1 /* Allocate registers within a basic block, for GNU compiler.
2 Copyright (C) 1987, 1988, 1991, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 /* Allocation of hard register numbers to pseudo registers is done in
23 two passes. In this pass we consider only regs that are born and
24 die once within one basic block. We do this one basic block at a
25 time. Then the next pass allocates the registers that remain.
26 Two passes are used because this pass uses methods that work only
27 on linear code, but that do a better job than the general methods
28 used in global_alloc, and more quickly too.
30 The assignments made are recorded in the vector reg_renumber
31 whose space is allocated here. The rtl code itself is not altered.
33 We assign each instruction in the basic block a number
34 which is its order from the beginning of the block.
35 Then we can represent the lifetime of a pseudo register with
36 a pair of numbers, and check for conflicts easily.
37 We can record the availability of hard registers with a
38 HARD_REG_SET for each instruction. The HARD_REG_SET
39 contains 0 or 1 for each hard reg.
41 To avoid register shuffling, we tie registers together when one
42 dies by being copied into another, or dies in an instruction that
43 does arithmetic to produce another. The tied registers are
44 allocated as one. Registers with different reg class preferences
45 can never be tied unless the class preferred by one is a subclass
46 of the one preferred by the other.
48 Tying is represented with "quantity numbers".
49 A non-tied register is given a new quantity number.
50 Tied registers have the same quantity number.
52 We have provision to exempt registers, even when they are contained
53 within the block, that can be tied to others that are not contained in it.
54 This is so that global_alloc could process them both and tie them then.
55 But this is currently disabled since tying in global_alloc is not
58 /* Pseudos allocated here can be reallocated by global.c if the hard register
59 is used as a spill register. Currently we don't allocate such pseudos
60 here if their preferred class is likely to be used by spills. */
64 #include "coretypes.h"
66 #include "hard-reg-set.h"
70 #include "basic-block.h"
73 #include "insn-config.h"
74 #include "insn-attr.h"
79 #include "integrate.h"
81 /* Next quantity number available for allocation. */
85 /* Information we maintain about each quantity. */
88 /* The number of refs to quantity Q. */
92 /* The frequency of uses of quantity Q. */
96 /* Insn number (counting from head of basic block)
97 where quantity Q was born. -1 if birth has not been recorded. */
101 /* Insn number (counting from head of basic block)
102 where given quantity died. Due to the way tying is done,
103 and the fact that we consider in this pass only regs that die but once,
104 a quantity can die only once. Each quantity's life span
105 is a set of consecutive insns. -1 if death has not been recorded. */
109 /* Number of words needed to hold the data in given quantity.
110 This depends on its machine mode. It is used for these purposes:
111 1. It is used in computing the relative importances of qtys,
112 which determines the order in which we look for regs for them.
113 2. It is used in rules that prevent tying several registers of
114 different sizes in a way that is geometrically impossible
115 (see combine_regs). */
119 /* Number of times a reg tied to given qty lives across a CALL_INSN. */
123 /* The register number of one pseudo register whose reg_qty value is Q.
124 This register should be the head of the chain
125 maintained in reg_next_in_qty. */
129 /* Reg class contained in (smaller than) the preferred classes of all
130 the pseudo regs that are tied in given quantity.
131 This is the preferred class for allocating that quantity. */
133 enum reg_class min_class
;
135 /* Register class within which we allocate given qty if we can't get
136 its preferred class. */
138 enum reg_class alternate_class
;
140 /* This holds the mode of the registers that are tied to given qty,
141 or VOIDmode if registers with differing modes are tied together. */
143 enum machine_mode mode
;
145 /* the hard reg number chosen for given quantity,
146 or -1 if none was found. */
151 static struct qty
*qty
;
153 /* These fields are kept separately to speedup their clearing. */
155 /* We maintain two hard register sets that indicate suggested hard registers
156 for each quantity. The first, phys_copy_sugg, contains hard registers
157 that are tied to the quantity by a simple copy. The second contains all
158 hard registers that are tied to the quantity via an arithmetic operation.
160 The former register set is given priority for allocation. This tends to
161 eliminate copy insns. */
163 /* Element Q is a set of hard registers that are suggested for quantity Q by
166 static HARD_REG_SET
*qty_phys_copy_sugg
;
168 /* Element Q is a set of hard registers that are suggested for quantity Q by
171 static HARD_REG_SET
*qty_phys_sugg
;
173 /* Element Q is the number of suggested registers in qty_phys_copy_sugg. */
175 static short *qty_phys_num_copy_sugg
;
177 /* Element Q is the number of suggested registers in qty_phys_sugg. */
179 static short *qty_phys_num_sugg
;
181 /* If (REG N) has been assigned a quantity number, is a register number
182 of another register assigned the same quantity number, or -1 for the
183 end of the chain. qty->first_reg point to the head of this chain. */
185 static int *reg_next_in_qty
;
187 /* reg_qty[N] (where N is a pseudo reg number) is the qty number of that reg
189 of -1 if this register cannot be allocated by local-alloc,
190 or -2 if not known yet.
192 Note that if we see a use or death of pseudo register N with
193 reg_qty[N] == -2, register N must be local to the current block. If
194 it were used in more than one block, we would have reg_qty[N] == -1.
195 This relies on the fact that if reg_basic_block[N] is >= 0, register N
196 will not appear in any other block. We save a considerable number of
197 tests by exploiting this.
199 If N is < FIRST_PSEUDO_REGISTER, reg_qty[N] is undefined and should not
204 /* The offset (in words) of register N within its quantity.
205 This can be nonzero if register N is SImode, and has been tied
206 to a subreg of a DImode register. */
208 static char *reg_offset
;
210 /* Vector of substitutions of register numbers,
211 used to map pseudo regs into hardware regs.
212 This is set up as a result of register allocation.
213 Element N is the hard reg assigned to pseudo reg N,
214 or is -1 if no hard reg was assigned.
215 If N is a hard reg number, element N is N. */
219 /* Set of hard registers live at the current point in the scan
220 of the instructions in a basic block. */
222 static HARD_REG_SET regs_live
;
224 /* Each set of hard registers indicates registers live at a particular
225 point in the basic block. For N even, regs_live_at[N] says which
226 hard registers are needed *after* insn N/2 (i.e., they may not
227 conflict with the outputs of insn N/2 or the inputs of insn N/2 + 1.
229 If an object is to conflict with the inputs of insn J but not the
230 outputs of insn J + 1, we say it is born at index J*2 - 1. Similarly,
231 if it is to conflict with the outputs of insn J but not the inputs of
232 insn J + 1, it is said to die at index J*2 + 1. */
234 static HARD_REG_SET
*regs_live_at
;
236 /* Communicate local vars `insn_number' and `insn'
237 from `block_alloc' to `reg_is_set', `wipe_dead_reg', and `alloc_qty'. */
238 static int this_insn_number
;
239 static rtx this_insn
;
243 /* Set when an attempt should be made to replace a register
244 with the associated src_p entry. */
248 /* Set when a REG_EQUIV note is found or created. Use to
249 keep track of what memory accesses might be created later,
256 /* Loop depth is used to recognize equivalences which appear
257 to be present within the same loop (or in an inner loop). */
261 /* The list of each instruction which initializes this register. */
266 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
267 structure for that register. */
269 static struct equivalence
*reg_equiv
;
271 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
272 static int recorded_label_ref
;
274 static void alloc_qty
PARAMS ((int, enum machine_mode
, int, int));
275 static void validate_equiv_mem_from_store
PARAMS ((rtx
, rtx
, void *));
276 static int validate_equiv_mem
PARAMS ((rtx
, rtx
, rtx
));
277 static int equiv_init_varies_p
PARAMS ((rtx
));
278 static int equiv_init_movable_p
PARAMS ((rtx
, int));
279 static int contains_replace_regs
PARAMS ((rtx
));
280 static int memref_referenced_p
PARAMS ((rtx
, rtx
));
281 static int memref_used_between_p
PARAMS ((rtx
, rtx
, rtx
));
282 static void update_equiv_regs
PARAMS ((void));
283 static void no_equiv
PARAMS ((rtx
, rtx
, void *));
284 static void block_alloc
PARAMS ((int));
285 static int qty_sugg_compare
PARAMS ((int, int));
286 static int qty_sugg_compare_1
PARAMS ((const PTR
, const PTR
));
287 static int qty_compare
PARAMS ((int, int));
288 static int qty_compare_1
PARAMS ((const PTR
, const PTR
));
289 static int combine_regs
PARAMS ((rtx
, rtx
, int, int, rtx
, int));
290 static int reg_meets_class_p
PARAMS ((int, enum reg_class
));
291 static void update_qty_class
PARAMS ((int, int));
292 static void reg_is_set
PARAMS ((rtx
, rtx
, void *));
293 static void reg_is_born
PARAMS ((rtx
, int));
294 static void wipe_dead_reg
PARAMS ((rtx
, int));
295 static int find_free_reg
PARAMS ((enum reg_class
, enum machine_mode
,
296 int, int, int, int, int));
297 static void mark_life
PARAMS ((int, enum machine_mode
, int));
298 static void post_mark_life
PARAMS ((int, enum machine_mode
, int, int, int));
299 static int no_conflict_p
PARAMS ((rtx
, rtx
, rtx
));
300 static int requires_inout
PARAMS ((const char *));
302 /* Allocate a new quantity (new within current basic block)
303 for register number REGNO which is born at index BIRTH
304 within the block. MODE and SIZE are info on reg REGNO. */
307 alloc_qty (regno
, mode
, size
, birth
)
309 enum machine_mode mode
;
312 int qtyno
= next_qty
++;
314 reg_qty
[regno
] = qtyno
;
315 reg_offset
[regno
] = 0;
316 reg_next_in_qty
[regno
] = -1;
318 qty
[qtyno
].first_reg
= regno
;
319 qty
[qtyno
].size
= size
;
320 qty
[qtyno
].mode
= mode
;
321 qty
[qtyno
].birth
= birth
;
322 qty
[qtyno
].n_calls_crossed
= REG_N_CALLS_CROSSED (regno
);
323 qty
[qtyno
].min_class
= reg_preferred_class (regno
);
324 qty
[qtyno
].alternate_class
= reg_alternate_class (regno
);
325 qty
[qtyno
].n_refs
= REG_N_REFS (regno
);
326 qty
[qtyno
].freq
= REG_FREQ (regno
);
329 /* Main entry point of this file. */
338 /* We need to keep track of whether or not we recorded a LABEL_REF so
339 that we know if the jump optimizer needs to be rerun. */
340 recorded_label_ref
= 0;
342 /* Leaf functions and non-leaf functions have different needs.
343 If defined, let the machine say what kind of ordering we
345 #ifdef ORDER_REGS_FOR_LOCAL_ALLOC
346 ORDER_REGS_FOR_LOCAL_ALLOC
;
349 /* Promote REG_EQUAL notes to REG_EQUIV notes and adjust status of affected
352 update_equiv_regs ();
354 /* This sets the maximum number of quantities we can have. Quantity
355 numbers start at zero and we can have one for each pseudo. */
356 max_qty
= (max_regno
- FIRST_PSEUDO_REGISTER
);
358 /* Allocate vectors of temporary data.
359 See the declarations of these variables, above,
360 for what they mean. */
362 qty
= (struct qty
*) xmalloc (max_qty
* sizeof (struct qty
));
364 = (HARD_REG_SET
*) xmalloc (max_qty
* sizeof (HARD_REG_SET
));
365 qty_phys_num_copy_sugg
= (short *) xmalloc (max_qty
* sizeof (short));
366 qty_phys_sugg
= (HARD_REG_SET
*) xmalloc (max_qty
* sizeof (HARD_REG_SET
));
367 qty_phys_num_sugg
= (short *) xmalloc (max_qty
* sizeof (short));
369 reg_qty
= (int *) xmalloc (max_regno
* sizeof (int));
370 reg_offset
= (char *) xmalloc (max_regno
* sizeof (char));
371 reg_next_in_qty
= (int *) xmalloc (max_regno
* sizeof (int));
373 /* Determine which pseudo-registers can be allocated by local-alloc.
374 In general, these are the registers used only in a single block and
377 We need not be concerned with which block actually uses the register
378 since we will never see it outside that block. */
380 for (i
= FIRST_PSEUDO_REGISTER
; i
< max_regno
; i
++)
382 if (REG_BASIC_BLOCK (i
) >= 0 && REG_N_DEATHS (i
) == 1)
388 /* Force loop below to initialize entire quantity array. */
391 /* Allocate each block's local registers, block by block. */
395 /* NEXT_QTY indicates which elements of the `qty_...'
396 vectors might need to be initialized because they were used
397 for the previous block; it is set to the entire array before
398 block 0. Initialize those, with explicit loop if there are few,
399 else with bzero and bcopy. Do not initialize vectors that are
400 explicit set by `alloc_qty'. */
404 for (i
= 0; i
< next_qty
; i
++)
406 CLEAR_HARD_REG_SET (qty_phys_copy_sugg
[i
]);
407 qty_phys_num_copy_sugg
[i
] = 0;
408 CLEAR_HARD_REG_SET (qty_phys_sugg
[i
]);
409 qty_phys_num_sugg
[i
] = 0;
414 #define CLEAR(vector) \
415 memset ((char *) (vector), 0, (sizeof (*(vector))) * next_qty);
417 CLEAR (qty_phys_copy_sugg
);
418 CLEAR (qty_phys_num_copy_sugg
);
419 CLEAR (qty_phys_sugg
);
420 CLEAR (qty_phys_num_sugg
);
425 block_alloc (b
->index
);
429 free (qty_phys_copy_sugg
);
430 free (qty_phys_num_copy_sugg
);
431 free (qty_phys_sugg
);
432 free (qty_phys_num_sugg
);
436 free (reg_next_in_qty
);
438 return recorded_label_ref
;
441 /* Used for communication between the following two functions: contains
442 a MEM that we wish to ensure remains unchanged. */
443 static rtx equiv_mem
;
445 /* Set nonzero if EQUIV_MEM is modified. */
446 static int equiv_mem_modified
;
448 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
449 Called via note_stores. */
452 validate_equiv_mem_from_store (dest
, set
, data
)
454 rtx set ATTRIBUTE_UNUSED
;
455 void *data ATTRIBUTE_UNUSED
;
457 if ((GET_CODE (dest
) == REG
458 && reg_overlap_mentioned_p (dest
, equiv_mem
))
459 || (GET_CODE (dest
) == MEM
460 && true_dependence (dest
, VOIDmode
, equiv_mem
, rtx_varies_p
)))
461 equiv_mem_modified
= 1;
464 /* Verify that no store between START and the death of REG invalidates
465 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
466 by storing into an overlapping memory location, or with a non-const
469 Return 1 if MEMREF remains valid. */
472 validate_equiv_mem (start
, reg
, memref
)
481 equiv_mem_modified
= 0;
483 /* If the memory reference has side effects or is volatile, it isn't a
484 valid equivalence. */
485 if (side_effects_p (memref
))
488 for (insn
= start
; insn
&& ! equiv_mem_modified
; insn
= NEXT_INSN (insn
))
493 if (find_reg_note (insn
, REG_DEAD
, reg
))
496 if (GET_CODE (insn
) == CALL_INSN
&& ! RTX_UNCHANGING_P (memref
)
497 && ! CONST_OR_PURE_CALL_P (insn
))
500 note_stores (PATTERN (insn
), validate_equiv_mem_from_store
, NULL
);
502 /* If a register mentioned in MEMREF is modified via an
503 auto-increment, we lose the equivalence. Do the same if one
504 dies; although we could extend the life, it doesn't seem worth
507 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
508 if ((REG_NOTE_KIND (note
) == REG_INC
509 || REG_NOTE_KIND (note
) == REG_DEAD
)
510 && GET_CODE (XEXP (note
, 0)) == REG
511 && reg_overlap_mentioned_p (XEXP (note
, 0), memref
))
518 /* Returns zero if X is known to be invariant. */
521 equiv_init_varies_p (x
)
524 RTX_CODE code
= GET_CODE (x
);
531 return ! RTX_UNCHANGING_P (x
) || equiv_init_varies_p (XEXP (x
, 0));
545 return reg_equiv
[REGNO (x
)].replace
== 0 && rtx_varies_p (x
, 0);
548 if (MEM_VOLATILE_P (x
))
557 fmt
= GET_RTX_FORMAT (code
);
558 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
561 if (equiv_init_varies_p (XEXP (x
, i
)))
564 else if (fmt
[i
] == 'E')
567 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
568 if (equiv_init_varies_p (XVECEXP (x
, i
, j
)))
575 /* Returns nonzero if X (used to initialize register REGNO) is movable.
576 X is only movable if the registers it uses have equivalent initializations
577 which appear to be within the same loop (or in an inner loop) and movable
578 or if they are not candidates for local_alloc and don't vary. */
581 equiv_init_movable_p (x
, regno
)
587 enum rtx_code code
= GET_CODE (x
);
592 return equiv_init_movable_p (SET_SRC (x
), regno
);
607 return (reg_equiv
[REGNO (x
)].loop_depth
>= reg_equiv
[regno
].loop_depth
608 && reg_equiv
[REGNO (x
)].replace
)
609 || (REG_BASIC_BLOCK (REGNO (x
)) < 0 && ! rtx_varies_p (x
, 0));
611 case UNSPEC_VOLATILE
:
615 if (MEM_VOLATILE_P (x
))
624 fmt
= GET_RTX_FORMAT (code
);
625 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
629 if (! equiv_init_movable_p (XEXP (x
, i
), regno
))
633 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
634 if (! equiv_init_movable_p (XVECEXP (x
, i
, j
), regno
))
642 /* TRUE if X uses any registers for which reg_equiv[REGNO].replace is true. */
645 contains_replace_regs (x
)
650 enum rtx_code code
= GET_CODE (x
);
666 return reg_equiv
[REGNO (x
)].replace
;
672 fmt
= GET_RTX_FORMAT (code
);
673 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
677 if (contains_replace_regs (XEXP (x
, i
)))
681 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
682 if (contains_replace_regs (XVECEXP (x
, i
, j
)))
690 /* TRUE if X references a memory location that would be affected by a store
694 memref_referenced_p (memref
, x
)
700 enum rtx_code code
= GET_CODE (x
);
717 return (reg_equiv
[REGNO (x
)].replacement
718 && memref_referenced_p (memref
,
719 reg_equiv
[REGNO (x
)].replacement
));
722 if (true_dependence (memref
, VOIDmode
, x
, rtx_varies_p
))
727 /* If we are setting a MEM, it doesn't count (its address does), but any
728 other SET_DEST that has a MEM in it is referencing the MEM. */
729 if (GET_CODE (SET_DEST (x
)) == MEM
)
731 if (memref_referenced_p (memref
, XEXP (SET_DEST (x
), 0)))
734 else if (memref_referenced_p (memref
, SET_DEST (x
)))
737 return memref_referenced_p (memref
, SET_SRC (x
));
743 fmt
= GET_RTX_FORMAT (code
);
744 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
748 if (memref_referenced_p (memref
, XEXP (x
, i
)))
752 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
753 if (memref_referenced_p (memref
, XVECEXP (x
, i
, j
)))
761 /* TRUE if some insn in the range (START, END] references a memory location
762 that would be affected by a store to MEMREF. */
765 memref_used_between_p (memref
, start
, end
)
772 for (insn
= NEXT_INSN (start
); insn
!= NEXT_INSN (end
);
773 insn
= NEXT_INSN (insn
))
774 if (INSN_P (insn
) && memref_referenced_p (memref
, PATTERN (insn
)))
780 /* Return nonzero if the rtx X is invariant over the current function. */
781 /* ??? Actually, the places this is used in reload expect exactly what
782 is tested here, and not everything that is function invariant. In
783 particular, the frame pointer and arg pointer are special cased;
784 pic_offset_table_rtx is not, and this will cause aborts when we
785 go to spill these things to memory. */
788 function_invariant_p (x
)
793 if (x
== frame_pointer_rtx
|| x
== arg_pointer_rtx
)
795 if (GET_CODE (x
) == PLUS
796 && (XEXP (x
, 0) == frame_pointer_rtx
|| XEXP (x
, 0) == arg_pointer_rtx
)
797 && CONSTANT_P (XEXP (x
, 1)))
802 /* Find registers that are equivalent to a single value throughout the
803 compilation (either because they can be referenced in memory or are set once
804 from a single constant). Lower their priority for a register.
806 If such a register is only referenced once, try substituting its value
807 into the using insn. If it succeeds, we can eliminate the register
816 regset_head cleared_regs
;
817 int clear_regnos
= 0;
819 reg_equiv
= (struct equivalence
*) xcalloc (max_regno
, sizeof *reg_equiv
);
820 INIT_REG_SET (&cleared_regs
);
822 init_alias_analysis ();
824 /* Scan the insns and find which registers have equivalences. Do this
825 in a separate scan of the insns because (due to -fcse-follow-jumps)
826 a register can be set below its use. */
829 loop_depth
= bb
->loop_depth
;
831 for (insn
= bb
->head
; insn
!= NEXT_INSN (bb
->end
); insn
= NEXT_INSN (insn
))
841 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
842 if (REG_NOTE_KIND (note
) == REG_INC
)
843 no_equiv (XEXP (note
, 0), note
, NULL
);
845 set
= single_set (insn
);
847 /* If this insn contains more (or less) than a single SET,
848 only mark all destinations as having no known equivalence. */
851 note_stores (PATTERN (insn
), no_equiv
, NULL
);
854 else if (GET_CODE (PATTERN (insn
)) == PARALLEL
)
858 for (i
= XVECLEN (PATTERN (insn
), 0) - 1; i
>= 0; i
--)
860 rtx part
= XVECEXP (PATTERN (insn
), 0, i
);
862 note_stores (part
, no_equiv
, NULL
);
866 dest
= SET_DEST (set
);
869 /* If this sets a MEM to the contents of a REG that is only used
870 in a single basic block, see if the register is always equivalent
871 to that memory location and if moving the store from INSN to the
872 insn that set REG is safe. If so, put a REG_EQUIV note on the
875 Don't add a REG_EQUIV note if the insn already has one. The existing
876 REG_EQUIV is likely more useful than the one we are adding.
878 If one of the regs in the address has reg_equiv[REGNO].replace set,
879 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
880 optimization may move the set of this register immediately before
881 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
882 the mention in the REG_EQUIV note would be to an uninitialized
884 /* ????? This test isn't good enough; we might see a MEM with a use of
885 a pseudo register before we see its setting insn that will cause
886 reg_equiv[].replace for that pseudo to be set.
887 Equivalences to MEMs should be made in another pass, after the
888 reg_equiv[].replace information has been gathered. */
890 if (GET_CODE (dest
) == MEM
&& GET_CODE (src
) == REG
891 && (regno
= REGNO (src
)) >= FIRST_PSEUDO_REGISTER
892 && REG_BASIC_BLOCK (regno
) >= 0
893 && REG_N_SETS (regno
) == 1
894 && reg_equiv
[regno
].init_insns
!= 0
895 && reg_equiv
[regno
].init_insns
!= const0_rtx
896 && ! find_reg_note (XEXP (reg_equiv
[regno
].init_insns
, 0),
898 && ! contains_replace_regs (XEXP (dest
, 0)))
900 rtx init_insn
= XEXP (reg_equiv
[regno
].init_insns
, 0);
901 if (validate_equiv_mem (init_insn
, src
, dest
)
902 && ! memref_used_between_p (dest
, init_insn
, insn
))
903 REG_NOTES (init_insn
)
904 = gen_rtx_EXPR_LIST (REG_EQUIV
, dest
, REG_NOTES (init_insn
));
907 /* We only handle the case of a pseudo register being set
908 once, or always to the same value. */
909 /* ??? The mn10200 port breaks if we add equivalences for
910 values that need an ADDRESS_REGS register and set them equivalent
911 to a MEM of a pseudo. The actual problem is in the over-conservative
912 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
913 calculate_needs, but we traditionally work around this problem
914 here by rejecting equivalences when the destination is in a register
915 that's likely spilled. This is fragile, of course, since the
916 preferred class of a pseudo depends on all instructions that set
919 if (GET_CODE (dest
) != REG
920 || (regno
= REGNO (dest
)) < FIRST_PSEUDO_REGISTER
921 || reg_equiv
[regno
].init_insns
== const0_rtx
922 || (CLASS_LIKELY_SPILLED_P (reg_preferred_class (regno
))
923 && GET_CODE (src
) == MEM
))
925 /* This might be seting a SUBREG of a pseudo, a pseudo that is
926 also set somewhere else to a constant. */
927 note_stores (set
, no_equiv
, NULL
);
931 note
= find_reg_note (insn
, REG_EQUAL
, NULL_RTX
);
933 /* cse sometimes generates function invariants, but doesn't put a
934 REG_EQUAL note on the insn. Since this note would be redundant,
935 there's no point creating it earlier than here. */
936 if (! note
&& ! rtx_varies_p (src
, 0))
937 note
= set_unique_reg_note (insn
, REG_EQUAL
, src
);
939 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
940 since it represents a function call */
941 if (note
&& GET_CODE (XEXP (note
, 0)) == EXPR_LIST
)
944 if (REG_N_SETS (regno
) != 1
946 || rtx_varies_p (XEXP (note
, 0), 0)
947 || (reg_equiv
[regno
].replacement
948 && ! rtx_equal_p (XEXP (note
, 0),
949 reg_equiv
[regno
].replacement
))))
951 no_equiv (dest
, set
, NULL
);
954 /* Record this insn as initializing this register. */
955 reg_equiv
[regno
].init_insns
956 = gen_rtx_INSN_LIST (VOIDmode
, insn
, reg_equiv
[regno
].init_insns
);
958 /* If this register is known to be equal to a constant, record that
959 it is always equivalent to the constant. */
960 if (note
&& ! rtx_varies_p (XEXP (note
, 0), 0))
961 PUT_MODE (note
, (enum machine_mode
) REG_EQUIV
);
963 /* If this insn introduces a "constant" register, decrease the priority
964 of that register. Record this insn if the register is only used once
965 more and the equivalence value is the same as our source.
967 The latter condition is checked for two reasons: First, it is an
968 indication that it may be more efficient to actually emit the insn
969 as written (if no registers are available, reload will substitute
970 the equivalence). Secondly, it avoids problems with any registers
971 dying in this insn whose death notes would be missed.
973 If we don't have a REG_EQUIV note, see if this insn is loading
974 a register used only in one basic block from a MEM. If so, and the
975 MEM remains unchanged for the life of the register, add a REG_EQUIV
978 note
= find_reg_note (insn
, REG_EQUIV
, NULL_RTX
);
980 if (note
== 0 && REG_BASIC_BLOCK (regno
) >= 0
981 && GET_CODE (SET_SRC (set
)) == MEM
982 && validate_equiv_mem (insn
, dest
, SET_SRC (set
)))
983 REG_NOTES (insn
) = note
= gen_rtx_EXPR_LIST (REG_EQUIV
, SET_SRC (set
),
988 int regno
= REGNO (dest
);
990 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
991 We might end up substituting the LABEL_REF for uses of the
992 pseudo here or later. That kind of transformation may turn an
993 indirect jump into a direct jump, in which case we must rerun the
994 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
995 if (GET_CODE (XEXP (note
, 0)) == LABEL_REF
996 || (GET_CODE (XEXP (note
, 0)) == CONST
997 && GET_CODE (XEXP (XEXP (note
, 0), 0)) == PLUS
998 && (GET_CODE (XEXP (XEXP (XEXP (note
, 0), 0), 0))
1000 recorded_label_ref
= 1;
1002 reg_equiv
[regno
].replacement
= XEXP (note
, 0);
1003 reg_equiv
[regno
].src_p
= &SET_SRC (set
);
1004 reg_equiv
[regno
].loop_depth
= loop_depth
;
1006 /* Don't mess with things live during setjmp. */
1007 if (REG_LIVE_LENGTH (regno
) >= 0 && optimize
)
1009 /* Note that the statement below does not affect the priority
1011 REG_LIVE_LENGTH (regno
) *= 2;
1014 /* If the register is referenced exactly twice, meaning it is
1015 set once and used once, indicate that the reference may be
1016 replaced by the equivalence we computed above. Do this
1017 even if the register is only used in one block so that
1018 dependencies can be handled where the last register is
1019 used in a different block (i.e. HIGH / LO_SUM sequences)
1020 and to reduce the number of registers alive across
1023 if (REG_N_REFS (regno
) == 2
1024 && (rtx_equal_p (XEXP (note
, 0), src
)
1025 || ! equiv_init_varies_p (src
))
1026 && GET_CODE (insn
) == INSN
1027 && equiv_init_movable_p (PATTERN (insn
), regno
))
1028 reg_equiv
[regno
].replace
= 1;
1034 /* Now scan all regs killed in an insn to see if any of them are
1035 registers only used that once. If so, see if we can replace the
1036 reference with the equivalent from. If we can, delete the
1037 initializing reference and this register will go away. If we
1038 can't replace the reference, and the initialzing reference is
1039 within the same loop (or in an inner loop), then move the register
1040 initialization just before the use, so that they are in the same
1042 FOR_EACH_BB_REVERSE (bb
)
1044 loop_depth
= bb
->loop_depth
;
1045 for (insn
= bb
->end
; insn
!= PREV_INSN (bb
->head
); insn
= PREV_INSN (insn
))
1049 if (! INSN_P (insn
))
1052 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1054 if (REG_NOTE_KIND (link
) == REG_DEAD
1055 /* Make sure this insn still refers to the register. */
1056 && reg_mentioned_p (XEXP (link
, 0), PATTERN (insn
)))
1058 int regno
= REGNO (XEXP (link
, 0));
1061 if (! reg_equiv
[regno
].replace
1062 || reg_equiv
[regno
].loop_depth
< loop_depth
)
1065 /* reg_equiv[REGNO].replace gets set only when
1066 REG_N_REFS[REGNO] is 2, i.e. the register is set
1067 once and used once. (If it were only set, but not used,
1068 flow would have deleted the setting insns.) Hence
1069 there can only be one insn in reg_equiv[REGNO].init_insns. */
1070 if (reg_equiv
[regno
].init_insns
== NULL_RTX
1071 || XEXP (reg_equiv
[regno
].init_insns
, 1) != NULL_RTX
)
1073 equiv_insn
= XEXP (reg_equiv
[regno
].init_insns
, 0);
1075 /* We may not move instructions that can throw, since
1076 that changes basic block boundaries and we are not
1077 prepared to adjust the CFG to match. */
1078 if (can_throw_internal (equiv_insn
))
1081 if (asm_noperands (PATTERN (equiv_insn
)) < 0
1082 && validate_replace_rtx (regno_reg_rtx
[regno
],
1083 *(reg_equiv
[regno
].src_p
), insn
))
1089 /* Find the last note. */
1090 for (last_link
= link
; XEXP (last_link
, 1);
1091 last_link
= XEXP (last_link
, 1))
1094 /* Append the REG_DEAD notes from equiv_insn. */
1095 equiv_link
= REG_NOTES (equiv_insn
);
1099 equiv_link
= XEXP (equiv_link
, 1);
1100 if (REG_NOTE_KIND (note
) == REG_DEAD
)
1102 remove_note (equiv_insn
, note
);
1103 XEXP (last_link
, 1) = note
;
1104 XEXP (note
, 1) = NULL_RTX
;
1109 remove_death (regno
, insn
);
1110 REG_N_REFS (regno
) = 0;
1111 REG_FREQ (regno
) = 0;
1112 delete_insn (equiv_insn
);
1114 reg_equiv
[regno
].init_insns
1115 = XEXP (reg_equiv
[regno
].init_insns
, 1);
1117 /* Move the initialization of the register to just before
1118 INSN. Update the flow information. */
1119 else if (PREV_INSN (insn
) != equiv_insn
)
1123 new_insn
= emit_insn_before (PATTERN (equiv_insn
), insn
);
1124 REG_NOTES (new_insn
) = REG_NOTES (equiv_insn
);
1125 REG_NOTES (equiv_insn
) = 0;
1127 /* Make sure this insn is recognized before reload begins,
1128 otherwise eliminate_regs_in_insn will abort. */
1129 INSN_CODE (new_insn
) = INSN_CODE (equiv_insn
);
1131 delete_insn (equiv_insn
);
1133 XEXP (reg_equiv
[regno
].init_insns
, 0) = new_insn
;
1135 REG_BASIC_BLOCK (regno
) = bb
->index
;
1136 REG_N_CALLS_CROSSED (regno
) = 0;
1137 REG_LIVE_LENGTH (regno
) = 2;
1139 if (insn
== bb
->head
)
1140 bb
->head
= PREV_INSN (insn
);
1142 /* Remember to clear REGNO from all basic block's live
1144 SET_REGNO_REG_SET (&cleared_regs
, regno
);
1152 /* Clear all dead REGNOs from all basic block's live info. */
1156 if (clear_regnos
> 8)
1160 AND_COMPL_REG_SET (bb
->global_live_at_start
, &cleared_regs
);
1161 AND_COMPL_REG_SET (bb
->global_live_at_end
, &cleared_regs
);
1165 EXECUTE_IF_SET_IN_REG_SET (&cleared_regs
, 0, j
,
1169 CLEAR_REGNO_REG_SET (bb
->global_live_at_start
, j
);
1170 CLEAR_REGNO_REG_SET (bb
->global_live_at_end
, j
);
1176 end_alias_analysis ();
1177 CLEAR_REG_SET (&cleared_regs
);
1181 /* Mark REG as having no known equivalence.
1182 Some instructions might have been proceessed before and furnished
1183 with REG_EQUIV notes for this register; these notes will have to be
1185 STORE is the piece of RTL that does the non-constant / conflicting
1186 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
1187 but needs to be there because this function is called from note_stores. */
1189 no_equiv (reg
, store
, data
)
1190 rtx reg
, store ATTRIBUTE_UNUSED
;
1191 void *data ATTRIBUTE_UNUSED
;
1196 if (GET_CODE (reg
) != REG
)
1198 regno
= REGNO (reg
);
1199 list
= reg_equiv
[regno
].init_insns
;
1200 if (list
== const0_rtx
)
1202 for (; list
; list
= XEXP (list
, 1))
1204 rtx insn
= XEXP (list
, 0);
1205 remove_note (insn
, find_reg_note (insn
, REG_EQUIV
, NULL_RTX
));
1207 reg_equiv
[regno
].init_insns
= const0_rtx
;
1208 reg_equiv
[regno
].replacement
= NULL_RTX
;
1211 /* Allocate hard regs to the pseudo regs used only within block number B.
1212 Only the pseudos that die but once can be handled. */
1221 int insn_number
= 0;
1223 int max_uid
= get_max_uid ();
1225 int no_conflict_combined_regno
= -1;
1227 /* Count the instructions in the basic block. */
1229 insn
= BLOCK_END (b
);
1232 if (GET_CODE (insn
) != NOTE
)
1233 if (++insn_count
> max_uid
)
1235 if (insn
== BLOCK_HEAD (b
))
1237 insn
= PREV_INSN (insn
);
1240 /* +2 to leave room for a post_mark_life at the last insn and for
1241 the birth of a CLOBBER in the first insn. */
1242 regs_live_at
= (HARD_REG_SET
*) xcalloc ((2 * insn_count
+ 2),
1243 sizeof (HARD_REG_SET
));
1245 /* Initialize table of hardware registers currently live. */
1247 REG_SET_TO_HARD_REG_SET (regs_live
, BASIC_BLOCK (b
)->global_live_at_start
);
1249 /* This loop scans the instructions of the basic block
1250 and assigns quantities to registers.
1251 It computes which registers to tie. */
1253 insn
= BLOCK_HEAD (b
);
1256 if (GET_CODE (insn
) != NOTE
)
1263 rtx r0
, r1
= NULL_RTX
;
1264 int combined_regno
= -1;
1267 this_insn_number
= insn_number
;
1270 extract_insn (insn
);
1271 which_alternative
= -1;
1273 /* Is this insn suitable for tying two registers?
1274 If so, try doing that.
1275 Suitable insns are those with at least two operands and where
1276 operand 0 is an output that is a register that is not
1279 We can tie operand 0 with some operand that dies in this insn.
1280 First look for operands that are required to be in the same
1281 register as operand 0. If we find such, only try tying that
1282 operand or one that can be put into that operand if the
1283 operation is commutative. If we don't find an operand
1284 that is required to be in the same register as operand 0,
1285 we can tie with any operand.
1287 Subregs in place of regs are also ok.
1289 If tying is done, WIN is set nonzero. */
1292 && recog_data
.n_operands
> 1
1293 && recog_data
.constraints
[0][0] == '='
1294 && recog_data
.constraints
[0][1] != '&')
1296 /* If non-negative, is an operand that must match operand 0. */
1297 int must_match_0
= -1;
1298 /* Counts number of alternatives that require a match with
1300 int n_matching_alts
= 0;
1302 for (i
= 1; i
< recog_data
.n_operands
; i
++)
1304 const char *p
= recog_data
.constraints
[i
];
1305 int this_match
= requires_inout (p
);
1307 n_matching_alts
+= this_match
;
1308 if (this_match
== recog_data
.n_alternatives
)
1312 r0
= recog_data
.operand
[0];
1313 for (i
= 1; i
< recog_data
.n_operands
; i
++)
1315 /* Skip this operand if we found an operand that
1316 must match operand 0 and this operand isn't it
1317 and can't be made to be it by commutativity. */
1319 if (must_match_0
>= 0 && i
!= must_match_0
1320 && ! (i
== must_match_0
+ 1
1321 && recog_data
.constraints
[i
-1][0] == '%')
1322 && ! (i
== must_match_0
- 1
1323 && recog_data
.constraints
[i
][0] == '%'))
1326 /* Likewise if each alternative has some operand that
1327 must match operand zero. In that case, skip any
1328 operand that doesn't list operand 0 since we know that
1329 the operand always conflicts with operand 0. We
1330 ignore commutatity in this case to keep things simple. */
1331 if (n_matching_alts
== recog_data
.n_alternatives
1332 && 0 == requires_inout (recog_data
.constraints
[i
]))
1335 r1
= recog_data
.operand
[i
];
1337 /* If the operand is an address, find a register in it.
1338 There may be more than one register, but we only try one
1340 if (recog_data
.constraints
[i
][0] == 'p'
1341 || EXTRA_ADDRESS_CONSTRAINT (recog_data
.constraints
[i
][0]))
1342 while (GET_CODE (r1
) == PLUS
|| GET_CODE (r1
) == MULT
)
1345 /* Avoid making a call-saved register unnecessarily
1347 hard_reg
= get_hard_reg_initial_reg (cfun
, r1
);
1348 if (hard_reg
!= NULL_RTX
)
1350 if (GET_CODE (hard_reg
) == REG
1351 && IN_RANGE (REGNO (hard_reg
),
1352 0, FIRST_PSEUDO_REGISTER
- 1)
1353 && ! call_used_regs
[REGNO (hard_reg
)])
1357 if (GET_CODE (r0
) == REG
|| GET_CODE (r0
) == SUBREG
)
1359 /* We have two priorities for hard register preferences.
1360 If we have a move insn or an insn whose first input
1361 can only be in the same register as the output, give
1362 priority to an equivalence found from that insn. */
1364 = (r1
== recog_data
.operand
[i
] && must_match_0
>= 0);
1366 if (GET_CODE (r1
) == REG
|| GET_CODE (r1
) == SUBREG
)
1367 win
= combine_regs (r1
, r0
, may_save_copy
,
1368 insn_number
, insn
, 0);
1375 /* Recognize an insn sequence with an ultimate result
1376 which can safely overlap one of the inputs.
1377 The sequence begins with a CLOBBER of its result,
1378 and ends with an insn that copies the result to itself
1379 and has a REG_EQUAL note for an equivalent formula.
1380 That note indicates what the inputs are.
1381 The result and the input can overlap if each insn in
1382 the sequence either doesn't mention the input
1383 or has a REG_NO_CONFLICT note to inhibit the conflict.
1385 We do the combining test at the CLOBBER so that the
1386 destination register won't have had a quantity number
1387 assigned, since that would prevent combining. */
1390 && GET_CODE (PATTERN (insn
)) == CLOBBER
1391 && (r0
= XEXP (PATTERN (insn
), 0),
1392 GET_CODE (r0
) == REG
)
1393 && (link
= find_reg_note (insn
, REG_LIBCALL
, NULL_RTX
)) != 0
1394 && XEXP (link
, 0) != 0
1395 && GET_CODE (XEXP (link
, 0)) == INSN
1396 && (set
= single_set (XEXP (link
, 0))) != 0
1397 && SET_DEST (set
) == r0
&& SET_SRC (set
) == r0
1398 && (note
= find_reg_note (XEXP (link
, 0), REG_EQUAL
,
1401 if (r1
= XEXP (note
, 0), GET_CODE (r1
) == REG
1402 /* Check that we have such a sequence. */
1403 && no_conflict_p (insn
, r0
, r1
))
1404 win
= combine_regs (r1
, r0
, 1, insn_number
, insn
, 1);
1405 else if (GET_RTX_FORMAT (GET_CODE (XEXP (note
, 0)))[0] == 'e'
1406 && (r1
= XEXP (XEXP (note
, 0), 0),
1407 GET_CODE (r1
) == REG
|| GET_CODE (r1
) == SUBREG
)
1408 && no_conflict_p (insn
, r0
, r1
))
1409 win
= combine_regs (r1
, r0
, 0, insn_number
, insn
, 1);
1411 /* Here we care if the operation to be computed is
1413 else if ((GET_CODE (XEXP (note
, 0)) == EQ
1414 || GET_CODE (XEXP (note
, 0)) == NE
1415 || GET_RTX_CLASS (GET_CODE (XEXP (note
, 0))) == 'c')
1416 && (r1
= XEXP (XEXP (note
, 0), 1),
1417 (GET_CODE (r1
) == REG
|| GET_CODE (r1
) == SUBREG
))
1418 && no_conflict_p (insn
, r0
, r1
))
1419 win
= combine_regs (r1
, r0
, 0, insn_number
, insn
, 1);
1421 /* If we did combine something, show the register number
1422 in question so that we know to ignore its death. */
1424 no_conflict_combined_regno
= REGNO (r1
);
1427 /* If registers were just tied, set COMBINED_REGNO
1428 to the number of the register used in this insn
1429 that was tied to the register set in this insn.
1430 This register's qty should not be "killed". */
1434 while (GET_CODE (r1
) == SUBREG
)
1435 r1
= SUBREG_REG (r1
);
1436 combined_regno
= REGNO (r1
);
1439 /* Mark the death of everything that dies in this instruction,
1440 except for anything that was just combined. */
1442 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1443 if (REG_NOTE_KIND (link
) == REG_DEAD
1444 && GET_CODE (XEXP (link
, 0)) == REG
1445 && combined_regno
!= (int) REGNO (XEXP (link
, 0))
1446 && (no_conflict_combined_regno
!= (int) REGNO (XEXP (link
, 0))
1447 || ! find_reg_note (insn
, REG_NO_CONFLICT
,
1449 wipe_dead_reg (XEXP (link
, 0), 0);
1451 /* Allocate qty numbers for all registers local to this block
1452 that are born (set) in this instruction.
1453 A pseudo that already has a qty is not changed. */
1455 note_stores (PATTERN (insn
), reg_is_set
, NULL
);
1457 /* If anything is set in this insn and then unused, mark it as dying
1458 after this insn, so it will conflict with our outputs. This
1459 can't match with something that combined, and it doesn't matter
1460 if it did. Do this after the calls to reg_is_set since these
1461 die after, not during, the current insn. */
1463 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1464 if (REG_NOTE_KIND (link
) == REG_UNUSED
1465 && GET_CODE (XEXP (link
, 0)) == REG
)
1466 wipe_dead_reg (XEXP (link
, 0), 1);
1468 /* If this is an insn that has a REG_RETVAL note pointing at a
1469 CLOBBER insn, we have reached the end of a REG_NO_CONFLICT
1470 block, so clear any register number that combined within it. */
1471 if ((note
= find_reg_note (insn
, REG_RETVAL
, NULL_RTX
)) != 0
1472 && GET_CODE (XEXP (note
, 0)) == INSN
1473 && GET_CODE (PATTERN (XEXP (note
, 0))) == CLOBBER
)
1474 no_conflict_combined_regno
= -1;
1477 /* Set the registers live after INSN_NUMBER. Note that we never
1478 record the registers live before the block's first insn, since no
1479 pseudos we care about are live before that insn. */
1481 IOR_HARD_REG_SET (regs_live_at
[2 * insn_number
], regs_live
);
1482 IOR_HARD_REG_SET (regs_live_at
[2 * insn_number
+ 1], regs_live
);
1484 if (insn
== BLOCK_END (b
))
1487 insn
= NEXT_INSN (insn
);
1490 /* Now every register that is local to this basic block
1491 should have been given a quantity, or else -1 meaning ignore it.
1492 Every quantity should have a known birth and death.
1494 Order the qtys so we assign them registers in order of the
1495 number of suggested registers they need so we allocate those with
1496 the most restrictive needs first. */
1498 qty_order
= (int *) xmalloc (next_qty
* sizeof (int));
1499 for (i
= 0; i
< next_qty
; i
++)
1502 #define EXCHANGE(I1, I2) \
1503 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1508 /* Make qty_order[2] be the one to allocate last. */
1509 if (qty_sugg_compare (0, 1) > 0)
1511 if (qty_sugg_compare (1, 2) > 0)
1514 /* ... Fall through ... */
1516 /* Put the best one to allocate in qty_order[0]. */
1517 if (qty_sugg_compare (0, 1) > 0)
1520 /* ... Fall through ... */
1524 /* Nothing to do here. */
1528 qsort (qty_order
, next_qty
, sizeof (int), qty_sugg_compare_1
);
1531 /* Try to put each quantity in a suggested physical register, if it has one.
1532 This may cause registers to be allocated that otherwise wouldn't be, but
1533 this seems acceptable in local allocation (unlike global allocation). */
1534 for (i
= 0; i
< next_qty
; i
++)
1537 if (qty_phys_num_sugg
[q
] != 0 || qty_phys_num_copy_sugg
[q
] != 0)
1538 qty
[q
].phys_reg
= find_free_reg (qty
[q
].min_class
, qty
[q
].mode
, q
,
1539 0, 1, qty
[q
].birth
, qty
[q
].death
);
1541 qty
[q
].phys_reg
= -1;
1544 /* Order the qtys so we assign them registers in order of
1545 decreasing length of life. Normally call qsort, but if we
1546 have only a very small number of quantities, sort them ourselves. */
1548 for (i
= 0; i
< next_qty
; i
++)
1551 #define EXCHANGE(I1, I2) \
1552 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1557 /* Make qty_order[2] be the one to allocate last. */
1558 if (qty_compare (0, 1) > 0)
1560 if (qty_compare (1, 2) > 0)
1563 /* ... Fall through ... */
1565 /* Put the best one to allocate in qty_order[0]. */
1566 if (qty_compare (0, 1) > 0)
1569 /* ... Fall through ... */
1573 /* Nothing to do here. */
1577 qsort (qty_order
, next_qty
, sizeof (int), qty_compare_1
);
1580 /* Now for each qty that is not a hardware register,
1581 look for a hardware register to put it in.
1582 First try the register class that is cheapest for this qty,
1583 if there is more than one class. */
1585 for (i
= 0; i
< next_qty
; i
++)
1588 if (qty
[q
].phys_reg
< 0)
1590 #ifdef INSN_SCHEDULING
1591 /* These values represent the adjusted lifetime of a qty so
1592 that it conflicts with qtys which appear near the start/end
1593 of this qty's lifetime.
1595 The purpose behind extending the lifetime of this qty is to
1596 discourage the register allocator from creating false
1599 The adjustment value is chosen to indicate that this qty
1600 conflicts with all the qtys in the instructions immediately
1601 before and after the lifetime of this qty.
1603 Experiments have shown that higher values tend to hurt
1604 overall code performance.
1606 If allocation using the extended lifetime fails we will try
1607 again with the qty's unadjusted lifetime. */
1608 int fake_birth
= MAX (0, qty
[q
].birth
- 2 + qty
[q
].birth
% 2);
1609 int fake_death
= MIN (insn_number
* 2 + 1,
1610 qty
[q
].death
+ 2 - qty
[q
].death
% 2);
1613 if (N_REG_CLASSES
> 1)
1615 #ifdef INSN_SCHEDULING
1616 /* We try to avoid using hard registers allocated to qtys which
1617 are born immediately after this qty or die immediately before
1620 This optimization is only appropriate when we will run
1621 a scheduling pass after reload and we are not optimizing
1623 if (flag_schedule_insns_after_reload
1625 && !SMALL_REGISTER_CLASSES
)
1627 qty
[q
].phys_reg
= find_free_reg (qty
[q
].min_class
,
1628 qty
[q
].mode
, q
, 0, 0,
1629 fake_birth
, fake_death
);
1630 if (qty
[q
].phys_reg
>= 0)
1634 qty
[q
].phys_reg
= find_free_reg (qty
[q
].min_class
,
1635 qty
[q
].mode
, q
, 0, 0,
1636 qty
[q
].birth
, qty
[q
].death
);
1637 if (qty
[q
].phys_reg
>= 0)
1641 #ifdef INSN_SCHEDULING
1642 /* Similarly, avoid false dependencies. */
1643 if (flag_schedule_insns_after_reload
1645 && !SMALL_REGISTER_CLASSES
1646 && qty
[q
].alternate_class
!= NO_REGS
)
1647 qty
[q
].phys_reg
= find_free_reg (qty
[q
].alternate_class
,
1648 qty
[q
].mode
, q
, 0, 0,
1649 fake_birth
, fake_death
);
1651 if (qty
[q
].alternate_class
!= NO_REGS
)
1652 qty
[q
].phys_reg
= find_free_reg (qty
[q
].alternate_class
,
1653 qty
[q
].mode
, q
, 0, 0,
1654 qty
[q
].birth
, qty
[q
].death
);
1658 /* Now propagate the register assignments
1659 to the pseudo regs belonging to the qtys. */
1661 for (q
= 0; q
< next_qty
; q
++)
1662 if (qty
[q
].phys_reg
>= 0)
1664 for (i
= qty
[q
].first_reg
; i
>= 0; i
= reg_next_in_qty
[i
])
1665 reg_renumber
[i
] = qty
[q
].phys_reg
+ reg_offset
[i
];
1669 free (regs_live_at
);
1673 /* Compare two quantities' priority for getting real registers.
1674 We give shorter-lived quantities higher priority.
1675 Quantities with more references are also preferred, as are quantities that
1676 require multiple registers. This is the identical prioritization as
1677 done by global-alloc.
1679 We used to give preference to registers with *longer* lives, but using
1680 the same algorithm in both local- and global-alloc can speed up execution
1681 of some programs by as much as a factor of three! */
1683 /* Note that the quotient will never be bigger than
1684 the value of floor_log2 times the maximum number of
1685 times a register can occur in one insn (surely less than 100)
1686 weighted by frequency (max REG_FREQ_MAX).
1687 Multiplying this by 10000/REG_FREQ_MAX can't overflow.
1688 QTY_CMP_PRI is also used by qty_sugg_compare. */
1690 #define QTY_CMP_PRI(q) \
1691 ((int) (((double) (floor_log2 (qty[q].n_refs) * qty[q].freq * qty[q].size) \
1692 / (qty[q].death - qty[q].birth)) * (10000 / REG_FREQ_MAX)))
1695 qty_compare (q1
, q2
)
1698 return QTY_CMP_PRI (q2
) - QTY_CMP_PRI (q1
);
1702 qty_compare_1 (q1p
, q2p
)
1706 int q1
= *(const int *) q1p
, q2
= *(const int *) q2p
;
1707 int tem
= QTY_CMP_PRI (q2
) - QTY_CMP_PRI (q1
);
1712 /* If qtys are equally good, sort by qty number,
1713 so that the results of qsort leave nothing to chance. */
1717 /* Compare two quantities' priority for getting real registers. This version
1718 is called for quantities that have suggested hard registers. First priority
1719 goes to quantities that have copy preferences, then to those that have
1720 normal preferences. Within those groups, quantities with the lower
1721 number of preferences have the highest priority. Of those, we use the same
1722 algorithm as above. */
1724 #define QTY_CMP_SUGG(q) \
1725 (qty_phys_num_copy_sugg[q] \
1726 ? qty_phys_num_copy_sugg[q] \
1727 : qty_phys_num_sugg[q] * FIRST_PSEUDO_REGISTER)
1730 qty_sugg_compare (q1
, q2
)
1733 int tem
= QTY_CMP_SUGG (q1
) - QTY_CMP_SUGG (q2
);
1738 return QTY_CMP_PRI (q2
) - QTY_CMP_PRI (q1
);
1742 qty_sugg_compare_1 (q1p
, q2p
)
1746 int q1
= *(const int *) q1p
, q2
= *(const int *) q2p
;
1747 int tem
= QTY_CMP_SUGG (q1
) - QTY_CMP_SUGG (q2
);
1752 tem
= QTY_CMP_PRI (q2
) - QTY_CMP_PRI (q1
);
1756 /* If qtys are equally good, sort by qty number,
1757 so that the results of qsort leave nothing to chance. */
1764 /* Attempt to combine the two registers (rtx's) USEDREG and SETREG.
1765 Returns 1 if have done so, or 0 if cannot.
1767 Combining registers means marking them as having the same quantity
1768 and adjusting the offsets within the quantity if either of
1771 We don't actually combine a hard reg with a pseudo; instead
1772 we just record the hard reg as the suggestion for the pseudo's quantity.
1773 If we really combined them, we could lose if the pseudo lives
1774 across an insn that clobbers the hard reg (eg, movstr).
1776 ALREADY_DEAD is nonzero if USEDREG is known to be dead even though
1777 there is no REG_DEAD note on INSN. This occurs during the processing
1778 of REG_NO_CONFLICT blocks.
1780 MAY_SAVE_COPYCOPY is nonzero if this insn is simply copying USEDREG to
1781 SETREG or if the input and output must share a register.
1782 In that case, we record a hard reg suggestion in QTY_PHYS_COPY_SUGG.
1784 There are elaborate checks for the validity of combining. */
1787 combine_regs (usedreg
, setreg
, may_save_copy
, insn_number
, insn
, already_dead
)
1788 rtx usedreg
, setreg
;
1799 /* Determine the numbers and sizes of registers being used. If a subreg
1800 is present that does not change the entire register, don't consider
1801 this a copy insn. */
1803 while (GET_CODE (usedreg
) == SUBREG
)
1805 rtx subreg
= SUBREG_REG (usedreg
);
1807 if (GET_CODE (subreg
) == REG
)
1809 if (GET_MODE_SIZE (GET_MODE (subreg
)) > UNITS_PER_WORD
)
1812 if (REGNO (subreg
) < FIRST_PSEUDO_REGISTER
)
1813 offset
+= subreg_regno_offset (REGNO (subreg
),
1815 SUBREG_BYTE (usedreg
),
1816 GET_MODE (usedreg
));
1818 offset
+= (SUBREG_BYTE (usedreg
)
1819 / REGMODE_NATURAL_SIZE (GET_MODE (usedreg
)));
1825 if (GET_CODE (usedreg
) != REG
)
1828 ureg
= REGNO (usedreg
);
1829 if (ureg
< FIRST_PSEUDO_REGISTER
)
1830 usize
= HARD_REGNO_NREGS (ureg
, GET_MODE (usedreg
));
1832 usize
= ((GET_MODE_SIZE (GET_MODE (usedreg
))
1833 + (REGMODE_NATURAL_SIZE (GET_MODE (usedreg
)) - 1))
1834 / REGMODE_NATURAL_SIZE (GET_MODE (usedreg
)));
1836 while (GET_CODE (setreg
) == SUBREG
)
1838 rtx subreg
= SUBREG_REG (setreg
);
1840 if (GET_CODE (subreg
) == REG
)
1842 if (GET_MODE_SIZE (GET_MODE (subreg
)) > UNITS_PER_WORD
)
1845 if (REGNO (subreg
) < FIRST_PSEUDO_REGISTER
)
1846 offset
-= subreg_regno_offset (REGNO (subreg
),
1848 SUBREG_BYTE (setreg
),
1851 offset
-= (SUBREG_BYTE (setreg
)
1852 / REGMODE_NATURAL_SIZE (GET_MODE (setreg
)));
1858 if (GET_CODE (setreg
) != REG
)
1861 sreg
= REGNO (setreg
);
1862 if (sreg
< FIRST_PSEUDO_REGISTER
)
1863 ssize
= HARD_REGNO_NREGS (sreg
, GET_MODE (setreg
));
1865 ssize
= ((GET_MODE_SIZE (GET_MODE (setreg
))
1866 + (REGMODE_NATURAL_SIZE (GET_MODE (setreg
)) - 1))
1867 / REGMODE_NATURAL_SIZE (GET_MODE (setreg
)));
1869 /* If UREG is a pseudo-register that hasn't already been assigned a
1870 quantity number, it means that it is not local to this block or dies
1871 more than once. In either event, we can't do anything with it. */
1872 if ((ureg
>= FIRST_PSEUDO_REGISTER
&& reg_qty
[ureg
] < 0)
1873 /* Do not combine registers unless one fits within the other. */
1874 || (offset
> 0 && usize
+ offset
> ssize
)
1875 || (offset
< 0 && usize
+ offset
< ssize
)
1876 /* Do not combine with a smaller already-assigned object
1877 if that smaller object is already combined with something bigger. */
1878 || (ssize
> usize
&& ureg
>= FIRST_PSEUDO_REGISTER
1879 && usize
< qty
[reg_qty
[ureg
]].size
)
1880 /* Can't combine if SREG is not a register we can allocate. */
1881 || (sreg
>= FIRST_PSEUDO_REGISTER
&& reg_qty
[sreg
] == -1)
1882 /* Don't combine with a pseudo mentioned in a REG_NO_CONFLICT note.
1883 These have already been taken care of. This probably wouldn't
1884 combine anyway, but don't take any chances. */
1885 || (ureg
>= FIRST_PSEUDO_REGISTER
1886 && find_reg_note (insn
, REG_NO_CONFLICT
, usedreg
))
1887 /* Don't tie something to itself. In most cases it would make no
1888 difference, but it would screw up if the reg being tied to itself
1889 also dies in this insn. */
1891 /* Don't try to connect two different hardware registers. */
1892 || (ureg
< FIRST_PSEUDO_REGISTER
&& sreg
< FIRST_PSEUDO_REGISTER
)
1893 /* Don't connect two different machine modes if they have different
1894 implications as to which registers may be used. */
1895 || !MODES_TIEABLE_P (GET_MODE (usedreg
), GET_MODE (setreg
)))
1898 /* Now, if UREG is a hard reg and SREG is a pseudo, record the hard reg in
1899 qty_phys_sugg for the pseudo instead of tying them.
1901 Return "failure" so that the lifespan of UREG is terminated here;
1902 that way the two lifespans will be disjoint and nothing will prevent
1903 the pseudo reg from being given this hard reg. */
1905 if (ureg
< FIRST_PSEUDO_REGISTER
)
1907 /* Allocate a quantity number so we have a place to put our
1909 if (reg_qty
[sreg
] == -2)
1910 reg_is_born (setreg
, 2 * insn_number
);
1912 if (reg_qty
[sreg
] >= 0)
1915 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg
[reg_qty
[sreg
]], ureg
))
1917 SET_HARD_REG_BIT (qty_phys_copy_sugg
[reg_qty
[sreg
]], ureg
);
1918 qty_phys_num_copy_sugg
[reg_qty
[sreg
]]++;
1920 else if (! TEST_HARD_REG_BIT (qty_phys_sugg
[reg_qty
[sreg
]], ureg
))
1922 SET_HARD_REG_BIT (qty_phys_sugg
[reg_qty
[sreg
]], ureg
);
1923 qty_phys_num_sugg
[reg_qty
[sreg
]]++;
1929 /* Similarly for SREG a hard register and UREG a pseudo register. */
1931 if (sreg
< FIRST_PSEUDO_REGISTER
)
1934 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg
[reg_qty
[ureg
]], sreg
))
1936 SET_HARD_REG_BIT (qty_phys_copy_sugg
[reg_qty
[ureg
]], sreg
);
1937 qty_phys_num_copy_sugg
[reg_qty
[ureg
]]++;
1939 else if (! TEST_HARD_REG_BIT (qty_phys_sugg
[reg_qty
[ureg
]], sreg
))
1941 SET_HARD_REG_BIT (qty_phys_sugg
[reg_qty
[ureg
]], sreg
);
1942 qty_phys_num_sugg
[reg_qty
[ureg
]]++;
1947 /* At this point we know that SREG and UREG are both pseudos.
1948 Do nothing if SREG already has a quantity or is a register that we
1950 if (reg_qty
[sreg
] >= -1
1951 /* If we are not going to let any regs live across calls,
1952 don't tie a call-crossing reg to a non-call-crossing reg. */
1953 || (current_function_has_nonlocal_label
1954 && ((REG_N_CALLS_CROSSED (ureg
) > 0)
1955 != (REG_N_CALLS_CROSSED (sreg
) > 0))))
1958 /* We don't already know about SREG, so tie it to UREG
1959 if this is the last use of UREG, provided the classes they want
1962 if ((already_dead
|| find_regno_note (insn
, REG_DEAD
, ureg
))
1963 && reg_meets_class_p (sreg
, qty
[reg_qty
[ureg
]].min_class
))
1965 /* Add SREG to UREG's quantity. */
1966 sqty
= reg_qty
[ureg
];
1967 reg_qty
[sreg
] = sqty
;
1968 reg_offset
[sreg
] = reg_offset
[ureg
] + offset
;
1969 reg_next_in_qty
[sreg
] = qty
[sqty
].first_reg
;
1970 qty
[sqty
].first_reg
= sreg
;
1972 /* If SREG's reg class is smaller, set qty[SQTY].min_class. */
1973 update_qty_class (sqty
, sreg
);
1975 /* Update info about quantity SQTY. */
1976 qty
[sqty
].n_calls_crossed
+= REG_N_CALLS_CROSSED (sreg
);
1977 qty
[sqty
].n_refs
+= REG_N_REFS (sreg
);
1978 qty
[sqty
].freq
+= REG_FREQ (sreg
);
1983 for (i
= qty
[sqty
].first_reg
; i
>= 0; i
= reg_next_in_qty
[i
])
1984 reg_offset
[i
] -= offset
;
1986 qty
[sqty
].size
= ssize
;
1987 qty
[sqty
].mode
= GET_MODE (setreg
);
1996 /* Return 1 if the preferred class of REG allows it to be tied
1997 to a quantity or register whose class is CLASS.
1998 True if REG's reg class either contains or is contained in CLASS. */
2001 reg_meets_class_p (reg
, class)
2003 enum reg_class
class;
2005 enum reg_class rclass
= reg_preferred_class (reg
);
2006 return (reg_class_subset_p (rclass
, class)
2007 || reg_class_subset_p (class, rclass
));
2010 /* Update the class of QTYNO assuming that REG is being tied to it. */
2013 update_qty_class (qtyno
, reg
)
2017 enum reg_class rclass
= reg_preferred_class (reg
);
2018 if (reg_class_subset_p (rclass
, qty
[qtyno
].min_class
))
2019 qty
[qtyno
].min_class
= rclass
;
2021 rclass
= reg_alternate_class (reg
);
2022 if (reg_class_subset_p (rclass
, qty
[qtyno
].alternate_class
))
2023 qty
[qtyno
].alternate_class
= rclass
;
2026 /* Handle something which alters the value of an rtx REG.
2028 REG is whatever is set or clobbered. SETTER is the rtx that
2029 is modifying the register.
2031 If it is not really a register, we do nothing.
2032 The file-global variables `this_insn' and `this_insn_number'
2033 carry info from `block_alloc'. */
2036 reg_is_set (reg
, setter
, data
)
2039 void *data ATTRIBUTE_UNUSED
;
2041 /* Note that note_stores will only pass us a SUBREG if it is a SUBREG of
2042 a hard register. These may actually not exist any more. */
2044 if (GET_CODE (reg
) != SUBREG
2045 && GET_CODE (reg
) != REG
)
2048 /* Mark this register as being born. If it is used in a CLOBBER, mark
2049 it as being born halfway between the previous insn and this insn so that
2050 it conflicts with our inputs but not the outputs of the previous insn. */
2052 reg_is_born (reg
, 2 * this_insn_number
- (GET_CODE (setter
) == CLOBBER
));
2055 /* Handle beginning of the life of register REG.
2056 BIRTH is the index at which this is happening. */
2059 reg_is_born (reg
, birth
)
2065 if (GET_CODE (reg
) == SUBREG
)
2067 regno
= REGNO (SUBREG_REG (reg
));
2068 if (regno
< FIRST_PSEUDO_REGISTER
)
2069 regno
= subreg_hard_regno (reg
, 1);
2072 regno
= REGNO (reg
);
2074 if (regno
< FIRST_PSEUDO_REGISTER
)
2076 mark_life (regno
, GET_MODE (reg
), 1);
2078 /* If the register was to have been born earlier that the present
2079 insn, mark it as live where it is actually born. */
2080 if (birth
< 2 * this_insn_number
)
2081 post_mark_life (regno
, GET_MODE (reg
), 1, birth
, 2 * this_insn_number
);
2085 if (reg_qty
[regno
] == -2)
2086 alloc_qty (regno
, GET_MODE (reg
), PSEUDO_REGNO_SIZE (regno
), birth
);
2088 /* If this register has a quantity number, show that it isn't dead. */
2089 if (reg_qty
[regno
] >= 0)
2090 qty
[reg_qty
[regno
]].death
= -1;
2094 /* Record the death of REG in the current insn. If OUTPUT_P is nonzero,
2095 REG is an output that is dying (i.e., it is never used), otherwise it
2096 is an input (the normal case).
2097 If OUTPUT_P is 1, then we extend the life past the end of this insn. */
2100 wipe_dead_reg (reg
, output_p
)
2104 int regno
= REGNO (reg
);
2106 /* If this insn has multiple results,
2107 and the dead reg is used in one of the results,
2108 extend its life to after this insn,
2109 so it won't get allocated together with any other result of this insn.
2111 It is unsafe to use !single_set here since it will ignore an unused
2112 output. Just because an output is unused does not mean the compiler
2113 can assume the side effect will not occur. Consider if REG appears
2114 in the address of an output and we reload the output. If we allocate
2115 REG to the same hard register as an unused output we could set the hard
2116 register before the output reload insn. */
2117 if (GET_CODE (PATTERN (this_insn
)) == PARALLEL
2118 && multiple_sets (this_insn
))
2121 for (i
= XVECLEN (PATTERN (this_insn
), 0) - 1; i
>= 0; i
--)
2123 rtx set
= XVECEXP (PATTERN (this_insn
), 0, i
);
2124 if (GET_CODE (set
) == SET
2125 && GET_CODE (SET_DEST (set
)) != REG
2126 && !rtx_equal_p (reg
, SET_DEST (set
))
2127 && reg_overlap_mentioned_p (reg
, SET_DEST (set
)))
2132 /* If this register is used in an auto-increment address, then extend its
2133 life to after this insn, so that it won't get allocated together with
2134 the result of this insn. */
2135 if (! output_p
&& find_regno_note (this_insn
, REG_INC
, regno
))
2138 if (regno
< FIRST_PSEUDO_REGISTER
)
2140 mark_life (regno
, GET_MODE (reg
), 0);
2142 /* If a hard register is dying as an output, mark it as in use at
2143 the beginning of this insn (the above statement would cause this
2146 post_mark_life (regno
, GET_MODE (reg
), 1,
2147 2 * this_insn_number
, 2 * this_insn_number
+ 1);
2150 else if (reg_qty
[regno
] >= 0)
2151 qty
[reg_qty
[regno
]].death
= 2 * this_insn_number
+ output_p
;
2154 /* Find a block of SIZE words of hard regs in reg_class CLASS
2155 that can hold something of machine-mode MODE
2156 (but actually we test only the first of the block for holding MODE)
2157 and still free between insn BORN_INDEX and insn DEAD_INDEX,
2158 and return the number of the first of them.
2159 Return -1 if such a block cannot be found.
2160 If QTYNO crosses calls, insist on a register preserved by calls,
2161 unless ACCEPT_CALL_CLOBBERED is nonzero.
2163 If JUST_TRY_SUGGESTED is nonzero, only try to see if the suggested
2164 register is available. If not, return -1. */
2167 find_free_reg (class, mode
, qtyno
, accept_call_clobbered
, just_try_suggested
,
2168 born_index
, dead_index
)
2169 enum reg_class
class;
2170 enum machine_mode mode
;
2172 int accept_call_clobbered
;
2173 int just_try_suggested
;
2174 int born_index
, dead_index
;
2177 HARD_REG_SET first_used
, used
;
2178 #ifdef ELIMINABLE_REGS
2179 static const struct {const int from
, to
; } eliminables
[] = ELIMINABLE_REGS
;
2182 /* Validate our parameters. */
2183 if (born_index
< 0 || born_index
> dead_index
)
2186 /* Don't let a pseudo live in a reg across a function call
2187 if we might get a nonlocal goto. */
2188 if (current_function_has_nonlocal_label
2189 && qty
[qtyno
].n_calls_crossed
> 0)
2192 if (accept_call_clobbered
)
2193 COPY_HARD_REG_SET (used
, call_fixed_reg_set
);
2194 else if (qty
[qtyno
].n_calls_crossed
== 0)
2195 COPY_HARD_REG_SET (used
, fixed_reg_set
);
2197 COPY_HARD_REG_SET (used
, call_used_reg_set
);
2199 if (accept_call_clobbered
)
2200 IOR_HARD_REG_SET (used
, losing_caller_save_reg_set
);
2202 for (ins
= born_index
; ins
< dead_index
; ins
++)
2203 IOR_HARD_REG_SET (used
, regs_live_at
[ins
]);
2205 IOR_COMPL_HARD_REG_SET (used
, reg_class_contents
[(int) class]);
2207 /* Don't use the frame pointer reg in local-alloc even if
2208 we may omit the frame pointer, because if we do that and then we
2209 need a frame pointer, reload won't know how to move the pseudo
2210 to another hard reg. It can move only regs made by global-alloc.
2212 This is true of any register that can be eliminated. */
2213 #ifdef ELIMINABLE_REGS
2214 for (i
= 0; i
< (int) ARRAY_SIZE (eliminables
); i
++)
2215 SET_HARD_REG_BIT (used
, eliminables
[i
].from
);
2216 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2217 /* If FRAME_POINTER_REGNUM is not a real register, then protect the one
2218 that it might be eliminated into. */
2219 SET_HARD_REG_BIT (used
, HARD_FRAME_POINTER_REGNUM
);
2222 SET_HARD_REG_BIT (used
, FRAME_POINTER_REGNUM
);
2225 #ifdef CANNOT_CHANGE_MODE_CLASS
2226 cannot_change_mode_set_regs (&used
, mode
, qty
[qtyno
].first_reg
);
2229 /* Normally, the registers that can be used for the first register in
2230 a multi-register quantity are the same as those that can be used for
2231 subsequent registers. However, if just trying suggested registers,
2232 restrict our consideration to them. If there are copy-suggested
2233 register, try them. Otherwise, try the arithmetic-suggested
2235 COPY_HARD_REG_SET (first_used
, used
);
2237 if (just_try_suggested
)
2239 if (qty_phys_num_copy_sugg
[qtyno
] != 0)
2240 IOR_COMPL_HARD_REG_SET (first_used
, qty_phys_copy_sugg
[qtyno
]);
2242 IOR_COMPL_HARD_REG_SET (first_used
, qty_phys_sugg
[qtyno
]);
2245 /* If all registers are excluded, we can't do anything. */
2246 GO_IF_HARD_REG_SUBSET (reg_class_contents
[(int) ALL_REGS
], first_used
, fail
);
2248 /* If at least one would be suitable, test each hard reg. */
2250 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2252 #ifdef REG_ALLOC_ORDER
2253 int regno
= reg_alloc_order
[i
];
2257 if (! TEST_HARD_REG_BIT (first_used
, regno
)
2258 && HARD_REGNO_MODE_OK (regno
, mode
)
2259 && (qty
[qtyno
].n_calls_crossed
== 0
2260 || accept_call_clobbered
2261 || ! HARD_REGNO_CALL_PART_CLOBBERED (regno
, mode
)))
2264 int size1
= HARD_REGNO_NREGS (regno
, mode
);
2265 for (j
= 1; j
< size1
&& ! TEST_HARD_REG_BIT (used
, regno
+ j
); j
++);
2268 /* Mark that this register is in use between its birth and death
2270 post_mark_life (regno
, mode
, 1, born_index
, dead_index
);
2273 #ifndef REG_ALLOC_ORDER
2274 /* Skip starting points we know will lose. */
2281 /* If we are just trying suggested register, we have just tried copy-
2282 suggested registers, and there are arithmetic-suggested registers,
2285 /* If it would be profitable to allocate a call-clobbered register
2286 and save and restore it around calls, do that. */
2287 if (just_try_suggested
&& qty_phys_num_copy_sugg
[qtyno
] != 0
2288 && qty_phys_num_sugg
[qtyno
] != 0)
2290 /* Don't try the copy-suggested regs again. */
2291 qty_phys_num_copy_sugg
[qtyno
] = 0;
2292 return find_free_reg (class, mode
, qtyno
, accept_call_clobbered
, 1,
2293 born_index
, dead_index
);
2296 /* We need not check to see if the current function has nonlocal
2297 labels because we don't put any pseudos that are live over calls in
2298 registers in that case. */
2300 if (! accept_call_clobbered
2301 && flag_caller_saves
2302 && ! just_try_suggested
2303 && qty
[qtyno
].n_calls_crossed
!= 0
2304 && CALLER_SAVE_PROFITABLE (qty
[qtyno
].n_refs
,
2305 qty
[qtyno
].n_calls_crossed
))
2307 i
= find_free_reg (class, mode
, qtyno
, 1, 0, born_index
, dead_index
);
2309 caller_save_needed
= 1;
2315 /* Mark that REGNO with machine-mode MODE is live starting from the current
2316 insn (if LIFE is nonzero) or dead starting at the current insn (if LIFE
2320 mark_life (regno
, mode
, life
)
2322 enum machine_mode mode
;
2325 int j
= HARD_REGNO_NREGS (regno
, mode
);
2328 SET_HARD_REG_BIT (regs_live
, regno
+ j
);
2331 CLEAR_HARD_REG_BIT (regs_live
, regno
+ j
);
2334 /* Mark register number REGNO (with machine-mode MODE) as live (if LIFE
2335 is nonzero) or dead (if LIFE is zero) from insn number BIRTH (inclusive)
2336 to insn number DEATH (exclusive). */
2339 post_mark_life (regno
, mode
, life
, birth
, death
)
2341 enum machine_mode mode
;
2342 int life
, birth
, death
;
2344 int j
= HARD_REGNO_NREGS (regno
, mode
);
2346 /* Declare it register if it's a scalar. */
2349 HARD_REG_SET this_reg
;
2351 CLEAR_HARD_REG_SET (this_reg
);
2353 SET_HARD_REG_BIT (this_reg
, regno
+ j
);
2356 while (birth
< death
)
2358 IOR_HARD_REG_SET (regs_live_at
[birth
], this_reg
);
2362 while (birth
< death
)
2364 AND_COMPL_HARD_REG_SET (regs_live_at
[birth
], this_reg
);
2369 /* INSN is the CLOBBER insn that starts a REG_NO_NOCONFLICT block, R0
2370 is the register being clobbered, and R1 is a register being used in
2371 the equivalent expression.
2373 If R1 dies in the block and has a REG_NO_CONFLICT note on every insn
2374 in which it is used, return 1.
2376 Otherwise, return 0. */
2379 no_conflict_p (insn
, r0
, r1
)
2380 rtx insn
, r0 ATTRIBUTE_UNUSED
, r1
;
2383 rtx note
= find_reg_note (insn
, REG_LIBCALL
, NULL_RTX
);
2386 /* If R1 is a hard register, return 0 since we handle this case
2387 when we scan the insns that actually use it. */
2390 || (GET_CODE (r1
) == REG
&& REGNO (r1
) < FIRST_PSEUDO_REGISTER
)
2391 || (GET_CODE (r1
) == SUBREG
&& GET_CODE (SUBREG_REG (r1
)) == REG
2392 && REGNO (SUBREG_REG (r1
)) < FIRST_PSEUDO_REGISTER
))
2395 last
= XEXP (note
, 0);
2397 for (p
= NEXT_INSN (insn
); p
&& p
!= last
; p
= NEXT_INSN (p
))
2400 if (find_reg_note (p
, REG_DEAD
, r1
))
2403 /* There must be a REG_NO_CONFLICT note on every insn, otherwise
2404 some earlier optimization pass has inserted instructions into
2405 the sequence, and it is not safe to perform this optimization.
2406 Note that emit_no_conflict_block always ensures that this is
2407 true when these sequences are created. */
2408 if (! find_reg_note (p
, REG_NO_CONFLICT
, r1
))
2415 /* Return the number of alternatives for which the constraint string P
2416 indicates that the operand must be equal to operand 0 and that no register
2425 int reg_allowed
= 0;
2426 int num_matching_alts
= 0;
2431 case '=': case '+': case '?':
2432 case '#': case '&': case '!':
2434 case 'm': case '<': case '>': case 'V': case 'o':
2435 case 'E': case 'F': case 'G': case 'H':
2436 case 's': case 'i': case 'n':
2437 case 'I': case 'J': case 'K': case 'L':
2438 case 'M': case 'N': case 'O': case 'P':
2440 /* These don't say anything we care about. */
2444 if (found_zero
&& ! reg_allowed
)
2445 num_matching_alts
++;
2447 found_zero
= reg_allowed
= 0;
2454 case '1': case '2': case '3': case '4': case '5':
2455 case '6': case '7': case '8': case '9':
2456 /* Skip the balance of the matching constraint. */
2457 while (ISDIGIT (*p
))
2462 if (REG_CLASS_FROM_LETTER (c
) == NO_REGS
2463 && !EXTRA_ADDRESS_CONSTRAINT (c
))
2472 if (found_zero
&& ! reg_allowed
)
2473 num_matching_alts
++;
2475 return num_matching_alts
;
2479 dump_local_alloc (file
)
2483 for (i
= FIRST_PSEUDO_REGISTER
; i
< max_regno
; i
++)
2484 if (reg_renumber
[i
] != -1)
2485 fprintf (file
, ";; Register %d in %d.\n", i
, reg_renumber
[i
]);