aix: Support libsupc++ as a FAT library
[official-gcc.git] / gcc / tree-ssa-loop-im.c
blob35da1fb26a67f2a53b6a1e4a28153fe58295d5cd
1 /* Loop invariant motion.
2 Copyright (C) 2003-2020 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "tree.h"
25 #include "gimple.h"
26 #include "cfghooks.h"
27 #include "tree-pass.h"
28 #include "ssa.h"
29 #include "gimple-pretty-print.h"
30 #include "fold-const.h"
31 #include "cfganal.h"
32 #include "tree-eh.h"
33 #include "gimplify.h"
34 #include "gimple-iterator.h"
35 #include "tree-cfg.h"
36 #include "tree-ssa-loop-manip.h"
37 #include "tree-ssa-loop.h"
38 #include "tree-into-ssa.h"
39 #include "cfgloop.h"
40 #include "tree-affine.h"
41 #include "tree-ssa-propagate.h"
42 #include "trans-mem.h"
43 #include "gimple-fold.h"
44 #include "tree-scalar-evolution.h"
45 #include "tree-ssa-loop-niter.h"
46 #include "alias.h"
47 #include "builtins.h"
48 #include "tree-dfa.h"
49 #include "dbgcnt.h"
51 /* TODO: Support for predicated code motion. I.e.
53 while (1)
55 if (cond)
57 a = inv;
58 something;
62 Where COND and INV are invariants, but evaluating INV may trap or be
63 invalid from some other reason if !COND. This may be transformed to
65 if (cond)
66 a = inv;
67 while (1)
69 if (cond)
70 something;
71 } */
73 /* The auxiliary data kept for each statement. */
75 struct lim_aux_data
77 class loop *max_loop; /* The outermost loop in that the statement
78 is invariant. */
80 class loop *tgt_loop; /* The loop out of that we want to move the
81 invariant. */
83 class loop *always_executed_in;
84 /* The outermost loop for that we are sure
85 the statement is executed if the loop
86 is entered. */
88 unsigned cost; /* Cost of the computation performed by the
89 statement. */
91 unsigned ref; /* The simple_mem_ref in this stmt or 0. */
93 vec<gimple *> depends; /* Vector of statements that must be also
94 hoisted out of the loop when this statement
95 is hoisted; i.e. those that define the
96 operands of the statement and are inside of
97 the MAX_LOOP loop. */
100 /* Maps statements to their lim_aux_data. */
102 static hash_map<gimple *, lim_aux_data *> *lim_aux_data_map;
104 /* Description of a memory reference location. */
106 struct mem_ref_loc
108 tree *ref; /* The reference itself. */
109 gimple *stmt; /* The statement in that it occurs. */
113 /* Description of a memory reference. */
115 class im_mem_ref
117 public:
118 unsigned id : 30; /* ID assigned to the memory reference
119 (its index in memory_accesses.refs_list) */
120 unsigned ref_canonical : 1; /* Whether mem.ref was canonicalized. */
121 unsigned ref_decomposed : 1; /* Whether the ref was hashed from mem. */
122 hashval_t hash; /* Its hash value. */
124 /* The memory access itself and associated caching of alias-oracle
125 query meta-data. */
126 ao_ref mem;
128 bitmap stored; /* The set of loops in that this memory location
129 is stored to. */
130 bitmap loaded; /* The set of loops in that this memory location
131 is loaded from. */
132 vec<mem_ref_loc> accesses_in_loop;
133 /* The locations of the accesses. Vector
134 indexed by the loop number. */
136 /* The following set is computed on demand. */
137 bitmap_head dep_loop; /* The set of loops in that the memory
138 reference is {in,}dependent in
139 different modes. */
142 /* We use six bits per loop in the ref->dep_loop bitmap to record
143 the dep_kind x dep_state combinations. */
145 enum dep_kind { lim_raw, sm_war, sm_waw };
146 enum dep_state { dep_unknown, dep_independent, dep_dependent };
148 /* Populate the loop dependence cache of REF for LOOP, KIND with STATE. */
150 static void
151 record_loop_dependence (class loop *loop, im_mem_ref *ref,
152 dep_kind kind, dep_state state)
154 gcc_assert (state != dep_unknown);
155 unsigned bit = 6 * loop->num + kind * 2 + state == dep_dependent ? 1 : 0;
156 bitmap_set_bit (&ref->dep_loop, bit);
159 /* Query the loop dependence cache of REF for LOOP, KIND. */
161 static dep_state
162 query_loop_dependence (class loop *loop, im_mem_ref *ref, dep_kind kind)
164 unsigned first_bit = 6 * loop->num + kind * 2;
165 if (bitmap_bit_p (&ref->dep_loop, first_bit))
166 return dep_independent;
167 else if (bitmap_bit_p (&ref->dep_loop, first_bit + 1))
168 return dep_dependent;
169 return dep_unknown;
172 /* Mem_ref hashtable helpers. */
174 struct mem_ref_hasher : nofree_ptr_hash <im_mem_ref>
176 typedef ao_ref *compare_type;
177 static inline hashval_t hash (const im_mem_ref *);
178 static inline bool equal (const im_mem_ref *, const ao_ref *);
181 /* A hash function for class im_mem_ref object OBJ. */
183 inline hashval_t
184 mem_ref_hasher::hash (const im_mem_ref *mem)
186 return mem->hash;
189 /* An equality function for class im_mem_ref object MEM1 with
190 memory reference OBJ2. */
192 inline bool
193 mem_ref_hasher::equal (const im_mem_ref *mem1, const ao_ref *obj2)
195 if (obj2->max_size_known_p ())
196 return (mem1->ref_decomposed
197 && operand_equal_p (mem1->mem.base, obj2->base, 0)
198 && known_eq (mem1->mem.offset, obj2->offset)
199 && known_eq (mem1->mem.size, obj2->size)
200 && known_eq (mem1->mem.max_size, obj2->max_size)
201 && mem1->mem.volatile_p == obj2->volatile_p
202 && (mem1->mem.ref_alias_set == obj2->ref_alias_set
203 /* We are not canonicalizing alias-sets but for the
204 special-case we didn't canonicalize yet and the
205 incoming ref is a alias-set zero MEM we pick
206 the correct one already. */
207 || (!mem1->ref_canonical
208 && (TREE_CODE (obj2->ref) == MEM_REF
209 || TREE_CODE (obj2->ref) == TARGET_MEM_REF)
210 && obj2->ref_alias_set == 0)
211 /* Likewise if there's a canonical ref with alias-set zero. */
212 || (mem1->ref_canonical && mem1->mem.ref_alias_set == 0))
213 && types_compatible_p (TREE_TYPE (mem1->mem.ref),
214 TREE_TYPE (obj2->ref)));
215 else
216 return operand_equal_p (mem1->mem.ref, obj2->ref, 0);
220 /* Description of memory accesses in loops. */
222 static struct
224 /* The hash table of memory references accessed in loops. */
225 hash_table<mem_ref_hasher> *refs;
227 /* The list of memory references. */
228 vec<im_mem_ref *> refs_list;
230 /* The set of memory references accessed in each loop. */
231 vec<bitmap_head> refs_loaded_in_loop;
233 /* The set of memory references stored in each loop. */
234 vec<bitmap_head> refs_stored_in_loop;
236 /* The set of memory references stored in each loop, including subloops . */
237 vec<bitmap_head> all_refs_stored_in_loop;
239 /* Cache for expanding memory addresses. */
240 hash_map<tree, name_expansion *> *ttae_cache;
241 } memory_accesses;
243 /* Obstack for the bitmaps in the above data structures. */
244 static bitmap_obstack lim_bitmap_obstack;
245 static obstack mem_ref_obstack;
247 static bool ref_indep_loop_p (class loop *, im_mem_ref *, dep_kind);
248 static bool ref_always_accessed_p (class loop *, im_mem_ref *, bool);
249 static bool refs_independent_p (im_mem_ref *, im_mem_ref *, bool = true);
251 /* Minimum cost of an expensive expression. */
252 #define LIM_EXPENSIVE ((unsigned) param_lim_expensive)
254 /* The outermost loop for which execution of the header guarantees that the
255 block will be executed. */
256 #define ALWAYS_EXECUTED_IN(BB) ((class loop *) (BB)->aux)
257 #define SET_ALWAYS_EXECUTED_IN(BB, VAL) ((BB)->aux = (void *) (VAL))
259 /* ID of the shared unanalyzable mem. */
260 #define UNANALYZABLE_MEM_ID 0
262 /* Whether the reference was analyzable. */
263 #define MEM_ANALYZABLE(REF) ((REF)->id != UNANALYZABLE_MEM_ID)
265 static struct lim_aux_data *
266 init_lim_data (gimple *stmt)
268 lim_aux_data *p = XCNEW (struct lim_aux_data);
269 lim_aux_data_map->put (stmt, p);
271 return p;
274 static struct lim_aux_data *
275 get_lim_data (gimple *stmt)
277 lim_aux_data **p = lim_aux_data_map->get (stmt);
278 if (!p)
279 return NULL;
281 return *p;
284 /* Releases the memory occupied by DATA. */
286 static void
287 free_lim_aux_data (struct lim_aux_data *data)
289 data->depends.release ();
290 free (data);
293 static void
294 clear_lim_data (gimple *stmt)
296 lim_aux_data **p = lim_aux_data_map->get (stmt);
297 if (!p)
298 return;
300 free_lim_aux_data (*p);
301 *p = NULL;
305 /* The possibilities of statement movement. */
306 enum move_pos
308 MOVE_IMPOSSIBLE, /* No movement -- side effect expression. */
309 MOVE_PRESERVE_EXECUTION, /* Must not cause the non-executed statement
310 become executed -- memory accesses, ... */
311 MOVE_POSSIBLE /* Unlimited movement. */
315 /* If it is possible to hoist the statement STMT unconditionally,
316 returns MOVE_POSSIBLE.
317 If it is possible to hoist the statement STMT, but we must avoid making
318 it executed if it would not be executed in the original program (e.g.
319 because it may trap), return MOVE_PRESERVE_EXECUTION.
320 Otherwise return MOVE_IMPOSSIBLE. */
322 enum move_pos
323 movement_possibility (gimple *stmt)
325 tree lhs;
326 enum move_pos ret = MOVE_POSSIBLE;
328 if (flag_unswitch_loops
329 && gimple_code (stmt) == GIMPLE_COND)
331 /* If we perform unswitching, force the operands of the invariant
332 condition to be moved out of the loop. */
333 return MOVE_POSSIBLE;
336 if (gimple_code (stmt) == GIMPLE_PHI
337 && gimple_phi_num_args (stmt) <= 2
338 && !virtual_operand_p (gimple_phi_result (stmt))
339 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (stmt)))
340 return MOVE_POSSIBLE;
342 if (gimple_get_lhs (stmt) == NULL_TREE)
343 return MOVE_IMPOSSIBLE;
345 if (gimple_vdef (stmt))
346 return MOVE_IMPOSSIBLE;
348 if (stmt_ends_bb_p (stmt)
349 || gimple_has_volatile_ops (stmt)
350 || gimple_has_side_effects (stmt)
351 || stmt_could_throw_p (cfun, stmt))
352 return MOVE_IMPOSSIBLE;
354 if (is_gimple_call (stmt))
356 /* While pure or const call is guaranteed to have no side effects, we
357 cannot move it arbitrarily. Consider code like
359 char *s = something ();
361 while (1)
363 if (s)
364 t = strlen (s);
365 else
366 t = 0;
369 Here the strlen call cannot be moved out of the loop, even though
370 s is invariant. In addition to possibly creating a call with
371 invalid arguments, moving out a function call that is not executed
372 may cause performance regressions in case the call is costly and
373 not executed at all. */
374 ret = MOVE_PRESERVE_EXECUTION;
375 lhs = gimple_call_lhs (stmt);
377 else if (is_gimple_assign (stmt))
378 lhs = gimple_assign_lhs (stmt);
379 else
380 return MOVE_IMPOSSIBLE;
382 if (TREE_CODE (lhs) == SSA_NAME
383 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
384 return MOVE_IMPOSSIBLE;
386 if (TREE_CODE (lhs) != SSA_NAME
387 || gimple_could_trap_p (stmt))
388 return MOVE_PRESERVE_EXECUTION;
390 /* Non local loads in a transaction cannot be hoisted out. Well,
391 unless the load happens on every path out of the loop, but we
392 don't take this into account yet. */
393 if (flag_tm
394 && gimple_in_transaction (stmt)
395 && gimple_assign_single_p (stmt))
397 tree rhs = gimple_assign_rhs1 (stmt);
398 if (DECL_P (rhs) && is_global_var (rhs))
400 if (dump_file)
402 fprintf (dump_file, "Cannot hoist conditional load of ");
403 print_generic_expr (dump_file, rhs, TDF_SLIM);
404 fprintf (dump_file, " because it is in a transaction.\n");
406 return MOVE_IMPOSSIBLE;
410 return ret;
413 /* Suppose that operand DEF is used inside the LOOP. Returns the outermost
414 loop to that we could move the expression using DEF if it did not have
415 other operands, i.e. the outermost loop enclosing LOOP in that the value
416 of DEF is invariant. */
418 static class loop *
419 outermost_invariant_loop (tree def, class loop *loop)
421 gimple *def_stmt;
422 basic_block def_bb;
423 class loop *max_loop;
424 struct lim_aux_data *lim_data;
426 if (!def)
427 return superloop_at_depth (loop, 1);
429 if (TREE_CODE (def) != SSA_NAME)
431 gcc_assert (is_gimple_min_invariant (def));
432 return superloop_at_depth (loop, 1);
435 def_stmt = SSA_NAME_DEF_STMT (def);
436 def_bb = gimple_bb (def_stmt);
437 if (!def_bb)
438 return superloop_at_depth (loop, 1);
440 max_loop = find_common_loop (loop, def_bb->loop_father);
442 lim_data = get_lim_data (def_stmt);
443 if (lim_data != NULL && lim_data->max_loop != NULL)
444 max_loop = find_common_loop (max_loop,
445 loop_outer (lim_data->max_loop));
446 if (max_loop == loop)
447 return NULL;
448 max_loop = superloop_at_depth (loop, loop_depth (max_loop) + 1);
450 return max_loop;
453 /* DATA is a structure containing information associated with a statement
454 inside LOOP. DEF is one of the operands of this statement.
456 Find the outermost loop enclosing LOOP in that value of DEF is invariant
457 and record this in DATA->max_loop field. If DEF itself is defined inside
458 this loop as well (i.e. we need to hoist it out of the loop if we want
459 to hoist the statement represented by DATA), record the statement in that
460 DEF is defined to the DATA->depends list. Additionally if ADD_COST is true,
461 add the cost of the computation of DEF to the DATA->cost.
463 If DEF is not invariant in LOOP, return false. Otherwise return TRUE. */
465 static bool
466 add_dependency (tree def, struct lim_aux_data *data, class loop *loop,
467 bool add_cost)
469 gimple *def_stmt = SSA_NAME_DEF_STMT (def);
470 basic_block def_bb = gimple_bb (def_stmt);
471 class loop *max_loop;
472 struct lim_aux_data *def_data;
474 if (!def_bb)
475 return true;
477 max_loop = outermost_invariant_loop (def, loop);
478 if (!max_loop)
479 return false;
481 if (flow_loop_nested_p (data->max_loop, max_loop))
482 data->max_loop = max_loop;
484 def_data = get_lim_data (def_stmt);
485 if (!def_data)
486 return true;
488 if (add_cost
489 /* Only add the cost if the statement defining DEF is inside LOOP,
490 i.e. if it is likely that by moving the invariants dependent
491 on it, we will be able to avoid creating a new register for
492 it (since it will be only used in these dependent invariants). */
493 && def_bb->loop_father == loop)
494 data->cost += def_data->cost;
496 data->depends.safe_push (def_stmt);
498 return true;
501 /* Returns an estimate for a cost of statement STMT. The values here
502 are just ad-hoc constants, similar to costs for inlining. */
504 static unsigned
505 stmt_cost (gimple *stmt)
507 /* Always try to create possibilities for unswitching. */
508 if (gimple_code (stmt) == GIMPLE_COND
509 || gimple_code (stmt) == GIMPLE_PHI)
510 return LIM_EXPENSIVE;
512 /* We should be hoisting calls if possible. */
513 if (is_gimple_call (stmt))
515 tree fndecl;
517 /* Unless the call is a builtin_constant_p; this always folds to a
518 constant, so moving it is useless. */
519 fndecl = gimple_call_fndecl (stmt);
520 if (fndecl && fndecl_built_in_p (fndecl, BUILT_IN_CONSTANT_P))
521 return 0;
523 return LIM_EXPENSIVE;
526 /* Hoisting memory references out should almost surely be a win. */
527 if (gimple_references_memory_p (stmt))
528 return LIM_EXPENSIVE;
530 if (gimple_code (stmt) != GIMPLE_ASSIGN)
531 return 1;
533 switch (gimple_assign_rhs_code (stmt))
535 case MULT_EXPR:
536 case WIDEN_MULT_EXPR:
537 case WIDEN_MULT_PLUS_EXPR:
538 case WIDEN_MULT_MINUS_EXPR:
539 case DOT_PROD_EXPR:
540 case TRUNC_DIV_EXPR:
541 case CEIL_DIV_EXPR:
542 case FLOOR_DIV_EXPR:
543 case ROUND_DIV_EXPR:
544 case EXACT_DIV_EXPR:
545 case CEIL_MOD_EXPR:
546 case FLOOR_MOD_EXPR:
547 case ROUND_MOD_EXPR:
548 case TRUNC_MOD_EXPR:
549 case RDIV_EXPR:
550 /* Division and multiplication are usually expensive. */
551 return LIM_EXPENSIVE;
553 case LSHIFT_EXPR:
554 case RSHIFT_EXPR:
555 case WIDEN_LSHIFT_EXPR:
556 case LROTATE_EXPR:
557 case RROTATE_EXPR:
558 /* Shifts and rotates are usually expensive. */
559 return LIM_EXPENSIVE;
561 case CONSTRUCTOR:
562 /* Make vector construction cost proportional to the number
563 of elements. */
564 return CONSTRUCTOR_NELTS (gimple_assign_rhs1 (stmt));
566 case SSA_NAME:
567 case PAREN_EXPR:
568 /* Whether or not something is wrapped inside a PAREN_EXPR
569 should not change move cost. Nor should an intermediate
570 unpropagated SSA name copy. */
571 return 0;
573 default:
574 return 1;
578 /* Finds the outermost loop between OUTER and LOOP in that the memory reference
579 REF is independent. If REF is not independent in LOOP, NULL is returned
580 instead. */
582 static class loop *
583 outermost_indep_loop (class loop *outer, class loop *loop, im_mem_ref *ref)
585 class loop *aloop;
587 if (ref->stored && bitmap_bit_p (ref->stored, loop->num))
588 return NULL;
590 for (aloop = outer;
591 aloop != loop;
592 aloop = superloop_at_depth (loop, loop_depth (aloop) + 1))
593 if ((!ref->stored || !bitmap_bit_p (ref->stored, aloop->num))
594 && ref_indep_loop_p (aloop, ref, lim_raw))
595 return aloop;
597 if (ref_indep_loop_p (loop, ref, lim_raw))
598 return loop;
599 else
600 return NULL;
603 /* If there is a simple load or store to a memory reference in STMT, returns
604 the location of the memory reference, and sets IS_STORE according to whether
605 it is a store or load. Otherwise, returns NULL. */
607 static tree *
608 simple_mem_ref_in_stmt (gimple *stmt, bool *is_store)
610 tree *lhs, *rhs;
612 /* Recognize SSA_NAME = MEM and MEM = (SSA_NAME | invariant) patterns. */
613 if (!gimple_assign_single_p (stmt))
614 return NULL;
616 lhs = gimple_assign_lhs_ptr (stmt);
617 rhs = gimple_assign_rhs1_ptr (stmt);
619 if (TREE_CODE (*lhs) == SSA_NAME && gimple_vuse (stmt))
621 *is_store = false;
622 return rhs;
624 else if (gimple_vdef (stmt)
625 && (TREE_CODE (*rhs) == SSA_NAME || is_gimple_min_invariant (*rhs)))
627 *is_store = true;
628 return lhs;
630 else
631 return NULL;
634 /* From a controlling predicate in DOM determine the arguments from
635 the PHI node PHI that are chosen if the predicate evaluates to
636 true and false and store them to *TRUE_ARG_P and *FALSE_ARG_P if
637 they are non-NULL. Returns true if the arguments can be determined,
638 else return false. */
640 static bool
641 extract_true_false_args_from_phi (basic_block dom, gphi *phi,
642 tree *true_arg_p, tree *false_arg_p)
644 edge te, fe;
645 if (! extract_true_false_controlled_edges (dom, gimple_bb (phi),
646 &te, &fe))
647 return false;
649 if (true_arg_p)
650 *true_arg_p = PHI_ARG_DEF (phi, te->dest_idx);
651 if (false_arg_p)
652 *false_arg_p = PHI_ARG_DEF (phi, fe->dest_idx);
654 return true;
657 /* Determine the outermost loop to that it is possible to hoist a statement
658 STMT and store it to LIM_DATA (STMT)->max_loop. To do this we determine
659 the outermost loop in that the value computed by STMT is invariant.
660 If MUST_PRESERVE_EXEC is true, additionally choose such a loop that
661 we preserve the fact whether STMT is executed. It also fills other related
662 information to LIM_DATA (STMT).
664 The function returns false if STMT cannot be hoisted outside of the loop it
665 is defined in, and true otherwise. */
667 static bool
668 determine_max_movement (gimple *stmt, bool must_preserve_exec)
670 basic_block bb = gimple_bb (stmt);
671 class loop *loop = bb->loop_father;
672 class loop *level;
673 struct lim_aux_data *lim_data = get_lim_data (stmt);
674 tree val;
675 ssa_op_iter iter;
677 if (must_preserve_exec)
678 level = ALWAYS_EXECUTED_IN (bb);
679 else
680 level = superloop_at_depth (loop, 1);
681 lim_data->max_loop = level;
683 if (gphi *phi = dyn_cast <gphi *> (stmt))
685 use_operand_p use_p;
686 unsigned min_cost = UINT_MAX;
687 unsigned total_cost = 0;
688 struct lim_aux_data *def_data;
690 /* We will end up promoting dependencies to be unconditionally
691 evaluated. For this reason the PHI cost (and thus the
692 cost we remove from the loop by doing the invariant motion)
693 is that of the cheapest PHI argument dependency chain. */
694 FOR_EACH_PHI_ARG (use_p, phi, iter, SSA_OP_USE)
696 val = USE_FROM_PTR (use_p);
698 if (TREE_CODE (val) != SSA_NAME)
700 /* Assign const 1 to constants. */
701 min_cost = MIN (min_cost, 1);
702 total_cost += 1;
703 continue;
705 if (!add_dependency (val, lim_data, loop, false))
706 return false;
708 gimple *def_stmt = SSA_NAME_DEF_STMT (val);
709 if (gimple_bb (def_stmt)
710 && gimple_bb (def_stmt)->loop_father == loop)
712 def_data = get_lim_data (def_stmt);
713 if (def_data)
715 min_cost = MIN (min_cost, def_data->cost);
716 total_cost += def_data->cost;
721 min_cost = MIN (min_cost, total_cost);
722 lim_data->cost += min_cost;
724 if (gimple_phi_num_args (phi) > 1)
726 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
727 gimple *cond;
728 if (gsi_end_p (gsi_last_bb (dom)))
729 return false;
730 cond = gsi_stmt (gsi_last_bb (dom));
731 if (gimple_code (cond) != GIMPLE_COND)
732 return false;
733 /* Verify that this is an extended form of a diamond and
734 the PHI arguments are completely controlled by the
735 predicate in DOM. */
736 if (!extract_true_false_args_from_phi (dom, phi, NULL, NULL))
737 return false;
739 /* Fold in dependencies and cost of the condition. */
740 FOR_EACH_SSA_TREE_OPERAND (val, cond, iter, SSA_OP_USE)
742 if (!add_dependency (val, lim_data, loop, false))
743 return false;
744 def_data = get_lim_data (SSA_NAME_DEF_STMT (val));
745 if (def_data)
746 lim_data->cost += def_data->cost;
749 /* We want to avoid unconditionally executing very expensive
750 operations. As costs for our dependencies cannot be
751 negative just claim we are not invariand for this case.
752 We also are not sure whether the control-flow inside the
753 loop will vanish. */
754 if (total_cost - min_cost >= 2 * LIM_EXPENSIVE
755 && !(min_cost != 0
756 && total_cost / min_cost <= 2))
757 return false;
759 /* Assume that the control-flow in the loop will vanish.
760 ??? We should verify this and not artificially increase
761 the cost if that is not the case. */
762 lim_data->cost += stmt_cost (stmt);
765 return true;
767 else
768 FOR_EACH_SSA_TREE_OPERAND (val, stmt, iter, SSA_OP_USE)
769 if (!add_dependency (val, lim_data, loop, true))
770 return false;
772 if (gimple_vuse (stmt))
774 im_mem_ref *ref
775 = lim_data ? memory_accesses.refs_list[lim_data->ref] : NULL;
776 if (ref
777 && MEM_ANALYZABLE (ref))
779 lim_data->max_loop = outermost_indep_loop (lim_data->max_loop,
780 loop, ref);
781 if (!lim_data->max_loop)
782 return false;
784 else if (! add_dependency (gimple_vuse (stmt), lim_data, loop, false))
785 return false;
788 lim_data->cost += stmt_cost (stmt);
790 return true;
793 /* Suppose that some statement in ORIG_LOOP is hoisted to the loop LEVEL,
794 and that one of the operands of this statement is computed by STMT.
795 Ensure that STMT (together with all the statements that define its
796 operands) is hoisted at least out of the loop LEVEL. */
798 static void
799 set_level (gimple *stmt, class loop *orig_loop, class loop *level)
801 class loop *stmt_loop = gimple_bb (stmt)->loop_father;
802 struct lim_aux_data *lim_data;
803 gimple *dep_stmt;
804 unsigned i;
806 stmt_loop = find_common_loop (orig_loop, stmt_loop);
807 lim_data = get_lim_data (stmt);
808 if (lim_data != NULL && lim_data->tgt_loop != NULL)
809 stmt_loop = find_common_loop (stmt_loop,
810 loop_outer (lim_data->tgt_loop));
811 if (flow_loop_nested_p (stmt_loop, level))
812 return;
814 gcc_assert (level == lim_data->max_loop
815 || flow_loop_nested_p (lim_data->max_loop, level));
817 lim_data->tgt_loop = level;
818 FOR_EACH_VEC_ELT (lim_data->depends, i, dep_stmt)
819 set_level (dep_stmt, orig_loop, level);
822 /* Determines an outermost loop from that we want to hoist the statement STMT.
823 For now we chose the outermost possible loop. TODO -- use profiling
824 information to set it more sanely. */
826 static void
827 set_profitable_level (gimple *stmt)
829 set_level (stmt, gimple_bb (stmt)->loop_father, get_lim_data (stmt)->max_loop);
832 /* Returns true if STMT is a call that has side effects. */
834 static bool
835 nonpure_call_p (gimple *stmt)
837 if (gimple_code (stmt) != GIMPLE_CALL)
838 return false;
840 return gimple_has_side_effects (stmt);
843 /* Rewrite a/b to a*(1/b). Return the invariant stmt to process. */
845 static gimple *
846 rewrite_reciprocal (gimple_stmt_iterator *bsi)
848 gassign *stmt, *stmt1, *stmt2;
849 tree name, lhs, type;
850 tree real_one;
851 gimple_stmt_iterator gsi;
853 stmt = as_a <gassign *> (gsi_stmt (*bsi));
854 lhs = gimple_assign_lhs (stmt);
855 type = TREE_TYPE (lhs);
857 real_one = build_one_cst (type);
859 name = make_temp_ssa_name (type, NULL, "reciptmp");
860 stmt1 = gimple_build_assign (name, RDIV_EXPR, real_one,
861 gimple_assign_rhs2 (stmt));
862 stmt2 = gimple_build_assign (lhs, MULT_EXPR, name,
863 gimple_assign_rhs1 (stmt));
865 /* Replace division stmt with reciprocal and multiply stmts.
866 The multiply stmt is not invariant, so update iterator
867 and avoid rescanning. */
868 gsi = *bsi;
869 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
870 gsi_replace (&gsi, stmt2, true);
872 /* Continue processing with invariant reciprocal statement. */
873 return stmt1;
876 /* Check if the pattern at *BSI is a bittest of the form
877 (A >> B) & 1 != 0 and in this case rewrite it to A & (1 << B) != 0. */
879 static gimple *
880 rewrite_bittest (gimple_stmt_iterator *bsi)
882 gassign *stmt;
883 gimple *stmt1;
884 gassign *stmt2;
885 gimple *use_stmt;
886 gcond *cond_stmt;
887 tree lhs, name, t, a, b;
888 use_operand_p use;
890 stmt = as_a <gassign *> (gsi_stmt (*bsi));
891 lhs = gimple_assign_lhs (stmt);
893 /* Verify that the single use of lhs is a comparison against zero. */
894 if (TREE_CODE (lhs) != SSA_NAME
895 || !single_imm_use (lhs, &use, &use_stmt))
896 return stmt;
897 cond_stmt = dyn_cast <gcond *> (use_stmt);
898 if (!cond_stmt)
899 return stmt;
900 if (gimple_cond_lhs (cond_stmt) != lhs
901 || (gimple_cond_code (cond_stmt) != NE_EXPR
902 && gimple_cond_code (cond_stmt) != EQ_EXPR)
903 || !integer_zerop (gimple_cond_rhs (cond_stmt)))
904 return stmt;
906 /* Get at the operands of the shift. The rhs is TMP1 & 1. */
907 stmt1 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
908 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
909 return stmt;
911 /* There is a conversion in between possibly inserted by fold. */
912 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt1)))
914 t = gimple_assign_rhs1 (stmt1);
915 if (TREE_CODE (t) != SSA_NAME
916 || !has_single_use (t))
917 return stmt;
918 stmt1 = SSA_NAME_DEF_STMT (t);
919 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
920 return stmt;
923 /* Verify that B is loop invariant but A is not. Verify that with
924 all the stmt walking we are still in the same loop. */
925 if (gimple_assign_rhs_code (stmt1) != RSHIFT_EXPR
926 || loop_containing_stmt (stmt1) != loop_containing_stmt (stmt))
927 return stmt;
929 a = gimple_assign_rhs1 (stmt1);
930 b = gimple_assign_rhs2 (stmt1);
932 if (outermost_invariant_loop (b, loop_containing_stmt (stmt1)) != NULL
933 && outermost_invariant_loop (a, loop_containing_stmt (stmt1)) == NULL)
935 gimple_stmt_iterator rsi;
937 /* 1 << B */
938 t = fold_build2 (LSHIFT_EXPR, TREE_TYPE (a),
939 build_int_cst (TREE_TYPE (a), 1), b);
940 name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp");
941 stmt1 = gimple_build_assign (name, t);
943 /* A & (1 << B) */
944 t = fold_build2 (BIT_AND_EXPR, TREE_TYPE (a), a, name);
945 name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp");
946 stmt2 = gimple_build_assign (name, t);
948 /* Replace the SSA_NAME we compare against zero. Adjust
949 the type of zero accordingly. */
950 SET_USE (use, name);
951 gimple_cond_set_rhs (cond_stmt,
952 build_int_cst_type (TREE_TYPE (name),
953 0));
955 /* Don't use gsi_replace here, none of the new assignments sets
956 the variable originally set in stmt. Move bsi to stmt1, and
957 then remove the original stmt, so that we get a chance to
958 retain debug info for it. */
959 rsi = *bsi;
960 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
961 gsi_insert_before (&rsi, stmt2, GSI_SAME_STMT);
962 gimple *to_release = gsi_stmt (rsi);
963 gsi_remove (&rsi, true);
964 release_defs (to_release);
966 return stmt1;
969 return stmt;
972 /* Determine the outermost loops in that statements in basic block BB are
973 invariant, and record them to the LIM_DATA associated with the
974 statements. */
976 static void
977 compute_invariantness (basic_block bb)
979 enum move_pos pos;
980 gimple_stmt_iterator bsi;
981 gimple *stmt;
982 bool maybe_never = ALWAYS_EXECUTED_IN (bb) == NULL;
983 class loop *outermost = ALWAYS_EXECUTED_IN (bb);
984 struct lim_aux_data *lim_data;
986 if (!loop_outer (bb->loop_father))
987 return;
989 if (dump_file && (dump_flags & TDF_DETAILS))
990 fprintf (dump_file, "Basic block %d (loop %d -- depth %d):\n\n",
991 bb->index, bb->loop_father->num, loop_depth (bb->loop_father));
993 /* Look at PHI nodes, but only if there is at most two.
994 ??? We could relax this further by post-processing the inserted
995 code and transforming adjacent cond-exprs with the same predicate
996 to control flow again. */
997 bsi = gsi_start_phis (bb);
998 if (!gsi_end_p (bsi)
999 && ((gsi_next (&bsi), gsi_end_p (bsi))
1000 || (gsi_next (&bsi), gsi_end_p (bsi))))
1001 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1003 stmt = gsi_stmt (bsi);
1005 pos = movement_possibility (stmt);
1006 if (pos == MOVE_IMPOSSIBLE)
1007 continue;
1009 lim_data = get_lim_data (stmt);
1010 if (! lim_data)
1011 lim_data = init_lim_data (stmt);
1012 lim_data->always_executed_in = outermost;
1014 if (!determine_max_movement (stmt, false))
1016 lim_data->max_loop = NULL;
1017 continue;
1020 if (dump_file && (dump_flags & TDF_DETAILS))
1022 print_gimple_stmt (dump_file, stmt, 2);
1023 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
1024 loop_depth (lim_data->max_loop),
1025 lim_data->cost);
1028 if (lim_data->cost >= LIM_EXPENSIVE)
1029 set_profitable_level (stmt);
1032 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1034 stmt = gsi_stmt (bsi);
1036 pos = movement_possibility (stmt);
1037 if (pos == MOVE_IMPOSSIBLE)
1039 if (nonpure_call_p (stmt))
1041 maybe_never = true;
1042 outermost = NULL;
1044 /* Make sure to note always_executed_in for stores to make
1045 store-motion work. */
1046 else if (stmt_makes_single_store (stmt))
1048 struct lim_aux_data *lim_data = get_lim_data (stmt);
1049 if (! lim_data)
1050 lim_data = init_lim_data (stmt);
1051 lim_data->always_executed_in = outermost;
1053 continue;
1056 if (is_gimple_assign (stmt)
1057 && (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
1058 == GIMPLE_BINARY_RHS))
1060 tree op0 = gimple_assign_rhs1 (stmt);
1061 tree op1 = gimple_assign_rhs2 (stmt);
1062 class loop *ol1 = outermost_invariant_loop (op1,
1063 loop_containing_stmt (stmt));
1065 /* If divisor is invariant, convert a/b to a*(1/b), allowing reciprocal
1066 to be hoisted out of loop, saving expensive divide. */
1067 if (pos == MOVE_POSSIBLE
1068 && gimple_assign_rhs_code (stmt) == RDIV_EXPR
1069 && flag_unsafe_math_optimizations
1070 && !flag_trapping_math
1071 && ol1 != NULL
1072 && outermost_invariant_loop (op0, ol1) == NULL)
1073 stmt = rewrite_reciprocal (&bsi);
1075 /* If the shift count is invariant, convert (A >> B) & 1 to
1076 A & (1 << B) allowing the bit mask to be hoisted out of the loop
1077 saving an expensive shift. */
1078 if (pos == MOVE_POSSIBLE
1079 && gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
1080 && integer_onep (op1)
1081 && TREE_CODE (op0) == SSA_NAME
1082 && has_single_use (op0))
1083 stmt = rewrite_bittest (&bsi);
1086 lim_data = get_lim_data (stmt);
1087 if (! lim_data)
1088 lim_data = init_lim_data (stmt);
1089 lim_data->always_executed_in = outermost;
1091 if (maybe_never && pos == MOVE_PRESERVE_EXECUTION)
1092 continue;
1094 if (!determine_max_movement (stmt, pos == MOVE_PRESERVE_EXECUTION))
1096 lim_data->max_loop = NULL;
1097 continue;
1100 if (dump_file && (dump_flags & TDF_DETAILS))
1102 print_gimple_stmt (dump_file, stmt, 2);
1103 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
1104 loop_depth (lim_data->max_loop),
1105 lim_data->cost);
1108 if (lim_data->cost >= LIM_EXPENSIVE)
1109 set_profitable_level (stmt);
1113 /* Hoist the statements in basic block BB out of the loops prescribed by
1114 data stored in LIM_DATA structures associated with each statement. Callback
1115 for walk_dominator_tree. */
1117 unsigned int
1118 move_computations_worker (basic_block bb)
1120 class loop *level;
1121 unsigned cost = 0;
1122 struct lim_aux_data *lim_data;
1123 unsigned int todo = 0;
1125 if (!loop_outer (bb->loop_father))
1126 return todo;
1128 for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi); )
1130 gassign *new_stmt;
1131 gphi *stmt = bsi.phi ();
1133 lim_data = get_lim_data (stmt);
1134 if (lim_data == NULL)
1136 gsi_next (&bsi);
1137 continue;
1140 cost = lim_data->cost;
1141 level = lim_data->tgt_loop;
1142 clear_lim_data (stmt);
1144 if (!level)
1146 gsi_next (&bsi);
1147 continue;
1150 if (dump_file && (dump_flags & TDF_DETAILS))
1152 fprintf (dump_file, "Moving PHI node\n");
1153 print_gimple_stmt (dump_file, stmt, 0);
1154 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1155 cost, level->num);
1158 if (gimple_phi_num_args (stmt) == 1)
1160 tree arg = PHI_ARG_DEF (stmt, 0);
1161 new_stmt = gimple_build_assign (gimple_phi_result (stmt),
1162 TREE_CODE (arg), arg);
1164 else
1166 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
1167 gimple *cond = gsi_stmt (gsi_last_bb (dom));
1168 tree arg0 = NULL_TREE, arg1 = NULL_TREE, t;
1169 /* Get the PHI arguments corresponding to the true and false
1170 edges of COND. */
1171 extract_true_false_args_from_phi (dom, stmt, &arg0, &arg1);
1172 gcc_assert (arg0 && arg1);
1173 t = build2 (gimple_cond_code (cond), boolean_type_node,
1174 gimple_cond_lhs (cond), gimple_cond_rhs (cond));
1175 new_stmt = gimple_build_assign (gimple_phi_result (stmt),
1176 COND_EXPR, t, arg0, arg1);
1177 todo |= TODO_cleanup_cfg;
1179 if (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (new_stmt)))
1180 && (!ALWAYS_EXECUTED_IN (bb)
1181 || (ALWAYS_EXECUTED_IN (bb) != level
1182 && !flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level))))
1184 tree lhs = gimple_assign_lhs (new_stmt);
1185 SSA_NAME_RANGE_INFO (lhs) = NULL;
1187 gsi_insert_on_edge (loop_preheader_edge (level), new_stmt);
1188 remove_phi_node (&bsi, false);
1191 for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi); )
1193 edge e;
1195 gimple *stmt = gsi_stmt (bsi);
1197 lim_data = get_lim_data (stmt);
1198 if (lim_data == NULL)
1200 gsi_next (&bsi);
1201 continue;
1204 cost = lim_data->cost;
1205 level = lim_data->tgt_loop;
1206 clear_lim_data (stmt);
1208 if (!level)
1210 gsi_next (&bsi);
1211 continue;
1214 /* We do not really want to move conditionals out of the loop; we just
1215 placed it here to force its operands to be moved if necessary. */
1216 if (gimple_code (stmt) == GIMPLE_COND)
1217 continue;
1219 if (dump_file && (dump_flags & TDF_DETAILS))
1221 fprintf (dump_file, "Moving statement\n");
1222 print_gimple_stmt (dump_file, stmt, 0);
1223 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1224 cost, level->num);
1227 e = loop_preheader_edge (level);
1228 gcc_assert (!gimple_vdef (stmt));
1229 if (gimple_vuse (stmt))
1231 /* The new VUSE is the one from the virtual PHI in the loop
1232 header or the one already present. */
1233 gphi_iterator gsi2;
1234 for (gsi2 = gsi_start_phis (e->dest);
1235 !gsi_end_p (gsi2); gsi_next (&gsi2))
1237 gphi *phi = gsi2.phi ();
1238 if (virtual_operand_p (gimple_phi_result (phi)))
1240 SET_USE (gimple_vuse_op (stmt),
1241 PHI_ARG_DEF_FROM_EDGE (phi, e));
1242 break;
1246 gsi_remove (&bsi, false);
1247 if (gimple_has_lhs (stmt)
1248 && TREE_CODE (gimple_get_lhs (stmt)) == SSA_NAME
1249 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_get_lhs (stmt)))
1250 && (!ALWAYS_EXECUTED_IN (bb)
1251 || !(ALWAYS_EXECUTED_IN (bb) == level
1252 || flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level))))
1254 tree lhs = gimple_get_lhs (stmt);
1255 SSA_NAME_RANGE_INFO (lhs) = NULL;
1257 /* In case this is a stmt that is not unconditionally executed
1258 when the target loop header is executed and the stmt may
1259 invoke undefined integer or pointer overflow rewrite it to
1260 unsigned arithmetic. */
1261 if (is_gimple_assign (stmt)
1262 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (stmt)))
1263 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (gimple_assign_lhs (stmt)))
1264 && arith_code_with_undefined_signed_overflow
1265 (gimple_assign_rhs_code (stmt))
1266 && (!ALWAYS_EXECUTED_IN (bb)
1267 || !(ALWAYS_EXECUTED_IN (bb) == level
1268 || flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level))))
1269 gsi_insert_seq_on_edge (e, rewrite_to_defined_overflow (stmt));
1270 else
1271 gsi_insert_on_edge (e, stmt);
1274 return todo;
1277 /* Checks whether the statement defining variable *INDEX can be hoisted
1278 out of the loop passed in DATA. Callback for for_each_index. */
1280 static bool
1281 may_move_till (tree ref, tree *index, void *data)
1283 class loop *loop = (class loop *) data, *max_loop;
1285 /* If REF is an array reference, check also that the step and the lower
1286 bound is invariant in LOOP. */
1287 if (TREE_CODE (ref) == ARRAY_REF)
1289 tree step = TREE_OPERAND (ref, 3);
1290 tree lbound = TREE_OPERAND (ref, 2);
1292 max_loop = outermost_invariant_loop (step, loop);
1293 if (!max_loop)
1294 return false;
1296 max_loop = outermost_invariant_loop (lbound, loop);
1297 if (!max_loop)
1298 return false;
1301 max_loop = outermost_invariant_loop (*index, loop);
1302 if (!max_loop)
1303 return false;
1305 return true;
1308 /* If OP is SSA NAME, force the statement that defines it to be
1309 moved out of the LOOP. ORIG_LOOP is the loop in that EXPR is used. */
1311 static void
1312 force_move_till_op (tree op, class loop *orig_loop, class loop *loop)
1314 gimple *stmt;
1316 if (!op
1317 || is_gimple_min_invariant (op))
1318 return;
1320 gcc_assert (TREE_CODE (op) == SSA_NAME);
1322 stmt = SSA_NAME_DEF_STMT (op);
1323 if (gimple_nop_p (stmt))
1324 return;
1326 set_level (stmt, orig_loop, loop);
1329 /* Forces statement defining invariants in REF (and *INDEX) to be moved out of
1330 the LOOP. The reference REF is used in the loop ORIG_LOOP. Callback for
1331 for_each_index. */
1333 struct fmt_data
1335 class loop *loop;
1336 class loop *orig_loop;
1339 static bool
1340 force_move_till (tree ref, tree *index, void *data)
1342 struct fmt_data *fmt_data = (struct fmt_data *) data;
1344 if (TREE_CODE (ref) == ARRAY_REF)
1346 tree step = TREE_OPERAND (ref, 3);
1347 tree lbound = TREE_OPERAND (ref, 2);
1349 force_move_till_op (step, fmt_data->orig_loop, fmt_data->loop);
1350 force_move_till_op (lbound, fmt_data->orig_loop, fmt_data->loop);
1353 force_move_till_op (*index, fmt_data->orig_loop, fmt_data->loop);
1355 return true;
1358 /* A function to free the mem_ref object OBJ. */
1360 static void
1361 memref_free (class im_mem_ref *mem)
1363 mem->accesses_in_loop.release ();
1366 /* Allocates and returns a memory reference description for MEM whose hash
1367 value is HASH and id is ID. */
1369 static im_mem_ref *
1370 mem_ref_alloc (ao_ref *mem, unsigned hash, unsigned id)
1372 im_mem_ref *ref = XOBNEW (&mem_ref_obstack, class im_mem_ref);
1373 if (mem)
1374 ref->mem = *mem;
1375 else
1376 ao_ref_init (&ref->mem, error_mark_node);
1377 ref->id = id;
1378 ref->ref_canonical = false;
1379 ref->ref_decomposed = false;
1380 ref->hash = hash;
1381 ref->stored = NULL;
1382 ref->loaded = NULL;
1383 bitmap_initialize (&ref->dep_loop, &lim_bitmap_obstack);
1384 ref->accesses_in_loop.create (1);
1386 return ref;
1389 /* Records memory reference location *LOC in LOOP to the memory reference
1390 description REF. The reference occurs in statement STMT. */
1392 static void
1393 record_mem_ref_loc (im_mem_ref *ref, gimple *stmt, tree *loc)
1395 mem_ref_loc aref;
1396 aref.stmt = stmt;
1397 aref.ref = loc;
1398 ref->accesses_in_loop.safe_push (aref);
1401 /* Set the LOOP bit in REF stored bitmap and allocate that if
1402 necessary. Return whether a bit was changed. */
1404 static bool
1405 set_ref_stored_in_loop (im_mem_ref *ref, class loop *loop)
1407 if (!ref->stored)
1408 ref->stored = BITMAP_ALLOC (&lim_bitmap_obstack);
1409 return bitmap_set_bit (ref->stored, loop->num);
1412 /* Marks reference REF as stored in LOOP. */
1414 static void
1415 mark_ref_stored (im_mem_ref *ref, class loop *loop)
1417 while (loop != current_loops->tree_root
1418 && set_ref_stored_in_loop (ref, loop))
1419 loop = loop_outer (loop);
1422 /* Set the LOOP bit in REF loaded bitmap and allocate that if
1423 necessary. Return whether a bit was changed. */
1425 static bool
1426 set_ref_loaded_in_loop (im_mem_ref *ref, class loop *loop)
1428 if (!ref->loaded)
1429 ref->loaded = BITMAP_ALLOC (&lim_bitmap_obstack);
1430 return bitmap_set_bit (ref->loaded, loop->num);
1433 /* Marks reference REF as loaded in LOOP. */
1435 static void
1436 mark_ref_loaded (im_mem_ref *ref, class loop *loop)
1438 while (loop != current_loops->tree_root
1439 && set_ref_loaded_in_loop (ref, loop))
1440 loop = loop_outer (loop);
1443 /* Gathers memory references in statement STMT in LOOP, storing the
1444 information about them in the memory_accesses structure. Marks
1445 the vops accessed through unrecognized statements there as
1446 well. */
1448 static void
1449 gather_mem_refs_stmt (class loop *loop, gimple *stmt)
1451 tree *mem = NULL;
1452 hashval_t hash;
1453 im_mem_ref **slot;
1454 im_mem_ref *ref;
1455 bool is_stored;
1456 unsigned id;
1458 if (!gimple_vuse (stmt))
1459 return;
1461 mem = simple_mem_ref_in_stmt (stmt, &is_stored);
1462 if (!mem)
1464 /* We use the shared mem_ref for all unanalyzable refs. */
1465 id = UNANALYZABLE_MEM_ID;
1466 ref = memory_accesses.refs_list[id];
1467 if (dump_file && (dump_flags & TDF_DETAILS))
1469 fprintf (dump_file, "Unanalyzed memory reference %u: ", id);
1470 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1472 is_stored = gimple_vdef (stmt);
1474 else
1476 /* We are looking for equal refs that might differ in structure
1477 such as a.b vs. MEM[&a + 4]. So we key off the ao_ref but
1478 make sure we can canonicalize the ref in the hashtable if
1479 non-operand_equal_p refs are found. For the lookup we mark
1480 the case we want strict equality with aor.max_size == -1. */
1481 ao_ref aor;
1482 ao_ref_init (&aor, *mem);
1483 ao_ref_base (&aor);
1484 ao_ref_alias_set (&aor);
1485 HOST_WIDE_INT offset, size, max_size;
1486 poly_int64 saved_maxsize = aor.max_size, mem_off;
1487 tree mem_base;
1488 bool ref_decomposed;
1489 if (aor.max_size_known_p ()
1490 && aor.offset.is_constant (&offset)
1491 && aor.size.is_constant (&size)
1492 && aor.max_size.is_constant (&max_size)
1493 && size == max_size
1494 && (size % BITS_PER_UNIT) == 0
1495 /* We're canonicalizing to a MEM where TYPE_SIZE specifies the
1496 size. Make sure this is consistent with the extraction. */
1497 && poly_int_tree_p (TYPE_SIZE (TREE_TYPE (*mem)))
1498 && known_eq (wi::to_poly_offset (TYPE_SIZE (TREE_TYPE (*mem))),
1499 aor.size)
1500 && (mem_base = get_addr_base_and_unit_offset (aor.ref, &mem_off)))
1502 ref_decomposed = true;
1503 hash = iterative_hash_expr (ao_ref_base (&aor), 0);
1504 hash = iterative_hash_host_wide_int (offset, hash);
1505 hash = iterative_hash_host_wide_int (size, hash);
1507 else
1509 ref_decomposed = false;
1510 hash = iterative_hash_expr (aor.ref, 0);
1511 aor.max_size = -1;
1513 slot = memory_accesses.refs->find_slot_with_hash (&aor, hash, INSERT);
1514 aor.max_size = saved_maxsize;
1515 if (*slot)
1517 if (!(*slot)->ref_canonical
1518 && !operand_equal_p (*mem, (*slot)->mem.ref, 0))
1520 /* If we didn't yet canonicalize the hashtable ref (which
1521 we'll end up using for code insertion) and hit a second
1522 equal ref that is not structurally equivalent create
1523 a canonical ref which is a bare MEM_REF. */
1524 if (TREE_CODE (*mem) == MEM_REF
1525 || TREE_CODE (*mem) == TARGET_MEM_REF)
1527 (*slot)->mem.ref = *mem;
1528 (*slot)->mem.base_alias_set = ao_ref_base_alias_set (&aor);
1530 else
1532 tree ref_alias_type = reference_alias_ptr_type (*mem);
1533 unsigned int ref_align = get_object_alignment (*mem);
1534 tree ref_type = TREE_TYPE (*mem);
1535 tree tmp = build1 (ADDR_EXPR, ptr_type_node,
1536 unshare_expr (mem_base));
1537 if (TYPE_ALIGN (ref_type) != ref_align)
1538 ref_type = build_aligned_type (ref_type, ref_align);
1539 (*slot)->mem.ref
1540 = fold_build2 (MEM_REF, ref_type, tmp,
1541 build_int_cst (ref_alias_type, mem_off));
1542 if ((*slot)->mem.volatile_p)
1543 TREE_THIS_VOLATILE ((*slot)->mem.ref) = 1;
1544 gcc_checking_assert (TREE_CODE ((*slot)->mem.ref) == MEM_REF
1545 && is_gimple_mem_ref_addr
1546 (TREE_OPERAND ((*slot)->mem.ref,
1547 0)));
1548 (*slot)->mem.base_alias_set = (*slot)->mem.ref_alias_set;
1550 (*slot)->ref_canonical = true;
1552 ref = *slot;
1553 id = ref->id;
1555 else
1557 id = memory_accesses.refs_list.length ();
1558 ref = mem_ref_alloc (&aor, hash, id);
1559 ref->ref_decomposed = ref_decomposed;
1560 memory_accesses.refs_list.safe_push (ref);
1561 *slot = ref;
1563 if (dump_file && (dump_flags & TDF_DETAILS))
1565 fprintf (dump_file, "Memory reference %u: ", id);
1566 print_generic_expr (dump_file, ref->mem.ref, TDF_SLIM);
1567 fprintf (dump_file, "\n");
1571 record_mem_ref_loc (ref, stmt, mem);
1573 if (is_stored)
1575 bitmap_set_bit (&memory_accesses.refs_stored_in_loop[loop->num], ref->id);
1576 mark_ref_stored (ref, loop);
1578 /* A not simple memory op is also a read when it is a write. */
1579 if (!is_stored || id == UNANALYZABLE_MEM_ID)
1581 bitmap_set_bit (&memory_accesses.refs_loaded_in_loop[loop->num], ref->id);
1582 mark_ref_loaded (ref, loop);
1584 init_lim_data (stmt)->ref = ref->id;
1585 return;
1588 static unsigned *bb_loop_postorder;
1590 /* qsort sort function to sort blocks after their loop fathers postorder. */
1592 static int
1593 sort_bbs_in_loop_postorder_cmp (const void *bb1_, const void *bb2_,
1594 void *bb_loop_postorder_)
1596 unsigned *bb_loop_postorder = (unsigned *)bb_loop_postorder_;
1597 basic_block bb1 = *(const basic_block *)bb1_;
1598 basic_block bb2 = *(const basic_block *)bb2_;
1599 class loop *loop1 = bb1->loop_father;
1600 class loop *loop2 = bb2->loop_father;
1601 if (loop1->num == loop2->num)
1602 return bb1->index - bb2->index;
1603 return bb_loop_postorder[loop1->num] < bb_loop_postorder[loop2->num] ? -1 : 1;
1606 /* qsort sort function to sort ref locs after their loop fathers postorder. */
1608 static int
1609 sort_locs_in_loop_postorder_cmp (const void *loc1_, const void *loc2_,
1610 void *bb_loop_postorder_)
1612 unsigned *bb_loop_postorder = (unsigned *)bb_loop_postorder_;
1613 const mem_ref_loc *loc1 = (const mem_ref_loc *)loc1_;
1614 const mem_ref_loc *loc2 = (const mem_ref_loc *)loc2_;
1615 class loop *loop1 = gimple_bb (loc1->stmt)->loop_father;
1616 class loop *loop2 = gimple_bb (loc2->stmt)->loop_father;
1617 if (loop1->num == loop2->num)
1618 return 0;
1619 return bb_loop_postorder[loop1->num] < bb_loop_postorder[loop2->num] ? -1 : 1;
1622 /* Gathers memory references in loops. */
1624 static void
1625 analyze_memory_references (void)
1627 gimple_stmt_iterator bsi;
1628 basic_block bb, *bbs;
1629 class loop *loop, *outer;
1630 unsigned i, n;
1632 /* Collect all basic-blocks in loops and sort them after their
1633 loops postorder. */
1634 i = 0;
1635 bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
1636 FOR_EACH_BB_FN (bb, cfun)
1637 if (bb->loop_father != current_loops->tree_root)
1638 bbs[i++] = bb;
1639 n = i;
1640 gcc_sort_r (bbs, n, sizeof (basic_block), sort_bbs_in_loop_postorder_cmp,
1641 bb_loop_postorder);
1643 /* Visit blocks in loop postorder and assign mem-ref IDs in that order.
1644 That results in better locality for all the bitmaps. It also
1645 automatically sorts the location list of gathered memory references
1646 after their loop postorder number allowing to binary-search it. */
1647 for (i = 0; i < n; ++i)
1649 basic_block bb = bbs[i];
1650 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1651 gather_mem_refs_stmt (bb->loop_father, gsi_stmt (bsi));
1654 /* Verify the list of gathered memory references is sorted after their
1655 loop postorder number. */
1656 if (flag_checking)
1658 im_mem_ref *ref;
1659 FOR_EACH_VEC_ELT (memory_accesses.refs_list, i, ref)
1660 for (unsigned j = 1; j < ref->accesses_in_loop.length (); ++j)
1661 gcc_assert (sort_locs_in_loop_postorder_cmp
1662 (&ref->accesses_in_loop[j-1], &ref->accesses_in_loop[j],
1663 bb_loop_postorder) <= 0);
1666 free (bbs);
1668 /* Propagate the information about accessed memory references up
1669 the loop hierarchy. */
1670 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
1672 /* Finalize the overall touched references (including subloops). */
1673 bitmap_ior_into (&memory_accesses.all_refs_stored_in_loop[loop->num],
1674 &memory_accesses.refs_stored_in_loop[loop->num]);
1676 /* Propagate the information about accessed memory references up
1677 the loop hierarchy. */
1678 outer = loop_outer (loop);
1679 if (outer == current_loops->tree_root)
1680 continue;
1682 bitmap_ior_into (&memory_accesses.all_refs_stored_in_loop[outer->num],
1683 &memory_accesses.all_refs_stored_in_loop[loop->num]);
1687 /* Returns true if MEM1 and MEM2 may alias. TTAE_CACHE is used as a cache in
1688 tree_to_aff_combination_expand. */
1690 static bool
1691 mem_refs_may_alias_p (im_mem_ref *mem1, im_mem_ref *mem2,
1692 hash_map<tree, name_expansion *> **ttae_cache,
1693 bool tbaa_p)
1695 /* Perform BASE + OFFSET analysis -- if MEM1 and MEM2 are based on the same
1696 object and their offset differ in such a way that the locations cannot
1697 overlap, then they cannot alias. */
1698 poly_widest_int size1, size2;
1699 aff_tree off1, off2;
1701 /* Perform basic offset and type-based disambiguation. */
1702 if (!refs_may_alias_p_1 (&mem1->mem, &mem2->mem, tbaa_p))
1703 return false;
1705 /* The expansion of addresses may be a bit expensive, thus we only do
1706 the check at -O2 and higher optimization levels. */
1707 if (optimize < 2)
1708 return true;
1710 get_inner_reference_aff (mem1->mem.ref, &off1, &size1);
1711 get_inner_reference_aff (mem2->mem.ref, &off2, &size2);
1712 aff_combination_expand (&off1, ttae_cache);
1713 aff_combination_expand (&off2, ttae_cache);
1714 aff_combination_scale (&off1, -1);
1715 aff_combination_add (&off2, &off1);
1717 if (aff_comb_cannot_overlap_p (&off2, size1, size2))
1718 return false;
1720 return true;
1723 /* Compare function for bsearch searching for reference locations
1724 in a loop. */
1726 static int
1727 find_ref_loc_in_loop_cmp (const void *loop_, const void *loc_,
1728 void *bb_loop_postorder_)
1730 unsigned *bb_loop_postorder = (unsigned *)bb_loop_postorder_;
1731 class loop *loop = (class loop *)const_cast<void *>(loop_);
1732 mem_ref_loc *loc = (mem_ref_loc *)const_cast<void *>(loc_);
1733 class loop *loc_loop = gimple_bb (loc->stmt)->loop_father;
1734 if (loop->num == loc_loop->num
1735 || flow_loop_nested_p (loop, loc_loop))
1736 return 0;
1737 return (bb_loop_postorder[loop->num] < bb_loop_postorder[loc_loop->num]
1738 ? -1 : 1);
1741 /* Iterates over all locations of REF in LOOP and its subloops calling
1742 fn.operator() with the location as argument. When that operator
1743 returns true the iteration is stopped and true is returned.
1744 Otherwise false is returned. */
1746 template <typename FN>
1747 static bool
1748 for_all_locs_in_loop (class loop *loop, im_mem_ref *ref, FN fn)
1750 unsigned i;
1751 mem_ref_loc *loc;
1753 /* Search for the cluster of locs in the accesses_in_loop vector
1754 which is sorted after postorder index of the loop father. */
1755 loc = ref->accesses_in_loop.bsearch (loop, find_ref_loc_in_loop_cmp,
1756 bb_loop_postorder);
1757 if (!loc)
1758 return false;
1760 /* We have found one location inside loop or its sub-loops. Iterate
1761 both forward and backward to cover the whole cluster. */
1762 i = loc - ref->accesses_in_loop.address ();
1763 while (i > 0)
1765 --i;
1766 mem_ref_loc *l = &ref->accesses_in_loop[i];
1767 if (!flow_bb_inside_loop_p (loop, gimple_bb (l->stmt)))
1768 break;
1769 if (fn (l))
1770 return true;
1772 for (i = loc - ref->accesses_in_loop.address ();
1773 i < ref->accesses_in_loop.length (); ++i)
1775 mem_ref_loc *l = &ref->accesses_in_loop[i];
1776 if (!flow_bb_inside_loop_p (loop, gimple_bb (l->stmt)))
1777 break;
1778 if (fn (l))
1779 return true;
1782 return false;
1785 /* Rewrites location LOC by TMP_VAR. */
1787 class rewrite_mem_ref_loc
1789 public:
1790 rewrite_mem_ref_loc (tree tmp_var_) : tmp_var (tmp_var_) {}
1791 bool operator () (mem_ref_loc *loc);
1792 tree tmp_var;
1795 bool
1796 rewrite_mem_ref_loc::operator () (mem_ref_loc *loc)
1798 *loc->ref = tmp_var;
1799 update_stmt (loc->stmt);
1800 return false;
1803 /* Rewrites all references to REF in LOOP by variable TMP_VAR. */
1805 static void
1806 rewrite_mem_refs (class loop *loop, im_mem_ref *ref, tree tmp_var)
1808 for_all_locs_in_loop (loop, ref, rewrite_mem_ref_loc (tmp_var));
1811 /* Stores the first reference location in LOCP. */
1813 class first_mem_ref_loc_1
1815 public:
1816 first_mem_ref_loc_1 (mem_ref_loc **locp_) : locp (locp_) {}
1817 bool operator () (mem_ref_loc *loc);
1818 mem_ref_loc **locp;
1821 bool
1822 first_mem_ref_loc_1::operator () (mem_ref_loc *loc)
1824 *locp = loc;
1825 return true;
1828 /* Returns the first reference location to REF in LOOP. */
1830 static mem_ref_loc *
1831 first_mem_ref_loc (class loop *loop, im_mem_ref *ref)
1833 mem_ref_loc *locp = NULL;
1834 for_all_locs_in_loop (loop, ref, first_mem_ref_loc_1 (&locp));
1835 return locp;
1838 /* Helper function for execute_sm. Emit code to store TMP_VAR into
1839 MEM along edge EX.
1841 The store is only done if MEM has changed. We do this so no
1842 changes to MEM occur on code paths that did not originally store
1843 into it.
1845 The common case for execute_sm will transform:
1847 for (...) {
1848 if (foo)
1849 stuff;
1850 else
1851 MEM = TMP_VAR;
1854 into:
1856 lsm = MEM;
1857 for (...) {
1858 if (foo)
1859 stuff;
1860 else
1861 lsm = TMP_VAR;
1863 MEM = lsm;
1865 This function will generate:
1867 lsm = MEM;
1869 lsm_flag = false;
1871 for (...) {
1872 if (foo)
1873 stuff;
1874 else {
1875 lsm = TMP_VAR;
1876 lsm_flag = true;
1879 if (lsm_flag) <--
1880 MEM = lsm; <--
1883 static void
1884 execute_sm_if_changed (edge ex, tree mem, tree tmp_var, tree flag,
1885 edge preheader, hash_set <basic_block> *flag_bbs,
1886 edge &append_cond_position, edge &last_cond_fallthru)
1888 basic_block new_bb, then_bb, old_dest;
1889 bool loop_has_only_one_exit;
1890 edge then_old_edge;
1891 gimple_stmt_iterator gsi;
1892 gimple *stmt;
1893 bool irr = ex->flags & EDGE_IRREDUCIBLE_LOOP;
1895 profile_count count_sum = profile_count::zero ();
1896 int nbbs = 0, ncount = 0;
1897 profile_probability flag_probability = profile_probability::uninitialized ();
1899 /* Flag is set in FLAG_BBS. Determine probability that flag will be true
1900 at loop exit.
1902 This code may look fancy, but it cannot update profile very realistically
1903 because we do not know the probability that flag will be true at given
1904 loop exit.
1906 We look for two interesting extremes
1907 - when exit is dominated by block setting the flag, we know it will
1908 always be true. This is a common case.
1909 - when all blocks setting the flag have very low frequency we know
1910 it will likely be false.
1911 In all other cases we default to 2/3 for flag being true. */
1913 for (hash_set<basic_block>::iterator it = flag_bbs->begin ();
1914 it != flag_bbs->end (); ++it)
1916 if ((*it)->count.initialized_p ())
1917 count_sum += (*it)->count, ncount ++;
1918 if (dominated_by_p (CDI_DOMINATORS, ex->src, *it))
1919 flag_probability = profile_probability::always ();
1920 nbbs++;
1923 profile_probability cap = profile_probability::always ().apply_scale (2, 3);
1925 if (flag_probability.initialized_p ())
1927 else if (ncount == nbbs
1928 && preheader->count () >= count_sum && preheader->count ().nonzero_p ())
1930 flag_probability = count_sum.probability_in (preheader->count ());
1931 if (flag_probability > cap)
1932 flag_probability = cap;
1935 if (!flag_probability.initialized_p ())
1936 flag_probability = cap;
1938 /* ?? Insert store after previous store if applicable. See note
1939 below. */
1940 if (append_cond_position)
1941 ex = append_cond_position;
1943 loop_has_only_one_exit = single_pred_p (ex->dest);
1945 if (loop_has_only_one_exit)
1946 ex = split_block_after_labels (ex->dest);
1947 else
1949 for (gphi_iterator gpi = gsi_start_phis (ex->dest);
1950 !gsi_end_p (gpi); gsi_next (&gpi))
1952 gphi *phi = gpi.phi ();
1953 if (virtual_operand_p (gimple_phi_result (phi)))
1954 continue;
1956 /* When the destination has a non-virtual PHI node with multiple
1957 predecessors make sure we preserve the PHI structure by
1958 forcing a forwarder block so that hoisting of that PHI will
1959 still work. */
1960 split_edge (ex);
1961 break;
1965 old_dest = ex->dest;
1966 new_bb = split_edge (ex);
1967 then_bb = create_empty_bb (new_bb);
1968 then_bb->count = new_bb->count.apply_probability (flag_probability);
1969 if (irr)
1970 then_bb->flags = BB_IRREDUCIBLE_LOOP;
1971 add_bb_to_loop (then_bb, new_bb->loop_father);
1973 gsi = gsi_start_bb (new_bb);
1974 stmt = gimple_build_cond (NE_EXPR, flag, boolean_false_node,
1975 NULL_TREE, NULL_TREE);
1976 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1978 gsi = gsi_start_bb (then_bb);
1979 /* Insert actual store. */
1980 stmt = gimple_build_assign (unshare_expr (mem), tmp_var);
1981 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1983 edge e1 = single_succ_edge (new_bb);
1984 edge e2 = make_edge (new_bb, then_bb,
1985 EDGE_TRUE_VALUE | (irr ? EDGE_IRREDUCIBLE_LOOP : 0));
1986 e2->probability = flag_probability;
1988 e1->flags |= EDGE_FALSE_VALUE | (irr ? EDGE_IRREDUCIBLE_LOOP : 0);
1989 e1->flags &= ~EDGE_FALLTHRU;
1991 e1->probability = flag_probability.invert ();
1993 then_old_edge = make_single_succ_edge (then_bb, old_dest,
1994 EDGE_FALLTHRU | (irr ? EDGE_IRREDUCIBLE_LOOP : 0));
1996 set_immediate_dominator (CDI_DOMINATORS, then_bb, new_bb);
1998 if (append_cond_position)
2000 basic_block prevbb = last_cond_fallthru->src;
2001 redirect_edge_succ (last_cond_fallthru, new_bb);
2002 set_immediate_dominator (CDI_DOMINATORS, new_bb, prevbb);
2003 set_immediate_dominator (CDI_DOMINATORS, old_dest,
2004 recompute_dominator (CDI_DOMINATORS, old_dest));
2007 /* ?? Because stores may alias, they must happen in the exact
2008 sequence they originally happened. Save the position right after
2009 the (_lsm) store we just created so we can continue appending after
2010 it and maintain the original order. */
2011 append_cond_position = then_old_edge;
2012 last_cond_fallthru = find_edge (new_bb, old_dest);
2014 if (!loop_has_only_one_exit)
2015 for (gphi_iterator gpi = gsi_start_phis (old_dest);
2016 !gsi_end_p (gpi); gsi_next (&gpi))
2018 gphi *phi = gpi.phi ();
2019 unsigned i;
2021 for (i = 0; i < gimple_phi_num_args (phi); i++)
2022 if (gimple_phi_arg_edge (phi, i)->src == new_bb)
2024 tree arg = gimple_phi_arg_def (phi, i);
2025 add_phi_arg (phi, arg, then_old_edge, UNKNOWN_LOCATION);
2026 update_stmt (phi);
2031 /* When REF is set on the location, set flag indicating the store. */
2033 class sm_set_flag_if_changed
2035 public:
2036 sm_set_flag_if_changed (tree flag_, hash_set <basic_block> *bbs_)
2037 : flag (flag_), bbs (bbs_) {}
2038 bool operator () (mem_ref_loc *loc);
2039 tree flag;
2040 hash_set <basic_block> *bbs;
2043 bool
2044 sm_set_flag_if_changed::operator () (mem_ref_loc *loc)
2046 /* Only set the flag for writes. */
2047 if (is_gimple_assign (loc->stmt)
2048 && gimple_assign_lhs_ptr (loc->stmt) == loc->ref)
2050 gimple_stmt_iterator gsi = gsi_for_stmt (loc->stmt);
2051 gimple *stmt = gimple_build_assign (flag, boolean_true_node);
2052 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2053 bbs->add (gimple_bb (stmt));
2055 return false;
2058 /* Helper function for execute_sm. On every location where REF is
2059 set, set an appropriate flag indicating the store. */
2061 static tree
2062 execute_sm_if_changed_flag_set (class loop *loop, im_mem_ref *ref,
2063 hash_set <basic_block> *bbs)
2065 tree flag;
2066 char *str = get_lsm_tmp_name (ref->mem.ref, ~0, "_flag");
2067 flag = create_tmp_reg (boolean_type_node, str);
2068 for_all_locs_in_loop (loop, ref, sm_set_flag_if_changed (flag, bbs));
2069 return flag;
2072 struct sm_aux
2074 tree tmp_var;
2075 tree store_flag;
2076 hash_set <basic_block> flag_bbs;
2079 /* Executes store motion of memory reference REF from LOOP.
2080 Exits from the LOOP are stored in EXITS. The initialization of the
2081 temporary variable is put to the preheader of the loop, and assignments
2082 to the reference from the temporary variable are emitted to exits. */
2084 static void
2085 execute_sm (class loop *loop, im_mem_ref *ref,
2086 hash_map<im_mem_ref *, sm_aux *> &aux_map, bool maybe_mt)
2088 gassign *load;
2089 struct fmt_data fmt_data;
2090 struct lim_aux_data *lim_data;
2091 bool multi_threaded_model_p = false;
2092 gimple_stmt_iterator gsi;
2093 sm_aux *aux = new sm_aux;
2095 if (dump_file && (dump_flags & TDF_DETAILS))
2097 fprintf (dump_file, "Executing store motion of ");
2098 print_generic_expr (dump_file, ref->mem.ref);
2099 fprintf (dump_file, " from loop %d\n", loop->num);
2102 aux->tmp_var = create_tmp_reg (TREE_TYPE (ref->mem.ref),
2103 get_lsm_tmp_name (ref->mem.ref, ~0));
2105 fmt_data.loop = loop;
2106 fmt_data.orig_loop = loop;
2107 for_each_index (&ref->mem.ref, force_move_till, &fmt_data);
2109 bool always_stored = ref_always_accessed_p (loop, ref, true);
2110 if (maybe_mt
2111 && (bb_in_transaction (loop_preheader_edge (loop)->src)
2112 || (! flag_store_data_races && ! always_stored)))
2113 multi_threaded_model_p = true;
2115 if (multi_threaded_model_p)
2116 aux->store_flag
2117 = execute_sm_if_changed_flag_set (loop, ref, &aux->flag_bbs);
2118 else
2119 aux->store_flag = NULL_TREE;
2121 /* Remember variable setup. */
2122 aux_map.put (ref, aux);
2124 rewrite_mem_refs (loop, ref, aux->tmp_var);
2126 /* Emit the load code on a random exit edge or into the latch if
2127 the loop does not exit, so that we are sure it will be processed
2128 by move_computations after all dependencies. */
2129 gsi = gsi_for_stmt (first_mem_ref_loc (loop, ref)->stmt);
2131 /* Avoid doing a load if there was no load of the ref in the loop.
2132 Esp. when the ref is not always stored we cannot optimize it
2133 away later. But when it is not always stored we must use a conditional
2134 store then. */
2135 if ((!always_stored && !multi_threaded_model_p)
2136 || (ref->loaded && bitmap_bit_p (ref->loaded, loop->num)))
2137 load = gimple_build_assign (aux->tmp_var, unshare_expr (ref->mem.ref));
2138 else
2140 /* If not emitting a load mark the uninitialized state on the
2141 loop entry as not to be warned for. */
2142 tree uninit = create_tmp_reg (TREE_TYPE (aux->tmp_var));
2143 TREE_NO_WARNING (uninit) = 1;
2144 load = gimple_build_assign (aux->tmp_var, uninit);
2146 lim_data = init_lim_data (load);
2147 lim_data->max_loop = loop;
2148 lim_data->tgt_loop = loop;
2149 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
2151 if (multi_threaded_model_p)
2153 load = gimple_build_assign (aux->store_flag, boolean_false_node);
2154 lim_data = init_lim_data (load);
2155 lim_data->max_loop = loop;
2156 lim_data->tgt_loop = loop;
2157 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
2161 /* sm_ord is used for ordinary stores we can retain order with respect
2162 to other stores
2163 sm_unord is used for conditional executed stores which need to be
2164 able to execute in arbitrary order with respect to other stores
2165 sm_other is used for stores we do not try to apply store motion to. */
2166 enum sm_kind { sm_ord, sm_unord, sm_other };
2167 struct seq_entry
2169 seq_entry (unsigned f, sm_kind k, tree fr = NULL)
2170 : first (f), second (k), from (fr) {}
2171 unsigned first;
2172 sm_kind second;
2173 tree from;
2176 static void
2177 execute_sm_exit (class loop *loop, edge ex, vec<seq_entry> &seq,
2178 hash_map<im_mem_ref *, sm_aux *> &aux_map, sm_kind kind,
2179 edge &append_cond_position, edge &last_cond_fallthru)
2181 /* Sink the stores to exit from the loop. */
2182 for (unsigned i = seq.length (); i > 0; --i)
2184 im_mem_ref *ref = memory_accesses.refs_list[seq[i-1].first];
2185 if (seq[i-1].second == sm_other)
2187 gcc_assert (kind == sm_ord && seq[i-1].from != NULL_TREE);
2188 if (dump_file && (dump_flags & TDF_DETAILS))
2190 fprintf (dump_file, "Re-issueing dependent store of ");
2191 print_generic_expr (dump_file, ref->mem.ref);
2192 fprintf (dump_file, " from loop %d on exit %d -> %d\n",
2193 loop->num, ex->src->index, ex->dest->index);
2195 gassign *store = gimple_build_assign (unshare_expr (ref->mem.ref),
2196 seq[i-1].from);
2197 gsi_insert_on_edge (ex, store);
2199 else
2201 sm_aux *aux = *aux_map.get (ref);
2202 if (!aux->store_flag || kind == sm_ord)
2204 gassign *store;
2205 store = gimple_build_assign (unshare_expr (ref->mem.ref),
2206 aux->tmp_var);
2207 gsi_insert_on_edge (ex, store);
2209 else
2210 execute_sm_if_changed (ex, ref->mem.ref, aux->tmp_var,
2211 aux->store_flag,
2212 loop_preheader_edge (loop), &aux->flag_bbs,
2213 append_cond_position, last_cond_fallthru);
2218 /* Push the SM candidate at index PTR in the sequence SEQ down until
2219 we hit the next SM candidate. Return true if that went OK and
2220 false if we could not disambiguate agains another unrelated ref.
2221 Update *AT to the index where the candidate now resides. */
2223 static bool
2224 sm_seq_push_down (vec<seq_entry> &seq, unsigned ptr, unsigned *at)
2226 *at = ptr;
2227 for (; ptr > 0; --ptr)
2229 seq_entry &new_cand = seq[ptr];
2230 seq_entry &against = seq[ptr-1];
2231 if (against.second == sm_ord
2232 || (against.second == sm_other && against.from != NULL_TREE))
2233 /* Found the tail of the sequence. */
2234 break;
2235 if (!refs_independent_p (memory_accesses.refs_list[new_cand.first],
2236 memory_accesses.refs_list[against.first],
2237 false))
2238 /* ??? Prune new_cand from the list of refs to apply SM to. */
2239 return false;
2240 std::swap (new_cand, against);
2241 *at = ptr - 1;
2243 return true;
2246 /* Computes the sequence of stores from candidates in REFS_NOT_IN_SEQ to SEQ
2247 walking backwards from VDEF (or the end of BB if VDEF is NULL). */
2249 static int
2250 sm_seq_valid_bb (class loop *loop, basic_block bb, tree vdef,
2251 vec<seq_entry> &seq, bitmap refs_not_in_seq,
2252 bitmap refs_not_supported, bool forked)
2254 if (!vdef)
2255 for (gimple_stmt_iterator gsi = gsi_last_bb (bb); !gsi_end_p (gsi);
2256 gsi_prev (&gsi))
2258 vdef = gimple_vdef (gsi_stmt (gsi));
2259 if (vdef)
2260 break;
2262 if (!vdef)
2264 gphi *vphi = get_virtual_phi (bb);
2265 if (vphi)
2266 vdef = gimple_phi_result (vphi);
2268 if (!vdef)
2270 if (single_pred_p (bb))
2271 /* This handles the perfect nest case. */
2272 return sm_seq_valid_bb (loop, single_pred (bb), vdef,
2273 seq, refs_not_in_seq, refs_not_supported,
2274 forked);
2275 return 0;
2279 gimple *def = SSA_NAME_DEF_STMT (vdef);
2280 if (gimple_bb (def) != bb)
2282 /* If we forked by processing a PHI do not allow our walk to
2283 merge again until we handle that robustly. */
2284 if (forked)
2286 /* Mark refs_not_in_seq as unsupported. */
2287 bitmap_ior_into (refs_not_supported, refs_not_in_seq);
2288 return 1;
2290 /* Otherwise it doesn't really matter if we end up in different
2291 BBs. */
2292 bb = gimple_bb (def);
2294 if (gphi *phi = dyn_cast <gphi *> (def))
2296 /* Handle CFG merges. Until we handle forks (gimple_bb (def) != bb)
2297 this is still linear.
2298 Eventually we want to cache intermediate results per BB
2299 (but we can't easily cache for different exits?). */
2300 /* Stop at PHIs with possible backedges. */
2301 if (bb == bb->loop_father->header
2302 || bb->flags & BB_IRREDUCIBLE_LOOP)
2304 /* Mark refs_not_in_seq as unsupported. */
2305 bitmap_ior_into (refs_not_supported, refs_not_in_seq);
2306 return 1;
2308 if (gimple_phi_num_args (phi) == 1)
2309 return sm_seq_valid_bb (loop, gimple_phi_arg_edge (phi, 0)->src,
2310 gimple_phi_arg_def (phi, 0), seq,
2311 refs_not_in_seq, refs_not_supported,
2312 false);
2313 auto_vec<seq_entry> first_edge_seq;
2314 auto_bitmap tem_refs_not_in_seq (&lim_bitmap_obstack);
2315 int eret;
2316 bitmap_copy (tem_refs_not_in_seq, refs_not_in_seq);
2317 eret = sm_seq_valid_bb (loop, gimple_phi_arg_edge (phi, 0)->src,
2318 gimple_phi_arg_def (phi, 0),
2319 first_edge_seq,
2320 tem_refs_not_in_seq, refs_not_supported,
2321 true);
2322 if (eret != 1)
2323 return -1;
2324 /* Simplify our lives by pruning the sequence of !sm_ord. */
2325 while (!first_edge_seq.is_empty ()
2326 && first_edge_seq.last ().second != sm_ord)
2327 first_edge_seq.pop ();
2328 for (unsigned int i = 1; i < gimple_phi_num_args (phi); ++i)
2330 tree vuse = gimple_phi_arg_def (phi, i);
2331 edge e = gimple_phi_arg_edge (phi, i);
2332 auto_vec<seq_entry> edge_seq;
2333 bitmap_copy (tem_refs_not_in_seq, refs_not_in_seq);
2334 eret = sm_seq_valid_bb (loop, e->src, vuse, edge_seq,
2335 tem_refs_not_in_seq, refs_not_supported,
2336 true);
2337 if (eret != 1)
2338 return -1;
2339 /* Simplify our lives by pruning the sequence of !sm_ord. */
2340 while (!edge_seq.is_empty ()
2341 && edge_seq.last ().second != sm_ord)
2342 edge_seq.pop ();
2343 unsigned min_len = MIN(first_edge_seq.length (),
2344 edge_seq.length ());
2345 /* Incrementally merge seqs into first_edge_seq. */
2346 for (unsigned int i = 0; i < min_len; ++i)
2348 /* ??? We can more intelligently merge when we face different
2349 order by additional sinking operations in one sequence.
2350 For now we simply mark them as to be processed by the
2351 not order-preserving SM code. */
2352 if (first_edge_seq[i].first != edge_seq[i].first)
2354 if (first_edge_seq[i].second == sm_ord)
2355 bitmap_set_bit (refs_not_supported,
2356 first_edge_seq[i].first);
2357 if (edge_seq[i].second == sm_ord)
2358 bitmap_set_bit (refs_not_supported, edge_seq[i].first);
2359 first_edge_seq[i].second = sm_other;
2360 first_edge_seq[i].from = NULL_TREE;
2362 /* sm_other prevails. */
2363 else if (first_edge_seq[i].second != edge_seq[i].second)
2365 /* This is just an optimization. */
2366 gcc_assert (bitmap_bit_p (refs_not_supported,
2367 first_edge_seq[i].first));
2368 first_edge_seq[i].second = sm_other;
2369 first_edge_seq[i].from = NULL_TREE;
2371 else if (first_edge_seq[i].second == sm_other
2372 && first_edge_seq[i].from != NULL_TREE
2373 && (edge_seq[i].from == NULL_TREE
2374 || !operand_equal_p (first_edge_seq[i].from,
2375 edge_seq[i].from, 0)))
2376 first_edge_seq[i].from = NULL_TREE;
2378 /* Any excess elements become sm_other since they are now
2379 coonditionally executed. */
2380 if (first_edge_seq.length () > edge_seq.length ())
2382 for (unsigned i = edge_seq.length ();
2383 i < first_edge_seq.length (); ++i)
2385 if (first_edge_seq[i].second == sm_ord)
2386 bitmap_set_bit (refs_not_supported,
2387 first_edge_seq[i].first);
2388 first_edge_seq[i].second = sm_other;
2391 else if (edge_seq.length () > first_edge_seq.length ())
2393 for (unsigned i = first_edge_seq.length ();
2394 i < edge_seq.length (); ++i)
2395 if (edge_seq[i].second == sm_ord)
2396 bitmap_set_bit (refs_not_supported, edge_seq[i].first);
2399 /* Use the sequence from the first edge and push SMs down. */
2400 for (unsigned i = 0; i < first_edge_seq.length (); ++i)
2402 unsigned id = first_edge_seq[i].first;
2403 seq.safe_push (first_edge_seq[i]);
2404 unsigned new_idx;
2405 if ((first_edge_seq[i].second == sm_ord
2406 || (first_edge_seq[i].second == sm_other
2407 && first_edge_seq[i].from != NULL_TREE))
2408 && !sm_seq_push_down (seq, seq.length () - 1, &new_idx))
2410 if (first_edge_seq[i].second == sm_ord)
2411 bitmap_set_bit (refs_not_supported, id);
2412 /* Mark it sm_other. */
2413 seq[new_idx].second = sm_other;
2414 seq[new_idx].from = NULL_TREE;
2417 return 1;
2419 lim_aux_data *data = get_lim_data (def);
2420 gcc_assert (data);
2421 if (data->ref == UNANALYZABLE_MEM_ID)
2422 return -1;
2423 /* One of the stores we want to apply SM to and we've not yet seen. */
2424 else if (bitmap_clear_bit (refs_not_in_seq, data->ref))
2426 seq.safe_push (seq_entry (data->ref, sm_ord));
2428 /* 1) push it down the queue until a SMed
2429 and not ignored ref is reached, skipping all not SMed refs
2430 and ignored refs via non-TBAA disambiguation. */
2431 unsigned new_idx;
2432 if (!sm_seq_push_down (seq, seq.length () - 1, &new_idx)
2433 /* If that fails but we did not fork yet continue, we'll see
2434 to re-materialize all of the stores in the sequence then.
2435 Further stores will only be pushed up to this one. */
2436 && forked)
2438 bitmap_set_bit (refs_not_supported, data->ref);
2439 /* Mark it sm_other. */
2440 seq[new_idx].second = sm_other;
2443 /* 2) check whether we've seen all refs we want to SM and if so
2444 declare success for the active exit */
2445 if (bitmap_empty_p (refs_not_in_seq))
2446 return 1;
2448 else
2449 /* Another store not part of the final sequence. Simply push it. */
2450 seq.safe_push (seq_entry (data->ref, sm_other,
2451 gimple_assign_rhs1 (def)));
2453 vdef = gimple_vuse (def);
2455 while (1);
2458 /* Hoists memory references MEM_REFS out of LOOP. EXITS is the list of exit
2459 edges of the LOOP. */
2461 static void
2462 hoist_memory_references (class loop *loop, bitmap mem_refs,
2463 vec<edge> exits)
2465 im_mem_ref *ref;
2466 unsigned i;
2467 bitmap_iterator bi;
2469 /* To address PR57359 before actually applying store-motion check
2470 the candidates found for validity with regards to reordering
2471 relative to other stores which we until here disambiguated using
2472 TBAA which isn't valid.
2473 What matters is the order of the last stores to the mem_refs
2474 with respect to the other stores of the loop at the point of the
2475 loop exits. */
2477 /* For each exit compute the store order, pruning from mem_refs
2478 on the fly. */
2479 /* The complexity of this is at least
2480 O(number of exits * number of SM refs) but more approaching
2481 O(number of exits * number of SM refs * number of stores). */
2482 /* ??? Somehow do this in a single sweep over the loop body. */
2483 auto_vec<std::pair<edge, vec<seq_entry> > > sms;
2484 auto_bitmap refs_not_supported (&lim_bitmap_obstack);
2485 edge e;
2486 FOR_EACH_VEC_ELT (exits, i, e)
2488 vec<seq_entry> seq;
2489 seq.create (4);
2490 auto_bitmap refs_not_in_seq (&lim_bitmap_obstack);
2491 bitmap_copy (refs_not_in_seq, mem_refs);
2492 int res = sm_seq_valid_bb (loop, e->src, NULL_TREE,
2493 seq, refs_not_in_seq,
2494 refs_not_supported, false);
2495 if (res != 1)
2497 bitmap_copy (refs_not_supported, mem_refs);
2498 break;
2500 sms.safe_push (std::make_pair (e, seq));
2503 /* Prune pruned mem_refs from earlier processed exits. */
2504 bool changed = !bitmap_empty_p (refs_not_supported);
2505 while (changed)
2507 changed = false;
2508 std::pair<edge, vec<seq_entry> > *seq;
2509 FOR_EACH_VEC_ELT (sms, i, seq)
2511 bool need_to_push = false;
2512 for (unsigned i = 0; i < seq->second.length (); ++i)
2514 sm_kind kind = seq->second[i].second;
2515 if (kind == sm_other && seq->second[i].from == NULL_TREE)
2516 break;
2517 unsigned id = seq->second[i].first;
2518 unsigned new_idx;
2519 if (kind == sm_ord
2520 && bitmap_bit_p (refs_not_supported, id))
2522 seq->second[i].second = sm_other;
2523 gcc_assert (seq->second[i].from == NULL_TREE);
2524 need_to_push = true;
2526 else if (need_to_push
2527 && !sm_seq_push_down (seq->second, i, &new_idx))
2529 /* We need to push down both sm_ord and sm_other
2530 but for the latter we need to disqualify all
2531 following refs. */
2532 if (kind == sm_ord)
2534 if (bitmap_set_bit (refs_not_supported, id))
2535 changed = true;
2536 seq->second[new_idx].second = sm_other;
2538 else
2540 for (unsigned j = seq->second.length () - 1;
2541 j > new_idx; --j)
2542 if (seq->second[j].second == sm_ord
2543 && bitmap_set_bit (refs_not_supported,
2544 seq->second[j].first))
2545 changed = true;
2546 seq->second.truncate (new_idx);
2547 break;
2553 std::pair<edge, vec<seq_entry> > *seq;
2554 FOR_EACH_VEC_ELT (sms, i, seq)
2556 /* Prune sm_other from the end. */
2557 while (!seq->second.is_empty ()
2558 && seq->second.last ().second == sm_other)
2559 seq->second.pop ();
2560 /* Prune duplicates from the start. */
2561 auto_bitmap seen (&lim_bitmap_obstack);
2562 unsigned j, k;
2563 for (j = k = 0; j < seq->second.length (); ++j)
2564 if (bitmap_set_bit (seen, seq->second[j].first))
2566 if (k != j)
2567 seq->second[k] = seq->second[j];
2568 ++k;
2570 seq->second.truncate (k);
2571 /* And verify. */
2572 seq_entry *e;
2573 FOR_EACH_VEC_ELT (seq->second, j, e)
2574 gcc_assert (e->second == sm_ord
2575 || (e->second == sm_other && e->from != NULL_TREE));
2578 /* Verify dependence for refs we cannot handle with the order preserving
2579 code (refs_not_supported) or prune them from mem_refs. */
2580 auto_vec<seq_entry> unord_refs;
2581 EXECUTE_IF_SET_IN_BITMAP (refs_not_supported, 0, i, bi)
2583 ref = memory_accesses.refs_list[i];
2584 if (!ref_indep_loop_p (loop, ref, sm_waw))
2585 bitmap_clear_bit (mem_refs, i);
2586 /* We've now verified store order for ref with respect to all other
2587 stores in the loop does not matter. */
2588 else
2589 unord_refs.safe_push (seq_entry (i, sm_unord));
2592 hash_map<im_mem_ref *, sm_aux *> aux_map;
2594 /* Execute SM but delay the store materialization for ordered
2595 sequences on exit. */
2596 EXECUTE_IF_SET_IN_BITMAP (mem_refs, 0, i, bi)
2598 ref = memory_accesses.refs_list[i];
2599 execute_sm (loop, ref, aux_map, bitmap_bit_p (refs_not_supported, i));
2602 /* Materialize ordered store sequences on exits. */
2603 FOR_EACH_VEC_ELT (exits, i, e)
2605 edge append_cond_position = NULL;
2606 edge last_cond_fallthru = NULL;
2607 if (i < sms.length ())
2609 gcc_assert (sms[i].first == e);
2610 execute_sm_exit (loop, e, sms[i].second, aux_map, sm_ord,
2611 append_cond_position, last_cond_fallthru);
2612 sms[i].second.release ();
2614 if (!unord_refs.is_empty ())
2615 execute_sm_exit (loop, e, unord_refs, aux_map, sm_unord,
2616 append_cond_position, last_cond_fallthru);
2617 /* Commit edge inserts here to preserve the order of stores
2618 when an exit exits multiple loops. */
2619 gsi_commit_one_edge_insert (e, NULL);
2622 for (hash_map<im_mem_ref *, sm_aux *>::iterator iter = aux_map.begin ();
2623 iter != aux_map.end (); ++iter)
2624 delete (*iter).second;
2627 class ref_always_accessed
2629 public:
2630 ref_always_accessed (class loop *loop_, bool stored_p_)
2631 : loop (loop_), stored_p (stored_p_) {}
2632 bool operator () (mem_ref_loc *loc);
2633 class loop *loop;
2634 bool stored_p;
2637 bool
2638 ref_always_accessed::operator () (mem_ref_loc *loc)
2640 class loop *must_exec;
2642 struct lim_aux_data *lim_data = get_lim_data (loc->stmt);
2643 if (!lim_data)
2644 return false;
2646 /* If we require an always executed store make sure the statement
2647 is a store. */
2648 if (stored_p)
2650 tree lhs = gimple_get_lhs (loc->stmt);
2651 if (!lhs
2652 || !(DECL_P (lhs) || REFERENCE_CLASS_P (lhs)))
2653 return false;
2656 must_exec = lim_data->always_executed_in;
2657 if (!must_exec)
2658 return false;
2660 if (must_exec == loop
2661 || flow_loop_nested_p (must_exec, loop))
2662 return true;
2664 return false;
2667 /* Returns true if REF is always accessed in LOOP. If STORED_P is true
2668 make sure REF is always stored to in LOOP. */
2670 static bool
2671 ref_always_accessed_p (class loop *loop, im_mem_ref *ref, bool stored_p)
2673 return for_all_locs_in_loop (loop, ref,
2674 ref_always_accessed (loop, stored_p));
2677 /* Returns true if REF1 and REF2 are independent. */
2679 static bool
2680 refs_independent_p (im_mem_ref *ref1, im_mem_ref *ref2, bool tbaa_p)
2682 if (ref1 == ref2)
2683 return true;
2685 if (dump_file && (dump_flags & TDF_DETAILS))
2686 fprintf (dump_file, "Querying dependency of refs %u and %u: ",
2687 ref1->id, ref2->id);
2689 if (mem_refs_may_alias_p (ref1, ref2, &memory_accesses.ttae_cache, tbaa_p))
2691 if (dump_file && (dump_flags & TDF_DETAILS))
2692 fprintf (dump_file, "dependent.\n");
2693 return false;
2695 else
2697 if (dump_file && (dump_flags & TDF_DETAILS))
2698 fprintf (dump_file, "independent.\n");
2699 return true;
2703 /* Returns true if REF is independent on all other accessess in LOOP.
2704 KIND specifies the kind of dependence to consider.
2705 lim_raw assumes REF is not stored in LOOP and disambiguates RAW
2706 dependences so if true REF can be hoisted out of LOOP
2707 sm_war disambiguates a store REF against all other loads to see
2708 whether the store can be sunk across loads out of LOOP
2709 sm_waw disambiguates a store REF against all other stores to see
2710 whether the store can be sunk across stores out of LOOP. */
2712 static bool
2713 ref_indep_loop_p (class loop *loop, im_mem_ref *ref, dep_kind kind)
2715 bool indep_p = true;
2716 bitmap refs_to_check;
2718 if (kind == sm_war)
2719 refs_to_check = &memory_accesses.refs_loaded_in_loop[loop->num];
2720 else
2721 refs_to_check = &memory_accesses.refs_stored_in_loop[loop->num];
2723 if (bitmap_bit_p (refs_to_check, UNANALYZABLE_MEM_ID))
2724 indep_p = false;
2725 else
2727 /* tri-state, { unknown, independent, dependent } */
2728 dep_state state = query_loop_dependence (loop, ref, kind);
2729 if (state != dep_unknown)
2730 return state == dep_independent ? true : false;
2732 class loop *inner = loop->inner;
2733 while (inner)
2735 if (!ref_indep_loop_p (inner, ref, kind))
2737 indep_p = false;
2738 break;
2740 inner = inner->next;
2743 if (indep_p)
2745 unsigned i;
2746 bitmap_iterator bi;
2747 EXECUTE_IF_SET_IN_BITMAP (refs_to_check, 0, i, bi)
2749 im_mem_ref *aref = memory_accesses.refs_list[i];
2750 if (!refs_independent_p (ref, aref, kind != sm_waw))
2752 indep_p = false;
2753 break;
2759 if (dump_file && (dump_flags & TDF_DETAILS))
2760 fprintf (dump_file, "Querying %s dependencies of ref %u in loop %d: %s\n",
2761 kind == lim_raw ? "RAW" : (kind == sm_war ? "SM WAR" : "SM WAW"),
2762 ref->id, loop->num, indep_p ? "independent" : "dependent");
2764 /* Record the computed result in the cache. */
2765 record_loop_dependence (loop, ref, kind,
2766 indep_p ? dep_independent : dep_dependent);
2768 return indep_p;
2772 /* Returns true if we can perform store motion of REF from LOOP. */
2774 static bool
2775 can_sm_ref_p (class loop *loop, im_mem_ref *ref)
2777 tree base;
2779 /* Can't hoist unanalyzable refs. */
2780 if (!MEM_ANALYZABLE (ref))
2781 return false;
2783 /* It should be movable. */
2784 if (!is_gimple_reg_type (TREE_TYPE (ref->mem.ref))
2785 || TREE_THIS_VOLATILE (ref->mem.ref)
2786 || !for_each_index (&ref->mem.ref, may_move_till, loop))
2787 return false;
2789 /* If it can throw fail, we do not properly update EH info. */
2790 if (tree_could_throw_p (ref->mem.ref))
2791 return false;
2793 /* If it can trap, it must be always executed in LOOP.
2794 Readonly memory locations may trap when storing to them, but
2795 tree_could_trap_p is a predicate for rvalues, so check that
2796 explicitly. */
2797 base = get_base_address (ref->mem.ref);
2798 if ((tree_could_trap_p (ref->mem.ref)
2799 || (DECL_P (base) && TREE_READONLY (base)))
2800 /* ??? We can at least use false here, allowing loads? We
2801 are forcing conditional stores if the ref is not always
2802 stored to later anyway. So this would only guard
2803 the load we need to emit. Thus when the ref is not
2804 loaded we can elide this completely? */
2805 && !ref_always_accessed_p (loop, ref, true))
2806 return false;
2808 /* Verify all loads of ref can be hoisted. */
2809 if (ref->loaded
2810 && bitmap_bit_p (ref->loaded, loop->num)
2811 && !ref_indep_loop_p (loop, ref, lim_raw))
2812 return false;
2814 /* Verify the candidate can be disambiguated against all loads,
2815 that is, we can elide all in-loop stores. Disambiguation
2816 against stores is done later when we cannot guarantee preserving
2817 the order of stores. */
2818 if (!ref_indep_loop_p (loop, ref, sm_war))
2819 return false;
2821 return true;
2824 /* Marks the references in LOOP for that store motion should be performed
2825 in REFS_TO_SM. SM_EXECUTED is the set of references for that store
2826 motion was performed in one of the outer loops. */
2828 static void
2829 find_refs_for_sm (class loop *loop, bitmap sm_executed, bitmap refs_to_sm)
2831 bitmap refs = &memory_accesses.all_refs_stored_in_loop[loop->num];
2832 unsigned i;
2833 bitmap_iterator bi;
2834 im_mem_ref *ref;
2836 EXECUTE_IF_AND_COMPL_IN_BITMAP (refs, sm_executed, 0, i, bi)
2838 ref = memory_accesses.refs_list[i];
2839 if (can_sm_ref_p (loop, ref) && dbg_cnt (lim))
2840 bitmap_set_bit (refs_to_sm, i);
2844 /* Checks whether LOOP (with exits stored in EXITS array) is suitable
2845 for a store motion optimization (i.e. whether we can insert statement
2846 on its exits). */
2848 static bool
2849 loop_suitable_for_sm (class loop *loop ATTRIBUTE_UNUSED,
2850 vec<edge> exits)
2852 unsigned i;
2853 edge ex;
2855 FOR_EACH_VEC_ELT (exits, i, ex)
2856 if (ex->flags & (EDGE_ABNORMAL | EDGE_EH))
2857 return false;
2859 return true;
2862 /* Try to perform store motion for all memory references modified inside
2863 LOOP. SM_EXECUTED is the bitmap of the memory references for that
2864 store motion was executed in one of the outer loops. */
2866 static void
2867 store_motion_loop (class loop *loop, bitmap sm_executed)
2869 vec<edge> exits = get_loop_exit_edges (loop);
2870 class loop *subloop;
2871 bitmap sm_in_loop = BITMAP_ALLOC (&lim_bitmap_obstack);
2873 if (loop_suitable_for_sm (loop, exits))
2875 find_refs_for_sm (loop, sm_executed, sm_in_loop);
2876 if (!bitmap_empty_p (sm_in_loop))
2877 hoist_memory_references (loop, sm_in_loop, exits);
2879 exits.release ();
2881 bitmap_ior_into (sm_executed, sm_in_loop);
2882 for (subloop = loop->inner; subloop != NULL; subloop = subloop->next)
2883 store_motion_loop (subloop, sm_executed);
2884 bitmap_and_compl_into (sm_executed, sm_in_loop);
2885 BITMAP_FREE (sm_in_loop);
2888 /* Try to perform store motion for all memory references modified inside
2889 loops. */
2891 static void
2892 do_store_motion (void)
2894 class loop *loop;
2895 bitmap sm_executed = BITMAP_ALLOC (&lim_bitmap_obstack);
2897 for (loop = current_loops->tree_root->inner; loop != NULL; loop = loop->next)
2898 store_motion_loop (loop, sm_executed);
2900 BITMAP_FREE (sm_executed);
2903 /* Fills ALWAYS_EXECUTED_IN information for basic blocks of LOOP, i.e.
2904 for each such basic block bb records the outermost loop for that execution
2905 of its header implies execution of bb. CONTAINS_CALL is the bitmap of
2906 blocks that contain a nonpure call. */
2908 static void
2909 fill_always_executed_in_1 (class loop *loop, sbitmap contains_call)
2911 basic_block bb = NULL, *bbs, last = NULL;
2912 unsigned i;
2913 edge e;
2914 class loop *inn_loop = loop;
2916 if (ALWAYS_EXECUTED_IN (loop->header) == NULL)
2918 bbs = get_loop_body_in_dom_order (loop);
2920 for (i = 0; i < loop->num_nodes; i++)
2922 edge_iterator ei;
2923 bb = bbs[i];
2925 if (dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
2926 last = bb;
2928 if (bitmap_bit_p (contains_call, bb->index))
2929 break;
2931 FOR_EACH_EDGE (e, ei, bb->succs)
2933 /* If there is an exit from this BB. */
2934 if (!flow_bb_inside_loop_p (loop, e->dest))
2935 break;
2936 /* Or we enter a possibly non-finite loop. */
2937 if (flow_loop_nested_p (bb->loop_father,
2938 e->dest->loop_father)
2939 && ! finite_loop_p (e->dest->loop_father))
2940 break;
2942 if (e)
2943 break;
2945 /* A loop might be infinite (TODO use simple loop analysis
2946 to disprove this if possible). */
2947 if (bb->flags & BB_IRREDUCIBLE_LOOP)
2948 break;
2950 if (!flow_bb_inside_loop_p (inn_loop, bb))
2951 break;
2953 if (bb->loop_father->header == bb)
2955 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
2956 break;
2958 /* In a loop that is always entered we may proceed anyway.
2959 But record that we entered it and stop once we leave it. */
2960 inn_loop = bb->loop_father;
2964 while (1)
2966 SET_ALWAYS_EXECUTED_IN (last, loop);
2967 if (last == loop->header)
2968 break;
2969 last = get_immediate_dominator (CDI_DOMINATORS, last);
2972 free (bbs);
2975 for (loop = loop->inner; loop; loop = loop->next)
2976 fill_always_executed_in_1 (loop, contains_call);
2979 /* Fills ALWAYS_EXECUTED_IN information for basic blocks, i.e.
2980 for each such basic block bb records the outermost loop for that execution
2981 of its header implies execution of bb. */
2983 static void
2984 fill_always_executed_in (void)
2986 basic_block bb;
2987 class loop *loop;
2989 auto_sbitmap contains_call (last_basic_block_for_fn (cfun));
2990 bitmap_clear (contains_call);
2991 FOR_EACH_BB_FN (bb, cfun)
2993 gimple_stmt_iterator gsi;
2994 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2996 if (nonpure_call_p (gsi_stmt (gsi)))
2997 break;
3000 if (!gsi_end_p (gsi))
3001 bitmap_set_bit (contains_call, bb->index);
3004 for (loop = current_loops->tree_root->inner; loop; loop = loop->next)
3005 fill_always_executed_in_1 (loop, contains_call);
3009 /* Compute the global information needed by the loop invariant motion pass. */
3011 static void
3012 tree_ssa_lim_initialize (void)
3014 class loop *loop;
3015 unsigned i;
3017 bitmap_obstack_initialize (&lim_bitmap_obstack);
3018 gcc_obstack_init (&mem_ref_obstack);
3019 lim_aux_data_map = new hash_map<gimple *, lim_aux_data *>;
3021 if (flag_tm)
3022 compute_transaction_bits ();
3024 memory_accesses.refs = new hash_table<mem_ref_hasher> (100);
3025 memory_accesses.refs_list.create (100);
3026 /* Allocate a special, unanalyzable mem-ref with ID zero. */
3027 memory_accesses.refs_list.quick_push
3028 (mem_ref_alloc (NULL, 0, UNANALYZABLE_MEM_ID));
3030 memory_accesses.refs_loaded_in_loop.create (number_of_loops (cfun));
3031 memory_accesses.refs_loaded_in_loop.quick_grow (number_of_loops (cfun));
3032 memory_accesses.refs_stored_in_loop.create (number_of_loops (cfun));
3033 memory_accesses.refs_stored_in_loop.quick_grow (number_of_loops (cfun));
3034 memory_accesses.all_refs_stored_in_loop.create (number_of_loops (cfun));
3035 memory_accesses.all_refs_stored_in_loop.quick_grow (number_of_loops (cfun));
3037 for (i = 0; i < number_of_loops (cfun); i++)
3039 bitmap_initialize (&memory_accesses.refs_loaded_in_loop[i],
3040 &lim_bitmap_obstack);
3041 bitmap_initialize (&memory_accesses.refs_stored_in_loop[i],
3042 &lim_bitmap_obstack);
3043 bitmap_initialize (&memory_accesses.all_refs_stored_in_loop[i],
3044 &lim_bitmap_obstack);
3047 memory_accesses.ttae_cache = NULL;
3049 /* Initialize bb_loop_postorder with a mapping from loop->num to
3050 its postorder index. */
3051 i = 0;
3052 bb_loop_postorder = XNEWVEC (unsigned, number_of_loops (cfun));
3053 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
3054 bb_loop_postorder[loop->num] = i++;
3057 /* Cleans up after the invariant motion pass. */
3059 static void
3060 tree_ssa_lim_finalize (void)
3062 basic_block bb;
3063 unsigned i;
3064 im_mem_ref *ref;
3066 FOR_EACH_BB_FN (bb, cfun)
3067 SET_ALWAYS_EXECUTED_IN (bb, NULL);
3069 bitmap_obstack_release (&lim_bitmap_obstack);
3070 delete lim_aux_data_map;
3072 delete memory_accesses.refs;
3073 memory_accesses.refs = NULL;
3075 FOR_EACH_VEC_ELT (memory_accesses.refs_list, i, ref)
3076 memref_free (ref);
3077 memory_accesses.refs_list.release ();
3078 obstack_free (&mem_ref_obstack, NULL);
3080 memory_accesses.refs_loaded_in_loop.release ();
3081 memory_accesses.refs_stored_in_loop.release ();
3082 memory_accesses.all_refs_stored_in_loop.release ();
3084 if (memory_accesses.ttae_cache)
3085 free_affine_expand_cache (&memory_accesses.ttae_cache);
3087 free (bb_loop_postorder);
3090 /* Moves invariants from loops. Only "expensive" invariants are moved out --
3091 i.e. those that are likely to be win regardless of the register pressure. */
3093 static unsigned int
3094 tree_ssa_lim (function *fun)
3096 unsigned int todo = 0;
3098 tree_ssa_lim_initialize ();
3100 /* Gathers information about memory accesses in the loops. */
3101 analyze_memory_references ();
3103 /* Fills ALWAYS_EXECUTED_IN information for basic blocks. */
3104 fill_always_executed_in ();
3106 int *rpo = XNEWVEC (int, last_basic_block_for_fn (fun));
3107 int n = pre_and_rev_post_order_compute_fn (fun, NULL, rpo, false);
3109 /* For each statement determine the outermost loop in that it is
3110 invariant and cost for computing the invariant. */
3111 for (int i = 0; i < n; ++i)
3112 compute_invariantness (BASIC_BLOCK_FOR_FN (fun, rpo[i]));
3114 /* Execute store motion. Force the necessary invariants to be moved
3115 out of the loops as well. */
3116 do_store_motion ();
3118 /* Move the expressions that are expensive enough. */
3119 for (int i = 0; i < n; ++i)
3120 todo |= move_computations_worker (BASIC_BLOCK_FOR_FN (fun, rpo[i]));
3122 free (rpo);
3124 gsi_commit_edge_inserts ();
3125 if (need_ssa_update_p (fun))
3126 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
3128 tree_ssa_lim_finalize ();
3130 return todo;
3133 /* Loop invariant motion pass. */
3135 namespace {
3137 const pass_data pass_data_lim =
3139 GIMPLE_PASS, /* type */
3140 "lim", /* name */
3141 OPTGROUP_LOOP, /* optinfo_flags */
3142 TV_LIM, /* tv_id */
3143 PROP_cfg, /* properties_required */
3144 0, /* properties_provided */
3145 0, /* properties_destroyed */
3146 0, /* todo_flags_start */
3147 0, /* todo_flags_finish */
3150 class pass_lim : public gimple_opt_pass
3152 public:
3153 pass_lim (gcc::context *ctxt)
3154 : gimple_opt_pass (pass_data_lim, ctxt)
3157 /* opt_pass methods: */
3158 opt_pass * clone () { return new pass_lim (m_ctxt); }
3159 virtual bool gate (function *) { return flag_tree_loop_im != 0; }
3160 virtual unsigned int execute (function *);
3162 }; // class pass_lim
3164 unsigned int
3165 pass_lim::execute (function *fun)
3167 bool in_loop_pipeline = scev_initialized_p ();
3168 if (!in_loop_pipeline)
3169 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
3171 if (number_of_loops (fun) <= 1)
3172 return 0;
3173 unsigned int todo = tree_ssa_lim (fun);
3175 if (!in_loop_pipeline)
3176 loop_optimizer_finalize ();
3177 else
3178 scev_reset ();
3179 return todo;
3182 } // anon namespace
3184 gimple_opt_pass *
3185 make_pass_lim (gcc::context *ctxt)
3187 return new pass_lim (ctxt);