cselib.c (cselib_current_insn_in_libcall): New static variable.
[official-gcc.git] / boehm-gc / mark.c
blobeb5b9eeb34d9ae11bc6b5e7f75f8c1de3ec80f18
2 /*
3 * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
4 * Copyright (c) 1991-1995 by Xerox Corporation. All rights reserved.
5 * Copyright (c) 2000 by Hewlett-Packard Company. All rights reserved.
7 * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
8 * OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
10 * Permission is hereby granted to use or copy this program
11 * for any purpose, provided the above notices are retained on all copies.
12 * Permission to modify the code and to distribute modified code is granted,
13 * provided the above notices are retained, and a notice that the code was
14 * modified is included with the above copyright notice.
19 # include <stdio.h>
20 # include "private/gc_pmark.h"
22 /* We put this here to minimize the risk of inlining. */
23 /*VARARGS*/
24 #ifdef __WATCOMC__
25 void GC_noop(void *p, ...) {}
26 #else
27 void GC_noop() {}
28 #endif
30 /* Single argument version, robust against whole program analysis. */
31 void GC_noop1(x)
32 word x;
34 static VOLATILE word sink;
36 sink = x;
39 /* mark_proc GC_mark_procs[MAX_MARK_PROCS] = {0} -- declared in gc_priv.h */
41 word GC_n_mark_procs = GC_RESERVED_MARK_PROCS;
43 /* Initialize GC_obj_kinds properly and standard free lists properly. */
44 /* This must be done statically since they may be accessed before */
45 /* GC_init is called. */
46 /* It's done here, since we need to deal with mark descriptors. */
47 struct obj_kind GC_obj_kinds[MAXOBJKINDS] = {
48 /* PTRFREE */ { &GC_aobjfreelist[0], 0 /* filled in dynamically */,
49 0 | GC_DS_LENGTH, FALSE, FALSE },
50 /* NORMAL */ { &GC_objfreelist[0], 0,
51 0 | GC_DS_LENGTH, /* Adjusted in GC_init_inner for EXTRA_BYTES */
52 TRUE /* add length to descr */, TRUE },
53 /* UNCOLLECTABLE */
54 { &GC_uobjfreelist[0], 0,
55 0 | GC_DS_LENGTH, TRUE /* add length to descr */, TRUE },
56 # ifdef ATOMIC_UNCOLLECTABLE
57 /* AUNCOLLECTABLE */
58 { &GC_auobjfreelist[0], 0,
59 0 | GC_DS_LENGTH, FALSE /* add length to descr */, FALSE },
60 # endif
61 # ifdef STUBBORN_ALLOC
62 /*STUBBORN*/ { &GC_sobjfreelist[0], 0,
63 0 | GC_DS_LENGTH, TRUE /* add length to descr */, TRUE },
64 # endif
67 # ifdef ATOMIC_UNCOLLECTABLE
68 # ifdef STUBBORN_ALLOC
69 int GC_n_kinds = 5;
70 # else
71 int GC_n_kinds = 4;
72 # endif
73 # else
74 # ifdef STUBBORN_ALLOC
75 int GC_n_kinds = 4;
76 # else
77 int GC_n_kinds = 3;
78 # endif
79 # endif
82 # ifndef INITIAL_MARK_STACK_SIZE
83 # define INITIAL_MARK_STACK_SIZE (1*HBLKSIZE)
84 /* INITIAL_MARK_STACK_SIZE * sizeof(mse) should be a */
85 /* multiple of HBLKSIZE. */
86 /* The incremental collector actually likes a larger */
87 /* size, since it want to push all marked dirty objs */
88 /* before marking anything new. Currently we let it */
89 /* grow dynamically. */
90 # endif
93 * Limits of stack for GC_mark routine.
94 * All ranges between GC_mark_stack(incl.) and GC_mark_stack_top(incl.) still
95 * need to be marked from.
98 word GC_n_rescuing_pages; /* Number of dirty pages we marked from */
99 /* excludes ptrfree pages, etc. */
101 mse * GC_mark_stack;
103 mse * GC_mark_stack_limit;
105 word GC_mark_stack_size = 0;
107 #ifdef PARALLEL_MARK
108 mse * VOLATILE GC_mark_stack_top;
109 #else
110 mse * GC_mark_stack_top;
111 #endif
113 static struct hblk * scan_ptr;
115 mark_state_t GC_mark_state = MS_NONE;
117 GC_bool GC_mark_stack_too_small = FALSE;
119 GC_bool GC_objects_are_marked = FALSE; /* Are there collectable marked */
120 /* objects in the heap? */
122 /* Is a collection in progress? Note that this can return true in the */
123 /* nonincremental case, if a collection has been abandoned and the */
124 /* mark state is now MS_INVALID. */
125 GC_bool GC_collection_in_progress()
127 return(GC_mark_state != MS_NONE);
130 /* clear all mark bits in the header */
131 void GC_clear_hdr_marks(hhdr)
132 register hdr * hhdr;
134 # ifdef USE_MARK_BYTES
135 BZERO(hhdr -> hb_marks, MARK_BITS_SZ);
136 # else
137 BZERO(hhdr -> hb_marks, MARK_BITS_SZ*sizeof(word));
138 # endif
141 /* Set all mark bits in the header. Used for uncollectable blocks. */
142 void GC_set_hdr_marks(hhdr)
143 register hdr * hhdr;
145 register int i;
147 for (i = 0; i < MARK_BITS_SZ; ++i) {
148 # ifdef USE_MARK_BYTES
149 hhdr -> hb_marks[i] = 1;
150 # else
151 hhdr -> hb_marks[i] = ONES;
152 # endif
157 * Clear all mark bits associated with block h.
159 /*ARGSUSED*/
160 # if defined(__STDC__) || defined(__cplusplus)
161 static void clear_marks_for_block(struct hblk *h, word dummy)
162 # else
163 static void clear_marks_for_block(h, dummy)
164 struct hblk *h;
165 word dummy;
166 # endif
168 register hdr * hhdr = HDR(h);
170 if (IS_UNCOLLECTABLE(hhdr -> hb_obj_kind)) return;
171 /* Mark bit for these is cleared only once the object is */
172 /* explicitly deallocated. This either frees the block, or */
173 /* the bit is cleared once the object is on the free list. */
174 GC_clear_hdr_marks(hhdr);
177 /* Slow but general routines for setting/clearing/asking about mark bits */
178 void GC_set_mark_bit(p)
179 ptr_t p;
181 register struct hblk *h = HBLKPTR(p);
182 register hdr * hhdr = HDR(h);
183 register int word_no = (word *)p - (word *)h;
185 set_mark_bit_from_hdr(hhdr, word_no);
188 void GC_clear_mark_bit(p)
189 ptr_t p;
191 register struct hblk *h = HBLKPTR(p);
192 register hdr * hhdr = HDR(h);
193 register int word_no = (word *)p - (word *)h;
195 clear_mark_bit_from_hdr(hhdr, word_no);
198 GC_bool GC_is_marked(p)
199 ptr_t p;
201 register struct hblk *h = HBLKPTR(p);
202 register hdr * hhdr = HDR(h);
203 register int word_no = (word *)p - (word *)h;
205 return(mark_bit_from_hdr(hhdr, word_no));
210 * Clear mark bits in all allocated heap blocks. This invalidates
211 * the marker invariant, and sets GC_mark_state to reflect this.
212 * (This implicitly starts marking to reestablish the invariant.)
214 void GC_clear_marks()
216 GC_apply_to_all_blocks(clear_marks_for_block, (word)0);
217 GC_objects_are_marked = FALSE;
218 GC_mark_state = MS_INVALID;
219 scan_ptr = 0;
220 # ifdef GATHERSTATS
221 /* Counters reflect currently marked objects: reset here */
222 GC_composite_in_use = 0;
223 GC_atomic_in_use = 0;
224 # endif
228 /* Initiate a garbage collection. Initiates a full collection if the */
229 /* mark state is invalid. */
230 /*ARGSUSED*/
231 void GC_initiate_gc()
233 if (GC_dirty_maintained) GC_read_dirty();
234 # ifdef STUBBORN_ALLOC
235 GC_read_changed();
236 # endif
237 # ifdef CHECKSUMS
239 extern void GC_check_dirty();
241 if (GC_dirty_maintained) GC_check_dirty();
243 # endif
244 GC_n_rescuing_pages = 0;
245 if (GC_mark_state == MS_NONE) {
246 GC_mark_state = MS_PUSH_RESCUERS;
247 } else if (GC_mark_state != MS_INVALID) {
248 ABORT("unexpected state");
249 } /* else this is really a full collection, and mark */
250 /* bits are invalid. */
251 scan_ptr = 0;
255 static void alloc_mark_stack();
257 /* Perform a small amount of marking. */
258 /* We try to touch roughly a page of memory. */
259 /* Return TRUE if we just finished a mark phase. */
260 /* Cold_gc_frame is an address inside a GC frame that */
261 /* remains valid until all marking is complete. */
262 /* A zero value indicates that it's OK to miss some */
263 /* register values. */
264 GC_bool GC_mark_some(cold_gc_frame)
265 ptr_t cold_gc_frame;
267 #if defined(MSWIN32) && !defined(__GNUC__)
268 /* Windows 98 appears to asynchronously create and remove writable */
269 /* memory mappings, for reasons we haven't yet understood. Since */
270 /* we look for writable regions to determine the root set, we may */
271 /* try to mark from an address range that disappeared since we */
272 /* started the collection. Thus we have to recover from faults here. */
273 /* This code does not appear to be necessary for Windows 95/NT/2000. */
274 /* Note that this code should never generate an incremental GC write */
275 /* fault. */
276 __try {
277 #endif /* defined(MSWIN32) && !defined(__GNUC__) */
278 switch(GC_mark_state) {
279 case MS_NONE:
280 return(FALSE);
282 case MS_PUSH_RESCUERS:
283 if (GC_mark_stack_top
284 >= GC_mark_stack_limit - INITIAL_MARK_STACK_SIZE/2) {
285 /* Go ahead and mark, even though that might cause us to */
286 /* see more marked dirty objects later on. Avoid this */
287 /* in the future. */
288 GC_mark_stack_too_small = TRUE;
289 MARK_FROM_MARK_STACK();
290 return(FALSE);
291 } else {
292 scan_ptr = GC_push_next_marked_dirty(scan_ptr);
293 if (scan_ptr == 0) {
294 # ifdef CONDPRINT
295 if (GC_print_stats) {
296 GC_printf1("Marked from %lu dirty pages\n",
297 (unsigned long)GC_n_rescuing_pages);
299 # endif
300 GC_push_roots(FALSE, cold_gc_frame);
301 GC_objects_are_marked = TRUE;
302 if (GC_mark_state != MS_INVALID) {
303 GC_mark_state = MS_ROOTS_PUSHED;
307 return(FALSE);
309 case MS_PUSH_UNCOLLECTABLE:
310 if (GC_mark_stack_top
311 >= GC_mark_stack + GC_mark_stack_size/4) {
312 # ifdef PARALLEL_MARK
313 /* Avoid this, since we don't parallelize the marker */
314 /* here. */
315 if (GC_parallel) GC_mark_stack_too_small = TRUE;
316 # endif
317 MARK_FROM_MARK_STACK();
318 return(FALSE);
319 } else {
320 scan_ptr = GC_push_next_marked_uncollectable(scan_ptr);
321 if (scan_ptr == 0) {
322 GC_push_roots(TRUE, cold_gc_frame);
323 GC_objects_are_marked = TRUE;
324 if (GC_mark_state != MS_INVALID) {
325 GC_mark_state = MS_ROOTS_PUSHED;
329 return(FALSE);
331 case MS_ROOTS_PUSHED:
332 # ifdef PARALLEL_MARK
333 /* In the incremental GC case, this currently doesn't */
334 /* quite do the right thing, since it runs to */
335 /* completion. On the other hand, starting a */
336 /* parallel marker is expensive, so perhaps it is */
337 /* the right thing? */
338 /* Eventually, incremental marking should run */
339 /* asynchronously in multiple threads, without grabbing */
340 /* the allocation lock. */
341 if (GC_parallel) {
342 GC_do_parallel_mark();
343 GC_ASSERT(GC_mark_stack_top < GC_first_nonempty);
344 GC_mark_stack_top = GC_mark_stack - 1;
345 if (GC_mark_stack_too_small) {
346 alloc_mark_stack(2*GC_mark_stack_size);
348 if (GC_mark_state == MS_ROOTS_PUSHED) {
349 GC_mark_state = MS_NONE;
350 return(TRUE);
351 } else {
352 return(FALSE);
355 # endif
356 if (GC_mark_stack_top >= GC_mark_stack) {
357 MARK_FROM_MARK_STACK();
358 return(FALSE);
359 } else {
360 GC_mark_state = MS_NONE;
361 if (GC_mark_stack_too_small) {
362 alloc_mark_stack(2*GC_mark_stack_size);
364 return(TRUE);
367 case MS_INVALID:
368 case MS_PARTIALLY_INVALID:
369 if (!GC_objects_are_marked) {
370 GC_mark_state = MS_PUSH_UNCOLLECTABLE;
371 return(FALSE);
373 if (GC_mark_stack_top >= GC_mark_stack) {
374 MARK_FROM_MARK_STACK();
375 return(FALSE);
377 if (scan_ptr == 0 && GC_mark_state == MS_INVALID) {
378 /* About to start a heap scan for marked objects. */
379 /* Mark stack is empty. OK to reallocate. */
380 if (GC_mark_stack_too_small) {
381 alloc_mark_stack(2*GC_mark_stack_size);
383 GC_mark_state = MS_PARTIALLY_INVALID;
385 scan_ptr = GC_push_next_marked(scan_ptr);
386 if (scan_ptr == 0 && GC_mark_state == MS_PARTIALLY_INVALID) {
387 GC_push_roots(TRUE, cold_gc_frame);
388 GC_objects_are_marked = TRUE;
389 if (GC_mark_state != MS_INVALID) {
390 GC_mark_state = MS_ROOTS_PUSHED;
393 return(FALSE);
394 default:
395 ABORT("GC_mark_some: bad state");
396 return(FALSE);
398 #if defined(MSWIN32) && !defined(__GNUC__)
399 } __except (GetExceptionCode() == EXCEPTION_ACCESS_VIOLATION ?
400 EXCEPTION_EXECUTE_HANDLER : EXCEPTION_CONTINUE_SEARCH) {
401 # ifdef CONDPRINT
402 if (GC_print_stats) {
403 GC_printf0("Caught ACCESS_VIOLATION in marker. "
404 "Memory mapping disappeared.\n");
406 # endif /* CONDPRINT */
407 /* We have bad roots on the stack. Discard mark stack. */
408 /* Rescan from marked objects. Redetermine roots. */
409 GC_invalidate_mark_state();
410 scan_ptr = 0;
411 return FALSE;
413 #endif /* defined(MSWIN32) && !defined(__GNUC__) */
417 GC_bool GC_mark_stack_empty()
419 return(GC_mark_stack_top < GC_mark_stack);
422 #ifdef PROF_MARKER
423 word GC_prof_array[10];
424 # define PROF(n) GC_prof_array[n]++
425 #else
426 # define PROF(n)
427 #endif
429 /* Given a pointer to someplace other than a small object page or the */
430 /* first page of a large object, either: */
431 /* - return a pointer to somewhere in the first page of the large */
432 /* object, if current points to a large object. */
433 /* In this case *hhdr is replaced with a pointer to the header */
434 /* for the large object. */
435 /* - just return current if it does not point to a large object. */
436 /*ARGSUSED*/
437 # ifdef PRINT_BLACK_LIST
438 ptr_t GC_find_start(current, hhdr, new_hdr_p, source)
439 ptr_t source;
440 # else
441 ptr_t GC_find_start(current, hhdr, new_hdr_p)
442 # define source 0
443 # endif
444 register ptr_t current;
445 register hdr *hhdr, **new_hdr_p;
447 if (GC_all_interior_pointers) {
448 if (hhdr != 0) {
449 register ptr_t orig = current;
451 current = (ptr_t)HBLKPTR(current);
452 do {
453 current = current - HBLKSIZE*(word)hhdr;
454 hhdr = HDR(current);
455 } while(IS_FORWARDING_ADDR_OR_NIL(hhdr));
456 /* current points to the start of the large object */
457 if (hhdr -> hb_flags & IGNORE_OFF_PAGE) return(0);
458 if ((word *)orig - (word *)current
459 >= (ptrdiff_t)(hhdr->hb_sz)) {
460 /* Pointer past the end of the block */
461 return(orig);
463 *new_hdr_p = hhdr;
464 return(current);
465 } else {
466 return(current);
468 } else {
469 return(current);
471 # undef source
474 void GC_invalidate_mark_state()
476 GC_mark_state = MS_INVALID;
477 GC_mark_stack_top = GC_mark_stack-1;
480 mse * GC_signal_mark_stack_overflow(msp)
481 mse * msp;
483 GC_mark_state = MS_INVALID;
484 GC_mark_stack_too_small = TRUE;
485 # ifdef CONDPRINT
486 if (GC_print_stats) {
487 GC_printf1("Mark stack overflow; current size = %lu entries\n",
488 GC_mark_stack_size);
490 # endif
491 return(msp - GC_MARK_STACK_DISCARDS);
495 * Mark objects pointed to by the regions described by
496 * mark stack entries between GC_mark_stack and GC_mark_stack_top,
497 * inclusive. Assumes the upper limit of a mark stack entry
498 * is never 0. A mark stack entry never has size 0.
499 * We try to traverse on the order of a hblk of memory before we return.
500 * Caller is responsible for calling this until the mark stack is empty.
501 * Note that this is the most performance critical routine in the
502 * collector. Hence it contains all sorts of ugly hacks to speed
503 * things up. In particular, we avoid procedure calls on the common
504 * path, we take advantage of peculiarities of the mark descriptor
505 * encoding, we optionally maintain a cache for the block address to
506 * header mapping, we prefetch when an object is "grayed", etc.
508 mse * GC_mark_from(mark_stack_top, mark_stack, mark_stack_limit)
509 mse * mark_stack_top;
510 mse * mark_stack;
511 mse * mark_stack_limit;
513 int credit = HBLKSIZE; /* Remaining credit for marking work */
514 register word * current_p; /* Pointer to current candidate ptr. */
515 register word current; /* Candidate pointer. */
516 register word * limit; /* (Incl) limit of current candidate */
517 /* range */
518 register word descr;
519 register ptr_t greatest_ha = GC_greatest_plausible_heap_addr;
520 register ptr_t least_ha = GC_least_plausible_heap_addr;
521 DECLARE_HDR_CACHE;
523 # define SPLIT_RANGE_WORDS 128 /* Must be power of 2. */
525 GC_objects_are_marked = TRUE;
526 INIT_HDR_CACHE;
527 # ifdef OS2 /* Use untweaked version to circumvent compiler problem */
528 while (mark_stack_top >= mark_stack && credit >= 0) {
529 # else
530 while ((((ptr_t)mark_stack_top - (ptr_t)mark_stack) | credit)
531 >= 0) {
532 # endif
533 current_p = mark_stack_top -> mse_start;
534 descr = mark_stack_top -> mse_descr;
535 retry:
536 /* current_p and descr describe the current object. */
537 /* *mark_stack_top is vacant. */
538 /* The following is 0 only for small objects described by a simple */
539 /* length descriptor. For many applications this is the common */
540 /* case, so we try to detect it quickly. */
541 if (descr & ((~(WORDS_TO_BYTES(SPLIT_RANGE_WORDS) - 1)) | GC_DS_TAGS)) {
542 word tag = descr & GC_DS_TAGS;
544 switch(tag) {
545 case GC_DS_LENGTH:
546 /* Large length. */
547 /* Process part of the range to avoid pushing too much on the */
548 /* stack. */
549 GC_ASSERT(descr < GC_greatest_plausible_heap_addr
550 - GC_least_plausible_heap_addr);
551 # ifdef PARALLEL_MARK
552 # define SHARE_BYTES 2048
553 if (descr > SHARE_BYTES && GC_parallel
554 && mark_stack_top < mark_stack_limit - 1) {
555 int new_size = (descr/2) & ~(sizeof(word)-1);
556 mark_stack_top -> mse_start = current_p;
557 mark_stack_top -> mse_descr = new_size + sizeof(word);
558 /* makes sure we handle */
559 /* misaligned pointers. */
560 mark_stack_top++;
561 current_p = (word *) ((char *)current_p + new_size);
562 descr -= new_size;
563 goto retry;
565 # endif /* PARALLEL_MARK */
566 mark_stack_top -> mse_start =
567 limit = current_p + SPLIT_RANGE_WORDS-1;
568 mark_stack_top -> mse_descr =
569 descr - WORDS_TO_BYTES(SPLIT_RANGE_WORDS-1);
570 /* Make sure that pointers overlapping the two ranges are */
571 /* considered. */
572 limit = (word *)((char *)limit + sizeof(word) - ALIGNMENT);
573 break;
574 case GC_DS_BITMAP:
575 mark_stack_top--;
576 descr &= ~GC_DS_TAGS;
577 credit -= WORDS_TO_BYTES(WORDSZ/2); /* guess */
578 while (descr != 0) {
579 if ((signed_word)descr < 0) {
580 current = *current_p;
581 if ((ptr_t)current >= least_ha && (ptr_t)current < greatest_ha) {
582 PREFETCH(current);
583 HC_PUSH_CONTENTS((ptr_t)current, mark_stack_top,
584 mark_stack_limit, current_p, exit1);
587 descr <<= 1;
588 ++ current_p;
590 continue;
591 case GC_DS_PROC:
592 mark_stack_top--;
593 credit -= GC_PROC_BYTES;
594 mark_stack_top =
595 (*PROC(descr))
596 (current_p, mark_stack_top,
597 mark_stack_limit, ENV(descr));
598 continue;
599 case GC_DS_PER_OBJECT:
600 if ((signed_word)descr >= 0) {
601 /* Descriptor is in the object. */
602 descr = *(word *)((ptr_t)current_p + descr - GC_DS_PER_OBJECT);
603 } else {
604 /* Descriptor is in type descriptor pointed to by first */
605 /* word in object. */
606 ptr_t type_descr = *(ptr_t *)current_p;
607 /* type_descr is either a valid pointer to the descriptor */
608 /* structure, or this object was on a free list. If it */
609 /* it was anything but the last object on the free list, */
610 /* we will misinterpret the next object on the free list as */
611 /* the type descriptor, and get a 0 GC descriptor, which */
612 /* is ideal. Unfortunately, we need to check for the last */
613 /* object case explicitly. */
614 if (0 == type_descr) {
615 /* Rarely executed. */
616 mark_stack_top--;
617 continue;
619 descr = *(word *)(type_descr
620 - (descr - (GC_DS_PER_OBJECT
621 - GC_INDIR_PER_OBJ_BIAS)));
623 if (0 == descr) {
624 /* Can happen either because we generated a 0 descriptor */
625 /* or we saw a pointer to a free object. */
626 mark_stack_top--;
627 continue;
629 goto retry;
631 } else /* Small object with length descriptor */ {
632 mark_stack_top--;
633 limit = (word *)(((ptr_t)current_p) + (word)descr);
635 /* The simple case in which we're scanning a range. */
636 GC_ASSERT(!((word)current_p & (ALIGNMENT-1)));
637 credit -= (ptr_t)limit - (ptr_t)current_p;
638 limit -= 1;
640 # define PREF_DIST 4
642 # ifndef SMALL_CONFIG
643 word deferred;
645 /* Try to prefetch the next pointer to be examined asap. */
646 /* Empirically, this also seems to help slightly without */
647 /* prefetches, at least on linux/X86. Presumably this loop */
648 /* ends up with less register pressure, and gcc thus ends up */
649 /* generating slightly better code. Overall gcc code quality */
650 /* for this loop is still not great. */
651 for(;;) {
652 PREFETCH((ptr_t)limit - PREF_DIST*CACHE_LINE_SIZE);
653 GC_ASSERT(limit >= current_p);
654 deferred = *limit;
655 limit = (word *)((char *)limit - ALIGNMENT);
656 if ((ptr_t)deferred >= least_ha && (ptr_t)deferred < greatest_ha) {
657 PREFETCH(deferred);
658 break;
660 if (current_p > limit) goto next_object;
661 /* Unroll once, so we don't do too many of the prefetches */
662 /* based on limit. */
663 deferred = *limit;
664 limit = (word *)((char *)limit - ALIGNMENT);
665 if ((ptr_t)deferred >= least_ha && (ptr_t)deferred < greatest_ha) {
666 PREFETCH(deferred);
667 break;
669 if (current_p > limit) goto next_object;
671 # endif
673 while (current_p <= limit) {
674 /* Empirically, unrolling this loop doesn't help a lot. */
675 /* Since HC_PUSH_CONTENTS expands to a lot of code, */
676 /* we don't. */
677 current = *current_p;
678 PREFETCH((ptr_t)current_p + PREF_DIST*CACHE_LINE_SIZE);
679 if ((ptr_t)current >= least_ha && (ptr_t)current < greatest_ha) {
680 /* Prefetch the contents of the object we just pushed. It's */
681 /* likely we will need them soon. */
682 PREFETCH(current);
683 HC_PUSH_CONTENTS((ptr_t)current, mark_stack_top,
684 mark_stack_limit, current_p, exit2);
686 current_p = (word *)((char *)current_p + ALIGNMENT);
689 # ifndef SMALL_CONFIG
690 /* We still need to mark the entry we previously prefetched. */
691 /* We alrady know that it passes the preliminary pointer */
692 /* validity test. */
693 HC_PUSH_CONTENTS((ptr_t)deferred, mark_stack_top,
694 mark_stack_limit, current_p, exit4);
695 next_object:;
696 # endif
699 return mark_stack_top;
702 #ifdef PARALLEL_MARK
704 /* We assume we have an ANSI C Compiler. */
705 GC_bool GC_help_wanted = FALSE;
706 unsigned GC_helper_count = 0;
707 unsigned GC_active_count = 0;
708 mse * VOLATILE GC_first_nonempty;
709 word GC_mark_no = 0;
711 #define LOCAL_MARK_STACK_SIZE HBLKSIZE
712 /* Under normal circumstances, this is big enough to guarantee */
713 /* We don't overflow half of it in a single call to */
714 /* GC_mark_from. */
717 /* Steal mark stack entries starting at mse low into mark stack local */
718 /* until we either steal mse high, or we have max entries. */
719 /* Return a pointer to the top of the local mark stack. */
720 /* *next is replaced by a pointer to the next unscanned mark stack */
721 /* entry. */
722 mse * GC_steal_mark_stack(mse * low, mse * high, mse * local,
723 unsigned max, mse **next)
725 mse *p;
726 mse *top = local - 1;
727 unsigned i = 0;
729 GC_ASSERT(high >= low-1 && high - low + 1 <= GC_mark_stack_size);
730 for (p = low; p <= high && i <= max; ++p) {
731 word descr = *(volatile word *) &(p -> mse_descr);
732 if (descr != 0) {
733 *(volatile word *) &(p -> mse_descr) = 0;
734 ++top;
735 top -> mse_descr = descr;
736 top -> mse_start = p -> mse_start;
737 GC_ASSERT( top -> mse_descr & GC_DS_TAGS != GC_DS_LENGTH ||
738 top -> mse_descr < GC_greatest_plausible_heap_addr
739 - GC_least_plausible_heap_addr);
740 /* There is no synchronization here. We assume that at */
741 /* least one thread will see the original descriptor. */
742 /* Otherwise we need a barrier. */
743 /* More than one thread may get this entry, but that's only */
744 /* a minor performance problem. */
745 /* If this is a big object, count it as */
746 /* size/256 + 1 objects. */
747 ++i;
748 if ((descr & GC_DS_TAGS) == GC_DS_LENGTH) i += (descr >> 8);
751 *next = p;
752 return top;
755 /* Copy back a local mark stack. */
756 /* low and high are inclusive bounds. */
757 void GC_return_mark_stack(mse * low, mse * high)
759 mse * my_top;
760 mse * my_start;
761 size_t stack_size;
763 if (high < low) return;
764 stack_size = high - low + 1;
765 GC_acquire_mark_lock();
766 my_top = GC_mark_stack_top;
767 my_start = my_top + 1;
768 if (my_start - GC_mark_stack + stack_size > GC_mark_stack_size) {
769 # ifdef CONDPRINT
770 if (GC_print_stats) {
771 GC_printf0("No room to copy back mark stack.");
773 # endif
774 GC_mark_state = MS_INVALID;
775 GC_mark_stack_too_small = TRUE;
776 /* We drop the local mark stack. We'll fix things later. */
777 } else {
778 BCOPY(low, my_start, stack_size * sizeof(mse));
779 GC_ASSERT(GC_mark_stack_top = my_top);
780 # if !defined(IA64) && !defined(HP_PA)
781 GC_memory_write_barrier();
782 # endif
783 /* On IA64, the volatile write acts as a release barrier. */
784 GC_mark_stack_top = my_top + stack_size;
786 GC_release_mark_lock();
787 GC_notify_all_marker();
790 /* Mark from the local mark stack. */
791 /* On return, the local mark stack is empty. */
792 /* But this may be achieved by copying the */
793 /* local mark stack back into the global one. */
794 void GC_do_local_mark(mse *local_mark_stack, mse *local_top)
796 unsigned n;
797 # define N_LOCAL_ITERS 1
799 # ifdef GC_ASSERTIONS
800 /* Make sure we don't hold mark lock. */
801 GC_acquire_mark_lock();
802 GC_release_mark_lock();
803 # endif
804 for (;;) {
805 for (n = 0; n < N_LOCAL_ITERS; ++n) {
806 local_top = GC_mark_from(local_top, local_mark_stack,
807 local_mark_stack + LOCAL_MARK_STACK_SIZE);
808 if (local_top < local_mark_stack) return;
809 if (local_top - local_mark_stack >= LOCAL_MARK_STACK_SIZE/2) {
810 GC_return_mark_stack(local_mark_stack, local_top);
811 return;
814 if (GC_mark_stack_top < GC_first_nonempty &&
815 GC_active_count < GC_helper_count
816 && local_top > local_mark_stack + 1) {
817 /* Try to share the load, since the main stack is empty, */
818 /* and helper threads are waiting for a refill. */
819 /* The entries near the bottom of the stack are likely */
820 /* to require more work. Thus we return those, eventhough */
821 /* it's harder. */
822 mse * p;
823 mse * new_bottom = local_mark_stack
824 + (local_top - local_mark_stack)/2;
825 GC_ASSERT(new_bottom > local_mark_stack
826 && new_bottom < local_top);
827 GC_return_mark_stack(local_mark_stack, new_bottom - 1);
828 memmove(local_mark_stack, new_bottom,
829 (local_top - new_bottom + 1) * sizeof(mse));
830 local_top -= (new_bottom - local_mark_stack);
835 #define ENTRIES_TO_GET 5
837 long GC_markers = 2; /* Normally changed by thread-library- */
838 /* -specific code. */
840 /* Mark using the local mark stack until the global mark stack is empty */
841 /* and there are no active workers. Update GC_first_nonempty to reflect */
842 /* progress. */
843 /* Caller does not hold mark lock. */
844 /* Caller has already incremented GC_helper_count. We decrement it, */
845 /* and maintain GC_active_count. */
846 void GC_mark_local(mse *local_mark_stack, int id)
848 mse * my_first_nonempty;
850 GC_acquire_mark_lock();
851 GC_active_count++;
852 my_first_nonempty = GC_first_nonempty;
853 GC_ASSERT(GC_first_nonempty >= GC_mark_stack &&
854 GC_first_nonempty <= GC_mark_stack_top + 1);
855 # ifdef PRINTSTATS
856 GC_printf1("Starting mark helper %lu\n", (unsigned long)id);
857 # endif
858 GC_release_mark_lock();
859 for (;;) {
860 size_t n_on_stack;
861 size_t n_to_get;
862 mse *next;
863 mse * my_top;
864 mse * local_top;
865 mse * global_first_nonempty = GC_first_nonempty;
867 GC_ASSERT(my_first_nonempty >= GC_mark_stack &&
868 my_first_nonempty <= GC_mark_stack_top + 1);
869 GC_ASSERT(global_first_nonempty >= GC_mark_stack &&
870 global_first_nonempty <= GC_mark_stack_top + 1);
871 if (my_first_nonempty < global_first_nonempty) {
872 my_first_nonempty = global_first_nonempty;
873 } else if (global_first_nonempty < my_first_nonempty) {
874 GC_compare_and_exchange((word *)(&GC_first_nonempty),
875 (word) global_first_nonempty,
876 (word) my_first_nonempty);
877 /* If this fails, we just go ahead, without updating */
878 /* GC_first_nonempty. */
880 /* Perhaps we should also update GC_first_nonempty, if it */
881 /* is less. But that would require using atomic updates. */
882 my_top = GC_mark_stack_top;
883 n_on_stack = my_top - my_first_nonempty + 1;
884 if (0 == n_on_stack) {
885 GC_acquire_mark_lock();
886 my_top = GC_mark_stack_top;
887 n_on_stack = my_top - my_first_nonempty + 1;
888 if (0 == n_on_stack) {
889 GC_active_count--;
890 GC_ASSERT(GC_active_count <= GC_helper_count);
891 /* Other markers may redeposit objects */
892 /* on the stack. */
893 if (0 == GC_active_count) GC_notify_all_marker();
894 while (GC_active_count > 0
895 && GC_first_nonempty > GC_mark_stack_top) {
896 /* We will be notified if either GC_active_count */
897 /* reaches zero, or if more objects are pushed on */
898 /* the global mark stack. */
899 GC_wait_marker();
901 if (GC_active_count == 0 &&
902 GC_first_nonempty > GC_mark_stack_top) {
903 GC_bool need_to_notify = FALSE;
904 /* The above conditions can't be falsified while we */
905 /* hold the mark lock, since neither */
906 /* GC_active_count nor GC_mark_stack_top can */
907 /* change. GC_first_nonempty can only be */
908 /* incremented asynchronously. Thus we know that */
909 /* both conditions actually held simultaneously. */
910 GC_helper_count--;
911 if (0 == GC_helper_count) need_to_notify = TRUE;
912 # ifdef PRINTSTATS
913 GC_printf1(
914 "Finished mark helper %lu\n", (unsigned long)id);
915 # endif
916 GC_release_mark_lock();
917 if (need_to_notify) GC_notify_all_marker();
918 return;
920 /* else there's something on the stack again, or */
921 /* another helper may push something. */
922 GC_active_count++;
923 GC_ASSERT(GC_active_count > 0);
924 GC_release_mark_lock();
925 continue;
926 } else {
927 GC_release_mark_lock();
930 n_to_get = ENTRIES_TO_GET;
931 if (n_on_stack < 2 * ENTRIES_TO_GET) n_to_get = 1;
932 local_top = GC_steal_mark_stack(my_first_nonempty, my_top,
933 local_mark_stack, n_to_get,
934 &my_first_nonempty);
935 GC_ASSERT(my_first_nonempty >= GC_mark_stack &&
936 my_first_nonempty <= GC_mark_stack_top + 1);
937 GC_do_local_mark(local_mark_stack, local_top);
941 /* Perform Parallel mark. */
942 /* We hold the GC lock, not the mark lock. */
943 /* Currently runs until the mark stack is */
944 /* empty. */
945 void GC_do_parallel_mark()
947 mse local_mark_stack[LOCAL_MARK_STACK_SIZE];
948 mse * local_top;
949 mse * my_top;
951 GC_acquire_mark_lock();
952 GC_ASSERT(I_HOLD_LOCK());
953 /* This could be a GC_ASSERT, but it seems safer to keep it on */
954 /* all the time, especially since it's cheap. */
955 if (GC_help_wanted || GC_active_count != 0 || GC_helper_count != 0)
956 ABORT("Tried to start parallel mark in bad state");
957 # ifdef PRINTSTATS
958 GC_printf1("Starting marking for mark phase number %lu\n",
959 (unsigned long)GC_mark_no);
960 # endif
961 GC_first_nonempty = GC_mark_stack;
962 GC_active_count = 0;
963 GC_helper_count = 1;
964 GC_help_wanted = TRUE;
965 GC_release_mark_lock();
966 GC_notify_all_marker();
967 /* Wake up potential helpers. */
968 GC_mark_local(local_mark_stack, 0);
969 GC_acquire_mark_lock();
970 GC_help_wanted = FALSE;
971 /* Done; clean up. */
972 while (GC_helper_count > 0) GC_wait_marker();
973 /* GC_helper_count cannot be incremented while GC_help_wanted == FALSE */
974 # ifdef PRINTSTATS
975 GC_printf1(
976 "Finished marking for mark phase number %lu\n",
977 (unsigned long)GC_mark_no);
978 # endif
979 GC_mark_no++;
980 GC_release_mark_lock();
981 GC_notify_all_marker();
985 /* Try to help out the marker, if it's running. */
986 /* We do not hold the GC lock, but the requestor does. */
987 void GC_help_marker(word my_mark_no)
989 mse local_mark_stack[LOCAL_MARK_STACK_SIZE];
990 unsigned my_id;
991 mse * my_first_nonempty;
993 if (!GC_parallel) return;
994 GC_acquire_mark_lock();
995 while (GC_mark_no < my_mark_no
996 || !GC_help_wanted && GC_mark_no == my_mark_no) {
997 GC_wait_marker();
999 my_id = GC_helper_count;
1000 if (GC_mark_no != my_mark_no || my_id >= GC_markers) {
1001 /* Second test is useful only if original threads can also */
1002 /* act as helpers. Under Linux they can't. */
1003 GC_release_mark_lock();
1004 return;
1006 GC_helper_count = my_id + 1;
1007 GC_release_mark_lock();
1008 GC_mark_local(local_mark_stack, my_id);
1009 /* GC_mark_local decrements GC_helper_count. */
1012 #endif /* PARALLEL_MARK */
1014 /* Allocate or reallocate space for mark stack of size s words */
1015 /* May silently fail. */
1016 static void alloc_mark_stack(n)
1017 word n;
1019 mse * new_stack = (mse *)GC_scratch_alloc(n * sizeof(struct GC_ms_entry));
1021 GC_mark_stack_too_small = FALSE;
1022 if (GC_mark_stack_size != 0) {
1023 if (new_stack != 0) {
1024 word displ = (word)GC_mark_stack & (GC_page_size - 1);
1025 signed_word size = GC_mark_stack_size * sizeof(struct GC_ms_entry);
1027 /* Recycle old space */
1028 if (0 != displ) displ = GC_page_size - displ;
1029 size = (size - displ) & ~(GC_page_size - 1);
1030 if (size > 0) {
1031 GC_add_to_heap((struct hblk *)
1032 ((word)GC_mark_stack + displ), (word)size);
1034 GC_mark_stack = new_stack;
1035 GC_mark_stack_size = n;
1036 GC_mark_stack_limit = new_stack + n;
1037 # ifdef CONDPRINT
1038 if (GC_print_stats) {
1039 GC_printf1("Grew mark stack to %lu frames\n",
1040 (unsigned long) GC_mark_stack_size);
1042 # endif
1043 } else {
1044 # ifdef CONDPRINT
1045 if (GC_print_stats) {
1046 GC_printf1("Failed to grow mark stack to %lu frames\n",
1047 (unsigned long) n);
1049 # endif
1051 } else {
1052 if (new_stack == 0) {
1053 GC_err_printf0("No space for mark stack\n");
1054 EXIT();
1056 GC_mark_stack = new_stack;
1057 GC_mark_stack_size = n;
1058 GC_mark_stack_limit = new_stack + n;
1060 GC_mark_stack_top = GC_mark_stack-1;
1063 void GC_mark_init()
1065 alloc_mark_stack(INITIAL_MARK_STACK_SIZE);
1069 * Push all locations between b and t onto the mark stack.
1070 * b is the first location to be checked. t is one past the last
1071 * location to be checked.
1072 * Should only be used if there is no possibility of mark stack
1073 * overflow.
1075 void GC_push_all(bottom, top)
1076 ptr_t bottom;
1077 ptr_t top;
1079 register word length;
1081 bottom = (ptr_t)(((word) bottom + ALIGNMENT-1) & ~(ALIGNMENT-1));
1082 top = (ptr_t)(((word) top) & ~(ALIGNMENT-1));
1083 if (top == 0 || bottom == top) return;
1084 GC_mark_stack_top++;
1085 if (GC_mark_stack_top >= GC_mark_stack_limit) {
1086 ABORT("unexpected mark stack overflow");
1088 length = top - bottom;
1089 # if GC_DS_TAGS > ALIGNMENT - 1
1090 length += GC_DS_TAGS;
1091 length &= ~GC_DS_TAGS;
1092 # endif
1093 GC_mark_stack_top -> mse_start = (word *)bottom;
1094 GC_mark_stack_top -> mse_descr = length;
1098 * Analogous to the above, but push only those pages h with dirty_fn(h) != 0.
1099 * We use push_fn to actually push the block.
1100 * Used both to selectively push dirty pages, or to push a block
1101 * in piecemeal fashion, to allow for more marking concurrency.
1102 * Will not overflow mark stack if push_fn pushes a small fixed number
1103 * of entries. (This is invoked only if push_fn pushes a single entry,
1104 * or if it marks each object before pushing it, thus ensuring progress
1105 * in the event of a stack overflow.)
1107 void GC_push_selected(bottom, top, dirty_fn, push_fn)
1108 ptr_t bottom;
1109 ptr_t top;
1110 int (*dirty_fn) GC_PROTO((struct hblk * h));
1111 void (*push_fn) GC_PROTO((ptr_t bottom, ptr_t top));
1113 register struct hblk * h;
1115 bottom = (ptr_t)(((long) bottom + ALIGNMENT-1) & ~(ALIGNMENT-1));
1116 top = (ptr_t)(((long) top) & ~(ALIGNMENT-1));
1118 if (top == 0 || bottom == top) return;
1119 h = HBLKPTR(bottom + HBLKSIZE);
1120 if (top <= (ptr_t) h) {
1121 if ((*dirty_fn)(h-1)) {
1122 (*push_fn)(bottom, top);
1124 return;
1126 if ((*dirty_fn)(h-1)) {
1127 (*push_fn)(bottom, (ptr_t)h);
1129 while ((ptr_t)(h+1) <= top) {
1130 if ((*dirty_fn)(h)) {
1131 if ((word)(GC_mark_stack_top - GC_mark_stack)
1132 > 3 * GC_mark_stack_size / 4) {
1133 /* Danger of mark stack overflow */
1134 (*push_fn)((ptr_t)h, top);
1135 return;
1136 } else {
1137 (*push_fn)((ptr_t)h, (ptr_t)(h+1));
1140 h++;
1142 if ((ptr_t)h != top) {
1143 if ((*dirty_fn)(h)) {
1144 (*push_fn)((ptr_t)h, top);
1147 if (GC_mark_stack_top >= GC_mark_stack_limit) {
1148 ABORT("unexpected mark stack overflow");
1152 # ifndef SMALL_CONFIG
1154 #ifdef PARALLEL_MARK
1155 /* Break up root sections into page size chunks to better spread */
1156 /* out work. */
1157 GC_bool GC_true_func(struct hblk *h) { return TRUE; }
1158 # define GC_PUSH_ALL(b,t) GC_push_selected(b,t,GC_true_func,GC_push_all);
1159 #else
1160 # define GC_PUSH_ALL(b,t) GC_push_all(b,t);
1161 #endif
1164 void GC_push_conditional(bottom, top, all)
1165 ptr_t bottom;
1166 ptr_t top;
1167 int all;
1169 if (all) {
1170 if (GC_dirty_maintained) {
1171 # ifdef PROC_VDB
1172 /* Pages that were never dirtied cannot contain pointers */
1173 GC_push_selected(bottom, top, GC_page_was_ever_dirty, GC_push_all);
1174 # else
1175 GC_push_all(bottom, top);
1176 # endif
1177 } else {
1178 GC_push_all(bottom, top);
1180 } else {
1181 GC_push_selected(bottom, top, GC_page_was_dirty, GC_push_all);
1184 #endif
1186 # if defined(MSWIN32) || defined(MSWINCE)
1187 void __cdecl GC_push_one(p)
1188 # else
1189 void GC_push_one(p)
1190 # endif
1191 word p;
1193 GC_PUSH_ONE_STACK(p, MARKED_FROM_REGISTER);
1196 struct GC_ms_entry *GC_mark_and_push(obj, mark_stack_ptr, mark_stack_limit, src)
1197 GC_PTR obj;
1198 struct GC_ms_entry * mark_stack_ptr;
1199 struct GC_ms_entry * mark_stack_limit;
1200 GC_PTR *src;
1202 PREFETCH(obj);
1203 PUSH_CONTENTS(obj, mark_stack_ptr /* modified */, mark_stack_limit, src,
1204 was_marked /* internally generated exit label */);
1205 return mark_stack_ptr;
1208 # ifdef __STDC__
1209 # define BASE(p) (word)GC_base((void *)(p))
1210 # else
1211 # define BASE(p) (word)GC_base((char *)(p))
1212 # endif
1214 /* Mark and push (i.e. gray) a single object p onto the main */
1215 /* mark stack. Consider p to be valid if it is an interior */
1216 /* pointer. */
1217 /* The object p has passed a preliminary pointer validity */
1218 /* test, but we do not definitely know whether it is valid. */
1219 /* Mark bits are NOT atomically updated. Thus this must be the */
1220 /* only thread setting them. */
1221 # if defined(PRINT_BLACK_LIST) || defined(KEEP_BACK_PTRS)
1222 void GC_mark_and_push_stack(p, source)
1223 ptr_t source;
1224 # else
1225 void GC_mark_and_push_stack(p)
1226 # define source 0
1227 # endif
1228 register word p;
1230 register word r;
1231 register hdr * hhdr;
1232 register int displ;
1234 GET_HDR(p, hhdr);
1235 if (IS_FORWARDING_ADDR_OR_NIL(hhdr)) {
1236 if (hhdr != 0) {
1237 r = BASE(p);
1238 hhdr = HDR(r);
1239 displ = BYTES_TO_WORDS(HBLKDISPL(r));
1241 } else {
1242 register map_entry_type map_entry;
1244 displ = HBLKDISPL(p);
1245 map_entry = MAP_ENTRY((hhdr -> hb_map), displ);
1246 if (map_entry >= MAX_OFFSET) {
1247 if (map_entry == OFFSET_TOO_BIG || !GC_all_interior_pointers) {
1248 r = BASE(p);
1249 displ = BYTES_TO_WORDS(HBLKDISPL(r));
1250 if (r == 0) hhdr = 0;
1251 } else {
1252 /* Offset invalid, but map reflects interior pointers */
1253 hhdr = 0;
1255 } else {
1256 displ = BYTES_TO_WORDS(displ);
1257 displ -= map_entry;
1258 r = (word)((word *)(HBLKPTR(p)) + displ);
1261 /* If hhdr != 0 then r == GC_base(p), only we did it faster. */
1262 /* displ is the word index within the block. */
1263 if (hhdr == 0) {
1264 # ifdef PRINT_BLACK_LIST
1265 GC_add_to_black_list_stack(p, source);
1266 # else
1267 GC_add_to_black_list_stack(p);
1268 # endif
1269 # undef source /* In case we had to define it. */
1270 } else {
1271 if (!mark_bit_from_hdr(hhdr, displ)) {
1272 set_mark_bit_from_hdr(hhdr, displ);
1273 GC_STORE_BACK_PTR(source, (ptr_t)r);
1274 PUSH_OBJ((word *)r, hhdr, GC_mark_stack_top,
1275 GC_mark_stack_limit);
1280 # ifdef TRACE_BUF
1282 # define TRACE_ENTRIES 1000
1284 struct trace_entry {
1285 char * kind;
1286 word gc_no;
1287 word words_allocd;
1288 word arg1;
1289 word arg2;
1290 } GC_trace_buf[TRACE_ENTRIES];
1292 int GC_trace_buf_ptr = 0;
1294 void GC_add_trace_entry(char *kind, word arg1, word arg2)
1296 GC_trace_buf[GC_trace_buf_ptr].kind = kind;
1297 GC_trace_buf[GC_trace_buf_ptr].gc_no = GC_gc_no;
1298 GC_trace_buf[GC_trace_buf_ptr].words_allocd = GC_words_allocd;
1299 GC_trace_buf[GC_trace_buf_ptr].arg1 = arg1 ^ 0x80000000;
1300 GC_trace_buf[GC_trace_buf_ptr].arg2 = arg2 ^ 0x80000000;
1301 GC_trace_buf_ptr++;
1302 if (GC_trace_buf_ptr >= TRACE_ENTRIES) GC_trace_buf_ptr = 0;
1305 void GC_print_trace(word gc_no, GC_bool lock)
1307 int i;
1308 struct trace_entry *p;
1310 if (lock) LOCK();
1311 for (i = GC_trace_buf_ptr-1; i != GC_trace_buf_ptr; i--) {
1312 if (i < 0) i = TRACE_ENTRIES-1;
1313 p = GC_trace_buf + i;
1314 if (p -> gc_no < gc_no || p -> kind == 0) return;
1315 printf("Trace:%s (gc:%d,words:%d) 0x%X, 0x%X\n",
1316 p -> kind, p -> gc_no, p -> words_allocd,
1317 (p -> arg1) ^ 0x80000000, (p -> arg2) ^ 0x80000000);
1319 printf("Trace incomplete\n");
1320 if (lock) UNLOCK();
1323 # endif /* TRACE_BUF */
1326 * A version of GC_push_all that treats all interior pointers as valid
1327 * and scans the entire region immediately, in case the contents
1328 * change.
1330 void GC_push_all_eager(bottom, top)
1331 ptr_t bottom;
1332 ptr_t top;
1334 word * b = (word *)(((long) bottom + ALIGNMENT-1) & ~(ALIGNMENT-1));
1335 word * t = (word *)(((long) top) & ~(ALIGNMENT-1));
1336 register word *p;
1337 register word q;
1338 register word *lim;
1339 register ptr_t greatest_ha = GC_greatest_plausible_heap_addr;
1340 register ptr_t least_ha = GC_least_plausible_heap_addr;
1341 # define GC_greatest_plausible_heap_addr greatest_ha
1342 # define GC_least_plausible_heap_addr least_ha
1344 if (top == 0) return;
1345 /* check all pointers in range and put in push if they appear */
1346 /* to be valid. */
1347 lim = t - 1 /* longword */;
1348 for (p = b; p <= lim; p = (word *)(((char *)p) + ALIGNMENT)) {
1349 q = *p;
1350 GC_PUSH_ONE_STACK(q, p);
1352 # undef GC_greatest_plausible_heap_addr
1353 # undef GC_least_plausible_heap_addr
1356 #ifndef THREADS
1358 * A version of GC_push_all that treats all interior pointers as valid
1359 * and scans part of the area immediately, to make sure that saved
1360 * register values are not lost.
1361 * Cold_gc_frame delimits the stack section that must be scanned
1362 * eagerly. A zero value indicates that no eager scanning is needed.
1364 void GC_push_all_stack_partially_eager(bottom, top, cold_gc_frame)
1365 ptr_t bottom;
1366 ptr_t top;
1367 ptr_t cold_gc_frame;
1369 if (GC_all_interior_pointers) {
1370 # define EAGER_BYTES 1024
1371 /* Push the hot end of the stack eagerly, so that register values */
1372 /* saved inside GC frames are marked before they disappear. */
1373 /* The rest of the marking can be deferred until later. */
1374 if (0 == cold_gc_frame) {
1375 GC_push_all_stack(bottom, top);
1376 return;
1378 # ifdef STACK_GROWS_DOWN
1379 GC_push_all(cold_gc_frame - sizeof(ptr_t), top);
1380 GC_push_all_eager(bottom, cold_gc_frame);
1381 # else /* STACK_GROWS_UP */
1382 GC_push_all(bottom, cold_gc_frame + sizeof(ptr_t));
1383 GC_push_all_eager(cold_gc_frame, top);
1384 # endif /* STACK_GROWS_UP */
1385 } else {
1386 GC_push_all_eager(bottom, top);
1388 # ifdef TRACE_BUF
1389 GC_add_trace_entry("GC_push_all_stack", bottom, top);
1390 # endif
1392 #endif /* !THREADS */
1394 void GC_push_all_stack(bottom, top)
1395 ptr_t bottom;
1396 ptr_t top;
1398 if (GC_all_interior_pointers) {
1399 GC_push_all(bottom, top);
1400 } else {
1401 GC_push_all_eager(bottom, top);
1405 #if !defined(SMALL_CONFIG) && !defined(USE_MARK_BYTES)
1406 /* Push all objects reachable from marked objects in the given block */
1407 /* of size 1 objects. */
1408 void GC_push_marked1(h, hhdr)
1409 struct hblk *h;
1410 register hdr * hhdr;
1412 word * mark_word_addr = &(hhdr->hb_marks[0]);
1413 register word *p;
1414 word *plim;
1415 register int i;
1416 register word q;
1417 register word mark_word;
1418 register ptr_t greatest_ha = GC_greatest_plausible_heap_addr;
1419 register ptr_t least_ha = GC_least_plausible_heap_addr;
1420 register mse * mark_stack_top = GC_mark_stack_top;
1421 register mse * mark_stack_limit = GC_mark_stack_limit;
1422 # define GC_mark_stack_top mark_stack_top
1423 # define GC_mark_stack_limit mark_stack_limit
1424 # define GC_greatest_plausible_heap_addr greatest_ha
1425 # define GC_least_plausible_heap_addr least_ha
1427 p = (word *)(h->hb_body);
1428 plim = (word *)(((word)h) + HBLKSIZE);
1430 /* go through all words in block */
1431 while( p < plim ) {
1432 mark_word = *mark_word_addr++;
1433 i = 0;
1434 while(mark_word != 0) {
1435 if (mark_word & 1) {
1436 q = p[i];
1437 GC_PUSH_ONE_HEAP(q, p + i);
1439 i++;
1440 mark_word >>= 1;
1442 p += WORDSZ;
1444 # undef GC_greatest_plausible_heap_addr
1445 # undef GC_least_plausible_heap_addr
1446 # undef GC_mark_stack_top
1447 # undef GC_mark_stack_limit
1448 GC_mark_stack_top = mark_stack_top;
1452 #ifndef UNALIGNED
1454 /* Push all objects reachable from marked objects in the given block */
1455 /* of size 2 objects. */
1456 void GC_push_marked2(h, hhdr)
1457 struct hblk *h;
1458 register hdr * hhdr;
1460 word * mark_word_addr = &(hhdr->hb_marks[0]);
1461 register word *p;
1462 word *plim;
1463 register int i;
1464 register word q;
1465 register word mark_word;
1466 register ptr_t greatest_ha = GC_greatest_plausible_heap_addr;
1467 register ptr_t least_ha = GC_least_plausible_heap_addr;
1468 register mse * mark_stack_top = GC_mark_stack_top;
1469 register mse * mark_stack_limit = GC_mark_stack_limit;
1470 # define GC_mark_stack_top mark_stack_top
1471 # define GC_mark_stack_limit mark_stack_limit
1472 # define GC_greatest_plausible_heap_addr greatest_ha
1473 # define GC_least_plausible_heap_addr least_ha
1475 p = (word *)(h->hb_body);
1476 plim = (word *)(((word)h) + HBLKSIZE);
1478 /* go through all words in block */
1479 while( p < plim ) {
1480 mark_word = *mark_word_addr++;
1481 i = 0;
1482 while(mark_word != 0) {
1483 if (mark_word & 1) {
1484 q = p[i];
1485 GC_PUSH_ONE_HEAP(q, p + i);
1486 q = p[i+1];
1487 GC_PUSH_ONE_HEAP(q, p + i);
1489 i += 2;
1490 mark_word >>= 2;
1492 p += WORDSZ;
1494 # undef GC_greatest_plausible_heap_addr
1495 # undef GC_least_plausible_heap_addr
1496 # undef GC_mark_stack_top
1497 # undef GC_mark_stack_limit
1498 GC_mark_stack_top = mark_stack_top;
1501 /* Push all objects reachable from marked objects in the given block */
1502 /* of size 4 objects. */
1503 /* There is a risk of mark stack overflow here. But we handle that. */
1504 /* And only unmarked objects get pushed, so it's not very likely. */
1505 void GC_push_marked4(h, hhdr)
1506 struct hblk *h;
1507 register hdr * hhdr;
1509 word * mark_word_addr = &(hhdr->hb_marks[0]);
1510 register word *p;
1511 word *plim;
1512 register int i;
1513 register word q;
1514 register word mark_word;
1515 register ptr_t greatest_ha = GC_greatest_plausible_heap_addr;
1516 register ptr_t least_ha = GC_least_plausible_heap_addr;
1517 register mse * mark_stack_top = GC_mark_stack_top;
1518 register mse * mark_stack_limit = GC_mark_stack_limit;
1519 # define GC_mark_stack_top mark_stack_top
1520 # define GC_mark_stack_limit mark_stack_limit
1521 # define GC_greatest_plausible_heap_addr greatest_ha
1522 # define GC_least_plausible_heap_addr least_ha
1524 p = (word *)(h->hb_body);
1525 plim = (word *)(((word)h) + HBLKSIZE);
1527 /* go through all words in block */
1528 while( p < plim ) {
1529 mark_word = *mark_word_addr++;
1530 i = 0;
1531 while(mark_word != 0) {
1532 if (mark_word & 1) {
1533 q = p[i];
1534 GC_PUSH_ONE_HEAP(q, p + i);
1535 q = p[i+1];
1536 GC_PUSH_ONE_HEAP(q, p + i + 1);
1537 q = p[i+2];
1538 GC_PUSH_ONE_HEAP(q, p + i + 2);
1539 q = p[i+3];
1540 GC_PUSH_ONE_HEAP(q, p + i + 3);
1542 i += 4;
1543 mark_word >>= 4;
1545 p += WORDSZ;
1547 # undef GC_greatest_plausible_heap_addr
1548 # undef GC_least_plausible_heap_addr
1549 # undef GC_mark_stack_top
1550 # undef GC_mark_stack_limit
1551 GC_mark_stack_top = mark_stack_top;
1554 #endif /* UNALIGNED */
1556 #endif /* SMALL_CONFIG */
1558 /* Push all objects reachable from marked objects in the given block */
1559 void GC_push_marked(h, hhdr)
1560 struct hblk *h;
1561 register hdr * hhdr;
1563 register int sz = hhdr -> hb_sz;
1564 register int descr = hhdr -> hb_descr;
1565 register word * p;
1566 register int word_no;
1567 register word * lim;
1568 register mse * GC_mark_stack_top_reg;
1569 register mse * mark_stack_limit = GC_mark_stack_limit;
1571 /* Some quick shortcuts: */
1572 if ((0 | GC_DS_LENGTH) == descr) return;
1573 if (GC_block_empty(hhdr)/* nothing marked */) return;
1574 GC_n_rescuing_pages++;
1575 GC_objects_are_marked = TRUE;
1576 if (sz > MAXOBJSZ) {
1577 lim = (word *)h;
1578 } else {
1579 lim = (word *)(h + 1) - sz;
1582 switch(sz) {
1583 # if !defined(SMALL_CONFIG) && !defined(USE_MARK_BYTES)
1584 case 1:
1585 GC_push_marked1(h, hhdr);
1586 break;
1587 # endif
1588 # if !defined(SMALL_CONFIG) && !defined(UNALIGNED) && \
1589 !defined(USE_MARK_BYTES)
1590 case 2:
1591 GC_push_marked2(h, hhdr);
1592 break;
1593 case 4:
1594 GC_push_marked4(h, hhdr);
1595 break;
1596 # endif
1597 default:
1598 GC_mark_stack_top_reg = GC_mark_stack_top;
1599 for (p = (word *)h, word_no = 0; p <= lim; p += sz, word_no += sz) {
1600 if (mark_bit_from_hdr(hhdr, word_no)) {
1601 /* Mark from fields inside the object */
1602 PUSH_OBJ((word *)p, hhdr, GC_mark_stack_top_reg, mark_stack_limit);
1603 # ifdef GATHERSTATS
1604 /* Subtract this object from total, since it was */
1605 /* added in twice. */
1606 GC_composite_in_use -= sz;
1607 # endif
1610 GC_mark_stack_top = GC_mark_stack_top_reg;
1614 #ifndef SMALL_CONFIG
1615 /* Test whether any page in the given block is dirty */
1616 GC_bool GC_block_was_dirty(h, hhdr)
1617 struct hblk *h;
1618 register hdr * hhdr;
1620 register int sz = hhdr -> hb_sz;
1622 if (sz < MAXOBJSZ) {
1623 return(GC_page_was_dirty(h));
1624 } else {
1625 register ptr_t p = (ptr_t)h;
1626 sz = WORDS_TO_BYTES(sz);
1627 while (p < (ptr_t)h + sz) {
1628 if (GC_page_was_dirty((struct hblk *)p)) return(TRUE);
1629 p += HBLKSIZE;
1631 return(FALSE);
1634 #endif /* SMALL_CONFIG */
1636 /* Similar to GC_push_next_marked, but return address of next block */
1637 struct hblk * GC_push_next_marked(h)
1638 struct hblk *h;
1640 register hdr * hhdr;
1642 h = GC_next_used_block(h);
1643 if (h == 0) return(0);
1644 hhdr = HDR(h);
1645 GC_push_marked(h, hhdr);
1646 return(h + OBJ_SZ_TO_BLOCKS(hhdr -> hb_sz));
1649 #ifndef SMALL_CONFIG
1650 /* Identical to above, but mark only from dirty pages */
1651 struct hblk * GC_push_next_marked_dirty(h)
1652 struct hblk *h;
1654 register hdr * hhdr;
1656 if (!GC_dirty_maintained) { ABORT("dirty bits not set up"); }
1657 for (;;) {
1658 h = GC_next_used_block(h);
1659 if (h == 0) return(0);
1660 hhdr = HDR(h);
1661 # ifdef STUBBORN_ALLOC
1662 if (hhdr -> hb_obj_kind == STUBBORN) {
1663 if (GC_page_was_changed(h) && GC_block_was_dirty(h, hhdr)) {
1664 break;
1666 } else {
1667 if (GC_block_was_dirty(h, hhdr)) break;
1669 # else
1670 if (GC_block_was_dirty(h, hhdr)) break;
1671 # endif
1672 h += OBJ_SZ_TO_BLOCKS(hhdr -> hb_sz);
1674 GC_push_marked(h, hhdr);
1675 return(h + OBJ_SZ_TO_BLOCKS(hhdr -> hb_sz));
1677 #endif
1679 /* Similar to above, but for uncollectable pages. Needed since we */
1680 /* do not clear marks for such pages, even for full collections. */
1681 struct hblk * GC_push_next_marked_uncollectable(h)
1682 struct hblk *h;
1684 register hdr * hhdr = HDR(h);
1686 for (;;) {
1687 h = GC_next_used_block(h);
1688 if (h == 0) return(0);
1689 hhdr = HDR(h);
1690 if (hhdr -> hb_obj_kind == UNCOLLECTABLE) break;
1691 h += OBJ_SZ_TO_BLOCKS(hhdr -> hb_sz);
1693 GC_push_marked(h, hhdr);
1694 return(h + OBJ_SZ_TO_BLOCKS(hhdr -> hb_sz));