1 // Random number extensions -*- C++ -*-
3 // Copyright (C) 2012-2013 Free Software Foundation, Inc.
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
25 /** @file ext/random.tcc
26 * This is an internal header file, included by other library headers.
27 * Do not attempt to use it directly. @headername{ext/random}
30 #ifndef _EXT_RANDOM_TCC
31 #define _EXT_RANDOM_TCC 1
33 #pragma GCC system_header
36 namespace __gnu_cxx _GLIBCXX_VISIBILITY(default)
38 _GLIBCXX_BEGIN_NAMESPACE_VERSION
40 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
42 template<typename _UIntType, size_t __m,
43 size_t __pos1, size_t __sl1, size_t __sl2,
44 size_t __sr1, size_t __sr2,
45 uint32_t __msk1, uint32_t __msk2,
46 uint32_t __msk3, uint32_t __msk4,
47 uint32_t __parity1, uint32_t __parity2,
48 uint32_t __parity3, uint32_t __parity4>
49 void simd_fast_mersenne_twister_engine<_UIntType, __m,
50 __pos1, __sl1, __sl2, __sr1, __sr2,
51 __msk1, __msk2, __msk3, __msk4,
52 __parity1, __parity2, __parity3,
54 seed(_UIntType __seed)
56 _M_state32[0] = static_cast<uint32_t>(__seed);
57 for (size_t __i = 1; __i < _M_nstate32; ++__i)
58 _M_state32[__i] = (1812433253UL
59 * (_M_state32[__i - 1] ^ (_M_state32[__i - 1] >> 30))
62 _M_period_certification();
68 inline uint32_t _Func1(uint32_t __x)
70 return (__x ^ (__x >> 27)) * UINT32_C(1664525);
73 inline uint32_t _Func2(uint32_t __x)
75 return (__x ^ (__x >> 27)) * UINT32_C(1566083941);
81 template<typename _UIntType, size_t __m,
82 size_t __pos1, size_t __sl1, size_t __sl2,
83 size_t __sr1, size_t __sr2,
84 uint32_t __msk1, uint32_t __msk2,
85 uint32_t __msk3, uint32_t __msk4,
86 uint32_t __parity1, uint32_t __parity2,
87 uint32_t __parity3, uint32_t __parity4>
88 template<typename _Sseq>
89 typename std::enable_if<std::is_class<_Sseq>::value>::type
90 simd_fast_mersenne_twister_engine<_UIntType, __m,
91 __pos1, __sl1, __sl2, __sr1, __sr2,
92 __msk1, __msk2, __msk3, __msk4,
93 __parity1, __parity2, __parity3,
99 if (_M_nstate32 >= 623)
101 else if (_M_nstate32 >= 68)
103 else if (_M_nstate32 >= 39)
107 const size_t __mid = (_M_nstate32 - __lag) / 2;
109 std::fill(_M_state32, _M_state32 + _M_nstate32, UINT32_C(0x8b8b8b8b));
110 uint32_t __arr[_M_nstate32];
111 __q.generate(__arr + 0, __arr + _M_nstate32);
113 uint32_t __r = _Func1(_M_state32[0] ^ _M_state32[__mid]
114 ^ _M_state32[_M_nstate32 - 1]);
115 _M_state32[__mid] += __r;
117 _M_state32[__mid + __lag] += __r;
120 for (size_t __i = 1, __j = 0; __j < _M_nstate32; ++__j)
122 __r = _Func1(_M_state32[__i]
123 ^ _M_state32[(__i + __mid) % _M_nstate32]
124 ^ _M_state32[(__i + _M_nstate32 - 1) % _M_nstate32]);
125 _M_state32[(__i + __mid) % _M_nstate32] += __r;
126 __r += __arr[__j] + __i;
127 _M_state32[(__i + __mid + __lag) % _M_nstate32] += __r;
128 _M_state32[__i] = __r;
129 __i = (__i + 1) % _M_nstate32;
131 for (size_t __j = 0; __j < _M_nstate32; ++__j)
133 const size_t __i = (__j + 1) % _M_nstate32;
134 __r = _Func2(_M_state32[__i]
135 + _M_state32[(__i + __mid) % _M_nstate32]
136 + _M_state32[(__i + _M_nstate32 - 1) % _M_nstate32]);
137 _M_state32[(__i + __mid) % _M_nstate32] ^= __r;
139 _M_state32[(__i + __mid + __lag) % _M_nstate32] ^= __r;
140 _M_state32[__i] = __r;
144 _M_period_certification();
148 template<typename _UIntType, size_t __m,
149 size_t __pos1, size_t __sl1, size_t __sl2,
150 size_t __sr1, size_t __sr2,
151 uint32_t __msk1, uint32_t __msk2,
152 uint32_t __msk3, uint32_t __msk4,
153 uint32_t __parity1, uint32_t __parity2,
154 uint32_t __parity3, uint32_t __parity4>
155 void simd_fast_mersenne_twister_engine<_UIntType, __m,
156 __pos1, __sl1, __sl2, __sr1, __sr2,
157 __msk1, __msk2, __msk3, __msk4,
158 __parity1, __parity2, __parity3,
160 _M_period_certification(void)
162 static const uint32_t __parity[4] = { __parity1, __parity2,
163 __parity3, __parity4 };
164 uint32_t __inner = 0;
165 for (size_t __i = 0; __i < 4; ++__i)
166 if (__parity[__i] != 0)
167 __inner ^= _M_state32[__i] & __parity[__i];
169 if (__builtin_parity(__inner) & 1)
171 for (size_t __i = 0; __i < 4; ++__i)
172 if (__parity[__i] != 0)
174 _M_state32[__i] ^= 1 << (__builtin_ffs(__parity[__i]) - 1);
177 __builtin_unreachable();
181 template<typename _UIntType, size_t __m,
182 size_t __pos1, size_t __sl1, size_t __sl2,
183 size_t __sr1, size_t __sr2,
184 uint32_t __msk1, uint32_t __msk2,
185 uint32_t __msk3, uint32_t __msk4,
186 uint32_t __parity1, uint32_t __parity2,
187 uint32_t __parity3, uint32_t __parity4>
188 void simd_fast_mersenne_twister_engine<_UIntType, __m,
189 __pos1, __sl1, __sl2, __sr1, __sr2,
190 __msk1, __msk2, __msk3, __msk4,
191 __parity1, __parity2, __parity3,
193 discard(unsigned long long __z)
195 while (__z > state_size - _M_pos)
197 __z -= state_size - _M_pos;
206 #ifndef _GLIBCXX_OPT_HAVE_RANDOM_SFMT_GEN_READ
210 template<size_t __shift>
211 inline void __rshift(uint32_t *__out, const uint32_t *__in)
213 uint64_t __th = ((static_cast<uint64_t>(__in[3]) << 32)
214 | static_cast<uint64_t>(__in[2]));
215 uint64_t __tl = ((static_cast<uint64_t>(__in[1]) << 32)
216 | static_cast<uint64_t>(__in[0]));
218 uint64_t __oh = __th >> (__shift * 8);
219 uint64_t __ol = __tl >> (__shift * 8);
220 __ol |= __th << (64 - __shift * 8);
221 __out[1] = static_cast<uint32_t>(__ol >> 32);
222 __out[0] = static_cast<uint32_t>(__ol);
223 __out[3] = static_cast<uint32_t>(__oh >> 32);
224 __out[2] = static_cast<uint32_t>(__oh);
228 template<size_t __shift>
229 inline void __lshift(uint32_t *__out, const uint32_t *__in)
231 uint64_t __th = ((static_cast<uint64_t>(__in[3]) << 32)
232 | static_cast<uint64_t>(__in[2]));
233 uint64_t __tl = ((static_cast<uint64_t>(__in[1]) << 32)
234 | static_cast<uint64_t>(__in[0]));
236 uint64_t __oh = __th << (__shift * 8);
237 uint64_t __ol = __tl << (__shift * 8);
238 __oh |= __tl >> (64 - __shift * 8);
239 __out[1] = static_cast<uint32_t>(__ol >> 32);
240 __out[0] = static_cast<uint32_t>(__ol);
241 __out[3] = static_cast<uint32_t>(__oh >> 32);
242 __out[2] = static_cast<uint32_t>(__oh);
246 template<size_t __sl1, size_t __sl2, size_t __sr1, size_t __sr2,
247 uint32_t __msk1, uint32_t __msk2, uint32_t __msk3, uint32_t __msk4>
248 inline void __recursion(uint32_t *__r,
249 const uint32_t *__a, const uint32_t *__b,
250 const uint32_t *__c, const uint32_t *__d)
255 __lshift<__sl2>(__x, __a);
256 __rshift<__sr2>(__y, __c);
257 __r[0] = (__a[0] ^ __x[0] ^ ((__b[0] >> __sr1) & __msk1)
258 ^ __y[0] ^ (__d[0] << __sl1));
259 __r[1] = (__a[1] ^ __x[1] ^ ((__b[1] >> __sr1) & __msk2)
260 ^ __y[1] ^ (__d[1] << __sl1));
261 __r[2] = (__a[2] ^ __x[2] ^ ((__b[2] >> __sr1) & __msk3)
262 ^ __y[2] ^ (__d[2] << __sl1));
263 __r[3] = (__a[3] ^ __x[3] ^ ((__b[3] >> __sr1) & __msk4)
264 ^ __y[3] ^ (__d[3] << __sl1));
270 template<typename _UIntType, size_t __m,
271 size_t __pos1, size_t __sl1, size_t __sl2,
272 size_t __sr1, size_t __sr2,
273 uint32_t __msk1, uint32_t __msk2,
274 uint32_t __msk3, uint32_t __msk4,
275 uint32_t __parity1, uint32_t __parity2,
276 uint32_t __parity3, uint32_t __parity4>
277 void simd_fast_mersenne_twister_engine<_UIntType, __m,
278 __pos1, __sl1, __sl2, __sr1, __sr2,
279 __msk1, __msk2, __msk3, __msk4,
280 __parity1, __parity2, __parity3,
284 const uint32_t *__r1 = &_M_state32[_M_nstate32 - 8];
285 const uint32_t *__r2 = &_M_state32[_M_nstate32 - 4];
286 static constexpr size_t __pos1_32 = __pos1 * 4;
289 for (__i = 0; __i < _M_nstate32 - __pos1_32; __i += 4)
291 __recursion<__sl1, __sl2, __sr1, __sr2,
292 __msk1, __msk2, __msk3, __msk4>
293 (&_M_state32[__i], &_M_state32[__i],
294 &_M_state32[__i + __pos1_32], __r1, __r2);
296 __r2 = &_M_state32[__i];
299 for (; __i < _M_nstate32; __i += 4)
301 __recursion<__sl1, __sl2, __sr1, __sr2,
302 __msk1, __msk2, __msk3, __msk4>
303 (&_M_state32[__i], &_M_state32[__i],
304 &_M_state32[__i + __pos1_32 - _M_nstate32], __r1, __r2);
306 __r2 = &_M_state32[__i];
314 #ifndef _GLIBCXX_OPT_HAVE_RANDOM_SFMT_OPERATOREQUAL
315 template<typename _UIntType, size_t __m,
316 size_t __pos1, size_t __sl1, size_t __sl2,
317 size_t __sr1, size_t __sr2,
318 uint32_t __msk1, uint32_t __msk2,
319 uint32_t __msk3, uint32_t __msk4,
320 uint32_t __parity1, uint32_t __parity2,
321 uint32_t __parity3, uint32_t __parity4>
323 operator==(const __gnu_cxx::simd_fast_mersenne_twister_engine<_UIntType,
324 __m, __pos1, __sl1, __sl2, __sr1, __sr2,
325 __msk1, __msk2, __msk3, __msk4,
326 __parity1, __parity2, __parity3, __parity4>& __lhs,
327 const __gnu_cxx::simd_fast_mersenne_twister_engine<_UIntType,
328 __m, __pos1, __sl1, __sl2, __sr1, __sr2,
329 __msk1, __msk2, __msk3, __msk4,
330 __parity1, __parity2, __parity3, __parity4>& __rhs)
332 typedef __gnu_cxx::simd_fast_mersenne_twister_engine<_UIntType,
333 __m, __pos1, __sl1, __sl2, __sr1, __sr2,
334 __msk1, __msk2, __msk3, __msk4,
335 __parity1, __parity2, __parity3, __parity4> __engine;
336 return (std::equal(__lhs._M_stateT,
337 __lhs._M_stateT + __engine::state_size,
339 && __lhs._M_pos == __rhs._M_pos);
343 template<typename _UIntType, size_t __m,
344 size_t __pos1, size_t __sl1, size_t __sl2,
345 size_t __sr1, size_t __sr2,
346 uint32_t __msk1, uint32_t __msk2,
347 uint32_t __msk3, uint32_t __msk4,
348 uint32_t __parity1, uint32_t __parity2,
349 uint32_t __parity3, uint32_t __parity4,
350 typename _CharT, typename _Traits>
351 std::basic_ostream<_CharT, _Traits>&
352 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
353 const __gnu_cxx::simd_fast_mersenne_twister_engine<_UIntType,
354 __m, __pos1, __sl1, __sl2, __sr1, __sr2,
355 __msk1, __msk2, __msk3, __msk4,
356 __parity1, __parity2, __parity3, __parity4>& __x)
358 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
359 typedef typename __ostream_type::ios_base __ios_base;
361 const typename __ios_base::fmtflags __flags = __os.flags();
362 const _CharT __fill = __os.fill();
363 const _CharT __space = __os.widen(' ');
364 __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left);
367 for (size_t __i = 0; __i < __x._M_nstate32; ++__i)
368 __os << __x._M_state32[__i] << __space;
377 template<typename _UIntType, size_t __m,
378 size_t __pos1, size_t __sl1, size_t __sl2,
379 size_t __sr1, size_t __sr2,
380 uint32_t __msk1, uint32_t __msk2,
381 uint32_t __msk3, uint32_t __msk4,
382 uint32_t __parity1, uint32_t __parity2,
383 uint32_t __parity3, uint32_t __parity4,
384 typename _CharT, typename _Traits>
385 std::basic_istream<_CharT, _Traits>&
386 operator>>(std::basic_istream<_CharT, _Traits>& __is,
387 __gnu_cxx::simd_fast_mersenne_twister_engine<_UIntType,
388 __m, __pos1, __sl1, __sl2, __sr1, __sr2,
389 __msk1, __msk2, __msk3, __msk4,
390 __parity1, __parity2, __parity3, __parity4>& __x)
392 typedef std::basic_istream<_CharT, _Traits> __istream_type;
393 typedef typename __istream_type::ios_base __ios_base;
395 const typename __ios_base::fmtflags __flags = __is.flags();
396 __is.flags(__ios_base::dec | __ios_base::skipws);
398 for (size_t __i = 0; __i < __x._M_nstate32; ++__i)
399 __is >> __x._M_state32[__i];
406 #endif // __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
409 * Iteration method due to M.D. J<o:>hnk.
411 * M.D. J<o:>hnk, Erzeugung von betaverteilten und gammaverteilten
412 * Zufallszahlen, Metrika, Volume 8, 1964
414 template<typename _RealType>
415 template<typename _UniformRandomNumberGenerator>
416 typename beta_distribution<_RealType>::result_type
417 beta_distribution<_RealType>::
418 operator()(_UniformRandomNumberGenerator& __urng,
419 const param_type& __param)
421 std::__detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
424 result_type __x, __y;
427 __x = std::exp(std::log(__aurng()) / __param.alpha());
428 __y = std::exp(std::log(__aurng()) / __param.beta());
430 while (__x + __y > result_type(1));
432 return __x / (__x + __y);
435 template<typename _RealType>
436 template<typename _OutputIterator,
437 typename _UniformRandomNumberGenerator>
439 beta_distribution<_RealType>::
440 __generate_impl(_OutputIterator __f, _OutputIterator __t,
441 _UniformRandomNumberGenerator& __urng,
442 const param_type& __param)
444 __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator>)
446 std::__detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
451 result_type __x, __y;
454 __x = std::exp(std::log(__aurng()) / __param.alpha());
455 __y = std::exp(std::log(__aurng()) / __param.beta());
457 while (__x + __y > result_type(1));
459 *__f++ = __x / (__x + __y);
463 template<typename _RealType, typename _CharT, typename _Traits>
464 std::basic_ostream<_CharT, _Traits>&
465 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
466 const __gnu_cxx::beta_distribution<_RealType>& __x)
468 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
469 typedef typename __ostream_type::ios_base __ios_base;
471 const typename __ios_base::fmtflags __flags = __os.flags();
472 const _CharT __fill = __os.fill();
473 const std::streamsize __precision = __os.precision();
474 const _CharT __space = __os.widen(' ');
475 __os.flags(__ios_base::scientific | __ios_base::left);
477 __os.precision(std::numeric_limits<_RealType>::max_digits10);
479 __os << __x.alpha() << __space << __x.beta();
483 __os.precision(__precision);
487 template<typename _RealType, typename _CharT, typename _Traits>
488 std::basic_istream<_CharT, _Traits>&
489 operator>>(std::basic_istream<_CharT, _Traits>& __is,
490 __gnu_cxx::beta_distribution<_RealType>& __x)
492 typedef std::basic_istream<_CharT, _Traits> __istream_type;
493 typedef typename __istream_type::ios_base __ios_base;
495 const typename __ios_base::fmtflags __flags = __is.flags();
496 __is.flags(__ios_base::dec | __ios_base::skipws);
498 _RealType __alpha_val, __beta_val;
499 __is >> __alpha_val >> __beta_val;
500 __x.param(typename __gnu_cxx::beta_distribution<_RealType>::
501 param_type(__alpha_val, __beta_val));
508 template<std::size_t _Dimen, typename _RealType>
509 template<typename _InputIterator1, typename _InputIterator2>
511 normal_mv_distribution<_Dimen, _RealType>::param_type::
512 _M_init_full(_InputIterator1 __meanbegin, _InputIterator1 __meanend,
513 _InputIterator2 __varcovbegin, _InputIterator2 __varcovend)
515 __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
516 __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
517 std::fill(std::copy(__meanbegin, __meanend, _M_mean.begin()),
518 _M_mean.end(), _RealType(0));
520 // Perform the Cholesky decomposition
521 auto __w = _M_t.begin();
522 for (size_t __j = 0; __j < _Dimen; ++__j)
524 _RealType __sum = _RealType(0);
526 auto __slitbegin = __w;
527 auto __cit = _M_t.begin();
528 for (size_t __i = 0; __i < __j; ++__i)
530 auto __slit = __slitbegin;
531 _RealType __s = *__varcovbegin++;
532 for (size_t __k = 0; __k < __i; ++__k)
533 __s -= *__slit++ * *__cit++;
535 *__w++ = __s /= *__cit++;
539 __sum = *__varcovbegin - __sum;
540 if (__builtin_expect(__sum <= _RealType(0), 0))
541 std::__throw_runtime_error(__N("normal_mv_distribution::"
542 "param_type::_M_init_full"));
543 *__w++ = std::sqrt(__sum);
545 std::advance(__varcovbegin, _Dimen - __j);
549 template<std::size_t _Dimen, typename _RealType>
550 template<typename _InputIterator1, typename _InputIterator2>
552 normal_mv_distribution<_Dimen, _RealType>::param_type::
553 _M_init_lower(_InputIterator1 __meanbegin, _InputIterator1 __meanend,
554 _InputIterator2 __varcovbegin, _InputIterator2 __varcovend)
556 __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
557 __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
558 std::fill(std::copy(__meanbegin, __meanend, _M_mean.begin()),
559 _M_mean.end(), _RealType(0));
561 // Perform the Cholesky decomposition
562 auto __w = _M_t.begin();
563 for (size_t __j = 0; __j < _Dimen; ++__j)
565 _RealType __sum = _RealType(0);
567 auto __slitbegin = __w;
568 auto __cit = _M_t.begin();
569 for (size_t __i = 0; __i < __j; ++__i)
571 auto __slit = __slitbegin;
572 _RealType __s = *__varcovbegin++;
573 for (size_t __k = 0; __k < __i; ++__k)
574 __s -= *__slit++ * *__cit++;
576 *__w++ = __s /= *__cit++;
580 __sum = *__varcovbegin++ - __sum;
581 if (__builtin_expect(__sum <= _RealType(0), 0))
582 std::__throw_runtime_error(__N("normal_mv_distribution::"
583 "param_type::_M_init_full"));
584 *__w++ = std::sqrt(__sum);
588 template<std::size_t _Dimen, typename _RealType>
589 template<typename _InputIterator1, typename _InputIterator2>
591 normal_mv_distribution<_Dimen, _RealType>::param_type::
592 _M_init_diagonal(_InputIterator1 __meanbegin, _InputIterator1 __meanend,
593 _InputIterator2 __varbegin, _InputIterator2 __varend)
595 __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
596 __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
597 std::fill(std::copy(__meanbegin, __meanend, _M_mean.begin()),
598 _M_mean.end(), _RealType(0));
600 auto __w = _M_t.begin();
602 while (__varbegin != __varend)
604 std::fill_n(__w, __step, _RealType(0));
606 if (__builtin_expect(*__varbegin < _RealType(0), 0))
607 std::__throw_runtime_error(__N("normal_mv_distribution::"
608 "param_type::_M_init_diagonal"));
609 *__w++ = std::sqrt(*__varbegin++);
613 template<std::size_t _Dimen, typename _RealType>
614 template<typename _UniformRandomNumberGenerator>
615 typename normal_mv_distribution<_Dimen, _RealType>::result_type
616 normal_mv_distribution<_Dimen, _RealType>::
617 operator()(_UniformRandomNumberGenerator& __urng,
618 const param_type& __param)
622 _M_nd.__generate(__ret.begin(), __ret.end(), __urng);
624 auto __t_it = __param._M_t.crbegin();
625 for (size_t __i = _Dimen; __i > 0; --__i)
627 _RealType __sum = _RealType(0);
628 for (size_t __j = __i; __j > 0; --__j)
629 __sum += __ret[__j - 1] * *__t_it++;
630 __ret[__i - 1] = __sum;
636 template<std::size_t _Dimen, typename _RealType>
637 template<typename _ForwardIterator, typename _UniformRandomNumberGenerator>
639 normal_mv_distribution<_Dimen, _RealType>::
640 __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
641 _UniformRandomNumberGenerator& __urng,
642 const param_type& __param)
644 __glibcxx_function_requires(_Mutable_ForwardIteratorConcept<
647 *__f++ = this->operator()(__urng, __param);
650 template<size_t _Dimen, typename _RealType>
652 operator==(const __gnu_cxx::normal_mv_distribution<_Dimen, _RealType>&
654 const __gnu_cxx::normal_mv_distribution<_Dimen, _RealType>&
657 return __d1._M_param == __d2._M_param && __d1._M_nd == __d2._M_nd;
660 template<size_t _Dimen, typename _RealType, typename _CharT, typename _Traits>
661 std::basic_ostream<_CharT, _Traits>&
662 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
663 const __gnu_cxx::normal_mv_distribution<_Dimen, _RealType>& __x)
665 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
666 typedef typename __ostream_type::ios_base __ios_base;
668 const typename __ios_base::fmtflags __flags = __os.flags();
669 const _CharT __fill = __os.fill();
670 const std::streamsize __precision = __os.precision();
671 const _CharT __space = __os.widen(' ');
672 __os.flags(__ios_base::scientific | __ios_base::left);
674 __os.precision(std::numeric_limits<_RealType>::max_digits10);
676 auto __mean = __x._M_param.mean();
677 for (auto __it : __mean)
678 __os << __it << __space;
679 auto __t = __x._M_param.varcov();
680 for (auto __it : __t)
681 __os << __it << __space;
687 __os.precision(__precision);
691 template<size_t _Dimen, typename _RealType, typename _CharT, typename _Traits>
692 std::basic_istream<_CharT, _Traits>&
693 operator>>(std::basic_istream<_CharT, _Traits>& __is,
694 __gnu_cxx::normal_mv_distribution<_Dimen, _RealType>& __x)
696 typedef std::basic_istream<_CharT, _Traits> __istream_type;
697 typedef typename __istream_type::ios_base __ios_base;
699 const typename __ios_base::fmtflags __flags = __is.flags();
700 __is.flags(__ios_base::dec | __ios_base::skipws);
702 std::array<_RealType, _Dimen> __mean;
703 for (auto& __it : __mean)
705 std::array<_RealType, _Dimen * (_Dimen + 1) / 2> __varcov;
706 for (auto& __it : __varcov)
711 __x.param(typename normal_mv_distribution<_Dimen, _RealType>::
712 param_type(__mean.begin(), __mean.end(),
713 __varcov.begin(), __varcov.end()));
720 template<typename _RealType>
721 template<typename _OutputIterator,
722 typename _UniformRandomNumberGenerator>
724 rice_distribution<_RealType>::
725 __generate_impl(_OutputIterator __f, _OutputIterator __t,
726 _UniformRandomNumberGenerator& __urng,
727 const param_type& __p)
729 __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator>)
733 typename std::normal_distribution<result_type>::param_type
734 __px(__p.nu(), __p.sigma()), __py(result_type(0), __p.sigma());
735 result_type __x = this->_M_ndx(__px, __urng);
736 result_type __y = this->_M_ndy(__py, __urng);
737 #if _GLIBCXX_USE_C99_MATH_TR1
738 *__f++ = std::hypot(__x, __y);
740 *__f++ = std::sqrt(__x * __x + __y * __y);
745 template<typename _RealType, typename _CharT, typename _Traits>
746 std::basic_ostream<_CharT, _Traits>&
747 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
748 const rice_distribution<_RealType>& __x)
750 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
751 typedef typename __ostream_type::ios_base __ios_base;
753 const typename __ios_base::fmtflags __flags = __os.flags();
754 const _CharT __fill = __os.fill();
755 const std::streamsize __precision = __os.precision();
756 const _CharT __space = __os.widen(' ');
757 __os.flags(__ios_base::scientific | __ios_base::left);
759 __os.precision(std::numeric_limits<_RealType>::max_digits10);
761 __os << __x.nu() << __space << __x.sigma();
762 __os << __space << __x._M_ndx;
763 __os << __space << __x._M_ndy;
767 __os.precision(__precision);
771 template<typename _RealType, typename _CharT, typename _Traits>
772 std::basic_istream<_CharT, _Traits>&
773 operator>>(std::basic_istream<_CharT, _Traits>& __is,
774 rice_distribution<_RealType>& __x)
776 typedef std::basic_istream<_CharT, _Traits> __istream_type;
777 typedef typename __istream_type::ios_base __ios_base;
779 const typename __ios_base::fmtflags __flags = __is.flags();
780 __is.flags(__ios_base::dec | __ios_base::skipws);
782 _RealType __nu_val, __sigma_val;
783 __is >> __nu_val >> __sigma_val;
786 __x.param(typename rice_distribution<_RealType>::
787 param_type(__nu_val, __sigma_val));
794 template<typename _RealType>
795 template<typename _OutputIterator,
796 typename _UniformRandomNumberGenerator>
798 nakagami_distribution<_RealType>::
799 __generate_impl(_OutputIterator __f, _OutputIterator __t,
800 _UniformRandomNumberGenerator& __urng,
801 const param_type& __p)
803 __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator>)
805 typename std::gamma_distribution<result_type>::param_type
806 __pg(__p.mu(), __p.omega() / __p.mu());
808 *__f++ = std::sqrt(this->_M_gd(__pg, __urng));
811 template<typename _RealType, typename _CharT, typename _Traits>
812 std::basic_ostream<_CharT, _Traits>&
813 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
814 const nakagami_distribution<_RealType>& __x)
816 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
817 typedef typename __ostream_type::ios_base __ios_base;
819 const typename __ios_base::fmtflags __flags = __os.flags();
820 const _CharT __fill = __os.fill();
821 const std::streamsize __precision = __os.precision();
822 const _CharT __space = __os.widen(' ');
823 __os.flags(__ios_base::scientific | __ios_base::left);
825 __os.precision(std::numeric_limits<_RealType>::max_digits10);
827 __os << __x.mu() << __space << __x.omega();
828 __os << __space << __x._M_gd;
832 __os.precision(__precision);
836 template<typename _RealType, typename _CharT, typename _Traits>
837 std::basic_istream<_CharT, _Traits>&
838 operator>>(std::basic_istream<_CharT, _Traits>& __is,
839 nakagami_distribution<_RealType>& __x)
841 typedef std::basic_istream<_CharT, _Traits> __istream_type;
842 typedef typename __istream_type::ios_base __ios_base;
844 const typename __ios_base::fmtflags __flags = __is.flags();
845 __is.flags(__ios_base::dec | __ios_base::skipws);
847 _RealType __mu_val, __omega_val;
848 __is >> __mu_val >> __omega_val;
850 __x.param(typename nakagami_distribution<_RealType>::
851 param_type(__mu_val, __omega_val));
858 template<typename _RealType>
859 template<typename _OutputIterator,
860 typename _UniformRandomNumberGenerator>
862 pareto_distribution<_RealType>::
863 __generate_impl(_OutputIterator __f, _OutputIterator __t,
864 _UniformRandomNumberGenerator& __urng,
865 const param_type& __p)
867 __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator>)
869 result_type __mu_val = __p.mu();
870 result_type __malphinv = -result_type(1) / __p.alpha();
872 *__f++ = __mu_val * std::pow(this->_M_ud(__urng), __malphinv);
875 template<typename _RealType, typename _CharT, typename _Traits>
876 std::basic_ostream<_CharT, _Traits>&
877 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
878 const pareto_distribution<_RealType>& __x)
880 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
881 typedef typename __ostream_type::ios_base __ios_base;
883 const typename __ios_base::fmtflags __flags = __os.flags();
884 const _CharT __fill = __os.fill();
885 const std::streamsize __precision = __os.precision();
886 const _CharT __space = __os.widen(' ');
887 __os.flags(__ios_base::scientific | __ios_base::left);
889 __os.precision(std::numeric_limits<_RealType>::max_digits10);
891 __os << __x.alpha() << __space << __x.mu();
892 __os << __space << __x._M_ud;
896 __os.precision(__precision);
900 template<typename _RealType, typename _CharT, typename _Traits>
901 std::basic_istream<_CharT, _Traits>&
902 operator>>(std::basic_istream<_CharT, _Traits>& __is,
903 pareto_distribution<_RealType>& __x)
905 typedef std::basic_istream<_CharT, _Traits> __istream_type;
906 typedef typename __istream_type::ios_base __ios_base;
908 const typename __ios_base::fmtflags __flags = __is.flags();
909 __is.flags(__ios_base::dec | __ios_base::skipws);
911 _RealType __alpha_val, __mu_val;
912 __is >> __alpha_val >> __mu_val;
914 __x.param(typename pareto_distribution<_RealType>::
915 param_type(__alpha_val, __mu_val));
922 template<typename _RealType>
923 template<typename _UniformRandomNumberGenerator>
924 typename k_distribution<_RealType>::result_type
925 k_distribution<_RealType>::
926 operator()(_UniformRandomNumberGenerator& __urng)
928 result_type __x = this->_M_gd1(__urng);
929 result_type __y = this->_M_gd2(__urng);
930 return std::sqrt(__x * __y);
933 template<typename _RealType>
934 template<typename _UniformRandomNumberGenerator>
935 typename k_distribution<_RealType>::result_type
936 k_distribution<_RealType>::
937 operator()(_UniformRandomNumberGenerator& __urng,
938 const param_type& __p)
940 typename std::gamma_distribution<result_type>::param_type
941 __p1(__p.lambda(), result_type(1) / __p.lambda()),
942 __p2(__p.nu(), __p.mu() / __p.nu());
943 result_type __x = this->_M_gd1(__p1, __urng);
944 result_type __y = this->_M_gd2(__p2, __urng);
945 return std::sqrt(__x * __y);
948 template<typename _RealType>
949 template<typename _OutputIterator,
950 typename _UniformRandomNumberGenerator>
952 k_distribution<_RealType>::
953 __generate_impl(_OutputIterator __f, _OutputIterator __t,
954 _UniformRandomNumberGenerator& __urng,
955 const param_type& __p)
957 __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator>)
959 typename std::gamma_distribution<result_type>::param_type
960 __p1(__p.lambda(), result_type(1) / __p.lambda()),
961 __p2(__p.nu(), __p.mu() / __p.nu());
964 result_type __x = this->_M_gd1(__p1, __urng);
965 result_type __y = this->_M_gd2(__p2, __urng);
966 *__f++ = std::sqrt(__x * __y);
970 template<typename _RealType, typename _CharT, typename _Traits>
971 std::basic_ostream<_CharT, _Traits>&
972 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
973 const k_distribution<_RealType>& __x)
975 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
976 typedef typename __ostream_type::ios_base __ios_base;
978 const typename __ios_base::fmtflags __flags = __os.flags();
979 const _CharT __fill = __os.fill();
980 const std::streamsize __precision = __os.precision();
981 const _CharT __space = __os.widen(' ');
982 __os.flags(__ios_base::scientific | __ios_base::left);
984 __os.precision(std::numeric_limits<_RealType>::max_digits10);
986 __os << __x.lambda() << __space << __x.mu() << __space << __x.nu();
987 __os << __space << __x._M_gd1;
988 __os << __space << __x._M_gd2;
992 __os.precision(__precision);
996 template<typename _RealType, typename _CharT, typename _Traits>
997 std::basic_istream<_CharT, _Traits>&
998 operator>>(std::basic_istream<_CharT, _Traits>& __is,
999 k_distribution<_RealType>& __x)
1001 typedef std::basic_istream<_CharT, _Traits> __istream_type;
1002 typedef typename __istream_type::ios_base __ios_base;
1004 const typename __ios_base::fmtflags __flags = __is.flags();
1005 __is.flags(__ios_base::dec | __ios_base::skipws);
1007 _RealType __lambda_val, __mu_val, __nu_val;
1008 __is >> __lambda_val >> __mu_val >> __nu_val;
1011 __x.param(typename k_distribution<_RealType>::
1012 param_type(__lambda_val, __mu_val, __nu_val));
1014 __is.flags(__flags);
1019 template<typename _RealType>
1020 template<typename _OutputIterator,
1021 typename _UniformRandomNumberGenerator>
1023 arcsine_distribution<_RealType>::
1024 __generate_impl(_OutputIterator __f, _OutputIterator __t,
1025 _UniformRandomNumberGenerator& __urng,
1026 const param_type& __p)
1028 __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator>)
1030 result_type __dif = __p.b() - __p.a();
1031 result_type __sum = __p.a() + __p.b();
1034 result_type __x = std::sin(this->_M_ud(__urng));
1035 *__f++ = (__x * __dif + __sum) / result_type(2);
1039 template<typename _RealType, typename _CharT, typename _Traits>
1040 std::basic_ostream<_CharT, _Traits>&
1041 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1042 const arcsine_distribution<_RealType>& __x)
1044 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
1045 typedef typename __ostream_type::ios_base __ios_base;
1047 const typename __ios_base::fmtflags __flags = __os.flags();
1048 const _CharT __fill = __os.fill();
1049 const std::streamsize __precision = __os.precision();
1050 const _CharT __space = __os.widen(' ');
1051 __os.flags(__ios_base::scientific | __ios_base::left);
1053 __os.precision(std::numeric_limits<_RealType>::max_digits10);
1055 __os << __x.a() << __space << __x.b();
1056 __os << __space << __x._M_ud;
1058 __os.flags(__flags);
1060 __os.precision(__precision);
1064 template<typename _RealType, typename _CharT, typename _Traits>
1065 std::basic_istream<_CharT, _Traits>&
1066 operator>>(std::basic_istream<_CharT, _Traits>& __is,
1067 arcsine_distribution<_RealType>& __x)
1069 typedef std::basic_istream<_CharT, _Traits> __istream_type;
1070 typedef typename __istream_type::ios_base __ios_base;
1072 const typename __ios_base::fmtflags __flags = __is.flags();
1073 __is.flags(__ios_base::dec | __ios_base::skipws);
1078 __x.param(typename arcsine_distribution<_RealType>::
1079 param_type(__a, __b));
1081 __is.flags(__flags);
1086 template<typename _RealType>
1087 template<typename _UniformRandomNumberGenerator>
1088 typename hoyt_distribution<_RealType>::result_type
1089 hoyt_distribution<_RealType>::
1090 operator()(_UniformRandomNumberGenerator& __urng)
1092 result_type __x = this->_M_ad(__urng);
1093 result_type __y = this->_M_ed(__urng);
1094 return (result_type(2) * this->q()
1095 / (result_type(1) + this->q() * this->q()))
1096 * std::sqrt(this->omega() * __x * __y);
1099 template<typename _RealType>
1100 template<typename _UniformRandomNumberGenerator>
1101 typename hoyt_distribution<_RealType>::result_type
1102 hoyt_distribution<_RealType>::
1103 operator()(_UniformRandomNumberGenerator& __urng,
1104 const param_type& __p)
1106 result_type __q2 = __p.q() * __p.q();
1107 result_type __num = result_type(0.5L) * (result_type(1) + __q2);
1108 typename __gnu_cxx::arcsine_distribution<result_type>::param_type
1109 __pa(__num, __num / __q2);
1110 result_type __x = this->_M_ad(__pa, __urng);
1111 result_type __y = this->_M_ed(__urng);
1112 return (result_type(2) * __p.q() / (result_type(1) + __q2))
1113 * std::sqrt(__p.omega() * __x * __y);
1116 template<typename _RealType>
1117 template<typename _OutputIterator,
1118 typename _UniformRandomNumberGenerator>
1120 hoyt_distribution<_RealType>::
1121 __generate_impl(_OutputIterator __f, _OutputIterator __t,
1122 _UniformRandomNumberGenerator& __urng,
1123 const param_type& __p)
1125 __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator>)
1127 result_type __2q = result_type(2) * __p.q();
1128 result_type __q2 = __p.q() * __p.q();
1129 result_type __q2p1 = result_type(1) + __q2;
1130 result_type __num = result_type(0.5L) * __q2p1;
1131 result_type __omega = __p.omega();
1132 typename __gnu_cxx::arcsine_distribution<result_type>::param_type
1133 __pa(__num, __num / __q2);
1136 result_type __x = this->_M_ad(__pa, __urng);
1137 result_type __y = this->_M_ed(__urng);
1138 *__f++ = (__2q / __q2p1) * std::sqrt(__omega * __x * __y);
1142 template<typename _RealType, typename _CharT, typename _Traits>
1143 std::basic_ostream<_CharT, _Traits>&
1144 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1145 const hoyt_distribution<_RealType>& __x)
1147 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
1148 typedef typename __ostream_type::ios_base __ios_base;
1150 const typename __ios_base::fmtflags __flags = __os.flags();
1151 const _CharT __fill = __os.fill();
1152 const std::streamsize __precision = __os.precision();
1153 const _CharT __space = __os.widen(' ');
1154 __os.flags(__ios_base::scientific | __ios_base::left);
1156 __os.precision(std::numeric_limits<_RealType>::max_digits10);
1158 __os << __x.q() << __space << __x.omega();
1159 __os << __space << __x._M_ad;
1160 __os << __space << __x._M_ed;
1162 __os.flags(__flags);
1164 __os.precision(__precision);
1168 template<typename _RealType, typename _CharT, typename _Traits>
1169 std::basic_istream<_CharT, _Traits>&
1170 operator>>(std::basic_istream<_CharT, _Traits>& __is,
1171 hoyt_distribution<_RealType>& __x)
1173 typedef std::basic_istream<_CharT, _Traits> __istream_type;
1174 typedef typename __istream_type::ios_base __ios_base;
1176 const typename __ios_base::fmtflags __flags = __is.flags();
1177 __is.flags(__ios_base::dec | __ios_base::skipws);
1179 _RealType __q, __omega;
1180 __is >> __q >> __omega;
1183 __x.param(typename hoyt_distribution<_RealType>::
1184 param_type(__q, __omega));
1186 __is.flags(__flags);
1190 _GLIBCXX_END_NAMESPACE_VERSION
1194 #endif // _EXT_RANDOM_TCC