1 // Special functions -*- C++ -*-
3 // Copyright (C) 2006-2013 Free Software Foundation, Inc.
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
25 /** @file tr1/bessel_function.tcc
26 * This is an internal header file, included by other library headers.
27 * Do not attempt to use it directly. @headername{tr1/cmath}
31 // ISO C++ 14882 TR1: 5.2 Special functions
34 // Written by Edward Smith-Rowland.
37 // (1) Handbook of Mathematical Functions,
38 // ed. Milton Abramowitz and Irene A. Stegun,
39 // Dover Publications,
40 // Section 9, pp. 355-434, Section 10 pp. 435-478
41 // (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
42 // (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,
43 // W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),
44 // 2nd ed, pp. 240-245
46 #ifndef _GLIBCXX_TR1_BESSEL_FUNCTION_TCC
47 #define _GLIBCXX_TR1_BESSEL_FUNCTION_TCC 1
49 #include "special_function_util.h"
51 namespace std _GLIBCXX_VISIBILITY(default)
55 // [5.2] Special functions
57 // Implementation-space details.
60 _GLIBCXX_BEGIN_NAMESPACE_VERSION
63 * @brief Compute the gamma functions required by the Temme series
64 * expansions of @f$ N_\nu(x) @f$ and @f$ K_\nu(x) @f$.
66 * \Gamma_1 = \frac{1}{2\mu}
67 * [\frac{1}{\Gamma(1 - \mu)} - \frac{1}{\Gamma(1 + \mu)}]
71 * \Gamma_2 = \frac{1}{2}
72 * [\frac{1}{\Gamma(1 - \mu)} + \frac{1}{\Gamma(1 + \mu)}]
74 * where @f$ -1/2 <= \mu <= 1/2 @f$ is @f$ \mu = \nu - N @f$ and @f$ N @f$.
75 * is the nearest integer to @f$ \nu @f$.
76 * The values of \f$ \Gamma(1 + \mu) \f$ and \f$ \Gamma(1 - \mu) \f$
77 * are returned as well.
79 * The accuracy requirements on this are exquisite.
81 * @param __mu The input parameter of the gamma functions.
82 * @param __gam1 The output function \f$ \Gamma_1(\mu) \f$
83 * @param __gam2 The output function \f$ \Gamma_2(\mu) \f$
84 * @param __gampl The output function \f$ \Gamma(1 + \mu) \f$
85 * @param __gammi The output function \f$ \Gamma(1 - \mu) \f$
87 template <typename _Tp>
89 __gamma_temme(const _Tp __mu,
90 _Tp & __gam1, _Tp & __gam2, _Tp & __gampl, _Tp & __gammi)
92 #if _GLIBCXX_USE_C99_MATH_TR1
93 __gampl = _Tp(1) / std::tr1::tgamma(_Tp(1) + __mu);
94 __gammi = _Tp(1) / std::tr1::tgamma(_Tp(1) - __mu);
96 __gampl = _Tp(1) / __gamma(_Tp(1) + __mu);
97 __gammi = _Tp(1) / __gamma(_Tp(1) - __mu);
100 if (std::abs(__mu) < std::numeric_limits<_Tp>::epsilon())
101 __gam1 = -_Tp(__numeric_constants<_Tp>::__gamma_e());
103 __gam1 = (__gammi - __gampl) / (_Tp(2) * __mu);
105 __gam2 = (__gammi + __gampl) / (_Tp(2));
112 * @brief Compute the Bessel @f$ J_\nu(x) @f$ and Neumann
113 * @f$ N_\nu(x) @f$ functions and their first derivatives
114 * @f$ J'_\nu(x) @f$ and @f$ N'_\nu(x) @f$ respectively.
115 * These four functions are computed together for numerical
118 * @param __nu The order of the Bessel functions.
119 * @param __x The argument of the Bessel functions.
120 * @param __Jnu The output Bessel function of the first kind.
121 * @param __Nnu The output Neumann function (Bessel function of the second kind).
122 * @param __Jpnu The output derivative of the Bessel function of the first kind.
123 * @param __Npnu The output derivative of the Neumann function.
125 template <typename _Tp>
127 __bessel_jn(const _Tp __nu, const _Tp __x,
128 _Tp & __Jnu, _Tp & __Nnu, _Tp & __Jpnu, _Tp & __Npnu)
137 else if (__nu == _Tp(1))
147 __Nnu = -std::numeric_limits<_Tp>::infinity();
148 __Npnu = std::numeric_limits<_Tp>::infinity();
152 const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
153 // When the multiplier is N i.e.
154 // fp_min = N * min()
155 // Then J_0 and N_0 tank at x = 8 * N (J_0 = 0 and N_0 = nan)!
156 //const _Tp __fp_min = _Tp(20) * std::numeric_limits<_Tp>::min();
157 const _Tp __fp_min = std::sqrt(std::numeric_limits<_Tp>::min());
158 const int __max_iter = 15000;
159 const _Tp __x_min = _Tp(2);
161 const int __nl = (__x < __x_min
162 ? static_cast<int>(__nu + _Tp(0.5L))
163 : std::max(0, static_cast<int>(__nu - __x + _Tp(1.5L))));
165 const _Tp __mu = __nu - __nl;
166 const _Tp __mu2 = __mu * __mu;
167 const _Tp __xi = _Tp(1) / __x;
168 const _Tp __xi2 = _Tp(2) * __xi;
169 _Tp __w = __xi2 / __numeric_constants<_Tp>::__pi();
171 _Tp __h = __nu * __xi;
174 _Tp __b = __xi2 * __nu;
178 for (__i = 1; __i <= __max_iter; ++__i)
182 if (std::abs(__d) < __fp_min)
184 __c = __b - _Tp(1) / __c;
185 if (std::abs(__c) < __fp_min)
188 const _Tp __del = __c * __d;
192 if (std::abs(__del - _Tp(1)) < __eps)
195 if (__i > __max_iter)
196 std::__throw_runtime_error(__N("Argument x too large in __bessel_jn; "
197 "try asymptotic expansion."));
198 _Tp __Jnul = __isign * __fp_min;
199 _Tp __Jpnul = __h * __Jnul;
200 _Tp __Jnul1 = __Jnul;
201 _Tp __Jpnu1 = __Jpnul;
202 _Tp __fact = __nu * __xi;
203 for ( int __l = __nl; __l >= 1; --__l )
205 const _Tp __Jnutemp = __fact * __Jnul + __Jpnul;
207 __Jpnul = __fact * __Jnutemp - __Jnul;
210 if (__Jnul == _Tp(0))
212 _Tp __f= __Jpnul / __Jnul;
213 _Tp __Nmu, __Nnu1, __Npmu, __Jmu;
216 const _Tp __x2 = __x / _Tp(2);
217 const _Tp __pimu = __numeric_constants<_Tp>::__pi() * __mu;
218 _Tp __fact = (std::abs(__pimu) < __eps
219 ? _Tp(1) : __pimu / std::sin(__pimu));
220 _Tp __d = -std::log(__x2);
221 _Tp __e = __mu * __d;
222 _Tp __fact2 = (std::abs(__e) < __eps
223 ? _Tp(1) : std::sinh(__e) / __e);
224 _Tp __gam1, __gam2, __gampl, __gammi;
225 __gamma_temme(__mu, __gam1, __gam2, __gampl, __gammi);
226 _Tp __ff = (_Tp(2) / __numeric_constants<_Tp>::__pi())
227 * __fact * (__gam1 * std::cosh(__e) + __gam2 * __fact2 * __d);
229 _Tp __p = __e / (__numeric_constants<_Tp>::__pi() * __gampl);
230 _Tp __q = _Tp(1) / (__e * __numeric_constants<_Tp>::__pi() * __gammi);
231 const _Tp __pimu2 = __pimu / _Tp(2);
232 _Tp __fact3 = (std::abs(__pimu2) < __eps
233 ? _Tp(1) : std::sin(__pimu2) / __pimu2 );
234 _Tp __r = __numeric_constants<_Tp>::__pi() * __pimu2 * __fact3 * __fact3;
237 _Tp __sum = __ff + __r * __q;
239 for (__i = 1; __i <= __max_iter; ++__i)
241 __ff = (__i * __ff + __p + __q) / (__i * __i - __mu2);
242 __c *= __d / _Tp(__i);
243 __p /= _Tp(__i) - __mu;
244 __q /= _Tp(__i) + __mu;
245 const _Tp __del = __c * (__ff + __r * __q);
247 const _Tp __del1 = __c * __p - __i * __del;
249 if ( std::abs(__del) < __eps * (_Tp(1) + std::abs(__sum)) )
252 if ( __i > __max_iter )
253 std::__throw_runtime_error(__N("Bessel y series failed to converge "
256 __Nnu1 = -__sum1 * __xi2;
257 __Npmu = __mu * __xi * __Nmu - __Nnu1;
258 __Jmu = __w / (__Npmu - __f * __Nmu);
262 _Tp __a = _Tp(0.25L) - __mu2;
264 _Tp __p = -__xi / _Tp(2);
265 _Tp __br = _Tp(2) * __x;
267 _Tp __fact = __a * __xi / (__p * __p + __q * __q);
268 _Tp __cr = __br + __q * __fact;
269 _Tp __ci = __bi + __p * __fact;
270 _Tp __den = __br * __br + __bi * __bi;
271 _Tp __dr = __br / __den;
272 _Tp __di = -__bi / __den;
273 _Tp __dlr = __cr * __dr - __ci * __di;
274 _Tp __dli = __cr * __di + __ci * __dr;
275 _Tp __temp = __p * __dlr - __q * __dli;
276 __q = __p * __dli + __q * __dlr;
279 for (__i = 2; __i <= __max_iter; ++__i)
281 __a += _Tp(2 * (__i - 1));
283 __dr = __a * __dr + __br;
284 __di = __a * __di + __bi;
285 if (std::abs(__dr) + std::abs(__di) < __fp_min)
287 __fact = __a / (__cr * __cr + __ci * __ci);
288 __cr = __br + __cr * __fact;
289 __ci = __bi - __ci * __fact;
290 if (std::abs(__cr) + std::abs(__ci) < __fp_min)
292 __den = __dr * __dr + __di * __di;
295 __dlr = __cr * __dr - __ci * __di;
296 __dli = __cr * __di + __ci * __dr;
297 __temp = __p * __dlr - __q * __dli;
298 __q = __p * __dli + __q * __dlr;
300 if (std::abs(__dlr - _Tp(1)) + std::abs(__dli) < __eps)
303 if (__i > __max_iter)
304 std::__throw_runtime_error(__N("Lentz's method failed "
306 const _Tp __gam = (__p - __f) / __q;
307 __Jmu = std::sqrt(__w / ((__p - __f) * __gam + __q));
308 #if _GLIBCXX_USE_C99_MATH_TR1
309 __Jmu = std::tr1::copysign(__Jmu, __Jnul);
311 if (__Jmu * __Jnul < _Tp(0))
314 __Nmu = __gam * __Jmu;
315 __Npmu = (__p + __q / __gam) * __Nmu;
316 __Nnu1 = __mu * __xi * __Nmu - __Npmu;
318 __fact = __Jmu / __Jnul;
319 __Jnu = __fact * __Jnul1;
320 __Jpnu = __fact * __Jpnu1;
321 for (__i = 1; __i <= __nl; ++__i)
323 const _Tp __Nnutemp = (__mu + __i) * __xi2 * __Nnu1 - __Nmu;
328 __Npnu = __nu * __xi * __Nmu - __Nnu1;
335 * @brief This routine computes the asymptotic cylindrical Bessel
336 * and Neumann functions of order nu: \f$ J_{\nu} \f$,
340 * (1) Handbook of Mathematical Functions,
341 * ed. Milton Abramowitz and Irene A. Stegun,
342 * Dover Publications,
343 * Section 9 p. 364, Equations 9.2.5-9.2.10
345 * @param __nu The order of the Bessel functions.
346 * @param __x The argument of the Bessel functions.
347 * @param __Jnu The output Bessel function of the first kind.
348 * @param __Nnu The output Neumann function (Bessel function of the second kind).
350 template <typename _Tp>
352 __cyl_bessel_jn_asymp(const _Tp __nu, const _Tp __x,
353 _Tp & __Jnu, _Tp & __Nnu)
355 const _Tp __coef = std::sqrt(_Tp(2)
356 / (__numeric_constants<_Tp>::__pi() * __x));
357 const _Tp __mu = _Tp(4) * __nu * __nu;
358 const _Tp __mum1 = __mu - _Tp(1);
359 const _Tp __mum9 = __mu - _Tp(9);
360 const _Tp __mum25 = __mu - _Tp(25);
361 const _Tp __mum49 = __mu - _Tp(49);
362 const _Tp __xx = _Tp(64) * __x * __x;
363 const _Tp __P = _Tp(1) - __mum1 * __mum9 / (_Tp(2) * __xx)
364 * (_Tp(1) - __mum25 * __mum49 / (_Tp(12) * __xx));
365 const _Tp __Q = __mum1 / (_Tp(8) * __x)
366 * (_Tp(1) - __mum9 * __mum25 / (_Tp(6) * __xx));
368 const _Tp __chi = __x - (__nu + _Tp(0.5L))
369 * __numeric_constants<_Tp>::__pi_2();
370 const _Tp __c = std::cos(__chi);
371 const _Tp __s = std::sin(__chi);
373 __Jnu = __coef * (__c * __P - __s * __Q);
374 __Nnu = __coef * (__s * __P + __c * __Q);
381 * @brief This routine returns the cylindrical Bessel functions
382 * of order \f$ \nu \f$: \f$ J_{\nu} \f$ or \f$ I_{\nu} \f$
383 * by series expansion.
385 * The modified cylindrical Bessel function is:
387 * Z_{\nu}(x) = \sum_{k=0}^{\infty}
388 * \frac{\sigma^k (x/2)^{\nu + 2k}}{k!\Gamma(\nu+k+1)}
390 * where \f$ \sigma = +1 \f$ or\f$ -1 \f$ for
391 * \f$ Z = I \f$ or \f$ J \f$ respectively.
393 * See Abramowitz & Stegun, 9.1.10
394 * Abramowitz & Stegun, 9.6.7
395 * (1) Handbook of Mathematical Functions,
396 * ed. Milton Abramowitz and Irene A. Stegun,
397 * Dover Publications,
398 * Equation 9.1.10 p. 360 and Equation 9.6.10 p. 375
400 * @param __nu The order of the Bessel function.
401 * @param __x The argument of the Bessel function.
402 * @param __sgn The sign of the alternate terms
403 * -1 for the Bessel function of the first kind.
404 * +1 for the modified Bessel function of the first kind.
405 * @return The output Bessel function.
407 template <typename _Tp>
409 __cyl_bessel_ij_series(const _Tp __nu, const _Tp __x, const _Tp __sgn,
410 const unsigned int __max_iter)
413 const _Tp __x2 = __x / _Tp(2);
414 _Tp __fact = __nu * std::log(__x2);
415 #if _GLIBCXX_USE_C99_MATH_TR1
416 __fact -= std::tr1::lgamma(__nu + _Tp(1));
418 __fact -= __log_gamma(__nu + _Tp(1));
420 __fact = std::exp(__fact);
421 const _Tp __xx4 = __sgn * __x2 * __x2;
425 for (unsigned int __i = 1; __i < __max_iter; ++__i)
427 __term *= __xx4 / (_Tp(__i) * (__nu + _Tp(__i)));
429 if (std::abs(__term / __Jn) < std::numeric_limits<_Tp>::epsilon())
433 return __fact * __Jn;
438 * @brief Return the Bessel function of order \f$ \nu \f$:
439 * \f$ J_{\nu}(x) \f$.
441 * The cylindrical Bessel function is:
443 * J_{\nu}(x) = \sum_{k=0}^{\infty}
444 * \frac{(-1)^k (x/2)^{\nu + 2k}}{k!\Gamma(\nu+k+1)}
447 * @param __nu The order of the Bessel function.
448 * @param __x The argument of the Bessel function.
449 * @return The output Bessel function.
451 template<typename _Tp>
453 __cyl_bessel_j(const _Tp __nu, const _Tp __x)
455 if (__nu < _Tp(0) || __x < _Tp(0))
456 std::__throw_domain_error(__N("Bad argument "
457 "in __cyl_bessel_j."));
458 else if (__isnan(__nu) || __isnan(__x))
459 return std::numeric_limits<_Tp>::quiet_NaN();
460 else if (__x * __x < _Tp(10) * (__nu + _Tp(1)))
461 return __cyl_bessel_ij_series(__nu, __x, -_Tp(1), 200);
462 else if (__x > _Tp(1000))
465 __cyl_bessel_jn_asymp(__nu, __x, __J_nu, __N_nu);
470 _Tp __J_nu, __N_nu, __Jp_nu, __Np_nu;
471 __bessel_jn(__nu, __x, __J_nu, __N_nu, __Jp_nu, __Np_nu);
478 * @brief Return the Neumann function of order \f$ \nu \f$:
479 * \f$ N_{\nu}(x) \f$.
481 * The Neumann function is defined by:
483 * N_{\nu}(x) = \frac{J_{\nu}(x) \cos \nu\pi - J_{-\nu}(x)}
486 * where for integral \f$ \nu = n \f$ a limit is taken:
487 * \f$ lim_{\nu \to n} \f$.
489 * @param __nu The order of the Neumann function.
490 * @param __x The argument of the Neumann function.
491 * @return The output Neumann function.
493 template<typename _Tp>
495 __cyl_neumann_n(const _Tp __nu, const _Tp __x)
497 if (__nu < _Tp(0) || __x < _Tp(0))
498 std::__throw_domain_error(__N("Bad argument "
499 "in __cyl_neumann_n."));
500 else if (__isnan(__nu) || __isnan(__x))
501 return std::numeric_limits<_Tp>::quiet_NaN();
502 else if (__x > _Tp(1000))
505 __cyl_bessel_jn_asymp(__nu, __x, __J_nu, __N_nu);
510 _Tp __J_nu, __N_nu, __Jp_nu, __Np_nu;
511 __bessel_jn(__nu, __x, __J_nu, __N_nu, __Jp_nu, __Np_nu);
518 * @brief Compute the spherical Bessel @f$ j_n(x) @f$
519 * and Neumann @f$ n_n(x) @f$ functions and their first
520 * derivatives @f$ j'_n(x) @f$ and @f$ n'_n(x) @f$
523 * @param __n The order of the spherical Bessel function.
524 * @param __x The argument of the spherical Bessel function.
525 * @param __j_n The output spherical Bessel function.
526 * @param __n_n The output spherical Neumann function.
527 * @param __jp_n The output derivative of the spherical Bessel function.
528 * @param __np_n The output derivative of the spherical Neumann function.
530 template <typename _Tp>
532 __sph_bessel_jn(const unsigned int __n, const _Tp __x,
533 _Tp & __j_n, _Tp & __n_n, _Tp & __jp_n, _Tp & __np_n)
535 const _Tp __nu = _Tp(__n) + _Tp(0.5L);
537 _Tp __J_nu, __N_nu, __Jp_nu, __Np_nu;
538 __bessel_jn(__nu, __x, __J_nu, __N_nu, __Jp_nu, __Np_nu);
540 const _Tp __factor = __numeric_constants<_Tp>::__sqrtpio2()
543 __j_n = __factor * __J_nu;
544 __n_n = __factor * __N_nu;
545 __jp_n = __factor * __Jp_nu - __j_n / (_Tp(2) * __x);
546 __np_n = __factor * __Np_nu - __n_n / (_Tp(2) * __x);
553 * @brief Return the spherical Bessel function
554 * @f$ j_n(x) @f$ of order n.
556 * The spherical Bessel function is defined by:
558 * j_n(x) = \left( \frac{\pi}{2x} \right) ^{1/2} J_{n+1/2}(x)
561 * @param __n The order of the spherical Bessel function.
562 * @param __x The argument of the spherical Bessel function.
563 * @return The output spherical Bessel function.
565 template <typename _Tp>
567 __sph_bessel(const unsigned int __n, const _Tp __x)
570 std::__throw_domain_error(__N("Bad argument "
571 "in __sph_bessel."));
572 else if (__isnan(__x))
573 return std::numeric_limits<_Tp>::quiet_NaN();
574 else if (__x == _Tp(0))
583 _Tp __j_n, __n_n, __jp_n, __np_n;
584 __sph_bessel_jn(__n, __x, __j_n, __n_n, __jp_n, __np_n);
591 * @brief Return the spherical Neumann function
594 * The spherical Neumann function is defined by:
596 * n_n(x) = \left( \frac{\pi}{2x} \right) ^{1/2} N_{n+1/2}(x)
599 * @param __n The order of the spherical Neumann function.
600 * @param __x The argument of the spherical Neumann function.
601 * @return The output spherical Neumann function.
603 template <typename _Tp>
605 __sph_neumann(const unsigned int __n, const _Tp __x)
608 std::__throw_domain_error(__N("Bad argument "
609 "in __sph_neumann."));
610 else if (__isnan(__x))
611 return std::numeric_limits<_Tp>::quiet_NaN();
612 else if (__x == _Tp(0))
613 return -std::numeric_limits<_Tp>::infinity();
616 _Tp __j_n, __n_n, __jp_n, __np_n;
617 __sph_bessel_jn(__n, __x, __j_n, __n_n, __jp_n, __np_n);
622 _GLIBCXX_END_NAMESPACE_VERSION
623 } // namespace std::tr1::__detail
627 #endif // _GLIBCXX_TR1_BESSEL_FUNCTION_TCC