly evaluated");
184 else
185 error ("variable-size type declared outside of any function");
187 return size_one_node;
190 if (immediate_size_expand)
191 /* NULL_RTX is not defined; neither is the rtx type.
192 Also, we would like to pass const0_rtx here, but don't have it. */
193 expand_expr (size, expand_expr (integer_zero_node, NULL_RTX, VOIDmode, 0),
194 VOIDmode, 0);
195 else if (cfun != 0 && cfun->x_dont_save_pending_sizes_p)
196 /* The front-end doesn't want us to keep a list of the expressions
197 that determine sizes for variable size objects. */
199 else
200 put_pending_size (size);
202 return size;
205 #ifndef MAX_FIXED_MODE_SIZE
206 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (DImode)
207 #endif
209 /* Return the machine mode to use for a nonscalar of SIZE bits.
210 The mode must be in class CLASS, and have exactly that many bits.
211 If LIMIT is nonzero, modes of wider than MAX_FIXED_MODE_SIZE will not
212 be used. */
214 enum machine_mode
215 mode_for_size (size, class, limit)
216 unsigned int size;
217 enum mode_class class;
218 int limit;
220 enum machine_mode mode;
222 if (limit && size > MAX_FIXED_MODE_SIZE)
223 return BLKmode;
225 /* Get the first mode which has this size, in the specified class. */
226 for (mode = GET_CLASS_NARROWEST_MODE (class); mode != VOIDmode;
227 mode = GET_MODE_WIDER_MODE (mode))
228 if (GET_MODE_BITSIZE (mode) == size)
229 return mode;
231 return BLKmode;
234 /* Similar, except passed a tree node. */
236 enum machine_mode
237 mode_for_size_tree (size, class, limit)
238 tree size;
239 enum mode_class class;
240 int limit;
242 if (TREE_CODE (size) != INTEGER_CST
243 /* What we really want to say here is that the size can fit in a
244 host integer, but we know there's no way we'd find a mode for
245 this many bits, so there's no point in doing the precise test. */
246 || compare_tree_int (size, 1000) > 0)
247 return BLKmode;
248 else
249 return mode_for_size (TREE_INT_CST_LOW (size), class, limit);
252 /* Similar, but never return BLKmode; return the narrowest mode that
253 contains at least the requested number of bits. */
255 enum machine_mode
256 smallest_mode_for_size (size, class)
257 unsigned int size;
258 enum mode_class class;
260 enum machine_mode mode;
262 /* Get the first mode which has at least this size, in the
263 specified class. */
264 for (mode = GET_CLASS_NARROWEST_MODE (class); mode != VOIDmode;
265 mode = GET_MODE_WIDER_MODE (mode))
266 if (GET_MODE_BITSIZE (mode) >= size)
267 return mode;
269 abort ();
272 /* Find an integer mode of the exact same size, or BLKmode on failure. */
274 enum machine_mode
275 int_mode_for_mode (mode)
276 enum machine_mode mode;
278 switch (GET_MODE_CLASS (mode))
280 case MODE_INT:
281 case MODE_PARTIAL_INT:
282 break;
284 case MODE_COMPLEX_INT:
285 case MODE_COMPLEX_FLOAT:
286 case MODE_FLOAT:
287 case MODE_VECTOR_INT:
288 case MODE_VECTOR_FLOAT:
289 mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
290 break;
292 case MODE_RANDOM:
293 if (mode == BLKmode)
294 break;
296 /* ... fall through ... */
298 case MODE_CC:
299 default:
300 abort ();
303 return mode;
306 /* Return the value of VALUE, rounded up to a multiple of DIVISOR.
307 This can only be applied to objects of a sizetype. */
309 tree
310 round_up (value, divisor)
311 tree value;
312 int divisor;
314 tree arg = size_int_type (divisor, TREE_TYPE (value));
316 return size_binop (MULT_EXPR, size_binop (CEIL_DIV_EXPR, value, arg), arg);
319 /* Likewise, but round down. */
321 tree
322 round_down (value, divisor)
323 tree value;
324 int divisor;
326 tree arg = size_int_type (divisor, TREE_TYPE (value));
328 return size_binop (MULT_EXPR, size_binop (FLOOR_DIV_EXPR, value, arg), arg);
331 /* Set the size, mode and alignment of a ..._DECL node.
332 TYPE_DECL does need this for C++.
333 Note that LABEL_DECL and CONST_DECL nodes do not need this,
334 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
335 Don't call layout_decl for them.
337 KNOWN_ALIGN is the amount of alignment we can assume this
338 decl has with no special effort. It is relevant only for FIELD_DECLs
339 and depends on the previous fields.
340 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
341 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
342 the record will be aligned to suit. */
344 void
345 layout_decl (decl, known_align)
346 tree decl;
347 unsigned int known_align;
349 tree type = TREE_TYPE (decl);
350 enum tree_code code = TREE_CODE (decl);
352 if (code == CONST_DECL)
353 return;
354 else if (code != VAR_DECL && code != PARM_DECL && code != RESULT_DECL
355 && code != TYPE_DECL && code != FIELD_DECL)
356 abort ();
358 if (type == error_mark_node)
359 type = void_type_node;
361 /* Usually the size and mode come from the data type without change,
362 however, the front-end may set the explicit width of the field, so its
363 size may not be the same as the size of its type. This happens with
364 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
365 also happens with other fields. For example, the C++ front-end creates
366 zero-sized fields corresponding to empty base classes, and depends on
367 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
368 size in bytes from the size in bits. If we have already set the mode,
369 don't set it again since we can be called twice for FIELD_DECLs. */
371 TREE_UNSIGNED (decl) = TREE_UNSIGNED (type);
372 if (DECL_MODE (decl) == VOIDmode)
373 DECL_MODE (decl) = TYPE_MODE (type);
375 if (DECL_SIZE (decl) == 0)
377 DECL_SIZE (decl) = TYPE_SIZE (type);
378 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
380 else
381 DECL_SIZE_UNIT (decl)
382 = convert (sizetype, size_binop (CEIL_DIV_EXPR, DECL_SIZE (decl),
383 bitsize_unit_node));
385 /* Force alignment required for the data type.
386 But if the decl itself wants greater alignment, don't override that.
387 Likewise, if the decl is packed, don't override it. */
388 if (! (code == FIELD_DECL && DECL_BIT_FIELD (decl))
389 && (DECL_ALIGN (decl) == 0
390 || (! (code == FIELD_DECL && DECL_PACKED (decl))
391 && TYPE_ALIGN (type) > DECL_ALIGN (decl))))
393 DECL_ALIGN (decl) = TYPE_ALIGN (type);
394 DECL_USER_ALIGN (decl) = 0;
397 /* For fields, set the bit field type and update the alignment. */
398 if (code == FIELD_DECL)
400 DECL_BIT_FIELD_TYPE (decl) = DECL_BIT_FIELD (decl) ? type : 0;
401 if (maximum_field_alignment != 0)
402 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), maximum_field_alignment);
404 /* If the field is of variable size, we can't misalign it since we
405 have no way to make a temporary to align the result. But this
406 isn't an issue if the decl is not addressable. Likewise if it
407 is of unknown size. */
408 else if (DECL_PACKED (decl)
409 && (DECL_NONADDRESSABLE_P (decl)
410 || DECL_SIZE_UNIT (decl) == 0
411 || TREE_CODE (DECL_SIZE_UNIT (decl)) == INTEGER_CST))
413 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), BITS_PER_UNIT);
414 DECL_USER_ALIGN (decl) = 0;
418 /* See if we can use an ordinary integer mode for a bit-field.
419 Conditions are: a fixed size that is correct for another mode
420 and occupying a complete byte or bytes on proper boundary. */
421 if (code == FIELD_DECL && DECL_BIT_FIELD (decl)
422 && TYPE_SIZE (type) != 0
423 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
424 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
426 enum machine_mode xmode
427 = mode_for_size_tree (DECL_SIZE (decl), MODE_INT, 1);
429 if (xmode != BLKmode && known_align >= GET_MODE_ALIGNMENT (xmode))
431 DECL_ALIGN (decl) = MAX (GET_MODE_ALIGNMENT (xmode),
432 DECL_ALIGN (decl));
433 DECL_MODE (decl) = xmode;
434 DECL_BIT_FIELD (decl) = 0;
438 /* Turn off DECL_BIT_FIELD if we won't need it set. */
439 if (code == FIELD_DECL && DECL_BIT_FIELD (decl)
440 && TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
441 && known_align >= TYPE_ALIGN (type)
442 && DECL_ALIGN (decl) >= TYPE_ALIGN (type)
443 && DECL_SIZE_UNIT (decl) != 0)
444 DECL_BIT_FIELD (decl) = 0;
446 /* Evaluate nonconstant size only once, either now or as soon as safe. */
447 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
448 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
449 if (DECL_SIZE_UNIT (decl) != 0
450 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
451 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
453 /* If requested, warn about definitions of large data objects. */
454 if (warn_larger_than
455 && (code == VAR_DECL || code == PARM_DECL)
456 && ! DECL_EXTERNAL (decl))
458 tree size = DECL_SIZE_UNIT (decl);
460 if (size != 0 && TREE_CODE (size) == INTEGER_CST
461 && compare_tree_int (size, larger_than_size) > 0)
463 unsigned int size_as_int = TREE_INT_CST_LOW (size);
465 if (compare_tree_int (size, size_as_int) == 0)
466 warning_with_decl (decl, "size of `%s' is %d bytes", size_as_int);
467 else
468 warning_with_decl (decl, "size of `%s' is larger than %d bytes",
469 larger_than_size);
474 /* Hook for a front-end function that can modify the record layout as needed
475 immediately before it is finalized. */
477 void (*lang_adjust_rli) PARAMS ((record_layout_info)) = 0;
479 void
480 set_lang_adjust_rli (f)
481 void (*f) PARAMS ((record_layout_info));
483 lang_adjust_rli = f;
486 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
487 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
488 is to be passed to all other layout functions for this record. It is the
489 responsibility of the caller to call `free' for the storage returned.
490 Note that garbage collection is not permitted until we finish laying
491 out the record. */
493 record_layout_info
494 start_record_layout (t)
495 tree t;
497 record_layout_info rli
498 = (record_layout_info) xmalloc (sizeof (struct record_layout_info_s));
500 rli->t = t;
502 /* If the type has a minimum specified alignment (via an attribute
503 declaration, for example) use it -- otherwise, start with a
504 one-byte alignment. */
505 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
506 rli->unpacked_align = rli->unpadded_align = rli->record_align;
507 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
509 #ifdef STRUCTURE_SIZE_BOUNDARY
510 /* Packed structures don't need to have minimum size. */
511 if (! TYPE_PACKED (t))
512 rli->record_align = MAX (rli->record_align, STRUCTURE_SIZE_BOUNDARY);
513 #endif
515 rli->offset = size_zero_node;
516 rli->bitpos = bitsize_zero_node;
517 rli->prev_field = 0;
518 rli->pending_statics = 0;
519 rli->packed_maybe_necessary = 0;
521 return rli;
524 /* These four routines perform computations that convert between
525 the offset/bitpos forms and byte and bit offsets. */
527 tree
528 bit_from_pos (offset, bitpos)
529 tree offset, bitpos;
531 return size_binop (PLUS_EXPR, bitpos,
532 size_binop (MULT_EXPR, convert (bitsizetype, offset),
533 bitsize_unit_node));
536 tree
537 byte_from_pos (offset, bitpos)
538 tree offset, bitpos;
540 return size_binop (PLUS_EXPR, offset,
541 convert (sizetype,
542 size_binop (TRUNC_DIV_EXPR, bitpos,
543 bitsize_unit_node)));
546 void
547 pos_from_bit (poffset, pbitpos, off_align, pos)
548 tree *poffset, *pbitpos;
549 unsigned int off_align;
550 tree pos;
552 *poffset = size_binop (MULT_EXPR,
553 convert (sizetype,
554 size_binop (FLOOR_DIV_EXPR, pos,
555 bitsize_int (off_align))),
556 size_int (off_align / BITS_PER_UNIT));
557 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, bitsize_int (off_align));
560 /* Given a pointer to bit and byte offsets and an offset alignment,
561 normalize the offsets so they are within the alignment. */
563 void
564 normalize_offset (poffset, pbitpos, off_align)
565 tree *poffset, *pbitpos;
566 unsigned int off_align;
568 /* If the bit position is now larger than it should be, adjust it
569 downwards. */
570 if (compare_tree_int (*pbitpos, off_align) >= 0)
572 tree extra_aligns = size_binop (FLOOR_DIV_EXPR, *pbitpos,
573 bitsize_int (off_align));
575 *poffset
576 = size_binop (PLUS_EXPR, *poffset,
577 size_binop (MULT_EXPR, convert (sizetype, extra_aligns),
578 size_int (off_align / BITS_PER_UNIT)));
580 *pbitpos
581 = size_binop (FLOOR_MOD_EXPR, *pbitpos, bitsize_int (off_align));
585 /* Print debugging information about the information in RLI. */
587 void
588 debug_rli (rli)
589 record_layout_info rli;
591 print_node_brief (stderr, "type", rli->t, 0);
592 print_node_brief (stderr, "\noffset", rli->offset, 0);
593 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
595 fprintf (stderr, "\naligns: rec = %u, unpack = %u, unpad = %u, off = %u\n",
596 rli->record_align, rli->unpacked_align, rli->unpadded_align,
597 rli->offset_align);
598 if (rli->packed_maybe_necessary)
599 fprintf (stderr, "packed may be necessary\n");
601 if (rli->pending_statics)
603 fprintf (stderr, "pending statics:\n");
604 debug_tree (rli->pending_statics);
608 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
609 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
611 void
612 normalize_rli (rli)
613 record_layout_info rli;
615 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
618 /* Returns the size in bytes allocated so far. */
620 tree
621 rli_size_unit_so_far (rli)
622 record_layout_info rli;
624 return byte_from_pos (rli->offset, rli->bitpos);
627 /* Returns the size in bits allocated so far. */
629 tree
630 rli_size_so_far (rli)
631 record_layout_info rli;
633 return bit_from_pos (rli->offset, rli->bitpos);
636 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
637 the next available location is given by KNOWN_ALIGN. Update the
638 variable alignment fields in RLI, and return the alignment to give
639 the FIELD. */
641 static unsigned int
642 update_alignment_for_field (rli, field, known_align)
643 record_layout_info rli;
644 tree field;
645 unsigned int known_align;
647 /* The alignment required for FIELD. */
648 unsigned int desired_align;
649 /* The type of this field. */
650 tree type = TREE_TYPE (field);
651 /* True if the field was explicitly aligned by the user. */
652 bool user_align;
654 /* Lay out the field so we know what alignment it needs. For a
655 packed field, use the alignment as specified, disregarding what
656 the type would want. */
657 desired_align = DECL_ALIGN (field);
658 user_align = DECL_USER_ALIGN (field);
659 layout_decl (field, known_align);
660 if (! DECL_PACKED (field))
662 desired_align = DECL_ALIGN (field);
663 user_align = DECL_USER_ALIGN (field);
666 /* Some targets (i.e. i386, VMS) limit struct field alignment
667 to a lower boundary than alignment of variables unless
668 it was overridden by attribute aligned. */
669 #ifdef BIGGEST_FIELD_ALIGNMENT
670 if (!user_align)
671 desired_align
672 = MIN (desired_align, (unsigned) BIGGEST_FIELD_ALIGNMENT);
673 #endif
675 #ifdef ADJUST_FIELD_ALIGN
676 if (!user_align)
677 desired_align = ADJUST_FIELD_ALIGN (field, desired_align);
678 #endif
680 /* Record must have at least as much alignment as any field.
681 Otherwise, the alignment of the field within the record is
682 meaningless. */
683 if ((* targetm.ms_bitfield_layout_p) (rli->t)
684 && type != error_mark_node
685 && DECL_BIT_FIELD_TYPE (field)
686 && ! integer_zerop (TYPE_SIZE (type)))
688 /* Here, the alignment of the underlying type of a bitfield can
689 affect the alignment of a record; even a zero-sized field
690 can do this. The alignment should be to the alignment of
691 the type, except that for zero-size bitfields this only
692 applies if there was an immediately prior, nonzero-size
693 bitfield. (That's the way it is, experimentally.) */
694 if (! integer_zerop (DECL_SIZE (field))
695 ? ! DECL_PACKED (field)
696 : (rli->prev_field
697 && DECL_BIT_FIELD_TYPE (rli->prev_field)
698 && ! integer_zerop (DECL_SIZE (rli->prev_field))))
700 unsigned int type_align = TYPE_ALIGN (type);
701 type_align = MAX (type_align, desired_align);
702 if (maximum_field_alignment != 0)
703 type_align = MIN (type_align, maximum_field_alignment);
704 rli->record_align = MAX (rli->record_align, type_align);
705 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
706 rli->unpadded_align = MAX (rli->unpadded_align, DECL_ALIGN (field));
708 else
709 desired_align = 1;
711 else
712 #ifdef PCC_BITFIELD_TYPE_MATTERS
713 if (PCC_BITFIELD_TYPE_MATTERS && type != error_mark_node
714 && ! (* targetm.ms_bitfield_layout_p) (rli->t)
715 && DECL_BIT_FIELD_TYPE (field)
716 && ! integer_zerop (TYPE_SIZE (type)))
718 /* A zero-length bit-field affects the alignment of the next
719 field. */
720 if (!DECL_PACKED (field) && integer_zerop (DECL_SIZE (field)))
722 desired_align = TYPE_ALIGN (type);
723 #ifdef ADJUST_FIELD_ALIGN
724 desired_align = ADJUST_FIELD_ALIGN (field, desired_align);
725 #endif
728 /* Named bit-fields cause the entire structure to have the
729 alignment implied by their type. */
730 if (DECL_NAME (field) != 0)
732 unsigned int type_align = TYPE_ALIGN (type);
734 #ifdef ADJUST_FIELD_ALIGN
735 if (! TYPE_USER_ALIGN (type))
736 type_align = ADJUST_FIELD_ALIGN (field, type_align);
737 #endif
739 if (maximum_field_alignment != 0)
740 type_align = MIN (type_align, maximum_field_alignment);
741 else if (DECL_PACKED (field))
742 type_align = MIN (type_align, BITS_PER_UNIT);
744 /* The alignment of the record is increased to the maximum
745 of the current alignment, the alignment indicated on the
746 field (i.e., the alignment specified by an __aligned__
747 attribute), and the alignment indicated by the type of
748 the field. */
749 rli->record_align = MAX (rli->record_align, desired_align);
750 rli->record_align = MAX (rli->record_align, type_align);
752 rli->unpadded_align = MAX (rli->unpadded_align, DECL_ALIGN (field));
753 if (warn_packed)
754 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
755 user_align |= TYPE_USER_ALIGN (type);
758 else
759 #endif
761 rli->record_align = MAX (rli->record_align, desired_align);
762 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
763 rli->unpadded_align = MAX (rli->unpadded_align, DECL_ALIGN (field));
766 TYPE_USER_ALIGN (rli->t) |= user_align;
768 return desired_align;
771 /* Called from place_field to handle unions. */
773 static void
774 place_union_field (rli, field)
775 record_layout_info rli;
776 tree field;
778 update_alignment_for_field (rli, field, /*known_align=*/0);
780 DECL_FIELD_OFFSET (field) = size_zero_node;
781 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
782 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
784 /* We assume the union's size will be a multiple of a byte so we don't
785 bother with BITPOS. */
786 if (TREE_CODE (rli->t) == UNION_TYPE)
787 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
788 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
789 rli->offset = fold (build (COND_EXPR, sizetype,
790 DECL_QUALIFIER (field),
791 DECL_SIZE_UNIT (field), rli->offset));
794 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
795 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
796 units of alignment than the underlying TYPE. */
797 static int
798 excess_unit_span (byte_offset, bit_offset, size, align, type)
799 HOST_WIDE_INT byte_offset, bit_offset, size, align;
800 tree type;
802 /* Note that the calculation of OFFSET might overflow; we calculate it so
803 that we still get the right result as long as ALIGN is a power of two. */
804 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
806 offset = offset % align;
807 return ((offset + size + align - 1) / align
808 > ((unsigned HOST_WIDE_INT) tree_low_cst (TYPE_SIZE (type), 1)
809 / align));
812 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
813 is a FIELD_DECL to be added after those fields already present in
814 T. (FIELD is not actually added to the TYPE_FIELDS list here;
815 callers that desire that behavior must manually perform that step.) */
817 void
818 place_field (rli, field)
819 record_layout_info rli;
820 tree field;
822 /* The alignment required for FIELD. */
823 unsigned int desired_align;
824 /* The alignment FIELD would have if we just dropped it into the
825 record as it presently stands. */
826 unsigned int known_align;
827 unsigned int actual_align;
828 /* The type of this field. */
829 tree type = TREE_TYPE (field);
831 if (TREE_CODE (field) == ERROR_MARK || TREE_CODE (type) == ERROR_MARK)
832 return;
834 /* If FIELD is static, then treat it like a separate variable, not
835 really like a structure field. If it is a FUNCTION_DECL, it's a
836 method. In both cases, all we do is lay out the decl, and we do
837 it *after* the record is laid out. */
838 if (TREE_CODE (field) == VAR_DECL)
840 rli->pending_statics = tree_cons (NULL_TREE, field,
841 rli->pending_statics);
842 return;
845 /* Enumerators and enum types which are local to this class need not
846 be laid out. Likewise for initialized constant fields. */
847 else if (TREE_CODE (field) != FIELD_DECL)
848 return;
850 /* Unions are laid out very differently than records, so split
851 that code off to another function. */
852 else if (TREE_CODE (rli->t) != RECORD_TYPE)
854 place_union_field (rli, field);
855 return;
858 /* Work out the known alignment so far. Note that A & (-A) is the
859 value of the least-significant bit in A that is one. */
860 if (! integer_zerop (rli->bitpos))
861 known_align = (tree_low_cst (rli->bitpos, 1)
862 & - tree_low_cst (rli->bitpos, 1));
863 else if (integer_zerop (rli->offset))
864 known_align = BIGGEST_ALIGNMENT;
865 else if (host_integerp (rli->offset, 1))
866 known_align = (BITS_PER_UNIT
867 * (tree_low_cst (rli->offset, 1)
868 & - tree_low_cst (rli->offset, 1)));
869 else
870 known_align = rli->offset_align;
872 desired_align = update_alignment_for_field (rli, field, known_align);
874 if (warn_packed && DECL_PACKED (field))
876 if (known_align > TYPE_ALIGN (type))
878 if (TYPE_ALIGN (type) > desired_align)
880 if (STRICT_ALIGNMENT)
881 warning_with_decl (field, "packed attribute causes inefficient alignment for `%s'");
882 else
883 warning_with_decl (field, "packed attribute is unnecessary for `%s'");
886 else
887 rli->packed_maybe_necessary = 1;
890 /* Does this field automatically have alignment it needs by virtue
891 of the fields that precede it and the record's own alignment? */
892 if (known_align < desired_align)
894 /* No, we need to skip space before this field.
895 Bump the cumulative size to multiple of field alignment. */
897 if (warn_padded)
898 warning_with_decl (field, "padding struct to align `%s'");
900 /* If the alignment is still within offset_align, just align
901 the bit position. */
902 if (desired_align < rli->offset_align)
903 rli->bitpos = round_up (rli->bitpos, desired_align);
904 else
906 /* First adjust OFFSET by the partial bits, then align. */
907 rli->offset
908 = size_binop (PLUS_EXPR, rli->offset,
909 convert (sizetype,
910 size_binop (CEIL_DIV_EXPR, rli->bitpos,
911 bitsize_unit_node)));
912 rli->bitpos = bitsize_zero_node;
914 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
917 if (! TREE_CONSTANT (rli->offset))
918 rli->offset_align = desired_align;
922 /* Handle compatibility with PCC. Note that if the record has any
923 variable-sized fields, we need not worry about compatibility. */
924 #ifdef PCC_BITFIELD_TYPE_MATTERS
925 if (PCC_BITFIELD_TYPE_MATTERS
926 && ! (* targetm.ms_bitfield_layout_p) (rli->t)
927 && TREE_CODE (field) == FIELD_DECL
928 && type != error_mark_node
929 && DECL_BIT_FIELD (field)
930 && ! DECL_PACKED (field)
931 && maximum_field_alignment == 0
932 && ! integer_zerop (DECL_SIZE (field))
933 && host_integerp (DECL_SIZE (field), 1)
934 && host_integerp (rli->offset, 1)
935 && host_integerp (TYPE_SIZE (type), 1))
937 unsigned int type_align = TYPE_ALIGN (type);
938 tree dsize = DECL_SIZE (field);
939 HOST_WIDE_INT field_size = tree_low_cst (dsize, 1);
940 HOST_WIDE_INT offset = tree_low_cst (rli->offset, 0);
941 HOST_WIDE_INT bit_offset = tree_low_cst (rli->bitpos, 0);
943 #ifdef ADJUST_FIELD_ALIGN
944 if (! TYPE_USER_ALIGN (type))
945 type_align = ADJUST_FIELD_ALIGN (field, type_align);
946 #endif
948 /* A bit field may not span more units of alignment of its type
949 than its type itself. Advance to next boundary if necessary. */
950 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
951 rli->bitpos = round_up (rli->bitpos, type_align);
953 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
955 #endif
957 #ifdef BITFIELD_NBYTES_LIMITED
958 if (BITFIELD_NBYTES_LIMITED
959 && ! (* targetm.ms_bitfield_layout_p) (rli->t)
960 && TREE_CODE (field) == FIELD_DECL
961 && type != error_mark_node
962 && DECL_BIT_FIELD_TYPE (field)
963 && ! DECL_PACKED (field)
964 && ! integer_zerop (DECL_SIZE (field))
965 && host_integerp (DECL_SIZE (field), 1)
966 && host_integerp (rli->offset, 1)
967 && host_integerp (TYPE_SIZE (type), 1))
969 unsigned int type_align = TYPE_ALIGN (type);
970 tree dsize = DECL_SIZE (field);
971 HOST_WIDE_INT field_size = tree_low_cst (dsize, 1);
972 HOST_WIDE_INT offset = tree_low_cst (rli->offset, 0);
973 HOST_WIDE_INT bit_offset = tree_low_cst (rli->bitpos, 0);
975 #ifdef ADJUST_FIELD_ALIGN
976 if (! TYPE_USER_ALIGN (type))
977 type_align = ADJUST_FIELD_ALIGN (field, type_align);
978 #endif
980 if (maximum_field_alignment != 0)
981 type_align = MIN (type_align, maximum_field_alignment);
982 /* ??? This test is opposite the test in the containing if
983 statement, so this code is unreachable currently. */
984 else if (DECL_PACKED (field))
985 type_align = MIN (type_align, BITS_PER_UNIT);
987 /* A bit field may not span the unit of alignment of its type.
988 Advance to next boundary if necessary. */
989 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
990 rli->bitpos = round_up (rli->bitpos, type_align);
992 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
994 #endif
996 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
997 A subtlety:
998 When a bit field is inserted into a packed record, the whole
999 size of the underlying type is used by one or more same-size
1000 adjacent bitfields. (That is, if its long:3, 32 bits is
1001 used in the record, and any additional adjacent long bitfields are
1002 packed into the same chunk of 32 bits. However, if the size
1003 changes, a new field of that size is allocated.) In an unpacked
1004 record, this is the same as using alignment, but not equivalent
1005 when packing.
1007 Note: for compatibility, we use the type size, not the type alignment
1008 to determine alignment, since that matches the documentation */
1010 if ((* targetm.ms_bitfield_layout_p) (rli->t)
1011 && ((DECL_BIT_FIELD_TYPE (field) && ! DECL_PACKED (field))
1012 || (rli->prev_field && ! DECL_PACKED (rli->prev_field))))
1014 /* At this point, either the prior or current are bitfields,
1015 (possibly both), and we're dealing with MS packing. */
1016 tree prev_saved = rli->prev_field;
1018 /* Is the prior field a bitfield? If so, handle "runs" of same
1019 type size fields. */
1020 if (rli->prev_field /* necessarily a bitfield if it exists. */)
1022 /* If both are bitfields, nonzero, and the same size, this is
1023 the middle of a run. Zero declared size fields are special
1024 and handled as "end of run". (Note: it's nonzero declared
1025 size, but equal type sizes!) (Since we know that both
1026 the current and previous fields are bitfields by the
1027 time we check it, DECL_SIZE must be present for both.) */
1028 if (DECL_BIT_FIELD_TYPE (field)
1029 && !integer_zerop (DECL_SIZE (field))
1030 && !integer_zerop (DECL_SIZE (rli->prev_field))
1031 && simple_cst_equal (TYPE_SIZE (type),
1032 TYPE_SIZE (TREE_TYPE (rli->prev_field))) )
1034 /* We're in the middle of a run of equal type size fields; make
1035 sure we realign if we run out of bits. (Not decl size,
1036 type size!) */
1037 int bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
1038 tree type_size = TYPE_SIZE(TREE_TYPE(rli->prev_field));
1040 if (rli->remaining_in_alignment < bitsize)
1042 /* out of bits; bump up to next 'word'. */
1043 rli->offset = DECL_FIELD_OFFSET (rli->prev_field);
1044 rli->bitpos = size_binop (PLUS_EXPR,
1045 type_size,
1046 DECL_FIELD_BIT_OFFSET(rli->prev_field));
1047 rli->prev_field = field;
1048 rli->remaining_in_alignment = TREE_INT_CST_LOW (type_size);
1050 rli->remaining_in_alignment -= bitsize;
1052 else
1054 /* End of a run: if leaving a run of bitfields of the same type
1055 size, we have to "use up" the rest of the bits of the type
1056 size.
1058 Compute the new position as the sum of the size for the prior
1059 type and where we first started working on that type.
1060 Note: since the beginning of the field was aligned then
1061 of course the end will be too. No round needed. */
1063 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1065 tree type_size = TYPE_SIZE(TREE_TYPE(rli->prev_field));
1066 rli->bitpos = size_binop (PLUS_EXPR,
1067 type_size,
1068 DECL_FIELD_BIT_OFFSET(rli->prev_field));
1070 else
1072 /* We "use up" size zero fields; the code below should behave
1073 as if the prior field was not a bitfield. */
1074 prev_saved = NULL;
1077 /* Cause a new bitfield to be captured, either this time (if
1078 currently a bitfield) or next time we see one. */
1079 if (!DECL_BIT_FIELD_TYPE(field)
1080 || integer_zerop (DECL_SIZE (field)))
1082 rli->prev_field = NULL;
1085 normalize_rli (rli);
1088 /* If we're starting a new run of same size type bitfields
1089 (or a run of non-bitfields), set up the "first of the run"
1090 fields.
1092 That is, if the current field is not a bitfield, or if there
1093 was a prior bitfield the type sizes differ, or if there wasn't
1094 a prior bitfield the size of the current field is nonzero.
1096 Note: we must be sure to test ONLY the type size if there was
1097 a prior bitfield and ONLY for the current field being zero if
1098 there wasn't. */
1100 if (!DECL_BIT_FIELD_TYPE (field)
1101 || ( prev_saved != NULL
1102 ? !simple_cst_equal (TYPE_SIZE (type),
1103 TYPE_SIZE (TREE_TYPE (prev_saved)))
1104 : !integer_zerop (DECL_SIZE (field)) ))
1106 unsigned int type_align = 8; /* Never below 8 for compatibility */
1108 /* (When not a bitfield), we could be seeing a flex array (with
1109 no DECL_SIZE). Since we won't be using remaining_in_alignment
1110 until we see a bitfield (and come by here again) we just skip
1111 calculating it. */
1113 if (DECL_SIZE (field) != NULL)
1114 rli->remaining_in_alignment
1115 = TREE_INT_CST_LOW (TYPE_SIZE(TREE_TYPE(field)))
1116 - TREE_INT_CST_LOW (DECL_SIZE (field));
1118 /* Now align (conventionally) for the new type. */
1119 if (!DECL_PACKED(field))
1120 type_align = MAX(TYPE_ALIGN (type), type_align);
1122 if (prev_saved
1123 && DECL_BIT_FIELD_TYPE (prev_saved)
1124 /* If the previous bit-field is zero-sized, we've already
1125 accounted for its alignment needs (or ignored it, if
1126 appropriate) while placing it. */
1127 && ! integer_zerop (DECL_SIZE (prev_saved)))
1128 type_align = MAX (type_align,
1129 TYPE_ALIGN (TREE_TYPE (prev_saved)));
1131 if (maximum_field_alignment != 0)
1132 type_align = MIN (type_align, maximum_field_alignment);
1134 rli->bitpos = round_up (rli->bitpos, type_align);
1135 /* If we really aligned, don't allow subsequent bitfields
1136 to undo that. */
1137 rli->prev_field = NULL;
1141 /* Offset so far becomes the position of this field after normalizing. */
1142 normalize_rli (rli);
1143 DECL_FIELD_OFFSET (field) = rli->offset;
1144 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1145 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1147 /* If this field ended up more aligned than we thought it would be (we
1148 approximate this by seeing if its position changed), lay out the field
1149 again; perhaps we can use an integral mode for it now. */
1150 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1151 actual_align = (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
1152 & - tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1));
1153 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1154 actual_align = BIGGEST_ALIGNMENT;
1155 else if (host_integerp (DECL_FIELD_OFFSET (field), 1))
1156 actual_align = (BITS_PER_UNIT
1157 * (tree_low_cst (DECL_FIELD_OFFSET (field), 1)
1158 & - tree_low_cst (DECL_FIELD_OFFSET (field), 1)));
1159 else
1160 actual_align = DECL_OFFSET_ALIGN (field);
1162 if (known_align != actual_align)
1163 layout_decl (field, actual_align);
1165 /* Only the MS bitfields use this. */
1166 if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE(field))
1167 rli->prev_field = field;
1169 /* Now add size of this field to the size of the record. If the size is
1170 not constant, treat the field as being a multiple of bytes and just
1171 adjust the offset, resetting the bit position. Otherwise, apportion the
1172 size amongst the bit position and offset. First handle the case of an
1173 unspecified size, which can happen when we have an invalid nested struct
1174 definition, such as struct j { struct j { int i; } }. The error message
1175 is printed in finish_struct. */
1176 if (DECL_SIZE (field) == 0)
1177 /* Do nothing. */;
1178 else if (TREE_CODE (DECL_SIZE_UNIT (field)) != INTEGER_CST
1179 || TREE_CONSTANT_OVERFLOW (DECL_SIZE_UNIT (field)))
1181 rli->offset
1182 = size_binop (PLUS_EXPR, rli->offset,
1183 convert (sizetype,
1184 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1185 bitsize_unit_node)));
1186 rli->offset
1187 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1188 rli->bitpos = bitsize_zero_node;
1189 rli->offset_align = MIN (rli->offset_align, DECL_ALIGN (field));
1191 else
1193 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1194 normalize_rli (rli);
1198 /* Assuming that all the fields have been laid out, this function uses
1199 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1200 indicated by RLI. */
1202 static void
1203 finalize_record_size (rli)
1204 record_layout_info rli;
1206 tree unpadded_size, unpadded_size_unit;
1208 /* Now we want just byte and bit offsets, so set the offset alignment
1209 to be a byte and then normalize. */
1210 rli->offset_align = BITS_PER_UNIT;
1211 normalize_rli (rli);
1213 /* Determine the desired alignment. */
1214 #ifdef ROUND_TYPE_ALIGN
1215 TYPE_ALIGN (rli->t) = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1216 rli->record_align);
1217 #else
1218 TYPE_ALIGN (rli->t) = MAX (TYPE_ALIGN (rli->t), rli->record_align);
1219 #endif
1221 /* Compute the size so far. Be sure to allow for extra bits in the
1222 size in bytes. We have guaranteed above that it will be no more
1223 than a single byte. */
1224 unpadded_size = rli_size_so_far (rli);
1225 unpadded_size_unit = rli_size_unit_so_far (rli);
1226 if (! integer_zerop (rli->bitpos))
1227 unpadded_size_unit
1228 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1230 /* Record the un-rounded size in the binfo node. But first we check
1231 the size of TYPE_BINFO to make sure that BINFO_SIZE is available. */
1232 if (TYPE_BINFO (rli->t) && TREE_VEC_LENGTH (TYPE_BINFO (rli->t)) > 6)
1234 TYPE_BINFO_SIZE (rli->t) = unpadded_size;
1235 TYPE_BINFO_SIZE_UNIT (rli->t) = unpadded_size_unit;
1238 /* Round the size up to be a multiple of the required alignment */
1239 #ifdef ROUND_TYPE_SIZE
1240 TYPE_SIZE (rli->t) = ROUND_TYPE_SIZE (rli->t, unpadded_size,
1241 TYPE_ALIGN (rli->t));
1242 TYPE_SIZE_UNIT (rli->t)
1243 = ROUND_TYPE_SIZE_UNIT (rli->t, unpadded_size_unit,
1244 TYPE_ALIGN (rli->t) / BITS_PER_UNIT);
1245 #else
1246 TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1247 TYPE_SIZE_UNIT (rli->t) = round_up (unpadded_size_unit,
1248 TYPE_ALIGN (rli->t) / BITS_PER_UNIT);
1249 #endif
1251 if (warn_padded && TREE_CONSTANT (unpadded_size)
1252 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0)
1253 warning ("padding struct size to alignment boundary");
1255 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1256 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1257 && TREE_CONSTANT (unpadded_size))
1259 tree unpacked_size;
1261 #ifdef ROUND_TYPE_ALIGN
1262 rli->unpacked_align
1263 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1264 #else
1265 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1266 #endif
1268 #ifdef ROUND_TYPE_SIZE
1269 unpacked_size = ROUND_TYPE_SIZE (rli->t, TYPE_SIZE (rli->t),
1270 rli->unpacked_align);
1271 #else
1272 unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1273 #endif
1275 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1277 TYPE_PACKED (rli->t) = 0;
1279 if (TYPE_NAME (rli->t))
1281 const char *name;
1283 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1284 name = IDENTIFIER_POINTER (TYPE_NAME (rli->t));
1285 else
1286 name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (rli->t)));
1288 if (STRICT_ALIGNMENT)
1289 warning ("packed attribute causes inefficient alignment for `%s'", name);
1290 else
1291 warning ("packed attribute is unnecessary for `%s'", name);
1293 else
1295 if (STRICT_ALIGNMENT)
1296 warning ("packed attribute causes inefficient alignment");
1297 else
1298 warning ("packed attribute is unnecessary");
1304 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1306 void
1307 compute_record_mode (type)
1308 tree type;
1310 tree field;
1311 enum machine_mode mode = VOIDmode;
1313 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1314 However, if possible, we use a mode that fits in a register
1315 instead, in order to allow for better optimization down the
1316 line. */
1317 TYPE_MODE (type) = BLKmode;
1319 if (! host_integerp (TYPE_SIZE (type), 1))
1320 return;
1322 /* A record which has any BLKmode members must itself be
1323 BLKmode; it can't go in a register. Unless the member is
1324 BLKmode only because it isn't aligned. */
1325 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1327 unsigned HOST_WIDE_INT bitpos;
1329 if (TREE_CODE (field) != FIELD_DECL)
1330 continue;
1332 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1333 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1334 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field)))
1335 || ! host_integerp (bit_position (field), 1)
1336 || DECL_SIZE (field) == 0
1337 || ! host_integerp (DECL_SIZE (field), 1))
1338 return;
1340 bitpos = int_bit_position (field);
1342 /* Must be BLKmode if any field crosses a word boundary,
1343 since extract_bit_field can't handle that in registers. */
1344 if (bitpos / BITS_PER_WORD
1345 != ((tree_low_cst (DECL_SIZE (field), 1) + bitpos - 1)
1346 / BITS_PER_WORD)
1347 /* But there is no problem if the field is entire words. */
1348 && tree_low_cst (DECL_SIZE (field), 1) % BITS_PER_WORD != 0)
1349 return;
1351 /* If this field is the whole struct, remember its mode so
1352 that, say, we can put a double in a class into a DF
1353 register instead of forcing it to live in the stack. */
1354 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1355 mode = DECL_MODE (field);
1357 #ifdef MEMBER_TYPE_FORCES_BLK
1358 /* With some targets, eg. c4x, it is sub-optimal
1359 to access an aligned BLKmode structure as a scalar. */
1361 if (MEMBER_TYPE_FORCES_BLK (field, mode))
1362 return;
1363 #endif /* MEMBER_TYPE_FORCES_BLK */
1366 /* If we only have one real field; use its mode. This only applies to
1367 RECORD_TYPE. This does not apply to unions. */
1368 if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode)
1369 TYPE_MODE (type) = mode;
1370 else
1371 TYPE_MODE (type) = mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1);
1373 /* If structure's known alignment is less than what the scalar
1374 mode would need, and it matters, then stick with BLKmode. */
1375 if (TYPE_MODE (type) != BLKmode
1376 && STRICT_ALIGNMENT
1377 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1378 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (TYPE_MODE (type))))
1380 /* If this is the only reason this type is BLKmode, then
1381 don't force containing types to be BLKmode. */
1382 TYPE_NO_FORCE_BLK (type) = 1;
1383 TYPE_MODE (type) = BLKmode;
1387 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1388 out. */
1390 static void
1391 finalize_type_size (type)
1392 tree type;
1394 /* Normally, use the alignment corresponding to the mode chosen.
1395 However, where strict alignment is not required, avoid
1396 over-aligning structures, since most compilers do not do this
1397 alignment. */
1399 if (TYPE_MODE (type) != BLKmode && TYPE_MODE (type) != VOIDmode
1400 && (STRICT_ALIGNMENT
1401 || (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
1402 && TREE_CODE (type) != QUAL_UNION_TYPE
1403 && TREE_CODE (type) != ARRAY_TYPE)))
1405 TYPE_ALIGN (type) = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1406 TYPE_USER_ALIGN (type) = 0;
1409 /* Do machine-dependent extra alignment. */
1410 #ifdef ROUND_TYPE_ALIGN
1411 TYPE_ALIGN (type)
1412 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT);
1413 #endif
1415 /* If we failed to find a simple way to calculate the unit size
1416 of the type, find it by division. */
1417 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1418 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1419 result will fit in sizetype. We will get more efficient code using
1420 sizetype, so we force a conversion. */
1421 TYPE_SIZE_UNIT (type)
1422 = convert (sizetype,
1423 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1424 bitsize_unit_node));
1426 if (TYPE_SIZE (type) != 0)
1428 #ifdef ROUND_TYPE_SIZE
1429 TYPE_SIZE (type)
1430 = ROUND_TYPE_SIZE (type, TYPE_SIZE (type), TYPE_ALIGN (type));
1431 TYPE_SIZE_UNIT (type)
1432 = ROUND_TYPE_SIZE_UNIT (type, TYPE_SIZE_UNIT (type),
1433 TYPE_ALIGN (type) / BITS_PER_UNIT);
1434 #else
1435 TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1436 TYPE_SIZE_UNIT (type)
1437 = round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN (type) / BITS_PER_UNIT);
1438 #endif
1441 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1442 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1443 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1444 if (TYPE_SIZE_UNIT (type) != 0
1445 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1446 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1448 /* Also layout any other variants of the type. */
1449 if (TYPE_NEXT_VARIANT (type)
1450 || type != TYPE_MAIN_VARIANT (type))
1452 tree variant;
1453 /* Record layout info of this variant. */
1454 tree size = TYPE_SIZE (type);
1455 tree size_unit = TYPE_SIZE_UNIT (type);
1456 unsigned int align = TYPE_ALIGN (type);
1457 unsigned int user_align = TYPE_USER_ALIGN (type);
1458 enum machine_mode mode = TYPE_MODE (type);
1460 /* Copy it into all variants. */
1461 for (variant = TYPE_MAIN_VARIANT (type);
1462 variant != 0;
1463 variant = TYPE_NEXT_VARIANT (variant))
1465 TYPE_SIZE (variant) = size;
1466 TYPE_SIZE_UNIT (variant) = size_unit;
1467 TYPE_ALIGN (variant) = align;
1468 TYPE_USER_ALIGN (variant) = user_align;
1469 TYPE_MODE (variant) = mode;
1474 /* Do all of the work required to layout the type indicated by RLI,
1475 once the fields have been laid out. This function will call `free'
1476 for RLI, unless FREE_P is false. Passing a value other than false
1477 for FREE_P is bad practice; this option only exists to support the
1478 G++ 3.2 ABI. */
1480 void
1481 finish_record_layout (rli, free_p)
1482 record_layout_info rli;
1483 int free_p;
1485 /* Compute the final size. */
1486 finalize_record_size (rli);
1488 /* Compute the TYPE_MODE for the record. */
1489 compute_record_mode (rli->t);
1491 /* Perform any last tweaks to the TYPE_SIZE, etc. */
1492 finalize_type_size (rli->t);
1494 /* Lay out any static members. This is done now because their type
1495 may use the record's type. */
1496 while (rli->pending_statics)
1498 layout_decl (TREE_VALUE (rli->pending_statics), 0);
1499 rli->pending_statics = TREE_CHAIN (rli->pending_statics);
1502 /* Clean up. */
1503 if (free_p)
1504 free (rli);
1508 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
1509 NAME, its fields are chained in reverse on FIELDS.
1511 If ALIGN_TYPE is non-null, it is given the same alignment as
1512 ALIGN_TYPE. */
1514 void
1515 finish_builtin_struct (type, name, fields, align_type)
1516 tree type;
1517 const char *name;
1518 tree fields;
1519 tree align_type;
1521 tree tail, next;
1523 for (tail = NULL_TREE; fields; tail = fields, fields = next)
1525 DECL_FIELD_CONTEXT (fields) = type;
1526 next = TREE_CHAIN (fields);
1527 TREE_CHAIN (fields) = tail;
1529 TYPE_FIELDS (type) = tail;
1531 if (align_type)
1533 TYPE_ALIGN (type) = TYPE_ALIGN (align_type);
1534 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
1537 layout_type (type);
1538 #if 0 /* not yet, should get fixed properly later */
1539 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
1540 #else
1541 TYPE_NAME (type) = build_decl (TYPE_DECL, get_identifier (name), type);
1542 #endif
1543 TYPE_STUB_DECL (type) = TYPE_NAME (type);
1544 layout_decl (TYPE_NAME (type), 0);
1547 /* Calculate the mode, size, and alignment for TYPE.
1548 For an array type, calculate the element separation as well.
1549 Record TYPE on the chain of permanent or temporary types
1550 so that dbxout will find out about it.
1552 TYPE_SIZE of a type is nonzero if the type has been laid out already.
1553 layout_type does nothing on such a type.
1555 If the type is incomplete, its TYPE_SIZE remains zero. */
1557 void
1558 layout_type (type)
1559 tree type;
1561 if (type == 0)
1562 abort ();
1564 /* Do nothing if type has been laid out before. */
1565 if (TYPE_SIZE (type))
1566 return;
1568 switch (TREE_CODE (type))
1570 case LANG_TYPE:
1571 /* This kind of type is the responsibility
1572 of the language-specific code. */
1573 abort ();
1575 case BOOLEAN_TYPE: /* Used for Java, Pascal, and Chill. */
1576 if (TYPE_PRECISION (type) == 0)
1577 TYPE_PRECISION (type) = 1; /* default to one byte/boolean. */
1579 /* ... fall through ... */
1581 case INTEGER_TYPE:
1582 case ENUMERAL_TYPE:
1583 case CHAR_TYPE:
1584 if (TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST
1585 && tree_int_cst_sgn (TYPE_MIN_VALUE (type)) >= 0)
1586 TREE_UNSIGNED (type) = 1;
1588 TYPE_MODE (type) = smallest_mode_for_size (TYPE_PRECISION (type),
1589 MODE_INT);
1590 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1591 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1592 break;
1594 case REAL_TYPE:
1595 TYPE_MODE (type) = mode_for_size (TYPE_PRECISION (type), MODE_FLOAT, 0);
1596 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1597 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1598 break;
1600 case COMPLEX_TYPE:
1601 TREE_UNSIGNED (type) = TREE_UNSIGNED (TREE_TYPE (type));
1602 TYPE_MODE (type)
1603 = mode_for_size (2 * TYPE_PRECISION (TREE_TYPE (type)),
1604 (TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE
1605 ? MODE_COMPLEX_INT : MODE_COMPLEX_FLOAT),
1607 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1608 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1609 break;
1611 case VECTOR_TYPE:
1613 tree subtype;
1615 subtype = TREE_TYPE (type);
1616 TREE_UNSIGNED (type) = TREE_UNSIGNED (subtype);
1617 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1618 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1620 break;
1622 case VOID_TYPE:
1623 /* This is an incomplete type and so doesn't have a size. */
1624 TYPE_ALIGN (type) = 1;
1625 TYPE_USER_ALIGN (type) = 0;
1626 TYPE_MODE (type) = VOIDmode;
1627 break;
1629 case OFFSET_TYPE:
1630 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
1631 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE / BITS_PER_UNIT);
1632 /* A pointer might be MODE_PARTIAL_INT,
1633 but ptrdiff_t must be integral. */
1634 TYPE_MODE (type) = mode_for_size (POINTER_SIZE, MODE_INT, 0);
1635 break;
1637 case FUNCTION_TYPE:
1638 case METHOD_TYPE:
1639 TYPE_MODE (type) = mode_for_size (2 * POINTER_SIZE, MODE_INT, 0);
1640 TYPE_SIZE (type) = bitsize_int (2 * POINTER_SIZE);
1641 TYPE_SIZE_UNIT (type) = size_int ((2 * POINTER_SIZE) / BITS_PER_UNIT);
1642 break;
1644 case POINTER_TYPE:
1645 case REFERENCE_TYPE:
1648 enum machine_mode mode = ((TREE_CODE (type) == REFERENCE_TYPE
1649 && reference_types_internal)
1650 ? Pmode : TYPE_MODE (type));
1652 int nbits = GET_MODE_BITSIZE (mode);
1654 TYPE_SIZE (type) = bitsize_int (nbits);
1655 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
1656 TREE_UNSIGNED (type) = 1;
1657 TYPE_PRECISION (type) = nbits;
1659 break;
1661 case ARRAY_TYPE:
1663 tree index = TYPE_DOMAIN (type);
1664 tree element = TREE_TYPE (type);
1666 build_pointer_type (element);
1668 /* We need to know both bounds in order to compute the size. */
1669 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
1670 && TYPE_SIZE (element))
1672 tree ub = TYPE_MAX_VALUE (index);
1673 tree lb = TYPE_MIN_VALUE (index);
1674 tree length;
1675 tree element_size;
1677 /* The initial subtraction should happen in the original type so
1678 that (possible) negative values are handled appropriately. */
1679 length = size_binop (PLUS_EXPR, size_one_node,
1680 convert (sizetype,
1681 fold (build (MINUS_EXPR,
1682 TREE_TYPE (lb),
1683 ub, lb))));
1685 /* Special handling for arrays of bits (for Chill). */
1686 element_size = TYPE_SIZE (element);
1687 if (TYPE_PACKED (type) && INTEGRAL_TYPE_P (element)
1688 && (integer_zerop (TYPE_MAX_VALUE (element))
1689 || integer_onep (TYPE_MAX_VALUE (element)))
1690 && host_integerp (TYPE_MIN_VALUE (element), 1))
1692 HOST_WIDE_INT maxvalue
1693 = tree_low_cst (TYPE_MAX_VALUE (element), 1);
1694 HOST_WIDE_INT minvalue
1695 = tree_low_cst (TYPE_MIN_VALUE (element), 1);
1697 if (maxvalue - minvalue == 1
1698 && (maxvalue == 1 || maxvalue == 0))
1699 element_size = integer_one_node;
1702 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
1703 convert (bitsizetype, length));
1705 /* If we know the size of the element, calculate the total
1706 size directly, rather than do some division thing below.
1707 This optimization helps Fortran assumed-size arrays
1708 (where the size of the array is determined at runtime)
1709 substantially.
1710 Note that we can't do this in the case where the size of
1711 the elements is one bit since TYPE_SIZE_UNIT cannot be
1712 set correctly in that case. */
1713 if (TYPE_SIZE_UNIT (element) != 0 && ! integer_onep (element_size))
1714 TYPE_SIZE_UNIT (type)
1715 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
1718 /* Now round the alignment and size,
1719 using machine-dependent criteria if any. */
1721 #ifdef ROUND_TYPE_ALIGN
1722 TYPE_ALIGN (type)
1723 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (element), BITS_PER_UNIT);
1724 #else
1725 TYPE_ALIGN (type) = MAX (TYPE_ALIGN (element), BITS_PER_UNIT);
1726 #endif
1727 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
1729 #ifdef ROUND_TYPE_SIZE
1730 if (TYPE_SIZE (type) != 0)
1732 tree tmp
1733 = ROUND_TYPE_SIZE (type, TYPE_SIZE (type), TYPE_ALIGN (type));
1735 /* If the rounding changed the size of the type, remove any
1736 pre-calculated TYPE_SIZE_UNIT. */
1737 if (simple_cst_equal (TYPE_SIZE (type), tmp) != 1)
1738 TYPE_SIZE_UNIT (type) = NULL;
1740 TYPE_SIZE (type) = tmp;
1742 #endif
1744 TYPE_MODE (type) = BLKmode;
1745 if (TYPE_SIZE (type) != 0
1746 #ifdef MEMBER_TYPE_FORCES_BLK
1747 && ! MEMBER_TYPE_FORCES_BLK (type, VOIDmode)
1748 #endif
1749 /* BLKmode elements force BLKmode aggregate;
1750 else extract/store fields may lose. */
1751 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
1752 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
1754 /* One-element arrays get the component type's mode. */
1755 if (simple_cst_equal (TYPE_SIZE (type),
1756 TYPE_SIZE (TREE_TYPE (type))))
1757 TYPE_MODE (type) = TYPE_MODE (TREE_TYPE (type));
1758 else
1759 TYPE_MODE (type)
1760 = mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1);
1762 if (TYPE_MODE (type) != BLKmode
1763 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
1764 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type))
1765 && TYPE_MODE (type) != BLKmode)
1767 TYPE_NO_FORCE_BLK (type) = 1;
1768 TYPE_MODE (type) = BLKmode;
1771 break;
1774 case RECORD_TYPE:
1775 case UNION_TYPE:
1776 case QUAL_UNION_TYPE:
1778 tree field;
1779 record_layout_info rli;
1781 /* Initialize the layout information. */
1782 rli = start_record_layout (type);
1784 /* If this is a QUAL_UNION_TYPE, we want to process the fields
1785 in the reverse order in building the COND_EXPR that denotes
1786 its size. We reverse them again later. */
1787 if (TREE_CODE (type) == QUAL_UNION_TYPE)
1788 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
1790 /* Place all the fields. */
1791 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1792 place_field (rli, field);
1794 if (TREE_CODE (type) == QUAL_UNION_TYPE)
1795 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
1797 if (lang_adjust_rli)
1798 (*lang_adjust_rli) (rli);
1800 /* Finish laying out the record. */
1801 finish_record_layout (rli, /*free_p=*/true);
1803 break;
1805 case SET_TYPE: /* Used by Chill and Pascal. */
1806 if (TREE_CODE (TYPE_MAX_VALUE (TYPE_DOMAIN (type))) != INTEGER_CST
1807 || TREE_CODE (TYPE_MIN_VALUE (TYPE_DOMAIN (type))) != INTEGER_CST)
1808 abort ();
1809 else
1811 #ifndef SET_WORD_SIZE
1812 #define SET_WORD_SIZE BITS_PER_WORD
1813 #endif
1814 unsigned int alignment
1815 = set_alignment ? set_alignment : SET_WORD_SIZE;
1816 int size_in_bits
1817 = (TREE_INT_CST_LOW (TYPE_MAX_VALUE (TYPE_DOMAIN (type)))
1818 - TREE_INT_CST_LOW (TYPE_MIN_VALUE (TYPE_DOMAIN (type))) + 1);
1819 int rounded_size
1820 = ((size_in_bits + alignment - 1) / alignment) * alignment;
1822 if (rounded_size > (int) alignment)
1823 TYPE_MODE (type) = BLKmode;
1824 else
1825 TYPE_MODE (type) = mode_for_size (alignment, MODE_INT, 1);
1827 TYPE_SIZE (type) = bitsize_int (rounded_size);
1828 TYPE_SIZE_UNIT (type) = size_int (rounded_size / BITS_PER_UNIT);
1829 TYPE_ALIGN (type) = alignment;
1830 TYPE_USER_ALIGN (type) = 0;
1831 TYPE_PRECISION (type) = size_in_bits;
1833 break;
1835 case FILE_TYPE:
1836 /* The size may vary in different languages, so the language front end
1837 should fill in the size. */
1838 TYPE_ALIGN (type) = BIGGEST_ALIGNMENT;
1839 TYPE_USER_ALIGN (type) = 0;
1840 TYPE_MODE (type) = BLKmode;
1841 break;
1843 default:
1844 abort ();
1847 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
1848 records and unions, finish_record_layout already called this
1849 function. */
1850 if (TREE_CODE (type) != RECORD_TYPE
1851 && TREE_CODE (type) != UNION_TYPE
1852 && TREE_CODE (type) != QUAL_UNION_TYPE)
1853 finalize_type_size (type);
1855 /* If this type is created before sizetype has been permanently set,
1856 record it so set_sizetype can fix it up. */
1857 if (! sizetype_set)
1858 early_type_list = tree_cons (NULL_TREE, type, early_type_list);
1860 /* If an alias set has been set for this aggregate when it was incomplete,
1861 force it into alias set 0.
1862 This is too conservative, but we cannot call record_component_aliases
1863 here because some frontends still change the aggregates after
1864 layout_type. */
1865 if (AGGREGATE_TYPE_P (type) && TYPE_ALIAS_SET_KNOWN_P (type))
1866 TYPE_ALIAS_SET (type) = 0;
1869 /* Create and return a type for signed integers of PRECISION bits. */
1871 tree
1872 make_signed_type (precision)
1873 int precision;
1875 tree type = make_node (INTEGER_TYPE);
1877 TYPE_PRECISION (type) = precision;
1879 fixup_signed_type (type);
1880 return type;
1883 /* Create and return a type for unsigned integers of PRECISION bits. */
1885 tree
1886 make_unsigned_type (precision)
1887 int precision;
1889 tree type = make_node (INTEGER_TYPE);
1891 TYPE_PRECISION (type) = precision;
1893 fixup_unsigned_type (type);
1894 return type;
1897 /* Initialize sizetype and bitsizetype to a reasonable and temporary
1898 value to enable integer types to be created. */
1900 void
1901 initialize_sizetypes ()
1903 tree t = make_node (INTEGER_TYPE);
1905 /* Set this so we do something reasonable for the build_int_2 calls
1906 below. */
1907 integer_type_node = t;
1909 TYPE_MODE (t) = SImode;
1910 TYPE_ALIGN (t) = GET_MODE_ALIGNMENT (SImode);
1911 TYPE_USER_ALIGN (t) = 0;
1912 TYPE_SIZE (t) = build_int_2 (GET_MODE_BITSIZE (SImode), 0);
1913 TYPE_SIZE_UNIT (t) = build_int_2 (GET_MODE_SIZE (SImode), 0);
1914 TREE_UNSIGNED (t) = 1;
1915 TYPE_PRECISION (t) = GET_MODE_BITSIZE (SImode);
1916 TYPE_MIN_VALUE (t) = build_int_2 (0, 0);
1917 TYPE_IS_SIZETYPE (t) = 1;
1919 /* 1000 avoids problems with possible overflow and is certainly
1920 larger than any size value we'd want to be storing. */
1921 TYPE_MAX_VALUE (t) = build_int_2 (1000, 0);
1923 /* These two must be different nodes because of the caching done in
1924 size_int_wide. */
1925 sizetype = t;
1926 bitsizetype = copy_node (t);
1927 integer_type_node = 0;
1930 /* Set sizetype to TYPE, and initialize *sizetype accordingly.
1931 Also update the type of any standard type's sizes made so far. */
1933 void
1934 set_sizetype (type)
1935 tree type;
1937 int oprecision = TYPE_PRECISION (type);
1938 /* The *bitsizetype types use a precision that avoids overflows when
1939 calculating signed sizes / offsets in bits. However, when
1940 cross-compiling from a 32 bit to a 64 bit host, we are limited to 64 bit
1941 precision. */
1942 int precision = MIN (oprecision + BITS_PER_UNIT_LOG + 1,
1943 2 * HOST_BITS_PER_WIDE_INT);
1944 unsigned int i;
1945 tree t;
1947 if (sizetype_set)
1948 abort ();
1950 /* Make copies of nodes since we'll be setting TYPE_IS_SIZETYPE. */
1951 sizetype = copy_node (type);
1952 TYPE_DOMAIN (sizetype) = type;
1953 TYPE_IS_SIZETYPE (sizetype) = 1;
1954 bitsizetype = make_node (INTEGER_TYPE);
1955 TYPE_NAME (bitsizetype) = TYPE_NAME (type);
1956 TYPE_PRECISION (bitsizetype) = precision;
1957 TYPE_IS_SIZETYPE (bitsizetype) = 1;
1959 if (TREE_UNSIGNED (type))
1960 fixup_unsigned_type (bitsizetype);
1961 else
1962 fixup_signed_type (bitsizetype);
1964 layout_type (bitsizetype);
1966 if (TREE_UNSIGNED (type))
1968 usizetype = sizetype;
1969 ubitsizetype = bitsizetype;
1970 ssizetype = copy_node (make_signed_type (oprecision));
1971 sbitsizetype = copy_node (make_signed_type (precision));
1973 else
1975 ssizetype = sizetype;
1976 sbitsizetype = bitsizetype;
1977 usizetype = copy_node (make_unsigned_type (oprecision));
1978 ubitsizetype = copy_node (make_unsigned_type (precision));
1981 TYPE_NAME (bitsizetype) = get_identifier ("bit_size_type");
1983 /* Show is a sizetype, is a main type, and has no pointers to it. */
1984 for (i = 0; i < ARRAY_SIZE (sizetype_tab); i++)
1986 TYPE_IS_SIZETYPE (sizetype_tab[i]) = 1;
1987 TYPE_MAIN_VARIANT (sizetype_tab[i]) = sizetype_tab[i];
1988 TYPE_NEXT_VARIANT (sizetype_tab[i]) = 0;
1989 TYPE_POINTER_TO (sizetype_tab[i]) = 0;
1990 TYPE_REFERENCE_TO (sizetype_tab[i]) = 0;
1993 /* Go down each of the types we already made and set the proper type
1994 for the sizes in them. */
1995 for (t = early_type_list; t != 0; t = TREE_CHAIN (t))
1997 if (TREE_CODE (TREE_VALUE (t)) != INTEGER_TYPE)
1998 abort ();
2000 TREE_TYPE (TYPE_SIZE (TREE_VALUE (t))) = bitsizetype;
2001 TREE_TYPE (TYPE_SIZE_UNIT (TREE_VALUE (t))) = sizetype;
2004 early_type_list = 0;
2005 sizetype_set = 1;
2008 /* Set the extreme values of TYPE based on its precision in bits,
2009 then lay it out. Used when make_signed_type won't do
2010 because the tree code is not INTEGER_TYPE.
2011 E.g. for Pascal, when the -fsigned-char option is given. */
2013 void
2014 fixup_signed_type (type)
2015 tree type;
2017 int precision = TYPE_PRECISION (type);
2019 /* We can not represent properly constants greater then
2020 2 * HOST_BITS_PER_WIDE_INT, still we need the types
2021 as they are used by i386 vector extensions and friends. */
2022 if (precision > HOST_BITS_PER_WIDE_INT * 2)
2023 precision = HOST_BITS_PER_WIDE_INT * 2;
2025 TYPE_MIN_VALUE (type)
2026 = build_int_2 ((precision - HOST_BITS_PER_WIDE_INT > 0
2027 ? 0 : (HOST_WIDE_INT) (-1) << (precision - 1)),
2028 (((HOST_WIDE_INT) (-1)
2029 << (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
2030 ? precision - HOST_BITS_PER_WIDE_INT - 1
2031 : 0))));
2032 TYPE_MAX_VALUE (type)
2033 = build_int_2 ((precision - HOST_BITS_PER_WIDE_INT > 0
2034 ? -1 : ((HOST_WIDE_INT) 1 << (precision - 1)) - 1),
2035 (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
2036 ? (((HOST_WIDE_INT) 1
2037 << (precision - HOST_BITS_PER_WIDE_INT - 1))) - 1
2038 : 0));
2040 TREE_TYPE (TYPE_MIN_VALUE (type)) = type;
2041 TREE_TYPE (TYPE_MAX_VALUE (type)) = type;
2043 /* Lay out the type: set its alignment, size, etc. */
2044 layout_type (type);
2047 /* Set the extreme values of TYPE based on its precision in bits,
2048 then lay it out. This is used both in `make_unsigned_type'
2049 and for enumeral types. */
2051 void
2052 fixup_unsigned_type (type)
2053 tree type;
2055 int precision = TYPE_PRECISION (type);
2057 /* We can not represent properly constants greater then
2058 2 * HOST_BITS_PER_WIDE_INT, still we need the types
2059 as they are used by i386 vector extensions and friends. */
2060 if (precision > HOST_BITS_PER_WIDE_INT * 2)
2061 precision = HOST_BITS_PER_WIDE_INT * 2;
2063 TYPE_MIN_VALUE (type) = build_int_2 (0, 0);
2064 TYPE_MAX_VALUE (type)
2065 = build_int_2 (precision - HOST_BITS_PER_WIDE_INT >= 0
2066 ? -1 : ((HOST_WIDE_INT) 1 << precision) - 1,
2067 precision - HOST_BITS_PER_WIDE_INT > 0
2068 ? ((unsigned HOST_WIDE_INT) ~0
2069 >> (HOST_BITS_PER_WIDE_INT
2070 - (precision - HOST_BITS_PER_WIDE_INT)))
2071 : 0);
2072 TREE_TYPE (TYPE_MIN_VALUE (type)) = type;
2073 TREE_TYPE (TYPE_MAX_VALUE (type)) = type;
2075 /* Lay out the type: set its alignment, size, etc. */
2076 layout_type (type);
2079 /* Find the best machine mode to use when referencing a bit field of length
2080 BITSIZE bits starting at BITPOS.
2082 The underlying object is known to be aligned to a boundary of ALIGN bits.
2083 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
2084 larger than LARGEST_MODE (usually SImode).
2086 If no mode meets all these conditions, we return VOIDmode. Otherwise, if
2087 VOLATILEP is true or SLOW_BYTE_ACCESS is false, we return the smallest
2088 mode meeting these conditions.
2090 Otherwise (VOLATILEP is false and SLOW_BYTE_ACCESS is true), we return
2091 the largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2092 all the conditions. */
2094 enum machine_mode
2095 get_best_mode (bitsize, bitpos, align, largest_mode, volatilep)
2096 int bitsize, bitpos;
2097 unsigned int align;
2098 enum machine_mode largest_mode;
2099 int volatilep;
2101 enum machine_mode mode;
2102 unsigned int unit = 0;
2104 /* Find the narrowest integer mode that contains the bit field. */
2105 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2106 mode = GET_MODE_WIDER_MODE (mode))
2108 unit = GET_MODE_BITSIZE (mode);
2109 if ((bitpos % unit) + bitsize <= unit)
2110 break;
2113 if (mode == VOIDmode
2114 /* It is tempting to omit the following line
2115 if STRICT_ALIGNMENT is true.
2116 But that is incorrect, since if the bitfield uses part of 3 bytes
2117 and we use a 4-byte mode, we could get a spurious segv
2118 if the extra 4th byte is past the end of memory.
2119 (Though at least one Unix compiler ignores this problem:
2120 that on the Sequent 386 machine. */
2121 || MIN (unit, BIGGEST_ALIGNMENT) > align
2122 || (largest_mode != VOIDmode && unit > GET_MODE_BITSIZE (largest_mode)))
2123 return VOIDmode;
2125 if (SLOW_BYTE_ACCESS && ! volatilep)
2127 enum machine_mode wide_mode = VOIDmode, tmode;
2129 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT); tmode != VOIDmode;
2130 tmode = GET_MODE_WIDER_MODE (tmode))
2132 unit = GET_MODE_BITSIZE (tmode);
2133 if (bitpos / unit == (bitpos + bitsize - 1) / unit
2134 && unit <= BITS_PER_WORD
2135 && unit <= MIN (align, BIGGEST_ALIGNMENT)
2136 && (largest_mode == VOIDmode
2137 || unit <= GET_MODE_BITSIZE (largest_mode)))
2138 wide_mode = tmode;
2141 if (wide_mode != VOIDmode)
2142 return wide_mode;
2145 return mode;
2148 #include "gt-stor-layout.h"