cselib.c (cselib_current_insn_in_libcall): New static variable.
[official-gcc.git] / gcc / ada / exp_ch3.adb
blob3676b71c03b673556c5bc7f62ed246753e4da8f0
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- E X P _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- --
10 -- Copyright (C) 1992-2002 Free Software Foundation, Inc. --
11 -- --
12 -- GNAT is free software; you can redistribute it and/or modify it under --
13 -- terms of the GNU General Public License as published by the Free Soft- --
14 -- ware Foundation; either version 2, or (at your option) any later ver- --
15 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
16 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
17 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
18 -- for more details. You should have received a copy of the GNU General --
19 -- Public License distributed with GNAT; see file COPYING. If not, write --
20 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
21 -- MA 02111-1307, USA. --
22 -- --
23 -- GNAT was originally developed by the GNAT team at New York University. --
24 -- Extensive contributions were provided by Ada Core Technologies Inc. --
25 -- --
26 ------------------------------------------------------------------------------
28 with Atree; use Atree;
29 with Checks; use Checks;
30 with Einfo; use Einfo;
31 with Elists; use Elists;
32 with Errout; use Errout;
33 with Exp_Aggr; use Exp_Aggr;
34 with Exp_Ch4; use Exp_Ch4;
35 with Exp_Ch7; use Exp_Ch7;
36 with Exp_Ch9; use Exp_Ch9;
37 with Exp_Ch11; use Exp_Ch11;
38 with Exp_Disp; use Exp_Disp;
39 with Exp_Dist; use Exp_Dist;
40 with Exp_Smem; use Exp_Smem;
41 with Exp_Strm; use Exp_Strm;
42 with Exp_Tss; use Exp_Tss;
43 with Exp_Util; use Exp_Util;
44 with Freeze; use Freeze;
45 with Hostparm; use Hostparm;
46 with Nlists; use Nlists;
47 with Nmake; use Nmake;
48 with Opt; use Opt;
49 with Restrict; use Restrict;
50 with Rtsfind; use Rtsfind;
51 with Sem; use Sem;
52 with Sem_Ch3; use Sem_Ch3;
53 with Sem_Ch8; use Sem_Ch8;
54 with Sem_Eval; use Sem_Eval;
55 with Sem_Mech; use Sem_Mech;
56 with Sem_Res; use Sem_Res;
57 with Sem_Util; use Sem_Util;
58 with Sinfo; use Sinfo;
59 with Stand; use Stand;
60 with Snames; use Snames;
61 with Tbuild; use Tbuild;
62 with Ttypes; use Ttypes;
63 with Uintp; use Uintp;
64 with Validsw; use Validsw;
66 package body Exp_Ch3 is
68 -----------------------
69 -- Local Subprograms --
70 -----------------------
72 procedure Adjust_Discriminants (Rtype : Entity_Id);
73 -- This is used when freezing a record type. It attempts to construct
74 -- more restrictive subtypes for discriminants so that the max size of
75 -- the record can be calculated more accurately. See the body of this
76 -- procedure for details.
78 procedure Build_Array_Init_Proc (A_Type : Entity_Id; Nod : Node_Id);
79 -- Build initialization procedure for given array type. Nod is a node
80 -- used for attachment of any actions required in its construction.
81 -- It also supplies the source location used for the procedure.
83 procedure Build_Class_Wide_Master (T : Entity_Id);
84 -- for access to class-wide limited types we must build a task master
85 -- because some subsequent extension may add a task component. To avoid
86 -- bringing in the tasking run-time whenever an access-to-class-wide
87 -- limited type is used, we use the soft-link mechanism and add a level
88 -- of indirection to calls to routines that manipulate Master_Ids.
90 function Build_Discriminant_Formals
91 (Rec_Id : Entity_Id;
92 Use_Dl : Boolean)
93 return List_Id;
94 -- This function uses the discriminants of a type to build a list of
95 -- formal parameters, used in the following function. If the flag Use_Dl
96 -- is set, the list is built using the already defined discriminals
97 -- of the type. Otherwise new identifiers are created, with the source
98 -- names of the discriminants.
100 procedure Build_Master_Renaming (N : Node_Id; T : Entity_Id);
101 -- If the designated type of an access type is a task type or contains
102 -- tasks, we make sure that a _Master variable is declared in the current
103 -- scope, and then declare a renaming for it:
105 -- atypeM : Master_Id renames _Master;
107 -- where atyp is the name of the access type. This declaration is
108 -- used when an allocator for the access type is expanded. The node N
109 -- is the full declaration of the designated type that contains tasks.
110 -- The renaming declaration is inserted before N, and after the Master
111 -- declaration.
113 procedure Build_Record_Init_Proc (N : Node_Id; Pe : Entity_Id);
114 -- Build record initialization procedure. N is the type declaration
115 -- node, and Pe is the corresponding entity for the record type.
117 procedure Build_Variant_Record_Equality (Typ : Entity_Id);
118 -- Create An Equality function for the non-tagged variant record 'Typ'
119 -- and attach it to the TSS list
121 procedure Check_Stream_Attributes (Typ : Entity_Id);
122 -- Check that if a limited extension has a parent with user-defined
123 -- stream attributes, any limited component of the extension also has
124 -- the corresponding user-defined stream attributes.
126 procedure Expand_Tagged_Root (T : Entity_Id);
127 -- Add a field _Tag at the beginning of the record. This field carries
128 -- the value of the access to the Dispatch table. This procedure is only
129 -- called on root (non CPP_Class) types, the _Tag field being inherited
130 -- by the descendants.
132 procedure Expand_Record_Controller (T : Entity_Id);
133 -- T must be a record type that Has_Controlled_Component. Add a field _C
134 -- of type Record_Controller or Limited_Record_Controller in the record T.
136 procedure Freeze_Array_Type (N : Node_Id);
137 -- Freeze an array type. Deals with building the initialization procedure,
138 -- creating the packed array type for a packed array and also with the
139 -- creation of the controlling procedures for the controlled case. The
140 -- argument N is the N_Freeze_Entity node for the type.
142 procedure Freeze_Enumeration_Type (N : Node_Id);
143 -- Freeze enumeration type with non-standard representation. Builds the
144 -- array and function needed to convert between enumeration pos and
145 -- enumeration representation values. N is the N_Freeze_Entity node
146 -- for the type.
148 procedure Freeze_Record_Type (N : Node_Id);
149 -- Freeze record type. Builds all necessary discriminant checking
150 -- and other ancillary functions, and builds dispatch tables where
151 -- needed. The argument N is the N_Freeze_Entity node. This processing
152 -- applies only to E_Record_Type entities, not to class wide types,
153 -- record subtypes, or private types.
155 procedure Freeze_Stream_Operations (N : Node_Id; Typ : Entity_Id);
156 -- Treat user-defined stream operations as renaming_as_body if the
157 -- subprogram they rename is not frozen when the type is frozen.
159 function Init_Formals (Typ : Entity_Id) return List_Id;
160 -- This function builds the list of formals for an initialization routine.
161 -- The first formal is always _Init with the given type. For task value
162 -- record types and types containing tasks, three additional formals are
163 -- added:
165 -- _Master : Master_Id
166 -- _Chain : in out Activation_Chain
167 -- _Task_Id : Task_Image_Type
169 -- The caller must append additional entries for discriminants if required.
171 function In_Runtime (E : Entity_Id) return Boolean;
172 -- Check if E is defined in the RTL (in a child of Ada or System). Used
173 -- to avoid to bring in the overhead of _Input, _Output for tagged types.
175 function Make_Eq_Case (Node : Node_Id; CL : Node_Id) return List_Id;
176 -- Building block for variant record equality. Defined to share the
177 -- code between the tagged and non-tagged case. Given a Component_List
178 -- node CL, it generates an 'if' followed by a 'case' statement that
179 -- compares all components of local temporaries named X and Y (that
180 -- are declared as formals at some upper level). Node provides the
181 -- Sloc to be used for the generated code.
183 function Make_Eq_If (Node : Node_Id; L : List_Id) return Node_Id;
184 -- Building block for variant record equality. Defined to share the
185 -- code between the tagged and non-tagged case. Given the list of
186 -- components (or discriminants) L, it generates a return statement
187 -- that compares all components of local temporaries named X and Y
188 -- (that are declared as formals at some upper level). Node provides
189 -- the Sloc to be used for the generated code.
191 procedure Make_Predefined_Primitive_Specs
192 (Tag_Typ : Entity_Id;
193 Predef_List : out List_Id;
194 Renamed_Eq : out Node_Id);
195 -- Create a list with the specs of the predefined primitive operations.
196 -- This list contains _Size, _Read, _Write, _Input and _Output for
197 -- every tagged types, plus _equality, _assign, _deep_finalize and
198 -- _deep_adjust for non limited tagged types. _Size, _Read, _Write,
199 -- _Input and _Output implement the corresponding attributes that need
200 -- to be dispatching when their arguments are classwide. _equality and
201 -- _assign, implement equality and assignment that also must be
202 -- dispatching. _Deep_Finalize and _Deep_Adjust are empty procedures
203 -- unless the type contains some controlled components that require
204 -- finalization actions. The list is returned in Predef_List. The
205 -- parameter Renamed_Eq either returns the value Empty, or else the
206 -- defining unit name for the predefined equality function in the
207 -- case where the type has a primitive operation that is a renaming
208 -- of predefined equality (but only if there is also an overriding
209 -- user-defined equality function). The returned Renamed_Eq will be
210 -- passed to the corresponding parameter of Predefined_Primitive_Bodies.
212 function Has_New_Non_Standard_Rep (T : Entity_Id) return Boolean;
213 -- returns True if there are representation clauses for type T that
214 -- are not inherited. If the result is false, the init_proc and the
215 -- discriminant_checking functions of the parent can be reused by
216 -- a derived type.
218 function Predef_Spec_Or_Body
219 (Loc : Source_Ptr;
220 Tag_Typ : Entity_Id;
221 Name : Name_Id;
222 Profile : List_Id;
223 Ret_Type : Entity_Id := Empty;
224 For_Body : Boolean := False)
225 return Node_Id;
226 -- This function generates the appropriate expansion for a predefined
227 -- primitive operation specified by its name, parameter profile and
228 -- return type (Empty means this is a procedure). If For_Body is false,
229 -- then the returned node is a subprogram declaration. If For_Body is
230 -- true, then the returned node is a empty subprogram body containing
231 -- no declarations and no statements.
233 function Predef_Stream_Attr_Spec
234 (Loc : Source_Ptr;
235 Tag_Typ : Entity_Id;
236 Name : Name_Id;
237 For_Body : Boolean := False)
238 return Node_Id;
239 -- Specialized version of Predef_Spec_Or_Body that apply to _read, _write,
240 -- _input and _output whose specs are constructed in Exp_Strm.
242 function Predef_Deep_Spec
243 (Loc : Source_Ptr;
244 Tag_Typ : Entity_Id;
245 Name : Name_Id;
246 For_Body : Boolean := False)
247 return Node_Id;
248 -- Specialized version of Predef_Spec_Or_Body that apply to _deep_adjust
249 -- and _deep_finalize
251 function Predefined_Primitive_Bodies
252 (Tag_Typ : Entity_Id;
253 Renamed_Eq : Node_Id)
254 return List_Id;
255 -- Create the bodies of the predefined primitives that are described in
256 -- Predefined_Primitive_Specs. When not empty, Renamed_Eq must denote
257 -- the defining unit name of the type's predefined equality as returned
258 -- by Make_Predefined_Primitive_Specs.
260 function Predefined_Primitive_Freeze (Tag_Typ : Entity_Id) return List_Id;
261 -- Freeze entities of all predefined primitive operations. This is needed
262 -- because the bodies of these operations do not normally do any freezeing.
264 --------------------------
265 -- Adjust_Discriminants --
266 --------------------------
268 -- This procedure attempts to define subtypes for discriminants that
269 -- are more restrictive than those declared. Such a replacement is
270 -- possible if we can demonstrate that values outside the restricted
271 -- range would cause constraint errors in any case. The advantage of
272 -- restricting the discriminant types in this way is tha the maximum
273 -- size of the variant record can be calculated more conservatively.
275 -- An example of a situation in which we can perform this type of
276 -- restriction is the following:
278 -- subtype B is range 1 .. 10;
279 -- type Q is array (B range <>) of Integer;
281 -- type V (N : Natural) is record
282 -- C : Q (1 .. N);
283 -- end record;
285 -- In this situation, we can restrict the upper bound of N to 10, since
286 -- any larger value would cause a constraint error in any case.
288 -- There are many situations in which such restriction is possible, but
289 -- for now, we just look for cases like the above, where the component
290 -- in question is a one dimensional array whose upper bound is one of
291 -- the record discriminants. Also the component must not be part of
292 -- any variant part, since then the component does not always exist.
294 procedure Adjust_Discriminants (Rtype : Entity_Id) is
295 Loc : constant Source_Ptr := Sloc (Rtype);
296 Comp : Entity_Id;
297 Ctyp : Entity_Id;
298 Ityp : Entity_Id;
299 Lo : Node_Id;
300 Hi : Node_Id;
301 P : Node_Id;
302 Loval : Uint;
303 Discr : Entity_Id;
304 Dtyp : Entity_Id;
305 Dhi : Node_Id;
306 Dhiv : Uint;
307 Ahi : Node_Id;
308 Ahiv : Uint;
309 Tnn : Entity_Id;
311 begin
312 Comp := First_Component (Rtype);
313 while Present (Comp) loop
315 -- If our parent is a variant, quit, we do not look at components
316 -- that are in variant parts, because they may not always exist.
318 P := Parent (Comp); -- component declaration
319 P := Parent (P); -- component list
321 exit when Nkind (Parent (P)) = N_Variant;
323 -- We are looking for a one dimensional array type
325 Ctyp := Etype (Comp);
327 if not Is_Array_Type (Ctyp)
328 or else Number_Dimensions (Ctyp) > 1
329 then
330 goto Continue;
331 end if;
333 -- The lower bound must be constant, and the upper bound is a
334 -- discriminant (which is a discriminant of the current record).
336 Ityp := Etype (First_Index (Ctyp));
337 Lo := Type_Low_Bound (Ityp);
338 Hi := Type_High_Bound (Ityp);
340 if not Compile_Time_Known_Value (Lo)
341 or else Nkind (Hi) /= N_Identifier
342 or else No (Entity (Hi))
343 or else Ekind (Entity (Hi)) /= E_Discriminant
344 then
345 goto Continue;
346 end if;
348 -- We have an array with appropriate bounds
350 Loval := Expr_Value (Lo);
351 Discr := Entity (Hi);
352 Dtyp := Etype (Discr);
354 -- See if the discriminant has a known upper bound
356 Dhi := Type_High_Bound (Dtyp);
358 if not Compile_Time_Known_Value (Dhi) then
359 goto Continue;
360 end if;
362 Dhiv := Expr_Value (Dhi);
364 -- See if base type of component array has known upper bound
366 Ahi := Type_High_Bound (Etype (First_Index (Base_Type (Ctyp))));
368 if not Compile_Time_Known_Value (Ahi) then
369 goto Continue;
370 end if;
372 Ahiv := Expr_Value (Ahi);
374 -- The condition for doing the restriction is that the high bound
375 -- of the discriminant is greater than the low bound of the array,
376 -- and is also greater than the high bound of the base type index.
378 if Dhiv > Loval and then Dhiv > Ahiv then
380 -- We can reset the upper bound of the discriminant type to
381 -- whichever is larger, the low bound of the component, or
382 -- the high bound of the base type array index.
384 -- We build a subtype that is declared as
386 -- subtype Tnn is discr_type range discr_type'First .. max;
388 -- And insert this declaration into the tree. The type of the
389 -- discriminant is then reset to this more restricted subtype.
391 Tnn := Make_Defining_Identifier (Loc, New_Internal_Name ('T'));
393 Insert_Action (Declaration_Node (Rtype),
394 Make_Subtype_Declaration (Loc,
395 Defining_Identifier => Tnn,
396 Subtype_Indication =>
397 Make_Subtype_Indication (Loc,
398 Subtype_Mark => New_Occurrence_Of (Dtyp, Loc),
399 Constraint =>
400 Make_Range_Constraint (Loc,
401 Range_Expression =>
402 Make_Range (Loc,
403 Low_Bound =>
404 Make_Attribute_Reference (Loc,
405 Attribute_Name => Name_First,
406 Prefix => New_Occurrence_Of (Dtyp, Loc)),
407 High_Bound =>
408 Make_Integer_Literal (Loc,
409 Intval => UI_Max (Loval, Ahiv)))))));
411 Set_Etype (Discr, Tnn);
412 end if;
414 <<Continue>>
415 Next_Component (Comp);
416 end loop;
418 end Adjust_Discriminants;
420 ---------------------------
421 -- Build_Array_Init_Proc --
422 ---------------------------
424 procedure Build_Array_Init_Proc (A_Type : Entity_Id; Nod : Node_Id) is
425 Loc : constant Source_Ptr := Sloc (Nod);
426 Comp_Type : constant Entity_Id := Component_Type (A_Type);
427 Index_List : List_Id;
428 Proc_Id : Entity_Id;
429 Proc_Body : Node_Id;
430 Body_Stmts : List_Id;
432 function Init_Component return List_Id;
433 -- Create one statement to initialize one array component, designated
434 -- by a full set of indices.
436 function Init_One_Dimension (N : Int) return List_Id;
437 -- Create loop to initialize one dimension of the array. The single
438 -- statement in the loop body initializes the inner dimensions if any,
439 -- or else the single component. Note that this procedure is called
440 -- recursively, with N being the dimension to be initialized. A call
441 -- with N greater than the number of dimensions simply generates the
442 -- component initialization, terminating the recursion.
444 --------------------
445 -- Init_Component --
446 --------------------
448 function Init_Component return List_Id is
449 Comp : Node_Id;
451 begin
452 Comp :=
453 Make_Indexed_Component (Loc,
454 Prefix => Make_Identifier (Loc, Name_uInit),
455 Expressions => Index_List);
457 if Needs_Simple_Initialization (Comp_Type) then
458 Set_Assignment_OK (Comp);
459 return New_List (
460 Make_Assignment_Statement (Loc,
461 Name => Comp,
462 Expression => Get_Simple_Init_Val (Comp_Type, Loc)));
464 else
465 return
466 Build_Initialization_Call (Loc, Comp, Comp_Type, True, A_Type);
467 end if;
468 end Init_Component;
470 ------------------------
471 -- Init_One_Dimension --
472 ------------------------
474 function Init_One_Dimension (N : Int) return List_Id is
475 Index : Entity_Id;
477 begin
478 -- If the component does not need initializing, then there is nothing
479 -- to do here, so we return a null body. This occurs when generating
480 -- the dummy Init_Proc needed for Initialize_Scalars processing.
482 if not Has_Non_Null_Base_Init_Proc (Comp_Type)
483 and then not Needs_Simple_Initialization (Comp_Type)
484 and then not Has_Task (Comp_Type)
485 then
486 return New_List (Make_Null_Statement (Loc));
488 -- If all dimensions dealt with, we simply initialize the component
490 elsif N > Number_Dimensions (A_Type) then
491 return Init_Component;
493 -- Here we generate the required loop
495 else
496 Index :=
497 Make_Defining_Identifier (Loc, New_External_Name ('J', N));
499 Append (New_Reference_To (Index, Loc), Index_List);
501 return New_List (
502 Make_Implicit_Loop_Statement (Nod,
503 Identifier => Empty,
504 Iteration_Scheme =>
505 Make_Iteration_Scheme (Loc,
506 Loop_Parameter_Specification =>
507 Make_Loop_Parameter_Specification (Loc,
508 Defining_Identifier => Index,
509 Discrete_Subtype_Definition =>
510 Make_Attribute_Reference (Loc,
511 Prefix => Make_Identifier (Loc, Name_uInit),
512 Attribute_Name => Name_Range,
513 Expressions => New_List (
514 Make_Integer_Literal (Loc, N))))),
515 Statements => Init_One_Dimension (N + 1)));
516 end if;
517 end Init_One_Dimension;
519 -- Start of processing for Build_Array_Init_Proc
521 begin
522 if Suppress_Init_Proc (A_Type) then
523 return;
524 end if;
526 Index_List := New_List;
528 -- We need an initialization procedure if any of the following is true:
530 -- 1. The component type has an initialization procedure
531 -- 2. The component type needs simple initialization
532 -- 3. Tasks are present
533 -- 4. The type is marked as a publc entity
535 -- The reason for the public entity test is to deal properly with the
536 -- Initialize_Scalars pragma. This pragma can be set in the client and
537 -- not in the declaring package, this means the client will make a call
538 -- to the initialization procedure (because one of conditions 1-3 must
539 -- apply in this case), and we must generate a procedure (even if it is
540 -- null) to satisfy the call in this case.
542 -- Exception: do not build an array init_proc for a type whose root type
543 -- is Standard.String or Standard.Wide_String, since there is no place
544 -- to put the code, and in any case we handle initialization of such
545 -- types (in the Initialize_Scalars case, that's the only time the issue
546 -- arises) in a special manner anyway which does not need an init_proc.
548 if Has_Non_Null_Base_Init_Proc (Comp_Type)
549 or else Needs_Simple_Initialization (Comp_Type)
550 or else Has_Task (Comp_Type)
551 or else (Is_Public (A_Type)
552 and then Root_Type (A_Type) /= Standard_String
553 and then Root_Type (A_Type) /= Standard_Wide_String)
554 then
555 Proc_Id :=
556 Make_Defining_Identifier (Loc, Name_uInit_Proc);
558 Body_Stmts := Init_One_Dimension (1);
560 Proc_Body :=
561 Make_Subprogram_Body (Loc,
562 Specification =>
563 Make_Procedure_Specification (Loc,
564 Defining_Unit_Name => Proc_Id,
565 Parameter_Specifications => Init_Formals (A_Type)),
566 Declarations => New_List,
567 Handled_Statement_Sequence =>
568 Make_Handled_Sequence_Of_Statements (Loc,
569 Statements => Body_Stmts));
571 Set_Ekind (Proc_Id, E_Procedure);
572 Set_Is_Public (Proc_Id, Is_Public (A_Type));
573 Set_Is_Internal (Proc_Id);
574 Set_Has_Completion (Proc_Id);
576 if not Debug_Generated_Code then
577 Set_Debug_Info_Off (Proc_Id);
578 end if;
580 -- Set inlined unless controlled stuff or tasks around, in which
581 -- case we do not want to inline, because nested stuff may cause
582 -- difficulties in interunit inlining, and furthermore there is
583 -- in any case no point in inlining such complex init procs.
585 if not Has_Task (Proc_Id)
586 and then not Controlled_Type (Proc_Id)
587 then
588 Set_Is_Inlined (Proc_Id);
589 end if;
591 -- Associate Init_Proc with type, and determine if the procedure
592 -- is null (happens because of the Initialize_Scalars pragma case,
593 -- where we have to generate a null procedure in case it is called
594 -- by a client with Initialize_Scalars set). Such procedures have
595 -- to be generated, but do not have to be called, so we mark them
596 -- as null to suppress the call.
598 Set_Init_Proc (A_Type, Proc_Id);
600 if List_Length (Body_Stmts) = 1
601 and then Nkind (First (Body_Stmts)) = N_Null_Statement
602 then
603 Set_Is_Null_Init_Proc (Proc_Id);
604 end if;
605 end if;
607 end Build_Array_Init_Proc;
609 -----------------------------
610 -- Build_Class_Wide_Master --
611 -----------------------------
613 procedure Build_Class_Wide_Master (T : Entity_Id) is
614 Loc : constant Source_Ptr := Sloc (T);
615 M_Id : Entity_Id;
616 Decl : Node_Id;
617 P : Node_Id;
619 begin
620 -- Nothing to do if there is no task hierarchy.
622 if Restrictions (No_Task_Hierarchy) then
623 return;
624 end if;
626 -- Nothing to do if we already built a master entity for this scope
628 if not Has_Master_Entity (Scope (T)) then
629 -- first build the master entity
630 -- _Master : constant Master_Id := Current_Master.all;
631 -- and insert it just before the current declaration
633 Decl :=
634 Make_Object_Declaration (Loc,
635 Defining_Identifier =>
636 Make_Defining_Identifier (Loc, Name_uMaster),
637 Constant_Present => True,
638 Object_Definition => New_Reference_To (Standard_Integer, Loc),
639 Expression =>
640 Make_Explicit_Dereference (Loc,
641 New_Reference_To (RTE (RE_Current_Master), Loc)));
643 P := Parent (T);
644 Insert_Before (P, Decl);
645 Analyze (Decl);
646 Set_Has_Master_Entity (Scope (T));
648 -- Now mark the containing scope as a task master
650 while Nkind (P) /= N_Compilation_Unit loop
651 P := Parent (P);
653 -- If we fall off the top, we are at the outer level, and the
654 -- environment task is our effective master, so nothing to mark.
656 if Nkind (P) = N_Task_Body
657 or else Nkind (P) = N_Block_Statement
658 or else Nkind (P) = N_Subprogram_Body
659 then
660 Set_Is_Task_Master (P, True);
661 exit;
662 end if;
663 end loop;
664 end if;
666 -- Now define the renaming of the master_id.
668 M_Id :=
669 Make_Defining_Identifier (Loc,
670 New_External_Name (Chars (T), 'M'));
672 Decl :=
673 Make_Object_Renaming_Declaration (Loc,
674 Defining_Identifier => M_Id,
675 Subtype_Mark => New_Reference_To (Standard_Integer, Loc),
676 Name => Make_Identifier (Loc, Name_uMaster));
677 Insert_Before (Parent (T), Decl);
678 Analyze (Decl);
680 Set_Master_Id (T, M_Id);
681 end Build_Class_Wide_Master;
683 --------------------------------
684 -- Build_Discr_Checking_Funcs --
685 --------------------------------
687 procedure Build_Discr_Checking_Funcs (N : Node_Id) is
688 Rec_Id : Entity_Id;
689 Loc : Source_Ptr;
690 Enclosing_Func_Id : Entity_Id;
691 Sequence : Nat := 1;
692 Type_Def : Node_Id;
693 V : Node_Id;
695 function Build_Case_Statement
696 (Case_Id : Entity_Id;
697 Variant : Node_Id)
698 return Node_Id;
699 -- Need documentation for this spec ???
701 function Build_Dcheck_Function
702 (Case_Id : Entity_Id;
703 Variant : Node_Id)
704 return Entity_Id;
705 -- Build the discriminant checking function for a given variant
707 procedure Build_Dcheck_Functions (Variant_Part_Node : Node_Id);
708 -- Builds the discriminant checking function for each variant of the
709 -- given variant part of the record type.
711 --------------------------
712 -- Build_Case_Statement --
713 --------------------------
715 function Build_Case_Statement
716 (Case_Id : Entity_Id;
717 Variant : Node_Id)
718 return Node_Id
720 Actuals_List : List_Id;
721 Alt_List : List_Id := New_List;
722 Case_Node : Node_Id;
723 Case_Alt_Node : Node_Id;
724 Choice : Node_Id;
725 Choice_List : List_Id;
726 D : Entity_Id;
727 Return_Node : Node_Id;
729 begin
730 -- Build a case statement containing only two alternatives. The
731 -- first alternative corresponds exactly to the discrete choices
732 -- given on the variant with contains the components that we are
733 -- generating the checks for. If the discriminant is one of these
734 -- return False. The other alternative consists of the choice
735 -- "Others" and will return True indicating the discriminant did
736 -- not match.
738 Case_Node := New_Node (N_Case_Statement, Loc);
740 -- Replace the discriminant which controls the variant, with the
741 -- name of the formal of the checking function.
743 Set_Expression (Case_Node,
744 Make_Identifier (Loc, Chars (Case_Id)));
746 Choice := First (Discrete_Choices (Variant));
748 if Nkind (Choice) = N_Others_Choice then
749 Choice_List := New_Copy_List (Others_Discrete_Choices (Choice));
750 else
751 Choice_List := New_Copy_List (Discrete_Choices (Variant));
752 end if;
754 if not Is_Empty_List (Choice_List) then
755 Case_Alt_Node := New_Node (N_Case_Statement_Alternative, Loc);
756 Set_Discrete_Choices (Case_Alt_Node, Choice_List);
758 -- In case this is a nested variant, we need to return the result
759 -- of the discriminant checking function for the immediately
760 -- enclosing variant.
762 if Present (Enclosing_Func_Id) then
763 Actuals_List := New_List;
765 D := First_Discriminant (Rec_Id);
766 while Present (D) loop
767 Append (Make_Identifier (Loc, Chars (D)), Actuals_List);
768 Next_Discriminant (D);
769 end loop;
771 Return_Node :=
772 Make_Return_Statement (Loc,
773 Expression =>
774 Make_Function_Call (Loc,
775 Name =>
776 New_Reference_To (Enclosing_Func_Id, Loc),
777 Parameter_Associations =>
778 Actuals_List));
780 else
781 Return_Node :=
782 Make_Return_Statement (Loc,
783 Expression =>
784 New_Reference_To (Standard_False, Loc));
785 end if;
787 Set_Statements (Case_Alt_Node, New_List (Return_Node));
788 Append (Case_Alt_Node, Alt_List);
789 end if;
791 Case_Alt_Node := New_Node (N_Case_Statement_Alternative, Loc);
792 Choice_List := New_List (New_Node (N_Others_Choice, Loc));
793 Set_Discrete_Choices (Case_Alt_Node, Choice_List);
795 Return_Node :=
796 Make_Return_Statement (Loc,
797 Expression =>
798 New_Reference_To (Standard_True, Loc));
800 Set_Statements (Case_Alt_Node, New_List (Return_Node));
801 Append (Case_Alt_Node, Alt_List);
803 Set_Alternatives (Case_Node, Alt_List);
804 return Case_Node;
805 end Build_Case_Statement;
807 ---------------------------
808 -- Build_Dcheck_Function --
809 ---------------------------
811 function Build_Dcheck_Function
812 (Case_Id : Entity_Id;
813 Variant : Node_Id)
814 return Entity_Id
816 Body_Node : Node_Id;
817 Func_Id : Entity_Id;
818 Parameter_List : List_Id;
819 Spec_Node : Node_Id;
821 begin
822 Body_Node := New_Node (N_Subprogram_Body, Loc);
823 Sequence := Sequence + 1;
825 Func_Id :=
826 Make_Defining_Identifier (Loc,
827 Chars => New_External_Name (Chars (Rec_Id), 'D', Sequence));
829 Spec_Node := New_Node (N_Function_Specification, Loc);
830 Set_Defining_Unit_Name (Spec_Node, Func_Id);
832 Parameter_List := Build_Discriminant_Formals (Rec_Id, False);
834 Set_Parameter_Specifications (Spec_Node, Parameter_List);
835 Set_Subtype_Mark (Spec_Node,
836 New_Reference_To (Standard_Boolean, Loc));
837 Set_Specification (Body_Node, Spec_Node);
838 Set_Declarations (Body_Node, New_List);
840 Set_Handled_Statement_Sequence (Body_Node,
841 Make_Handled_Sequence_Of_Statements (Loc,
842 Statements => New_List (
843 Build_Case_Statement (Case_Id, Variant))));
845 Set_Ekind (Func_Id, E_Function);
846 Set_Mechanism (Func_Id, Default_Mechanism);
847 Set_Is_Inlined (Func_Id, True);
848 Set_Is_Pure (Func_Id, True);
849 Set_Is_Public (Func_Id, Is_Public (Rec_Id));
850 Set_Is_Internal (Func_Id, True);
852 if not Debug_Generated_Code then
853 Set_Debug_Info_Off (Func_Id);
854 end if;
856 Append_Freeze_Action (Rec_Id, Body_Node);
857 Set_Dcheck_Function (Variant, Func_Id);
858 return Func_Id;
859 end Build_Dcheck_Function;
861 ----------------------------
862 -- Build_Dcheck_Functions --
863 ----------------------------
865 procedure Build_Dcheck_Functions (Variant_Part_Node : Node_Id) is
866 Component_List_Node : Node_Id;
867 Decl : Entity_Id;
868 Discr_Name : Entity_Id;
869 Func_Id : Entity_Id;
870 Variant : Node_Id;
871 Saved_Enclosing_Func_Id : Entity_Id;
873 begin
874 -- Build the discriminant checking function for each variant, label
875 -- all components of that variant with the function's name.
877 Discr_Name := Entity (Name (Variant_Part_Node));
878 Variant := First_Non_Pragma (Variants (Variant_Part_Node));
880 while Present (Variant) loop
881 Func_Id := Build_Dcheck_Function (Discr_Name, Variant);
882 Component_List_Node := Component_List (Variant);
884 if not Null_Present (Component_List_Node) then
885 Decl :=
886 First_Non_Pragma (Component_Items (Component_List_Node));
888 while Present (Decl) loop
889 Set_Discriminant_Checking_Func
890 (Defining_Identifier (Decl), Func_Id);
892 Next_Non_Pragma (Decl);
893 end loop;
895 if Present (Variant_Part (Component_List_Node)) then
896 Saved_Enclosing_Func_Id := Enclosing_Func_Id;
897 Enclosing_Func_Id := Func_Id;
898 Build_Dcheck_Functions (Variant_Part (Component_List_Node));
899 Enclosing_Func_Id := Saved_Enclosing_Func_Id;
900 end if;
901 end if;
903 Next_Non_Pragma (Variant);
904 end loop;
905 end Build_Dcheck_Functions;
907 -- Start of processing for Build_Discr_Checking_Funcs
909 begin
910 -- Only build if not done already
912 if not Discr_Check_Funcs_Built (N) then
913 Type_Def := Type_Definition (N);
915 if Nkind (Type_Def) = N_Record_Definition then
916 if No (Component_List (Type_Def)) then -- null record.
917 return;
918 else
919 V := Variant_Part (Component_List (Type_Def));
920 end if;
922 else pragma Assert (Nkind (Type_Def) = N_Derived_Type_Definition);
923 if No (Component_List (Record_Extension_Part (Type_Def))) then
924 return;
925 else
926 V := Variant_Part
927 (Component_List (Record_Extension_Part (Type_Def)));
928 end if;
929 end if;
931 Rec_Id := Defining_Identifier (N);
933 if Present (V) and then not Is_Unchecked_Union (Rec_Id) then
934 Loc := Sloc (N);
935 Enclosing_Func_Id := Empty;
936 Build_Dcheck_Functions (V);
937 end if;
939 Set_Discr_Check_Funcs_Built (N);
940 end if;
941 end Build_Discr_Checking_Funcs;
943 --------------------------------
944 -- Build_Discriminant_Formals --
945 --------------------------------
947 function Build_Discriminant_Formals
948 (Rec_Id : Entity_Id;
949 Use_Dl : Boolean)
950 return List_Id
952 D : Entity_Id;
953 Formal : Entity_Id;
954 Loc : Source_Ptr := Sloc (Rec_Id);
955 Param_Spec_Node : Node_Id;
956 Parameter_List : List_Id := New_List;
958 begin
959 if Has_Discriminants (Rec_Id) then
960 D := First_Discriminant (Rec_Id);
962 while Present (D) loop
963 Loc := Sloc (D);
965 if Use_Dl then
966 Formal := Discriminal (D);
967 else
968 Formal := Make_Defining_Identifier (Loc, Chars (D));
969 end if;
971 Param_Spec_Node :=
972 Make_Parameter_Specification (Loc,
973 Defining_Identifier => Formal,
974 Parameter_Type =>
975 New_Reference_To (Etype (D), Loc));
976 Append (Param_Spec_Node, Parameter_List);
977 Next_Discriminant (D);
978 end loop;
979 end if;
981 return Parameter_List;
982 end Build_Discriminant_Formals;
984 -------------------------------
985 -- Build_Initialization_Call --
986 -------------------------------
988 -- References to a discriminant inside the record type declaration
989 -- can appear either in the subtype_indication to constrain a
990 -- record or an array, or as part of a larger expression given for
991 -- the initial value of a component. In both of these cases N appears
992 -- in the record initialization procedure and needs to be replaced by
993 -- the formal parameter of the initialization procedure which
994 -- corresponds to that discriminant.
996 -- In the example below, references to discriminants D1 and D2 in proc_1
997 -- are replaced by references to formals with the same name
998 -- (discriminals)
1000 -- A similar replacement is done for calls to any record
1001 -- initialization procedure for any components that are themselves
1002 -- of a record type.
1004 -- type R (D1, D2 : Integer) is record
1005 -- X : Integer := F * D1;
1006 -- Y : Integer := F * D2;
1007 -- end record;
1009 -- procedure proc_1 (Out_2 : out R; D1 : Integer; D2 : Integer) is
1010 -- begin
1011 -- Out_2.D1 := D1;
1012 -- Out_2.D2 := D2;
1013 -- Out_2.X := F * D1;
1014 -- Out_2.Y := F * D2;
1015 -- end;
1017 function Build_Initialization_Call
1018 (Loc : Source_Ptr;
1019 Id_Ref : Node_Id;
1020 Typ : Entity_Id;
1021 In_Init_Proc : Boolean := False;
1022 Enclos_Type : Entity_Id := Empty;
1023 Discr_Map : Elist_Id := New_Elmt_List)
1024 return List_Id
1026 First_Arg : Node_Id;
1027 Args : List_Id;
1028 Decls : List_Id;
1029 Decl : Node_Id;
1030 Discr : Entity_Id;
1031 Arg : Node_Id;
1032 Proc : constant Entity_Id := Base_Init_Proc (Typ);
1033 Init_Type : constant Entity_Id := Etype (First_Formal (Proc));
1034 Full_Init_Type : constant Entity_Id := Underlying_Type (Init_Type);
1035 Res : List_Id := New_List;
1036 Full_Type : Entity_Id := Typ;
1037 Controller_Typ : Entity_Id;
1039 begin
1040 -- Nothing to do if the Init_Proc is null, unless Initialize_Sclalars
1041 -- is active (in which case we make the call anyway, since in the
1042 -- actual compiled client it may be non null).
1044 if Is_Null_Init_Proc (Proc) and then not Init_Or_Norm_Scalars then
1045 return Empty_List;
1046 end if;
1048 -- Go to full view if private type
1050 if Is_Private_Type (Typ)
1051 and then Present (Full_View (Typ))
1052 then
1053 Full_Type := Full_View (Typ);
1054 end if;
1056 -- If Typ is derived, the procedure is the initialization procedure for
1057 -- the root type. Wrap the argument in an conversion to make it type
1058 -- honest. Actually it isn't quite type honest, because there can be
1059 -- conflicts of views in the private type case. That is why we set
1060 -- Conversion_OK in the conversion node.
1062 if (Is_Record_Type (Typ)
1063 or else Is_Array_Type (Typ)
1064 or else Is_Private_Type (Typ))
1065 and then Init_Type /= Base_Type (Typ)
1066 then
1067 First_Arg := OK_Convert_To (Etype (Init_Type), Id_Ref);
1068 Set_Etype (First_Arg, Init_Type);
1070 else
1071 First_Arg := Id_Ref;
1072 end if;
1074 Args := New_List (Convert_Concurrent (First_Arg, Typ));
1076 -- In the tasks case, add _Master as the value of the _Master parameter
1077 -- and _Chain as the value of the _Chain parameter. At the outer level,
1078 -- these will be variables holding the corresponding values obtained
1079 -- from GNARL. At inner levels, they will be the parameters passed down
1080 -- through the outer routines.
1082 if Has_Task (Full_Type) then
1083 if Restrictions (No_Task_Hierarchy) then
1085 -- See comments in System.Tasking.Initialization.Init_RTS
1086 -- for the value 3.
1088 Append_To (Args, Make_Integer_Literal (Loc, 3));
1089 else
1090 Append_To (Args, Make_Identifier (Loc, Name_uMaster));
1091 end if;
1093 Append_To (Args, Make_Identifier (Loc, Name_uChain));
1095 Decls := Build_Task_Image_Decls (Loc, Id_Ref, Enclos_Type);
1096 Decl := Last (Decls);
1098 Append_To (Args,
1099 New_Occurrence_Of (Defining_Identifier (Decl), Loc));
1100 Append_List (Decls, Res);
1102 else
1103 Decls := No_List;
1104 Decl := Empty;
1105 end if;
1107 -- Add discriminant values if discriminants are present
1109 if Has_Discriminants (Full_Init_Type) then
1110 Discr := First_Discriminant (Full_Init_Type);
1112 while Present (Discr) loop
1114 -- If this is a discriminated concurrent type, the init_proc
1115 -- for the corresponding record is being called. Use that
1116 -- type directly to find the discriminant value, to handle
1117 -- properly intervening renamed discriminants.
1119 declare
1120 T : Entity_Id := Full_Type;
1122 begin
1123 if Is_Protected_Type (T) then
1124 T := Corresponding_Record_Type (T);
1125 end if;
1127 Arg :=
1128 Get_Discriminant_Value (
1129 Discr,
1131 Discriminant_Constraint (Full_Type));
1132 end;
1134 if In_Init_Proc then
1136 -- Replace any possible references to the discriminant in the
1137 -- call to the record initialization procedure with references
1138 -- to the appropriate formal parameter.
1140 if Nkind (Arg) = N_Identifier
1141 and then Ekind (Entity (Arg)) = E_Discriminant
1142 then
1143 Arg := New_Reference_To (Discriminal (Entity (Arg)), Loc);
1145 -- Case of access discriminants. We replace the reference
1146 -- to the type by a reference to the actual object
1148 elsif Nkind (Arg) = N_Attribute_Reference
1149 and then Is_Access_Type (Etype (Arg))
1150 and then Is_Entity_Name (Prefix (Arg))
1151 and then Is_Type (Entity (Prefix (Arg)))
1152 then
1153 Arg :=
1154 Make_Attribute_Reference (Loc,
1155 Prefix => New_Copy (Prefix (Id_Ref)),
1156 Attribute_Name => Name_Unrestricted_Access);
1158 -- Otherwise make a copy of the default expression. Note
1159 -- that we use the current Sloc for this, because we do not
1160 -- want the call to appear to be at the declaration point.
1161 -- Within the expression, replace discriminants with their
1162 -- discriminals.
1164 else
1165 Arg :=
1166 New_Copy_Tree (Arg, Map => Discr_Map, New_Sloc => Loc);
1167 end if;
1169 else
1170 if Is_Constrained (Full_Type) then
1171 Arg := Duplicate_Subexpr (Arg);
1172 else
1173 -- The constraints come from the discriminant default
1174 -- exps, they must be reevaluated, so we use New_Copy_Tree
1175 -- but we ensure the proper Sloc (for any embedded calls).
1177 Arg := New_Copy_Tree (Arg, New_Sloc => Loc);
1178 end if;
1179 end if;
1181 Append_To (Args, Arg);
1183 Next_Discriminant (Discr);
1184 end loop;
1185 end if;
1187 -- If this is a call to initialize the parent component of a derived
1188 -- tagged type, indicate that the tag should not be set in the parent.
1190 if Is_Tagged_Type (Full_Init_Type)
1191 and then not Is_CPP_Class (Full_Init_Type)
1192 and then Nkind (Id_Ref) = N_Selected_Component
1193 and then Chars (Selector_Name (Id_Ref)) = Name_uParent
1194 then
1195 Append_To (Args, New_Occurrence_Of (Standard_False, Loc));
1196 end if;
1198 Append_To (Res,
1199 Make_Procedure_Call_Statement (Loc,
1200 Name => New_Occurrence_Of (Proc, Loc),
1201 Parameter_Associations => Args));
1203 if Controlled_Type (Typ)
1204 and then Nkind (Id_Ref) = N_Selected_Component
1205 then
1206 if Chars (Selector_Name (Id_Ref)) /= Name_uParent then
1207 Append_List_To (Res,
1208 Make_Init_Call (
1209 Ref => New_Copy_Tree (First_Arg),
1210 Typ => Typ,
1211 Flist_Ref =>
1212 Find_Final_List (Typ, New_Copy_Tree (First_Arg)),
1213 With_Attach => Make_Integer_Literal (Loc, 1)));
1215 -- If the enclosing type is an extension with new controlled
1216 -- components, it has his own record controller. If the parent
1217 -- also had a record controller, attach it to the new one.
1218 -- Build_Init_Statements relies on the fact that in this specific
1219 -- case the last statement of the result is the attach call to
1220 -- the controller. If this is changed, it must be synchronized.
1222 elsif Present (Enclos_Type)
1223 and then Has_New_Controlled_Component (Enclos_Type)
1224 and then Has_Controlled_Component (Typ)
1225 then
1226 if Is_Return_By_Reference_Type (Typ) then
1227 Controller_Typ := RTE (RE_Limited_Record_Controller);
1228 else
1229 Controller_Typ := RTE (RE_Record_Controller);
1230 end if;
1232 Append_List_To (Res,
1233 Make_Init_Call (
1234 Ref =>
1235 Make_Selected_Component (Loc,
1236 Prefix => New_Copy_Tree (First_Arg),
1237 Selector_Name => Make_Identifier (Loc, Name_uController)),
1238 Typ => Controller_Typ,
1239 Flist_Ref => Find_Final_List (Typ, New_Copy_Tree (First_Arg)),
1240 With_Attach => Make_Integer_Literal (Loc, 1)));
1241 end if;
1242 end if;
1244 -- Discard dynamic string allocated for name after call to init_proc,
1245 -- to avoid storage leaks. This is done for composite types because
1246 -- the allocated name is used as prefix for the id constructed at run-
1247 -- time, and this allocated name is not released when the task itself
1248 -- is freed.
1250 if Has_Task (Full_Type)
1251 and then not Is_Task_Type (Full_Type)
1252 then
1253 Append_To (Res,
1254 Make_Procedure_Call_Statement (Loc,
1255 Name => New_Occurrence_Of (RTE (RE_Free_Task_Image), Loc),
1256 Parameter_Associations => New_List (
1257 New_Occurrence_Of (Defining_Identifier (Decl), Loc))));
1258 end if;
1260 return Res;
1261 end Build_Initialization_Call;
1263 ---------------------------
1264 -- Build_Master_Renaming --
1265 ---------------------------
1267 procedure Build_Master_Renaming (N : Node_Id; T : Entity_Id) is
1268 Loc : constant Source_Ptr := Sloc (N);
1269 M_Id : Entity_Id;
1270 Decl : Node_Id;
1272 begin
1273 -- Nothing to do if there is no task hierarchy.
1275 if Restrictions (No_Task_Hierarchy) then
1276 return;
1277 end if;
1279 M_Id :=
1280 Make_Defining_Identifier (Loc,
1281 New_External_Name (Chars (T), 'M'));
1283 Decl :=
1284 Make_Object_Renaming_Declaration (Loc,
1285 Defining_Identifier => M_Id,
1286 Subtype_Mark => New_Reference_To (RTE (RE_Master_Id), Loc),
1287 Name => Make_Identifier (Loc, Name_uMaster));
1288 Insert_Before (N, Decl);
1289 Analyze (Decl);
1291 Set_Master_Id (T, M_Id);
1293 end Build_Master_Renaming;
1295 ----------------------------
1296 -- Build_Record_Init_Proc --
1297 ----------------------------
1299 procedure Build_Record_Init_Proc (N : Node_Id; Pe : Entity_Id) is
1300 Loc : Source_Ptr := Sloc (N);
1301 Proc_Id : Entity_Id;
1302 Rec_Type : Entity_Id;
1303 Discr_Map : Elist_Id := New_Elmt_List;
1304 Set_Tag : Entity_Id := Empty;
1306 function Build_Assignment (Id : Entity_Id; N : Node_Id) return List_Id;
1307 -- Build a assignment statement node which assigns to record
1308 -- component its default expression if defined. The left hand side
1309 -- of the assignment is marked Assignment_OK so that initialization
1310 -- of limited private records works correctly, Return also the
1311 -- adjustment call for controlled objects
1313 procedure Build_Discriminant_Assignments (Statement_List : List_Id);
1314 -- If the record has discriminants, adds assignment statements to
1315 -- statement list to initialize the discriminant values from the
1316 -- arguments of the initialization procedure.
1318 function Build_Init_Statements (Comp_List : Node_Id) return List_Id;
1319 -- Build a list representing a sequence of statements which initialize
1320 -- components of the given component list. This may involve building
1321 -- case statements for the variant parts.
1323 function Build_Init_Call_Thru
1324 (Parameters : List_Id)
1325 return List_Id;
1326 -- Given a non-tagged type-derivation that declares discriminants,
1327 -- such as
1329 -- type R (R1, R2 : Integer) is record ... end record;
1331 -- type D (D1 : Integer) is new R (1, D1);
1333 -- we make the _init_proc of D be
1335 -- procedure _init_proc(X : D; D1 : Integer) is
1336 -- begin
1337 -- _init_proc( R(X), 1, D1);
1338 -- end _init_proc;
1340 -- This function builds the call statement in this _init_proc.
1342 procedure Build_Init_Procedure;
1343 -- Build the tree corresponding to the procedure specification and body
1344 -- of the initialization procedure (by calling all the preceding
1345 -- auxiliary routines), and install it as the _init TSS.
1347 procedure Build_Record_Checks (S : Node_Id; Check_List : List_Id);
1348 -- Add range checks to components of disciminated records. S is a
1349 -- subtype indication of a record component. Check_List is a list
1350 -- to which the check actions are appended.
1352 function Component_Needs_Simple_Initialization
1353 (T : Entity_Id)
1354 return Boolean;
1355 -- Determines if a component needs simple initialization, given its
1356 -- type T. This is identical to Needs_Simple_Initialization, except
1357 -- that the types Tag and Vtable_Ptr, which are access types which
1358 -- would normally require simple initialization to null, do not
1359 -- require initialization as components, since they are explicitly
1360 -- initialized by other means.
1362 procedure Constrain_Array
1363 (SI : Node_Id;
1364 Check_List : List_Id);
1365 -- Called from Build_Record_Checks.
1366 -- Apply a list of index constraints to an unconstrained array type.
1367 -- The first parameter is the entity for the resulting subtype.
1368 -- Check_List is a list to which the check actions are appended.
1370 procedure Constrain_Index
1371 (Index : Node_Id;
1372 S : Node_Id;
1373 Check_List : List_Id);
1374 -- Called from Build_Record_Checks.
1375 -- Process an index constraint in a constrained array declaration.
1376 -- The constraint can be a subtype name, or a range with or without
1377 -- an explicit subtype mark. The index is the corresponding index of the
1378 -- unconstrained array. S is the range expression. Check_List is a list
1379 -- to which the check actions are appended.
1381 function Parent_Subtype_Renaming_Discrims return Boolean;
1382 -- Returns True for base types N that rename discriminants, else False
1384 function Requires_Init_Proc (Rec_Id : Entity_Id) return Boolean;
1385 -- Determines whether a record initialization procedure needs to be
1386 -- generated for the given record type.
1388 ----------------------
1389 -- Build_Assignment --
1390 ----------------------
1392 function Build_Assignment (Id : Entity_Id; N : Node_Id) return List_Id is
1393 Exp : Node_Id := N;
1394 Lhs : Node_Id;
1395 Typ : constant Entity_Id := Underlying_Type (Etype (Id));
1396 Kind : Node_Kind := Nkind (N);
1397 Res : List_Id;
1399 begin
1400 Loc := Sloc (N);
1401 Lhs :=
1402 Make_Selected_Component (Loc,
1403 Prefix => Make_Identifier (Loc, Name_uInit),
1404 Selector_Name => New_Occurrence_Of (Id, Loc));
1405 Set_Assignment_OK (Lhs);
1407 -- Case of an access attribute applied to the current
1408 -- instance. Replace the reference to the type by a
1409 -- reference to the actual object. (Note that this
1410 -- handles the case of the top level of the expression
1411 -- being given by such an attribute, but doesn't cover
1412 -- uses nested within an initial value expression.
1413 -- Nested uses are unlikely to occur in practice,
1414 -- but theoretically possible. It's not clear how
1415 -- to handle them without fully traversing the
1416 -- expression. ???)
1418 if Kind = N_Attribute_Reference
1419 and then (Attribute_Name (N) = Name_Unchecked_Access
1420 or else
1421 Attribute_Name (N) = Name_Unrestricted_Access)
1422 and then Is_Entity_Name (Prefix (N))
1423 and then Is_Type (Entity (Prefix (N)))
1424 and then Entity (Prefix (N)) = Rec_Type
1425 then
1426 Exp :=
1427 Make_Attribute_Reference (Loc,
1428 Prefix => Make_Identifier (Loc, Name_uInit),
1429 Attribute_Name => Name_Unrestricted_Access);
1430 end if;
1432 -- For a derived type the default value is copied from the component
1433 -- declaration of the parent. In the analysis of the init_proc for
1434 -- the parent the default value may have been expanded into a local
1435 -- variable, which is of course not usable here. We must copy the
1436 -- original expression and reanalyze.
1438 if Nkind (Exp) = N_Identifier
1439 and then not Comes_From_Source (Exp)
1440 and then Analyzed (Exp)
1441 and then not In_Open_Scopes (Scope (Entity (Exp)))
1442 and then Nkind (Original_Node (Exp)) = N_Aggregate
1443 then
1444 Exp := New_Copy_Tree (Original_Node (Exp));
1445 end if;
1447 Res := New_List (
1448 Make_Assignment_Statement (Loc,
1449 Name => Lhs,
1450 Expression => Exp));
1452 Set_No_Ctrl_Actions (First (Res));
1454 -- Adjust the tag if tagged (because of possible view conversions).
1455 -- Suppress the tag adjustment when Java_VM because JVM tags are
1456 -- represented implicitly in objects.
1458 if Is_Tagged_Type (Typ) and then not Java_VM then
1459 Append_To (Res,
1460 Make_Assignment_Statement (Loc,
1461 Name =>
1462 Make_Selected_Component (Loc,
1463 Prefix => New_Copy_Tree (Lhs),
1464 Selector_Name =>
1465 New_Reference_To (Tag_Component (Typ), Loc)),
1467 Expression =>
1468 Unchecked_Convert_To (RTE (RE_Tag),
1469 New_Reference_To (Access_Disp_Table (Typ), Loc))));
1470 end if;
1472 -- Adjust the component if controlled except if it is an
1473 -- aggregate that will be expanded inline
1475 if Kind = N_Qualified_Expression then
1476 Kind := Nkind (Parent (N));
1477 end if;
1479 if Controlled_Type (Typ)
1480 and then not (Kind = N_Aggregate or else Kind = N_Extension_Aggregate)
1481 then
1482 Append_List_To (Res,
1483 Make_Adjust_Call (
1484 Ref => New_Copy_Tree (Lhs),
1485 Typ => Etype (Id),
1486 Flist_Ref =>
1487 Find_Final_List (Etype (Id), New_Copy_Tree (Lhs)),
1488 With_Attach => Make_Integer_Literal (Loc, 1)));
1489 end if;
1491 return Res;
1492 end Build_Assignment;
1494 ------------------------------------
1495 -- Build_Discriminant_Assignments --
1496 ------------------------------------
1498 procedure Build_Discriminant_Assignments (Statement_List : List_Id) is
1499 D : Entity_Id;
1500 Is_Tagged : constant Boolean := Is_Tagged_Type (Rec_Type);
1502 begin
1503 if Has_Discriminants (Rec_Type)
1504 and then not Is_Unchecked_Union (Rec_Type)
1505 then
1506 D := First_Discriminant (Rec_Type);
1508 while Present (D) loop
1509 -- Don't generate the assignment for discriminants in derived
1510 -- tagged types if the discriminant is a renaming of some
1511 -- ancestor discriminant. This initialization will be done
1512 -- when initializing the _parent field of the derived record.
1514 if Is_Tagged and then
1515 Present (Corresponding_Discriminant (D))
1516 then
1517 null;
1519 else
1520 Loc := Sloc (D);
1521 Append_List_To (Statement_List,
1522 Build_Assignment (D,
1523 New_Reference_To (Discriminal (D), Loc)));
1524 end if;
1526 Next_Discriminant (D);
1527 end loop;
1528 end if;
1529 end Build_Discriminant_Assignments;
1531 --------------------------
1532 -- Build_Init_Call_Thru --
1533 --------------------------
1535 function Build_Init_Call_Thru
1536 (Parameters : List_Id)
1537 return List_Id
1539 Parent_Proc : constant Entity_Id :=
1540 Base_Init_Proc (Etype (Rec_Type));
1542 Parent_Type : constant Entity_Id :=
1543 Etype (First_Formal (Parent_Proc));
1545 Uparent_Type : constant Entity_Id :=
1546 Underlying_Type (Parent_Type);
1548 First_Discr_Param : Node_Id;
1550 Parent_Discr : Entity_Id;
1551 First_Arg : Node_Id;
1552 Args : List_Id;
1553 Arg : Node_Id;
1554 Res : List_Id;
1556 begin
1557 -- First argument (_Init) is the object to be initialized.
1558 -- ??? not sure where to get a reasonable Loc for First_Arg
1560 First_Arg :=
1561 OK_Convert_To (Parent_Type,
1562 New_Reference_To (Defining_Identifier (First (Parameters)), Loc));
1564 Set_Etype (First_Arg, Parent_Type);
1566 Args := New_List (Convert_Concurrent (First_Arg, Rec_Type));
1568 -- In the tasks case,
1569 -- add _Master as the value of the _Master parameter
1570 -- add _Chain as the value of the _Chain parameter.
1571 -- add _Task_Id as the value of the _Task_Id parameter.
1572 -- At the outer level, these will be variables holding the
1573 -- corresponding values obtained from GNARL or the expander.
1575 -- At inner levels, they will be the parameters passed down through
1576 -- the outer routines.
1578 First_Discr_Param := Next (First (Parameters));
1580 if Has_Task (Rec_Type) then
1581 if Restrictions (No_Task_Hierarchy) then
1583 -- See comments in System.Tasking.Initialization.Init_RTS
1584 -- for the value 3.
1586 Append_To (Args, Make_Integer_Literal (Loc, 3));
1587 else
1588 Append_To (Args, Make_Identifier (Loc, Name_uMaster));
1589 end if;
1591 Append_To (Args, Make_Identifier (Loc, Name_uChain));
1592 Append_To (Args, Make_Identifier (Loc, Name_uTask_Id));
1593 First_Discr_Param := Next (Next (Next (First_Discr_Param)));
1594 end if;
1596 -- Append discriminant values
1598 if Has_Discriminants (Uparent_Type) then
1599 pragma Assert (not Is_Tagged_Type (Uparent_Type));
1601 Parent_Discr := First_Discriminant (Uparent_Type);
1602 while Present (Parent_Discr) loop
1604 -- Get the initial value for this discriminant
1605 -- ?????? needs to be cleaned up to use parent_Discr_Constr
1606 -- directly.
1608 declare
1609 Discr_Value : Elmt_Id :=
1610 First_Elmt
1611 (Girder_Constraint (Rec_Type));
1613 Discr : Entity_Id :=
1614 First_Girder_Discriminant (Uparent_Type);
1615 begin
1616 while Original_Record_Component (Parent_Discr) /= Discr loop
1617 Next_Girder_Discriminant (Discr);
1618 Next_Elmt (Discr_Value);
1619 end loop;
1621 Arg := Node (Discr_Value);
1622 end;
1624 -- Append it to the list
1626 if Nkind (Arg) = N_Identifier
1627 and then Ekind (Entity (Arg)) = E_Discriminant
1628 then
1629 Append_To (Args,
1630 New_Reference_To (Discriminal (Entity (Arg)), Loc));
1632 -- Case of access discriminants. We replace the reference
1633 -- to the type by a reference to the actual object
1635 -- ???
1636 -- elsif Nkind (Arg) = N_Attribute_Reference
1637 -- and then Is_Entity_Name (Prefix (Arg))
1638 -- and then Is_Type (Entity (Prefix (Arg)))
1639 -- then
1640 -- Append_To (Args,
1641 -- Make_Attribute_Reference (Loc,
1642 -- Prefix => New_Copy (Prefix (Id_Ref)),
1643 -- Attribute_Name => Name_Unrestricted_Access));
1645 else
1646 Append_To (Args, New_Copy (Arg));
1647 end if;
1649 Next_Discriminant (Parent_Discr);
1650 end loop;
1651 end if;
1653 Res :=
1654 New_List (
1655 Make_Procedure_Call_Statement (Loc,
1656 Name => New_Occurrence_Of (Parent_Proc, Loc),
1657 Parameter_Associations => Args));
1659 return Res;
1660 end Build_Init_Call_Thru;
1662 --------------------------
1663 -- Build_Init_Procedure --
1664 --------------------------
1666 procedure Build_Init_Procedure is
1667 Body_Node : Node_Id;
1668 Handled_Stmt_Node : Node_Id;
1669 Parameters : List_Id;
1670 Proc_Spec_Node : Node_Id;
1671 Body_Stmts : List_Id;
1672 Record_Extension_Node : Node_Id;
1673 Init_Tag : Node_Id;
1675 begin
1676 Body_Stmts := New_List;
1677 Body_Node := New_Node (N_Subprogram_Body, Loc);
1679 Proc_Id := Make_Defining_Identifier (Loc, Name_uInit_Proc);
1680 Set_Ekind (Proc_Id, E_Procedure);
1682 Proc_Spec_Node := New_Node (N_Procedure_Specification, Loc);
1683 Set_Defining_Unit_Name (Proc_Spec_Node, Proc_Id);
1685 Parameters := Init_Formals (Rec_Type);
1686 Append_List_To (Parameters,
1687 Build_Discriminant_Formals (Rec_Type, True));
1689 -- For tagged types, we add a flag to indicate whether the routine
1690 -- is called to initialize a parent component in the init_proc of
1691 -- a type extension. If the flag is false, we do not set the tag
1692 -- because it has been set already in the extension.
1694 if Is_Tagged_Type (Rec_Type)
1695 and then not Is_CPP_Class (Rec_Type)
1696 then
1697 Set_Tag :=
1698 Make_Defining_Identifier (Loc, New_Internal_Name ('P'));
1700 Append_To (Parameters,
1701 Make_Parameter_Specification (Loc,
1702 Defining_Identifier => Set_Tag,
1703 Parameter_Type => New_Occurrence_Of (Standard_Boolean, Loc),
1704 Expression => New_Occurrence_Of (Standard_True, Loc)));
1705 end if;
1707 Set_Parameter_Specifications (Proc_Spec_Node, Parameters);
1708 Set_Specification (Body_Node, Proc_Spec_Node);
1709 Set_Declarations (Body_Node, New_List);
1711 if Parent_Subtype_Renaming_Discrims then
1713 -- N is a Derived_Type_Definition that renames the parameters
1714 -- of the ancestor type. We init it by expanding our discrims
1715 -- and call the ancestor _init_proc with a type-converted object
1717 Append_List_To (Body_Stmts,
1718 Build_Init_Call_Thru (Parameters));
1720 elsif Nkind (Type_Definition (N)) = N_Record_Definition then
1721 Build_Discriminant_Assignments (Body_Stmts);
1723 if not Null_Present (Type_Definition (N)) then
1724 Append_List_To (Body_Stmts,
1725 Build_Init_Statements (
1726 Component_List (Type_Definition (N))));
1727 end if;
1729 else
1730 -- N is a Derived_Type_Definition with a possible non-empty
1731 -- extension. The initialization of a type extension consists
1732 -- in the initialization of the components in the extension.
1734 Build_Discriminant_Assignments (Body_Stmts);
1736 Record_Extension_Node :=
1737 Record_Extension_Part (Type_Definition (N));
1739 if not Null_Present (Record_Extension_Node) then
1740 declare
1741 Stmts : List_Id :=
1742 Build_Init_Statements (
1743 Component_List (Record_Extension_Node));
1745 begin
1746 -- The parent field must be initialized first because
1747 -- the offset of the new discriminants may depend on it
1749 Prepend_To (Body_Stmts, Remove_Head (Stmts));
1750 Append_List_To (Body_Stmts, Stmts);
1751 end;
1752 end if;
1753 end if;
1755 -- Add here the assignment to instantiate the Tag
1757 -- The assignement corresponds to the code:
1759 -- _Init._Tag := Typ'Tag;
1761 -- Suppress the tag assignment when Java_VM because JVM tags are
1762 -- represented implicitly in objects.
1764 if Is_Tagged_Type (Rec_Type)
1765 and then not Is_CPP_Class (Rec_Type)
1766 and then not Java_VM
1767 then
1768 Init_Tag :=
1769 Make_Assignment_Statement (Loc,
1770 Name =>
1771 Make_Selected_Component (Loc,
1772 Prefix => Make_Identifier (Loc, Name_uInit),
1773 Selector_Name =>
1774 New_Reference_To (Tag_Component (Rec_Type), Loc)),
1776 Expression =>
1777 New_Reference_To (Access_Disp_Table (Rec_Type), Loc));
1779 -- The tag must be inserted before the assignments to other
1780 -- components, because the initial value of the component may
1781 -- depend ot the tag (eg. through a dispatching operation on
1782 -- an access to the current type). The tag assignment is not done
1783 -- when initializing the parent component of a type extension,
1784 -- because in that case the tag is set in the extension.
1785 -- Extensions of imported C++ classes add a final complication,
1786 -- because we cannot inhibit tag setting in the constructor for
1787 -- the parent. In that case we insert the tag initialization
1788 -- after the calls to initialize the parent.
1790 Init_Tag :=
1791 Make_If_Statement (Loc,
1792 Condition => New_Occurrence_Of (Set_Tag, Loc),
1793 Then_Statements => New_List (Init_Tag));
1795 if not Is_CPP_Class (Etype (Rec_Type)) then
1796 Prepend_To (Body_Stmts, Init_Tag);
1798 else
1799 declare
1800 Nod : Node_Id := First (Body_Stmts);
1802 begin
1803 -- We assume the first init_proc call is for the parent
1805 while Present (Next (Nod))
1806 and then (Nkind (Nod) /= N_Procedure_Call_Statement
1807 or else Chars (Name (Nod)) /= Name_uInit_Proc)
1808 loop
1809 Nod := Next (Nod);
1810 end loop;
1812 Insert_After (Nod, Init_Tag);
1813 end;
1814 end if;
1815 end if;
1817 Handled_Stmt_Node := New_Node (N_Handled_Sequence_Of_Statements, Loc);
1818 Set_Statements (Handled_Stmt_Node, Body_Stmts);
1819 Set_Exception_Handlers (Handled_Stmt_Node, No_List);
1820 Set_Handled_Statement_Sequence (Body_Node, Handled_Stmt_Node);
1822 if not Debug_Generated_Code then
1823 Set_Debug_Info_Off (Proc_Id);
1824 end if;
1826 -- Associate Init_Proc with type, and determine if the procedure
1827 -- is null (happens because of the Initialize_Scalars pragma case,
1828 -- where we have to generate a null procedure in case it is called
1829 -- by a client with Initialize_Scalars set). Such procedures have
1830 -- to be generated, but do not have to be called, so we mark them
1831 -- as null to suppress the call.
1833 Set_Init_Proc (Rec_Type, Proc_Id);
1835 if List_Length (Body_Stmts) = 1
1836 and then Nkind (First (Body_Stmts)) = N_Null_Statement
1837 then
1838 Set_Is_Null_Init_Proc (Proc_Id);
1839 end if;
1840 end Build_Init_Procedure;
1842 ---------------------------
1843 -- Build_Init_Statements --
1844 ---------------------------
1846 function Build_Init_Statements (Comp_List : Node_Id) return List_Id is
1847 Alt_List : List_Id;
1848 Statement_List : List_Id;
1849 Stmts : List_Id;
1850 Check_List : List_Id := New_List;
1852 Per_Object_Constraint_Components : Boolean;
1854 Decl : Node_Id;
1855 Variant : Node_Id;
1857 Id : Entity_Id;
1858 Typ : Entity_Id;
1860 begin
1861 if Null_Present (Comp_List) then
1862 return New_List (Make_Null_Statement (Loc));
1863 end if;
1865 Statement_List := New_List;
1867 -- Loop through components, skipping pragmas, in 2 steps. The first
1868 -- step deals with regular components. The second step deals with
1869 -- components have per object constraints, and no explicit initia-
1870 -- lization.
1872 Per_Object_Constraint_Components := False;
1874 -- First step : regular components.
1876 Decl := First_Non_Pragma (Component_Items (Comp_List));
1877 while Present (Decl) loop
1878 Loc := Sloc (Decl);
1879 Build_Record_Checks (Subtype_Indication (Decl), Check_List);
1881 Id := Defining_Identifier (Decl);
1882 Typ := Etype (Id);
1884 if Has_Per_Object_Constraint (Id)
1885 and then No (Expression (Decl))
1886 then
1887 -- Skip processing for now and ask for a second pass
1889 Per_Object_Constraint_Components := True;
1890 else
1891 if Present (Expression (Decl)) then
1892 Stmts := Build_Assignment (Id, Expression (Decl));
1894 elsif Has_Non_Null_Base_Init_Proc (Typ) then
1895 Stmts :=
1896 Build_Initialization_Call (Loc,
1897 Make_Selected_Component (Loc,
1898 Prefix => Make_Identifier (Loc, Name_uInit),
1899 Selector_Name => New_Occurrence_Of (Id, Loc)),
1900 Typ, True, Rec_Type, Discr_Map => Discr_Map);
1902 elsif Component_Needs_Simple_Initialization (Typ) then
1903 Stmts :=
1904 Build_Assignment (Id, Get_Simple_Init_Val (Typ, Loc));
1906 else
1907 Stmts := No_List;
1908 end if;
1910 if Present (Check_List) then
1911 Append_List_To (Statement_List, Check_List);
1912 end if;
1914 if Present (Stmts) then
1916 -- Add the initialization of the record controller
1917 -- before the _Parent field is attached to it when
1918 -- the attachment can occur. It does not work to
1919 -- simply initialize the controller first: it must be
1920 -- initialized after the parent if the parent holds
1921 -- discriminants that can be used to compute the
1922 -- offset of the controller. This code relies on
1923 -- the last statement of the initialization call
1924 -- being the attachement of the parent. see
1925 -- Build_Initialization_Call.
1927 if Chars (Id) = Name_uController
1928 and then Rec_Type /= Etype (Rec_Type)
1929 and then Has_Controlled_Component (Etype (Rec_Type))
1930 and then Has_New_Controlled_Component (Rec_Type)
1931 then
1932 Insert_List_Before (Last (Statement_List), Stmts);
1933 else
1934 Append_List_To (Statement_List, Stmts);
1935 end if;
1936 end if;
1937 end if;
1939 Next_Non_Pragma (Decl);
1940 end loop;
1942 if Per_Object_Constraint_Components then
1944 -- Second pass: components with per-object constraints
1946 Decl := First_Non_Pragma (Component_Items (Comp_List));
1948 while Present (Decl) loop
1949 Loc := Sloc (Decl);
1950 Id := Defining_Identifier (Decl);
1951 Typ := Etype (Id);
1953 if Has_Per_Object_Constraint (Id)
1954 and then No (Expression (Decl))
1955 then
1956 if Has_Non_Null_Base_Init_Proc (Typ) then
1957 Append_List_To (Statement_List,
1958 Build_Initialization_Call (Loc,
1959 Make_Selected_Component (Loc,
1960 Prefix => Make_Identifier (Loc, Name_uInit),
1961 Selector_Name => New_Occurrence_Of (Id, Loc)),
1962 Typ, True, Rec_Type, Discr_Map => Discr_Map));
1964 elsif Component_Needs_Simple_Initialization (Typ) then
1965 Append_List_To (Statement_List,
1966 Build_Assignment (Id, Get_Simple_Init_Val (Typ, Loc)));
1967 end if;
1968 end if;
1970 Next_Non_Pragma (Decl);
1971 end loop;
1972 end if;
1974 -- Process the variant part
1976 if Present (Variant_Part (Comp_List)) then
1977 Alt_List := New_List;
1978 Variant := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
1980 while Present (Variant) loop
1981 Loc := Sloc (Variant);
1982 Append_To (Alt_List,
1983 Make_Case_Statement_Alternative (Loc,
1984 Discrete_Choices =>
1985 New_Copy_List (Discrete_Choices (Variant)),
1986 Statements =>
1987 Build_Init_Statements (Component_List (Variant))));
1989 Next_Non_Pragma (Variant);
1990 end loop;
1992 -- The expression of the case statement which is a reference
1993 -- to one of the discriminants is replaced by the appropriate
1994 -- formal parameter of the initialization procedure.
1996 Append_To (Statement_List,
1997 Make_Case_Statement (Loc,
1998 Expression =>
1999 New_Reference_To (Discriminal (
2000 Entity (Name (Variant_Part (Comp_List)))), Loc),
2001 Alternatives => Alt_List));
2002 end if;
2004 -- For a task record type, add the task create call and calls
2005 -- to bind any interrupt (signal) entries.
2007 if Is_Task_Record_Type (Rec_Type) then
2008 Append_To (Statement_List, Make_Task_Create_Call (Rec_Type));
2010 declare
2011 Task_Type : constant Entity_Id :=
2012 Corresponding_Concurrent_Type (Rec_Type);
2013 Task_Decl : constant Node_Id := Parent (Task_Type);
2014 Task_Def : constant Node_Id := Task_Definition (Task_Decl);
2015 Vis_Decl : Node_Id;
2016 Ent : Entity_Id;
2018 begin
2019 if Present (Task_Def) then
2020 Vis_Decl := First (Visible_Declarations (Task_Def));
2021 while Present (Vis_Decl) loop
2022 Loc := Sloc (Vis_Decl);
2024 if Nkind (Vis_Decl) = N_Attribute_Definition_Clause then
2025 if Get_Attribute_Id (Chars (Vis_Decl)) =
2026 Attribute_Address
2027 then
2028 Ent := Entity (Name (Vis_Decl));
2030 if Ekind (Ent) = E_Entry then
2031 Append_To (Statement_List,
2032 Make_Procedure_Call_Statement (Loc,
2033 Name => New_Reference_To (
2034 RTE (RE_Bind_Interrupt_To_Entry), Loc),
2035 Parameter_Associations => New_List (
2036 Make_Selected_Component (Loc,
2037 Prefix =>
2038 Make_Identifier (Loc, Name_uInit),
2039 Selector_Name =>
2040 Make_Identifier (Loc, Name_uTask_Id)),
2041 Entry_Index_Expression (
2042 Loc, Ent, Empty, Task_Type),
2043 Expression (Vis_Decl))));
2044 end if;
2045 end if;
2046 end if;
2048 Next (Vis_Decl);
2049 end loop;
2050 end if;
2051 end;
2052 end if;
2054 -- For a protected type, add statements generated by
2055 -- Make_Initialize_Protection.
2057 if Is_Protected_Record_Type (Rec_Type) then
2058 Append_List_To (Statement_List,
2059 Make_Initialize_Protection (Rec_Type));
2060 end if;
2062 -- If no initializations when generated for component declarations
2063 -- corresponding to this Statement_List, append a null statement
2064 -- to the Statement_List to make it a valid Ada tree.
2066 if Is_Empty_List (Statement_List) then
2067 Append (New_Node (N_Null_Statement, Loc), Statement_List);
2068 end if;
2070 return Statement_List;
2071 end Build_Init_Statements;
2073 -------------------------
2074 -- Build_Record_Checks --
2075 -------------------------
2077 procedure Build_Record_Checks (S : Node_Id; Check_List : List_Id) is
2078 P : Node_Id;
2079 Subtype_Mark_Id : Entity_Id;
2081 begin
2082 if Nkind (S) = N_Subtype_Indication then
2083 Find_Type (Subtype_Mark (S));
2084 P := Parent (S);
2085 Subtype_Mark_Id := Entity (Subtype_Mark (S));
2087 -- Remaining processing depends on type
2089 case Ekind (Subtype_Mark_Id) is
2091 when Array_Kind =>
2092 Constrain_Array (S, Check_List);
2094 when others =>
2095 null;
2096 end case;
2097 end if;
2098 end Build_Record_Checks;
2100 -------------------------------------------
2101 -- Component_Needs_Simple_Initialization --
2102 -------------------------------------------
2104 function Component_Needs_Simple_Initialization
2105 (T : Entity_Id)
2106 return Boolean
2108 begin
2109 return
2110 Needs_Simple_Initialization (T)
2111 and then not Is_RTE (T, RE_Tag)
2112 and then not Is_RTE (T, RE_Vtable_Ptr);
2113 end Component_Needs_Simple_Initialization;
2115 ---------------------
2116 -- Constrain_Array --
2117 ---------------------
2119 procedure Constrain_Array
2120 (SI : Node_Id;
2121 Check_List : List_Id)
2123 C : constant Node_Id := Constraint (SI);
2124 Number_Of_Constraints : Nat := 0;
2125 Index : Node_Id;
2126 S, T : Entity_Id;
2128 begin
2129 T := Entity (Subtype_Mark (SI));
2131 if Ekind (T) in Access_Kind then
2132 T := Designated_Type (T);
2133 end if;
2135 S := First (Constraints (C));
2137 while Present (S) loop
2138 Number_Of_Constraints := Number_Of_Constraints + 1;
2139 Next (S);
2140 end loop;
2142 -- In either case, the index constraint must provide a discrete
2143 -- range for each index of the array type and the type of each
2144 -- discrete range must be the same as that of the corresponding
2145 -- index. (RM 3.6.1)
2147 S := First (Constraints (C));
2148 Index := First_Index (T);
2149 Analyze (Index);
2151 -- Apply constraints to each index type
2153 for J in 1 .. Number_Of_Constraints loop
2154 Constrain_Index (Index, S, Check_List);
2155 Next (Index);
2156 Next (S);
2157 end loop;
2159 end Constrain_Array;
2161 ---------------------
2162 -- Constrain_Index --
2163 ---------------------
2165 procedure Constrain_Index
2166 (Index : Node_Id;
2167 S : Node_Id;
2168 Check_List : List_Id)
2170 T : constant Entity_Id := Etype (Index);
2172 begin
2173 if Nkind (S) = N_Range then
2174 Process_Range_Expr_In_Decl (S, T, Check_List);
2175 end if;
2176 end Constrain_Index;
2178 --------------------------------------
2179 -- Parent_Subtype_Renaming_Discrims --
2180 --------------------------------------
2182 function Parent_Subtype_Renaming_Discrims return Boolean is
2183 De : Entity_Id;
2184 Dp : Entity_Id;
2186 begin
2187 if Base_Type (Pe) /= Pe then
2188 return False;
2189 end if;
2191 if Etype (Pe) = Pe
2192 or else not Has_Discriminants (Pe)
2193 or else Is_Constrained (Pe)
2194 or else Is_Tagged_Type (Pe)
2195 then
2196 return False;
2197 end if;
2199 -- If there are no explicit girder discriminants we have inherited
2200 -- the root type discriminants so far, so no renamings occurred.
2202 if First_Discriminant (Pe) = First_Girder_Discriminant (Pe) then
2203 return False;
2204 end if;
2206 -- Check if we have done some trivial renaming of the parent
2207 -- discriminants, i.e. someting like
2209 -- type DT (X1,X2: int) is new PT (X1,X2);
2211 De := First_Discriminant (Pe);
2212 Dp := First_Discriminant (Etype (Pe));
2214 while Present (De) loop
2215 pragma Assert (Present (Dp));
2217 if Corresponding_Discriminant (De) /= Dp then
2218 return True;
2219 end if;
2221 Next_Discriminant (De);
2222 Next_Discriminant (Dp);
2223 end loop;
2225 return Present (Dp);
2226 end Parent_Subtype_Renaming_Discrims;
2228 ------------------------
2229 -- Requires_Init_Proc --
2230 ------------------------
2232 function Requires_Init_Proc (Rec_Id : Entity_Id) return Boolean is
2233 Comp_Decl : Node_Id;
2234 Id : Entity_Id;
2235 Typ : Entity_Id;
2237 begin
2238 -- Definitely do not need one if specifically suppressed
2240 if Suppress_Init_Proc (Rec_Id) then
2241 return False;
2242 end if;
2244 -- Otherwise we need to generate an initialization procedure if
2245 -- Is_CPP_Class is False and at least one of the following applies:
2247 -- 1. Discriminants are present, since they need to be initialized
2248 -- with the appropriate discriminant constraint expressions.
2249 -- However, the discriminant of an unchecked union does not
2250 -- count, since the discriminant is not present.
2252 -- 2. The type is a tagged type, since the implicit Tag component
2253 -- needs to be initialized with a pointer to the dispatch table.
2255 -- 3. The type contains tasks
2257 -- 4. One or more components has an initial value
2259 -- 5. One or more components is for a type which itself requires
2260 -- an initialization procedure.
2262 -- 6. One or more components is a type that requires simple
2263 -- initialization (see Needs_Simple_Initialization), except
2264 -- that types Tag and Vtable_Ptr are excluded, since fields
2265 -- of these types are initialized by other means.
2267 -- 7. The type is the record type built for a task type (since at
2268 -- the very least, Create_Task must be called)
2270 -- 8. The type is the record type built for a protected type (since
2271 -- at least Initialize_Protection must be called)
2273 -- 9. The type is marked as a public entity. The reason we add this
2274 -- case (even if none of the above apply) is to properly handle
2275 -- Initialize_Scalars. If a package is compiled without an IS
2276 -- pragma, and the client is compiled with an IS pragma, then
2277 -- the client will think an initialization procedure is present
2278 -- and call it, when in fact no such procedure is required, but
2279 -- since the call is generated, there had better be a routine
2280 -- at the other end of the call, even if it does nothing!)
2282 -- Note: the reason we exclude the CPP_Class case is ???
2284 if Is_CPP_Class (Rec_Id) then
2285 return False;
2287 elsif Is_Public (Rec_Id) then
2288 return True;
2290 elsif (Has_Discriminants (Rec_Id)
2291 and then not Is_Unchecked_Union (Rec_Id))
2292 or else Is_Tagged_Type (Rec_Id)
2293 or else Is_Concurrent_Record_Type (Rec_Id)
2294 or else Has_Task (Rec_Id)
2295 then
2296 return True;
2297 end if;
2299 Id := First_Component (Rec_Id);
2301 while Present (Id) loop
2302 Comp_Decl := Parent (Id);
2303 Typ := Etype (Id);
2305 if Present (Expression (Comp_Decl))
2306 or else Has_Non_Null_Base_Init_Proc (Typ)
2307 or else Component_Needs_Simple_Initialization (Typ)
2308 then
2309 return True;
2310 end if;
2312 Next_Component (Id);
2313 end loop;
2315 return False;
2316 end Requires_Init_Proc;
2318 -- Start of processing for Build_Record_Init_Proc
2320 begin
2321 Rec_Type := Defining_Identifier (N);
2323 -- This may be full declaration of a private type, in which case
2324 -- the visible entity is a record, and the private entity has been
2325 -- exchanged with it in the private part of the current package.
2326 -- The initialization procedure is built for the record type, which
2327 -- is retrievable from the private entity.
2329 if Is_Incomplete_Or_Private_Type (Rec_Type) then
2330 Rec_Type := Underlying_Type (Rec_Type);
2331 end if;
2333 -- If there are discriminants, build the discriminant map to replace
2334 -- discriminants by their discriminals in complex bound expressions.
2335 -- These only arise for the corresponding records of protected types.
2337 if Is_Concurrent_Record_Type (Rec_Type)
2338 and then Has_Discriminants (Rec_Type)
2339 then
2340 declare
2341 Disc : Entity_Id;
2343 begin
2344 Disc := First_Discriminant (Rec_Type);
2346 while Present (Disc) loop
2347 Append_Elmt (Disc, Discr_Map);
2348 Append_Elmt (Discriminal (Disc), Discr_Map);
2349 Next_Discriminant (Disc);
2350 end loop;
2351 end;
2352 end if;
2354 -- Derived types that have no type extension can use the initialization
2355 -- procedure of their parent and do not need a procedure of their own.
2356 -- This is only correct if there are no representation clauses for the
2357 -- type or its parent, and if the parent has in fact been frozen so
2358 -- that its initialization procedure exists.
2360 if Is_Derived_Type (Rec_Type)
2361 and then not Is_Tagged_Type (Rec_Type)
2362 and then not Has_New_Non_Standard_Rep (Rec_Type)
2363 and then not Parent_Subtype_Renaming_Discrims
2364 and then Has_Non_Null_Base_Init_Proc (Etype (Rec_Type))
2365 then
2366 Copy_TSS (Base_Init_Proc (Etype (Rec_Type)), Rec_Type);
2368 -- Otherwise if we need an initialization procedure, then build one,
2369 -- mark it as public and inlinable and as having a completion.
2371 elsif Requires_Init_Proc (Rec_Type) then
2372 Build_Init_Procedure;
2373 Set_Is_Public (Proc_Id, Is_Public (Pe));
2375 -- The initialization of protected records is not worth inlining.
2376 -- In addition, when compiled for another unit for inlining purposes,
2377 -- it may make reference to entities that have not been elaborated
2378 -- yet. The initialization of controlled records contains a nested
2379 -- clean-up procedure that makes it impractical to inline as well,
2380 -- and leads to undefined symbols if inlined in a different unit.
2381 -- Similar considerations apply to task types.
2383 if not Is_Concurrent_Type (Rec_Type)
2384 and then not Has_Task (Rec_Type)
2385 and then not Controlled_Type (Rec_Type)
2386 then
2387 Set_Is_Inlined (Proc_Id);
2388 end if;
2390 Set_Is_Internal (Proc_Id);
2391 Set_Has_Completion (Proc_Id);
2393 if not Debug_Generated_Code then
2394 Set_Debug_Info_Off (Proc_Id);
2395 end if;
2396 end if;
2397 end Build_Record_Init_Proc;
2399 ------------------------------------
2400 -- Build_Variant_Record_Equality --
2401 ------------------------------------
2403 -- Generates:
2405 -- function _Equality (X, Y : T) return Boolean is
2406 -- begin
2407 -- -- Compare discriminants
2409 -- if False or else X.D1 /= Y.D1 or else X.D2 /= Y.D2 then
2410 -- return False;
2411 -- end if;
2413 -- -- Compare components
2415 -- if False or else X.C1 /= Y.C1 or else X.C2 /= Y.C2 then
2416 -- return False;
2417 -- end if;
2419 -- -- Compare variant part
2421 -- case X.D1 is
2422 -- when V1 =>
2423 -- if False or else X.C2 /= Y.C2 or else X.C3 /= Y.C3 then
2424 -- return False;
2425 -- end if;
2426 -- ...
2427 -- when Vn =>
2428 -- if False or else X.Cn /= Y.Cn then
2429 -- return False;
2430 -- end if;
2431 -- end case;
2432 -- return True;
2433 -- end _Equality;
2435 procedure Build_Variant_Record_Equality (Typ : Entity_Id) is
2436 Loc : constant Source_Ptr := Sloc (Typ);
2437 F : constant Entity_Id := Make_Defining_Identifier (Loc,
2438 Name_uEquality);
2439 X : constant Entity_Id := Make_Defining_Identifier (Loc, Name_X);
2440 Y : constant Entity_Id := Make_Defining_Identifier (Loc, Name_Y);
2441 Def : constant Node_Id := Parent (Typ);
2442 Comps : constant Node_Id := Component_List (Type_Definition (Def));
2444 Function_Body : Node_Id;
2445 Stmts : List_Id := New_List;
2447 begin
2448 if Is_Derived_Type (Typ)
2449 and then not Has_New_Non_Standard_Rep (Typ)
2450 then
2451 declare
2452 Parent_Eq : Entity_Id := TSS (Root_Type (Typ), Name_uEquality);
2454 begin
2455 if Present (Parent_Eq) then
2456 Copy_TSS (Parent_Eq, Typ);
2457 return;
2458 end if;
2459 end;
2460 end if;
2462 Function_Body :=
2463 Make_Subprogram_Body (Loc,
2464 Specification =>
2465 Make_Function_Specification (Loc,
2466 Defining_Unit_Name => F,
2467 Parameter_Specifications => New_List (
2468 Make_Parameter_Specification (Loc,
2469 Defining_Identifier => X,
2470 Parameter_Type => New_Reference_To (Typ, Loc)),
2472 Make_Parameter_Specification (Loc,
2473 Defining_Identifier => Y,
2474 Parameter_Type => New_Reference_To (Typ, Loc))),
2476 Subtype_Mark => New_Reference_To (Standard_Boolean, Loc)),
2478 Declarations => New_List,
2479 Handled_Statement_Sequence =>
2480 Make_Handled_Sequence_Of_Statements (Loc,
2481 Statements => Stmts));
2483 -- For unchecked union case, raise program error. This will only
2484 -- happen in the case of dynamic dispatching for a tagged type,
2485 -- since in the static cases it is a compile time error.
2487 if Has_Unchecked_Union (Typ) then
2488 Append_To (Stmts,
2489 Make_Raise_Program_Error (Loc,
2490 Reason => PE_Unchecked_Union_Restriction));
2491 else
2492 Append_To (Stmts,
2493 Make_Eq_If (Typ,
2494 Discriminant_Specifications (Def)));
2495 Append_List_To (Stmts,
2496 Make_Eq_Case (Typ, Comps));
2497 end if;
2499 Append_To (Stmts,
2500 Make_Return_Statement (Loc,
2501 Expression => New_Reference_To (Standard_True, Loc)));
2503 Set_TSS (Typ, F);
2504 Set_Is_Pure (F);
2506 if not Debug_Generated_Code then
2507 Set_Debug_Info_Off (F);
2508 end if;
2509 end Build_Variant_Record_Equality;
2511 -----------------------------
2512 -- Check_Stream_Attributes --
2513 -----------------------------
2515 procedure Check_Stream_Attributes (Typ : Entity_Id) is
2516 Comp : Entity_Id;
2517 Par : constant Entity_Id := Root_Type (Base_Type (Typ));
2518 Par_Read : Boolean := Present (TSS (Par, Name_uRead));
2519 Par_Write : Boolean := Present (TSS (Par, Name_uWrite));
2521 begin
2522 if Par_Read or else Par_Write then
2523 Comp := First_Component (Typ);
2524 while Present (Comp) loop
2525 if Comes_From_Source (Comp)
2526 and then Original_Record_Component (Comp) = Comp
2527 and then Is_Limited_Type (Etype (Comp))
2528 then
2529 if (Par_Read and then
2530 No (TSS (Base_Type (Etype (Comp)), Name_uRead)))
2531 or else
2532 (Par_Write and then
2533 No (TSS (Base_Type (Etype (Comp)), Name_uWrite)))
2534 then
2535 Error_Msg_N
2536 ("|component must have Stream attribute",
2537 Parent (Comp));
2538 end if;
2539 end if;
2541 Next_Component (Comp);
2542 end loop;
2543 end if;
2544 end Check_Stream_Attributes;
2546 ---------------------------
2547 -- Expand_Derived_Record --
2548 ---------------------------
2550 -- Add a field _parent at the beginning of the record extension. This is
2551 -- used to implement inheritance. Here are some examples of expansion:
2553 -- 1. no discriminants
2554 -- type T2 is new T1 with null record;
2555 -- gives
2556 -- type T2 is new T1 with record
2557 -- _Parent : T1;
2558 -- end record;
2560 -- 2. renamed discriminants
2561 -- type T2 (B, C : Int) is new T1 (A => B) with record
2562 -- _Parent : T1 (A => B);
2563 -- D : Int;
2564 -- end;
2566 -- 3. inherited discriminants
2567 -- type T2 is new T1 with record -- discriminant A inherited
2568 -- _Parent : T1 (A);
2569 -- D : Int;
2570 -- end;
2572 procedure Expand_Derived_Record (T : Entity_Id; Def : Node_Id) is
2573 Indic : constant Node_Id := Subtype_Indication (Def);
2574 Loc : constant Source_Ptr := Sloc (Def);
2575 Rec_Ext_Part : Node_Id := Record_Extension_Part (Def);
2576 Par_Subtype : Entity_Id;
2577 Comp_List : Node_Id;
2578 Comp_Decl : Node_Id;
2579 Parent_N : Node_Id;
2580 D : Entity_Id;
2581 List_Constr : constant List_Id := New_List;
2583 begin
2584 -- Expand_Tagged_Extension is called directly from the semantics, so
2585 -- we must check to see whether expansion is active before proceeding
2587 if not Expander_Active then
2588 return;
2589 end if;
2591 -- This may be a derivation of an untagged private type whose full
2592 -- view is tagged, in which case the Derived_Type_Definition has no
2593 -- extension part. Build an empty one now.
2595 if No (Rec_Ext_Part) then
2596 Rec_Ext_Part :=
2597 Make_Record_Definition (Loc,
2598 End_Label => Empty,
2599 Component_List => Empty,
2600 Null_Present => True);
2602 Set_Record_Extension_Part (Def, Rec_Ext_Part);
2603 Mark_Rewrite_Insertion (Rec_Ext_Part);
2604 end if;
2606 Comp_List := Component_List (Rec_Ext_Part);
2608 Parent_N := Make_Defining_Identifier (Loc, Name_uParent);
2610 -- If the derived type inherits its discriminants the type of the
2611 -- _parent field must be constrained by the inherited discriminants
2613 if Has_Discriminants (T)
2614 and then Nkind (Indic) /= N_Subtype_Indication
2615 and then not Is_Constrained (Entity (Indic))
2616 then
2617 D := First_Discriminant (T);
2618 while (Present (D)) loop
2619 Append_To (List_Constr, New_Occurrence_Of (D, Loc));
2620 Next_Discriminant (D);
2621 end loop;
2623 Par_Subtype :=
2624 Process_Subtype (
2625 Make_Subtype_Indication (Loc,
2626 Subtype_Mark => New_Reference_To (Entity (Indic), Loc),
2627 Constraint =>
2628 Make_Index_Or_Discriminant_Constraint (Loc,
2629 Constraints => List_Constr)),
2630 Def);
2632 -- Otherwise the original subtype_indication is just what is needed
2634 else
2635 Par_Subtype := Process_Subtype (New_Copy_Tree (Indic), Def);
2636 end if;
2638 Set_Parent_Subtype (T, Par_Subtype);
2640 Comp_Decl :=
2641 Make_Component_Declaration (Loc,
2642 Defining_Identifier => Parent_N,
2643 Subtype_Indication => New_Reference_To (Par_Subtype, Loc));
2645 if Null_Present (Rec_Ext_Part) then
2646 Set_Component_List (Rec_Ext_Part,
2647 Make_Component_List (Loc,
2648 Component_Items => New_List (Comp_Decl),
2649 Variant_Part => Empty,
2650 Null_Present => False));
2651 Set_Null_Present (Rec_Ext_Part, False);
2653 elsif Null_Present (Comp_List)
2654 or else Is_Empty_List (Component_Items (Comp_List))
2655 then
2656 Set_Component_Items (Comp_List, New_List (Comp_Decl));
2657 Set_Null_Present (Comp_List, False);
2659 else
2660 Insert_Before (First (Component_Items (Comp_List)), Comp_Decl);
2661 end if;
2663 Analyze (Comp_Decl);
2664 end Expand_Derived_Record;
2666 ------------------------------------
2667 -- Expand_N_Full_Type_Declaration --
2668 ------------------------------------
2670 procedure Expand_N_Full_Type_Declaration (N : Node_Id) is
2671 Def_Id : constant Entity_Id := Defining_Identifier (N);
2672 B_Id : Entity_Id := Base_Type (Def_Id);
2673 Par_Id : Entity_Id;
2674 FN : Node_Id;
2676 begin
2677 if Is_Access_Type (Def_Id) then
2679 -- Anonymous access types are created for the components of the
2680 -- record parameter for an entry declaration. No master is created
2681 -- for such a type.
2683 if Has_Task (Designated_Type (Def_Id))
2684 and then Comes_From_Source (N)
2685 then
2686 Build_Master_Entity (Def_Id);
2687 Build_Master_Renaming (Parent (Def_Id), Def_Id);
2689 -- Create a class-wide master because a Master_Id must be generated
2690 -- for access-to-limited-class-wide types, whose root may be extended
2691 -- with task components.
2693 elsif Is_Class_Wide_Type (Designated_Type (Def_Id))
2694 and then Is_Limited_Type (Designated_Type (Def_Id))
2695 and then Tasking_Allowed
2697 -- Don't create a class-wide master for types whose convention is
2698 -- Java since these types cannot embed Ada tasks anyway. Note that
2699 -- the following test cannot catch the following case:
2701 -- package java.lang.Object is
2702 -- type Typ is tagged limited private;
2703 -- type Ref is access all Typ'Class;
2704 -- private
2705 -- type Typ is tagged limited ...;
2706 -- pragma Convention (Typ, Java)
2707 -- end;
2709 -- Because the convention appears after we have done the
2710 -- processing for type Ref.
2712 and then Convention (Designated_Type (Def_Id)) /= Convention_Java
2713 then
2714 Build_Class_Wide_Master (Def_Id);
2716 elsif Ekind (Def_Id) = E_Access_Protected_Subprogram_Type then
2717 Expand_Access_Protected_Subprogram_Type (N);
2718 end if;
2720 elsif Has_Task (Def_Id) then
2721 Expand_Previous_Access_Type (Def_Id);
2722 end if;
2724 Par_Id := Etype (B_Id);
2726 -- The parent type is private then we need to inherit
2727 -- any TSS operations from the full view.
2729 if Ekind (Par_Id) in Private_Kind
2730 and then Present (Full_View (Par_Id))
2731 then
2732 Par_Id := Base_Type (Full_View (Par_Id));
2733 end if;
2735 if Nkind (Type_Definition (Original_Node (N)))
2736 = N_Derived_Type_Definition
2737 and then not Is_Tagged_Type (Def_Id)
2738 and then Present (Freeze_Node (Par_Id))
2739 and then Present (TSS_Elist (Freeze_Node (Par_Id)))
2740 then
2741 Ensure_Freeze_Node (B_Id);
2742 FN := Freeze_Node (B_Id);
2744 if No (TSS_Elist (FN)) then
2745 Set_TSS_Elist (FN, New_Elmt_List);
2746 end if;
2748 declare
2749 T_E : Elist_Id := TSS_Elist (FN);
2750 Elmt : Elmt_Id;
2752 begin
2753 Elmt := First_Elmt (TSS_Elist (Freeze_Node (Par_Id)));
2755 while Present (Elmt) loop
2756 if Chars (Node (Elmt)) /= Name_uInit then
2757 Append_Elmt (Node (Elmt), T_E);
2758 end if;
2760 Next_Elmt (Elmt);
2761 end loop;
2763 -- If the derived type itself is private with a full view,
2764 -- then associate the full view with the inherited TSS_Elist
2765 -- as well.
2767 if Ekind (B_Id) in Private_Kind
2768 and then Present (Full_View (B_Id))
2769 then
2770 Ensure_Freeze_Node (Base_Type (Full_View (B_Id)));
2771 Set_TSS_Elist
2772 (Freeze_Node (Base_Type (Full_View (B_Id))), TSS_Elist (FN));
2773 end if;
2774 end;
2775 end if;
2776 end Expand_N_Full_Type_Declaration;
2778 ---------------------------------
2779 -- Expand_N_Object_Declaration --
2780 ---------------------------------
2782 -- First we do special processing for objects of a tagged type where this
2783 -- is the point at which the type is frozen. The creation of the dispatch
2784 -- table and the initialization procedure have to be deferred to this
2785 -- point, since we reference previously declared primitive subprograms.
2787 -- For all types, we call an initialization procedure if there is one
2789 procedure Expand_N_Object_Declaration (N : Node_Id) is
2790 Def_Id : constant Entity_Id := Defining_Identifier (N);
2791 Typ : constant Entity_Id := Etype (Def_Id);
2792 Loc : constant Source_Ptr := Sloc (N);
2793 Expr : Node_Id := Expression (N);
2794 New_Ref : Node_Id;
2795 Id_Ref : Node_Id;
2796 Expr_Q : Node_Id;
2798 begin
2799 -- If we have a task type in no run time mode, then complain and ignore
2801 if No_Run_Time
2802 and then not Restricted_Profile
2803 and then Is_Task_Type (Typ)
2804 then
2805 Disallow_In_No_Run_Time_Mode (N);
2806 return;
2808 -- Don't do anything for deferred constants. All proper actions will
2809 -- be expanded during the redeclaration.
2811 elsif No (Expr) and Constant_Present (N) then
2812 return;
2813 end if;
2815 -- Make shared memory routines for shared passive variable
2817 if Is_Shared_Passive (Def_Id) then
2818 Make_Shared_Var_Procs (N);
2819 end if;
2821 -- If tasks being declared, make sure we have an activation chain
2822 -- defined for the tasks (has no effect if we already have one), and
2823 -- also that a Master variable is established and that the appropriate
2824 -- enclosing construct is established as a task master.
2826 if Has_Task (Typ) then
2827 Build_Activation_Chain_Entity (N);
2828 Build_Master_Entity (Def_Id);
2829 end if;
2831 -- Default initialization required, and no expression present
2833 if No (Expr) then
2835 -- Expand Initialize call for controlled objects. One may wonder why
2836 -- the Initialize Call is not done in the regular Init procedure
2837 -- attached to the record type. That's because the init procedure is
2838 -- recursively called on each component, including _Parent, thus the
2839 -- Init call for a controlled object would generate not only one
2840 -- Initialize call as it is required but one for each ancestor of
2841 -- its type. This processing is suppressed if No_Initialization set.
2843 if not Controlled_Type (Typ)
2844 or else No_Initialization (N)
2845 then
2846 null;
2848 elsif not Abort_Allowed
2849 or else not Comes_From_Source (N)
2850 then
2851 Insert_Actions_After (N,
2852 Make_Init_Call (
2853 Ref => New_Occurrence_Of (Def_Id, Loc),
2854 Typ => Base_Type (Typ),
2855 Flist_Ref => Find_Final_List (Def_Id),
2856 With_Attach => Make_Integer_Literal (Loc, 1)));
2858 -- Abort allowed
2860 else
2861 -- We need to protect the initialize call
2863 -- begin
2864 -- Defer_Abort.all;
2865 -- Initialize (...);
2866 -- at end
2867 -- Undefer_Abort.all;
2868 -- end;
2870 -- ??? this won't protect the initialize call for controlled
2871 -- components which are part of the init proc, so this block
2872 -- should probably also contain the call to _init_proc but this
2873 -- requires some code reorganization...
2875 declare
2876 L : constant List_Id :=
2877 Make_Init_Call (
2878 Ref => New_Occurrence_Of (Def_Id, Loc),
2879 Typ => Base_Type (Typ),
2880 Flist_Ref => Find_Final_List (Def_Id),
2881 With_Attach => Make_Integer_Literal (Loc, 1));
2883 Blk : constant Node_Id :=
2884 Make_Block_Statement (Loc,
2885 Handled_Statement_Sequence =>
2886 Make_Handled_Sequence_Of_Statements (Loc, L));
2888 begin
2889 Prepend_To (L, Build_Runtime_Call (Loc, RE_Abort_Defer));
2890 Set_At_End_Proc (Handled_Statement_Sequence (Blk),
2891 New_Occurrence_Of (RTE (RE_Abort_Undefer_Direct), Loc));
2892 Insert_Actions_After (N, New_List (Blk));
2893 Expand_At_End_Handler
2894 (Handled_Statement_Sequence (Blk), Entity (Identifier (Blk)));
2895 end;
2896 end if;
2898 -- Call type initialization procedure if there is one. We build the
2899 -- call and put it immediately after the object declaration, so that
2900 -- it will be expanded in the usual manner. Note that this will
2901 -- result in proper handling of defaulted discriminants. The call
2902 -- to the Init_Proc is suppressed if No_Initialization is set.
2904 if Has_Non_Null_Base_Init_Proc (Typ)
2905 and then not No_Initialization (N)
2906 then
2907 -- The call to the initialization procedure does NOT freeze
2908 -- the object being initialized. This is because the call is
2909 -- not a source level call. This works fine, because the only
2910 -- possible statements depending on freeze status that can
2911 -- appear after the _Init call are rep clauses which can
2912 -- safely appear after actual references to the object.
2914 Id_Ref := New_Reference_To (Def_Id, Loc);
2915 Set_Must_Not_Freeze (Id_Ref);
2916 Set_Assignment_OK (Id_Ref);
2918 Insert_Actions_After (N,
2919 Build_Initialization_Call (Loc, Id_Ref, Typ));
2921 -- The initialization call may well set Not_Source_Assigned
2922 -- to False, because it looks like an modification, but the
2923 -- proper criterion is whether or not the type is at least
2924 -- partially initialized, so reset the flag appropriately.
2926 Set_Not_Source_Assigned
2927 (Def_Id, not Is_Partially_Initialized_Type (Typ));
2929 -- If simple initialization is required, then set an appropriate
2930 -- simple initialization expression in place. This special
2931 -- initialization is required even though No_Init_Flag is present.
2933 elsif Needs_Simple_Initialization (Typ) then
2934 Set_No_Initialization (N, False);
2935 Set_Expression (N, Get_Simple_Init_Val (Typ, Loc));
2936 Analyze_And_Resolve (Expression (N), Typ);
2937 end if;
2939 -- Explicit initialization present
2941 else
2942 -- Obtain actual expression from qualified expression
2944 if Nkind (Expr) = N_Qualified_Expression then
2945 Expr_Q := Expression (Expr);
2946 else
2947 Expr_Q := Expr;
2948 end if;
2950 -- When we have the appropriate type of aggregate in the
2951 -- expression (it has been determined during analysis of the
2952 -- aggregate by setting the delay flag), let's perform in
2953 -- place assignment and thus avoid creating a temporay.
2955 if Is_Delayed_Aggregate (Expr_Q) then
2956 Convert_Aggr_In_Object_Decl (N);
2958 else
2959 -- In most cases, we must check that the initial value meets
2960 -- any constraint imposed by the declared type. However, there
2961 -- is one very important exception to this rule. If the entity
2962 -- has an unconstrained nominal subtype, then it acquired its
2963 -- constraints from the expression in the first place, and not
2964 -- only does this mean that the constraint check is not needed,
2965 -- but an attempt to perform the constraint check can
2966 -- cause order of elaboration problems.
2968 if not Is_Constr_Subt_For_U_Nominal (Typ) then
2970 -- If this is an allocator for an aggregate that has been
2971 -- allocated in place, delay checks until assignments are
2972 -- made, because the discriminants are not initialized.
2974 if Nkind (Expr) = N_Allocator
2975 and then No_Initialization (Expr)
2976 then
2977 null;
2978 else
2979 Apply_Constraint_Check (Expr, Typ);
2980 end if;
2981 end if;
2983 -- If the type is controlled we attach the object to the final
2984 -- list and adjust the target after the copy. This
2986 if Controlled_Type (Typ) then
2987 declare
2988 Flist : Node_Id;
2989 F : Entity_Id;
2991 begin
2992 -- Attach the result to a dummy final list which will never
2993 -- be finalized if Delay_Finalize_Attachis set. It is
2994 -- important to attach to a dummy final list rather than
2995 -- not attaching at all in order to reset the pointers
2996 -- coming from the initial value. Equivalent code exists
2997 -- in the sec-stack case in Exp_Ch4.Expand_N_Allocator.
2999 if Delay_Finalize_Attach (N) then
3000 F :=
3001 Make_Defining_Identifier (Loc, New_Internal_Name ('F'));
3002 Insert_Action (N,
3003 Make_Object_Declaration (Loc,
3004 Defining_Identifier => F,
3005 Object_Definition =>
3006 New_Reference_To (RTE (RE_Finalizable_Ptr), Loc)));
3008 Flist := New_Reference_To (F, Loc);
3010 else
3011 Flist := Find_Final_List (Def_Id);
3012 end if;
3014 Insert_Actions_After (N,
3015 Make_Adjust_Call (
3016 Ref => New_Reference_To (Def_Id, Loc),
3017 Typ => Base_Type (Typ),
3018 Flist_Ref => Flist,
3019 With_Attach => Make_Integer_Literal (Loc, 1)));
3020 end;
3021 end if;
3023 -- For tagged types, when an init value is given, the tag has
3024 -- to be re-initialized separately in order to avoid the
3025 -- propagation of a wrong tag coming from a view conversion
3026 -- unless the type is class wide (in this case the tag comes
3027 -- from the init value). Suppress the tag assignment when
3028 -- Java_VM because JVM tags are represented implicitly
3029 -- in objects. Ditto for types that are CPP_CLASS.
3031 if Is_Tagged_Type (Typ)
3032 and then not Is_Class_Wide_Type (Typ)
3033 and then not Is_CPP_Class (Typ)
3034 and then not Java_VM
3035 then
3036 -- The re-assignment of the tag has to be done even if
3037 -- the object is a constant
3039 New_Ref :=
3040 Make_Selected_Component (Loc,
3041 Prefix => New_Reference_To (Def_Id, Loc),
3042 Selector_Name =>
3043 New_Reference_To (Tag_Component (Typ), Loc));
3045 Set_Assignment_OK (New_Ref);
3047 Insert_After (N,
3048 Make_Assignment_Statement (Loc,
3049 Name => New_Ref,
3050 Expression =>
3051 Unchecked_Convert_To (RTE (RE_Tag),
3052 New_Reference_To
3053 (Access_Disp_Table (Base_Type (Typ)), Loc))));
3055 -- For discrete types, set the Is_Known_Valid flag if the
3056 -- initializing value is known to be valid.
3058 elsif Is_Discrete_Type (Typ)
3059 and then Expr_Known_Valid (Expr)
3060 then
3061 Set_Is_Known_Valid (Def_Id);
3062 end if;
3064 -- If validity checking on copies, validate initial expression
3066 if Validity_Checks_On
3067 and then Validity_Check_Copies
3068 then
3069 Ensure_Valid (Expr);
3070 Set_Is_Known_Valid (Def_Id);
3071 end if;
3072 end if;
3073 end if;
3075 -- For array type, check for size too large
3076 -- We really need this for record types too???
3078 if Is_Array_Type (Typ) then
3079 Apply_Array_Size_Check (N, Typ);
3080 end if;
3082 end Expand_N_Object_Declaration;
3084 ---------------------------------
3085 -- Expand_N_Subtype_Indication --
3086 ---------------------------------
3088 -- Add a check on the range of the subtype. The static case is
3089 -- partially duplicated by Process_Range_Expr_In_Decl in Sem_Ch3,
3090 -- but we still need to check here for the static case in order to
3091 -- avoid generating extraneous expanded code.
3093 procedure Expand_N_Subtype_Indication (N : Node_Id) is
3094 Ran : Node_Id := Range_Expression (Constraint (N));
3095 Typ : Entity_Id := Entity (Subtype_Mark (N));
3097 begin
3098 if Nkind (Parent (N)) = N_Constrained_Array_Definition or else
3099 Nkind (Parent (N)) = N_Slice
3100 then
3101 Resolve (Ran, Typ);
3102 Apply_Range_Check (Ran, Typ);
3103 end if;
3104 end Expand_N_Subtype_Indication;
3106 ---------------------------
3107 -- Expand_N_Variant_Part --
3108 ---------------------------
3110 -- If the last variant does not contain the Others choice, replace
3111 -- it with an N_Others_Choice node since Gigi always wants an Others.
3112 -- Note that we do not bother to call Analyze on the modified variant
3113 -- part, since it's only effect would be to compute the contents of
3114 -- the Others_Discrete_Choices node laboriously, and of course we
3115 -- already know the list of choices that corresponds to the others
3116 -- choice (it's the list we are replacing!)
3118 procedure Expand_N_Variant_Part (N : Node_Id) is
3119 Last_Var : constant Node_Id := Last_Non_Pragma (Variants (N));
3120 Others_Node : Node_Id;
3122 begin
3123 if Nkind (First (Discrete_Choices (Last_Var))) /= N_Others_Choice then
3124 Others_Node := Make_Others_Choice (Sloc (Last_Var));
3125 Set_Others_Discrete_Choices
3126 (Others_Node, Discrete_Choices (Last_Var));
3127 Set_Discrete_Choices (Last_Var, New_List (Others_Node));
3128 end if;
3129 end Expand_N_Variant_Part;
3131 ---------------------------------
3132 -- Expand_Previous_Access_Type --
3133 ---------------------------------
3135 procedure Expand_Previous_Access_Type (Def_Id : Entity_Id) is
3136 T : Entity_Id := First_Entity (Current_Scope);
3138 begin
3139 -- Find all access types declared in the current scope, whose
3140 -- designated type is Def_Id.
3142 while Present (T) loop
3143 if Is_Access_Type (T)
3144 and then Designated_Type (T) = Def_Id
3145 then
3146 Build_Master_Entity (Def_Id);
3147 Build_Master_Renaming (Parent (Def_Id), T);
3148 end if;
3150 Next_Entity (T);
3151 end loop;
3152 end Expand_Previous_Access_Type;
3154 ------------------------------
3155 -- Expand_Record_Controller --
3156 ------------------------------
3158 procedure Expand_Record_Controller (T : Entity_Id) is
3159 Def : Node_Id := Type_Definition (Parent (T));
3160 Comp_List : Node_Id;
3161 Comp_Decl : Node_Id;
3162 Loc : Source_Ptr;
3163 First_Comp : Node_Id;
3164 Controller_Type : Entity_Id;
3165 Ent : Entity_Id;
3167 begin
3168 if Nkind (Def) = N_Derived_Type_Definition then
3169 Def := Record_Extension_Part (Def);
3170 end if;
3172 if Null_Present (Def) then
3173 Set_Component_List (Def,
3174 Make_Component_List (Sloc (Def),
3175 Component_Items => Empty_List,
3176 Variant_Part => Empty,
3177 Null_Present => True));
3178 end if;
3180 Comp_List := Component_List (Def);
3182 if Null_Present (Comp_List)
3183 or else Is_Empty_List (Component_Items (Comp_List))
3184 then
3185 Loc := Sloc (Comp_List);
3186 else
3187 Loc := Sloc (First (Component_Items (Comp_List)));
3188 end if;
3190 if Is_Return_By_Reference_Type (T) then
3191 Controller_Type := RTE (RE_Limited_Record_Controller);
3192 else
3193 Controller_Type := RTE (RE_Record_Controller);
3194 end if;
3196 Ent := Make_Defining_Identifier (Loc, Name_uController);
3198 Comp_Decl :=
3199 Make_Component_Declaration (Loc,
3200 Defining_Identifier => Ent,
3201 Subtype_Indication => New_Reference_To (Controller_Type, Loc));
3203 if Null_Present (Comp_List)
3204 or else Is_Empty_List (Component_Items (Comp_List))
3205 then
3206 Set_Component_Items (Comp_List, New_List (Comp_Decl));
3207 Set_Null_Present (Comp_List, False);
3209 else
3210 -- The controller cannot be placed before the _Parent field
3211 -- since gigi lays out field in order and _parent must be
3212 -- first to preserve the polymorphism of tagged types.
3214 First_Comp := First (Component_Items (Comp_List));
3216 if Chars (Defining_Identifier (First_Comp)) /= Name_uParent
3217 and then Chars (Defining_Identifier (First_Comp)) /= Name_uTag
3218 then
3219 Insert_Before (First_Comp, Comp_Decl);
3220 else
3221 Insert_After (First_Comp, Comp_Decl);
3222 end if;
3223 end if;
3225 New_Scope (T);
3226 Analyze (Comp_Decl);
3227 Set_Ekind (Ent, E_Component);
3228 Init_Component_Location (Ent);
3230 -- Move the _controller entity ahead in the list of internal
3231 -- entities of the enclosing record so that it is selected
3232 -- instead of a potentially inherited one.
3234 declare
3235 E : Entity_Id := Last_Entity (T);
3236 Comp : Entity_Id;
3238 begin
3239 pragma Assert (Chars (E) = Name_uController);
3241 Set_Next_Entity (E, First_Entity (T));
3242 Set_First_Entity (T, E);
3244 Comp := Next_Entity (E);
3245 while Next_Entity (Comp) /= E loop
3246 Next_Entity (Comp);
3247 end loop;
3249 Set_Next_Entity (Comp, Empty);
3250 Set_Last_Entity (T, Comp);
3251 end;
3253 End_Scope;
3254 end Expand_Record_Controller;
3256 ------------------------
3257 -- Expand_Tagged_Root --
3258 ------------------------
3260 procedure Expand_Tagged_Root (T : Entity_Id) is
3261 Def : constant Node_Id := Type_Definition (Parent (T));
3262 Comp_List : Node_Id;
3263 Comp_Decl : Node_Id;
3264 Sloc_N : Source_Ptr;
3266 begin
3267 if Null_Present (Def) then
3268 Set_Component_List (Def,
3269 Make_Component_List (Sloc (Def),
3270 Component_Items => Empty_List,
3271 Variant_Part => Empty,
3272 Null_Present => True));
3273 end if;
3275 Comp_List := Component_List (Def);
3277 if Null_Present (Comp_List)
3278 or else Is_Empty_List (Component_Items (Comp_List))
3279 then
3280 Sloc_N := Sloc (Comp_List);
3281 else
3282 Sloc_N := Sloc (First (Component_Items (Comp_List)));
3283 end if;
3285 Comp_Decl :=
3286 Make_Component_Declaration (Sloc_N,
3287 Defining_Identifier => Tag_Component (T),
3288 Subtype_Indication =>
3289 New_Reference_To (RTE (RE_Tag), Sloc_N));
3291 if Null_Present (Comp_List)
3292 or else Is_Empty_List (Component_Items (Comp_List))
3293 then
3294 Set_Component_Items (Comp_List, New_List (Comp_Decl));
3295 Set_Null_Present (Comp_List, False);
3297 else
3298 Insert_Before (First (Component_Items (Comp_List)), Comp_Decl);
3299 end if;
3301 -- We don't Analyze the whole expansion because the tag component has
3302 -- already been analyzed previously. Here we just insure that the
3303 -- tree is coherent with the semantic decoration
3305 Find_Type (Subtype_Indication (Comp_Decl));
3306 end Expand_Tagged_Root;
3308 -----------------------
3309 -- Freeze_Array_Type --
3310 -----------------------
3312 procedure Freeze_Array_Type (N : Node_Id) is
3313 Typ : constant Entity_Id := Entity (N);
3314 Base : constant Entity_Id := Base_Type (Typ);
3316 begin
3317 -- Nothing to do for packed case
3319 if not Is_Bit_Packed_Array (Typ) then
3321 -- If the component contains tasks, so does the array type.
3322 -- This may not be indicated in the array type because the
3323 -- component may have been a private type at the point of
3324 -- definition. Same if component type is controlled.
3326 Set_Has_Task (Base, Has_Task (Component_Type (Typ)));
3327 Set_Has_Controlled_Component (Base,
3328 Has_Controlled_Component (Component_Type (Typ))
3329 or else Is_Controlled (Component_Type (Typ)));
3331 if No (Init_Proc (Base)) then
3333 -- If this is an anonymous array created for a declaration
3334 -- with an initial value, its init_proc will never be called.
3335 -- The initial value itself may have been expanded into assign-
3336 -- ments, in which case the object declaration is carries the
3337 -- No_Initialization flag.
3339 if Is_Itype (Base)
3340 and then Nkind (Associated_Node_For_Itype (Base)) =
3341 N_Object_Declaration
3342 and then (Present (Expression (Associated_Node_For_Itype (Base)))
3343 or else
3344 No_Initialization (Associated_Node_For_Itype (Base)))
3345 then
3346 null;
3348 -- We do not need an init proc for string or wide string, since
3349 -- the only time these need initialization in normalize or
3350 -- initialize scalars mode, and these types are treated specially
3351 -- and do not need initialization procedures.
3353 elsif Base = Standard_String
3354 or else Base = Standard_Wide_String
3355 then
3356 null;
3358 -- Otherwise we have to build an init proc for the subtype
3360 else
3361 Build_Array_Init_Proc (Base, N);
3362 end if;
3363 end if;
3365 if Typ = Base and then Has_Controlled_Component (Base) then
3366 Build_Controlling_Procs (Base);
3367 end if;
3368 end if;
3369 end Freeze_Array_Type;
3371 -----------------------------
3372 -- Freeze_Enumeration_Type --
3373 -----------------------------
3375 procedure Freeze_Enumeration_Type (N : Node_Id) is
3376 Loc : constant Source_Ptr := Sloc (N);
3377 Typ : constant Entity_Id := Entity (N);
3378 Ent : Entity_Id;
3379 Lst : List_Id;
3380 Num : Nat;
3381 Arr : Entity_Id;
3382 Fent : Entity_Id;
3383 Func : Entity_Id;
3384 Ityp : Entity_Id;
3386 begin
3387 -- Build list of literal references
3389 Lst := New_List;
3390 Num := 0;
3392 Ent := First_Literal (Typ);
3393 while Present (Ent) loop
3394 Append_To (Lst, New_Reference_To (Ent, Sloc (Ent)));
3395 Num := Num + 1;
3396 Next_Literal (Ent);
3397 end loop;
3399 -- Now build an array declaration
3401 -- typA : array (Natural range 0 .. num - 1) of ctype :=
3402 -- (v, v, v, v, v, ....)
3404 -- where ctype is the corresponding integer type
3406 Arr :=
3407 Make_Defining_Identifier (Loc,
3408 Chars => New_External_Name (Chars (Typ), 'A'));
3410 Append_Freeze_Action (Typ,
3411 Make_Object_Declaration (Loc,
3412 Defining_Identifier => Arr,
3413 Constant_Present => True,
3415 Object_Definition =>
3416 Make_Constrained_Array_Definition (Loc,
3417 Discrete_Subtype_Definitions => New_List (
3418 Make_Subtype_Indication (Loc,
3419 Subtype_Mark => New_Reference_To (Standard_Natural, Loc),
3420 Constraint =>
3421 Make_Range_Constraint (Loc,
3422 Range_Expression =>
3423 Make_Range (Loc,
3424 Low_Bound =>
3425 Make_Integer_Literal (Loc, 0),
3426 High_Bound =>
3427 Make_Integer_Literal (Loc, Num - 1))))),
3429 Subtype_Indication => New_Reference_To (Typ, Loc)),
3431 Expression =>
3432 Make_Aggregate (Loc,
3433 Expressions => Lst)));
3435 Set_Enum_Pos_To_Rep (Typ, Arr);
3437 -- Now we build the function that converts representation values to
3438 -- position values. This function has the form:
3440 -- function _Rep_To_Pos (A : etype; F : Boolean) return Integer is
3441 -- begin
3442 -- case ityp!(A) is
3443 -- when enum-lit'Enum_Rep => return posval;
3444 -- when enum-lit'Enum_Rep => return posval;
3445 -- ...
3446 -- when others =>
3447 -- [raise Program_Error when F]
3448 -- return -1;
3449 -- end case;
3450 -- end;
3452 -- Note: the F parameter determines whether the others case (no valid
3453 -- representation) raises Program_Error or returns a unique value of
3454 -- minus one. The latter case is used, e.g. in 'Valid code.
3456 -- Note: the reason we use Enum_Rep values in the case here is to
3457 -- avoid the code generator making inappropriate assumptions about
3458 -- the range of the values in the case where the value is invalid.
3459 -- ityp is a signed or unsigned integer type of appropriate width.
3461 -- Note: in the case of No_Run_Time mode, where we cannot handle
3462 -- a program error in any case, we suppress the raise and just
3463 -- return -1 unconditionally (this is an erroneous program in any
3464 -- case and there is no obligation to raise Program_Error here!)
3465 -- We also do this if pragma Restrictions (No_Exceptions) is active.
3467 -- First build list of cases
3469 Lst := New_List;
3471 Ent := First_Literal (Typ);
3472 while Present (Ent) loop
3473 Append_To (Lst,
3474 Make_Case_Statement_Alternative (Loc,
3475 Discrete_Choices => New_List (
3476 Make_Integer_Literal (Sloc (Enumeration_Rep_Expr (Ent)),
3477 Intval => Enumeration_Rep (Ent))),
3479 Statements => New_List (
3480 Make_Return_Statement (Loc,
3481 Expression =>
3482 Make_Integer_Literal (Loc,
3483 Intval => Enumeration_Pos (Ent))))));
3485 Next_Literal (Ent);
3486 end loop;
3488 -- Representations are signed
3490 if Enumeration_Rep (First_Literal (Typ)) < 0 then
3491 if Esize (Typ) <= Standard_Integer_Size then
3492 Ityp := Standard_Integer;
3493 else
3494 Ityp := Universal_Integer;
3495 end if;
3497 -- Representations are unsigned
3499 else
3500 if Esize (Typ) <= Standard_Integer_Size then
3501 Ityp := RTE (RE_Unsigned);
3502 else
3503 Ityp := RTE (RE_Long_Long_Unsigned);
3504 end if;
3505 end if;
3507 -- In normal mode, add the others clause with the test
3509 if not (No_Run_Time or Restrictions (No_Exceptions)) then
3510 Append_To (Lst,
3511 Make_Case_Statement_Alternative (Loc,
3512 Discrete_Choices => New_List (Make_Others_Choice (Loc)),
3513 Statements => New_List (
3514 Make_Raise_Program_Error (Loc,
3515 Condition => Make_Identifier (Loc, Name_uF),
3516 Reason => PE_Invalid_Data),
3517 Make_Return_Statement (Loc,
3518 Expression =>
3519 Make_Integer_Literal (Loc, -1)))));
3521 -- If No_Run_Time mode, unconditionally return -1. Same
3522 -- treatment if we have pragma Restrictions (No_Exceptions).
3524 else
3525 Append_To (Lst,
3526 Make_Case_Statement_Alternative (Loc,
3527 Discrete_Choices => New_List (Make_Others_Choice (Loc)),
3528 Statements => New_List (
3529 Make_Return_Statement (Loc,
3530 Expression =>
3531 Make_Integer_Literal (Loc, -1)))));
3532 end if;
3534 -- Now we can build the function body
3536 Fent :=
3537 Make_Defining_Identifier (Loc, Name_uRep_To_Pos);
3539 Func :=
3540 Make_Subprogram_Body (Loc,
3541 Specification =>
3542 Make_Function_Specification (Loc,
3543 Defining_Unit_Name => Fent,
3544 Parameter_Specifications => New_List (
3545 Make_Parameter_Specification (Loc,
3546 Defining_Identifier =>
3547 Make_Defining_Identifier (Loc, Name_uA),
3548 Parameter_Type => New_Reference_To (Typ, Loc)),
3549 Make_Parameter_Specification (Loc,
3550 Defining_Identifier =>
3551 Make_Defining_Identifier (Loc, Name_uF),
3552 Parameter_Type => New_Reference_To (Standard_Boolean, Loc))),
3554 Subtype_Mark => New_Reference_To (Standard_Integer, Loc)),
3556 Declarations => Empty_List,
3558 Handled_Statement_Sequence =>
3559 Make_Handled_Sequence_Of_Statements (Loc,
3560 Statements => New_List (
3561 Make_Case_Statement (Loc,
3562 Expression =>
3563 Unchecked_Convert_To (Ityp,
3564 Make_Identifier (Loc, Name_uA)),
3565 Alternatives => Lst))));
3567 Set_TSS (Typ, Fent);
3568 Set_Is_Pure (Fent);
3570 if not Debug_Generated_Code then
3571 Set_Debug_Info_Off (Fent);
3572 end if;
3573 end Freeze_Enumeration_Type;
3575 ------------------------
3576 -- Freeze_Record_Type --
3577 ------------------------
3579 procedure Freeze_Record_Type (N : Node_Id) is
3580 Def_Id : constant Node_Id := Entity (N);
3581 Comp : Entity_Id;
3582 Type_Decl : constant Node_Id := Parent (Def_Id);
3583 Predef_List : List_Id;
3585 Renamed_Eq : Node_Id := Empty;
3586 -- Could use some comments ???
3588 begin
3589 -- Build discriminant checking functions if not a derived type (for
3590 -- derived types that are not tagged types, we always use the
3591 -- discriminant checking functions of the parent type). However, for
3592 -- untagged types the derivation may have taken place before the
3593 -- parent was frozen, so we copy explicitly the discriminant checking
3594 -- functions from the parent into the components of the derived type.
3596 if not Is_Derived_Type (Def_Id)
3597 or else Has_New_Non_Standard_Rep (Def_Id)
3598 or else Is_Tagged_Type (Def_Id)
3599 then
3600 Build_Discr_Checking_Funcs (Type_Decl);
3602 elsif Is_Derived_Type (Def_Id)
3603 and then not Is_Tagged_Type (Def_Id)
3604 and then Has_Discriminants (Def_Id)
3605 then
3606 declare
3607 Old_Comp : Entity_Id;
3609 begin
3610 Old_Comp :=
3611 First_Component (Base_Type (Underlying_Type (Etype (Def_Id))));
3612 Comp := First_Component (Def_Id);
3614 while Present (Comp) loop
3615 if Ekind (Comp) = E_Component
3616 and then Chars (Comp) = Chars (Old_Comp)
3617 then
3618 Set_Discriminant_Checking_Func (Comp,
3619 Discriminant_Checking_Func (Old_Comp));
3620 end if;
3622 Next_Component (Old_Comp);
3623 Next_Component (Comp);
3624 end loop;
3625 end;
3626 end if;
3628 if Is_Derived_Type (Def_Id)
3629 and then Is_Limited_Type (Def_Id)
3630 and then Is_Tagged_Type (Def_Id)
3631 then
3632 Check_Stream_Attributes (Def_Id);
3633 end if;
3635 -- Update task and controlled component flags, because some of the
3636 -- component types may have been private at the point of the record
3637 -- declaration.
3639 Comp := First_Component (Def_Id);
3641 while Present (Comp) loop
3642 if Has_Task (Etype (Comp)) then
3643 Set_Has_Task (Def_Id);
3645 elsif Has_Controlled_Component (Etype (Comp))
3646 or else (Chars (Comp) /= Name_uParent
3647 and then Is_Controlled (Etype (Comp)))
3648 then
3649 Set_Has_Controlled_Component (Def_Id);
3650 end if;
3652 Next_Component (Comp);
3653 end loop;
3655 -- Creation of the Dispatch Table. Note that a Dispatch Table is
3656 -- created for regular tagged types as well as for Ada types
3657 -- deriving from a C++ Class, but not for tagged types directly
3658 -- corresponding to the C++ classes. In the later case we assume
3659 -- that the Vtable is created in the C++ side and we just use it.
3661 if Is_Tagged_Type (Def_Id) then
3663 if Is_CPP_Class (Def_Id) then
3664 Set_All_DT_Position (Def_Id);
3665 Set_Default_Constructor (Def_Id);
3667 else
3668 -- Usually inherited primitives are not delayed but the first
3669 -- Ada extension of a CPP_Class is an exception since the
3670 -- address of the inherited subprogram has to be inserted in
3671 -- the new Ada Dispatch Table and this is a freezing action
3672 -- (usually the inherited primitive address is inserted in the
3673 -- DT by Inherit_DT)
3675 if Is_CPP_Class (Etype (Def_Id)) then
3676 declare
3677 Elmt : Elmt_Id := First_Elmt (Primitive_Operations (Def_Id));
3678 Subp : Entity_Id;
3680 begin
3681 while Present (Elmt) loop
3682 Subp := Node (Elmt);
3684 if Present (Alias (Subp)) then
3685 Set_Has_Delayed_Freeze (Subp);
3686 end if;
3688 Next_Elmt (Elmt);
3689 end loop;
3690 end;
3691 end if;
3693 if Underlying_Type (Etype (Def_Id)) = Def_Id then
3694 Expand_Tagged_Root (Def_Id);
3695 end if;
3697 -- Unfreeze momentarily the type to add the predefined
3698 -- primitives operations. The reason we unfreeze is so
3699 -- that these predefined operations will indeed end up
3700 -- as primitive operations (which must be before the
3701 -- freeze point).
3703 Set_Is_Frozen (Def_Id, False);
3704 Make_Predefined_Primitive_Specs
3705 (Def_Id, Predef_List, Renamed_Eq);
3706 Insert_List_Before_And_Analyze (N, Predef_List);
3707 Set_Is_Frozen (Def_Id, True);
3708 Set_All_DT_Position (Def_Id);
3710 -- Add the controlled component before the freezing actions
3711 -- it is referenced in those actions.
3713 if Has_New_Controlled_Component (Def_Id) then
3714 Expand_Record_Controller (Def_Id);
3715 end if;
3717 -- Suppress creation of a dispatch table when Java_VM because
3718 -- the dispatching mechanism is handled internally by the JVM.
3720 if not Java_VM then
3721 Append_Freeze_Actions (Def_Id, Make_DT (Def_Id));
3722 end if;
3724 -- Make sure that the primitives Initialize, Adjust and
3725 -- Finalize are Frozen before other TSS subprograms. We
3726 -- don't want them Frozen inside.
3728 if Is_Controlled (Def_Id) then
3729 if not Is_Limited_Type (Def_Id) then
3730 Append_Freeze_Actions (Def_Id,
3731 Freeze_Entity
3732 (Find_Prim_Op (Def_Id, Name_Adjust), Sloc (Def_Id)));
3733 end if;
3735 Append_Freeze_Actions (Def_Id,
3736 Freeze_Entity
3737 (Find_Prim_Op (Def_Id, Name_Initialize), Sloc (Def_Id)));
3739 Append_Freeze_Actions (Def_Id,
3740 Freeze_Entity
3741 (Find_Prim_Op (Def_Id, Name_Finalize), Sloc (Def_Id)));
3742 end if;
3744 -- Freeze rest of primitive operations
3746 Append_Freeze_Actions
3747 (Def_Id, Predefined_Primitive_Freeze (Def_Id));
3748 end if;
3750 -- In the non-tagged case, an equality function is provided only
3751 -- for variant records (that are not unchecked unions).
3753 elsif Has_Discriminants (Def_Id)
3754 and then not Is_Limited_Type (Def_Id)
3755 then
3756 declare
3757 Comps : constant Node_Id :=
3758 Component_List (Type_Definition (Type_Decl));
3760 begin
3761 if Present (Comps)
3762 and then Present (Variant_Part (Comps))
3763 and then not Is_Unchecked_Union (Def_Id)
3764 then
3765 Build_Variant_Record_Equality (Def_Id);
3766 end if;
3767 end;
3768 end if;
3770 -- Before building the record initialization procedure, if we are
3771 -- dealing with a concurrent record value type, then we must go
3772 -- through the discriminants, exchanging discriminals between the
3773 -- concurrent type and the concurrent record value type. See the
3774 -- section "Handling of Discriminants" in the Einfo spec for details.
3776 if Is_Concurrent_Record_Type (Def_Id)
3777 and then Has_Discriminants (Def_Id)
3778 then
3779 declare
3780 Ctyp : constant Entity_Id :=
3781 Corresponding_Concurrent_Type (Def_Id);
3782 Conc_Discr : Entity_Id;
3783 Rec_Discr : Entity_Id;
3784 Temp : Entity_Id;
3786 begin
3787 Conc_Discr := First_Discriminant (Ctyp);
3788 Rec_Discr := First_Discriminant (Def_Id);
3790 while Present (Conc_Discr) loop
3791 Temp := Discriminal (Conc_Discr);
3792 Set_Discriminal (Conc_Discr, Discriminal (Rec_Discr));
3793 Set_Discriminal (Rec_Discr, Temp);
3795 Set_Discriminal_Link (Discriminal (Conc_Discr), Conc_Discr);
3796 Set_Discriminal_Link (Discriminal (Rec_Discr), Rec_Discr);
3798 Next_Discriminant (Conc_Discr);
3799 Next_Discriminant (Rec_Discr);
3800 end loop;
3801 end;
3802 end if;
3804 if Has_Controlled_Component (Def_Id) then
3805 if No (Controller_Component (Def_Id)) then
3806 Expand_Record_Controller (Def_Id);
3807 end if;
3809 Build_Controlling_Procs (Def_Id);
3810 end if;
3812 Adjust_Discriminants (Def_Id);
3813 Build_Record_Init_Proc (Type_Decl, Def_Id);
3815 -- For tagged type, build bodies of primitive operations. Note
3816 -- that we do this after building the record initialization
3817 -- experiment, since the primitive operations may need the
3818 -- initialization routine
3820 if Is_Tagged_Type (Def_Id) then
3821 Predef_List := Predefined_Primitive_Bodies (Def_Id, Renamed_Eq);
3822 Append_Freeze_Actions (Def_Id, Predef_List);
3823 end if;
3825 end Freeze_Record_Type;
3827 ------------------------------
3828 -- Freeze_Stream_Operations --
3829 ------------------------------
3831 procedure Freeze_Stream_Operations (N : Node_Id; Typ : Entity_Id) is
3832 Names : constant array (1 .. 4) of Name_Id :=
3833 (Name_uInput, Name_uOutput, Name_uRead, Name_uWrite);
3834 Stream_Op : Entity_Id;
3836 begin
3837 -- Primitive operations of tagged types are frozen when the dispatch
3838 -- table is constructed.
3840 if not Comes_From_Source (Typ)
3841 or else Is_Tagged_Type (Typ)
3842 then
3843 return;
3844 end if;
3846 for J in Names'Range loop
3847 Stream_Op := TSS (Typ, Names (J));
3849 if Present (Stream_Op)
3850 and then Is_Subprogram (Stream_Op)
3851 and then Nkind (Unit_Declaration_Node (Stream_Op)) =
3852 N_Subprogram_Declaration
3853 and then not Is_Frozen (Stream_Op)
3854 then
3855 Append_Freeze_Actions
3856 (Typ, Freeze_Entity (Stream_Op, Sloc (N)));
3857 end if;
3858 end loop;
3859 end Freeze_Stream_Operations;
3861 -----------------
3862 -- Freeze_Type --
3863 -----------------
3865 -- Full type declarations are expanded at the point at which the type
3866 -- is frozen. The formal N is the Freeze_Node for the type. Any statements
3867 -- or declarations generated by the freezing (e.g. the procedure generated
3868 -- for initialization) are chained in the Acions field list of the freeze
3869 -- node using Append_Freeze_Actions.
3871 procedure Freeze_Type (N : Node_Id) is
3872 Def_Id : constant Entity_Id := Entity (N);
3874 begin
3875 -- Process associated access types needing special processing
3877 if Present (Access_Types_To_Process (N)) then
3878 declare
3879 E : Elmt_Id := First_Elmt (Access_Types_To_Process (N));
3880 begin
3881 while Present (E) loop
3883 -- If the access type is a RACW, call the expansion procedure
3884 -- for this remote pointer.
3886 if Is_Remote_Access_To_Class_Wide_Type (Node (E)) then
3887 Remote_Types_Tagged_Full_View_Encountered (Def_Id);
3888 end if;
3890 E := Next_Elmt (E);
3891 end loop;
3892 end;
3893 end if;
3895 -- Freeze processing for record types
3897 if Is_Record_Type (Def_Id) then
3898 if Ekind (Def_Id) = E_Record_Type then
3899 Freeze_Record_Type (N);
3901 -- The subtype may have been declared before the type was frozen.
3902 -- If the type has controlled components it is necessary to create
3903 -- the entity for the controller explicitly because it did not
3904 -- exist at the point of the subtype declaration. Only the entity is
3905 -- needed, the back-end will obtain the layout from the type.
3906 -- This is only necessary if this is constrained subtype whose
3907 -- component list is not shared with the base type.
3909 elsif Ekind (Def_Id) = E_Record_Subtype
3910 and then Has_Discriminants (Def_Id)
3911 and then Last_Entity (Def_Id) /= Last_Entity (Base_Type (Def_Id))
3912 and then Present (Controller_Component (Def_Id))
3913 then
3914 declare
3915 Old_C : Entity_Id := Controller_Component (Def_Id);
3916 New_C : Entity_Id;
3918 begin
3919 if Scope (Old_C) = Base_Type (Def_Id) then
3921 -- The entity is the one in the parent. Create new one.
3923 New_C := New_Copy (Old_C);
3924 Set_Parent (New_C, Parent (Old_C));
3925 New_Scope (Def_Id);
3926 Enter_Name (New_C);
3927 End_Scope;
3928 end if;
3929 end;
3930 end if;
3932 -- Freeze processing for array types
3934 elsif Is_Array_Type (Def_Id) then
3935 Freeze_Array_Type (N);
3937 -- Freeze processing for access types
3939 -- For pool-specific access types, find out the pool object used for
3940 -- this type, needs actual expansion of it in some cases. Here are the
3941 -- different cases :
3943 -- 1. Rep Clause "for Def_Id'Storage_Size use 0;"
3944 -- ---> don't use any storage pool
3946 -- 2. Rep Clause : for Def_Id'Storage_Size use Expr.
3947 -- Expand:
3948 -- Def_Id__Pool : Stack_Bounded_Pool (Expr, DT'Size, DT'Alignment);
3950 -- 3. Rep Clause "for Def_Id'Storage_Pool use a_Pool_Object"
3951 -- ---> Storage Pool is the specified one
3953 -- See GNAT Pool packages in the Run-Time for more details
3955 elsif Ekind (Def_Id) = E_Access_Type
3956 or else Ekind (Def_Id) = E_General_Access_Type
3957 then
3958 declare
3959 Loc : constant Source_Ptr := Sloc (N);
3960 Desig_Type : constant Entity_Id := Designated_Type (Def_Id);
3961 Pool_Object : Entity_Id;
3962 Siz_Exp : Node_Id;
3964 Freeze_Action_Typ : Entity_Id;
3966 begin
3967 if Has_Storage_Size_Clause (Def_Id) then
3968 Siz_Exp := Expression (Parent (Storage_Size_Variable (Def_Id)));
3969 else
3970 Siz_Exp := Empty;
3971 end if;
3973 -- Case 1
3975 -- Rep Clause "for Def_Id'Storage_Size use 0;"
3976 -- ---> don't use any storage pool
3978 if Has_Storage_Size_Clause (Def_Id)
3979 and then Compile_Time_Known_Value (Siz_Exp)
3980 and then Expr_Value (Siz_Exp) = 0
3981 then
3982 null;
3984 -- Case 2
3986 -- Rep Clause : for Def_Id'Storage_Size use Expr.
3987 -- ---> Expand:
3988 -- Def_Id__Pool : Stack_Bounded_Pool
3989 -- (Expr, DT'Size, DT'Alignment);
3991 elsif Has_Storage_Size_Clause (Def_Id) then
3992 declare
3993 DT_Size : Node_Id;
3994 DT_Align : Node_Id;
3996 begin
3997 -- For unconstrained composite types we give a size of
3998 -- zero so that the pool knows that it needs a special
3999 -- algorithm for variable size object allocation.
4001 if Is_Composite_Type (Desig_Type)
4002 and then not Is_Constrained (Desig_Type)
4003 then
4004 DT_Size :=
4005 Make_Integer_Literal (Loc, 0);
4007 DT_Align :=
4008 Make_Integer_Literal (Loc, Maximum_Alignment);
4010 else
4011 DT_Size :=
4012 Make_Attribute_Reference (Loc,
4013 Prefix => New_Reference_To (Desig_Type, Loc),
4014 Attribute_Name => Name_Max_Size_In_Storage_Elements);
4016 DT_Align :=
4017 Make_Attribute_Reference (Loc,
4018 Prefix => New_Reference_To (Desig_Type, Loc),
4019 Attribute_Name => Name_Alignment);
4020 end if;
4022 Pool_Object :=
4023 Make_Defining_Identifier (Loc,
4024 Chars => New_External_Name (Chars (Def_Id), 'P'));
4026 -- We put the code associated with the pools in the
4027 -- entity that has the later freeze node, usually the
4028 -- acces type but it can also be the designated_type;
4029 -- because the pool code requires both those types to be
4030 -- frozen
4032 if Is_Frozen (Desig_Type)
4033 and then (not Present (Freeze_Node (Desig_Type))
4034 or else Analyzed (Freeze_Node (Desig_Type)))
4035 then
4036 Freeze_Action_Typ := Def_Id;
4038 -- A Taft amendment type cannot get the freeze actions
4039 -- since the full view is not there.
4041 elsif Is_Incomplete_Or_Private_Type (Desig_Type)
4042 and then No (Full_View (Desig_Type))
4043 then
4044 Freeze_Action_Typ := Def_Id;
4046 else
4047 Freeze_Action_Typ := Desig_Type;
4048 end if;
4050 Append_Freeze_Action (Freeze_Action_Typ,
4051 Make_Object_Declaration (Loc,
4052 Defining_Identifier => Pool_Object,
4053 Object_Definition =>
4054 Make_Subtype_Indication (Loc,
4055 Subtype_Mark =>
4056 New_Reference_To
4057 (RTE (RE_Stack_Bounded_Pool), Loc),
4059 Constraint =>
4060 Make_Index_Or_Discriminant_Constraint (Loc,
4061 Constraints => New_List (
4063 -- First discriminant is the Pool Size
4065 New_Reference_To (
4066 Storage_Size_Variable (Def_Id), Loc),
4068 -- Second discriminant is the element size
4070 DT_Size,
4072 -- Third discriminant is the alignment
4074 DT_Align)))));
4075 end;
4077 Set_Associated_Storage_Pool (Def_Id, Pool_Object);
4079 -- Case 3
4081 -- Rep Clause "for Def_Id'Storage_Pool use a_Pool_Object"
4082 -- ---> Storage Pool is the specified one
4084 elsif Present (Associated_Storage_Pool (Def_Id)) then
4086 -- Nothing to do the associated storage pool has been attached
4087 -- when analyzing the rep. clause
4089 null;
4090 end if;
4092 -- For access-to-controlled types (including class-wide types
4093 -- and Taft-amendment types which potentially have controlled
4094 -- components), expand the list controller object that will
4095 -- store the dynamically allocated objects. Do not do this
4096 -- transformation for expander-generated access types, but do it
4097 -- for types that are the full view of types derived from other
4098 -- private types. Also suppress the list controller in the case
4099 -- of a designated type with convention Java, since this is used
4100 -- when binding to Java API specs, where there's no equivalent
4101 -- of a finalization list and we don't want to pull in the
4102 -- finalization support if not needed.
4104 if not Comes_From_Source (Def_Id)
4105 and then not Has_Private_Declaration (Def_Id)
4106 then
4107 null;
4109 elsif (Controlled_Type (Desig_Type)
4110 and then Convention (Desig_Type) /= Convention_Java)
4111 or else (Is_Incomplete_Or_Private_Type (Desig_Type)
4112 and then No (Full_View (Desig_Type))
4114 -- An exception is made for types defined in the run-time
4115 -- because Ada.Tags.Tag itself is such a type and cannot
4116 -- afford this unnecessary overhead that would generates a
4117 -- loop in the expansion scheme...
4118 -- Similarly, if No_Run_Time is enabled, the designated type
4119 -- cannot be controlled.
4121 and then not In_Runtime (Def_Id)
4122 and then not No_Run_Time)
4124 -- If the designated type is not frozen yet, its controlled
4125 -- status must be retrieved explicitly.
4127 or else (Is_Array_Type (Desig_Type)
4128 and then not Is_Frozen (Desig_Type)
4129 and then Controlled_Type (Component_Type (Desig_Type)))
4130 then
4131 Set_Associated_Final_Chain (Def_Id,
4132 Make_Defining_Identifier (Loc,
4133 New_External_Name (Chars (Def_Id), 'L')));
4135 Append_Freeze_Action (Def_Id,
4136 Make_Object_Declaration (Loc,
4137 Defining_Identifier => Associated_Final_Chain (Def_Id),
4138 Object_Definition =>
4139 New_Reference_To (RTE (RE_List_Controller), Loc)));
4140 end if;
4141 end;
4143 -- Freeze processing for enumeration types
4145 elsif Ekind (Def_Id) = E_Enumeration_Type then
4147 -- We only have something to do if we have a non-standard
4148 -- representation (i.e. at least one literal whose pos value
4149 -- is not the same as its representation)
4151 if Has_Non_Standard_Rep (Def_Id) then
4152 Freeze_Enumeration_Type (N);
4153 end if;
4155 -- private types that are completed by a derivation from a private
4156 -- type have an internally generated full view, that needs to be
4157 -- frozen. This must be done explicitly because the two views share
4158 -- the freeze node, and the underlying full view is not visible when
4159 -- the freeze node is analyzed.
4161 elsif Is_Private_Type (Def_Id)
4162 and then Is_Derived_Type (Def_Id)
4163 and then Present (Full_View (Def_Id))
4164 and then Is_Itype (Full_View (Def_Id))
4165 and then Has_Private_Declaration (Full_View (Def_Id))
4166 and then Freeze_Node (Full_View (Def_Id)) = N
4167 then
4168 Set_Entity (N, Full_View (Def_Id));
4169 Freeze_Type (N);
4170 Set_Entity (N, Def_Id);
4172 -- All other types require no expander action. There are such
4173 -- cases (e.g. task types and protected types). In such cases,
4174 -- the freeze nodes are there for use by Gigi.
4176 end if;
4178 Freeze_Stream_Operations (N, Def_Id);
4179 end Freeze_Type;
4181 -------------------------
4182 -- Get_Simple_Init_Val --
4183 -------------------------
4185 function Get_Simple_Init_Val
4186 (T : Entity_Id;
4187 Loc : Source_Ptr)
4188 return Node_Id
4190 Val : Node_Id;
4191 Typ : Node_Id;
4192 Result : Node_Id;
4193 Val_RE : RE_Id;
4195 begin
4196 -- For a private type, we should always have an underlying type
4197 -- (because this was already checked in Needs_Simple_Initialization).
4198 -- What we do is to get the value for the underlying type and then
4199 -- do an Unchecked_Convert to the private type.
4201 if Is_Private_Type (T) then
4202 Val := Get_Simple_Init_Val (Underlying_Type (T), Loc);
4204 -- A special case, if the underlying value is null, then qualify
4205 -- it with the underlying type, so that the null is properly typed
4206 -- Similarly, if it is an aggregate it must be qualified, because
4207 -- an unchecked conversion does not provide a context for it.
4209 if Nkind (Val) = N_Null
4210 or else Nkind (Val) = N_Aggregate
4211 then
4212 Val :=
4213 Make_Qualified_Expression (Loc,
4214 Subtype_Mark =>
4215 New_Occurrence_Of (Underlying_Type (T), Loc),
4216 Expression => Val);
4217 end if;
4219 return Unchecked_Convert_To (T, Val);
4221 -- For scalars, we must have normalize/initialize scalars case
4223 elsif Is_Scalar_Type (T) then
4224 pragma Assert (Init_Or_Norm_Scalars);
4226 -- Processing for Normalize_Scalars case
4228 if Normalize_Scalars then
4230 -- First prepare a value (out of subtype range if possible)
4232 if Is_Real_Type (T) or else Is_Integer_Type (T) then
4233 Val :=
4234 Make_Attribute_Reference (Loc,
4235 Prefix => New_Occurrence_Of (Base_Type (T), Loc),
4236 Attribute_Name => Name_First);
4238 elsif Is_Modular_Integer_Type (T) then
4239 Val :=
4240 Make_Attribute_Reference (Loc,
4241 Prefix => New_Occurrence_Of (Base_Type (T), Loc),
4242 Attribute_Name => Name_Last);
4244 else
4245 pragma Assert (Is_Enumeration_Type (T));
4247 if Esize (T) <= 8 then
4248 Typ := RTE (RE_Unsigned_8);
4249 elsif Esize (T) <= 16 then
4250 Typ := RTE (RE_Unsigned_16);
4251 elsif Esize (T) <= 32 then
4252 Typ := RTE (RE_Unsigned_32);
4253 else
4254 Typ := RTE (RE_Unsigned_64);
4255 end if;
4257 Val :=
4258 Make_Attribute_Reference (Loc,
4259 Prefix => New_Occurrence_Of (Typ, Loc),
4260 Attribute_Name => Name_Last);
4261 end if;
4263 -- Here for Initialize_Scalars case
4265 else
4266 if Is_Floating_Point_Type (T) then
4267 if Root_Type (T) = Standard_Short_Float then
4268 Val_RE := RE_IS_Isf;
4269 elsif Root_Type (T) = Standard_Float then
4270 Val_RE := RE_IS_Ifl;
4272 -- The form of the following test is quite deliberate, it
4273 -- catches the case of architectures (the most common case)
4274 -- where Long_Long_Float is the same as Long_Float, and in
4275 -- such cases initializes Long_Long_Float variables from the
4276 -- Long_Float constant (since the Long_Long_Float constant is
4277 -- only for use on the x86).
4279 elsif Esize (Root_Type (T)) = Esize (Standard_Long_Float) then
4280 Val_RE := RE_IS_Ilf;
4282 -- Otherwise we have extended real on an x86
4284 else pragma Assert (Root_Type (T) = Standard_Long_Long_Float);
4285 Val_RE := RE_IS_Ill;
4286 end if;
4288 elsif Is_Unsigned_Type (Base_Type (T)) then
4289 if Esize (T) = 8 then
4290 Val_RE := RE_IS_Iu1;
4291 elsif Esize (T) = 16 then
4292 Val_RE := RE_IS_Iu2;
4293 elsif Esize (T) = 32 then
4294 Val_RE := RE_IS_Iu4;
4295 else pragma Assert (Esize (T) = 64);
4296 Val_RE := RE_IS_Iu8;
4297 end if;
4299 else -- signed type
4300 if Esize (T) = 8 then
4301 Val_RE := RE_IS_Is1;
4302 elsif Esize (T) = 16 then
4303 Val_RE := RE_IS_Is2;
4304 elsif Esize (T) = 32 then
4305 Val_RE := RE_IS_Is4;
4306 else pragma Assert (Esize (T) = 64);
4307 Val_RE := RE_IS_Is8;
4308 end if;
4309 end if;
4311 Val := New_Occurrence_Of (RTE (Val_RE), Loc);
4312 end if;
4314 -- The final expression is obtained by doing an unchecked
4315 -- conversion of this result to the base type of the
4316 -- required subtype. We use the base type to avoid the
4317 -- unchecked conversion from chopping bits, and then we
4318 -- set Kill_Range_Check to preserve the "bad" value.
4320 Result := Unchecked_Convert_To (Base_Type (T), Val);
4322 if Nkind (Result) = N_Unchecked_Type_Conversion then
4323 Set_Kill_Range_Check (Result, True);
4324 end if;
4326 return Result;
4328 -- String or Wide_String (must have Initialize_Scalars set)
4330 elsif Root_Type (T) = Standard_String
4331 or else
4332 Root_Type (T) = Standard_Wide_String
4333 then
4334 pragma Assert (Init_Or_Norm_Scalars);
4336 return
4337 Make_Aggregate (Loc,
4338 Component_Associations => New_List (
4339 Make_Component_Association (Loc,
4340 Choices => New_List (
4341 Make_Others_Choice (Loc)),
4342 Expression =>
4343 Get_Simple_Init_Val (Component_Type (T), Loc))));
4345 -- Access type is initialized to null
4347 elsif Is_Access_Type (T) then
4348 return
4349 Make_Null (Loc);
4351 -- We initialize modular packed bit arrays to zero, to make sure that
4352 -- unused bits are zero, as required (see spec of Exp_Pakd). Also note
4353 -- that this improves gigi code, since the value tracing knows that
4354 -- all bits of the variable start out at zero. The value of zero has
4355 -- to be unchecked converted to the proper array type.
4357 elsif Is_Bit_Packed_Array (T) then
4358 declare
4359 PAT : constant Entity_Id := Packed_Array_Type (T);
4360 Nod : Node_Id;
4362 begin
4363 pragma Assert (Is_Modular_Integer_Type (PAT));
4365 Nod :=
4366 Make_Unchecked_Type_Conversion (Loc,
4367 Subtype_Mark => New_Occurrence_Of (T, Loc),
4368 Expression => Make_Integer_Literal (Loc, 0));
4370 Set_Etype (Expression (Nod), PAT);
4371 return Nod;
4372 end;
4374 -- No other possibilities should arise, since we should only be
4375 -- calling Get_Simple_Init_Val if Needs_Simple_Initialization
4376 -- returned True, indicating one of the above cases held.
4378 else
4379 raise Program_Error;
4380 end if;
4381 end Get_Simple_Init_Val;
4383 ------------------------------
4384 -- Has_New_Non_Standard_Rep --
4385 ------------------------------
4387 function Has_New_Non_Standard_Rep (T : Entity_Id) return Boolean is
4388 begin
4389 if not Is_Derived_Type (T) then
4390 return Has_Non_Standard_Rep (T)
4391 or else Has_Non_Standard_Rep (Root_Type (T));
4393 -- If Has_Non_Standard_Rep is not set on the derived type, the
4394 -- representation is fully inherited.
4396 elsif not Has_Non_Standard_Rep (T) then
4397 return False;
4399 else
4400 return First_Rep_Item (T) /= First_Rep_Item (Root_Type (T));
4402 -- May need a more precise check here: the First_Rep_Item may
4403 -- be a stream attribute, which does not affect the representation
4404 -- of the type ???
4405 end if;
4406 end Has_New_Non_Standard_Rep;
4408 ----------------
4409 -- In_Runtime --
4410 ----------------
4412 function In_Runtime (E : Entity_Id) return Boolean is
4413 S1 : Entity_Id := Scope (E);
4415 begin
4416 while Scope (S1) /= Standard_Standard loop
4417 S1 := Scope (S1);
4418 end loop;
4420 return Chars (S1) = Name_System or else Chars (S1) = Name_Ada;
4421 end In_Runtime;
4423 ------------------
4424 -- Init_Formals --
4425 ------------------
4427 function Init_Formals (Typ : Entity_Id) return List_Id is
4428 Loc : constant Source_Ptr := Sloc (Typ);
4429 Formals : List_Id;
4431 begin
4432 -- First parameter is always _Init : in out typ. Note that we need
4433 -- this to be in/out because in the case of the task record value,
4434 -- there are default record fields (_Priority, _Size, -Task_Info)
4435 -- that may be referenced in the generated initialization routine.
4437 Formals := New_List (
4438 Make_Parameter_Specification (Loc,
4439 Defining_Identifier =>
4440 Make_Defining_Identifier (Loc, Name_uInit),
4441 In_Present => True,
4442 Out_Present => True,
4443 Parameter_Type => New_Reference_To (Typ, Loc)));
4445 -- For task record value, or type that contains tasks, add two more
4446 -- formals, _Master : Master_Id and _Chain : in out Activation_Chain
4447 -- We also add these parameters for the task record type case.
4449 if Has_Task (Typ)
4450 or else (Is_Record_Type (Typ) and then Is_Task_Record_Type (Typ))
4451 then
4452 Append_To (Formals,
4453 Make_Parameter_Specification (Loc,
4454 Defining_Identifier =>
4455 Make_Defining_Identifier (Loc, Name_uMaster),
4456 Parameter_Type => New_Reference_To (RTE (RE_Master_Id), Loc)));
4458 Append_To (Formals,
4459 Make_Parameter_Specification (Loc,
4460 Defining_Identifier =>
4461 Make_Defining_Identifier (Loc, Name_uChain),
4462 In_Present => True,
4463 Out_Present => True,
4464 Parameter_Type =>
4465 New_Reference_To (RTE (RE_Activation_Chain), Loc)));
4467 Append_To (Formals,
4468 Make_Parameter_Specification (Loc,
4469 Defining_Identifier =>
4470 Make_Defining_Identifier (Loc, Name_uTask_Id),
4471 In_Present => True,
4472 Parameter_Type =>
4473 New_Reference_To (RTE (RE_Task_Image_Type), Loc)));
4474 end if;
4476 return Formals;
4477 end Init_Formals;
4479 ------------------
4480 -- Make_Eq_Case --
4481 ------------------
4483 -- <Make_Eq_if shared components>
4484 -- case X.D1 is
4485 -- when V1 => <Make_Eq_Case> on subcomponents
4486 -- ...
4487 -- when Vn => <Make_Eq_Case> on subcomponents
4488 -- end case;
4490 function Make_Eq_Case (Node : Node_Id; CL : Node_Id) return List_Id is
4491 Loc : constant Source_Ptr := Sloc (Node);
4492 Variant : Node_Id;
4493 Alt_List : List_Id;
4494 Result : List_Id := New_List;
4496 begin
4497 Append_To (Result, Make_Eq_If (Node, Component_Items (CL)));
4499 if No (Variant_Part (CL)) then
4500 return Result;
4501 end if;
4503 Variant := First_Non_Pragma (Variants (Variant_Part (CL)));
4505 if No (Variant) then
4506 return Result;
4507 end if;
4509 Alt_List := New_List;
4511 while Present (Variant) loop
4512 Append_To (Alt_List,
4513 Make_Case_Statement_Alternative (Loc,
4514 Discrete_Choices => New_Copy_List (Discrete_Choices (Variant)),
4515 Statements => Make_Eq_Case (Node, Component_List (Variant))));
4517 Next_Non_Pragma (Variant);
4518 end loop;
4520 Append_To (Result,
4521 Make_Case_Statement (Loc,
4522 Expression =>
4523 Make_Selected_Component (Loc,
4524 Prefix => Make_Identifier (Loc, Name_X),
4525 Selector_Name => New_Copy (Name (Variant_Part (CL)))),
4526 Alternatives => Alt_List));
4528 return Result;
4529 end Make_Eq_Case;
4531 ----------------
4532 -- Make_Eq_If --
4533 ----------------
4535 -- Generates:
4537 -- if
4538 -- X.C1 /= Y.C1
4539 -- or else
4540 -- X.C2 /= Y.C2
4541 -- ...
4542 -- then
4543 -- return False;
4544 -- end if;
4546 -- or a null statement if the list L is empty
4548 function Make_Eq_If (Node : Node_Id; L : List_Id) return Node_Id is
4549 Loc : constant Source_Ptr := Sloc (Node);
4550 C : Node_Id;
4551 Field_Name : Name_Id;
4552 Cond : Node_Id;
4554 begin
4555 if No (L) then
4556 return Make_Null_Statement (Loc);
4558 else
4559 Cond := Empty;
4561 C := First_Non_Pragma (L);
4562 while Present (C) loop
4563 Field_Name := Chars (Defining_Identifier (C));
4565 -- The tags must not be compared they are not part of the value.
4566 -- Note also that in the following, we use Make_Identifier for
4567 -- the component names. Use of New_Reference_To to identify the
4568 -- components would be incorrect because the wrong entities for
4569 -- discriminants could be picked up in the private type case.
4571 if Field_Name /= Name_uTag then
4572 Evolve_Or_Else (Cond,
4573 Make_Op_Ne (Loc,
4574 Left_Opnd =>
4575 Make_Selected_Component (Loc,
4576 Prefix => Make_Identifier (Loc, Name_X),
4577 Selector_Name =>
4578 Make_Identifier (Loc, Field_Name)),
4580 Right_Opnd =>
4581 Make_Selected_Component (Loc,
4582 Prefix => Make_Identifier (Loc, Name_Y),
4583 Selector_Name =>
4584 Make_Identifier (Loc, Field_Name))));
4585 end if;
4587 Next_Non_Pragma (C);
4588 end loop;
4590 if No (Cond) then
4591 return Make_Null_Statement (Loc);
4593 else
4594 return
4595 Make_Implicit_If_Statement (Node,
4596 Condition => Cond,
4597 Then_Statements => New_List (
4598 Make_Return_Statement (Loc,
4599 Expression => New_Occurrence_Of (Standard_False, Loc))));
4600 end if;
4601 end if;
4602 end Make_Eq_If;
4604 -------------------------------------
4605 -- Make_Predefined_Primitive_Specs --
4606 -------------------------------------
4608 procedure Make_Predefined_Primitive_Specs
4609 (Tag_Typ : Entity_Id;
4610 Predef_List : out List_Id;
4611 Renamed_Eq : out Node_Id)
4613 Loc : constant Source_Ptr := Sloc (Tag_Typ);
4614 Res : List_Id := New_List;
4615 Prim : Elmt_Id;
4616 Eq_Needed : Boolean;
4617 Eq_Spec : Node_Id;
4618 Eq_Name : Name_Id := Name_Op_Eq;
4620 function Is_Predefined_Eq_Renaming (Prim : Node_Id) return Boolean;
4621 -- Returns true if Prim is a renaming of an unresolved predefined
4622 -- equality operation.
4624 function Is_Predefined_Eq_Renaming (Prim : Node_Id) return Boolean is
4625 begin
4626 return Chars (Prim) /= Name_Op_Eq
4627 and then Present (Alias (Prim))
4628 and then Comes_From_Source (Prim)
4629 and then Is_Intrinsic_Subprogram (Alias (Prim))
4630 and then Chars (Alias (Prim)) = Name_Op_Eq;
4631 end Is_Predefined_Eq_Renaming;
4633 -- Start of processing for Make_Predefined_Primitive_Specs
4635 begin
4636 Renamed_Eq := Empty;
4638 -- Spec of _Size
4640 Append_To (Res, Predef_Spec_Or_Body (Loc,
4641 Tag_Typ => Tag_Typ,
4642 Name => Name_uSize,
4643 Profile => New_List (
4644 Make_Parameter_Specification (Loc,
4645 Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
4646 Parameter_Type => New_Reference_To (Tag_Typ, Loc))),
4648 Ret_Type => Standard_Long_Long_Integer));
4650 -- Specs for dispatching stream attributes. We skip these for limited
4651 -- types, since there is no question of dispatching in the limited case.
4653 -- We also skip these operations in No_Run_Time mode, where
4654 -- dispatching stream operations cannot be used (this is currently
4655 -- a No_Run_Time restriction).
4657 if not (No_Run_Time or else Is_Limited_Type (Tag_Typ)) then
4658 Append_To (Res, Predef_Stream_Attr_Spec (Loc, Tag_Typ, Name_uRead));
4659 Append_To (Res, Predef_Stream_Attr_Spec (Loc, Tag_Typ, Name_uWrite));
4660 Append_To (Res, Predef_Stream_Attr_Spec (Loc, Tag_Typ, Name_uInput));
4661 Append_To (Res, Predef_Stream_Attr_Spec (Loc, Tag_Typ, Name_uOutput));
4662 end if;
4664 if not Is_Limited_Type (Tag_Typ) then
4666 -- Spec of "=" if expanded if the type is not limited and if a
4667 -- user defined "=" was not already declared for the non-full
4668 -- view of a private extension
4670 Eq_Needed := True;
4672 Prim := First_Elmt (Primitive_Operations (Tag_Typ));
4673 while Present (Prim) loop
4674 -- If a primitive is encountered that renames the predefined
4675 -- equality operator before reaching any explicit equality
4676 -- primitive, then we still need to create a predefined
4677 -- equality function, because calls to it can occur via
4678 -- the renaming. A new name is created for the equality
4679 -- to avoid conflicting with any user-defined equality.
4680 -- (Note that this doesn't account for renamings of
4681 -- equality nested within subpackages???)
4683 if Is_Predefined_Eq_Renaming (Node (Prim)) then
4684 Eq_Name := New_External_Name (Chars (Node (Prim)), 'E');
4686 elsif Chars (Node (Prim)) = Name_Op_Eq
4687 and then (No (Alias (Node (Prim)))
4688 or else Nkind (Unit_Declaration_Node (Node (Prim))) =
4689 N_Subprogram_Renaming_Declaration)
4690 and then Etype (First_Formal (Node (Prim))) =
4691 Etype (Next_Formal (First_Formal (Node (Prim))))
4693 then
4694 Eq_Needed := False;
4695 exit;
4697 -- If the parent equality is abstract, the inherited equality is
4698 -- abstract as well, and no body can be created for for it.
4700 elsif Chars (Node (Prim)) = Name_Op_Eq
4701 and then Present (Alias (Node (Prim)))
4702 and then Is_Abstract (Alias (Node (Prim)))
4703 then
4704 Eq_Needed := False;
4705 exit;
4706 end if;
4708 Next_Elmt (Prim);
4709 end loop;
4711 -- If a renaming of predefined equality was found
4712 -- but there was no user-defined equality (so Eq_Needed
4713 -- is still true), then set the name back to Name_Op_Eq.
4714 -- But in the case where a user-defined equality was
4715 -- located after such a renaming, then the predefined
4716 -- equality function is still needed, so Eq_Needed must
4717 -- be set back to True.
4719 if Eq_Name /= Name_Op_Eq then
4720 if Eq_Needed then
4721 Eq_Name := Name_Op_Eq;
4722 else
4723 Eq_Needed := True;
4724 end if;
4725 end if;
4727 if Eq_Needed then
4728 Eq_Spec := Predef_Spec_Or_Body (Loc,
4729 Tag_Typ => Tag_Typ,
4730 Name => Eq_Name,
4731 Profile => New_List (
4732 Make_Parameter_Specification (Loc,
4733 Defining_Identifier =>
4734 Make_Defining_Identifier (Loc, Name_X),
4735 Parameter_Type => New_Reference_To (Tag_Typ, Loc)),
4736 Make_Parameter_Specification (Loc,
4737 Defining_Identifier =>
4738 Make_Defining_Identifier (Loc, Name_Y),
4739 Parameter_Type => New_Reference_To (Tag_Typ, Loc))),
4740 Ret_Type => Standard_Boolean);
4741 Append_To (Res, Eq_Spec);
4743 if Eq_Name /= Name_Op_Eq then
4744 Renamed_Eq := Defining_Unit_Name (Specification (Eq_Spec));
4746 Prim := First_Elmt (Primitive_Operations (Tag_Typ));
4747 while Present (Prim) loop
4749 -- Any renamings of equality that appeared before an
4750 -- overriding equality must be updated to refer to
4751 -- the entity for the predefined equality, otherwise
4752 -- calls via the renaming would get incorrectly
4753 -- resolved to call the user-defined equality function.
4755 if Is_Predefined_Eq_Renaming (Node (Prim)) then
4756 Set_Alias (Node (Prim), Renamed_Eq);
4758 -- Exit upon encountering a user-defined equality
4760 elsif Chars (Node (Prim)) = Name_Op_Eq
4761 and then No (Alias (Node (Prim)))
4762 then
4763 exit;
4764 end if;
4766 Next_Elmt (Prim);
4767 end loop;
4768 end if;
4769 end if;
4771 -- Spec for dispatching assignment
4773 Append_To (Res, Predef_Spec_Or_Body (Loc,
4774 Tag_Typ => Tag_Typ,
4775 Name => Name_uAssign,
4776 Profile => New_List (
4777 Make_Parameter_Specification (Loc,
4778 Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
4779 Out_Present => True,
4780 Parameter_Type => New_Reference_To (Tag_Typ, Loc)),
4782 Make_Parameter_Specification (Loc,
4783 Defining_Identifier => Make_Defining_Identifier (Loc, Name_Y),
4784 Parameter_Type => New_Reference_To (Tag_Typ, Loc)))));
4785 end if;
4787 -- Specs for finalization actions that may be required in case a
4788 -- future extension contain a controlled element. We generate those
4789 -- only for root tagged types where they will get dummy bodies or
4790 -- when the type has controlled components and their body must be
4791 -- generated. It is also impossible to provide those for tagged
4792 -- types defined within s-finimp since it would involve circularity
4793 -- problems
4795 if In_Finalization_Root (Tag_Typ) then
4796 null;
4798 -- We also skip these in No_Run_Time mode where finalization is
4799 -- never permissible.
4801 elsif No_Run_Time then
4802 null;
4804 elsif Etype (Tag_Typ) = Tag_Typ or else Controlled_Type (Tag_Typ) then
4806 if not Is_Limited_Type (Tag_Typ) then
4807 Append_To (Res,
4808 Predef_Deep_Spec (Loc, Tag_Typ, Name_uDeep_Adjust));
4809 end if;
4811 Append_To (Res, Predef_Deep_Spec (Loc, Tag_Typ, Name_uDeep_Finalize));
4812 end if;
4814 Predef_List := Res;
4815 end Make_Predefined_Primitive_Specs;
4817 ---------------------------------
4818 -- Needs_Simple_Initialization --
4819 ---------------------------------
4821 function Needs_Simple_Initialization (T : Entity_Id) return Boolean is
4822 begin
4823 -- Check for private type, in which case test applies to the
4824 -- underlying type of the private type.
4826 if Is_Private_Type (T) then
4827 declare
4828 RT : constant Entity_Id := Underlying_Type (T);
4830 begin
4831 if Present (RT) then
4832 return Needs_Simple_Initialization (RT);
4833 else
4834 return False;
4835 end if;
4836 end;
4838 -- Cases needing simple initialization are access types, and, if pragma
4839 -- Normalize_Scalars or Initialize_Scalars is in effect, then all scalar
4840 -- types.
4842 elsif Is_Access_Type (T)
4843 or else (Init_Or_Norm_Scalars and then (Is_Scalar_Type (T)))
4845 or else (Is_Bit_Packed_Array (T)
4846 and then Is_Modular_Integer_Type (Packed_Array_Type (T)))
4847 then
4848 return True;
4850 -- If Initialize/Normalize_Scalars is in effect, string objects also
4851 -- need initialization, unless they are created in the course of
4852 -- expanding an aggregate (since in the latter case they will be
4853 -- filled with appropriate initializing values before they are used).
4855 elsif Init_Or_Norm_Scalars
4856 and then
4857 (Root_Type (T) = Standard_String
4858 or else Root_Type (T) = Standard_Wide_String)
4859 and then
4860 (not Is_Itype (T)
4861 or else Nkind (Associated_Node_For_Itype (T)) /= N_Aggregate)
4862 then
4863 return True;
4865 else
4866 return False;
4867 end if;
4868 end Needs_Simple_Initialization;
4870 ----------------------
4871 -- Predef_Deep_Spec --
4872 ----------------------
4874 function Predef_Deep_Spec
4875 (Loc : Source_Ptr;
4876 Tag_Typ : Entity_Id;
4877 Name : Name_Id;
4878 For_Body : Boolean := False)
4879 return Node_Id
4881 Prof : List_Id;
4882 Type_B : Entity_Id;
4884 begin
4885 if Name = Name_uDeep_Finalize then
4886 Prof := New_List;
4887 Type_B := Standard_Boolean;
4889 else
4890 Prof := New_List (
4891 Make_Parameter_Specification (Loc,
4892 Defining_Identifier => Make_Defining_Identifier (Loc, Name_L),
4893 In_Present => True,
4894 Out_Present => True,
4895 Parameter_Type =>
4896 New_Reference_To (RTE (RE_Finalizable_Ptr), Loc)));
4897 Type_B := Standard_Short_Short_Integer;
4898 end if;
4900 Append_To (Prof,
4901 Make_Parameter_Specification (Loc,
4902 Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
4903 In_Present => True,
4904 Out_Present => True,
4905 Parameter_Type => New_Reference_To (Tag_Typ, Loc)));
4907 Append_To (Prof,
4908 Make_Parameter_Specification (Loc,
4909 Defining_Identifier => Make_Defining_Identifier (Loc, Name_B),
4910 Parameter_Type => New_Reference_To (Type_B, Loc)));
4912 return Predef_Spec_Or_Body (Loc,
4913 Name => Name,
4914 Tag_Typ => Tag_Typ,
4915 Profile => Prof,
4916 For_Body => For_Body);
4917 end Predef_Deep_Spec;
4919 -------------------------
4920 -- Predef_Spec_Or_Body --
4921 -------------------------
4923 function Predef_Spec_Or_Body
4924 (Loc : Source_Ptr;
4925 Tag_Typ : Entity_Id;
4926 Name : Name_Id;
4927 Profile : List_Id;
4928 Ret_Type : Entity_Id := Empty;
4929 For_Body : Boolean := False)
4930 return Node_Id
4932 Id : Entity_Id := Make_Defining_Identifier (Loc, Name);
4933 Spec : Node_Id;
4935 begin
4936 Set_Is_Public (Id, Is_Public (Tag_Typ));
4938 -- The internal flag is set to mark these declarations because
4939 -- they have specific properties. First they are primitives even
4940 -- if they are not defined in the type scope (the freezing point
4941 -- is not necessarily in the same scope), furthermore the
4942 -- predefined equality can be overridden by a user-defined
4943 -- equality, no body will be generated in this case.
4945 Set_Is_Internal (Id);
4947 if not Debug_Generated_Code then
4948 Set_Debug_Info_Off (Id);
4949 end if;
4951 if No (Ret_Type) then
4952 Spec :=
4953 Make_Procedure_Specification (Loc,
4954 Defining_Unit_Name => Id,
4955 Parameter_Specifications => Profile);
4956 else
4957 Spec :=
4958 Make_Function_Specification (Loc,
4959 Defining_Unit_Name => Id,
4960 Parameter_Specifications => Profile,
4961 Subtype_Mark =>
4962 New_Reference_To (Ret_Type, Loc));
4963 end if;
4965 -- If body case, return empty subprogram body. Note that this is
4966 -- ill-formed, because there is not even a null statement, and
4967 -- certainly not a return in the function case. The caller is
4968 -- expected to do surgery on the body to add the appropriate stuff.
4970 if For_Body then
4971 return Make_Subprogram_Body (Loc, Spec, Empty_List, Empty);
4973 -- For the case of _Input and _Output applied to an abstract type,
4974 -- generate abstract specifications. These will never be called,
4975 -- but we need the slots allocated in the dispatching table so
4976 -- that typ'Class'Input and typ'Class'Output will work properly.
4978 elsif (Name = Name_uInput or else Name = Name_uOutput)
4979 and then Is_Abstract (Tag_Typ)
4980 then
4981 return Make_Abstract_Subprogram_Declaration (Loc, Spec);
4983 -- Normal spec case, where we return a subprogram declaration
4985 else
4986 return Make_Subprogram_Declaration (Loc, Spec);
4987 end if;
4988 end Predef_Spec_Or_Body;
4990 -----------------------------
4991 -- Predef_Stream_Attr_Spec --
4992 -----------------------------
4994 function Predef_Stream_Attr_Spec
4995 (Loc : Source_Ptr;
4996 Tag_Typ : Entity_Id;
4997 Name : Name_Id;
4998 For_Body : Boolean := False)
4999 return Node_Id
5001 Ret_Type : Entity_Id;
5003 begin
5004 if Name = Name_uInput then
5005 Ret_Type := Tag_Typ;
5006 else
5007 Ret_Type := Empty;
5008 end if;
5010 return Predef_Spec_Or_Body (Loc,
5011 Name => Name,
5012 Tag_Typ => Tag_Typ,
5013 Profile => Build_Stream_Attr_Profile (Loc, Tag_Typ, Name),
5014 Ret_Type => Ret_Type,
5015 For_Body => For_Body);
5016 end Predef_Stream_Attr_Spec;
5018 ---------------------------------
5019 -- Predefined_Primitive_Bodies --
5020 ---------------------------------
5022 function Predefined_Primitive_Bodies
5023 (Tag_Typ : Entity_Id;
5024 Renamed_Eq : Node_Id)
5025 return List_Id
5027 Loc : constant Source_Ptr := Sloc (Tag_Typ);
5028 Decl : Node_Id;
5029 Res : List_Id := New_List;
5030 Prim : Elmt_Id;
5031 Eq_Needed : Boolean;
5032 Eq_Name : Name_Id;
5033 Ent : Entity_Id;
5035 begin
5036 -- See if we have a predefined "=" operator
5038 if Present (Renamed_Eq) then
5039 Eq_Needed := True;
5040 Eq_Name := Chars (Renamed_Eq);
5042 else
5043 Eq_Needed := False;
5044 Eq_Name := No_Name;
5046 Prim := First_Elmt (Primitive_Operations (Tag_Typ));
5047 while Present (Prim) loop
5048 if Chars (Node (Prim)) = Name_Op_Eq
5049 and then Is_Internal (Node (Prim))
5050 then
5051 Eq_Needed := True;
5052 Eq_Name := Name_Op_Eq;
5053 end if;
5055 Next_Elmt (Prim);
5056 end loop;
5057 end if;
5059 -- Body of _Size
5061 Decl := Predef_Spec_Or_Body (Loc,
5062 Tag_Typ => Tag_Typ,
5063 Name => Name_uSize,
5064 Profile => New_List (
5065 Make_Parameter_Specification (Loc,
5066 Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
5067 Parameter_Type => New_Reference_To (Tag_Typ, Loc))),
5069 Ret_Type => Standard_Long_Long_Integer,
5070 For_Body => True);
5072 Set_Handled_Statement_Sequence (Decl,
5073 Make_Handled_Sequence_Of_Statements (Loc, New_List (
5074 Make_Return_Statement (Loc,
5075 Expression =>
5076 Make_Attribute_Reference (Loc,
5077 Prefix => Make_Identifier (Loc, Name_X),
5078 Attribute_Name => Name_Size)))));
5080 Append_To (Res, Decl);
5082 -- Bodies for Dispatching stream IO routines. We need these only for
5083 -- non-limited types (in the limited case there is no dispatching).
5084 -- and we always skip them in No_Run_Time mode where streams are not
5085 -- permitted.
5087 if not (Is_Limited_Type (Tag_Typ) or else No_Run_Time) then
5088 if No (TSS (Tag_Typ, Name_uRead)) then
5089 Build_Record_Read_Procedure (Loc, Tag_Typ, Decl, Ent);
5090 Append_To (Res, Decl);
5091 end if;
5093 if No (TSS (Tag_Typ, Name_uWrite)) then
5094 Build_Record_Write_Procedure (Loc, Tag_Typ, Decl, Ent);
5095 Append_To (Res, Decl);
5096 end if;
5098 -- Skip bodies of _Input and _Output for the abstract case, since
5099 -- the corresponding specs are abstract (see Predef_Spec_Or_Body)
5101 if not Is_Abstract (Tag_Typ) then
5102 if No (TSS (Tag_Typ, Name_uInput)) then
5103 Build_Record_Or_Elementary_Input_Function
5104 (Loc, Tag_Typ, Decl, Ent);
5105 Append_To (Res, Decl);
5106 end if;
5108 if No (TSS (Tag_Typ, Name_uOutput)) then
5109 Build_Record_Or_Elementary_Output_Procedure
5110 (Loc, Tag_Typ, Decl, Ent);
5111 Append_To (Res, Decl);
5112 end if;
5113 end if;
5114 end if;
5116 if not Is_Limited_Type (Tag_Typ) then
5118 -- Body for equality
5120 if Eq_Needed then
5122 Decl := Predef_Spec_Or_Body (Loc,
5123 Tag_Typ => Tag_Typ,
5124 Name => Eq_Name,
5125 Profile => New_List (
5126 Make_Parameter_Specification (Loc,
5127 Defining_Identifier =>
5128 Make_Defining_Identifier (Loc, Name_X),
5129 Parameter_Type => New_Reference_To (Tag_Typ, Loc)),
5131 Make_Parameter_Specification (Loc,
5132 Defining_Identifier =>
5133 Make_Defining_Identifier (Loc, Name_Y),
5134 Parameter_Type => New_Reference_To (Tag_Typ, Loc))),
5136 Ret_Type => Standard_Boolean,
5137 For_Body => True);
5139 declare
5140 Def : constant Node_Id := Parent (Tag_Typ);
5141 Variant_Case : Boolean := Has_Discriminants (Tag_Typ);
5142 Comps : Node_Id := Empty;
5143 Typ_Def : Node_Id := Type_Definition (Def);
5144 Stmts : List_Id := New_List;
5146 begin
5147 if Variant_Case then
5148 if Nkind (Typ_Def) = N_Derived_Type_Definition then
5149 Typ_Def := Record_Extension_Part (Typ_Def);
5150 end if;
5152 if Present (Typ_Def) then
5153 Comps := Component_List (Typ_Def);
5154 end if;
5156 Variant_Case := Present (Comps)
5157 and then Present (Variant_Part (Comps));
5158 end if;
5160 if Variant_Case then
5161 Append_To (Stmts,
5162 Make_Eq_If (Tag_Typ, Discriminant_Specifications (Def)));
5163 Append_List_To (Stmts, Make_Eq_Case (Tag_Typ, Comps));
5164 Append_To (Stmts,
5165 Make_Return_Statement (Loc,
5166 Expression => New_Reference_To (Standard_True, Loc)));
5168 else
5169 Append_To (Stmts,
5170 Make_Return_Statement (Loc,
5171 Expression =>
5172 Expand_Record_Equality (Tag_Typ,
5173 Typ => Tag_Typ,
5174 Lhs => Make_Identifier (Loc, Name_X),
5175 Rhs => Make_Identifier (Loc, Name_Y),
5176 Bodies => Declarations (Decl))));
5177 end if;
5179 Set_Handled_Statement_Sequence (Decl,
5180 Make_Handled_Sequence_Of_Statements (Loc, Stmts));
5181 end;
5182 Append_To (Res, Decl);
5183 end if;
5185 -- Body for dispatching assignment
5187 Decl := Predef_Spec_Or_Body (Loc,
5188 Tag_Typ => Tag_Typ,
5189 Name => Name_uAssign,
5190 Profile => New_List (
5191 Make_Parameter_Specification (Loc,
5192 Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
5193 Out_Present => True,
5194 Parameter_Type => New_Reference_To (Tag_Typ, Loc)),
5196 Make_Parameter_Specification (Loc,
5197 Defining_Identifier => Make_Defining_Identifier (Loc, Name_Y),
5198 Parameter_Type => New_Reference_To (Tag_Typ, Loc))),
5199 For_Body => True);
5201 Set_Handled_Statement_Sequence (Decl,
5202 Make_Handled_Sequence_Of_Statements (Loc, New_List (
5203 Make_Assignment_Statement (Loc,
5204 Name => Make_Identifier (Loc, Name_X),
5205 Expression => Make_Identifier (Loc, Name_Y)))));
5207 Append_To (Res, Decl);
5208 end if;
5210 -- Generate dummy bodies for finalization actions of types that have
5211 -- no controlled components.
5213 -- Skip this processing if we are in the finalization routine in the
5214 -- runtime itself, otherwise we get hopelessly circularly confused!
5216 if In_Finalization_Root (Tag_Typ) then
5217 null;
5219 -- Skip this in no run time mode (where finalization is never allowed)
5221 elsif No_Run_Time then
5222 null;
5224 elsif (Etype (Tag_Typ) = Tag_Typ or else Is_Controlled (Tag_Typ))
5225 and then not Has_Controlled_Component (Tag_Typ)
5226 then
5227 if not Is_Limited_Type (Tag_Typ) then
5228 Decl := Predef_Deep_Spec (Loc, Tag_Typ, Name_uDeep_Adjust, True);
5230 if Is_Controlled (Tag_Typ) then
5231 Set_Handled_Statement_Sequence (Decl,
5232 Make_Handled_Sequence_Of_Statements (Loc,
5233 Make_Adjust_Call (
5234 Ref => Make_Identifier (Loc, Name_V),
5235 Typ => Tag_Typ,
5236 Flist_Ref => Make_Identifier (Loc, Name_L),
5237 With_Attach => Make_Identifier (Loc, Name_B))));
5239 else
5240 Set_Handled_Statement_Sequence (Decl,
5241 Make_Handled_Sequence_Of_Statements (Loc, New_List (
5242 Make_Null_Statement (Loc))));
5243 end if;
5245 Append_To (Res, Decl);
5246 end if;
5248 Decl := Predef_Deep_Spec (Loc, Tag_Typ, Name_uDeep_Finalize, True);
5250 if Is_Controlled (Tag_Typ) then
5251 Set_Handled_Statement_Sequence (Decl,
5252 Make_Handled_Sequence_Of_Statements (Loc,
5253 Make_Final_Call (
5254 Ref => Make_Identifier (Loc, Name_V),
5255 Typ => Tag_Typ,
5256 With_Detach => Make_Identifier (Loc, Name_B))));
5258 else
5259 Set_Handled_Statement_Sequence (Decl,
5260 Make_Handled_Sequence_Of_Statements (Loc, New_List (
5261 Make_Null_Statement (Loc))));
5262 end if;
5264 Append_To (Res, Decl);
5265 end if;
5267 return Res;
5268 end Predefined_Primitive_Bodies;
5270 ---------------------------------
5271 -- Predefined_Primitive_Freeze --
5272 ---------------------------------
5274 function Predefined_Primitive_Freeze
5275 (Tag_Typ : Entity_Id)
5276 return List_Id
5278 Loc : constant Source_Ptr := Sloc (Tag_Typ);
5279 Res : List_Id := New_List;
5280 Prim : Elmt_Id;
5281 Frnodes : List_Id;
5283 begin
5284 Prim := First_Elmt (Primitive_Operations (Tag_Typ));
5285 while Present (Prim) loop
5286 if Is_Internal (Node (Prim)) then
5287 Frnodes := Freeze_Entity (Node (Prim), Loc);
5289 if Present (Frnodes) then
5290 Append_List_To (Res, Frnodes);
5291 end if;
5292 end if;
5294 Next_Elmt (Prim);
5295 end loop;
5297 return Res;
5298 end Predefined_Primitive_Freeze;
5300 end Exp_Ch3;