cselib.c (cselib_current_insn_in_libcall): New static variable.
[official-gcc.git] / gcc / ada / s-fatgen.adb
blob3680fe3878952c2cd00adf8b2f063f1e96342b79
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S Y S T E M . F A T _ G E N --
6 -- --
7 -- B o d y --
8 -- --
9 -- --
10 -- Copyright (C) 1992-2001 Free Software Foundation, Inc. --
11 -- --
12 -- GNAT is free software; you can redistribute it and/or modify it under --
13 -- terms of the GNU General Public License as published by the Free Soft- --
14 -- ware Foundation; either version 2, or (at your option) any later ver- --
15 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
16 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
17 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
18 -- for more details. You should have received a copy of the GNU General --
19 -- Public License distributed with GNAT; see file COPYING. If not, write --
20 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
21 -- MA 02111-1307, USA. --
22 -- --
23 -- As a special exception, if other files instantiate generics from this --
24 -- unit, or you link this unit with other files to produce an executable, --
25 -- this unit does not by itself cause the resulting executable to be --
26 -- covered by the GNU General Public License. This exception does not --
27 -- however invalidate any other reasons why the executable file might be --
28 -- covered by the GNU Public License. --
29 -- --
30 -- GNAT was originally developed by the GNAT team at New York University. --
31 -- Extensive contributions were provided by Ada Core Technologies Inc. --
32 -- --
33 ------------------------------------------------------------------------------
35 -- The implementation here is portable to any IEEE implementation. It does
36 -- not handle non-binary radix, and also assumes that model numbers and
37 -- machine numbers are basically identical, which is not true of all possible
38 -- floating-point implementations. On a non-IEEE machine, this body must be
39 -- specialized appropriately, or better still, its generic instantiations
40 -- should be replaced by efficient machine-specific code.
42 with Ada.Unchecked_Conversion;
43 with System;
44 package body System.Fat_Gen is
46 Float_Radix : constant T := T (T'Machine_Radix);
47 Float_Radix_Inv : constant T := 1.0 / Float_Radix;
48 Radix_To_M_Minus_1 : constant T := Float_Radix ** (T'Machine_Mantissa - 1);
50 pragma Assert (T'Machine_Radix = 2);
51 -- This version does not handle radix 16
53 -- Constants for Decompose and Scaling
55 Rad : constant T := T (T'Machine_Radix);
56 Invrad : constant T := 1.0 / Rad;
58 subtype Expbits is Integer range 0 .. 6;
59 -- 2 ** (2 ** 7) might overflow. how big can radix-16 exponents get?
61 Log_Power : constant array (Expbits) of Integer := (1, 2, 4, 8, 16, 32, 64);
63 R_Power : constant array (Expbits) of T :=
64 (Rad ** 1,
65 Rad ** 2,
66 Rad ** 4,
67 Rad ** 8,
68 Rad ** 16,
69 Rad ** 32,
70 Rad ** 64);
72 R_Neg_Power : constant array (Expbits) of T :=
73 (Invrad ** 1,
74 Invrad ** 2,
75 Invrad ** 4,
76 Invrad ** 8,
77 Invrad ** 16,
78 Invrad ** 32,
79 Invrad ** 64);
81 -----------------------
82 -- Local Subprograms --
83 -----------------------
85 procedure Decompose (XX : T; Frac : out T; Expo : out UI);
86 -- Decomposes a floating-point number into fraction and exponent parts
88 function Gradual_Scaling (Adjustment : UI) return T;
89 -- Like Scaling with a first argument of 1.0, but returns the smallest
90 -- denormal rather than zero when the adjustment is smaller than
91 -- Machine_Emin. Used for Succ and Pred.
93 --------------
94 -- Adjacent --
95 --------------
97 function Adjacent (X, Towards : T) return T is
98 begin
99 if Towards = X then
100 return X;
102 elsif Towards > X then
103 return Succ (X);
105 else
106 return Pred (X);
107 end if;
108 end Adjacent;
110 -------------
111 -- Ceiling --
112 -------------
114 function Ceiling (X : T) return T is
115 XT : constant T := Truncation (X);
117 begin
118 if X <= 0.0 then
119 return XT;
121 elsif X = XT then
122 return X;
124 else
125 return XT + 1.0;
126 end if;
127 end Ceiling;
129 -------------
130 -- Compose --
131 -------------
133 function Compose (Fraction : T; Exponent : UI) return T is
134 Arg_Frac : T;
135 Arg_Exp : UI;
137 begin
138 Decompose (Fraction, Arg_Frac, Arg_Exp);
139 return Scaling (Arg_Frac, Exponent);
140 end Compose;
142 ---------------
143 -- Copy_Sign --
144 ---------------
146 function Copy_Sign (Value, Sign : T) return T is
147 Result : T;
149 function Is_Negative (V : T) return Boolean;
150 pragma Import (Intrinsic, Is_Negative);
152 begin
153 Result := abs Value;
155 if Is_Negative (Sign) then
156 return -Result;
157 else
158 return Result;
159 end if;
160 end Copy_Sign;
162 ---------------
163 -- Decompose --
164 ---------------
166 procedure Decompose (XX : T; Frac : out T; Expo : out UI) is
167 X : T := T'Machine (XX);
169 begin
170 if X = 0.0 then
171 Frac := X;
172 Expo := 0;
174 -- More useful would be defining Expo to be T'Machine_Emin - 1 or
175 -- T'Machine_Emin - T'Machine_Mantissa, which would preserve
176 -- monotonicity of the exponent function ???
178 -- Check for infinities, transfinites, whatnot.
180 elsif X > T'Safe_Last then
181 Frac := Invrad;
182 Expo := T'Machine_Emax + 1;
184 elsif X < T'Safe_First then
185 Frac := -Invrad;
186 Expo := T'Machine_Emax + 2; -- how many extra negative values?
188 else
189 -- Case of nonzero finite x. Essentially, we just multiply
190 -- by Rad ** (+-2**N) to reduce the range.
192 declare
193 Ax : T := abs X;
194 Ex : UI := 0;
196 -- Ax * Rad ** Ex is invariant.
198 begin
199 if Ax >= 1.0 then
200 while Ax >= R_Power (Expbits'Last) loop
201 Ax := Ax * R_Neg_Power (Expbits'Last);
202 Ex := Ex + Log_Power (Expbits'Last);
203 end loop;
205 -- Ax < Rad ** 64
207 for N in reverse Expbits'First .. Expbits'Last - 1 loop
208 if Ax >= R_Power (N) then
209 Ax := Ax * R_Neg_Power (N);
210 Ex := Ex + Log_Power (N);
211 end if;
213 -- Ax < R_Power (N)
214 end loop;
216 -- 1 <= Ax < Rad
218 Ax := Ax * Invrad;
219 Ex := Ex + 1;
221 else
222 -- 0 < ax < 1
224 while Ax < R_Neg_Power (Expbits'Last) loop
225 Ax := Ax * R_Power (Expbits'Last);
226 Ex := Ex - Log_Power (Expbits'Last);
227 end loop;
229 -- Rad ** -64 <= Ax < 1
231 for N in reverse Expbits'First .. Expbits'Last - 1 loop
232 if Ax < R_Neg_Power (N) then
233 Ax := Ax * R_Power (N);
234 Ex := Ex - Log_Power (N);
235 end if;
237 -- R_Neg_Power (N) <= Ax < 1
238 end loop;
239 end if;
241 if X > 0.0 then
242 Frac := Ax;
243 else
244 Frac := -Ax;
245 end if;
247 Expo := Ex;
248 end;
249 end if;
250 end Decompose;
252 --------------
253 -- Exponent --
254 --------------
256 function Exponent (X : T) return UI is
257 X_Frac : T;
258 X_Exp : UI;
260 begin
261 Decompose (X, X_Frac, X_Exp);
262 return X_Exp;
263 end Exponent;
265 -----------
266 -- Floor --
267 -----------
269 function Floor (X : T) return T is
270 XT : constant T := Truncation (X);
272 begin
273 if X >= 0.0 then
274 return XT;
276 elsif XT = X then
277 return X;
279 else
280 return XT - 1.0;
281 end if;
282 end Floor;
284 --------------
285 -- Fraction --
286 --------------
288 function Fraction (X : T) return T is
289 X_Frac : T;
290 X_Exp : UI;
292 begin
293 Decompose (X, X_Frac, X_Exp);
294 return X_Frac;
295 end Fraction;
297 ---------------------
298 -- Gradual_Scaling --
299 ---------------------
301 function Gradual_Scaling (Adjustment : UI) return T is
302 Y : T;
303 Y1 : T;
304 Ex : UI := Adjustment;
306 begin
307 if Adjustment < T'Machine_Emin then
308 Y := 2.0 ** T'Machine_Emin;
309 Y1 := Y;
310 Ex := Ex - T'Machine_Emin;
312 while Ex <= 0 loop
313 Y := T'Machine (Y / 2.0);
315 if Y = 0.0 then
316 return Y1;
317 end if;
319 Ex := Ex + 1;
320 Y1 := Y;
321 end loop;
323 return Y1;
325 else
326 return Scaling (1.0, Adjustment);
327 end if;
328 end Gradual_Scaling;
330 ------------------
331 -- Leading_Part --
332 ------------------
334 function Leading_Part (X : T; Radix_Digits : UI) return T is
335 L : UI;
336 Y, Z : T;
338 begin
339 if Radix_Digits >= T'Machine_Mantissa then
340 return X;
342 else
343 L := Exponent (X) - Radix_Digits;
344 Y := Truncation (Scaling (X, -L));
345 Z := Scaling (Y, L);
346 return Z;
347 end if;
349 end Leading_Part;
351 -------------
352 -- Machine --
353 -------------
355 -- The trick with Machine is to force the compiler to store the result
356 -- in memory so that we do not have extra precision used. The compiler
357 -- is clever, so we have to outwit its possible optimizations! We do
358 -- this by using an intermediate pragma Volatile location.
360 function Machine (X : T) return T is
361 Temp : T;
362 pragma Volatile (Temp);
364 begin
365 Temp := X;
366 return Temp;
367 end Machine;
369 -----------
370 -- Model --
371 -----------
373 -- We treat Model as identical to Machine. This is true of IEEE and other
374 -- nice floating-point systems, but not necessarily true of all systems.
376 function Model (X : T) return T is
377 begin
378 return Machine (X);
379 end Model;
381 ----------
382 -- Pred --
383 ----------
385 -- Subtract from the given number a number equivalent to the value of its
386 -- least significant bit. Given that the most significant bit represents
387 -- a value of 1.0 * radix ** (exp - 1), the value we want is obtained by
388 -- shifting this by (mantissa-1) bits to the right, i.e. decreasing the
389 -- exponent by that amount.
391 -- Zero has to be treated specially, since its exponent is zero
393 function Pred (X : T) return T is
394 X_Frac : T;
395 X_Exp : UI;
397 begin
398 if X = 0.0 then
399 return -Succ (X);
401 else
402 Decompose (X, X_Frac, X_Exp);
404 -- A special case, if the number we had was a positive power of
405 -- two, then we want to subtract half of what we would otherwise
406 -- subtract, since the exponent is going to be reduced.
408 if X_Frac = 0.5 and then X > 0.0 then
409 return X - Gradual_Scaling (X_Exp - T'Machine_Mantissa - 1);
411 -- Otherwise the exponent stays the same
413 else
414 return X - Gradual_Scaling (X_Exp - T'Machine_Mantissa);
415 end if;
416 end if;
417 end Pred;
419 ---------------
420 -- Remainder --
421 ---------------
423 function Remainder (X, Y : T) return T is
424 A : T;
425 B : T;
426 Arg : T;
427 P : T;
428 Arg_Frac : T;
429 P_Frac : T;
430 Sign_X : T;
431 IEEE_Rem : T;
432 Arg_Exp : UI;
433 P_Exp : UI;
434 K : UI;
435 P_Even : Boolean;
437 begin
438 if X > 0.0 then
439 Sign_X := 1.0;
440 Arg := X;
441 else
442 Sign_X := -1.0;
443 Arg := -X;
444 end if;
446 P := abs Y;
448 if Arg < P then
449 P_Even := True;
450 IEEE_Rem := Arg;
451 P_Exp := Exponent (P);
453 else
454 Decompose (Arg, Arg_Frac, Arg_Exp);
455 Decompose (P, P_Frac, P_Exp);
457 P := Compose (P_Frac, Arg_Exp);
458 K := Arg_Exp - P_Exp;
459 P_Even := True;
460 IEEE_Rem := Arg;
462 for Cnt in reverse 0 .. K loop
463 if IEEE_Rem >= P then
464 P_Even := False;
465 IEEE_Rem := IEEE_Rem - P;
466 else
467 P_Even := True;
468 end if;
470 P := P * 0.5;
471 end loop;
472 end if;
474 -- That completes the calculation of modulus remainder. The final
475 -- step is get the IEEE remainder. Here we need to compare Rem with
476 -- (abs Y) / 2. We must be careful of unrepresentable Y/2 value
477 -- caused by subnormal numbers
479 if P_Exp >= 0 then
480 A := IEEE_Rem;
481 B := abs Y * 0.5;
483 else
484 A := IEEE_Rem * 2.0;
485 B := abs Y;
486 end if;
488 if A > B or else (A = B and then not P_Even) then
489 IEEE_Rem := IEEE_Rem - abs Y;
490 end if;
492 return Sign_X * IEEE_Rem;
494 end Remainder;
496 --------------
497 -- Rounding --
498 --------------
500 function Rounding (X : T) return T is
501 Result : T;
502 Tail : T;
504 begin
505 Result := Truncation (abs X);
506 Tail := abs X - Result;
508 if Tail >= 0.5 then
509 Result := Result + 1.0;
510 end if;
512 if X > 0.0 then
513 return Result;
515 elsif X < 0.0 then
516 return -Result;
518 -- For zero case, make sure sign of zero is preserved
520 else
521 return X;
522 end if;
524 end Rounding;
526 -------------
527 -- Scaling --
528 -------------
530 -- Return x * rad ** adjustment quickly,
531 -- or quietly underflow to zero, or overflow naturally.
533 function Scaling (X : T; Adjustment : UI) return T is
534 begin
535 if X = 0.0 or else Adjustment = 0 then
536 return X;
537 end if;
539 -- Nonzero x. essentially, just multiply repeatedly by Rad ** (+-2**n).
541 declare
542 Y : T := X;
543 Ex : UI := Adjustment;
545 -- Y * Rad ** Ex is invariant
547 begin
548 if Ex < 0 then
549 while Ex <= -Log_Power (Expbits'Last) loop
550 Y := Y * R_Neg_Power (Expbits'Last);
551 Ex := Ex + Log_Power (Expbits'Last);
552 end loop;
554 -- -64 < Ex <= 0
556 for N in reverse Expbits'First .. Expbits'Last - 1 loop
557 if Ex <= -Log_Power (N) then
558 Y := Y * R_Neg_Power (N);
559 Ex := Ex + Log_Power (N);
560 end if;
562 -- -Log_Power (N) < Ex <= 0
563 end loop;
565 -- Ex = 0
567 else
568 -- Ex >= 0
570 while Ex >= Log_Power (Expbits'Last) loop
571 Y := Y * R_Power (Expbits'Last);
572 Ex := Ex - Log_Power (Expbits'Last);
573 end loop;
575 -- 0 <= Ex < 64
577 for N in reverse Expbits'First .. Expbits'Last - 1 loop
578 if Ex >= Log_Power (N) then
579 Y := Y * R_Power (N);
580 Ex := Ex - Log_Power (N);
581 end if;
583 -- 0 <= Ex < Log_Power (N)
584 end loop;
586 -- Ex = 0
587 end if;
588 return Y;
589 end;
590 end Scaling;
592 ----------
593 -- Succ --
594 ----------
596 -- Similar computation to that of Pred: find value of least significant
597 -- bit of given number, and add. Zero has to be treated specially since
598 -- the exponent can be zero, and also we want the smallest denormal if
599 -- denormals are supported.
601 function Succ (X : T) return T is
602 X_Frac : T;
603 X_Exp : UI;
604 X1, X2 : T;
606 begin
607 if X = 0.0 then
608 X1 := 2.0 ** T'Machine_Emin;
610 -- Following loop generates smallest denormal
612 loop
613 X2 := T'Machine (X1 / 2.0);
614 exit when X2 = 0.0;
615 X1 := X2;
616 end loop;
618 return X1;
620 else
621 Decompose (X, X_Frac, X_Exp);
623 -- A special case, if the number we had was a negative power of
624 -- two, then we want to add half of what we would otherwise add,
625 -- since the exponent is going to be reduced.
627 if X_Frac = 0.5 and then X < 0.0 then
628 return X + Gradual_Scaling (X_Exp - T'Machine_Mantissa - 1);
630 -- Otherwise the exponent stays the same
632 else
633 return X + Gradual_Scaling (X_Exp - T'Machine_Mantissa);
634 end if;
635 end if;
636 end Succ;
638 ----------------
639 -- Truncation --
640 ----------------
642 -- The basic approach is to compute
644 -- T'Machine (RM1 + N) - RM1.
646 -- where N >= 0.0 and RM1 = radix ** (mantissa - 1)
648 -- This works provided that the intermediate result (RM1 + N) does not
649 -- have extra precision (which is why we call Machine). When we compute
650 -- RM1 + N, the exponent of N will be normalized and the mantissa shifted
651 -- shifted appropriately so the lower order bits, which cannot contribute
652 -- to the integer part of N, fall off on the right. When we subtract RM1
653 -- again, the significant bits of N are shifted to the left, and what we
654 -- have is an integer, because only the first e bits are different from
655 -- zero (assuming binary radix here).
657 function Truncation (X : T) return T is
658 Result : T;
660 begin
661 Result := abs X;
663 if Result >= Radix_To_M_Minus_1 then
664 return Machine (X);
666 else
667 Result := Machine (Radix_To_M_Minus_1 + Result) - Radix_To_M_Minus_1;
669 if Result > abs X then
670 Result := Result - 1.0;
671 end if;
673 if X > 0.0 then
674 return Result;
676 elsif X < 0.0 then
677 return -Result;
679 -- For zero case, make sure sign of zero is preserved
681 else
682 return X;
683 end if;
684 end if;
686 end Truncation;
688 -----------------------
689 -- Unbiased_Rounding --
690 -----------------------
692 function Unbiased_Rounding (X : T) return T is
693 Abs_X : constant T := abs X;
694 Result : T;
695 Tail : T;
697 begin
698 Result := Truncation (Abs_X);
699 Tail := Abs_X - Result;
701 if Tail > 0.5 then
702 Result := Result + 1.0;
704 elsif Tail = 0.5 then
705 Result := 2.0 * Truncation ((Result / 2.0) + 0.5);
706 end if;
708 if X > 0.0 then
709 return Result;
711 elsif X < 0.0 then
712 return -Result;
714 -- For zero case, make sure sign of zero is preserved
716 else
717 return X;
718 end if;
720 end Unbiased_Rounding;
722 -----------
723 -- Valid --
724 -----------
726 function Valid (X : access T) return Boolean is
728 IEEE_Emin : constant Integer := T'Machine_Emin - 1;
729 IEEE_Emax : constant Integer := T'Machine_Emax - 1;
731 IEEE_Bias : constant Integer := -(IEEE_Emin - 1);
733 subtype IEEE_Exponent_Range is
734 Integer range IEEE_Emin - 1 .. IEEE_Emax + 1;
736 -- The implementation of this floating point attribute uses
737 -- a representation type Float_Rep that allows direct access to
738 -- the exponent and mantissa parts of a floating point number.
740 -- The Float_Rep type is an array of Float_Word elements. This
741 -- representation is chosen to make it possible to size the
742 -- type based on a generic parameter.
744 -- The following conditions must be met for all possible
745 -- instantiations of the attributes package:
747 -- - T'Size is an integral multiple of Float_Word'Size
749 -- - The exponent and sign are completely contained in a single
750 -- component of Float_Rep, named Most_Significant_Word (MSW).
752 -- - The sign occupies the most significant bit of the MSW
753 -- and the exponent is in the following bits.
754 -- Unused bits (if any) are in the least significant part.
756 type Float_Word is mod 2**32;
757 type Rep_Index is range 0 .. 7;
759 Rep_Last : constant Rep_Index := (T'Size - 1) / Float_Word'Size;
761 type Float_Rep is array (Rep_Index range 0 .. Rep_Last) of Float_Word;
763 Most_Significant_Word : constant Rep_Index :=
764 Rep_Last * Standard'Default_Bit_Order;
765 -- Finding the location of the Exponent_Word is a bit tricky.
766 -- In general we assume Word_Order = Bit_Order.
767 -- This expression needs to be refined for VMS.
769 Exponent_Factor : constant Float_Word :=
770 2**(Float_Word'Size - 1) /
771 Float_Word (IEEE_Emax - IEEE_Emin + 3) *
772 Boolean'Pos (T'Size /= 96) +
773 Boolean'Pos (T'Size = 96);
774 -- Factor that the extracted exponent needs to be divided by
775 -- to be in range 0 .. IEEE_Emax - IEEE_Emin + 2.
776 -- Special kludge: Exponent_Factor is 0 for x86 double extended
777 -- as GCC adds 16 unused bits to the type.
779 Exponent_Mask : constant Float_Word :=
780 Float_Word (IEEE_Emax - IEEE_Emin + 2) *
781 Exponent_Factor;
782 -- Value needed to mask out the exponent field.
783 -- This assumes that the range IEEE_Emin - 1 .. IEEE_Emax + 1
784 -- contains 2**N values, for some N in Natural.
786 function To_Float is new Ada.Unchecked_Conversion (Float_Rep, T);
788 type Float_Access is access all T;
789 function To_Address is
790 new Ada.Unchecked_Conversion (Float_Access, System.Address);
792 XA : constant System.Address := To_Address (Float_Access (X));
794 R : Float_Rep;
795 pragma Import (Ada, R);
796 for R'Address use XA;
797 -- R is a view of the input floating-point parameter. Note that we
798 -- must avoid copying the actual bits of this parameter in float
799 -- form (since it may be a signalling NaN.
801 E : constant IEEE_Exponent_Range :=
802 Integer ((R (Most_Significant_Word) and Exponent_Mask) /
803 Exponent_Factor)
804 - IEEE_Bias;
805 -- Mask/Shift T to only get bits from the exponent
806 -- Then convert biased value to integer value.
808 SR : Float_Rep;
809 -- Float_Rep representation of significant of X.all
811 begin
812 if T'Denorm then
814 -- All denormalized numbers are valid, so only invalid numbers
815 -- are overflows and NaN's, both with exponent = Emax + 1.
817 return E /= IEEE_Emax + 1;
819 end if;
821 -- All denormalized numbers except 0.0 are invalid
823 -- Set exponent of X to zero, so we end up with the significand, which
824 -- definitely is a valid number and can be converted back to a float.
826 SR := R;
827 SR (Most_Significant_Word) :=
828 (SR (Most_Significant_Word)
829 and not Exponent_Mask) + Float_Word (IEEE_Bias) * Exponent_Factor;
831 return (E in IEEE_Emin .. IEEE_Emax) or else
832 ((E = IEEE_Emin - 1) and then abs To_Float (SR) = 1.0);
833 end Valid;
835 end System.Fat_Gen;