cselib.c (cselib_current_insn_in_libcall): New static variable.
[official-gcc.git] / gcc / regclass.c
blob6b6a6dd0adbb0c9bb402adfd6fdd2ec4aead9df1
1 /* Compute register class preferences for pseudo-registers.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996
3 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 /* This file contains two passes of the compiler: reg_scan and reg_class.
24 It also defines some tables of information about the hardware registers
25 and a function init_reg_sets to initialize the tables. */
27 #include "config.h"
28 #include "system.h"
29 #include "coretypes.h"
30 #include "tm.h"
31 #include "hard-reg-set.h"
32 #include "rtl.h"
33 #include "expr.h"
34 #include "tm_p.h"
35 #include "flags.h"
36 #include "basic-block.h"
37 #include "regs.h"
38 #include "function.h"
39 #include "insn-config.h"
40 #include "recog.h"
41 #include "reload.h"
42 #include "real.h"
43 #include "toplev.h"
44 #include "output.h"
45 #include "ggc.h"
47 #ifndef REGISTER_MOVE_COST
48 #define REGISTER_MOVE_COST(m, x, y) 2
49 #endif
51 static void init_reg_sets_1 PARAMS ((void));
52 static void init_reg_modes PARAMS ((void));
54 /* If we have auto-increment or auto-decrement and we can have secondary
55 reloads, we are not allowed to use classes requiring secondary
56 reloads for pseudos auto-incremented since reload can't handle it. */
58 #ifdef AUTO_INC_DEC
59 #if defined(SECONDARY_INPUT_RELOAD_CLASS) || defined(SECONDARY_OUTPUT_RELOAD_CLASS)
60 #define FORBIDDEN_INC_DEC_CLASSES
61 #endif
62 #endif
64 /* Register tables used by many passes. */
66 /* Indexed by hard register number, contains 1 for registers
67 that are fixed use (stack pointer, pc, frame pointer, etc.).
68 These are the registers that cannot be used to allocate
69 a pseudo reg for general use. */
71 char fixed_regs[FIRST_PSEUDO_REGISTER];
73 /* Same info as a HARD_REG_SET. */
75 HARD_REG_SET fixed_reg_set;
77 /* Data for initializing the above. */
79 static const char initial_fixed_regs[] = FIXED_REGISTERS;
81 /* Indexed by hard register number, contains 1 for registers
82 that are fixed use or are clobbered by function calls.
83 These are the registers that cannot be used to allocate
84 a pseudo reg whose life crosses calls unless we are able
85 to save/restore them across the calls. */
87 char call_used_regs[FIRST_PSEUDO_REGISTER];
89 /* Same info as a HARD_REG_SET. */
91 HARD_REG_SET call_used_reg_set;
93 /* HARD_REG_SET of registers we want to avoid caller saving. */
94 HARD_REG_SET losing_caller_save_reg_set;
96 /* Data for initializing the above. */
98 static const char initial_call_used_regs[] = CALL_USED_REGISTERS;
100 /* This is much like call_used_regs, except it doesn't have to
101 be a superset of FIXED_REGISTERS. This vector indicates
102 what is really call clobbered, and is used when defining
103 regs_invalidated_by_call. */
105 #ifdef CALL_REALLY_USED_REGISTERS
106 char call_really_used_regs[] = CALL_REALLY_USED_REGISTERS;
107 #endif
109 /* Indexed by hard register number, contains 1 for registers that are
110 fixed use or call used registers that cannot hold quantities across
111 calls even if we are willing to save and restore them. call fixed
112 registers are a subset of call used registers. */
114 char call_fixed_regs[FIRST_PSEUDO_REGISTER];
116 /* The same info as a HARD_REG_SET. */
118 HARD_REG_SET call_fixed_reg_set;
120 /* Number of non-fixed registers. */
122 int n_non_fixed_regs;
124 /* Indexed by hard register number, contains 1 for registers
125 that are being used for global register decls.
126 These must be exempt from ordinary flow analysis
127 and are also considered fixed. */
129 char global_regs[FIRST_PSEUDO_REGISTER];
131 /* Contains 1 for registers that are set or clobbered by calls. */
132 /* ??? Ideally, this would be just call_used_regs plus global_regs, but
133 for someone's bright idea to have call_used_regs strictly include
134 fixed_regs. Which leaves us guessing as to the set of fixed_regs
135 that are actually preserved. We know for sure that those associated
136 with the local stack frame are safe, but scant others. */
138 HARD_REG_SET regs_invalidated_by_call;
140 /* Table of register numbers in the order in which to try to use them. */
141 #ifdef REG_ALLOC_ORDER
142 int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
144 /* The inverse of reg_alloc_order. */
145 int inv_reg_alloc_order[FIRST_PSEUDO_REGISTER];
146 #endif
148 /* For each reg class, a HARD_REG_SET saying which registers are in it. */
150 HARD_REG_SET reg_class_contents[N_REG_CLASSES];
152 /* The same information, but as an array of unsigned ints. We copy from
153 these unsigned ints to the table above. We do this so the tm.h files
154 do not have to be aware of the wordsize for machines with <= 64 regs.
155 Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
157 #define N_REG_INTS \
158 ((FIRST_PSEUDO_REGISTER + (32 - 1)) / 32)
160 static const unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
161 = REG_CLASS_CONTENTS;
163 /* For each reg class, number of regs it contains. */
165 unsigned int reg_class_size[N_REG_CLASSES];
167 /* For each reg class, table listing all the containing classes. */
169 enum reg_class reg_class_superclasses[N_REG_CLASSES][N_REG_CLASSES];
171 /* For each reg class, table listing all the classes contained in it. */
173 enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
175 /* For each pair of reg classes,
176 a largest reg class contained in their union. */
178 enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
180 /* For each pair of reg classes,
181 the smallest reg class containing their union. */
183 enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
185 /* Array containing all of the register names. Unless
186 DEBUG_REGISTER_NAMES is defined, use the copy in print-rtl.c. */
188 #ifdef DEBUG_REGISTER_NAMES
189 const char * reg_names[] = REGISTER_NAMES;
190 #endif
192 /* For each hard register, the widest mode object that it can contain.
193 This will be a MODE_INT mode if the register can hold integers. Otherwise
194 it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
195 register. */
197 enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
199 /* 1 if class does contain register of given mode. */
201 static char contains_reg_of_mode [N_REG_CLASSES] [MAX_MACHINE_MODE];
203 /* Maximum cost of moving from a register in one class to a register in
204 another class. Based on REGISTER_MOVE_COST. */
206 static int move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
208 /* Similar, but here we don't have to move if the first index is a subset
209 of the second so in that case the cost is zero. */
211 static int may_move_in_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
213 /* Similar, but here we don't have to move if the first index is a superset
214 of the second so in that case the cost is zero. */
216 static int may_move_out_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
218 #ifdef FORBIDDEN_INC_DEC_CLASSES
220 /* These are the classes that regs which are auto-incremented or decremented
221 cannot be put in. */
223 static int forbidden_inc_dec_class[N_REG_CLASSES];
225 /* Indexed by n, is nonzero if (REG n) is used in an auto-inc or auto-dec
226 context. */
228 static char *in_inc_dec;
230 #endif /* FORBIDDEN_INC_DEC_CLASSES */
232 #ifdef CANNOT_CHANGE_MODE_CLASS
233 /* All registers that have been subreged. Indexed by mode, where each
234 entry is a regset of registers. */
235 regset_head subregs_of_mode [NUM_MACHINE_MODES];
236 #endif
238 /* Sample MEM values for use by memory_move_secondary_cost. */
240 static GTY(()) rtx top_of_stack[MAX_MACHINE_MODE];
242 /* Linked list of reg_info structures allocated for reg_n_info array.
243 Grouping all of the allocated structures together in one lump
244 means only one call to bzero to clear them, rather than n smaller
245 calls. */
246 struct reg_info_data {
247 struct reg_info_data *next; /* next set of reg_info structures */
248 size_t min_index; /* minimum index # */
249 size_t max_index; /* maximum index # */
250 char used_p; /* nonzero if this has been used previously */
251 reg_info data[1]; /* beginning of the reg_info data */
254 static struct reg_info_data *reg_info_head;
256 /* No more global register variables may be declared; true once
257 regclass has been initialized. */
259 static int no_global_reg_vars = 0;
262 /* Function called only once to initialize the above data on reg usage.
263 Once this is done, various switches may override. */
265 void
266 init_reg_sets ()
268 int i, j;
270 /* First copy the register information from the initial int form into
271 the regsets. */
273 for (i = 0; i < N_REG_CLASSES; i++)
275 CLEAR_HARD_REG_SET (reg_class_contents[i]);
277 /* Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
278 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
279 if (int_reg_class_contents[i][j / 32]
280 & ((unsigned) 1 << (j % 32)))
281 SET_HARD_REG_BIT (reg_class_contents[i], j);
284 memcpy (fixed_regs, initial_fixed_regs, sizeof fixed_regs);
285 memcpy (call_used_regs, initial_call_used_regs, sizeof call_used_regs);
286 memset (global_regs, 0, sizeof global_regs);
288 /* Do any additional initialization regsets may need. */
289 INIT_ONCE_REG_SET ();
291 #ifdef REG_ALLOC_ORDER
292 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
293 inv_reg_alloc_order[reg_alloc_order[i]] = i;
294 #endif
297 /* After switches have been processed, which perhaps alter
298 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
300 static void
301 init_reg_sets_1 ()
303 unsigned int i, j;
304 unsigned int /* enum machine_mode */ m;
305 char allocatable_regs_of_mode [MAX_MACHINE_MODE];
307 /* This macro allows the fixed or call-used registers
308 and the register classes to depend on target flags. */
310 #ifdef CONDITIONAL_REGISTER_USAGE
311 CONDITIONAL_REGISTER_USAGE;
312 #endif
314 /* Compute number of hard regs in each class. */
316 memset ((char *) reg_class_size, 0, sizeof reg_class_size);
317 for (i = 0; i < N_REG_CLASSES; i++)
318 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
319 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
320 reg_class_size[i]++;
322 /* Initialize the table of subunions.
323 reg_class_subunion[I][J] gets the largest-numbered reg-class
324 that is contained in the union of classes I and J. */
326 for (i = 0; i < N_REG_CLASSES; i++)
328 for (j = 0; j < N_REG_CLASSES; j++)
330 #ifdef HARD_REG_SET
331 register /* Declare it register if it's a scalar. */
332 #endif
333 HARD_REG_SET c;
334 int k;
336 COPY_HARD_REG_SET (c, reg_class_contents[i]);
337 IOR_HARD_REG_SET (c, reg_class_contents[j]);
338 for (k = 0; k < N_REG_CLASSES; k++)
340 GO_IF_HARD_REG_SUBSET (reg_class_contents[k], c,
341 subclass1);
342 continue;
344 subclass1:
345 /* keep the largest subclass */ /* SPEE 900308 */
346 GO_IF_HARD_REG_SUBSET (reg_class_contents[k],
347 reg_class_contents[(int) reg_class_subunion[i][j]],
348 subclass2);
349 reg_class_subunion[i][j] = (enum reg_class) k;
350 subclass2:
356 /* Initialize the table of superunions.
357 reg_class_superunion[I][J] gets the smallest-numbered reg-class
358 containing the union of classes I and J. */
360 for (i = 0; i < N_REG_CLASSES; i++)
362 for (j = 0; j < N_REG_CLASSES; j++)
364 #ifdef HARD_REG_SET
365 register /* Declare it register if it's a scalar. */
366 #endif
367 HARD_REG_SET c;
368 int k;
370 COPY_HARD_REG_SET (c, reg_class_contents[i]);
371 IOR_HARD_REG_SET (c, reg_class_contents[j]);
372 for (k = 0; k < N_REG_CLASSES; k++)
373 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[k], superclass);
375 superclass:
376 reg_class_superunion[i][j] = (enum reg_class) k;
380 /* Initialize the tables of subclasses and superclasses of each reg class.
381 First clear the whole table, then add the elements as they are found. */
383 for (i = 0; i < N_REG_CLASSES; i++)
385 for (j = 0; j < N_REG_CLASSES; j++)
387 reg_class_superclasses[i][j] = LIM_REG_CLASSES;
388 reg_class_subclasses[i][j] = LIM_REG_CLASSES;
392 for (i = 0; i < N_REG_CLASSES; i++)
394 if (i == (int) NO_REGS)
395 continue;
397 for (j = i + 1; j < N_REG_CLASSES; j++)
399 enum reg_class *p;
401 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], reg_class_contents[j],
402 subclass);
403 continue;
404 subclass:
405 /* Reg class I is a subclass of J.
406 Add J to the table of superclasses of I. */
407 p = &reg_class_superclasses[i][0];
408 while (*p != LIM_REG_CLASSES) p++;
409 *p = (enum reg_class) j;
410 /* Add I to the table of superclasses of J. */
411 p = &reg_class_subclasses[j][0];
412 while (*p != LIM_REG_CLASSES) p++;
413 *p = (enum reg_class) i;
417 /* Initialize "constant" tables. */
419 CLEAR_HARD_REG_SET (fixed_reg_set);
420 CLEAR_HARD_REG_SET (call_used_reg_set);
421 CLEAR_HARD_REG_SET (call_fixed_reg_set);
422 CLEAR_HARD_REG_SET (regs_invalidated_by_call);
424 memcpy (call_fixed_regs, fixed_regs, sizeof call_fixed_regs);
426 n_non_fixed_regs = 0;
428 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
430 if (fixed_regs[i])
431 SET_HARD_REG_BIT (fixed_reg_set, i);
432 else
433 n_non_fixed_regs++;
435 if (call_used_regs[i])
436 SET_HARD_REG_BIT (call_used_reg_set, i);
437 if (call_fixed_regs[i])
438 SET_HARD_REG_BIT (call_fixed_reg_set, i);
439 if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (i)))
440 SET_HARD_REG_BIT (losing_caller_save_reg_set, i);
442 /* There are a couple of fixed registers that we know are safe to
443 exclude from being clobbered by calls:
445 The frame pointer is always preserved across calls. The arg pointer
446 is if it is fixed. The stack pointer usually is, unless
447 RETURN_POPS_ARGS, in which case an explicit CLOBBER will be present.
448 If we are generating PIC code, the PIC offset table register is
449 preserved across calls, though the target can override that. */
451 if (i == STACK_POINTER_REGNUM || i == FRAME_POINTER_REGNUM)
453 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
454 else if (i == HARD_FRAME_POINTER_REGNUM)
456 #endif
457 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
458 else if (i == ARG_POINTER_REGNUM && fixed_regs[i])
460 #endif
461 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
462 else if (i == PIC_OFFSET_TABLE_REGNUM && fixed_regs[i])
464 #endif
465 else if (0
466 #ifdef CALL_REALLY_USED_REGISTERS
467 || call_really_used_regs[i]
468 #else
469 || call_used_regs[i]
470 #endif
471 || global_regs[i])
472 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
475 memset (contains_reg_of_mode, 0, sizeof (contains_reg_of_mode));
476 memset (allocatable_regs_of_mode, 0, sizeof (allocatable_regs_of_mode));
477 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
478 for (i = 0; i < N_REG_CLASSES; i++)
479 if ((unsigned) CLASS_MAX_NREGS (i, m) <= reg_class_size[i])
480 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
481 if (!fixed_regs [j] && TEST_HARD_REG_BIT (reg_class_contents[i], j)
482 && HARD_REGNO_MODE_OK (j, m))
484 contains_reg_of_mode [i][m] = 1;
485 allocatable_regs_of_mode [m] = 1;
486 break;
489 /* Initialize the move cost table. Find every subset of each class
490 and take the maximum cost of moving any subset to any other. */
492 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
493 if (allocatable_regs_of_mode [m])
495 for (i = 0; i < N_REG_CLASSES; i++)
496 if (contains_reg_of_mode [i][m])
497 for (j = 0; j < N_REG_CLASSES; j++)
499 int cost;
500 enum reg_class *p1, *p2;
502 if (!contains_reg_of_mode [j][m])
504 move_cost[m][i][j] = 65536;
505 may_move_in_cost[m][i][j] = 65536;
506 may_move_out_cost[m][i][j] = 65536;
508 else
510 cost = REGISTER_MOVE_COST (m, i, j);
512 for (p2 = &reg_class_subclasses[j][0];
513 *p2 != LIM_REG_CLASSES;
514 p2++)
515 if (*p2 != i && contains_reg_of_mode [*p2][m])
516 cost = MAX (cost, move_cost [m][i][*p2]);
518 for (p1 = &reg_class_subclasses[i][0];
519 *p1 != LIM_REG_CLASSES;
520 p1++)
521 if (*p1 != j && contains_reg_of_mode [*p1][m])
522 cost = MAX (cost, move_cost [m][*p1][j]);
524 move_cost[m][i][j] = cost;
526 if (reg_class_subset_p (i, j))
527 may_move_in_cost[m][i][j] = 0;
528 else
529 may_move_in_cost[m][i][j] = cost;
531 if (reg_class_subset_p (j, i))
532 may_move_out_cost[m][i][j] = 0;
533 else
534 may_move_out_cost[m][i][j] = cost;
537 else
538 for (j = 0; j < N_REG_CLASSES; j++)
540 move_cost[m][i][j] = 65536;
541 may_move_in_cost[m][i][j] = 65536;
542 may_move_out_cost[m][i][j] = 65536;
547 /* Compute the table of register modes.
548 These values are used to record death information for individual registers
549 (as opposed to a multi-register mode). */
551 static void
552 init_reg_modes ()
554 int i;
556 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
558 reg_raw_mode[i] = choose_hard_reg_mode (i, 1);
560 /* If we couldn't find a valid mode, just use the previous mode.
561 ??? One situation in which we need to do this is on the mips where
562 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2. Ideally we'd like
563 to use DF mode for the even registers and VOIDmode for the odd
564 (for the cpu models where the odd ones are inaccessible). */
565 if (reg_raw_mode[i] == VOIDmode)
566 reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
570 /* Finish initializing the register sets and
571 initialize the register modes. */
573 void
574 init_regs ()
576 /* This finishes what was started by init_reg_sets, but couldn't be done
577 until after register usage was specified. */
578 init_reg_sets_1 ();
580 init_reg_modes ();
583 /* Initialize some fake stack-frame MEM references for use in
584 memory_move_secondary_cost. */
586 void
587 init_fake_stack_mems ()
589 #ifdef HAVE_SECONDARY_RELOADS
591 int i;
593 for (i = 0; i < MAX_MACHINE_MODE; i++)
594 top_of_stack[i] = gen_rtx_MEM (i, stack_pointer_rtx);
596 #endif
599 #ifdef HAVE_SECONDARY_RELOADS
601 /* Compute extra cost of moving registers to/from memory due to reloads.
602 Only needed if secondary reloads are required for memory moves. */
605 memory_move_secondary_cost (mode, class, in)
606 enum machine_mode mode;
607 enum reg_class class;
608 int in;
610 enum reg_class altclass;
611 int partial_cost = 0;
612 /* We need a memory reference to feed to SECONDARY... macros. */
613 /* mem may be unused even if the SECONDARY_ macros are defined. */
614 rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
617 if (in)
619 #ifdef SECONDARY_INPUT_RELOAD_CLASS
620 altclass = SECONDARY_INPUT_RELOAD_CLASS (class, mode, mem);
621 #else
622 altclass = NO_REGS;
623 #endif
625 else
627 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
628 altclass = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, mem);
629 #else
630 altclass = NO_REGS;
631 #endif
634 if (altclass == NO_REGS)
635 return 0;
637 if (in)
638 partial_cost = REGISTER_MOVE_COST (mode, altclass, class);
639 else
640 partial_cost = REGISTER_MOVE_COST (mode, class, altclass);
642 if (class == altclass)
643 /* This isn't simply a copy-to-temporary situation. Can't guess
644 what it is, so MEMORY_MOVE_COST really ought not to be calling
645 here in that case.
647 I'm tempted to put in an abort here, but returning this will
648 probably only give poor estimates, which is what we would've
649 had before this code anyways. */
650 return partial_cost;
652 /* Check if the secondary reload register will also need a
653 secondary reload. */
654 return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
656 #endif
658 /* Return a machine mode that is legitimate for hard reg REGNO and large
659 enough to save nregs. If we can't find one, return VOIDmode. */
661 enum machine_mode
662 choose_hard_reg_mode (regno, nregs)
663 unsigned int regno ATTRIBUTE_UNUSED;
664 unsigned int nregs;
666 unsigned int /* enum machine_mode */ m;
667 enum machine_mode found_mode = VOIDmode, mode;
669 /* We first look for the largest integer mode that can be validly
670 held in REGNO. If none, we look for the largest floating-point mode.
671 If we still didn't find a valid mode, try CCmode. */
673 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
674 mode != VOIDmode;
675 mode = GET_MODE_WIDER_MODE (mode))
676 if ((unsigned) HARD_REGNO_NREGS (regno, mode) == nregs
677 && HARD_REGNO_MODE_OK (regno, mode))
678 found_mode = mode;
680 if (found_mode != VOIDmode)
681 return found_mode;
683 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
684 mode != VOIDmode;
685 mode = GET_MODE_WIDER_MODE (mode))
686 if ((unsigned) HARD_REGNO_NREGS (regno, mode) == nregs
687 && HARD_REGNO_MODE_OK (regno, mode))
688 found_mode = mode;
690 if (found_mode != VOIDmode)
691 return found_mode;
693 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
694 mode != VOIDmode;
695 mode = GET_MODE_WIDER_MODE (mode))
696 if ((unsigned) HARD_REGNO_NREGS (regno, mode) == nregs
697 && HARD_REGNO_MODE_OK (regno, mode))
698 found_mode = mode;
700 if (found_mode != VOIDmode)
701 return found_mode;
703 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
704 mode != VOIDmode;
705 mode = GET_MODE_WIDER_MODE (mode))
706 if ((unsigned) HARD_REGNO_NREGS (regno, mode) == nregs
707 && HARD_REGNO_MODE_OK (regno, mode))
708 found_mode = mode;
710 if (found_mode != VOIDmode)
711 return found_mode;
713 /* Iterate over all of the CCmodes. */
714 for (m = (unsigned int) CCmode; m < (unsigned int) NUM_MACHINE_MODES; ++m)
716 mode = (enum machine_mode) m;
717 if ((unsigned) HARD_REGNO_NREGS (regno, mode) == nregs
718 && HARD_REGNO_MODE_OK (regno, mode))
719 return mode;
722 /* We can't find a mode valid for this register. */
723 return VOIDmode;
726 /* Specify the usage characteristics of the register named NAME.
727 It should be a fixed register if FIXED and a
728 call-used register if CALL_USED. */
730 void
731 fix_register (name, fixed, call_used)
732 const char *name;
733 int fixed, call_used;
735 int i;
737 /* Decode the name and update the primary form of
738 the register info. */
740 if ((i = decode_reg_name (name)) >= 0)
742 if ((i == STACK_POINTER_REGNUM
743 #ifdef HARD_FRAME_POINTER_REGNUM
744 || i == HARD_FRAME_POINTER_REGNUM
745 #else
746 || i == FRAME_POINTER_REGNUM
747 #endif
749 && (fixed == 0 || call_used == 0))
751 static const char * const what_option[2][2] = {
752 { "call-saved", "call-used" },
753 { "no-such-option", "fixed" }};
755 error ("can't use '%s' as a %s register", name,
756 what_option[fixed][call_used]);
758 else
760 fixed_regs[i] = fixed;
761 call_used_regs[i] = call_used;
762 #ifdef CALL_REALLY_USED_REGISTERS
763 if (fixed == 0)
764 call_really_used_regs[i] = call_used;
765 #endif
768 else
770 warning ("unknown register name: %s", name);
774 /* Mark register number I as global. */
776 void
777 globalize_reg (i)
778 int i;
780 if (fixed_regs[i] == 0 && no_global_reg_vars)
781 error ("global register variable follows a function definition");
783 if (global_regs[i])
785 warning ("register used for two global register variables");
786 return;
789 if (call_used_regs[i] && ! fixed_regs[i])
790 warning ("call-clobbered register used for global register variable");
792 global_regs[i] = 1;
794 /* If already fixed, nothing else to do. */
795 if (fixed_regs[i])
796 return;
798 fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
799 n_non_fixed_regs--;
801 SET_HARD_REG_BIT (fixed_reg_set, i);
802 SET_HARD_REG_BIT (call_used_reg_set, i);
803 SET_HARD_REG_BIT (call_fixed_reg_set, i);
804 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
807 /* Now the data and code for the `regclass' pass, which happens
808 just before local-alloc. */
810 /* The `costs' struct records the cost of using a hard register of each class
811 and of using memory for each pseudo. We use this data to set up
812 register class preferences. */
814 struct costs
816 int cost[N_REG_CLASSES];
817 int mem_cost;
820 /* Structure used to record preferences of given pseudo. */
821 struct reg_pref
823 /* (enum reg_class) prefclass is the preferred class. */
824 char prefclass;
826 /* altclass is a register class that we should use for allocating
827 pseudo if no register in the preferred class is available.
828 If no register in this class is available, memory is preferred.
830 It might appear to be more general to have a bitmask of classes here,
831 but since it is recommended that there be a class corresponding to the
832 union of most major pair of classes, that generality is not required. */
833 char altclass;
836 /* Record the cost of each class for each pseudo. */
838 static struct costs *costs;
840 /* Initialized once, and used to initialize cost values for each insn. */
842 static struct costs init_cost;
844 /* Record preferences of each pseudo.
845 This is available after `regclass' is run. */
847 static struct reg_pref *reg_pref;
849 /* Allocated buffers for reg_pref. */
851 static struct reg_pref *reg_pref_buffer;
853 /* Frequency of executions of current insn. */
855 static int frequency;
857 static rtx scan_one_insn PARAMS ((rtx, int));
858 static void record_operand_costs PARAMS ((rtx, struct costs *, struct reg_pref *));
859 static void dump_regclass PARAMS ((FILE *));
860 static void record_reg_classes PARAMS ((int, int, rtx *, enum machine_mode *,
861 const char **, rtx,
862 struct costs *, struct reg_pref *));
863 static int copy_cost PARAMS ((rtx, enum machine_mode,
864 enum reg_class, int));
865 static void record_address_regs PARAMS ((rtx, enum reg_class, int));
866 #ifdef FORBIDDEN_INC_DEC_CLASSES
867 static int auto_inc_dec_reg_p PARAMS ((rtx, enum machine_mode));
868 #endif
869 static void reg_scan_mark_refs PARAMS ((rtx, rtx, int, unsigned int));
871 /* Return the reg_class in which pseudo reg number REGNO is best allocated.
872 This function is sometimes called before the info has been computed.
873 When that happens, just return GENERAL_REGS, which is innocuous. */
875 enum reg_class
876 reg_preferred_class (regno)
877 int regno;
879 if (reg_pref == 0)
880 return GENERAL_REGS;
881 return (enum reg_class) reg_pref[regno].prefclass;
884 enum reg_class
885 reg_alternate_class (regno)
886 int regno;
888 if (reg_pref == 0)
889 return ALL_REGS;
891 return (enum reg_class) reg_pref[regno].altclass;
894 /* Initialize some global data for this pass. */
896 void
897 regclass_init ()
899 int i;
901 init_cost.mem_cost = 10000;
902 for (i = 0; i < N_REG_CLASSES; i++)
903 init_cost.cost[i] = 10000;
905 /* This prevents dump_flow_info from losing if called
906 before regclass is run. */
907 reg_pref = NULL;
909 /* No more global register variables may be declared. */
910 no_global_reg_vars = 1;
913 /* Dump register costs. */
914 static void
915 dump_regclass (dump)
916 FILE *dump;
918 static const char *const reg_class_names[] = REG_CLASS_NAMES;
919 int i;
920 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
922 int /* enum reg_class */ class;
923 if (REG_N_REFS (i))
925 fprintf (dump, " Register %i costs:", i);
926 for (class = 0; class < (int) N_REG_CLASSES; class++)
927 if (contains_reg_of_mode [(enum reg_class) class][PSEUDO_REGNO_MODE (i)]
928 #ifdef FORBIDDEN_INC_DEC_CLASSES
929 && (!in_inc_dec[i]
930 || !forbidden_inc_dec_class[(enum reg_class) class])
931 #endif
932 #ifdef CANNOT_CHANGE_MODE_CLASS
933 && ! invalid_mode_change_p (i, (enum reg_class) class,
934 PSEUDO_REGNO_MODE (i))
935 #endif
937 fprintf (dump, " %s:%i", reg_class_names[class],
938 costs[i].cost[(enum reg_class) class]);
939 fprintf (dump, " MEM:%i\n", costs[i].mem_cost);
945 /* Calculate the costs of insn operands. */
947 static void
948 record_operand_costs (insn, op_costs, reg_pref)
949 rtx insn;
950 struct costs *op_costs;
951 struct reg_pref *reg_pref;
953 const char *constraints[MAX_RECOG_OPERANDS];
954 enum machine_mode modes[MAX_RECOG_OPERANDS];
955 int i;
957 for (i = 0; i < recog_data.n_operands; i++)
959 constraints[i] = recog_data.constraints[i];
960 modes[i] = recog_data.operand_mode[i];
963 /* If we get here, we are set up to record the costs of all the
964 operands for this insn. Start by initializing the costs.
965 Then handle any address registers. Finally record the desired
966 classes for any pseudos, doing it twice if some pair of
967 operands are commutative. */
969 for (i = 0; i < recog_data.n_operands; i++)
971 op_costs[i] = init_cost;
973 if (GET_CODE (recog_data.operand[i]) == SUBREG)
974 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
976 if (GET_CODE (recog_data.operand[i]) == MEM)
977 record_address_regs (XEXP (recog_data.operand[i], 0),
978 MODE_BASE_REG_CLASS (modes[i]), frequency * 2);
979 else if (constraints[i][0] == 'p'
980 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0]))
981 record_address_regs (recog_data.operand[i],
982 MODE_BASE_REG_CLASS (modes[i]), frequency * 2);
985 /* Check for commutative in a separate loop so everything will
986 have been initialized. We must do this even if one operand
987 is a constant--see addsi3 in m68k.md. */
989 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
990 if (constraints[i][0] == '%')
992 const char *xconstraints[MAX_RECOG_OPERANDS];
993 int j;
995 /* Handle commutative operands by swapping the constraints.
996 We assume the modes are the same. */
998 for (j = 0; j < recog_data.n_operands; j++)
999 xconstraints[j] = constraints[j];
1001 xconstraints[i] = constraints[i+1];
1002 xconstraints[i+1] = constraints[i];
1003 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1004 recog_data.operand, modes,
1005 xconstraints, insn, op_costs, reg_pref);
1008 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1009 recog_data.operand, modes,
1010 constraints, insn, op_costs, reg_pref);
1013 /* Subroutine of regclass, processes one insn INSN. Scan it and record each
1014 time it would save code to put a certain register in a certain class.
1015 PASS, when nonzero, inhibits some optimizations which need only be done
1016 once.
1017 Return the last insn processed, so that the scan can be continued from
1018 there. */
1020 static rtx
1021 scan_one_insn (insn, pass)
1022 rtx insn;
1023 int pass;
1025 enum rtx_code code = GET_CODE (insn);
1026 enum rtx_code pat_code;
1027 rtx set, note;
1028 int i, j;
1029 struct costs op_costs[MAX_RECOG_OPERANDS];
1031 if (GET_RTX_CLASS (code) != 'i')
1032 return insn;
1034 pat_code = GET_CODE (PATTERN (insn));
1035 if (pat_code == USE
1036 || pat_code == CLOBBER
1037 || pat_code == ASM_INPUT
1038 || pat_code == ADDR_VEC
1039 || pat_code == ADDR_DIFF_VEC)
1040 return insn;
1042 set = single_set (insn);
1043 extract_insn (insn);
1045 /* If this insn loads a parameter from its stack slot, then
1046 it represents a savings, rather than a cost, if the
1047 parameter is stored in memory. Record this fact. */
1049 if (set != 0 && GET_CODE (SET_DEST (set)) == REG
1050 && GET_CODE (SET_SRC (set)) == MEM
1051 && (note = find_reg_note (insn, REG_EQUIV,
1052 NULL_RTX)) != 0
1053 && GET_CODE (XEXP (note, 0)) == MEM)
1055 costs[REGNO (SET_DEST (set))].mem_cost
1056 -= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set)),
1057 GENERAL_REGS, 1)
1058 * frequency);
1059 record_address_regs (XEXP (SET_SRC (set), 0),
1060 MODE_BASE_REG_CLASS (VOIDmode), frequency * 2);
1061 return insn;
1064 /* Improve handling of two-address insns such as
1065 (set X (ashift CONST Y)) where CONST must be made to
1066 match X. Change it into two insns: (set X CONST)
1067 (set X (ashift X Y)). If we left this for reloading, it
1068 would probably get three insns because X and Y might go
1069 in the same place. This prevents X and Y from receiving
1070 the same hard reg.
1072 We can only do this if the modes of operands 0 and 1
1073 (which might not be the same) are tieable and we only need
1074 do this during our first pass. */
1076 if (pass == 0 && optimize
1077 && recog_data.n_operands >= 3
1078 && recog_data.constraints[1][0] == '0'
1079 && recog_data.constraints[1][1] == 0
1080 && CONSTANT_P (recog_data.operand[1])
1081 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[1])
1082 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[2])
1083 && GET_CODE (recog_data.operand[0]) == REG
1084 && MODES_TIEABLE_P (GET_MODE (recog_data.operand[0]),
1085 recog_data.operand_mode[1]))
1087 rtx previnsn = prev_real_insn (insn);
1088 rtx dest
1089 = gen_lowpart (recog_data.operand_mode[1],
1090 recog_data.operand[0]);
1091 rtx newinsn
1092 = emit_insn_before (gen_move_insn (dest, recog_data.operand[1]), insn);
1094 /* If this insn was the start of a basic block,
1095 include the new insn in that block.
1096 We need not check for code_label here;
1097 while a basic block can start with a code_label,
1098 INSN could not be at the beginning of that block. */
1099 if (previnsn == 0 || GET_CODE (previnsn) == JUMP_INSN)
1101 basic_block b;
1102 FOR_EACH_BB (b)
1103 if (insn == b->head)
1104 b->head = newinsn;
1107 /* This makes one more setting of new insns's dest. */
1108 REG_N_SETS (REGNO (recog_data.operand[0]))++;
1109 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1110 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1112 *recog_data.operand_loc[1] = recog_data.operand[0];
1113 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1114 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1115 for (i = recog_data.n_dups - 1; i >= 0; i--)
1116 if (recog_data.dup_num[i] == 1)
1118 *recog_data.dup_loc[i] = recog_data.operand[0];
1119 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1120 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1123 return PREV_INSN (newinsn);
1126 record_operand_costs (insn, op_costs, reg_pref);
1128 /* Now add the cost for each operand to the total costs for
1129 its register. */
1131 for (i = 0; i < recog_data.n_operands; i++)
1132 if (GET_CODE (recog_data.operand[i]) == REG
1133 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
1135 int regno = REGNO (recog_data.operand[i]);
1136 struct costs *p = &costs[regno], *q = &op_costs[i];
1138 p->mem_cost += q->mem_cost * frequency;
1139 for (j = 0; j < N_REG_CLASSES; j++)
1140 p->cost[j] += q->cost[j] * frequency;
1143 return insn;
1146 /* This is a pass of the compiler that scans all instructions
1147 and calculates the preferred class for each pseudo-register.
1148 This information can be accessed later by calling `reg_preferred_class'.
1149 This pass comes just before local register allocation. */
1151 void
1152 regclass (f, nregs, dump)
1153 rtx f;
1154 int nregs;
1155 FILE *dump;
1157 rtx insn;
1158 int i;
1159 int pass;
1161 init_recog ();
1163 costs = (struct costs *) xmalloc (nregs * sizeof (struct costs));
1165 #ifdef FORBIDDEN_INC_DEC_CLASSES
1167 in_inc_dec = (char *) xmalloc (nregs);
1169 /* Initialize information about which register classes can be used for
1170 pseudos that are auto-incremented or auto-decremented. It would
1171 seem better to put this in init_reg_sets, but we need to be able
1172 to allocate rtx, which we can't do that early. */
1174 for (i = 0; i < N_REG_CLASSES; i++)
1176 rtx r = gen_rtx_REG (VOIDmode, 0);
1177 enum machine_mode m;
1178 int j;
1180 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1181 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
1183 REGNO (r) = j;
1185 for (m = VOIDmode; (int) m < (int) MAX_MACHINE_MODE;
1186 m = (enum machine_mode) ((int) m + 1))
1187 if (HARD_REGNO_MODE_OK (j, m))
1189 PUT_MODE (r, m);
1191 /* If a register is not directly suitable for an
1192 auto-increment or decrement addressing mode and
1193 requires secondary reloads, disallow its class from
1194 being used in such addresses. */
1196 if ((0
1197 #ifdef SECONDARY_RELOAD_CLASS
1198 || (SECONDARY_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
1199 != NO_REGS)
1200 #else
1201 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1202 || (SECONDARY_INPUT_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
1203 != NO_REGS)
1204 #endif
1205 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1206 || (SECONDARY_OUTPUT_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
1207 != NO_REGS)
1208 #endif
1209 #endif
1211 && ! auto_inc_dec_reg_p (r, m))
1212 forbidden_inc_dec_class[i] = 1;
1216 #endif /* FORBIDDEN_INC_DEC_CLASSES */
1218 /* Normally we scan the insns once and determine the best class to use for
1219 each register. However, if -fexpensive_optimizations are on, we do so
1220 twice, the second time using the tentative best classes to guide the
1221 selection. */
1223 for (pass = 0; pass <= flag_expensive_optimizations; pass++)
1225 basic_block bb;
1227 if (dump)
1228 fprintf (dump, "\n\nPass %i\n\n",pass);
1229 /* Zero out our accumulation of the cost of each class for each reg. */
1231 memset ((char *) costs, 0, nregs * sizeof (struct costs));
1233 #ifdef FORBIDDEN_INC_DEC_CLASSES
1234 memset (in_inc_dec, 0, nregs);
1235 #endif
1237 /* Scan the instructions and record each time it would
1238 save code to put a certain register in a certain class. */
1240 if (!optimize)
1242 frequency = REG_FREQ_MAX;
1243 for (insn = f; insn; insn = NEXT_INSN (insn))
1244 insn = scan_one_insn (insn, pass);
1246 else
1247 FOR_EACH_BB (bb)
1249 /* Show that an insn inside a loop is likely to be executed three
1250 times more than insns outside a loop. This is much more
1251 aggressive than the assumptions made elsewhere and is being
1252 tried as an experiment. */
1253 frequency = REG_FREQ_FROM_BB (bb);
1254 for (insn = bb->head; ; insn = NEXT_INSN (insn))
1256 insn = scan_one_insn (insn, pass);
1257 if (insn == bb->end)
1258 break;
1262 /* Now for each register look at how desirable each class is
1263 and find which class is preferred. Store that in
1264 `prefclass'. Record in `altclass' the largest register
1265 class any of whose registers is better than memory. */
1267 if (pass == 0)
1268 reg_pref = reg_pref_buffer;
1270 if (dump)
1272 dump_regclass (dump);
1273 fprintf (dump,"\n");
1275 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
1277 int best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1278 enum reg_class best = ALL_REGS, alt = NO_REGS;
1279 /* This is an enum reg_class, but we call it an int
1280 to save lots of casts. */
1281 int class;
1282 struct costs *p = &costs[i];
1284 /* In non-optimizing compilation REG_N_REFS is not initialized
1285 yet. */
1286 if (optimize && !REG_N_REFS (i) && !REG_N_SETS (i))
1287 continue;
1289 for (class = (int) ALL_REGS - 1; class > 0; class--)
1291 /* Ignore classes that are too small for this operand or
1292 invalid for an operand that was auto-incremented. */
1293 if (!contains_reg_of_mode [class][PSEUDO_REGNO_MODE (i)]
1294 #ifdef FORBIDDEN_INC_DEC_CLASSES
1295 || (in_inc_dec[i] && forbidden_inc_dec_class[class])
1296 #endif
1297 #ifdef CANNOT_CHANGE_MODE_CLASS
1298 || invalid_mode_change_p (i, (enum reg_class) class,
1299 PSEUDO_REGNO_MODE (i))
1300 #endif
1303 else if (p->cost[class] < best_cost)
1305 best_cost = p->cost[class];
1306 best = (enum reg_class) class;
1308 else if (p->cost[class] == best_cost)
1309 best = reg_class_subunion[(int) best][class];
1312 /* Record the alternate register class; i.e., a class for which
1313 every register in it is better than using memory. If adding a
1314 class would make a smaller class (i.e., no union of just those
1315 classes exists), skip that class. The major unions of classes
1316 should be provided as a register class. Don't do this if we
1317 will be doing it again later. */
1319 if ((pass == 1 || dump) || ! flag_expensive_optimizations)
1320 for (class = 0; class < N_REG_CLASSES; class++)
1321 if (p->cost[class] < p->mem_cost
1322 && (reg_class_size[(int) reg_class_subunion[(int) alt][class]]
1323 > reg_class_size[(int) alt])
1324 #ifdef FORBIDDEN_INC_DEC_CLASSES
1325 && ! (in_inc_dec[i] && forbidden_inc_dec_class[class])
1326 #endif
1327 #ifdef CANNOT_CHANGE_MODE_CLASS
1328 && ! invalid_mode_change_p (i, (enum reg_class) class,
1329 PSEUDO_REGNO_MODE (i))
1330 #endif
1332 alt = reg_class_subunion[(int) alt][class];
1334 /* If we don't add any classes, nothing to try. */
1335 if (alt == best)
1336 alt = NO_REGS;
1338 if (dump
1339 && (reg_pref[i].prefclass != (int) best
1340 || reg_pref[i].altclass != (int) alt))
1342 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1343 fprintf (dump, " Register %i", i);
1344 if (alt == ALL_REGS || best == ALL_REGS)
1345 fprintf (dump, " pref %s\n", reg_class_names[(int) best]);
1346 else if (alt == NO_REGS)
1347 fprintf (dump, " pref %s or none\n", reg_class_names[(int) best]);
1348 else
1349 fprintf (dump, " pref %s, else %s\n",
1350 reg_class_names[(int) best],
1351 reg_class_names[(int) alt]);
1354 /* We cast to (int) because (char) hits bugs in some compilers. */
1355 reg_pref[i].prefclass = (int) best;
1356 reg_pref[i].altclass = (int) alt;
1360 #ifdef FORBIDDEN_INC_DEC_CLASSES
1361 free (in_inc_dec);
1362 #endif
1363 free (costs);
1366 /* Record the cost of using memory or registers of various classes for
1367 the operands in INSN.
1369 N_ALTS is the number of alternatives.
1371 N_OPS is the number of operands.
1373 OPS is an array of the operands.
1375 MODES are the modes of the operands, in case any are VOIDmode.
1377 CONSTRAINTS are the constraints to use for the operands. This array
1378 is modified by this procedure.
1380 This procedure works alternative by alternative. For each alternative
1381 we assume that we will be able to allocate all pseudos to their ideal
1382 register class and calculate the cost of using that alternative. Then
1383 we compute for each operand that is a pseudo-register, the cost of
1384 having the pseudo allocated to each register class and using it in that
1385 alternative. To this cost is added the cost of the alternative.
1387 The cost of each class for this insn is its lowest cost among all the
1388 alternatives. */
1390 static void
1391 record_reg_classes (n_alts, n_ops, ops, modes,
1392 constraints, insn, op_costs, reg_pref)
1393 int n_alts;
1394 int n_ops;
1395 rtx *ops;
1396 enum machine_mode *modes;
1397 const char **constraints;
1398 rtx insn;
1399 struct costs *op_costs;
1400 struct reg_pref *reg_pref;
1402 int alt;
1403 int i, j;
1404 rtx set;
1406 /* Process each alternative, each time minimizing an operand's cost with
1407 the cost for each operand in that alternative. */
1409 for (alt = 0; alt < n_alts; alt++)
1411 struct costs this_op_costs[MAX_RECOG_OPERANDS];
1412 int alt_fail = 0;
1413 int alt_cost = 0;
1414 enum reg_class classes[MAX_RECOG_OPERANDS];
1415 int allows_mem[MAX_RECOG_OPERANDS];
1416 int class;
1418 for (i = 0; i < n_ops; i++)
1420 const char *p = constraints[i];
1421 rtx op = ops[i];
1422 enum machine_mode mode = modes[i];
1423 int allows_addr = 0;
1424 int win = 0;
1425 unsigned char c;
1427 /* Initially show we know nothing about the register class. */
1428 classes[i] = NO_REGS;
1429 allows_mem[i] = 0;
1431 /* If this operand has no constraints at all, we can conclude
1432 nothing about it since anything is valid. */
1434 if (*p == 0)
1436 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1437 memset ((char *) &this_op_costs[i], 0, sizeof this_op_costs[i]);
1439 continue;
1442 /* If this alternative is only relevant when this operand
1443 matches a previous operand, we do different things depending
1444 on whether this operand is a pseudo-reg or not. We must process
1445 any modifiers for the operand before we can make this test. */
1447 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
1448 p++;
1450 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
1452 /* Copy class and whether memory is allowed from the matching
1453 alternative. Then perform any needed cost computations
1454 and/or adjustments. */
1455 j = p[0] - '0';
1456 classes[i] = classes[j];
1457 allows_mem[i] = allows_mem[j];
1459 if (GET_CODE (op) != REG || REGNO (op) < FIRST_PSEUDO_REGISTER)
1461 /* If this matches the other operand, we have no added
1462 cost and we win. */
1463 if (rtx_equal_p (ops[j], op))
1464 win = 1;
1466 /* If we can put the other operand into a register, add to
1467 the cost of this alternative the cost to copy this
1468 operand to the register used for the other operand. */
1470 else if (classes[j] != NO_REGS)
1471 alt_cost += copy_cost (op, mode, classes[j], 1), win = 1;
1473 else if (GET_CODE (ops[j]) != REG
1474 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
1476 /* This op is a pseudo but the one it matches is not. */
1478 /* If we can't put the other operand into a register, this
1479 alternative can't be used. */
1481 if (classes[j] == NO_REGS)
1482 alt_fail = 1;
1484 /* Otherwise, add to the cost of this alternative the cost
1485 to copy the other operand to the register used for this
1486 operand. */
1488 else
1489 alt_cost += copy_cost (ops[j], mode, classes[j], 1);
1491 else
1493 /* The costs of this operand are not the same as the other
1494 operand since move costs are not symmetric. Moreover,
1495 if we cannot tie them, this alternative needs to do a
1496 copy, which is one instruction. */
1498 struct costs *pp = &this_op_costs[i];
1500 for (class = 0; class < N_REG_CLASSES; class++)
1501 pp->cost[class]
1502 = ((recog_data.operand_type[i] != OP_OUT
1503 ? may_move_in_cost[mode][class][(int) classes[i]]
1504 : 0)
1505 + (recog_data.operand_type[i] != OP_IN
1506 ? may_move_out_cost[mode][(int) classes[i]][class]
1507 : 0));
1509 /* If the alternative actually allows memory, make things
1510 a bit cheaper since we won't need an extra insn to
1511 load it. */
1513 pp->mem_cost
1514 = ((recog_data.operand_type[i] != OP_IN
1515 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1516 : 0)
1517 + (recog_data.operand_type[i] != OP_OUT
1518 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1519 : 0) - allows_mem[i]);
1521 /* If we have assigned a class to this register in our
1522 first pass, add a cost to this alternative corresponding
1523 to what we would add if this register were not in the
1524 appropriate class. */
1526 if (reg_pref)
1527 alt_cost
1528 += (may_move_in_cost[mode]
1529 [(unsigned char) reg_pref[REGNO (op)].prefclass]
1530 [(int) classes[i]]);
1532 if (REGNO (ops[i]) != REGNO (ops[j])
1533 && ! find_reg_note (insn, REG_DEAD, op))
1534 alt_cost += 2;
1536 /* This is in place of ordinary cost computation
1537 for this operand, so skip to the end of the
1538 alternative (should be just one character). */
1539 while (*p && *p++ != ',')
1542 constraints[i] = p;
1543 continue;
1547 /* Scan all the constraint letters. See if the operand matches
1548 any of the constraints. Collect the valid register classes
1549 and see if this operand accepts memory. */
1551 while (*p && (c = *p++) != ',')
1552 switch (c)
1554 case '*':
1555 /* Ignore the next letter for this pass. */
1556 p++;
1557 break;
1559 case '?':
1560 alt_cost += 2;
1561 case '!': case '#': case '&':
1562 case '0': case '1': case '2': case '3': case '4':
1563 case '5': case '6': case '7': case '8': case '9':
1564 break;
1566 case 'p':
1567 allows_addr = 1;
1568 win = address_operand (op, GET_MODE (op));
1569 /* We know this operand is an address, so we want it to be
1570 allocated to a register that can be the base of an
1571 address, ie BASE_REG_CLASS. */
1572 classes[i]
1573 = reg_class_subunion[(int) classes[i]]
1574 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1575 break;
1577 case 'm': case 'o': case 'V':
1578 /* It doesn't seem worth distinguishing between offsettable
1579 and non-offsettable addresses here. */
1580 allows_mem[i] = 1;
1581 if (GET_CODE (op) == MEM)
1582 win = 1;
1583 break;
1585 case '<':
1586 if (GET_CODE (op) == MEM
1587 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1588 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1589 win = 1;
1590 break;
1592 case '>':
1593 if (GET_CODE (op) == MEM
1594 && (GET_CODE (XEXP (op, 0)) == PRE_INC
1595 || GET_CODE (XEXP (op, 0)) == POST_INC))
1596 win = 1;
1597 break;
1599 case 'E':
1600 case 'F':
1601 if (GET_CODE (op) == CONST_DOUBLE
1602 || (GET_CODE (op) == CONST_VECTOR
1603 && (GET_MODE_CLASS (GET_MODE (op))
1604 == MODE_VECTOR_FLOAT)))
1605 win = 1;
1606 break;
1608 case 'G':
1609 case 'H':
1610 if (GET_CODE (op) == CONST_DOUBLE
1611 && CONST_DOUBLE_OK_FOR_LETTER_P (op, c))
1612 win = 1;
1613 break;
1615 case 's':
1616 if (GET_CODE (op) == CONST_INT
1617 || (GET_CODE (op) == CONST_DOUBLE
1618 && GET_MODE (op) == VOIDmode))
1619 break;
1620 case 'i':
1621 if (CONSTANT_P (op)
1622 #ifdef LEGITIMATE_PIC_OPERAND_P
1623 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1624 #endif
1626 win = 1;
1627 break;
1629 case 'n':
1630 if (GET_CODE (op) == CONST_INT
1631 || (GET_CODE (op) == CONST_DOUBLE
1632 && GET_MODE (op) == VOIDmode))
1633 win = 1;
1634 break;
1636 case 'I':
1637 case 'J':
1638 case 'K':
1639 case 'L':
1640 case 'M':
1641 case 'N':
1642 case 'O':
1643 case 'P':
1644 if (GET_CODE (op) == CONST_INT
1645 && CONST_OK_FOR_LETTER_P (INTVAL (op), c))
1646 win = 1;
1647 break;
1649 case 'X':
1650 win = 1;
1651 break;
1653 case 'g':
1654 if (GET_CODE (op) == MEM
1655 || (CONSTANT_P (op)
1656 #ifdef LEGITIMATE_PIC_OPERAND_P
1657 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1658 #endif
1660 win = 1;
1661 allows_mem[i] = 1;
1662 case 'r':
1663 classes[i]
1664 = reg_class_subunion[(int) classes[i]][(int) GENERAL_REGS];
1665 break;
1667 default:
1668 if (REG_CLASS_FROM_LETTER (c) != NO_REGS)
1669 classes[i]
1670 = reg_class_subunion[(int) classes[i]]
1671 [(int) REG_CLASS_FROM_LETTER (c)];
1672 #ifdef EXTRA_CONSTRAINT
1673 else if (EXTRA_CONSTRAINT (op, c))
1674 win = 1;
1676 if (EXTRA_MEMORY_CONSTRAINT (c))
1678 /* Every MEM can be reloaded to fit. */
1679 allows_mem[i] = 1;
1680 if (GET_CODE (op) == MEM)
1681 win = 1;
1683 if (EXTRA_ADDRESS_CONSTRAINT (op))
1685 /* Every address can be reloaded to fit. */
1686 allows_addr = 1;
1687 if (address_operand (op, GET_MODE (op)))
1688 win = 1;
1689 /* We know this operand is an address, so we want it to be
1690 allocated to a register that can be the base of an
1691 address, ie BASE_REG_CLASS. */
1692 classes[i]
1693 = reg_class_subunion[(int) classes[i]]
1694 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1696 #endif
1697 break;
1700 constraints[i] = p;
1702 /* How we account for this operand now depends on whether it is a
1703 pseudo register or not. If it is, we first check if any
1704 register classes are valid. If not, we ignore this alternative,
1705 since we want to assume that all pseudos get allocated for
1706 register preferencing. If some register class is valid, compute
1707 the costs of moving the pseudo into that class. */
1709 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1711 if (classes[i] == NO_REGS)
1713 /* We must always fail if the operand is a REG, but
1714 we did not find a suitable class.
1716 Otherwise we may perform an uninitialized read
1717 from this_op_costs after the `continue' statement
1718 below. */
1719 alt_fail = 1;
1721 else
1723 struct costs *pp = &this_op_costs[i];
1725 for (class = 0; class < N_REG_CLASSES; class++)
1726 pp->cost[class]
1727 = ((recog_data.operand_type[i] != OP_OUT
1728 ? may_move_in_cost[mode][class][(int) classes[i]]
1729 : 0)
1730 + (recog_data.operand_type[i] != OP_IN
1731 ? may_move_out_cost[mode][(int) classes[i]][class]
1732 : 0));
1734 /* If the alternative actually allows memory, make things
1735 a bit cheaper since we won't need an extra insn to
1736 load it. */
1738 pp->mem_cost
1739 = ((recog_data.operand_type[i] != OP_IN
1740 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1741 : 0)
1742 + (recog_data.operand_type[i] != OP_OUT
1743 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1744 : 0) - allows_mem[i]);
1746 /* If we have assigned a class to this register in our
1747 first pass, add a cost to this alternative corresponding
1748 to what we would add if this register were not in the
1749 appropriate class. */
1751 if (reg_pref)
1752 alt_cost
1753 += (may_move_in_cost[mode]
1754 [(unsigned char) reg_pref[REGNO (op)].prefclass]
1755 [(int) classes[i]]);
1759 /* Otherwise, if this alternative wins, either because we
1760 have already determined that or if we have a hard register of
1761 the proper class, there is no cost for this alternative. */
1763 else if (win
1764 || (GET_CODE (op) == REG
1765 && reg_fits_class_p (op, classes[i], 0, GET_MODE (op))))
1768 /* If registers are valid, the cost of this alternative includes
1769 copying the object to and/or from a register. */
1771 else if (classes[i] != NO_REGS)
1773 if (recog_data.operand_type[i] != OP_OUT)
1774 alt_cost += copy_cost (op, mode, classes[i], 1);
1776 if (recog_data.operand_type[i] != OP_IN)
1777 alt_cost += copy_cost (op, mode, classes[i], 0);
1780 /* The only other way this alternative can be used is if this is a
1781 constant that could be placed into memory. */
1783 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
1784 alt_cost += MEMORY_MOVE_COST (mode, classes[i], 1);
1785 else
1786 alt_fail = 1;
1789 if (alt_fail)
1790 continue;
1792 /* Finally, update the costs with the information we've calculated
1793 about this alternative. */
1795 for (i = 0; i < n_ops; i++)
1796 if (GET_CODE (ops[i]) == REG
1797 && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1799 struct costs *pp = &op_costs[i], *qq = &this_op_costs[i];
1800 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
1802 pp->mem_cost = MIN (pp->mem_cost,
1803 (qq->mem_cost + alt_cost) * scale);
1805 for (class = 0; class < N_REG_CLASSES; class++)
1806 pp->cost[class] = MIN (pp->cost[class],
1807 (qq->cost[class] + alt_cost) * scale);
1811 /* If this insn is a single set copying operand 1 to operand 0
1812 and one operand is a pseudo with the other a hard reg or a pseudo
1813 that prefers a register that is in its own register class then
1814 we may want to adjust the cost of that register class to -1.
1816 Avoid the adjustment if the source does not die to avoid stressing of
1817 register allocator by preferrencing two coliding registers into single
1818 class.
1820 Also avoid the adjustment if a copy between registers of the class
1821 is expensive (ten times the cost of a default copy is considered
1822 arbitrarily expensive). This avoids losing when the preferred class
1823 is very expensive as the source of a copy instruction. */
1825 if ((set = single_set (insn)) != 0
1826 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
1827 && GET_CODE (ops[0]) == REG && GET_CODE (ops[1]) == REG
1828 && find_regno_note (insn, REG_DEAD, REGNO (ops[1])))
1829 for (i = 0; i <= 1; i++)
1830 if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1832 unsigned int regno = REGNO (ops[!i]);
1833 enum machine_mode mode = GET_MODE (ops[!i]);
1834 int class;
1835 unsigned int nr;
1837 if (regno >= FIRST_PSEUDO_REGISTER && reg_pref != 0)
1839 enum reg_class pref = reg_pref[regno].prefclass;
1841 if ((reg_class_size[(unsigned char) pref]
1842 == (unsigned) CLASS_MAX_NREGS (pref, mode))
1843 && REGISTER_MOVE_COST (mode, pref, pref) < 10 * 2)
1844 op_costs[i].cost[(unsigned char) pref] = -1;
1846 else if (regno < FIRST_PSEUDO_REGISTER)
1847 for (class = 0; class < N_REG_CLASSES; class++)
1848 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
1849 && reg_class_size[class] == (unsigned) CLASS_MAX_NREGS (class, mode))
1851 if (reg_class_size[class] == 1)
1852 op_costs[i].cost[class] = -1;
1853 else
1855 for (nr = 0; nr < (unsigned) HARD_REGNO_NREGS (regno, mode); nr++)
1857 if (! TEST_HARD_REG_BIT (reg_class_contents[class],
1858 regno + nr))
1859 break;
1862 if (nr == (unsigned) HARD_REGNO_NREGS (regno,mode))
1863 op_costs[i].cost[class] = -1;
1869 /* Compute the cost of loading X into (if TO_P is nonzero) or from (if
1870 TO_P is zero) a register of class CLASS in mode MODE.
1872 X must not be a pseudo. */
1874 static int
1875 copy_cost (x, mode, class, to_p)
1876 rtx x;
1877 enum machine_mode mode ATTRIBUTE_UNUSED;
1878 enum reg_class class;
1879 int to_p ATTRIBUTE_UNUSED;
1881 #ifdef HAVE_SECONDARY_RELOADS
1882 enum reg_class secondary_class = NO_REGS;
1883 #endif
1885 /* If X is a SCRATCH, there is actually nothing to move since we are
1886 assuming optimal allocation. */
1888 if (GET_CODE (x) == SCRATCH)
1889 return 0;
1891 /* Get the class we will actually use for a reload. */
1892 class = PREFERRED_RELOAD_CLASS (x, class);
1894 #ifdef HAVE_SECONDARY_RELOADS
1895 /* If we need a secondary reload (we assume here that we are using
1896 the secondary reload as an intermediate, not a scratch register), the
1897 cost is that to load the input into the intermediate register, then
1898 to copy them. We use a special value of TO_P to avoid recursion. */
1900 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1901 if (to_p == 1)
1902 secondary_class = SECONDARY_INPUT_RELOAD_CLASS (class, mode, x);
1903 #endif
1905 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1906 if (! to_p)
1907 secondary_class = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, x);
1908 #endif
1910 if (secondary_class != NO_REGS)
1911 return (move_cost[mode][(int) secondary_class][(int) class]
1912 + copy_cost (x, mode, secondary_class, 2));
1913 #endif /* HAVE_SECONDARY_RELOADS */
1915 /* For memory, use the memory move cost, for (hard) registers, use the
1916 cost to move between the register classes, and use 2 for everything
1917 else (constants). */
1919 if (GET_CODE (x) == MEM || class == NO_REGS)
1920 return MEMORY_MOVE_COST (mode, class, to_p);
1922 else if (GET_CODE (x) == REG)
1923 return move_cost[mode][(int) REGNO_REG_CLASS (REGNO (x))][(int) class];
1925 else
1926 /* If this is a constant, we may eventually want to call rtx_cost here. */
1927 return COSTS_N_INSNS (1);
1930 /* Record the pseudo registers we must reload into hard registers
1931 in a subexpression of a memory address, X.
1933 CLASS is the class that the register needs to be in and is either
1934 BASE_REG_CLASS or INDEX_REG_CLASS.
1936 SCALE is twice the amount to multiply the cost by (it is twice so we
1937 can represent half-cost adjustments). */
1939 static void
1940 record_address_regs (x, class, scale)
1941 rtx x;
1942 enum reg_class class;
1943 int scale;
1945 enum rtx_code code = GET_CODE (x);
1947 switch (code)
1949 case CONST_INT:
1950 case CONST:
1951 case CC0:
1952 case PC:
1953 case SYMBOL_REF:
1954 case LABEL_REF:
1955 return;
1957 case PLUS:
1958 /* When we have an address that is a sum,
1959 we must determine whether registers are "base" or "index" regs.
1960 If there is a sum of two registers, we must choose one to be
1961 the "base". Luckily, we can use the REG_POINTER to make a good
1962 choice most of the time. We only need to do this on machines
1963 that can have two registers in an address and where the base
1964 and index register classes are different.
1966 ??? This code used to set REGNO_POINTER_FLAG in some cases, but
1967 that seems bogus since it should only be set when we are sure
1968 the register is being used as a pointer. */
1971 rtx arg0 = XEXP (x, 0);
1972 rtx arg1 = XEXP (x, 1);
1973 enum rtx_code code0 = GET_CODE (arg0);
1974 enum rtx_code code1 = GET_CODE (arg1);
1976 /* Look inside subregs. */
1977 if (code0 == SUBREG)
1978 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1979 if (code1 == SUBREG)
1980 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1982 /* If this machine only allows one register per address, it must
1983 be in the first operand. */
1985 if (MAX_REGS_PER_ADDRESS == 1)
1986 record_address_regs (arg0, class, scale);
1988 /* If index and base registers are the same on this machine, just
1989 record registers in any non-constant operands. We assume here,
1990 as well as in the tests below, that all addresses are in
1991 canonical form. */
1993 else if (INDEX_REG_CLASS == MODE_BASE_REG_CLASS (VOIDmode))
1995 record_address_regs (arg0, class, scale);
1996 if (! CONSTANT_P (arg1))
1997 record_address_regs (arg1, class, scale);
2000 /* If the second operand is a constant integer, it doesn't change
2001 what class the first operand must be. */
2003 else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
2004 record_address_regs (arg0, class, scale);
2006 /* If the second operand is a symbolic constant, the first operand
2007 must be an index register. */
2009 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
2010 record_address_regs (arg0, INDEX_REG_CLASS, scale);
2012 /* If both operands are registers but one is already a hard register
2013 of index or base class, give the other the class that the hard
2014 register is not. */
2016 #ifdef REG_OK_FOR_BASE_P
2017 else if (code0 == REG && code1 == REG
2018 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
2019 && (REG_OK_FOR_BASE_P (arg0) || REG_OK_FOR_INDEX_P (arg0)))
2020 record_address_regs (arg1,
2021 REG_OK_FOR_BASE_P (arg0)
2022 ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (VOIDmode),
2023 scale);
2024 else if (code0 == REG && code1 == REG
2025 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
2026 && (REG_OK_FOR_BASE_P (arg1) || REG_OK_FOR_INDEX_P (arg1)))
2027 record_address_regs (arg0,
2028 REG_OK_FOR_BASE_P (arg1)
2029 ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (VOIDmode),
2030 scale);
2031 #endif
2033 /* If one operand is known to be a pointer, it must be the base
2034 with the other operand the index. Likewise if the other operand
2035 is a MULT. */
2037 else if ((code0 == REG && REG_POINTER (arg0))
2038 || code1 == MULT)
2040 record_address_regs (arg0, MODE_BASE_REG_CLASS (VOIDmode), scale);
2041 record_address_regs (arg1, INDEX_REG_CLASS, scale);
2043 else if ((code1 == REG && REG_POINTER (arg1))
2044 || code0 == MULT)
2046 record_address_regs (arg0, INDEX_REG_CLASS, scale);
2047 record_address_regs (arg1, MODE_BASE_REG_CLASS (VOIDmode), scale);
2050 /* Otherwise, count equal chances that each might be a base
2051 or index register. This case should be rare. */
2053 else
2055 record_address_regs (arg0, MODE_BASE_REG_CLASS (VOIDmode),
2056 scale / 2);
2057 record_address_regs (arg0, INDEX_REG_CLASS, scale / 2);
2058 record_address_regs (arg1, MODE_BASE_REG_CLASS (VOIDmode),
2059 scale / 2);
2060 record_address_regs (arg1, INDEX_REG_CLASS, scale / 2);
2063 break;
2065 /* Double the importance of a pseudo register that is incremented
2066 or decremented, since it would take two extra insns
2067 if it ends up in the wrong place. */
2068 case POST_MODIFY:
2069 case PRE_MODIFY:
2070 record_address_regs (XEXP (x, 0), MODE_BASE_REG_CLASS (VOIDmode),
2071 2 * scale);
2072 if (REG_P (XEXP (XEXP (x, 1), 1)))
2073 record_address_regs (XEXP (XEXP (x, 1), 1),
2074 INDEX_REG_CLASS, 2 * scale);
2075 break;
2077 case POST_INC:
2078 case PRE_INC:
2079 case POST_DEC:
2080 case PRE_DEC:
2081 /* Double the importance of a pseudo register that is incremented
2082 or decremented, since it would take two extra insns
2083 if it ends up in the wrong place. If the operand is a pseudo,
2084 show it is being used in an INC_DEC context. */
2086 #ifdef FORBIDDEN_INC_DEC_CLASSES
2087 if (GET_CODE (XEXP (x, 0)) == REG
2088 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
2089 in_inc_dec[REGNO (XEXP (x, 0))] = 1;
2090 #endif
2092 record_address_regs (XEXP (x, 0), class, 2 * scale);
2093 break;
2095 case REG:
2097 struct costs *pp = &costs[REGNO (x)];
2098 int i;
2100 pp->mem_cost += (MEMORY_MOVE_COST (Pmode, class, 1) * scale) / 2;
2102 for (i = 0; i < N_REG_CLASSES; i++)
2103 pp->cost[i] += (may_move_in_cost[Pmode][i][(int) class] * scale) / 2;
2105 break;
2107 default:
2109 const char *fmt = GET_RTX_FORMAT (code);
2110 int i;
2111 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2112 if (fmt[i] == 'e')
2113 record_address_regs (XEXP (x, i), class, scale);
2118 #ifdef FORBIDDEN_INC_DEC_CLASSES
2120 /* Return 1 if REG is valid as an auto-increment memory reference
2121 to an object of MODE. */
2123 static int
2124 auto_inc_dec_reg_p (reg, mode)
2125 rtx reg;
2126 enum machine_mode mode;
2128 if (HAVE_POST_INCREMENT
2129 && memory_address_p (mode, gen_rtx_POST_INC (Pmode, reg)))
2130 return 1;
2132 if (HAVE_POST_DECREMENT
2133 && memory_address_p (mode, gen_rtx_POST_DEC (Pmode, reg)))
2134 return 1;
2136 if (HAVE_PRE_INCREMENT
2137 && memory_address_p (mode, gen_rtx_PRE_INC (Pmode, reg)))
2138 return 1;
2140 if (HAVE_PRE_DECREMENT
2141 && memory_address_p (mode, gen_rtx_PRE_DEC (Pmode, reg)))
2142 return 1;
2144 return 0;
2146 #endif
2148 static short *renumber;
2149 static size_t regno_allocated;
2150 static unsigned int reg_n_max;
2152 /* Allocate enough space to hold NUM_REGS registers for the tables used for
2153 reg_scan and flow_analysis that are indexed by the register number. If
2154 NEW_P is nonzero, initialize all of the registers, otherwise only
2155 initialize the new registers allocated. The same table is kept from
2156 function to function, only reallocating it when we need more room. If
2157 RENUMBER_P is nonzero, allocate the reg_renumber array also. */
2159 void
2160 allocate_reg_info (num_regs, new_p, renumber_p)
2161 size_t num_regs;
2162 int new_p;
2163 int renumber_p;
2165 size_t size_info;
2166 size_t size_renumber;
2167 size_t min = (new_p) ? 0 : reg_n_max;
2168 struct reg_info_data *reg_data;
2170 if (num_regs > regno_allocated)
2172 size_t old_allocated = regno_allocated;
2174 regno_allocated = num_regs + (num_regs / 20); /* add some slop space */
2175 size_renumber = regno_allocated * sizeof (short);
2177 if (!reg_n_info)
2179 VARRAY_REG_INIT (reg_n_info, regno_allocated, "reg_n_info");
2180 renumber = (short *) xmalloc (size_renumber);
2181 reg_pref_buffer = (struct reg_pref *) xmalloc (regno_allocated
2182 * sizeof (struct reg_pref));
2185 else
2187 VARRAY_GROW (reg_n_info, regno_allocated);
2189 if (new_p) /* if we're zapping everything, no need to realloc */
2191 free ((char *) renumber);
2192 free ((char *) reg_pref);
2193 renumber = (short *) xmalloc (size_renumber);
2194 reg_pref_buffer = (struct reg_pref *) xmalloc (regno_allocated
2195 * sizeof (struct reg_pref));
2198 else
2200 renumber = (short *) xrealloc ((char *) renumber, size_renumber);
2201 reg_pref_buffer = (struct reg_pref *) xrealloc ((char *) reg_pref_buffer,
2202 regno_allocated
2203 * sizeof (struct reg_pref));
2207 size_info = (regno_allocated - old_allocated) * sizeof (reg_info)
2208 + sizeof (struct reg_info_data) - sizeof (reg_info);
2209 reg_data = (struct reg_info_data *) xcalloc (size_info, 1);
2210 reg_data->min_index = old_allocated;
2211 reg_data->max_index = regno_allocated - 1;
2212 reg_data->next = reg_info_head;
2213 reg_info_head = reg_data;
2216 reg_n_max = num_regs;
2217 if (min < num_regs)
2219 /* Loop through each of the segments allocated for the actual
2220 reg_info pages, and set up the pointers, zero the pages, etc. */
2221 for (reg_data = reg_info_head;
2222 reg_data && reg_data->max_index >= min;
2223 reg_data = reg_data->next)
2225 size_t min_index = reg_data->min_index;
2226 size_t max_index = reg_data->max_index;
2227 size_t max = MIN (max_index, num_regs);
2228 size_t local_min = min - min_index;
2229 size_t i;
2231 if (reg_data->min_index > num_regs)
2232 continue;
2234 if (min < min_index)
2235 local_min = 0;
2236 if (!reg_data->used_p) /* page just allocated with calloc */
2237 reg_data->used_p = 1; /* no need to zero */
2238 else
2239 memset ((char *) &reg_data->data[local_min], 0,
2240 sizeof (reg_info) * (max - min_index - local_min + 1));
2242 for (i = min_index+local_min; i <= max; i++)
2244 VARRAY_REG (reg_n_info, i) = &reg_data->data[i-min_index];
2245 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
2246 renumber[i] = -1;
2247 reg_pref_buffer[i].prefclass = (char) NO_REGS;
2248 reg_pref_buffer[i].altclass = (char) NO_REGS;
2253 /* If {pref,alt}class have already been allocated, update the pointers to
2254 the newly realloced ones. */
2255 if (reg_pref)
2256 reg_pref = reg_pref_buffer;
2258 if (renumber_p)
2259 reg_renumber = renumber;
2261 /* Tell the regset code about the new number of registers. */
2262 MAX_REGNO_REG_SET (num_regs, new_p, renumber_p);
2265 /* Free up the space allocated by allocate_reg_info. */
2266 void
2267 free_reg_info ()
2269 if (reg_n_info)
2271 struct reg_info_data *reg_data;
2272 struct reg_info_data *reg_next;
2274 VARRAY_FREE (reg_n_info);
2275 for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
2277 reg_next = reg_data->next;
2278 free ((char *) reg_data);
2281 free (reg_pref_buffer);
2282 reg_pref_buffer = (struct reg_pref *) 0;
2283 reg_info_head = (struct reg_info_data *) 0;
2284 renumber = (short *) 0;
2286 regno_allocated = 0;
2287 reg_n_max = 0;
2290 /* This is the `regscan' pass of the compiler, run just before cse
2291 and again just before loop.
2293 It finds the first and last use of each pseudo-register
2294 and records them in the vectors regno_first_uid, regno_last_uid
2295 and counts the number of sets in the vector reg_n_sets.
2297 REPEAT is nonzero the second time this is called. */
2299 /* Maximum number of parallel sets and clobbers in any insn in this fn.
2300 Always at least 3, since the combiner could put that many together
2301 and we want this to remain correct for all the remaining passes.
2302 This corresponds to the maximum number of times note_stores will call
2303 a function for any insn. */
2305 int max_parallel;
2307 /* Used as a temporary to record the largest number of registers in
2308 PARALLEL in a SET_DEST. This is added to max_parallel. */
2310 static int max_set_parallel;
2312 void
2313 reg_scan (f, nregs, repeat)
2314 rtx f;
2315 unsigned int nregs;
2316 int repeat ATTRIBUTE_UNUSED;
2318 rtx insn;
2320 allocate_reg_info (nregs, TRUE, FALSE);
2321 max_parallel = 3;
2322 max_set_parallel = 0;
2324 for (insn = f; insn; insn = NEXT_INSN (insn))
2325 if (GET_CODE (insn) == INSN
2326 || GET_CODE (insn) == CALL_INSN
2327 || GET_CODE (insn) == JUMP_INSN)
2329 if (GET_CODE (PATTERN (insn)) == PARALLEL
2330 && XVECLEN (PATTERN (insn), 0) > max_parallel)
2331 max_parallel = XVECLEN (PATTERN (insn), 0);
2332 reg_scan_mark_refs (PATTERN (insn), insn, 0, 0);
2334 if (REG_NOTES (insn))
2335 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, 0);
2338 max_parallel += max_set_parallel;
2341 /* Update 'regscan' information by looking at the insns
2342 from FIRST to LAST. Some new REGs have been created,
2343 and any REG with number greater than OLD_MAX_REGNO is
2344 such a REG. We only update information for those. */
2346 void
2347 reg_scan_update (first, last, old_max_regno)
2348 rtx first;
2349 rtx last;
2350 unsigned int old_max_regno;
2352 rtx insn;
2354 allocate_reg_info (max_reg_num (), FALSE, FALSE);
2356 for (insn = first; insn != last; insn = NEXT_INSN (insn))
2357 if (GET_CODE (insn) == INSN
2358 || GET_CODE (insn) == CALL_INSN
2359 || GET_CODE (insn) == JUMP_INSN)
2361 if (GET_CODE (PATTERN (insn)) == PARALLEL
2362 && XVECLEN (PATTERN (insn), 0) > max_parallel)
2363 max_parallel = XVECLEN (PATTERN (insn), 0);
2364 reg_scan_mark_refs (PATTERN (insn), insn, 0, old_max_regno);
2366 if (REG_NOTES (insn))
2367 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, old_max_regno);
2371 /* X is the expression to scan. INSN is the insn it appears in.
2372 NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
2373 We should only record information for REGs with numbers
2374 greater than or equal to MIN_REGNO. */
2376 static void
2377 reg_scan_mark_refs (x, insn, note_flag, min_regno)
2378 rtx x;
2379 rtx insn;
2380 int note_flag;
2381 unsigned int min_regno;
2383 enum rtx_code code;
2384 rtx dest;
2385 rtx note;
2387 if (!x)
2388 return;
2389 code = GET_CODE (x);
2390 switch (code)
2392 case CONST:
2393 case CONST_INT:
2394 case CONST_DOUBLE:
2395 case CONST_VECTOR:
2396 case CC0:
2397 case PC:
2398 case SYMBOL_REF:
2399 case LABEL_REF:
2400 case ADDR_VEC:
2401 case ADDR_DIFF_VEC:
2402 return;
2404 case REG:
2406 unsigned int regno = REGNO (x);
2408 if (regno >= min_regno)
2410 REGNO_LAST_NOTE_UID (regno) = INSN_UID (insn);
2411 if (!note_flag)
2412 REGNO_LAST_UID (regno) = INSN_UID (insn);
2413 if (REGNO_FIRST_UID (regno) == 0)
2414 REGNO_FIRST_UID (regno) = INSN_UID (insn);
2415 /* If we are called by reg_scan_update() (indicated by min_regno
2416 being set), we also need to update the reference count. */
2417 if (min_regno)
2418 REG_N_REFS (regno)++;
2421 break;
2423 case EXPR_LIST:
2424 if (XEXP (x, 0))
2425 reg_scan_mark_refs (XEXP (x, 0), insn, note_flag, min_regno);
2426 if (XEXP (x, 1))
2427 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2428 break;
2430 case INSN_LIST:
2431 if (XEXP (x, 1))
2432 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2433 break;
2435 case CLOBBER:
2437 rtx reg = XEXP (x, 0);
2438 if (REG_P (reg)
2439 && REGNO (reg) >= min_regno)
2441 REG_N_SETS (REGNO (reg))++;
2442 REG_N_REFS (REGNO (reg))++;
2445 break;
2447 case SET:
2448 /* Count a set of the destination if it is a register. */
2449 for (dest = SET_DEST (x);
2450 GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2451 || GET_CODE (dest) == ZERO_EXTEND;
2452 dest = XEXP (dest, 0))
2455 /* For a PARALLEL, record the number of things (less the usual one for a
2456 SET) that are set. */
2457 if (GET_CODE (dest) == PARALLEL)
2458 max_set_parallel = MAX (max_set_parallel, XVECLEN (dest, 0) - 1);
2460 if (GET_CODE (dest) == REG
2461 && REGNO (dest) >= min_regno)
2463 REG_N_SETS (REGNO (dest))++;
2464 REG_N_REFS (REGNO (dest))++;
2467 /* If this is setting a pseudo from another pseudo or the sum of a
2468 pseudo and a constant integer and the other pseudo is known to be
2469 a pointer, set the destination to be a pointer as well.
2471 Likewise if it is setting the destination from an address or from a
2472 value equivalent to an address or to the sum of an address and
2473 something else.
2475 But don't do any of this if the pseudo corresponds to a user
2476 variable since it should have already been set as a pointer based
2477 on the type. */
2479 if (GET_CODE (SET_DEST (x)) == REG
2480 && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
2481 && REGNO (SET_DEST (x)) >= min_regno
2482 /* If the destination pseudo is set more than once, then other
2483 sets might not be to a pointer value (consider access to a
2484 union in two threads of control in the presence of global
2485 optimizations). So only set REG_POINTER on the destination
2486 pseudo if this is the only set of that pseudo. */
2487 && REG_N_SETS (REGNO (SET_DEST (x))) == 1
2488 && ! REG_USERVAR_P (SET_DEST (x))
2489 && ! REG_POINTER (SET_DEST (x))
2490 && ((GET_CODE (SET_SRC (x)) == REG
2491 && REG_POINTER (SET_SRC (x)))
2492 || ((GET_CODE (SET_SRC (x)) == PLUS
2493 || GET_CODE (SET_SRC (x)) == LO_SUM)
2494 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2495 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
2496 && REG_POINTER (XEXP (SET_SRC (x), 0)))
2497 || GET_CODE (SET_SRC (x)) == CONST
2498 || GET_CODE (SET_SRC (x)) == SYMBOL_REF
2499 || GET_CODE (SET_SRC (x)) == LABEL_REF
2500 || (GET_CODE (SET_SRC (x)) == HIGH
2501 && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
2502 || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
2503 || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
2504 || ((GET_CODE (SET_SRC (x)) == PLUS
2505 || GET_CODE (SET_SRC (x)) == LO_SUM)
2506 && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
2507 || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
2508 || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
2509 || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2510 && (GET_CODE (XEXP (note, 0)) == CONST
2511 || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
2512 || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
2513 REG_POINTER (SET_DEST (x)) = 1;
2515 /* If this is setting a register from a register or from a simple
2516 conversion of a register, propagate REG_DECL. */
2517 if (GET_CODE (dest) == REG)
2519 rtx src = SET_SRC (x);
2521 while (GET_CODE (src) == SIGN_EXTEND
2522 || GET_CODE (src) == ZERO_EXTEND
2523 || GET_CODE (src) == TRUNCATE
2524 || (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)))
2525 src = XEXP (src, 0);
2527 if (GET_CODE (src) == REG && REGNO_DECL (REGNO (src)) == 0)
2528 REGNO_DECL (REGNO (src)) = REGNO_DECL (REGNO (dest));
2529 else if (GET_CODE (src) == REG && REGNO_DECL (REGNO (dest)) == 0)
2530 REGNO_DECL (REGNO (dest)) = REGNO_DECL (REGNO (src));
2533 /* ... fall through ... */
2535 default:
2537 const char *fmt = GET_RTX_FORMAT (code);
2538 int i;
2539 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2541 if (fmt[i] == 'e')
2542 reg_scan_mark_refs (XEXP (x, i), insn, note_flag, min_regno);
2543 else if (fmt[i] == 'E' && XVEC (x, i) != 0)
2545 int j;
2546 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2547 reg_scan_mark_refs (XVECEXP (x, i, j), insn, note_flag, min_regno);
2554 /* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
2555 is also in C2. */
2558 reg_class_subset_p (c1, c2)
2559 enum reg_class c1;
2560 enum reg_class c2;
2562 if (c1 == c2) return 1;
2564 if (c2 == ALL_REGS)
2565 win:
2566 return 1;
2567 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) c1],
2568 reg_class_contents[(int) c2],
2569 win);
2570 return 0;
2573 /* Return nonzero if there is a register that is in both C1 and C2. */
2576 reg_classes_intersect_p (c1, c2)
2577 enum reg_class c1;
2578 enum reg_class c2;
2580 #ifdef HARD_REG_SET
2581 register
2582 #endif
2583 HARD_REG_SET c;
2585 if (c1 == c2) return 1;
2587 if (c1 == ALL_REGS || c2 == ALL_REGS)
2588 return 1;
2590 COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
2591 AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
2593 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[(int) NO_REGS], lose);
2594 return 1;
2596 lose:
2597 return 0;
2600 /* Release any memory allocated by register sets. */
2602 void
2603 regset_release_memory ()
2605 bitmap_release_memory ();
2608 #ifdef CANNOT_CHANGE_MODE_CLASS
2609 /* Set bits in *USED which correspond to registers which can't change
2610 their mode from FROM to any mode in which REGNO was encountered. */
2612 void
2613 cannot_change_mode_set_regs (used, from, regno)
2614 HARD_REG_SET *used;
2615 enum machine_mode from;
2616 unsigned int regno;
2618 enum machine_mode to;
2619 enum reg_class class;
2621 for (to = VOIDmode; to < MAX_MACHINE_MODE; ++to)
2622 if (REGNO_REG_SET_P (&subregs_of_mode[to], regno))
2624 class = CANNOT_CHANGE_MODE_CLASS (from, to);
2625 if (class != NO_REGS)
2626 IOR_HARD_REG_SET (*used, reg_class_contents [(int) class]);
2630 /* Return 1 if REGNO has had an invalid mode change in CLASS from FROM
2631 mode. */
2633 bool
2634 invalid_mode_change_p (regno, class, from_mode)
2635 unsigned int regno;
2636 enum reg_class class;
2637 enum machine_mode from_mode;
2639 enum machine_mode to_mode;
2641 for (to_mode = 0; to_mode < NUM_MACHINE_MODES; ++to_mode)
2642 if (REGNO_REG_SET_P (&subregs_of_mode[(int) to_mode], regno)
2643 && reg_classes_intersect_p
2644 (class, CANNOT_CHANGE_MODE_CLASS (from_mode, to_mode)))
2645 return 1;
2646 return 0;
2648 #endif /* CANNOT_CHANGE_MODE_CLASS */
2650 #include "gt-regclass.h"