* error.c (dump_expr): Handle EMPTY_CLASS_EXPR.
[official-gcc.git] / gcc / unroll.c
blobe557cb2c1e595e31292177d9ed60dd097bf3bb9b
1 /* Try to unroll loops, and split induction variables.
2 Copyright (C) 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000, 2001,
3 2002, 2003
4 Free Software Foundation, Inc.
5 Contributed by James E. Wilson, Cygnus Support/UC Berkeley.
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 2, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the Free
21 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 02111-1307, USA. */
24 /* Try to unroll a loop, and split induction variables.
26 Loops for which the number of iterations can be calculated exactly are
27 handled specially. If the number of iterations times the insn_count is
28 less than MAX_UNROLLED_INSNS, then the loop is unrolled completely.
29 Otherwise, we try to unroll the loop a number of times modulo the number
30 of iterations, so that only one exit test will be needed. It is unrolled
31 a number of times approximately equal to MAX_UNROLLED_INSNS divided by
32 the insn count.
34 Otherwise, if the number of iterations can be calculated exactly at
35 run time, and the loop is always entered at the top, then we try to
36 precondition the loop. That is, at run time, calculate how many times
37 the loop will execute, and then execute the loop body a few times so
38 that the remaining iterations will be some multiple of 4 (or 2 if the
39 loop is large). Then fall through to a loop unrolled 4 (or 2) times,
40 with only one exit test needed at the end of the loop.
42 Otherwise, if the number of iterations can not be calculated exactly,
43 not even at run time, then we still unroll the loop a number of times
44 approximately equal to MAX_UNROLLED_INSNS divided by the insn count,
45 but there must be an exit test after each copy of the loop body.
47 For each induction variable, which is dead outside the loop (replaceable)
48 or for which we can easily calculate the final value, if we can easily
49 calculate its value at each place where it is set as a function of the
50 current loop unroll count and the variable's value at loop entry, then
51 the induction variable is split into `N' different variables, one for
52 each copy of the loop body. One variable is live across the backward
53 branch, and the others are all calculated as a function of this variable.
54 This helps eliminate data dependencies, and leads to further opportunities
55 for cse. */
57 /* Possible improvements follow: */
59 /* ??? Add an extra pass somewhere to determine whether unrolling will
60 give any benefit. E.g. after generating all unrolled insns, compute the
61 cost of all insns and compare against cost of insns in rolled loop.
63 - On traditional architectures, unrolling a non-constant bound loop
64 is a win if there is a giv whose only use is in memory addresses, the
65 memory addresses can be split, and hence giv increments can be
66 eliminated.
67 - It is also a win if the loop is executed many times, and preconditioning
68 can be performed for the loop.
69 Add code to check for these and similar cases. */
71 /* ??? Improve control of which loops get unrolled. Could use profiling
72 info to only unroll the most commonly executed loops. Perhaps have
73 a user specifiable option to control the amount of code expansion,
74 or the percent of loops to consider for unrolling. Etc. */
76 /* ??? Look at the register copies inside the loop to see if they form a
77 simple permutation. If so, iterate the permutation until it gets back to
78 the start state. This is how many times we should unroll the loop, for
79 best results, because then all register copies can be eliminated.
80 For example, the lisp nreverse function should be unrolled 3 times
81 while (this)
83 next = this->cdr;
84 this->cdr = prev;
85 prev = this;
86 this = next;
89 ??? The number of times to unroll the loop may also be based on data
90 references in the loop. For example, if we have a loop that references
91 x[i-1], x[i], and x[i+1], we should unroll it a multiple of 3 times. */
93 /* ??? Add some simple linear equation solving capability so that we can
94 determine the number of loop iterations for more complex loops.
95 For example, consider this loop from gdb
96 #define SWAP_TARGET_AND_HOST(buffer,len)
98 char tmp;
99 char *p = (char *) buffer;
100 char *q = ((char *) buffer) + len - 1;
101 int iterations = (len + 1) >> 1;
102 int i;
103 for (p; p < q; p++, q--;)
105 tmp = *q;
106 *q = *p;
107 *p = tmp;
110 Note that:
111 start value = p = &buffer + current_iteration
112 end value = q = &buffer + len - 1 - current_iteration
113 Given the loop exit test of "p < q", then there must be "q - p" iterations,
114 set equal to zero and solve for number of iterations:
115 q - p = len - 1 - 2*current_iteration = 0
116 current_iteration = (len - 1) / 2
117 Hence, there are (len - 1) / 2 (rounded up to the nearest integer)
118 iterations of this loop. */
120 /* ??? Currently, no labels are marked as loop invariant when doing loop
121 unrolling. This is because an insn inside the loop, that loads the address
122 of a label inside the loop into a register, could be moved outside the loop
123 by the invariant code motion pass if labels were invariant. If the loop
124 is subsequently unrolled, the code will be wrong because each unrolled
125 body of the loop will use the same address, whereas each actually needs a
126 different address. A case where this happens is when a loop containing
127 a switch statement is unrolled.
129 It would be better to let labels be considered invariant. When we
130 unroll loops here, check to see if any insns using a label local to the
131 loop were moved before the loop. If so, then correct the problem, by
132 moving the insn back into the loop, or perhaps replicate the insn before
133 the loop, one copy for each time the loop is unrolled. */
135 #include "config.h"
136 #include "system.h"
137 #include "coretypes.h"
138 #include "tm.h"
139 #include "rtl.h"
140 #include "tm_p.h"
141 #include "insn-config.h"
142 #include "integrate.h"
143 #include "regs.h"
144 #include "recog.h"
145 #include "flags.h"
146 #include "function.h"
147 #include "expr.h"
148 #include "loop.h"
149 #include "toplev.h"
150 #include "hard-reg-set.h"
151 #include "basic-block.h"
152 #include "predict.h"
153 #include "params.h"
154 #include "cfgloop.h"
156 /* The prime factors looked for when trying to unroll a loop by some
157 number which is modulo the total number of iterations. Just checking
158 for these 4 prime factors will find at least one factor for 75% of
159 all numbers theoretically. Practically speaking, this will succeed
160 almost all of the time since loops are generally a multiple of 2
161 and/or 5. */
163 #define NUM_FACTORS 4
165 static struct _factor { const int factor; int count; }
166 factors[NUM_FACTORS] = { {2, 0}, {3, 0}, {5, 0}, {7, 0}};
168 /* Describes the different types of loop unrolling performed. */
170 enum unroll_types
172 UNROLL_COMPLETELY,
173 UNROLL_MODULO,
174 UNROLL_NAIVE
177 /* Indexed by register number, if nonzero, then it contains a pointer
178 to a struct induction for a DEST_REG giv which has been combined with
179 one of more address givs. This is needed because whenever such a DEST_REG
180 giv is modified, we must modify the value of all split address givs
181 that were combined with this DEST_REG giv. */
183 static struct induction **addr_combined_regs;
185 /* Indexed by register number, if this is a splittable induction variable,
186 then this will hold the current value of the register, which depends on the
187 iteration number. */
189 static rtx *splittable_regs;
191 /* Indexed by register number, if this is a splittable induction variable,
192 then this will hold the number of instructions in the loop that modify
193 the induction variable. Used to ensure that only the last insn modifying
194 a split iv will update the original iv of the dest. */
196 static int *splittable_regs_updates;
198 /* Forward declarations. */
200 static rtx simplify_cmp_and_jump_insns (enum rtx_code, enum machine_mode,
201 rtx, rtx, rtx);
202 static void init_reg_map (struct inline_remap *, int);
203 static rtx calculate_giv_inc (rtx, rtx, unsigned int);
204 static rtx initial_reg_note_copy (rtx, struct inline_remap *);
205 static void final_reg_note_copy (rtx *, struct inline_remap *);
206 static void copy_loop_body (struct loop *, rtx, rtx,
207 struct inline_remap *, rtx, int,
208 enum unroll_types, rtx, rtx, rtx, rtx);
209 static int find_splittable_regs (const struct loop *, enum unroll_types,
210 int);
211 static int find_splittable_givs (const struct loop *, struct iv_class *,
212 enum unroll_types, rtx, int);
213 static int reg_dead_after_loop (const struct loop *, rtx);
214 static rtx fold_rtx_mult_add (rtx, rtx, rtx, enum machine_mode);
215 static rtx remap_split_bivs (struct loop *, rtx);
216 static rtx find_common_reg_term (rtx, rtx);
217 static rtx subtract_reg_term (rtx, rtx);
218 static rtx loop_find_equiv_value (const struct loop *, rtx);
219 static rtx ujump_to_loop_cont (rtx, rtx);
221 /* Try to unroll one loop and split induction variables in the loop.
223 The loop is described by the arguments LOOP and INSN_COUNT.
224 STRENGTH_REDUCTION_P indicates whether information generated in the
225 strength reduction pass is available.
227 This function is intended to be called from within `strength_reduce'
228 in loop.c. */
230 void
231 unroll_loop (struct loop *loop, int insn_count, int strength_reduce_p)
233 struct loop_info *loop_info = LOOP_INFO (loop);
234 struct loop_ivs *ivs = LOOP_IVS (loop);
235 int i, j;
236 unsigned int r;
237 unsigned HOST_WIDE_INT temp;
238 int unroll_number = 1;
239 rtx copy_start, copy_end;
240 rtx insn, sequence, pattern, tem;
241 int max_labelno, max_insnno;
242 rtx insert_before;
243 struct inline_remap *map;
244 char *local_label = NULL;
245 char *local_regno;
246 unsigned int max_local_regnum;
247 unsigned int maxregnum;
248 rtx exit_label = 0;
249 rtx start_label;
250 struct iv_class *bl;
251 int splitting_not_safe = 0;
252 enum unroll_types unroll_type = UNROLL_NAIVE;
253 int loop_preconditioned = 0;
254 rtx safety_label;
255 /* This points to the last real insn in the loop, which should be either
256 a JUMP_INSN (for conditional jumps) or a BARRIER (for unconditional
257 jumps). */
258 rtx last_loop_insn;
259 rtx loop_start = loop->start;
260 rtx loop_end = loop->end;
262 /* Don't bother unrolling huge loops. Since the minimum factor is
263 two, loops greater than one half of MAX_UNROLLED_INSNS will never
264 be unrolled. */
265 if (insn_count > MAX_UNROLLED_INSNS / 2)
267 if (loop_dump_stream)
268 fprintf (loop_dump_stream, "Unrolling failure: Loop too big.\n");
269 return;
272 /* Determine type of unroll to perform. Depends on the number of iterations
273 and the size of the loop. */
275 /* If there is no strength reduce info, then set
276 loop_info->n_iterations to zero. This can happen if
277 strength_reduce can't find any bivs in the loop. A value of zero
278 indicates that the number of iterations could not be calculated. */
280 if (! strength_reduce_p)
281 loop_info->n_iterations = 0;
283 if (loop_dump_stream && loop_info->n_iterations > 0)
284 fprintf (loop_dump_stream, "Loop unrolling: " HOST_WIDE_INT_PRINT_DEC
285 " iterations.\n", loop_info->n_iterations);
287 /* Find and save a pointer to the last nonnote insn in the loop. */
289 last_loop_insn = prev_nonnote_insn (loop_end);
291 /* Calculate how many times to unroll the loop. Indicate whether or
292 not the loop is being completely unrolled. */
294 if (loop_info->n_iterations == 1)
296 /* Handle the case where the loop begins with an unconditional
297 jump to the loop condition. Make sure to delete the jump
298 insn, otherwise the loop body will never execute. */
300 /* FIXME this actually checks for a jump to the continue point, which
301 is not the same as the condition in a for loop. As a result, this
302 optimization fails for most for loops. We should really use flow
303 information rather than instruction pattern matching. */
304 rtx ujump = ujump_to_loop_cont (loop->start, loop->cont);
306 /* If number of iterations is exactly 1, then eliminate the compare and
307 branch at the end of the loop since they will never be taken.
308 Then return, since no other action is needed here. */
310 /* If the last instruction is not a BARRIER or a JUMP_INSN, then
311 don't do anything. */
313 if (GET_CODE (last_loop_insn) == BARRIER)
315 /* Delete the jump insn. This will delete the barrier also. */
316 last_loop_insn = PREV_INSN (last_loop_insn);
319 if (ujump && GET_CODE (last_loop_insn) == JUMP_INSN)
321 #ifdef HAVE_cc0
322 rtx prev = PREV_INSN (last_loop_insn);
323 #endif
324 delete_related_insns (last_loop_insn);
325 #ifdef HAVE_cc0
326 /* The immediately preceding insn may be a compare which must be
327 deleted. */
328 if (only_sets_cc0_p (prev))
329 delete_related_insns (prev);
330 #endif
332 delete_related_insns (ujump);
334 /* Remove the loop notes since this is no longer a loop. */
335 if (loop->vtop)
336 delete_related_insns (loop->vtop);
337 if (loop->cont)
338 delete_related_insns (loop->cont);
339 if (loop_start)
340 delete_related_insns (loop_start);
341 if (loop_end)
342 delete_related_insns (loop_end);
344 return;
348 if (loop_info->n_iterations > 0
349 /* Avoid overflow in the next expression. */
350 && loop_info->n_iterations < (unsigned) MAX_UNROLLED_INSNS
351 && loop_info->n_iterations * insn_count < (unsigned) MAX_UNROLLED_INSNS)
353 unroll_number = loop_info->n_iterations;
354 unroll_type = UNROLL_COMPLETELY;
356 else if (loop_info->n_iterations > 0)
358 /* Try to factor the number of iterations. Don't bother with the
359 general case, only using 2, 3, 5, and 7 will get 75% of all
360 numbers theoretically, and almost all in practice. */
362 for (i = 0; i < NUM_FACTORS; i++)
363 factors[i].count = 0;
365 temp = loop_info->n_iterations;
366 for (i = NUM_FACTORS - 1; i >= 0; i--)
367 while (temp % factors[i].factor == 0)
369 factors[i].count++;
370 temp = temp / factors[i].factor;
373 /* Start with the larger factors first so that we generally
374 get lots of unrolling. */
376 unroll_number = 1;
377 temp = insn_count;
378 for (i = 3; i >= 0; i--)
379 while (factors[i].count--)
381 if (temp * factors[i].factor < (unsigned) MAX_UNROLLED_INSNS)
383 unroll_number *= factors[i].factor;
384 temp *= factors[i].factor;
386 else
387 break;
390 /* If we couldn't find any factors, then unroll as in the normal
391 case. */
392 if (unroll_number == 1)
394 if (loop_dump_stream)
395 fprintf (loop_dump_stream, "Loop unrolling: No factors found.\n");
397 else
398 unroll_type = UNROLL_MODULO;
401 /* Default case, calculate number of times to unroll loop based on its
402 size. */
403 if (unroll_type == UNROLL_NAIVE)
405 if (8 * insn_count < MAX_UNROLLED_INSNS)
406 unroll_number = 8;
407 else if (4 * insn_count < MAX_UNROLLED_INSNS)
408 unroll_number = 4;
409 else
410 unroll_number = 2;
413 /* Now we know how many times to unroll the loop. */
415 if (loop_dump_stream)
416 fprintf (loop_dump_stream, "Unrolling loop %d times.\n", unroll_number);
418 if (unroll_type == UNROLL_COMPLETELY || unroll_type == UNROLL_MODULO)
420 /* Loops of these types can start with jump down to the exit condition
421 in rare circumstances.
423 Consider a pair of nested loops where the inner loop is part
424 of the exit code for the outer loop.
426 In this case jump.c will not duplicate the exit test for the outer
427 loop, so it will start with a jump to the exit code.
429 Then consider if the inner loop turns out to iterate once and
430 only once. We will end up deleting the jumps associated with
431 the inner loop. However, the loop notes are not removed from
432 the instruction stream.
434 And finally assume that we can compute the number of iterations
435 for the outer loop.
437 In this case unroll may want to unroll the outer loop even though
438 it starts with a jump to the outer loop's exit code.
440 We could try to optimize this case, but it hardly seems worth it.
441 Just return without unrolling the loop in such cases. */
443 insn = loop_start;
444 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
445 insn = NEXT_INSN (insn);
446 if (GET_CODE (insn) == JUMP_INSN)
447 return;
450 if (unroll_type == UNROLL_COMPLETELY)
452 /* Completely unrolling the loop: Delete the compare and branch at
453 the end (the last two instructions). This delete must done at the
454 very end of loop unrolling, to avoid problems with calls to
455 back_branch_in_range_p, which is called by find_splittable_regs.
456 All increments of splittable bivs/givs are changed to load constant
457 instructions. */
459 copy_start = loop_start;
461 /* Set insert_before to the instruction immediately after the JUMP_INSN
462 (or BARRIER), so that any NOTEs between the JUMP_INSN and the end of
463 the loop will be correctly handled by copy_loop_body. */
464 insert_before = NEXT_INSN (last_loop_insn);
466 /* Set copy_end to the insn before the jump at the end of the loop. */
467 if (GET_CODE (last_loop_insn) == BARRIER)
468 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
469 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
471 copy_end = PREV_INSN (last_loop_insn);
472 #ifdef HAVE_cc0
473 /* The instruction immediately before the JUMP_INSN may be a compare
474 instruction which we do not want to copy. */
475 if (sets_cc0_p (PREV_INSN (copy_end)))
476 copy_end = PREV_INSN (copy_end);
477 #endif
479 else
481 /* We currently can't unroll a loop if it doesn't end with a
482 JUMP_INSN. There would need to be a mechanism that recognizes
483 this case, and then inserts a jump after each loop body, which
484 jumps to after the last loop body. */
485 if (loop_dump_stream)
486 fprintf (loop_dump_stream,
487 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
488 return;
491 else if (unroll_type == UNROLL_MODULO)
493 /* Partially unrolling the loop: The compare and branch at the end
494 (the last two instructions) must remain. Don't copy the compare
495 and branch instructions at the end of the loop. Insert the unrolled
496 code immediately before the compare/branch at the end so that the
497 code will fall through to them as before. */
499 copy_start = loop_start;
501 /* Set insert_before to the jump insn at the end of the loop.
502 Set copy_end to before the jump insn at the end of the loop. */
503 if (GET_CODE (last_loop_insn) == BARRIER)
505 insert_before = PREV_INSN (last_loop_insn);
506 copy_end = PREV_INSN (insert_before);
508 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
510 insert_before = last_loop_insn;
511 #ifdef HAVE_cc0
512 /* The instruction immediately before the JUMP_INSN may be a compare
513 instruction which we do not want to copy or delete. */
514 if (sets_cc0_p (PREV_INSN (insert_before)))
515 insert_before = PREV_INSN (insert_before);
516 #endif
517 copy_end = PREV_INSN (insert_before);
519 else
521 /* We currently can't unroll a loop if it doesn't end with a
522 JUMP_INSN. There would need to be a mechanism that recognizes
523 this case, and then inserts a jump after each loop body, which
524 jumps to after the last loop body. */
525 if (loop_dump_stream)
526 fprintf (loop_dump_stream,
527 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
528 return;
531 else
533 /* Normal case: Must copy the compare and branch instructions at the
534 end of the loop. */
536 if (GET_CODE (last_loop_insn) == BARRIER)
538 /* Loop ends with an unconditional jump and a barrier.
539 Handle this like above, don't copy jump and barrier.
540 This is not strictly necessary, but doing so prevents generating
541 unconditional jumps to an immediately following label.
543 This will be corrected below if the target of this jump is
544 not the start_label. */
546 insert_before = PREV_INSN (last_loop_insn);
547 copy_end = PREV_INSN (insert_before);
549 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
551 /* Set insert_before to immediately after the JUMP_INSN, so that
552 NOTEs at the end of the loop will be correctly handled by
553 copy_loop_body. */
554 insert_before = NEXT_INSN (last_loop_insn);
555 copy_end = last_loop_insn;
557 else
559 /* We currently can't unroll a loop if it doesn't end with a
560 JUMP_INSN. There would need to be a mechanism that recognizes
561 this case, and then inserts a jump after each loop body, which
562 jumps to after the last loop body. */
563 if (loop_dump_stream)
564 fprintf (loop_dump_stream,
565 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
566 return;
569 /* If copying exit test branches because they can not be eliminated,
570 then must convert the fall through case of the branch to a jump past
571 the end of the loop. Create a label to emit after the loop and save
572 it for later use. Do not use the label after the loop, if any, since
573 it might be used by insns outside the loop, or there might be insns
574 added before it later by final_[bg]iv_value which must be after
575 the real exit label. */
576 exit_label = gen_label_rtx ();
578 insn = loop_start;
579 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
580 insn = NEXT_INSN (insn);
582 if (GET_CODE (insn) == JUMP_INSN)
584 /* The loop starts with a jump down to the exit condition test.
585 Start copying the loop after the barrier following this
586 jump insn. */
587 copy_start = NEXT_INSN (insn);
589 /* Splitting induction variables doesn't work when the loop is
590 entered via a jump to the bottom, because then we end up doing
591 a comparison against a new register for a split variable, but
592 we did not execute the set insn for the new register because
593 it was skipped over. */
594 splitting_not_safe = 1;
595 if (loop_dump_stream)
596 fprintf (loop_dump_stream,
597 "Splitting not safe, because loop not entered at top.\n");
599 else
600 copy_start = loop_start;
603 /* This should always be the first label in the loop. */
604 start_label = NEXT_INSN (copy_start);
605 /* There may be a line number note and/or a loop continue note here. */
606 while (GET_CODE (start_label) == NOTE)
607 start_label = NEXT_INSN (start_label);
608 if (GET_CODE (start_label) != CODE_LABEL)
610 /* This can happen as a result of jump threading. If the first insns in
611 the loop test the same condition as the loop's backward jump, or the
612 opposite condition, then the backward jump will be modified to point
613 to elsewhere, and the loop's start label is deleted.
615 This case currently can not be handled by the loop unrolling code. */
617 if (loop_dump_stream)
618 fprintf (loop_dump_stream,
619 "Unrolling failure: unknown insns between BEG note and loop label.\n");
620 return;
622 if (LABEL_NAME (start_label))
624 /* The jump optimization pass must have combined the original start label
625 with a named label for a goto. We can't unroll this case because
626 jumps which go to the named label must be handled differently than
627 jumps to the loop start, and it is impossible to differentiate them
628 in this case. */
629 if (loop_dump_stream)
630 fprintf (loop_dump_stream,
631 "Unrolling failure: loop start label is gone\n");
632 return;
635 if (unroll_type == UNROLL_NAIVE
636 && GET_CODE (last_loop_insn) == BARRIER
637 && GET_CODE (PREV_INSN (last_loop_insn)) == JUMP_INSN
638 && start_label != JUMP_LABEL (PREV_INSN (last_loop_insn)))
640 /* In this case, we must copy the jump and barrier, because they will
641 not be converted to jumps to an immediately following label. */
643 insert_before = NEXT_INSN (last_loop_insn);
644 copy_end = last_loop_insn;
647 if (unroll_type == UNROLL_NAIVE
648 && GET_CODE (last_loop_insn) == JUMP_INSN
649 && start_label != JUMP_LABEL (last_loop_insn))
651 /* ??? The loop ends with a conditional branch that does not branch back
652 to the loop start label. In this case, we must emit an unconditional
653 branch to the loop exit after emitting the final branch.
654 copy_loop_body does not have support for this currently, so we
655 give up. It doesn't seem worthwhile to unroll anyways since
656 unrolling would increase the number of branch instructions
657 executed. */
658 if (loop_dump_stream)
659 fprintf (loop_dump_stream,
660 "Unrolling failure: final conditional branch not to loop start\n");
661 return;
664 /* Allocate a translation table for the labels and insn numbers.
665 They will be filled in as we copy the insns in the loop. */
667 max_labelno = max_label_num ();
668 max_insnno = get_max_uid ();
670 /* Various paths through the unroll code may reach the "egress" label
671 without initializing fields within the map structure.
673 To be safe, we use xcalloc to zero the memory. */
674 map = (struct inline_remap *) xcalloc (1, sizeof (struct inline_remap));
676 /* Allocate the label map. */
678 if (max_labelno > 0)
680 map->label_map = (rtx *) xcalloc (max_labelno, sizeof (rtx));
681 local_label = (char *) xcalloc (max_labelno, sizeof (char));
684 /* Search the loop and mark all local labels, i.e. the ones which have to
685 be distinct labels when copied. For all labels which might be
686 non-local, set their label_map entries to point to themselves.
687 If they happen to be local their label_map entries will be overwritten
688 before the loop body is copied. The label_map entries for local labels
689 will be set to a different value each time the loop body is copied. */
691 for (insn = copy_start; insn != loop_end; insn = NEXT_INSN (insn))
693 rtx note;
695 if (GET_CODE (insn) == CODE_LABEL)
696 local_label[CODE_LABEL_NUMBER (insn)] = 1;
697 else if (GET_CODE (insn) == JUMP_INSN)
699 if (JUMP_LABEL (insn))
700 set_label_in_map (map,
701 CODE_LABEL_NUMBER (JUMP_LABEL (insn)),
702 JUMP_LABEL (insn));
703 else if (GET_CODE (PATTERN (insn)) == ADDR_VEC
704 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
706 rtx pat = PATTERN (insn);
707 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
708 int len = XVECLEN (pat, diff_vec_p);
709 rtx label;
711 for (i = 0; i < len; i++)
713 label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
714 set_label_in_map (map, CODE_LABEL_NUMBER (label), label);
718 if ((note = find_reg_note (insn, REG_LABEL, NULL_RTX)))
719 set_label_in_map (map, CODE_LABEL_NUMBER (XEXP (note, 0)),
720 XEXP (note, 0));
723 /* Allocate space for the insn map. */
725 map->insn_map = (rtx *) xmalloc (max_insnno * sizeof (rtx));
727 /* Set this to zero, to indicate that we are doing loop unrolling,
728 not function inlining. */
729 map->inline_target = 0;
731 /* The register and constant maps depend on the number of registers
732 present, so the final maps can't be created until after
733 find_splittable_regs is called. However, they are needed for
734 preconditioning, so we create temporary maps when preconditioning
735 is performed. */
737 /* The preconditioning code may allocate two new pseudo registers. */
738 maxregnum = max_reg_num ();
740 /* local_regno is only valid for regnos < max_local_regnum. */
741 max_local_regnum = maxregnum;
743 /* Allocate and zero out the splittable_regs and addr_combined_regs
744 arrays. These must be zeroed here because they will be used if
745 loop preconditioning is performed, and must be zero for that case.
747 It is safe to do this here, since the extra registers created by the
748 preconditioning code and find_splittable_regs will never be used
749 to access the splittable_regs[] and addr_combined_regs[] arrays. */
751 splittable_regs = (rtx *) xcalloc (maxregnum, sizeof (rtx));
752 splittable_regs_updates = (int *) xcalloc (maxregnum, sizeof (int));
753 addr_combined_regs
754 = (struct induction **) xcalloc (maxregnum, sizeof (struct induction *));
755 local_regno = (char *) xcalloc (maxregnum, sizeof (char));
757 /* Mark all local registers, i.e. the ones which are referenced only
758 inside the loop. */
759 if (INSN_UID (copy_end) < max_uid_for_loop)
761 int copy_start_luid = INSN_LUID (copy_start);
762 int copy_end_luid = INSN_LUID (copy_end);
764 /* If a register is used in the jump insn, we must not duplicate it
765 since it will also be used outside the loop. */
766 if (GET_CODE (copy_end) == JUMP_INSN)
767 copy_end_luid--;
769 /* If we have a target that uses cc0, then we also must not duplicate
770 the insn that sets cc0 before the jump insn, if one is present. */
771 #ifdef HAVE_cc0
772 if (GET_CODE (copy_end) == JUMP_INSN
773 && sets_cc0_p (PREV_INSN (copy_end)))
774 copy_end_luid--;
775 #endif
777 /* If copy_start points to the NOTE that starts the loop, then we must
778 use the next luid, because invariant pseudo-regs moved out of the loop
779 have their lifetimes modified to start here, but they are not safe
780 to duplicate. */
781 if (copy_start == loop_start)
782 copy_start_luid++;
784 /* If a pseudo's lifetime is entirely contained within this loop, then we
785 can use a different pseudo in each unrolled copy of the loop. This
786 results in better code. */
787 /* We must limit the generic test to max_reg_before_loop, because only
788 these pseudo registers have valid regno_first_uid info. */
789 for (r = FIRST_PSEUDO_REGISTER; r < max_reg_before_loop; ++r)
790 if (REGNO_FIRST_UID (r) > 0 && REGNO_FIRST_UID (r) < max_uid_for_loop
791 && REGNO_FIRST_LUID (r) >= copy_start_luid
792 && REGNO_LAST_UID (r) > 0 && REGNO_LAST_UID (r) < max_uid_for_loop
793 && REGNO_LAST_LUID (r) <= copy_end_luid)
795 /* However, we must also check for loop-carried dependencies.
796 If the value the pseudo has at the end of iteration X is
797 used by iteration X+1, then we can not use a different pseudo
798 for each unrolled copy of the loop. */
799 /* A pseudo is safe if regno_first_uid is a set, and this
800 set dominates all instructions from regno_first_uid to
801 regno_last_uid. */
802 /* ??? This check is simplistic. We would get better code if
803 this check was more sophisticated. */
804 if (set_dominates_use (r, REGNO_FIRST_UID (r), REGNO_LAST_UID (r),
805 copy_start, copy_end))
806 local_regno[r] = 1;
808 if (loop_dump_stream)
810 if (local_regno[r])
811 fprintf (loop_dump_stream, "Marked reg %d as local\n", r);
812 else
813 fprintf (loop_dump_stream, "Did not mark reg %d as local\n",
819 /* If this loop requires exit tests when unrolled, check to see if we
820 can precondition the loop so as to make the exit tests unnecessary.
821 Just like variable splitting, this is not safe if the loop is entered
822 via a jump to the bottom. Also, can not do this if no strength
823 reduce info, because precondition_loop_p uses this info. */
825 /* Must copy the loop body for preconditioning before the following
826 find_splittable_regs call since that will emit insns which need to
827 be after the preconditioned loop copies, but immediately before the
828 unrolled loop copies. */
830 /* Also, it is not safe to split induction variables for the preconditioned
831 copies of the loop body. If we split induction variables, then the code
832 assumes that each induction variable can be represented as a function
833 of its initial value and the loop iteration number. This is not true
834 in this case, because the last preconditioned copy of the loop body
835 could be any iteration from the first up to the `unroll_number-1'th,
836 depending on the initial value of the iteration variable. Therefore
837 we can not split induction variables here, because we can not calculate
838 their value. Hence, this code must occur before find_splittable_regs
839 is called. */
841 if (unroll_type == UNROLL_NAIVE && ! splitting_not_safe && strength_reduce_p)
843 rtx initial_value, final_value, increment;
844 enum machine_mode mode;
846 if (precondition_loop_p (loop,
847 &initial_value, &final_value, &increment,
848 &mode))
850 rtx diff, insn;
851 rtx *labels;
852 int abs_inc, neg_inc;
853 enum rtx_code cc = loop_info->comparison_code;
854 int less_p = (cc == LE || cc == LEU || cc == LT || cc == LTU);
855 int unsigned_p = (cc == LEU || cc == GEU || cc == LTU || cc == GTU);
857 map->reg_map = (rtx *) xmalloc (maxregnum * sizeof (rtx));
859 VARRAY_CONST_EQUIV_INIT (map->const_equiv_varray, maxregnum,
860 "unroll_loop_precondition");
861 global_const_equiv_varray = map->const_equiv_varray;
863 init_reg_map (map, maxregnum);
865 /* Limit loop unrolling to 4, since this will make 7 copies of
866 the loop body. */
867 if (unroll_number > 4)
868 unroll_number = 4;
870 /* Save the absolute value of the increment, and also whether or
871 not it is negative. */
872 neg_inc = 0;
873 abs_inc = INTVAL (increment);
874 if (abs_inc < 0)
876 abs_inc = -abs_inc;
877 neg_inc = 1;
880 start_sequence ();
882 /* We must copy the final and initial values here to avoid
883 improperly shared rtl. */
884 final_value = copy_rtx (final_value);
885 initial_value = copy_rtx (initial_value);
887 /* Final value may have form of (PLUS val1 const1_rtx). We need
888 to convert it into general operand, so compute the real value. */
890 final_value = force_operand (final_value, NULL_RTX);
891 if (!nonmemory_operand (final_value, VOIDmode))
892 final_value = force_reg (mode, final_value);
894 /* Calculate the difference between the final and initial values.
895 Final value may be a (plus (reg x) (const_int 1)) rtx.
897 We have to deal with for (i = 0; --i < 6;) type loops.
898 For such loops the real final value is the first time the
899 loop variable overflows, so the diff we calculate is the
900 distance from the overflow value. This is 0 or ~0 for
901 unsigned loops depending on the direction, or INT_MAX,
902 INT_MAX+1 for signed loops. We really do not need the
903 exact value, since we are only interested in the diff
904 modulo the increment, and the increment is a power of 2,
905 so we can pretend that the overflow value is 0/~0. */
907 if (cc == NE || less_p != neg_inc)
908 diff = simplify_gen_binary (MINUS, mode, final_value,
909 initial_value);
910 else
911 diff = simplify_gen_unary (neg_inc ? NOT : NEG, mode,
912 initial_value, mode);
913 diff = force_operand (diff, NULL_RTX);
915 /* Now calculate (diff % (unroll * abs (increment))) by using an
916 and instruction. */
917 diff = simplify_gen_binary (AND, mode, diff,
918 GEN_INT (unroll_number*abs_inc - 1));
919 diff = force_operand (diff, NULL_RTX);
921 /* Now emit a sequence of branches to jump to the proper precond
922 loop entry point. */
924 labels = (rtx *) xmalloc (sizeof (rtx) * unroll_number);
925 for (i = 0; i < unroll_number; i++)
926 labels[i] = gen_label_rtx ();
928 /* Check for the case where the initial value is greater than or
929 equal to the final value. In that case, we want to execute
930 exactly one loop iteration. The code below will fail for this
931 case. This check does not apply if the loop has a NE
932 comparison at the end. */
934 if (cc != NE)
936 rtx incremented_initval;
937 enum rtx_code cmp_code;
939 incremented_initval
940 = simplify_gen_binary (PLUS, mode, initial_value, increment);
941 incremented_initval
942 = force_operand (incremented_initval, NULL_RTX);
944 cmp_code = (less_p
945 ? (unsigned_p ? GEU : GE)
946 : (unsigned_p ? LEU : LE));
948 insn = simplify_cmp_and_jump_insns (cmp_code, mode,
949 incremented_initval,
950 final_value, labels[1]);
951 if (insn)
952 predict_insn_def (insn, PRED_LOOP_CONDITION, TAKEN);
955 /* Assuming the unroll_number is 4, and the increment is 2, then
956 for a negative increment: for a positive increment:
957 diff = 0,1 precond 0 diff = 0,7 precond 0
958 diff = 2,3 precond 3 diff = 1,2 precond 1
959 diff = 4,5 precond 2 diff = 3,4 precond 2
960 diff = 6,7 precond 1 diff = 5,6 precond 3 */
962 /* We only need to emit (unroll_number - 1) branches here, the
963 last case just falls through to the following code. */
965 /* ??? This would give better code if we emitted a tree of branches
966 instead of the current linear list of branches. */
968 for (i = 0; i < unroll_number - 1; i++)
970 int cmp_const;
971 enum rtx_code cmp_code;
973 /* For negative increments, must invert the constant compared
974 against, except when comparing against zero. */
975 if (i == 0)
977 cmp_const = 0;
978 cmp_code = EQ;
980 else if (neg_inc)
982 cmp_const = unroll_number - i;
983 cmp_code = GE;
985 else
987 cmp_const = i;
988 cmp_code = LE;
991 insn = simplify_cmp_and_jump_insns (cmp_code, mode, diff,
992 GEN_INT (abs_inc*cmp_const),
993 labels[i]);
994 if (insn)
995 predict_insn (insn, PRED_LOOP_PRECONDITIONING,
996 REG_BR_PROB_BASE / (unroll_number - i));
999 /* If the increment is greater than one, then we need another branch,
1000 to handle other cases equivalent to 0. */
1002 /* ??? This should be merged into the code above somehow to help
1003 simplify the code here, and reduce the number of branches emitted.
1004 For the negative increment case, the branch here could easily
1005 be merged with the `0' case branch above. For the positive
1006 increment case, it is not clear how this can be simplified. */
1008 if (abs_inc != 1)
1010 int cmp_const;
1011 enum rtx_code cmp_code;
1013 if (neg_inc)
1015 cmp_const = abs_inc - 1;
1016 cmp_code = LE;
1018 else
1020 cmp_const = abs_inc * (unroll_number - 1) + 1;
1021 cmp_code = GE;
1024 simplify_cmp_and_jump_insns (cmp_code, mode, diff,
1025 GEN_INT (cmp_const), labels[0]);
1028 sequence = get_insns ();
1029 end_sequence ();
1030 loop_insn_hoist (loop, sequence);
1032 /* Only the last copy of the loop body here needs the exit
1033 test, so set copy_end to exclude the compare/branch here,
1034 and then reset it inside the loop when get to the last
1035 copy. */
1037 if (GET_CODE (last_loop_insn) == BARRIER)
1038 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1039 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
1041 copy_end = PREV_INSN (last_loop_insn);
1042 #ifdef HAVE_cc0
1043 /* The immediately preceding insn may be a compare which
1044 we do not want to copy. */
1045 if (sets_cc0_p (PREV_INSN (copy_end)))
1046 copy_end = PREV_INSN (copy_end);
1047 #endif
1049 else
1050 abort ();
1052 for (i = 1; i < unroll_number; i++)
1054 emit_label_after (labels[unroll_number - i],
1055 PREV_INSN (loop_start));
1057 memset ((char *) map->insn_map, 0, max_insnno * sizeof (rtx));
1058 memset ((char *) &VARRAY_CONST_EQUIV (map->const_equiv_varray, 0),
1059 0, (VARRAY_SIZE (map->const_equiv_varray)
1060 * sizeof (struct const_equiv_data)));
1061 map->const_age = 0;
1063 for (j = 0; j < max_labelno; j++)
1064 if (local_label[j])
1065 set_label_in_map (map, j, gen_label_rtx ());
1067 for (r = FIRST_PSEUDO_REGISTER; r < max_local_regnum; r++)
1068 if (local_regno[r])
1070 map->reg_map[r]
1071 = gen_reg_rtx (GET_MODE (regno_reg_rtx[r]));
1072 record_base_value (REGNO (map->reg_map[r]),
1073 regno_reg_rtx[r], 0);
1075 /* The last copy needs the compare/branch insns at the end,
1076 so reset copy_end here if the loop ends with a conditional
1077 branch. */
1079 if (i == unroll_number - 1)
1081 if (GET_CODE (last_loop_insn) == BARRIER)
1082 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1083 else
1084 copy_end = last_loop_insn;
1087 /* None of the copies are the `last_iteration', so just
1088 pass zero for that parameter. */
1089 copy_loop_body (loop, copy_start, copy_end, map, exit_label, 0,
1090 unroll_type, start_label, loop_end,
1091 loop_start, copy_end);
1093 emit_label_after (labels[0], PREV_INSN (loop_start));
1095 if (GET_CODE (last_loop_insn) == BARRIER)
1097 insert_before = PREV_INSN (last_loop_insn);
1098 copy_end = PREV_INSN (insert_before);
1100 else
1102 insert_before = last_loop_insn;
1103 #ifdef HAVE_cc0
1104 /* The instruction immediately before the JUMP_INSN may
1105 be a compare instruction which we do not want to copy
1106 or delete. */
1107 if (sets_cc0_p (PREV_INSN (insert_before)))
1108 insert_before = PREV_INSN (insert_before);
1109 #endif
1110 copy_end = PREV_INSN (insert_before);
1113 /* Set unroll type to MODULO now. */
1114 unroll_type = UNROLL_MODULO;
1115 loop_preconditioned = 1;
1117 /* Clean up. */
1118 free (labels);
1122 /* If reach here, and the loop type is UNROLL_NAIVE, then don't unroll
1123 the loop unless all loops are being unrolled. */
1124 if (unroll_type == UNROLL_NAIVE && ! flag_old_unroll_all_loops)
1126 if (loop_dump_stream)
1127 fprintf (loop_dump_stream,
1128 "Unrolling failure: Naive unrolling not being done.\n");
1129 goto egress;
1132 /* At this point, we are guaranteed to unroll the loop. */
1134 /* Keep track of the unroll factor for the loop. */
1135 loop_info->unroll_number = unroll_number;
1137 /* And whether the loop has been preconditioned. */
1138 loop_info->preconditioned = loop_preconditioned;
1140 /* Remember whether it was preconditioned for the second loop pass. */
1141 NOTE_PRECONDITIONED (loop->end) = loop_preconditioned;
1143 /* For each biv and giv, determine whether it can be safely split into
1144 a different variable for each unrolled copy of the loop body.
1145 We precalculate and save this info here, since computing it is
1146 expensive.
1148 Do this before deleting any instructions from the loop, so that
1149 back_branch_in_range_p will work correctly. */
1151 if (splitting_not_safe)
1152 temp = 0;
1153 else
1154 temp = find_splittable_regs (loop, unroll_type, unroll_number);
1156 /* find_splittable_regs may have created some new registers, so must
1157 reallocate the reg_map with the new larger size, and must realloc
1158 the constant maps also. */
1160 maxregnum = max_reg_num ();
1161 map->reg_map = (rtx *) xmalloc (maxregnum * sizeof (rtx));
1163 init_reg_map (map, maxregnum);
1165 if (map->const_equiv_varray == 0)
1166 VARRAY_CONST_EQUIV_INIT (map->const_equiv_varray,
1167 maxregnum + temp * unroll_number * 2,
1168 "unroll_loop");
1169 global_const_equiv_varray = map->const_equiv_varray;
1171 /* Search the list of bivs and givs to find ones which need to be remapped
1172 when split, and set their reg_map entry appropriately. */
1174 for (bl = ivs->list; bl; bl = bl->next)
1176 if (REGNO (bl->biv->src_reg) != bl->regno)
1177 map->reg_map[bl->regno] = bl->biv->src_reg;
1178 #if 0
1179 /* Currently, non-reduced/final-value givs are never split. */
1180 for (v = bl->giv; v; v = v->next_iv)
1181 if (REGNO (v->src_reg) != bl->regno)
1182 map->reg_map[REGNO (v->dest_reg)] = v->src_reg;
1183 #endif
1186 /* Use our current register alignment and pointer flags. */
1187 map->regno_pointer_align = cfun->emit->regno_pointer_align;
1188 map->x_regno_reg_rtx = cfun->emit->x_regno_reg_rtx;
1190 /* If the loop is being partially unrolled, and the iteration variables
1191 are being split, and are being renamed for the split, then must fix up
1192 the compare/jump instruction at the end of the loop to refer to the new
1193 registers. This compare isn't copied, so the registers used in it
1194 will never be replaced if it isn't done here. */
1196 if (unroll_type == UNROLL_MODULO)
1198 insn = NEXT_INSN (copy_end);
1199 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
1200 PATTERN (insn) = remap_split_bivs (loop, PATTERN (insn));
1203 /* For unroll_number times, make a copy of each instruction
1204 between copy_start and copy_end, and insert these new instructions
1205 before the end of the loop. */
1207 for (i = 0; i < unroll_number; i++)
1209 memset ((char *) map->insn_map, 0, max_insnno * sizeof (rtx));
1210 memset ((char *) &VARRAY_CONST_EQUIV (map->const_equiv_varray, 0), 0,
1211 VARRAY_SIZE (map->const_equiv_varray) * sizeof (struct const_equiv_data));
1212 map->const_age = 0;
1214 for (j = 0; j < max_labelno; j++)
1215 if (local_label[j])
1216 set_label_in_map (map, j, gen_label_rtx ());
1218 for (r = FIRST_PSEUDO_REGISTER; r < max_local_regnum; r++)
1219 if (local_regno[r])
1221 map->reg_map[r] = gen_reg_rtx (GET_MODE (regno_reg_rtx[r]));
1222 record_base_value (REGNO (map->reg_map[r]),
1223 regno_reg_rtx[r], 0);
1226 /* If loop starts with a branch to the test, then fix it so that
1227 it points to the test of the first unrolled copy of the loop. */
1228 if (i == 0 && loop_start != copy_start)
1230 insn = PREV_INSN (copy_start);
1231 pattern = PATTERN (insn);
1233 tem = get_label_from_map (map,
1234 CODE_LABEL_NUMBER
1235 (XEXP (SET_SRC (pattern), 0)));
1236 SET_SRC (pattern) = gen_rtx_LABEL_REF (VOIDmode, tem);
1238 /* Set the jump label so that it can be used by later loop unrolling
1239 passes. */
1240 JUMP_LABEL (insn) = tem;
1241 LABEL_NUSES (tem)++;
1244 copy_loop_body (loop, copy_start, copy_end, map, exit_label,
1245 i == unroll_number - 1, unroll_type, start_label,
1246 loop_end, insert_before, insert_before);
1249 /* Before deleting any insns, emit a CODE_LABEL immediately after the last
1250 insn to be deleted. This prevents any runaway delete_insn call from
1251 more insns that it should, as it always stops at a CODE_LABEL. */
1253 /* Delete the compare and branch at the end of the loop if completely
1254 unrolling the loop. Deleting the backward branch at the end also
1255 deletes the code label at the start of the loop. This is done at
1256 the very end to avoid problems with back_branch_in_range_p. */
1258 if (unroll_type == UNROLL_COMPLETELY)
1259 safety_label = emit_label_after (gen_label_rtx (), last_loop_insn);
1260 else
1261 safety_label = emit_label_after (gen_label_rtx (), copy_end);
1263 /* Delete all of the original loop instructions. Don't delete the
1264 LOOP_BEG note, or the first code label in the loop. */
1266 insn = NEXT_INSN (copy_start);
1267 while (insn != safety_label)
1269 /* ??? Don't delete named code labels. They will be deleted when the
1270 jump that references them is deleted. Otherwise, we end up deleting
1271 them twice, which causes them to completely disappear instead of turn
1272 into NOTE_INSN_DELETED_LABEL notes. This in turn causes aborts in
1273 dwarfout.c/dwarf2out.c. We could perhaps fix the dwarf*out.c files
1274 to handle deleted labels instead. Or perhaps fix DECL_RTL of the
1275 associated LABEL_DECL to point to one of the new label instances. */
1276 /* ??? Likewise, we can't delete a NOTE_INSN_DELETED_LABEL note. */
1277 if (insn != start_label
1278 && ! (GET_CODE (insn) == CODE_LABEL && LABEL_NAME (insn))
1279 && ! (GET_CODE (insn) == NOTE
1280 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))
1281 insn = delete_related_insns (insn);
1282 else
1283 insn = NEXT_INSN (insn);
1286 /* Can now delete the 'safety' label emitted to protect us from runaway
1287 delete_related_insns calls. */
1288 if (INSN_DELETED_P (safety_label))
1289 abort ();
1290 delete_related_insns (safety_label);
1292 /* If exit_label exists, emit it after the loop. Doing the emit here
1293 forces it to have a higher INSN_UID than any insn in the unrolled loop.
1294 This is needed so that mostly_true_jump in reorg.c will treat jumps
1295 to this loop end label correctly, i.e. predict that they are usually
1296 not taken. */
1297 if (exit_label)
1298 emit_label_after (exit_label, loop_end);
1300 egress:
1301 if (unroll_type == UNROLL_COMPLETELY)
1303 /* Remove the loop notes since this is no longer a loop. */
1304 if (loop->vtop)
1305 delete_related_insns (loop->vtop);
1306 if (loop->cont)
1307 delete_related_insns (loop->cont);
1308 if (loop_start)
1309 delete_related_insns (loop_start);
1310 if (loop_end)
1311 delete_related_insns (loop_end);
1314 if (map->const_equiv_varray)
1315 VARRAY_FREE (map->const_equiv_varray);
1316 if (map->label_map)
1318 free (map->label_map);
1319 free (local_label);
1321 free (map->insn_map);
1322 free (splittable_regs);
1323 free (splittable_regs_updates);
1324 free (addr_combined_regs);
1325 free (local_regno);
1326 if (map->reg_map)
1327 free (map->reg_map);
1328 free (map);
1331 /* A helper function for unroll_loop. Emit a compare and branch to
1332 satisfy (CMP OP1 OP2), but pass this through the simplifier first.
1333 If the branch turned out to be conditional, return it, otherwise
1334 return NULL. */
1336 static rtx
1337 simplify_cmp_and_jump_insns (enum rtx_code code, enum machine_mode mode,
1338 rtx op0, rtx op1, rtx label)
1340 rtx t, insn;
1342 t = simplify_relational_operation (code, mode, op0, op1);
1343 if (!t)
1345 enum rtx_code scode = signed_condition (code);
1346 emit_cmp_and_jump_insns (op0, op1, scode, NULL_RTX, mode,
1347 code != scode, label);
1348 insn = get_last_insn ();
1350 JUMP_LABEL (insn) = label;
1351 LABEL_NUSES (label) += 1;
1353 return insn;
1355 else if (t == const_true_rtx)
1357 insn = emit_jump_insn (gen_jump (label));
1358 emit_barrier ();
1359 JUMP_LABEL (insn) = label;
1360 LABEL_NUSES (label) += 1;
1363 return NULL_RTX;
1366 /* Return true if the loop can be safely, and profitably, preconditioned
1367 so that the unrolled copies of the loop body don't need exit tests.
1369 This only works if final_value, initial_value and increment can be
1370 determined, and if increment is a constant power of 2.
1371 If increment is not a power of 2, then the preconditioning modulo
1372 operation would require a real modulo instead of a boolean AND, and this
1373 is not considered `profitable'. */
1375 /* ??? If the loop is known to be executed very many times, or the machine
1376 has a very cheap divide instruction, then preconditioning is a win even
1377 when the increment is not a power of 2. Use RTX_COST to compute
1378 whether divide is cheap.
1379 ??? A divide by constant doesn't actually need a divide, look at
1380 expand_divmod. The reduced cost of this optimized modulo is not
1381 reflected in RTX_COST. */
1384 precondition_loop_p (const struct loop *loop, rtx *initial_value,
1385 rtx *final_value, rtx *increment,
1386 enum machine_mode *mode)
1388 rtx loop_start = loop->start;
1389 struct loop_info *loop_info = LOOP_INFO (loop);
1391 if (loop_info->n_iterations > 0)
1393 if (INTVAL (loop_info->increment) > 0)
1395 *initial_value = const0_rtx;
1396 *increment = const1_rtx;
1397 *final_value = GEN_INT (loop_info->n_iterations);
1399 else
1401 *initial_value = GEN_INT (loop_info->n_iterations);
1402 *increment = constm1_rtx;
1403 *final_value = const0_rtx;
1405 *mode = word_mode;
1407 if (loop_dump_stream)
1408 fprintf (loop_dump_stream,
1409 "Preconditioning: Success, number of iterations known, "
1410 HOST_WIDE_INT_PRINT_DEC ".\n",
1411 loop_info->n_iterations);
1412 return 1;
1415 if (loop_info->iteration_var == 0)
1417 if (loop_dump_stream)
1418 fprintf (loop_dump_stream,
1419 "Preconditioning: Could not find iteration variable.\n");
1420 return 0;
1422 else if (loop_info->initial_value == 0)
1424 if (loop_dump_stream)
1425 fprintf (loop_dump_stream,
1426 "Preconditioning: Could not find initial value.\n");
1427 return 0;
1429 else if (loop_info->increment == 0)
1431 if (loop_dump_stream)
1432 fprintf (loop_dump_stream,
1433 "Preconditioning: Could not find increment value.\n");
1434 return 0;
1436 else if (GET_CODE (loop_info->increment) != CONST_INT)
1438 if (loop_dump_stream)
1439 fprintf (loop_dump_stream,
1440 "Preconditioning: Increment not a constant.\n");
1441 return 0;
1443 else if ((exact_log2 (INTVAL (loop_info->increment)) < 0)
1444 && (exact_log2 (-INTVAL (loop_info->increment)) < 0))
1446 if (loop_dump_stream)
1447 fprintf (loop_dump_stream,
1448 "Preconditioning: Increment not a constant power of 2.\n");
1449 return 0;
1452 /* Unsigned_compare and compare_dir can be ignored here, since they do
1453 not matter for preconditioning. */
1455 if (loop_info->final_value == 0)
1457 if (loop_dump_stream)
1458 fprintf (loop_dump_stream,
1459 "Preconditioning: EQ comparison loop.\n");
1460 return 0;
1463 /* Must ensure that final_value is invariant, so call
1464 loop_invariant_p to check. Before doing so, must check regno
1465 against max_reg_before_loop to make sure that the register is in
1466 the range covered by loop_invariant_p. If it isn't, then it is
1467 most likely a biv/giv which by definition are not invariant. */
1468 if ((GET_CODE (loop_info->final_value) == REG
1469 && REGNO (loop_info->final_value) >= max_reg_before_loop)
1470 || (GET_CODE (loop_info->final_value) == PLUS
1471 && REGNO (XEXP (loop_info->final_value, 0)) >= max_reg_before_loop)
1472 || ! loop_invariant_p (loop, loop_info->final_value))
1474 if (loop_dump_stream)
1475 fprintf (loop_dump_stream,
1476 "Preconditioning: Final value not invariant.\n");
1477 return 0;
1480 /* Fail for floating point values, since the caller of this function
1481 does not have code to deal with them. */
1482 if (GET_MODE_CLASS (GET_MODE (loop_info->final_value)) == MODE_FLOAT
1483 || GET_MODE_CLASS (GET_MODE (loop_info->initial_value)) == MODE_FLOAT)
1485 if (loop_dump_stream)
1486 fprintf (loop_dump_stream,
1487 "Preconditioning: Floating point final or initial value.\n");
1488 return 0;
1491 /* Fail if loop_info->iteration_var is not live before loop_start,
1492 since we need to test its value in the preconditioning code. */
1494 if (REGNO_FIRST_LUID (REGNO (loop_info->iteration_var))
1495 > INSN_LUID (loop_start))
1497 if (loop_dump_stream)
1498 fprintf (loop_dump_stream,
1499 "Preconditioning: Iteration var not live before loop start.\n");
1500 return 0;
1503 /* Note that loop_iterations biases the initial value for GIV iterators
1504 such as "while (i-- > 0)" so that we can calculate the number of
1505 iterations just like for BIV iterators.
1507 Also note that the absolute values of initial_value and
1508 final_value are unimportant as only their difference is used for
1509 calculating the number of loop iterations. */
1510 *initial_value = loop_info->initial_value;
1511 *increment = loop_info->increment;
1512 *final_value = loop_info->final_value;
1514 /* Decide what mode to do these calculations in. Choose the larger
1515 of final_value's mode and initial_value's mode, or a full-word if
1516 both are constants. */
1517 *mode = GET_MODE (*final_value);
1518 if (*mode == VOIDmode)
1520 *mode = GET_MODE (*initial_value);
1521 if (*mode == VOIDmode)
1522 *mode = word_mode;
1524 else if (*mode != GET_MODE (*initial_value)
1525 && (GET_MODE_SIZE (*mode)
1526 < GET_MODE_SIZE (GET_MODE (*initial_value))))
1527 *mode = GET_MODE (*initial_value);
1529 /* Success! */
1530 if (loop_dump_stream)
1531 fprintf (loop_dump_stream, "Preconditioning: Successful.\n");
1532 return 1;
1535 /* All pseudo-registers must be mapped to themselves. Two hard registers
1536 must be mapped, VIRTUAL_STACK_VARS_REGNUM and VIRTUAL_INCOMING_ARGS_
1537 REGNUM, to avoid function-inlining specific conversions of these
1538 registers. All other hard regs can not be mapped because they may be
1539 used with different
1540 modes. */
1542 static void
1543 init_reg_map (struct inline_remap *map, int maxregnum)
1545 int i;
1547 for (i = maxregnum - 1; i > LAST_VIRTUAL_REGISTER; i--)
1548 map->reg_map[i] = regno_reg_rtx[i];
1549 /* Just clear the rest of the entries. */
1550 for (i = LAST_VIRTUAL_REGISTER; i >= 0; i--)
1551 map->reg_map[i] = 0;
1553 map->reg_map[VIRTUAL_STACK_VARS_REGNUM]
1554 = regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM];
1555 map->reg_map[VIRTUAL_INCOMING_ARGS_REGNUM]
1556 = regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM];
1559 /* Strength-reduction will often emit code for optimized biv/givs which
1560 calculates their value in a temporary register, and then copies the result
1561 to the iv. This procedure reconstructs the pattern computing the iv;
1562 verifying that all operands are of the proper form.
1564 PATTERN must be the result of single_set.
1565 The return value is the amount that the giv is incremented by. */
1567 static rtx
1568 calculate_giv_inc (rtx pattern, rtx src_insn, unsigned int regno)
1570 rtx increment;
1571 rtx increment_total = 0;
1572 int tries = 0;
1574 retry:
1575 /* Verify that we have an increment insn here. First check for a plus
1576 as the set source. */
1577 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1579 /* SR sometimes computes the new giv value in a temp, then copies it
1580 to the new_reg. */
1581 src_insn = PREV_INSN (src_insn);
1582 pattern = single_set (src_insn);
1583 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1584 abort ();
1586 /* The last insn emitted is not needed, so delete it to avoid confusing
1587 the second cse pass. This insn sets the giv unnecessarily. */
1588 delete_related_insns (get_last_insn ());
1591 /* Verify that we have a constant as the second operand of the plus. */
1592 increment = XEXP (SET_SRC (pattern), 1);
1593 if (GET_CODE (increment) != CONST_INT)
1595 /* SR sometimes puts the constant in a register, especially if it is
1596 too big to be an add immed operand. */
1597 increment = find_last_value (increment, &src_insn, NULL_RTX, 0);
1599 /* SR may have used LO_SUM to compute the constant if it is too large
1600 for a load immed operand. In this case, the constant is in operand
1601 one of the LO_SUM rtx. */
1602 if (GET_CODE (increment) == LO_SUM)
1603 increment = XEXP (increment, 1);
1605 /* Some ports store large constants in memory and add a REG_EQUAL
1606 note to the store insn. */
1607 else if (GET_CODE (increment) == MEM)
1609 rtx note = find_reg_note (src_insn, REG_EQUAL, 0);
1610 if (note)
1611 increment = XEXP (note, 0);
1614 else if (GET_CODE (increment) == IOR
1615 || GET_CODE (increment) == PLUS
1616 || GET_CODE (increment) == ASHIFT
1617 || GET_CODE (increment) == LSHIFTRT)
1619 /* The rs6000 port loads some constants with IOR.
1620 The alpha port loads some constants with ASHIFT and PLUS.
1621 The sparc64 port loads some constants with LSHIFTRT. */
1622 rtx second_part = XEXP (increment, 1);
1623 enum rtx_code code = GET_CODE (increment);
1625 increment = find_last_value (XEXP (increment, 0),
1626 &src_insn, NULL_RTX, 0);
1627 /* Don't need the last insn anymore. */
1628 delete_related_insns (get_last_insn ());
1630 if (GET_CODE (second_part) != CONST_INT
1631 || GET_CODE (increment) != CONST_INT)
1632 abort ();
1634 if (code == IOR)
1635 increment = GEN_INT (INTVAL (increment) | INTVAL (second_part));
1636 else if (code == PLUS)
1637 increment = GEN_INT (INTVAL (increment) + INTVAL (second_part));
1638 else if (code == ASHIFT)
1639 increment = GEN_INT (INTVAL (increment) << INTVAL (second_part));
1640 else
1641 increment = GEN_INT ((unsigned HOST_WIDE_INT) INTVAL (increment) >> INTVAL (second_part));
1644 if (GET_CODE (increment) != CONST_INT)
1645 abort ();
1647 /* The insn loading the constant into a register is no longer needed,
1648 so delete it. */
1649 delete_related_insns (get_last_insn ());
1652 if (increment_total)
1653 increment_total = GEN_INT (INTVAL (increment_total) + INTVAL (increment));
1654 else
1655 increment_total = increment;
1657 /* Check that the source register is the same as the register we expected
1658 to see as the source. If not, something is seriously wrong. */
1659 if (GET_CODE (XEXP (SET_SRC (pattern), 0)) != REG
1660 || REGNO (XEXP (SET_SRC (pattern), 0)) != regno)
1662 /* Some machines (e.g. the romp), may emit two add instructions for
1663 certain constants, so lets try looking for another add immediately
1664 before this one if we have only seen one add insn so far. */
1666 if (tries == 0)
1668 tries++;
1670 src_insn = PREV_INSN (src_insn);
1671 pattern = single_set (src_insn);
1673 delete_related_insns (get_last_insn ());
1675 goto retry;
1678 abort ();
1681 return increment_total;
1684 /* Copy REG_NOTES, except for insn references, because not all insn_map
1685 entries are valid yet. We do need to copy registers now though, because
1686 the reg_map entries can change during copying. */
1688 static rtx
1689 initial_reg_note_copy (rtx notes, struct inline_remap *map)
1691 rtx copy;
1693 if (notes == 0)
1694 return 0;
1696 copy = rtx_alloc (GET_CODE (notes));
1697 PUT_REG_NOTE_KIND (copy, REG_NOTE_KIND (notes));
1699 if (GET_CODE (notes) == EXPR_LIST)
1700 XEXP (copy, 0) = copy_rtx_and_substitute (XEXP (notes, 0), map, 0);
1701 else if (GET_CODE (notes) == INSN_LIST)
1702 /* Don't substitute for these yet. */
1703 XEXP (copy, 0) = copy_rtx (XEXP (notes, 0));
1704 else
1705 abort ();
1707 XEXP (copy, 1) = initial_reg_note_copy (XEXP (notes, 1), map);
1709 return copy;
1712 /* Fixup insn references in copied REG_NOTES. */
1714 static void
1715 final_reg_note_copy (rtx *notesp, struct inline_remap *map)
1717 while (*notesp)
1719 rtx note = *notesp;
1721 if (GET_CODE (note) == INSN_LIST)
1723 rtx insn = map->insn_map[INSN_UID (XEXP (note, 0))];
1725 /* If we failed to remap the note, something is awry.
1726 Allow REG_LABEL as it may reference label outside
1727 the unrolled loop. */
1728 if (!insn)
1730 if (REG_NOTE_KIND (note) != REG_LABEL)
1731 abort ();
1733 else
1734 XEXP (note, 0) = insn;
1737 notesp = &XEXP (note, 1);
1741 /* Copy each instruction in the loop, substituting from map as appropriate.
1742 This is very similar to a loop in expand_inline_function. */
1744 static void
1745 copy_loop_body (struct loop *loop, rtx copy_start, rtx copy_end,
1746 struct inline_remap *map, rtx exit_label,
1747 int last_iteration, enum unroll_types unroll_type,
1748 rtx start_label, rtx loop_end, rtx insert_before,
1749 rtx copy_notes_from)
1751 struct loop_ivs *ivs = LOOP_IVS (loop);
1752 rtx insn, pattern;
1753 rtx set, tem, copy = NULL_RTX;
1754 int dest_reg_was_split, i;
1755 #ifdef HAVE_cc0
1756 rtx cc0_insn = 0;
1757 #endif
1758 rtx final_label = 0;
1759 rtx giv_inc, giv_dest_reg, giv_src_reg;
1761 /* If this isn't the last iteration, then map any references to the
1762 start_label to final_label. Final label will then be emitted immediately
1763 after the end of this loop body if it was ever used.
1765 If this is the last iteration, then map references to the start_label
1766 to itself. */
1767 if (! last_iteration)
1769 final_label = gen_label_rtx ();
1770 set_label_in_map (map, CODE_LABEL_NUMBER (start_label), final_label);
1772 else
1773 set_label_in_map (map, CODE_LABEL_NUMBER (start_label), start_label);
1775 start_sequence ();
1777 insn = copy_start;
1780 insn = NEXT_INSN (insn);
1782 map->orig_asm_operands_vector = 0;
1784 switch (GET_CODE (insn))
1786 case INSN:
1787 pattern = PATTERN (insn);
1788 copy = 0;
1789 giv_inc = 0;
1791 /* Check to see if this is a giv that has been combined with
1792 some split address givs. (Combined in the sense that
1793 `combine_givs' in loop.c has put two givs in the same register.)
1794 In this case, we must search all givs based on the same biv to
1795 find the address givs. Then split the address givs.
1796 Do this before splitting the giv, since that may map the
1797 SET_DEST to a new register. */
1799 if ((set = single_set (insn))
1800 && GET_CODE (SET_DEST (set)) == REG
1801 && addr_combined_regs[REGNO (SET_DEST (set))])
1803 struct iv_class *bl;
1804 struct induction *v, *tv;
1805 unsigned int regno = REGNO (SET_DEST (set));
1807 v = addr_combined_regs[REGNO (SET_DEST (set))];
1808 bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
1810 /* Although the giv_inc amount is not needed here, we must call
1811 calculate_giv_inc here since it might try to delete the
1812 last insn emitted. If we wait until later to call it,
1813 we might accidentally delete insns generated immediately
1814 below by emit_unrolled_add. */
1816 giv_inc = calculate_giv_inc (set, insn, regno);
1818 /* Now find all address giv's that were combined with this
1819 giv 'v'. */
1820 for (tv = bl->giv; tv; tv = tv->next_iv)
1821 if (tv->giv_type == DEST_ADDR && tv->same == v)
1823 int this_giv_inc;
1825 /* If this DEST_ADDR giv was not split, then ignore it. */
1826 if (*tv->location != tv->dest_reg)
1827 continue;
1829 /* Scale this_giv_inc if the multiplicative factors of
1830 the two givs are different. */
1831 this_giv_inc = INTVAL (giv_inc);
1832 if (tv->mult_val != v->mult_val)
1833 this_giv_inc = (this_giv_inc / INTVAL (v->mult_val)
1834 * INTVAL (tv->mult_val));
1836 tv->dest_reg = plus_constant (tv->dest_reg, this_giv_inc);
1837 *tv->location = tv->dest_reg;
1839 if (last_iteration && unroll_type != UNROLL_COMPLETELY)
1841 /* Must emit an insn to increment the split address
1842 giv. Add in the const_adjust field in case there
1843 was a constant eliminated from the address. */
1844 rtx value, dest_reg;
1846 /* tv->dest_reg will be either a bare register,
1847 or else a register plus a constant. */
1848 if (GET_CODE (tv->dest_reg) == REG)
1849 dest_reg = tv->dest_reg;
1850 else
1851 dest_reg = XEXP (tv->dest_reg, 0);
1853 /* Check for shared address givs, and avoid
1854 incrementing the shared pseudo reg more than
1855 once. */
1856 if (! tv->same_insn && ! tv->shared)
1858 /* tv->dest_reg may actually be a (PLUS (REG)
1859 (CONST)) here, so we must call plus_constant
1860 to add the const_adjust amount before calling
1861 emit_unrolled_add below. */
1862 value = plus_constant (tv->dest_reg,
1863 tv->const_adjust);
1865 if (GET_CODE (value) == PLUS)
1867 /* The constant could be too large for an add
1868 immediate, so can't directly emit an insn
1869 here. */
1870 emit_unrolled_add (dest_reg, XEXP (value, 0),
1871 XEXP (value, 1));
1875 /* Reset the giv to be just the register again, in case
1876 it is used after the set we have just emitted.
1877 We must subtract the const_adjust factor added in
1878 above. */
1879 tv->dest_reg = plus_constant (dest_reg,
1880 -tv->const_adjust);
1881 *tv->location = tv->dest_reg;
1886 /* If this is a setting of a splittable variable, then determine
1887 how to split the variable, create a new set based on this split,
1888 and set up the reg_map so that later uses of the variable will
1889 use the new split variable. */
1891 dest_reg_was_split = 0;
1893 if ((set = single_set (insn))
1894 && GET_CODE (SET_DEST (set)) == REG
1895 && splittable_regs[REGNO (SET_DEST (set))])
1897 unsigned int regno = REGNO (SET_DEST (set));
1898 unsigned int src_regno;
1900 dest_reg_was_split = 1;
1902 giv_dest_reg = SET_DEST (set);
1903 giv_src_reg = giv_dest_reg;
1904 /* Compute the increment value for the giv, if it wasn't
1905 already computed above. */
1906 if (giv_inc == 0)
1907 giv_inc = calculate_giv_inc (set, insn, regno);
1909 src_regno = REGNO (giv_src_reg);
1911 if (unroll_type == UNROLL_COMPLETELY)
1913 /* Completely unrolling the loop. Set the induction
1914 variable to a known constant value. */
1916 /* The value in splittable_regs may be an invariant
1917 value, so we must use plus_constant here. */
1918 splittable_regs[regno]
1919 = plus_constant (splittable_regs[src_regno],
1920 INTVAL (giv_inc));
1922 if (GET_CODE (splittable_regs[regno]) == PLUS)
1924 giv_src_reg = XEXP (splittable_regs[regno], 0);
1925 giv_inc = XEXP (splittable_regs[regno], 1);
1927 else
1929 /* The splittable_regs value must be a REG or a
1930 CONST_INT, so put the entire value in the giv_src_reg
1931 variable. */
1932 giv_src_reg = splittable_regs[regno];
1933 giv_inc = const0_rtx;
1936 else
1938 /* Partially unrolling loop. Create a new pseudo
1939 register for the iteration variable, and set it to
1940 be a constant plus the original register. Except
1941 on the last iteration, when the result has to
1942 go back into the original iteration var register. */
1944 /* Handle bivs which must be mapped to a new register
1945 when split. This happens for bivs which need their
1946 final value set before loop entry. The new register
1947 for the biv was stored in the biv's first struct
1948 induction entry by find_splittable_regs. */
1950 if (regno < ivs->n_regs
1951 && REG_IV_TYPE (ivs, regno) == BASIC_INDUCT)
1953 giv_src_reg = REG_IV_CLASS (ivs, regno)->biv->src_reg;
1954 giv_dest_reg = giv_src_reg;
1957 #if 0
1958 /* If non-reduced/final-value givs were split, then
1959 this would have to remap those givs also. See
1960 find_splittable_regs. */
1961 #endif
1963 splittable_regs[regno]
1964 = simplify_gen_binary (PLUS, GET_MODE (giv_src_reg),
1965 giv_inc,
1966 splittable_regs[src_regno]);
1967 giv_inc = splittable_regs[regno];
1969 /* Now split the induction variable by changing the dest
1970 of this insn to a new register, and setting its
1971 reg_map entry to point to this new register.
1973 If this is the last iteration, and this is the last insn
1974 that will update the iv, then reuse the original dest,
1975 to ensure that the iv will have the proper value when
1976 the loop exits or repeats.
1978 Using splittable_regs_updates here like this is safe,
1979 because it can only be greater than one if all
1980 instructions modifying the iv are always executed in
1981 order. */
1983 if (! last_iteration
1984 || (splittable_regs_updates[regno]-- != 1))
1986 tem = gen_reg_rtx (GET_MODE (giv_src_reg));
1987 giv_dest_reg = tem;
1988 map->reg_map[regno] = tem;
1989 record_base_value (REGNO (tem),
1990 giv_inc == const0_rtx
1991 ? giv_src_reg
1992 : gen_rtx_PLUS (GET_MODE (giv_src_reg),
1993 giv_src_reg, giv_inc),
1996 else
1997 map->reg_map[regno] = giv_src_reg;
2000 /* The constant being added could be too large for an add
2001 immediate, so can't directly emit an insn here. */
2002 emit_unrolled_add (giv_dest_reg, giv_src_reg, giv_inc);
2003 copy = get_last_insn ();
2004 pattern = PATTERN (copy);
2006 else
2008 pattern = copy_rtx_and_substitute (pattern, map, 0);
2009 copy = emit_insn (pattern);
2011 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2012 INSN_LOCATOR (copy) = INSN_LOCATOR (insn);
2014 /* If there is a REG_EQUAL note present whose value
2015 is not loop invariant, then delete it, since it
2016 may cause problems with later optimization passes. */
2017 if ((tem = find_reg_note (copy, REG_EQUAL, NULL_RTX))
2018 && !loop_invariant_p (loop, XEXP (tem, 0)))
2019 remove_note (copy, tem);
2021 #ifdef HAVE_cc0
2022 /* If this insn is setting CC0, it may need to look at
2023 the insn that uses CC0 to see what type of insn it is.
2024 In that case, the call to recog via validate_change will
2025 fail. So don't substitute constants here. Instead,
2026 do it when we emit the following insn.
2028 For example, see the pyr.md file. That machine has signed and
2029 unsigned compares. The compare patterns must check the
2030 following branch insn to see which what kind of compare to
2031 emit.
2033 If the previous insn set CC0, substitute constants on it as
2034 well. */
2035 if (sets_cc0_p (PATTERN (copy)) != 0)
2036 cc0_insn = copy;
2037 else
2039 if (cc0_insn)
2040 try_constants (cc0_insn, map);
2041 cc0_insn = 0;
2042 try_constants (copy, map);
2044 #else
2045 try_constants (copy, map);
2046 #endif
2048 /* Make split induction variable constants `permanent' since we
2049 know there are no backward branches across iteration variable
2050 settings which would invalidate this. */
2051 if (dest_reg_was_split)
2053 int regno = REGNO (SET_DEST (set));
2055 if ((size_t) regno < VARRAY_SIZE (map->const_equiv_varray)
2056 && (VARRAY_CONST_EQUIV (map->const_equiv_varray, regno).age
2057 == map->const_age))
2058 VARRAY_CONST_EQUIV (map->const_equiv_varray, regno).age = -1;
2060 break;
2062 case JUMP_INSN:
2063 pattern = copy_rtx_and_substitute (PATTERN (insn), map, 0);
2064 copy = emit_jump_insn (pattern);
2065 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2066 INSN_LOCATOR (copy) = INSN_LOCATOR (insn);
2068 if (JUMP_LABEL (insn))
2070 JUMP_LABEL (copy) = get_label_from_map (map,
2071 CODE_LABEL_NUMBER
2072 (JUMP_LABEL (insn)));
2073 LABEL_NUSES (JUMP_LABEL (copy))++;
2075 if (JUMP_LABEL (insn) == start_label && insn == copy_end
2076 && ! last_iteration)
2079 /* This is a branch to the beginning of the loop; this is the
2080 last insn being copied; and this is not the last iteration.
2081 In this case, we want to change the original fall through
2082 case to be a branch past the end of the loop, and the
2083 original jump label case to fall_through. */
2085 if (!invert_jump (copy, exit_label, 0))
2087 rtx jmp;
2088 rtx lab = gen_label_rtx ();
2089 /* Can't do it by reversing the jump (probably because we
2090 couldn't reverse the conditions), so emit a new
2091 jump_insn after COPY, and redirect the jump around
2092 that. */
2093 jmp = emit_jump_insn_after (gen_jump (exit_label), copy);
2094 JUMP_LABEL (jmp) = exit_label;
2095 LABEL_NUSES (exit_label)++;
2096 jmp = emit_barrier_after (jmp);
2097 emit_label_after (lab, jmp);
2098 LABEL_NUSES (lab) = 0;
2099 if (!redirect_jump (copy, lab, 0))
2100 abort ();
2104 #ifdef HAVE_cc0
2105 if (cc0_insn)
2106 try_constants (cc0_insn, map);
2107 cc0_insn = 0;
2108 #endif
2109 try_constants (copy, map);
2111 /* Set the jump label of COPY correctly to avoid problems with
2112 later passes of unroll_loop, if INSN had jump label set. */
2113 if (JUMP_LABEL (insn))
2115 rtx label = 0;
2117 /* Can't use the label_map for every insn, since this may be
2118 the backward branch, and hence the label was not mapped. */
2119 if ((set = single_set (copy)))
2121 tem = SET_SRC (set);
2122 if (GET_CODE (tem) == LABEL_REF)
2123 label = XEXP (tem, 0);
2124 else if (GET_CODE (tem) == IF_THEN_ELSE)
2126 if (XEXP (tem, 1) != pc_rtx)
2127 label = XEXP (XEXP (tem, 1), 0);
2128 else
2129 label = XEXP (XEXP (tem, 2), 0);
2133 if (label && GET_CODE (label) == CODE_LABEL)
2134 JUMP_LABEL (copy) = label;
2135 else
2137 /* An unrecognizable jump insn, probably the entry jump
2138 for a switch statement. This label must have been mapped,
2139 so just use the label_map to get the new jump label. */
2140 JUMP_LABEL (copy)
2141 = get_label_from_map (map,
2142 CODE_LABEL_NUMBER (JUMP_LABEL (insn)));
2145 /* If this is a non-local jump, then must increase the label
2146 use count so that the label will not be deleted when the
2147 original jump is deleted. */
2148 LABEL_NUSES (JUMP_LABEL (copy))++;
2150 else if (GET_CODE (PATTERN (copy)) == ADDR_VEC
2151 || GET_CODE (PATTERN (copy)) == ADDR_DIFF_VEC)
2153 rtx pat = PATTERN (copy);
2154 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
2155 int len = XVECLEN (pat, diff_vec_p);
2156 int i;
2158 for (i = 0; i < len; i++)
2159 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))++;
2162 /* If this used to be a conditional jump insn but whose branch
2163 direction is now known, we must do something special. */
2164 if (any_condjump_p (insn) && onlyjump_p (insn) && map->last_pc_value)
2166 #ifdef HAVE_cc0
2167 /* If the previous insn set cc0 for us, delete it. */
2168 if (only_sets_cc0_p (PREV_INSN (copy)))
2169 delete_related_insns (PREV_INSN (copy));
2170 #endif
2172 /* If this is now a no-op, delete it. */
2173 if (map->last_pc_value == pc_rtx)
2175 delete_insn (copy);
2176 copy = 0;
2178 else
2179 /* Otherwise, this is unconditional jump so we must put a
2180 BARRIER after it. We could do some dead code elimination
2181 here, but jump.c will do it just as well. */
2182 emit_barrier ();
2184 break;
2186 case CALL_INSN:
2187 pattern = copy_rtx_and_substitute (PATTERN (insn), map, 0);
2188 copy = emit_call_insn (pattern);
2189 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2190 INSN_LOCATOR (copy) = INSN_LOCATOR (insn);
2191 SIBLING_CALL_P (copy) = SIBLING_CALL_P (insn);
2192 CONST_OR_PURE_CALL_P (copy) = CONST_OR_PURE_CALL_P (insn);
2194 /* Because the USAGE information potentially contains objects other
2195 than hard registers, we need to copy it. */
2196 CALL_INSN_FUNCTION_USAGE (copy)
2197 = copy_rtx_and_substitute (CALL_INSN_FUNCTION_USAGE (insn),
2198 map, 0);
2200 #ifdef HAVE_cc0
2201 if (cc0_insn)
2202 try_constants (cc0_insn, map);
2203 cc0_insn = 0;
2204 #endif
2205 try_constants (copy, map);
2207 /* Be lazy and assume CALL_INSNs clobber all hard registers. */
2208 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2209 VARRAY_CONST_EQUIV (map->const_equiv_varray, i).rtx = 0;
2210 break;
2212 case CODE_LABEL:
2213 /* If this is the loop start label, then we don't need to emit a
2214 copy of this label since no one will use it. */
2216 if (insn != start_label)
2218 copy = emit_label (get_label_from_map (map,
2219 CODE_LABEL_NUMBER (insn)));
2220 map->const_age++;
2222 break;
2224 case BARRIER:
2225 copy = emit_barrier ();
2226 break;
2228 case NOTE:
2229 /* VTOP and CONT notes are valid only before the loop exit test.
2230 If placed anywhere else, loop may generate bad code. */
2231 /* BASIC_BLOCK notes exist to stabilize basic block structures with
2232 the associated rtl. We do not want to share the structure in
2233 this new block. */
2235 if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
2236 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED_LABEL
2237 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK
2238 && ((NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP
2239 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_CONT)
2240 || (last_iteration
2241 && unroll_type != UNROLL_COMPLETELY)))
2242 copy = emit_note_copy (insn);
2243 else
2244 copy = 0;
2245 break;
2247 default:
2248 abort ();
2251 map->insn_map[INSN_UID (insn)] = copy;
2253 while (insn != copy_end);
2255 /* Now finish coping the REG_NOTES. */
2256 insn = copy_start;
2259 insn = NEXT_INSN (insn);
2260 if ((GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
2261 || GET_CODE (insn) == CALL_INSN)
2262 && map->insn_map[INSN_UID (insn)])
2263 final_reg_note_copy (&REG_NOTES (map->insn_map[INSN_UID (insn)]), map);
2265 while (insn != copy_end);
2267 /* There may be notes between copy_notes_from and loop_end. Emit a copy of
2268 each of these notes here, since there may be some important ones, such as
2269 NOTE_INSN_BLOCK_END notes, in this group. We don't do this on the last
2270 iteration, because the original notes won't be deleted.
2272 We can't use insert_before here, because when from preconditioning,
2273 insert_before points before the loop. We can't use copy_end, because
2274 there may be insns already inserted after it (which we don't want to
2275 copy) when not from preconditioning code. */
2277 if (! last_iteration)
2279 for (insn = copy_notes_from; insn != loop_end; insn = NEXT_INSN (insn))
2281 /* VTOP notes are valid only before the loop exit test.
2282 If placed anywhere else, loop may generate bad code.
2283 Although COPY_NOTES_FROM will be at most one or two (for cc0)
2284 instructions before the last insn in the loop, COPY_NOTES_FROM
2285 can be a NOTE_INSN_LOOP_CONT note if there is no VTOP note,
2286 as in a do .. while loop. */
2287 if (GET_CODE (insn) == NOTE
2288 && ((NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
2289 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK
2290 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP
2291 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_CONT)))
2292 emit_note_copy (insn);
2296 if (final_label && LABEL_NUSES (final_label) > 0)
2297 emit_label (final_label);
2299 tem = get_insns ();
2300 end_sequence ();
2301 loop_insn_emit_before (loop, 0, insert_before, tem);
2304 /* Emit an insn, using the expand_binop to ensure that a valid insn is
2305 emitted. This will correctly handle the case where the increment value
2306 won't fit in the immediate field of a PLUS insns. */
2308 void
2309 emit_unrolled_add (rtx dest_reg, rtx src_reg, rtx increment)
2311 rtx result;
2313 result = expand_simple_binop (GET_MODE (dest_reg), PLUS, src_reg, increment,
2314 dest_reg, 0, OPTAB_LIB_WIDEN);
2316 if (dest_reg != result)
2317 emit_move_insn (dest_reg, result);
2320 /* Searches the insns between INSN and LOOP->END. Returns 1 if there
2321 is a backward branch in that range that branches to somewhere between
2322 LOOP->START and INSN. Returns 0 otherwise. */
2324 /* ??? This is quadratic algorithm. Could be rewritten to be linear.
2325 In practice, this is not a problem, because this function is seldom called,
2326 and uses a negligible amount of CPU time on average. */
2329 back_branch_in_range_p (const struct loop *loop, rtx insn)
2331 rtx p, q, target_insn;
2332 rtx loop_start = loop->start;
2333 rtx loop_end = loop->end;
2334 rtx orig_loop_end = loop->end;
2336 /* Stop before we get to the backward branch at the end of the loop. */
2337 loop_end = prev_nonnote_insn (loop_end);
2338 if (GET_CODE (loop_end) == BARRIER)
2339 loop_end = PREV_INSN (loop_end);
2341 /* Check in case insn has been deleted, search forward for first non
2342 deleted insn following it. */
2343 while (INSN_DELETED_P (insn))
2344 insn = NEXT_INSN (insn);
2346 /* Check for the case where insn is the last insn in the loop. Deal
2347 with the case where INSN was a deleted loop test insn, in which case
2348 it will now be the NOTE_LOOP_END. */
2349 if (insn == loop_end || insn == orig_loop_end)
2350 return 0;
2352 for (p = NEXT_INSN (insn); p != loop_end; p = NEXT_INSN (p))
2354 if (GET_CODE (p) == JUMP_INSN)
2356 target_insn = JUMP_LABEL (p);
2358 /* Search from loop_start to insn, to see if one of them is
2359 the target_insn. We can't use INSN_LUID comparisons here,
2360 since insn may not have an LUID entry. */
2361 for (q = loop_start; q != insn; q = NEXT_INSN (q))
2362 if (q == target_insn)
2363 return 1;
2367 return 0;
2370 /* Try to generate the simplest rtx for the expression
2371 (PLUS (MULT mult1 mult2) add1). This is used to calculate the initial
2372 value of giv's. */
2374 static rtx
2375 fold_rtx_mult_add (rtx mult1, rtx mult2, rtx add1, enum machine_mode mode)
2377 rtx temp, mult_res;
2378 rtx result;
2380 /* The modes must all be the same. This should always be true. For now,
2381 check to make sure. */
2382 if ((GET_MODE (mult1) != mode && GET_MODE (mult1) != VOIDmode)
2383 || (GET_MODE (mult2) != mode && GET_MODE (mult2) != VOIDmode)
2384 || (GET_MODE (add1) != mode && GET_MODE (add1) != VOIDmode))
2385 abort ();
2387 /* Ensure that if at least one of mult1/mult2 are constant, then mult2
2388 will be a constant. */
2389 if (GET_CODE (mult1) == CONST_INT)
2391 temp = mult2;
2392 mult2 = mult1;
2393 mult1 = temp;
2396 mult_res = simplify_binary_operation (MULT, mode, mult1, mult2);
2397 if (! mult_res)
2398 mult_res = gen_rtx_MULT (mode, mult1, mult2);
2400 /* Again, put the constant second. */
2401 if (GET_CODE (add1) == CONST_INT)
2403 temp = add1;
2404 add1 = mult_res;
2405 mult_res = temp;
2408 result = simplify_binary_operation (PLUS, mode, add1, mult_res);
2409 if (! result)
2410 result = gen_rtx_PLUS (mode, add1, mult_res);
2412 return result;
2415 /* Searches the list of induction struct's for the biv BL, to try to calculate
2416 the total increment value for one iteration of the loop as a constant.
2418 Returns the increment value as an rtx, simplified as much as possible,
2419 if it can be calculated. Otherwise, returns 0. */
2422 biv_total_increment (const struct iv_class *bl)
2424 struct induction *v;
2425 rtx result;
2427 /* For increment, must check every instruction that sets it. Each
2428 instruction must be executed only once each time through the loop.
2429 To verify this, we check that the insn is always executed, and that
2430 there are no backward branches after the insn that branch to before it.
2431 Also, the insn must have a mult_val of one (to make sure it really is
2432 an increment). */
2434 result = const0_rtx;
2435 for (v = bl->biv; v; v = v->next_iv)
2437 if (v->always_computable && v->mult_val == const1_rtx
2438 && ! v->maybe_multiple
2439 && SCALAR_INT_MODE_P (v->mode))
2440 result = fold_rtx_mult_add (result, const1_rtx, v->add_val, v->mode);
2441 else
2442 return 0;
2445 return result;
2448 /* For each biv and giv, determine whether it can be safely split into
2449 a different variable for each unrolled copy of the loop body. If it
2450 is safe to split, then indicate that by saving some useful info
2451 in the splittable_regs array.
2453 If the loop is being completely unrolled, then splittable_regs will hold
2454 the current value of the induction variable while the loop is unrolled.
2455 It must be set to the initial value of the induction variable here.
2456 Otherwise, splittable_regs will hold the difference between the current
2457 value of the induction variable and the value the induction variable had
2458 at the top of the loop. It must be set to the value 0 here.
2460 Returns the total number of instructions that set registers that are
2461 splittable. */
2463 /* ?? If the loop is only unrolled twice, then most of the restrictions to
2464 constant values are unnecessary, since we can easily calculate increment
2465 values in this case even if nothing is constant. The increment value
2466 should not involve a multiply however. */
2468 /* ?? Even if the biv/giv increment values aren't constant, it may still
2469 be beneficial to split the variable if the loop is only unrolled a few
2470 times, since multiplies by small integers (1,2,3,4) are very cheap. */
2472 static int
2473 find_splittable_regs (const struct loop *loop,
2474 enum unroll_types unroll_type, int unroll_number)
2476 struct loop_ivs *ivs = LOOP_IVS (loop);
2477 struct iv_class *bl;
2478 struct induction *v;
2479 rtx increment, tem;
2480 rtx biv_final_value;
2481 int biv_splittable;
2482 int result = 0;
2484 for (bl = ivs->list; bl; bl = bl->next)
2486 /* Biv_total_increment must return a constant value,
2487 otherwise we can not calculate the split values. */
2489 increment = biv_total_increment (bl);
2490 if (! increment || GET_CODE (increment) != CONST_INT)
2491 continue;
2493 /* The loop must be unrolled completely, or else have a known number
2494 of iterations and only one exit, or else the biv must be dead
2495 outside the loop, or else the final value must be known. Otherwise,
2496 it is unsafe to split the biv since it may not have the proper
2497 value on loop exit. */
2499 /* loop_number_exit_count is nonzero if the loop has an exit other than
2500 a fall through at the end. */
2502 biv_splittable = 1;
2503 biv_final_value = 0;
2504 if (unroll_type != UNROLL_COMPLETELY
2505 && (loop->exit_count || unroll_type == UNROLL_NAIVE)
2506 && (REGNO_LAST_LUID (bl->regno) >= INSN_LUID (loop->end)
2507 || ! bl->init_insn
2508 || INSN_UID (bl->init_insn) >= max_uid_for_loop
2509 || (REGNO_FIRST_LUID (bl->regno)
2510 < INSN_LUID (bl->init_insn))
2511 || reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
2512 && ! (biv_final_value = final_biv_value (loop, bl)))
2513 biv_splittable = 0;
2515 /* If any of the insns setting the BIV don't do so with a simple
2516 PLUS, we don't know how to split it. */
2517 for (v = bl->biv; biv_splittable && v; v = v->next_iv)
2518 if ((tem = single_set (v->insn)) == 0
2519 || GET_CODE (SET_DEST (tem)) != REG
2520 || REGNO (SET_DEST (tem)) != bl->regno
2521 || GET_CODE (SET_SRC (tem)) != PLUS)
2522 biv_splittable = 0;
2524 /* If final value is nonzero, then must emit an instruction which sets
2525 the value of the biv to the proper value. This is done after
2526 handling all of the givs, since some of them may need to use the
2527 biv's value in their initialization code. */
2529 /* This biv is splittable. If completely unrolling the loop, save
2530 the biv's initial value. Otherwise, save the constant zero. */
2532 if (biv_splittable == 1)
2534 if (unroll_type == UNROLL_COMPLETELY)
2536 /* If the initial value of the biv is itself (i.e. it is too
2537 complicated for strength_reduce to compute), or is a hard
2538 register, or it isn't invariant, then we must create a new
2539 pseudo reg to hold the initial value of the biv. */
2541 if (GET_CODE (bl->initial_value) == REG
2542 && (REGNO (bl->initial_value) == bl->regno
2543 || REGNO (bl->initial_value) < FIRST_PSEUDO_REGISTER
2544 || ! loop_invariant_p (loop, bl->initial_value)))
2546 rtx tem = gen_reg_rtx (bl->biv->mode);
2548 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2549 loop_insn_hoist (loop,
2550 gen_move_insn (tem, bl->biv->src_reg));
2552 if (loop_dump_stream)
2553 fprintf (loop_dump_stream,
2554 "Biv %d initial value remapped to %d.\n",
2555 bl->regno, REGNO (tem));
2557 splittable_regs[bl->regno] = tem;
2559 else
2560 splittable_regs[bl->regno] = bl->initial_value;
2562 else
2563 splittable_regs[bl->regno] = const0_rtx;
2565 /* Save the number of instructions that modify the biv, so that
2566 we can treat the last one specially. */
2568 splittable_regs_updates[bl->regno] = bl->biv_count;
2569 result += bl->biv_count;
2571 if (loop_dump_stream)
2572 fprintf (loop_dump_stream,
2573 "Biv %d safe to split.\n", bl->regno);
2576 /* Check every giv that depends on this biv to see whether it is
2577 splittable also. Even if the biv isn't splittable, givs which
2578 depend on it may be splittable if the biv is live outside the
2579 loop, and the givs aren't. */
2581 result += find_splittable_givs (loop, bl, unroll_type, increment,
2582 unroll_number);
2584 /* If final value is nonzero, then must emit an instruction which sets
2585 the value of the biv to the proper value. This is done after
2586 handling all of the givs, since some of them may need to use the
2587 biv's value in their initialization code. */
2588 if (biv_final_value)
2590 /* If the loop has multiple exits, emit the insns before the
2591 loop to ensure that it will always be executed no matter
2592 how the loop exits. Otherwise emit the insn after the loop,
2593 since this is slightly more efficient. */
2594 if (! loop->exit_count)
2595 loop_insn_sink (loop, gen_move_insn (bl->biv->src_reg,
2596 biv_final_value));
2597 else
2599 /* Create a new register to hold the value of the biv, and then
2600 set the biv to its final value before the loop start. The biv
2601 is set to its final value before loop start to ensure that
2602 this insn will always be executed, no matter how the loop
2603 exits. */
2604 rtx tem = gen_reg_rtx (bl->biv->mode);
2605 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2607 loop_insn_hoist (loop, gen_move_insn (tem, bl->biv->src_reg));
2608 loop_insn_hoist (loop, gen_move_insn (bl->biv->src_reg,
2609 biv_final_value));
2611 if (loop_dump_stream)
2612 fprintf (loop_dump_stream, "Biv %d mapped to %d for split.\n",
2613 REGNO (bl->biv->src_reg), REGNO (tem));
2615 /* Set up the mapping from the original biv register to the new
2616 register. */
2617 bl->biv->src_reg = tem;
2621 return result;
2624 /* For every giv based on the biv BL, check to determine whether it is
2625 splittable. This is a subroutine to find_splittable_regs ().
2627 Return the number of instructions that set splittable registers. */
2629 static int
2630 find_splittable_givs (const struct loop *loop, struct iv_class *bl,
2631 enum unroll_types unroll_type, rtx increment,
2632 int unroll_number ATTRIBUTE_UNUSED)
2634 struct loop_ivs *ivs = LOOP_IVS (loop);
2635 struct induction *v, *v2;
2636 rtx final_value;
2637 rtx tem;
2638 int result = 0;
2640 /* Scan the list of givs, and set the same_insn field when there are
2641 multiple identical givs in the same insn. */
2642 for (v = bl->giv; v; v = v->next_iv)
2643 for (v2 = v->next_iv; v2; v2 = v2->next_iv)
2644 if (v->insn == v2->insn && rtx_equal_p (v->new_reg, v2->new_reg)
2645 && ! v2->same_insn)
2646 v2->same_insn = v;
2648 for (v = bl->giv; v; v = v->next_iv)
2650 rtx giv_inc, value;
2652 /* Only split the giv if it has already been reduced, or if the loop is
2653 being completely unrolled. */
2654 if (unroll_type != UNROLL_COMPLETELY && v->ignore)
2655 continue;
2657 /* The giv can be split if the insn that sets the giv is executed once
2658 and only once on every iteration of the loop. */
2659 /* An address giv can always be split. v->insn is just a use not a set,
2660 and hence it does not matter whether it is always executed. All that
2661 matters is that all the biv increments are always executed, and we
2662 won't reach here if they aren't. */
2663 if (v->giv_type != DEST_ADDR
2664 && (! v->always_computable
2665 || back_branch_in_range_p (loop, v->insn)))
2666 continue;
2668 /* The giv increment value must be a constant. */
2669 giv_inc = fold_rtx_mult_add (v->mult_val, increment, const0_rtx,
2670 v->mode);
2671 if (! giv_inc || GET_CODE (giv_inc) != CONST_INT)
2672 continue;
2674 /* The loop must be unrolled completely, or else have a known number of
2675 iterations and only one exit, or else the giv must be dead outside
2676 the loop, or else the final value of the giv must be known.
2677 Otherwise, it is not safe to split the giv since it may not have the
2678 proper value on loop exit. */
2680 /* The used outside loop test will fail for DEST_ADDR givs. They are
2681 never used outside the loop anyways, so it is always safe to split a
2682 DEST_ADDR giv. */
2684 final_value = 0;
2685 if (unroll_type != UNROLL_COMPLETELY
2686 && (loop->exit_count || unroll_type == UNROLL_NAIVE)
2687 && v->giv_type != DEST_ADDR
2688 /* The next part is true if the pseudo is used outside the loop.
2689 We assume that this is true for any pseudo created after loop
2690 starts, because we don't have a reg_n_info entry for them. */
2691 && (REGNO (v->dest_reg) >= max_reg_before_loop
2692 || (REGNO_FIRST_UID (REGNO (v->dest_reg)) != INSN_UID (v->insn)
2693 /* Check for the case where the pseudo is set by a shift/add
2694 sequence, in which case the first insn setting the pseudo
2695 is the first insn of the shift/add sequence. */
2696 && (! (tem = find_reg_note (v->insn, REG_RETVAL, NULL_RTX))
2697 || (REGNO_FIRST_UID (REGNO (v->dest_reg))
2698 != INSN_UID (XEXP (tem, 0)))))
2699 /* Line above always fails if INSN was moved by loop opt. */
2700 || (REGNO_LAST_LUID (REGNO (v->dest_reg))
2701 >= INSN_LUID (loop->end)))
2702 && ! (final_value = v->final_value))
2703 continue;
2705 #if 0
2706 /* Currently, non-reduced/final-value givs are never split. */
2707 /* Should emit insns after the loop if possible, as the biv final value
2708 code below does. */
2710 /* If the final value is nonzero, and the giv has not been reduced,
2711 then must emit an instruction to set the final value. */
2712 if (final_value && !v->new_reg)
2714 /* Create a new register to hold the value of the giv, and then set
2715 the giv to its final value before the loop start. The giv is set
2716 to its final value before loop start to ensure that this insn
2717 will always be executed, no matter how we exit. */
2718 tem = gen_reg_rtx (v->mode);
2719 loop_insn_hoist (loop, gen_move_insn (tem, v->dest_reg));
2720 loop_insn_hoist (loop, gen_move_insn (v->dest_reg, final_value));
2722 if (loop_dump_stream)
2723 fprintf (loop_dump_stream, "Giv %d mapped to %d for split.\n",
2724 REGNO (v->dest_reg), REGNO (tem));
2726 v->src_reg = tem;
2728 #endif
2730 /* This giv is splittable. If completely unrolling the loop, save the
2731 giv's initial value. Otherwise, save the constant zero for it. */
2733 if (unroll_type == UNROLL_COMPLETELY)
2735 /* It is not safe to use bl->initial_value here, because it may not
2736 be invariant. It is safe to use the initial value stored in
2737 the splittable_regs array if it is set. In rare cases, it won't
2738 be set, so then we do exactly the same thing as
2739 find_splittable_regs does to get a safe value. */
2740 rtx biv_initial_value;
2742 if (splittable_regs[bl->regno])
2743 biv_initial_value = splittable_regs[bl->regno];
2744 else if (GET_CODE (bl->initial_value) != REG
2745 || (REGNO (bl->initial_value) != bl->regno
2746 && REGNO (bl->initial_value) >= FIRST_PSEUDO_REGISTER))
2747 biv_initial_value = bl->initial_value;
2748 else
2750 rtx tem = gen_reg_rtx (bl->biv->mode);
2752 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2753 loop_insn_hoist (loop, gen_move_insn (tem, bl->biv->src_reg));
2754 biv_initial_value = tem;
2756 biv_initial_value = extend_value_for_giv (v, biv_initial_value);
2757 value = fold_rtx_mult_add (v->mult_val, biv_initial_value,
2758 v->add_val, v->mode);
2760 else
2761 value = const0_rtx;
2763 if (v->new_reg)
2765 /* If a giv was combined with another giv, then we can only split
2766 this giv if the giv it was combined with was reduced. This
2767 is because the value of v->new_reg is meaningless in this
2768 case. */
2769 if (v->same && ! v->same->new_reg)
2771 if (loop_dump_stream)
2772 fprintf (loop_dump_stream,
2773 "giv combined with unreduced giv not split.\n");
2774 continue;
2776 /* If the giv is an address destination, it could be something other
2777 than a simple register, these have to be treated differently. */
2778 else if (v->giv_type == DEST_REG)
2780 /* If value is not a constant, register, or register plus
2781 constant, then compute its value into a register before
2782 loop start. This prevents invalid rtx sharing, and should
2783 generate better code. We can use bl->initial_value here
2784 instead of splittable_regs[bl->regno] because this code
2785 is going before the loop start. */
2786 if (unroll_type == UNROLL_COMPLETELY
2787 && GET_CODE (value) != CONST_INT
2788 && GET_CODE (value) != REG
2789 && (GET_CODE (value) != PLUS
2790 || GET_CODE (XEXP (value, 0)) != REG
2791 || GET_CODE (XEXP (value, 1)) != CONST_INT))
2793 rtx tem = gen_reg_rtx (v->mode);
2794 record_base_value (REGNO (tem), v->add_val, 0);
2795 loop_iv_add_mult_hoist (loop, bl->initial_value, v->mult_val,
2796 v->add_val, tem);
2797 value = tem;
2800 splittable_regs[reg_or_subregno (v->new_reg)] = value;
2802 else
2803 continue;
2805 else
2807 #if 0
2808 /* Currently, unreduced giv's can't be split. This is not too much
2809 of a problem since unreduced giv's are not live across loop
2810 iterations anyways. When unrolling a loop completely though,
2811 it makes sense to reduce&split givs when possible, as this will
2812 result in simpler instructions, and will not require that a reg
2813 be live across loop iterations. */
2815 splittable_regs[REGNO (v->dest_reg)] = value;
2816 fprintf (stderr, "Giv %d at insn %d not reduced\n",
2817 REGNO (v->dest_reg), INSN_UID (v->insn));
2818 #else
2819 continue;
2820 #endif
2823 /* Unreduced givs are only updated once by definition. Reduced givs
2824 are updated as many times as their biv is. Mark it so if this is
2825 a splittable register. Don't need to do anything for address givs
2826 where this may not be a register. */
2828 if (GET_CODE (v->new_reg) == REG)
2830 int count = 1;
2831 if (! v->ignore)
2832 count = REG_IV_CLASS (ivs, REGNO (v->src_reg))->biv_count;
2834 splittable_regs_updates[reg_or_subregno (v->new_reg)] = count;
2837 result++;
2839 if (loop_dump_stream)
2841 int regnum;
2843 if (GET_CODE (v->dest_reg) == CONST_INT)
2844 regnum = -1;
2845 else if (GET_CODE (v->dest_reg) != REG)
2846 regnum = REGNO (XEXP (v->dest_reg, 0));
2847 else
2848 regnum = REGNO (v->dest_reg);
2849 fprintf (loop_dump_stream, "Giv %d at insn %d safe to split.\n",
2850 regnum, INSN_UID (v->insn));
2854 return result;
2857 /* Try to prove that the register is dead after the loop exits. Trace every
2858 loop exit looking for an insn that will always be executed, which sets
2859 the register to some value, and appears before the first use of the register
2860 is found. If successful, then return 1, otherwise return 0. */
2862 /* ?? Could be made more intelligent in the handling of jumps, so that
2863 it can search past if statements and other similar structures. */
2865 static int
2866 reg_dead_after_loop (const struct loop *loop, rtx reg)
2868 rtx insn, label;
2869 enum rtx_code code;
2870 int jump_count = 0;
2871 int label_count = 0;
2873 /* In addition to checking all exits of this loop, we must also check
2874 all exits of inner nested loops that would exit this loop. We don't
2875 have any way to identify those, so we just give up if there are any
2876 such inner loop exits. */
2878 for (label = loop->exit_labels; label; label = LABEL_NEXTREF (label))
2879 label_count++;
2881 if (label_count != loop->exit_count)
2882 return 0;
2884 /* HACK: Must also search the loop fall through exit, create a label_ref
2885 here which points to the loop->end, and append the loop_number_exit_labels
2886 list to it. */
2887 label = gen_rtx_LABEL_REF (VOIDmode, loop->end);
2888 LABEL_NEXTREF (label) = loop->exit_labels;
2890 for (; label; label = LABEL_NEXTREF (label))
2892 /* Succeed if find an insn which sets the biv or if reach end of
2893 function. Fail if find an insn that uses the biv, or if come to
2894 a conditional jump. */
2896 insn = NEXT_INSN (XEXP (label, 0));
2897 while (insn)
2899 code = GET_CODE (insn);
2900 if (GET_RTX_CLASS (code) == 'i')
2902 rtx set, note;
2904 if (reg_referenced_p (reg, PATTERN (insn)))
2905 return 0;
2907 note = find_reg_equal_equiv_note (insn);
2908 if (note && reg_overlap_mentioned_p (reg, XEXP (note, 0)))
2909 return 0;
2911 set = single_set (insn);
2912 if (set && rtx_equal_p (SET_DEST (set), reg))
2913 break;
2916 if (code == JUMP_INSN)
2918 if (GET_CODE (PATTERN (insn)) == RETURN)
2919 break;
2920 else if (!any_uncondjump_p (insn)
2921 /* Prevent infinite loop following infinite loops. */
2922 || jump_count++ > 20)
2923 return 0;
2924 else
2925 insn = JUMP_LABEL (insn);
2928 insn = NEXT_INSN (insn);
2932 /* Success, the register is dead on all loop exits. */
2933 return 1;
2936 /* Try to calculate the final value of the biv, the value it will have at
2937 the end of the loop. If we can do it, return that value. */
2940 final_biv_value (const struct loop *loop, struct iv_class *bl)
2942 unsigned HOST_WIDE_INT n_iterations = LOOP_INFO (loop)->n_iterations;
2943 rtx increment, tem;
2945 /* ??? This only works for MODE_INT biv's. Reject all others for now. */
2947 if (GET_MODE_CLASS (bl->biv->mode) != MODE_INT)
2948 return 0;
2950 /* The final value for reversed bivs must be calculated differently than
2951 for ordinary bivs. In this case, there is already an insn after the
2952 loop which sets this biv's final value (if necessary), and there are
2953 no other loop exits, so we can return any value. */
2954 if (bl->reversed)
2956 if (loop_dump_stream)
2957 fprintf (loop_dump_stream,
2958 "Final biv value for %d, reversed biv.\n", bl->regno);
2960 return const0_rtx;
2963 /* Try to calculate the final value as initial value + (number of iterations
2964 * increment). For this to work, increment must be invariant, the only
2965 exit from the loop must be the fall through at the bottom (otherwise
2966 it may not have its final value when the loop exits), and the initial
2967 value of the biv must be invariant. */
2969 if (n_iterations != 0
2970 && ! loop->exit_count
2971 && loop_invariant_p (loop, bl->initial_value))
2973 increment = biv_total_increment (bl);
2975 if (increment && loop_invariant_p (loop, increment))
2977 /* Can calculate the loop exit value, emit insns after loop
2978 end to calculate this value into a temporary register in
2979 case it is needed later. */
2981 tem = gen_reg_rtx (bl->biv->mode);
2982 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2983 loop_iv_add_mult_sink (loop, increment, GEN_INT (n_iterations),
2984 bl->initial_value, tem);
2986 if (loop_dump_stream)
2987 fprintf (loop_dump_stream,
2988 "Final biv value for %d, calculated.\n", bl->regno);
2990 return tem;
2994 /* Check to see if the biv is dead at all loop exits. */
2995 if (reg_dead_after_loop (loop, bl->biv->src_reg))
2997 if (loop_dump_stream)
2998 fprintf (loop_dump_stream,
2999 "Final biv value for %d, biv dead after loop exit.\n",
3000 bl->regno);
3002 return const0_rtx;
3005 return 0;
3008 /* Try to calculate the final value of the giv, the value it will have at
3009 the end of the loop. If we can do it, return that value. */
3012 final_giv_value (const struct loop *loop, struct induction *v)
3014 struct loop_ivs *ivs = LOOP_IVS (loop);
3015 struct iv_class *bl;
3016 rtx insn;
3017 rtx increment, tem;
3018 rtx seq;
3019 rtx loop_end = loop->end;
3020 unsigned HOST_WIDE_INT n_iterations = LOOP_INFO (loop)->n_iterations;
3022 bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
3024 /* The final value for givs which depend on reversed bivs must be calculated
3025 differently than for ordinary givs. In this case, there is already an
3026 insn after the loop which sets this giv's final value (if necessary),
3027 and there are no other loop exits, so we can return any value. */
3028 if (bl->reversed)
3030 if (loop_dump_stream)
3031 fprintf (loop_dump_stream,
3032 "Final giv value for %d, depends on reversed biv\n",
3033 REGNO (v->dest_reg));
3034 return const0_rtx;
3037 /* Try to calculate the final value as a function of the biv it depends
3038 upon. The only exit from the loop must be the fall through at the bottom
3039 and the insn that sets the giv must be executed on every iteration
3040 (otherwise the giv may not have its final value when the loop exits). */
3042 /* ??? Can calculate the final giv value by subtracting off the
3043 extra biv increments times the giv's mult_val. The loop must have
3044 only one exit for this to work, but the loop iterations does not need
3045 to be known. */
3047 if (n_iterations != 0
3048 && ! loop->exit_count
3049 && v->always_executed)
3051 /* ?? It is tempting to use the biv's value here since these insns will
3052 be put after the loop, and hence the biv will have its final value
3053 then. However, this fails if the biv is subsequently eliminated.
3054 Perhaps determine whether biv's are eliminable before trying to
3055 determine whether giv's are replaceable so that we can use the
3056 biv value here if it is not eliminable. */
3058 /* We are emitting code after the end of the loop, so we must make
3059 sure that bl->initial_value is still valid then. It will still
3060 be valid if it is invariant. */
3062 increment = biv_total_increment (bl);
3064 if (increment && loop_invariant_p (loop, increment)
3065 && loop_invariant_p (loop, bl->initial_value))
3067 /* Can calculate the loop exit value of its biv as
3068 (n_iterations * increment) + initial_value */
3070 /* The loop exit value of the giv is then
3071 (final_biv_value - extra increments) * mult_val + add_val.
3072 The extra increments are any increments to the biv which
3073 occur in the loop after the giv's value is calculated.
3074 We must search from the insn that sets the giv to the end
3075 of the loop to calculate this value. */
3077 /* Put the final biv value in tem. */
3078 tem = gen_reg_rtx (v->mode);
3079 record_base_value (REGNO (tem), bl->biv->add_val, 0);
3080 loop_iv_add_mult_sink (loop, extend_value_for_giv (v, increment),
3081 GEN_INT (n_iterations),
3082 extend_value_for_giv (v, bl->initial_value),
3083 tem);
3085 /* Subtract off extra increments as we find them. */
3086 for (insn = NEXT_INSN (v->insn); insn != loop_end;
3087 insn = NEXT_INSN (insn))
3089 struct induction *biv;
3091 for (biv = bl->biv; biv; biv = biv->next_iv)
3092 if (biv->insn == insn)
3094 start_sequence ();
3095 tem = expand_simple_binop (GET_MODE (tem), MINUS, tem,
3096 biv->add_val, NULL_RTX, 0,
3097 OPTAB_LIB_WIDEN);
3098 seq = get_insns ();
3099 end_sequence ();
3100 loop_insn_sink (loop, seq);
3104 /* Now calculate the giv's final value. */
3105 loop_iv_add_mult_sink (loop, tem, v->mult_val, v->add_val, tem);
3107 if (loop_dump_stream)
3108 fprintf (loop_dump_stream,
3109 "Final giv value for %d, calc from biv's value.\n",
3110 REGNO (v->dest_reg));
3112 return tem;
3116 /* Replaceable giv's should never reach here. */
3117 if (v->replaceable)
3118 abort ();
3120 /* Check to see if the biv is dead at all loop exits. */
3121 if (reg_dead_after_loop (loop, v->dest_reg))
3123 if (loop_dump_stream)
3124 fprintf (loop_dump_stream,
3125 "Final giv value for %d, giv dead after loop exit.\n",
3126 REGNO (v->dest_reg));
3128 return const0_rtx;
3131 return 0;
3134 /* Look back before LOOP->START for the insn that sets REG and return
3135 the equivalent constant if there is a REG_EQUAL note otherwise just
3136 the SET_SRC of REG. */
3138 static rtx
3139 loop_find_equiv_value (const struct loop *loop, rtx reg)
3141 rtx loop_start = loop->start;
3142 rtx insn, set;
3143 rtx ret;
3145 ret = reg;
3146 for (insn = PREV_INSN (loop_start); insn; insn = PREV_INSN (insn))
3148 if (GET_CODE (insn) == CODE_LABEL)
3149 break;
3151 else if (INSN_P (insn) && reg_set_p (reg, insn))
3153 /* We found the last insn before the loop that sets the register.
3154 If it sets the entire register, and has a REG_EQUAL note,
3155 then use the value of the REG_EQUAL note. */
3156 if ((set = single_set (insn))
3157 && (SET_DEST (set) == reg))
3159 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3161 /* Only use the REG_EQUAL note if it is a constant.
3162 Other things, divide in particular, will cause
3163 problems later if we use them. */
3164 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3165 && CONSTANT_P (XEXP (note, 0)))
3166 ret = XEXP (note, 0);
3167 else
3168 ret = SET_SRC (set);
3170 /* We cannot do this if it changes between the
3171 assignment and loop start though. */
3172 if (modified_between_p (ret, insn, loop_start))
3173 ret = reg;
3175 break;
3178 return ret;
3181 /* Return a simplified rtx for the expression OP - REG.
3183 REG must appear in OP, and OP must be a register or the sum of a register
3184 and a second term.
3186 Thus, the return value must be const0_rtx or the second term.
3188 The caller is responsible for verifying that REG appears in OP and OP has
3189 the proper form. */
3191 static rtx
3192 subtract_reg_term (rtx op, rtx reg)
3194 if (op == reg)
3195 return const0_rtx;
3196 if (GET_CODE (op) == PLUS)
3198 if (XEXP (op, 0) == reg)
3199 return XEXP (op, 1);
3200 else if (XEXP (op, 1) == reg)
3201 return XEXP (op, 0);
3203 /* OP does not contain REG as a term. */
3204 abort ();
3207 /* Find and return register term common to both expressions OP0 and
3208 OP1 or NULL_RTX if no such term exists. Each expression must be a
3209 REG or a PLUS of a REG. */
3211 static rtx
3212 find_common_reg_term (rtx op0, rtx op1)
3214 if ((GET_CODE (op0) == REG || GET_CODE (op0) == PLUS)
3215 && (GET_CODE (op1) == REG || GET_CODE (op1) == PLUS))
3217 rtx op00;
3218 rtx op01;
3219 rtx op10;
3220 rtx op11;
3222 if (GET_CODE (op0) == PLUS)
3223 op01 = XEXP (op0, 1), op00 = XEXP (op0, 0);
3224 else
3225 op01 = const0_rtx, op00 = op0;
3227 if (GET_CODE (op1) == PLUS)
3228 op11 = XEXP (op1, 1), op10 = XEXP (op1, 0);
3229 else
3230 op11 = const0_rtx, op10 = op1;
3232 /* Find and return common register term if present. */
3233 if (REG_P (op00) && (op00 == op10 || op00 == op11))
3234 return op00;
3235 else if (REG_P (op01) && (op01 == op10 || op01 == op11))
3236 return op01;
3239 /* No common register term found. */
3240 return NULL_RTX;
3243 /* Determine the loop iterator and calculate the number of loop
3244 iterations. Returns the exact number of loop iterations if it can
3245 be calculated, otherwise returns zero. */
3247 unsigned HOST_WIDE_INT
3248 loop_iterations (struct loop *loop)
3250 struct loop_info *loop_info = LOOP_INFO (loop);
3251 struct loop_ivs *ivs = LOOP_IVS (loop);
3252 rtx comparison, comparison_value;
3253 rtx iteration_var, initial_value, increment, final_value;
3254 enum rtx_code comparison_code;
3255 HOST_WIDE_INT inc;
3256 unsigned HOST_WIDE_INT abs_inc;
3257 unsigned HOST_WIDE_INT abs_diff;
3258 int off_by_one;
3259 int increment_dir;
3260 int unsigned_p, compare_dir, final_larger;
3261 rtx last_loop_insn;
3262 rtx reg_term;
3263 struct iv_class *bl;
3265 loop_info->n_iterations = 0;
3266 loop_info->initial_value = 0;
3267 loop_info->initial_equiv_value = 0;
3268 loop_info->comparison_value = 0;
3269 loop_info->final_value = 0;
3270 loop_info->final_equiv_value = 0;
3271 loop_info->increment = 0;
3272 loop_info->iteration_var = 0;
3273 loop_info->unroll_number = 1;
3274 loop_info->iv = 0;
3276 /* We used to use prev_nonnote_insn here, but that fails because it might
3277 accidentally get the branch for a contained loop if the branch for this
3278 loop was deleted. We can only trust branches immediately before the
3279 loop_end. */
3280 last_loop_insn = PREV_INSN (loop->end);
3282 /* ??? We should probably try harder to find the jump insn
3283 at the end of the loop. The following code assumes that
3284 the last loop insn is a jump to the top of the loop. */
3285 if (GET_CODE (last_loop_insn) != JUMP_INSN)
3287 if (loop_dump_stream)
3288 fprintf (loop_dump_stream,
3289 "Loop iterations: No final conditional branch found.\n");
3290 return 0;
3293 /* If there is a more than a single jump to the top of the loop
3294 we cannot (easily) determine the iteration count. */
3295 if (LABEL_NUSES (JUMP_LABEL (last_loop_insn)) > 1)
3297 if (loop_dump_stream)
3298 fprintf (loop_dump_stream,
3299 "Loop iterations: Loop has multiple back edges.\n");
3300 return 0;
3303 /* If there are multiple conditionalized loop exit tests, they may jump
3304 back to differing CODE_LABELs. */
3305 if (loop->top && loop->cont)
3307 rtx temp = PREV_INSN (last_loop_insn);
3311 if (GET_CODE (temp) == JUMP_INSN)
3313 /* There are some kinds of jumps we can't deal with easily. */
3314 if (JUMP_LABEL (temp) == 0)
3316 if (loop_dump_stream)
3317 fprintf
3318 (loop_dump_stream,
3319 "Loop iterations: Jump insn has null JUMP_LABEL.\n");
3320 return 0;
3323 if (/* Previous unrolling may have generated new insns not
3324 covered by the uid_luid array. */
3325 INSN_UID (JUMP_LABEL (temp)) < max_uid_for_loop
3326 /* Check if we jump back into the loop body. */
3327 && INSN_LUID (JUMP_LABEL (temp)) > INSN_LUID (loop->top)
3328 && INSN_LUID (JUMP_LABEL (temp)) < INSN_LUID (loop->cont))
3330 if (loop_dump_stream)
3331 fprintf
3332 (loop_dump_stream,
3333 "Loop iterations: Loop has multiple back edges.\n");
3334 return 0;
3338 while ((temp = PREV_INSN (temp)) != loop->cont);
3341 /* Find the iteration variable. If the last insn is a conditional
3342 branch, and the insn before tests a register value, make that the
3343 iteration variable. */
3345 comparison = get_condition_for_loop (loop, last_loop_insn);
3346 if (comparison == 0)
3348 if (loop_dump_stream)
3349 fprintf (loop_dump_stream,
3350 "Loop iterations: No final comparison found.\n");
3351 return 0;
3354 /* ??? Get_condition may switch position of induction variable and
3355 invariant register when it canonicalizes the comparison. */
3357 comparison_code = GET_CODE (comparison);
3358 iteration_var = XEXP (comparison, 0);
3359 comparison_value = XEXP (comparison, 1);
3361 if (GET_CODE (iteration_var) != REG)
3363 if (loop_dump_stream)
3364 fprintf (loop_dump_stream,
3365 "Loop iterations: Comparison not against register.\n");
3366 return 0;
3369 /* The only new registers that are created before loop iterations
3370 are givs made from biv increments or registers created by
3371 load_mems. In the latter case, it is possible that try_copy_prop
3372 will propagate a new pseudo into the old iteration register but
3373 this will be marked by having the REG_USERVAR_P bit set. */
3375 if ((unsigned) REGNO (iteration_var) >= ivs->n_regs
3376 && ! REG_USERVAR_P (iteration_var))
3377 abort ();
3379 /* Determine the initial value of the iteration variable, and the amount
3380 that it is incremented each loop. Use the tables constructed by
3381 the strength reduction pass to calculate these values. */
3383 /* Clear the result values, in case no answer can be found. */
3384 initial_value = 0;
3385 increment = 0;
3387 /* The iteration variable can be either a giv or a biv. Check to see
3388 which it is, and compute the variable's initial value, and increment
3389 value if possible. */
3391 /* If this is a new register, can't handle it since we don't have any
3392 reg_iv_type entry for it. */
3393 if ((unsigned) REGNO (iteration_var) >= ivs->n_regs)
3395 if (loop_dump_stream)
3396 fprintf (loop_dump_stream,
3397 "Loop iterations: No reg_iv_type entry for iteration var.\n");
3398 return 0;
3401 /* Reject iteration variables larger than the host wide int size, since they
3402 could result in a number of iterations greater than the range of our
3403 `unsigned HOST_WIDE_INT' variable loop_info->n_iterations. */
3404 else if ((GET_MODE_BITSIZE (GET_MODE (iteration_var))
3405 > HOST_BITS_PER_WIDE_INT))
3407 if (loop_dump_stream)
3408 fprintf (loop_dump_stream,
3409 "Loop iterations: Iteration var rejected because mode too large.\n");
3410 return 0;
3412 else if (GET_MODE_CLASS (GET_MODE (iteration_var)) != MODE_INT)
3414 if (loop_dump_stream)
3415 fprintf (loop_dump_stream,
3416 "Loop iterations: Iteration var not an integer.\n");
3417 return 0;
3419 else if (REG_IV_TYPE (ivs, REGNO (iteration_var)) == BASIC_INDUCT)
3421 if (REGNO (iteration_var) >= ivs->n_regs)
3422 abort ();
3424 /* Grab initial value, only useful if it is a constant. */
3425 bl = REG_IV_CLASS (ivs, REGNO (iteration_var));
3426 initial_value = bl->initial_value;
3427 if (!bl->biv->always_executed || bl->biv->maybe_multiple)
3429 if (loop_dump_stream)
3430 fprintf (loop_dump_stream,
3431 "Loop iterations: Basic induction var not set once in each iteration.\n");
3432 return 0;
3435 increment = biv_total_increment (bl);
3437 else if (REG_IV_TYPE (ivs, REGNO (iteration_var)) == GENERAL_INDUCT)
3439 HOST_WIDE_INT offset = 0;
3440 struct induction *v = REG_IV_INFO (ivs, REGNO (iteration_var));
3441 rtx biv_initial_value;
3443 if (REGNO (v->src_reg) >= ivs->n_regs)
3444 abort ();
3446 if (!v->always_executed || v->maybe_multiple)
3448 if (loop_dump_stream)
3449 fprintf (loop_dump_stream,
3450 "Loop iterations: General induction var not set once in each iteration.\n");
3451 return 0;
3454 bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
3456 /* Increment value is mult_val times the increment value of the biv. */
3458 increment = biv_total_increment (bl);
3459 if (increment)
3461 struct induction *biv_inc;
3463 increment = fold_rtx_mult_add (v->mult_val,
3464 extend_value_for_giv (v, increment),
3465 const0_rtx, v->mode);
3466 /* The caller assumes that one full increment has occurred at the
3467 first loop test. But that's not true when the biv is incremented
3468 after the giv is set (which is the usual case), e.g.:
3469 i = 6; do {;} while (i++ < 9) .
3470 Therefore, we bias the initial value by subtracting the amount of
3471 the increment that occurs between the giv set and the giv test. */
3472 for (biv_inc = bl->biv; biv_inc; biv_inc = biv_inc->next_iv)
3474 if (loop_insn_first_p (v->insn, biv_inc->insn))
3476 if (REG_P (biv_inc->add_val))
3478 if (loop_dump_stream)
3479 fprintf (loop_dump_stream,
3480 "Loop iterations: Basic induction var add_val is REG %d.\n",
3481 REGNO (biv_inc->add_val));
3482 return 0;
3485 offset -= INTVAL (biv_inc->add_val);
3489 if (loop_dump_stream)
3490 fprintf (loop_dump_stream,
3491 "Loop iterations: Giv iterator, initial value bias %ld.\n",
3492 (long) offset);
3494 /* Initial value is mult_val times the biv's initial value plus
3495 add_val. Only useful if it is a constant. */
3496 biv_initial_value = extend_value_for_giv (v, bl->initial_value);
3497 initial_value
3498 = fold_rtx_mult_add (v->mult_val,
3499 plus_constant (biv_initial_value, offset),
3500 v->add_val, v->mode);
3502 else
3504 if (loop_dump_stream)
3505 fprintf (loop_dump_stream,
3506 "Loop iterations: Not basic or general induction var.\n");
3507 return 0;
3510 if (initial_value == 0)
3511 return 0;
3513 unsigned_p = 0;
3514 off_by_one = 0;
3515 switch (comparison_code)
3517 case LEU:
3518 unsigned_p = 1;
3519 case LE:
3520 compare_dir = 1;
3521 off_by_one = 1;
3522 break;
3523 case GEU:
3524 unsigned_p = 1;
3525 case GE:
3526 compare_dir = -1;
3527 off_by_one = -1;
3528 break;
3529 case EQ:
3530 /* Cannot determine loop iterations with this case. */
3531 compare_dir = 0;
3532 break;
3533 case LTU:
3534 unsigned_p = 1;
3535 case LT:
3536 compare_dir = 1;
3537 break;
3538 case GTU:
3539 unsigned_p = 1;
3540 case GT:
3541 compare_dir = -1;
3542 case NE:
3543 compare_dir = 0;
3544 break;
3545 default:
3546 abort ();
3549 /* If the comparison value is an invariant register, then try to find
3550 its value from the insns before the start of the loop. */
3552 final_value = comparison_value;
3553 if (GET_CODE (comparison_value) == REG
3554 && loop_invariant_p (loop, comparison_value))
3556 final_value = loop_find_equiv_value (loop, comparison_value);
3558 /* If we don't get an invariant final value, we are better
3559 off with the original register. */
3560 if (! loop_invariant_p (loop, final_value))
3561 final_value = comparison_value;
3564 /* Calculate the approximate final value of the induction variable
3565 (on the last successful iteration). The exact final value
3566 depends on the branch operator, and increment sign. It will be
3567 wrong if the iteration variable is not incremented by one each
3568 time through the loop and (comparison_value + off_by_one -
3569 initial_value) % increment != 0.
3570 ??? Note that the final_value may overflow and thus final_larger
3571 will be bogus. A potentially infinite loop will be classified
3572 as immediate, e.g. for (i = 0x7ffffff0; i <= 0x7fffffff; i++) */
3573 if (off_by_one)
3574 final_value = plus_constant (final_value, off_by_one);
3576 /* Save the calculated values describing this loop's bounds, in case
3577 precondition_loop_p will need them later. These values can not be
3578 recalculated inside precondition_loop_p because strength reduction
3579 optimizations may obscure the loop's structure.
3581 These values are only required by precondition_loop_p and insert_bct
3582 whenever the number of iterations cannot be computed at compile time.
3583 Only the difference between final_value and initial_value is
3584 important. Note that final_value is only approximate. */
3585 loop_info->initial_value = initial_value;
3586 loop_info->comparison_value = comparison_value;
3587 loop_info->final_value = plus_constant (comparison_value, off_by_one);
3588 loop_info->increment = increment;
3589 loop_info->iteration_var = iteration_var;
3590 loop_info->comparison_code = comparison_code;
3591 loop_info->iv = bl;
3593 /* Try to determine the iteration count for loops such
3594 as (for i = init; i < init + const; i++). When running the
3595 loop optimization twice, the first pass often converts simple
3596 loops into this form. */
3598 if (REG_P (initial_value))
3600 rtx reg1;
3601 rtx reg2;
3602 rtx const2;
3604 reg1 = initial_value;
3605 if (GET_CODE (final_value) == PLUS)
3606 reg2 = XEXP (final_value, 0), const2 = XEXP (final_value, 1);
3607 else
3608 reg2 = final_value, const2 = const0_rtx;
3610 /* Check for initial_value = reg1, final_value = reg2 + const2,
3611 where reg1 != reg2. */
3612 if (REG_P (reg2) && reg2 != reg1)
3614 rtx temp;
3616 /* Find what reg1 is equivalent to. Hopefully it will
3617 either be reg2 or reg2 plus a constant. */
3618 temp = loop_find_equiv_value (loop, reg1);
3620 if (find_common_reg_term (temp, reg2))
3621 initial_value = temp;
3622 else
3624 /* Find what reg2 is equivalent to. Hopefully it will
3625 either be reg1 or reg1 plus a constant. Let's ignore
3626 the latter case for now since it is not so common. */
3627 temp = loop_find_equiv_value (loop, reg2);
3629 if (temp == loop_info->iteration_var)
3630 temp = initial_value;
3631 if (temp == reg1)
3632 final_value = (const2 == const0_rtx)
3633 ? reg1 : gen_rtx_PLUS (GET_MODE (reg1), reg1, const2);
3636 else if (loop->vtop && GET_CODE (reg2) == CONST_INT)
3638 rtx temp;
3640 /* When running the loop optimizer twice, check_dbra_loop
3641 further obfuscates reversible loops of the form:
3642 for (i = init; i < init + const; i++). We often end up with
3643 final_value = 0, initial_value = temp, temp = temp2 - init,
3644 where temp2 = init + const. If the loop has a vtop we
3645 can replace initial_value with const. */
3647 temp = loop_find_equiv_value (loop, reg1);
3649 if (GET_CODE (temp) == MINUS && REG_P (XEXP (temp, 0)))
3651 rtx temp2 = loop_find_equiv_value (loop, XEXP (temp, 0));
3653 if (GET_CODE (temp2) == PLUS
3654 && XEXP (temp2, 0) == XEXP (temp, 1))
3655 initial_value = XEXP (temp2, 1);
3660 /* If have initial_value = reg + const1 and final_value = reg +
3661 const2, then replace initial_value with const1 and final_value
3662 with const2. This should be safe since we are protected by the
3663 initial comparison before entering the loop if we have a vtop.
3664 For example, a + b < a + c is not equivalent to b < c for all a
3665 when using modulo arithmetic.
3667 ??? Without a vtop we could still perform the optimization if we check
3668 the initial and final values carefully. */
3669 if (loop->vtop
3670 && (reg_term = find_common_reg_term (initial_value, final_value)))
3672 initial_value = subtract_reg_term (initial_value, reg_term);
3673 final_value = subtract_reg_term (final_value, reg_term);
3676 loop_info->initial_equiv_value = initial_value;
3677 loop_info->final_equiv_value = final_value;
3679 /* For EQ comparison loops, we don't have a valid final value.
3680 Check this now so that we won't leave an invalid value if we
3681 return early for any other reason. */
3682 if (comparison_code == EQ)
3683 loop_info->final_equiv_value = loop_info->final_value = 0;
3685 if (increment == 0)
3687 if (loop_dump_stream)
3688 fprintf (loop_dump_stream,
3689 "Loop iterations: Increment value can't be calculated.\n");
3690 return 0;
3693 if (GET_CODE (increment) != CONST_INT)
3695 /* If we have a REG, check to see if REG holds a constant value. */
3696 /* ??? Other RTL, such as (neg (reg)) is possible here, but it isn't
3697 clear if it is worthwhile to try to handle such RTL. */
3698 if (GET_CODE (increment) == REG || GET_CODE (increment) == SUBREG)
3699 increment = loop_find_equiv_value (loop, increment);
3701 if (GET_CODE (increment) != CONST_INT)
3703 if (loop_dump_stream)
3705 fprintf (loop_dump_stream,
3706 "Loop iterations: Increment value not constant ");
3707 print_simple_rtl (loop_dump_stream, increment);
3708 fprintf (loop_dump_stream, ".\n");
3710 return 0;
3712 loop_info->increment = increment;
3715 if (GET_CODE (initial_value) != CONST_INT)
3717 if (loop_dump_stream)
3719 fprintf (loop_dump_stream,
3720 "Loop iterations: Initial value not constant ");
3721 print_simple_rtl (loop_dump_stream, initial_value);
3722 fprintf (loop_dump_stream, ".\n");
3724 return 0;
3726 else if (GET_CODE (final_value) != CONST_INT)
3728 if (loop_dump_stream)
3730 fprintf (loop_dump_stream,
3731 "Loop iterations: Final value not constant ");
3732 print_simple_rtl (loop_dump_stream, final_value);
3733 fprintf (loop_dump_stream, ".\n");
3735 return 0;
3737 else if (comparison_code == EQ)
3739 rtx inc_once;
3741 if (loop_dump_stream)
3742 fprintf (loop_dump_stream, "Loop iterations: EQ comparison loop.\n");
3744 inc_once = gen_int_mode (INTVAL (initial_value) + INTVAL (increment),
3745 GET_MODE (iteration_var));
3747 if (inc_once == final_value)
3749 /* The iterator value once through the loop is equal to the
3750 comparison value. Either we have an infinite loop, or
3751 we'll loop twice. */
3752 if (increment == const0_rtx)
3753 return 0;
3754 loop_info->n_iterations = 2;
3756 else
3757 loop_info->n_iterations = 1;
3759 if (GET_CODE (loop_info->initial_value) == CONST_INT)
3760 loop_info->final_value
3761 = gen_int_mode ((INTVAL (loop_info->initial_value)
3762 + loop_info->n_iterations * INTVAL (increment)),
3763 GET_MODE (iteration_var));
3764 else
3765 loop_info->final_value
3766 = plus_constant (loop_info->initial_value,
3767 loop_info->n_iterations * INTVAL (increment));
3768 loop_info->final_equiv_value
3769 = gen_int_mode ((INTVAL (initial_value)
3770 + loop_info->n_iterations * INTVAL (increment)),
3771 GET_MODE (iteration_var));
3772 return loop_info->n_iterations;
3775 /* Final_larger is 1 if final larger, 0 if they are equal, otherwise -1. */
3776 if (unsigned_p)
3777 final_larger
3778 = ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3779 > (unsigned HOST_WIDE_INT) INTVAL (initial_value))
3780 - ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3781 < (unsigned HOST_WIDE_INT) INTVAL (initial_value));
3782 else
3783 final_larger = (INTVAL (final_value) > INTVAL (initial_value))
3784 - (INTVAL (final_value) < INTVAL (initial_value));
3786 if (INTVAL (increment) > 0)
3787 increment_dir = 1;
3788 else if (INTVAL (increment) == 0)
3789 increment_dir = 0;
3790 else
3791 increment_dir = -1;
3793 /* There are 27 different cases: compare_dir = -1, 0, 1;
3794 final_larger = -1, 0, 1; increment_dir = -1, 0, 1.
3795 There are 4 normal cases, 4 reverse cases (where the iteration variable
3796 will overflow before the loop exits), 4 infinite loop cases, and 15
3797 immediate exit (0 or 1 iteration depending on loop type) cases.
3798 Only try to optimize the normal cases. */
3800 /* (compare_dir/final_larger/increment_dir)
3801 Normal cases: (0/-1/-1), (0/1/1), (-1/-1/-1), (1/1/1)
3802 Reverse cases: (0/-1/1), (0/1/-1), (-1/-1/1), (1/1/-1)
3803 Infinite loops: (0/-1/0), (0/1/0), (-1/-1/0), (1/1/0)
3804 Immediate exit: (0/0/X), (-1/0/X), (-1/1/X), (1/0/X), (1/-1/X) */
3806 /* ?? If the meaning of reverse loops (where the iteration variable
3807 will overflow before the loop exits) is undefined, then could
3808 eliminate all of these special checks, and just always assume
3809 the loops are normal/immediate/infinite. Note that this means
3810 the sign of increment_dir does not have to be known. Also,
3811 since it does not really hurt if immediate exit loops or infinite loops
3812 are optimized, then that case could be ignored also, and hence all
3813 loops can be optimized.
3815 According to ANSI Spec, the reverse loop case result is undefined,
3816 because the action on overflow is undefined.
3818 See also the special test for NE loops below. */
3820 if (final_larger == increment_dir && final_larger != 0
3821 && (final_larger == compare_dir || compare_dir == 0))
3822 /* Normal case. */
3824 else
3826 if (loop_dump_stream)
3827 fprintf (loop_dump_stream, "Loop iterations: Not normal loop.\n");
3828 return 0;
3831 /* Calculate the number of iterations, final_value is only an approximation,
3832 so correct for that. Note that abs_diff and n_iterations are
3833 unsigned, because they can be as large as 2^n - 1. */
3835 inc = INTVAL (increment);
3836 if (inc > 0)
3838 abs_diff = INTVAL (final_value) - INTVAL (initial_value);
3839 abs_inc = inc;
3841 else if (inc < 0)
3843 abs_diff = INTVAL (initial_value) - INTVAL (final_value);
3844 abs_inc = -inc;
3846 else
3847 abort ();
3849 /* Given that iteration_var is going to iterate over its own mode,
3850 not HOST_WIDE_INT, disregard higher bits that might have come
3851 into the picture due to sign extension of initial and final
3852 values. */
3853 abs_diff &= ((unsigned HOST_WIDE_INT) 1
3854 << (GET_MODE_BITSIZE (GET_MODE (iteration_var)) - 1)
3855 << 1) - 1;
3857 /* For NE tests, make sure that the iteration variable won't miss
3858 the final value. If abs_diff mod abs_incr is not zero, then the
3859 iteration variable will overflow before the loop exits, and we
3860 can not calculate the number of iterations. */
3861 if (compare_dir == 0 && (abs_diff % abs_inc) != 0)
3862 return 0;
3864 /* Note that the number of iterations could be calculated using
3865 (abs_diff + abs_inc - 1) / abs_inc, provided care was taken to
3866 handle potential overflow of the summation. */
3867 loop_info->n_iterations = abs_diff / abs_inc + ((abs_diff % abs_inc) != 0);
3868 return loop_info->n_iterations;
3871 /* Replace uses of split bivs with their split pseudo register. This is
3872 for original instructions which remain after loop unrolling without
3873 copying. */
3875 static rtx
3876 remap_split_bivs (struct loop *loop, rtx x)
3878 struct loop_ivs *ivs = LOOP_IVS (loop);
3879 enum rtx_code code;
3880 int i;
3881 const char *fmt;
3883 if (x == 0)
3884 return x;
3886 code = GET_CODE (x);
3887 switch (code)
3889 case SCRATCH:
3890 case PC:
3891 case CC0:
3892 case CONST_INT:
3893 case CONST_DOUBLE:
3894 case CONST:
3895 case SYMBOL_REF:
3896 case LABEL_REF:
3897 return x;
3899 case REG:
3900 #if 0
3901 /* If non-reduced/final-value givs were split, then this would also
3902 have to remap those givs also. */
3903 #endif
3904 if (REGNO (x) < ivs->n_regs
3905 && REG_IV_TYPE (ivs, REGNO (x)) == BASIC_INDUCT)
3906 return REG_IV_CLASS (ivs, REGNO (x))->biv->src_reg;
3907 break;
3909 default:
3910 break;
3913 fmt = GET_RTX_FORMAT (code);
3914 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3916 if (fmt[i] == 'e')
3917 XEXP (x, i) = remap_split_bivs (loop, XEXP (x, i));
3918 else if (fmt[i] == 'E')
3920 int j;
3921 for (j = 0; j < XVECLEN (x, i); j++)
3922 XVECEXP (x, i, j) = remap_split_bivs (loop, XVECEXP (x, i, j));
3925 return x;
3928 /* If FIRST_UID is a set of REGNO, and FIRST_UID dominates LAST_UID (e.g.
3929 FIST_UID is always executed if LAST_UID is), then return 1. Otherwise
3930 return 0. COPY_START is where we can start looking for the insns
3931 FIRST_UID and LAST_UID. COPY_END is where we stop looking for these
3932 insns.
3934 If there is no JUMP_INSN between LOOP_START and FIRST_UID, then FIRST_UID
3935 must dominate LAST_UID.
3937 If there is a CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
3938 may not dominate LAST_UID.
3940 If there is no CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
3941 must dominate LAST_UID. */
3944 set_dominates_use (int regno, int first_uid, int last_uid, rtx copy_start,
3945 rtx copy_end)
3947 int passed_jump = 0;
3948 rtx p = NEXT_INSN (copy_start);
3950 while (INSN_UID (p) != first_uid)
3952 if (GET_CODE (p) == JUMP_INSN)
3953 passed_jump = 1;
3954 /* Could not find FIRST_UID. */
3955 if (p == copy_end)
3956 return 0;
3957 p = NEXT_INSN (p);
3960 /* Verify that FIRST_UID is an insn that entirely sets REGNO. */
3961 if (! INSN_P (p) || ! dead_or_set_regno_p (p, regno))
3962 return 0;
3964 /* FIRST_UID is always executed. */
3965 if (passed_jump == 0)
3966 return 1;
3968 while (INSN_UID (p) != last_uid)
3970 /* If we see a CODE_LABEL between FIRST_UID and LAST_UID, then we
3971 can not be sure that FIRST_UID dominates LAST_UID. */
3972 if (GET_CODE (p) == CODE_LABEL)
3973 return 0;
3974 /* Could not find LAST_UID, but we reached the end of the loop, so
3975 it must be safe. */
3976 else if (p == copy_end)
3977 return 1;
3978 p = NEXT_INSN (p);
3981 /* FIRST_UID is always executed if LAST_UID is executed. */
3982 return 1;
3985 /* This routine is called when the number of iterations for the unrolled
3986 loop is one. The goal is to identify a loop that begins with an
3987 unconditional branch to the loop continuation note (or a label just after).
3988 In this case, the unconditional branch that starts the loop needs to be
3989 deleted so that we execute the single iteration. */
3991 static rtx
3992 ujump_to_loop_cont (rtx loop_start, rtx loop_cont)
3994 rtx x, label, label_ref;
3996 /* See if loop start, or the next insn is an unconditional jump. */
3997 loop_start = next_nonnote_insn (loop_start);
3999 x = pc_set (loop_start);
4000 if (!x)
4001 return NULL_RTX;
4003 label_ref = SET_SRC (x);
4004 if (!label_ref)
4005 return NULL_RTX;
4007 /* Examine insn after loop continuation note. Return if not a label. */
4008 label = next_nonnote_insn (loop_cont);
4009 if (label == 0 || GET_CODE (label) != CODE_LABEL)
4010 return NULL_RTX;
4012 /* Return the loop start if the branch label matches the code label. */
4013 if (CODE_LABEL_NUMBER (label) == CODE_LABEL_NUMBER (XEXP (label_ref, 0)))
4014 return loop_start;
4015 else
4016 return NULL_RTX;