1 /* Emit RTL for the GNU C-Compiler expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
23 /* Middle-to-low level generation of rtx code and insns.
25 This file contains the functions `gen_rtx', `gen_reg_rtx'
26 and `gen_label_rtx' that are the usual ways of creating rtl
27 expressions for most purposes.
29 It also has the functions for creating insns and linking
30 them in the doubly-linked chain.
32 The patterns of the insns are created by machine-dependent
33 routines in insn-emit.c, which is generated automatically from
34 the machine description. These routines use `gen_rtx' to make
35 the individual rtx's of the pattern; what is machine dependent
36 is the kind of rtx's they make and what arguments they use. */
48 #include "hard-reg-set.h"
50 #include "insn-config.h"
55 #include "basic-block.h"
58 /* Commonly used modes. */
60 enum machine_mode byte_mode
; /* Mode whose width is BITS_PER_UNIT. */
61 enum machine_mode word_mode
; /* Mode whose width is BITS_PER_WORD. */
62 enum machine_mode double_mode
; /* Mode whose width is DOUBLE_TYPE_SIZE. */
63 enum machine_mode ptr_mode
; /* Mode whose width is POINTER_SIZE. */
66 /* This is *not* reset after each function. It gives each CODE_LABEL
67 in the entire compilation a unique label number. */
69 static int label_num
= 1;
71 /* Highest label number in current function.
72 Zero means use the value of label_num instead.
73 This is nonzero only when belatedly compiling an inline function. */
75 static int last_label_num
;
77 /* Value label_num had when set_new_first_and_last_label_number was called.
78 If label_num has not changed since then, last_label_num is valid. */
80 static int base_label_num
;
82 /* Nonzero means do not generate NOTEs for source line numbers. */
84 static int no_line_numbers
;
86 /* Commonly used rtx's, so that we only need space for one copy.
87 These are initialized once for the entire compilation.
88 All of these except perhaps the floating-point CONST_DOUBLEs
89 are unique; no other rtx-object will be equal to any of these. */
91 rtx global_rtl
[GR_MAX
];
93 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
94 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
95 record a copy of const[012]_rtx. */
97 rtx const_tiny_rtx
[3][(int) MAX_MACHINE_MODE
];
101 REAL_VALUE_TYPE dconst0
;
102 REAL_VALUE_TYPE dconst1
;
103 REAL_VALUE_TYPE dconst2
;
104 REAL_VALUE_TYPE dconstm1
;
106 /* All references to the following fixed hard registers go through
107 these unique rtl objects. On machines where the frame-pointer and
108 arg-pointer are the same register, they use the same unique object.
110 After register allocation, other rtl objects which used to be pseudo-regs
111 may be clobbered to refer to the frame-pointer register.
112 But references that were originally to the frame-pointer can be
113 distinguished from the others because they contain frame_pointer_rtx.
115 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
116 tricky: until register elimination has taken place hard_frame_pointer_rtx
117 should be used if it is being set, and frame_pointer_rtx otherwise. After
118 register elimination hard_frame_pointer_rtx should always be used.
119 On machines where the two registers are same (most) then these are the
122 In an inline procedure, the stack and frame pointer rtxs may not be
123 used for anything else. */
124 rtx struct_value_rtx
; /* (REG:Pmode STRUCT_VALUE_REGNUM) */
125 rtx struct_value_incoming_rtx
; /* (REG:Pmode STRUCT_VALUE_INCOMING_REGNUM) */
126 rtx static_chain_rtx
; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
127 rtx static_chain_incoming_rtx
; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
128 rtx pic_offset_table_rtx
; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
130 /* This is used to implement __builtin_return_address for some machines.
131 See for instance the MIPS port. */
132 rtx return_address_pointer_rtx
; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
134 /* We make one copy of (const_int C) where C is in
135 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
136 to save space during the compilation and simplify comparisons of
139 rtx const_int_rtx
[MAX_SAVED_CONST_INT
* 2 + 1];
141 /* A hash table storing CONST_INTs whose absolute value is greater
142 than MAX_SAVED_CONST_INT. */
144 static htab_t const_int_htab
;
146 /* start_sequence and gen_sequence can make a lot of rtx expressions which are
147 shortly thrown away. We use two mechanisms to prevent this waste:
149 For sizes up to 5 elements, we keep a SEQUENCE and its associated
150 rtvec for use by gen_sequence. One entry for each size is
151 sufficient because most cases are calls to gen_sequence followed by
152 immediately emitting the SEQUENCE. Reuse is safe since emitting a
153 sequence is destructive on the insn in it anyway and hence can't be
156 We do not bother to save this cached data over nested function calls.
157 Instead, we just reinitialize them. */
159 #define SEQUENCE_RESULT_SIZE 5
161 static rtx sequence_result
[SEQUENCE_RESULT_SIZE
];
163 /* During RTL generation, we also keep a list of free INSN rtl codes. */
164 static rtx free_insn
;
166 #define first_insn (cfun->emit->x_first_insn)
167 #define last_insn (cfun->emit->x_last_insn)
168 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
169 #define last_linenum (cfun->emit->x_last_linenum)
170 #define last_filename (cfun->emit->x_last_filename)
171 #define first_label_num (cfun->emit->x_first_label_num)
173 static rtx make_jump_insn_raw
PARAMS ((rtx
));
174 static rtx make_call_insn_raw
PARAMS ((rtx
));
175 static rtx find_line_note
PARAMS ((rtx
));
176 static void mark_sequence_stack
PARAMS ((struct sequence_stack
*));
177 static void unshare_all_rtl_1
PARAMS ((rtx
));
178 static void unshare_all_decls
PARAMS ((tree
));
179 static void reset_used_decls
PARAMS ((tree
));
180 static void mark_label_nuses
PARAMS ((rtx
));
181 static hashval_t const_int_htab_hash
PARAMS ((const void *));
182 static int const_int_htab_eq
PARAMS ((const void *,
184 static int rtx_htab_mark_1
PARAMS ((void **, void *));
185 static void rtx_htab_mark
PARAMS ((void *));
188 /* Returns a hash code for X (which is a really a CONST_INT). */
191 const_int_htab_hash (x
)
194 return (hashval_t
) INTVAL ((const struct rtx_def
*) x
);
197 /* Returns non-zero if the value represented by X (which is really a
198 CONST_INT) is the same as that given by Y (which is really a
202 const_int_htab_eq (x
, y
)
206 return (INTVAL ((const struct rtx_def
*) x
) == *((const HOST_WIDE_INT
*) y
));
209 /* Mark the hash-table element X (which is really a pointer to an
213 rtx_htab_mark_1 (x
, data
)
215 void *data ATTRIBUTE_UNUSED
;
221 /* Mark all the elements of HTAB (which is really an htab_t full of
228 htab_traverse (*((htab_t
*) htab
), rtx_htab_mark_1
, NULL
);
231 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
232 don't attempt to share with the various global pieces of rtl (such as
233 frame_pointer_rtx). */
236 gen_raw_REG (mode
, regno
)
237 enum machine_mode mode
;
240 rtx x
= gen_rtx_raw_REG (mode
, regno
);
241 ORIGINAL_REGNO (x
) = regno
;
245 /* There are some RTL codes that require special attention; the generation
246 functions do the raw handling. If you add to this list, modify
247 special_rtx in gengenrtl.c as well. */
250 gen_rtx_CONST_INT (mode
, arg
)
251 enum machine_mode mode ATTRIBUTE_UNUSED
;
256 if (arg
>= - MAX_SAVED_CONST_INT
&& arg
<= MAX_SAVED_CONST_INT
)
257 return const_int_rtx
[arg
+ MAX_SAVED_CONST_INT
];
259 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
260 if (const_true_rtx
&& arg
== STORE_FLAG_VALUE
)
261 return const_true_rtx
;
264 /* Look up the CONST_INT in the hash table. */
265 slot
= htab_find_slot_with_hash (const_int_htab
, &arg
,
266 (hashval_t
) arg
, INSERT
);
268 *slot
= gen_rtx_raw_CONST_INT (VOIDmode
, arg
);
273 /* CONST_DOUBLEs needs special handling because their length is known
277 gen_rtx_CONST_DOUBLE (mode
, arg0
, arg1
, arg2
)
278 enum machine_mode mode
;
280 HOST_WIDE_INT arg1
, arg2
;
282 rtx r
= rtx_alloc (CONST_DOUBLE
);
287 X0EXP (r
, 1) = NULL_RTX
;
291 for (i
= GET_RTX_LENGTH (CONST_DOUBLE
) - 1; i
> 3; --i
)
298 gen_rtx_REG (mode
, regno
)
299 enum machine_mode mode
;
302 /* In case the MD file explicitly references the frame pointer, have
303 all such references point to the same frame pointer. This is
304 used during frame pointer elimination to distinguish the explicit
305 references to these registers from pseudos that happened to be
308 If we have eliminated the frame pointer or arg pointer, we will
309 be using it as a normal register, for example as a spill
310 register. In such cases, we might be accessing it in a mode that
311 is not Pmode and therefore cannot use the pre-allocated rtx.
313 Also don't do this when we are making new REGs in reload, since
314 we don't want to get confused with the real pointers. */
316 if (mode
== Pmode
&& !reload_in_progress
)
318 if (regno
== FRAME_POINTER_REGNUM
)
319 return frame_pointer_rtx
;
320 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
321 if (regno
== HARD_FRAME_POINTER_REGNUM
)
322 return hard_frame_pointer_rtx
;
324 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
325 if (regno
== ARG_POINTER_REGNUM
)
326 return arg_pointer_rtx
;
328 #ifdef RETURN_ADDRESS_POINTER_REGNUM
329 if (regno
== RETURN_ADDRESS_POINTER_REGNUM
)
330 return return_address_pointer_rtx
;
332 if (regno
== STACK_POINTER_REGNUM
)
333 return stack_pointer_rtx
;
336 return gen_raw_REG (mode
, regno
);
340 gen_rtx_MEM (mode
, addr
)
341 enum machine_mode mode
;
344 rtx rt
= gen_rtx_raw_MEM (mode
, addr
);
346 /* This field is not cleared by the mere allocation of the rtx, so
348 MEM_ALIAS_SET (rt
) = 0;
354 gen_rtx_SUBREG (mode
, reg
, offset
)
355 enum machine_mode mode
;
359 /* This is the most common failure type.
360 Catch it early so we can see who does it. */
361 if ((offset
% GET_MODE_SIZE (mode
)) != 0)
364 /* This check isn't usable right now because combine will
365 throw arbitrary crap like a CALL into a SUBREG in
366 gen_lowpart_for_combine so we must just eat it. */
368 /* Check for this too. */
369 if (offset
>= GET_MODE_SIZE (GET_MODE (reg
)))
372 return gen_rtx_fmt_ei (SUBREG
, mode
, reg
, offset
);
375 /* Generate a SUBREG representing the least-significant part
376 * of REG if MODE is smaller than mode of REG, otherwise
377 * paradoxical SUBREG. */
379 gen_lowpart_SUBREG (mode
, reg
)
380 enum machine_mode mode
;
383 enum machine_mode inmode
;
385 inmode
= GET_MODE (reg
);
386 if (inmode
== VOIDmode
)
388 return gen_rtx_SUBREG (mode
, reg
,
389 subreg_lowpart_offset (mode
, inmode
));
392 /* rtx gen_rtx (code, mode, [element1, ..., elementn])
394 ** This routine generates an RTX of the size specified by
395 ** <code>, which is an RTX code. The RTX structure is initialized
396 ** from the arguments <element1> through <elementn>, which are
397 ** interpreted according to the specific RTX type's format. The
398 ** special machine mode associated with the rtx (if any) is specified
401 ** gen_rtx can be invoked in a way which resembles the lisp-like
402 ** rtx it will generate. For example, the following rtx structure:
404 ** (plus:QI (mem:QI (reg:SI 1))
405 ** (mem:QI (plusw:SI (reg:SI 2) (reg:SI 3))))
407 ** ...would be generated by the following C code:
409 ** gen_rtx (PLUS, QImode,
410 ** gen_rtx (MEM, QImode,
411 ** gen_rtx (REG, SImode, 1)),
412 ** gen_rtx (MEM, QImode,
413 ** gen_rtx (PLUS, SImode,
414 ** gen_rtx (REG, SImode, 2),
415 ** gen_rtx (REG, SImode, 3)))),
420 gen_rtx
VPARAMS ((enum rtx_code code
, enum machine_mode mode
, ...))
422 #ifndef ANSI_PROTOTYPES
424 enum machine_mode mode
;
427 register int i
; /* Array indices... */
428 register const char *fmt
; /* Current rtx's format... */
429 register rtx rt_val
; /* RTX to return to caller... */
433 #ifndef ANSI_PROTOTYPES
434 code
= va_arg (p
, enum rtx_code
);
435 mode
= va_arg (p
, enum machine_mode
);
441 rt_val
= gen_rtx_CONST_INT (mode
, va_arg (p
, HOST_WIDE_INT
));
446 rtx arg0
= va_arg (p
, rtx
);
447 HOST_WIDE_INT arg1
= va_arg (p
, HOST_WIDE_INT
);
448 HOST_WIDE_INT arg2
= va_arg (p
, HOST_WIDE_INT
);
449 rt_val
= gen_rtx_CONST_DOUBLE (mode
, arg0
, arg1
, arg2
);
454 rt_val
= gen_rtx_REG (mode
, va_arg (p
, int));
458 rt_val
= gen_rtx_MEM (mode
, va_arg (p
, rtx
));
462 rt_val
= rtx_alloc (code
); /* Allocate the storage space. */
463 rt_val
->mode
= mode
; /* Store the machine mode... */
465 fmt
= GET_RTX_FORMAT (code
); /* Find the right format... */
466 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
470 case '0': /* Unused field. */
473 case 'i': /* An integer? */
474 XINT (rt_val
, i
) = va_arg (p
, int);
477 case 'w': /* A wide integer? */
478 XWINT (rt_val
, i
) = va_arg (p
, HOST_WIDE_INT
);
481 case 's': /* A string? */
482 XSTR (rt_val
, i
) = va_arg (p
, char *);
485 case 'e': /* An expression? */
486 case 'u': /* An insn? Same except when printing. */
487 XEXP (rt_val
, i
) = va_arg (p
, rtx
);
490 case 'E': /* An RTX vector? */
491 XVEC (rt_val
, i
) = va_arg (p
, rtvec
);
494 case 'b': /* A bitmap? */
495 XBITMAP (rt_val
, i
) = va_arg (p
, bitmap
);
498 case 't': /* A tree? */
499 XTREE (rt_val
, i
) = va_arg (p
, tree
);
513 /* gen_rtvec (n, [rt1, ..., rtn])
515 ** This routine creates an rtvec and stores within it the
516 ** pointers to rtx's which are its arguments.
521 gen_rtvec
VPARAMS ((int n
, ...))
523 #ifndef ANSI_PROTOTYPES
532 #ifndef ANSI_PROTOTYPES
537 return NULL_RTVEC
; /* Don't allocate an empty rtvec... */
539 vector
= (rtx
*) alloca (n
* sizeof (rtx
));
541 for (i
= 0; i
< n
; i
++)
542 vector
[i
] = va_arg (p
, rtx
);
545 return gen_rtvec_v (n
, vector
);
549 gen_rtvec_v (n
, argp
)
554 register rtvec rt_val
;
557 return NULL_RTVEC
; /* Don't allocate an empty rtvec... */
559 rt_val
= rtvec_alloc (n
); /* Allocate an rtvec... */
561 for (i
= 0; i
< n
; i
++)
562 rt_val
->elem
[i
] = *argp
++;
568 /* Generate a REG rtx for a new pseudo register of mode MODE.
569 This pseudo is assigned the next sequential register number. */
573 enum machine_mode mode
;
575 struct function
*f
= cfun
;
578 /* Don't let anything called after initial flow analysis create new
583 if (generating_concat_p
584 && (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
585 || GET_MODE_CLASS (mode
) == MODE_COMPLEX_INT
))
587 /* For complex modes, don't make a single pseudo.
588 Instead, make a CONCAT of two pseudos.
589 This allows noncontiguous allocation of the real and imaginary parts,
590 which makes much better code. Besides, allocating DCmode
591 pseudos overstrains reload on some machines like the 386. */
592 rtx realpart
, imagpart
;
593 int size
= GET_MODE_UNIT_SIZE (mode
);
594 enum machine_mode partmode
595 = mode_for_size (size
* BITS_PER_UNIT
,
596 (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
597 ? MODE_FLOAT
: MODE_INT
),
600 realpart
= gen_reg_rtx (partmode
);
601 imagpart
= gen_reg_rtx (partmode
);
602 return gen_rtx_CONCAT (mode
, realpart
, imagpart
);
605 /* Make sure regno_pointer_align and regno_reg_rtx are large enough
606 to have an element for this pseudo reg number. */
608 if (reg_rtx_no
== f
->emit
->regno_pointer_align_length
)
610 int old_size
= f
->emit
->regno_pointer_align_length
;
613 new = xrealloc (f
->emit
->regno_pointer_align
, old_size
* 2);
614 memset (new + old_size
, 0, old_size
);
615 f
->emit
->regno_pointer_align
= (unsigned char *) new;
617 new1
= (rtx
*) xrealloc (f
->emit
->x_regno_reg_rtx
,
618 old_size
* 2 * sizeof (rtx
));
619 memset (new1
+ old_size
, 0, old_size
* sizeof (rtx
));
620 regno_reg_rtx
= new1
;
622 f
->emit
->regno_pointer_align_length
= old_size
* 2;
625 val
= gen_raw_REG (mode
, reg_rtx_no
);
626 regno_reg_rtx
[reg_rtx_no
++] = val
;
630 /* Identify REG (which may be a CONCAT) as a user register. */
636 if (GET_CODE (reg
) == CONCAT
)
638 REG_USERVAR_P (XEXP (reg
, 0)) = 1;
639 REG_USERVAR_P (XEXP (reg
, 1)) = 1;
641 else if (GET_CODE (reg
) == REG
)
642 REG_USERVAR_P (reg
) = 1;
647 /* Identify REG as a probable pointer register and show its alignment
648 as ALIGN, if nonzero. */
651 mark_reg_pointer (reg
, align
)
655 if (! REG_POINTER (reg
))
657 REG_POINTER (reg
) = 1;
660 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
662 else if (align
&& align
< REGNO_POINTER_ALIGN (REGNO (reg
)))
663 /* We can no-longer be sure just how aligned this pointer is */
664 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
667 /* Return 1 plus largest pseudo reg number used in the current function. */
675 /* Return 1 + the largest label number used so far in the current function. */
680 if (last_label_num
&& label_num
== base_label_num
)
681 return last_label_num
;
685 /* Return first label number used in this function (if any were used). */
688 get_first_label_num ()
690 return first_label_num
;
693 /* Return the final regno of X, which is a SUBREG of a hard
696 subreg_hard_regno (x
, check_mode
)
700 enum machine_mode mode
= GET_MODE (x
);
701 unsigned int byte_offset
, base_regno
, final_regno
;
702 rtx reg
= SUBREG_REG (x
);
704 /* This is where we attempt to catch illegal subregs
705 created by the compiler. */
706 if (GET_CODE (x
) != SUBREG
707 || GET_CODE (reg
) != REG
)
709 base_regno
= REGNO (reg
);
710 if (base_regno
>= FIRST_PSEUDO_REGISTER
)
712 if (check_mode
&& ! HARD_REGNO_MODE_OK (base_regno
, GET_MODE (reg
)))
715 /* Catch non-congruent offsets too. */
716 byte_offset
= SUBREG_BYTE (x
);
717 if ((byte_offset
% GET_MODE_SIZE (mode
)) != 0)
720 final_regno
= subreg_regno (x
);
725 /* Return a value representing some low-order bits of X, where the number
726 of low-order bits is given by MODE. Note that no conversion is done
727 between floating-point and fixed-point values, rather, the bit
728 representation is returned.
730 This function handles the cases in common between gen_lowpart, below,
731 and two variants in cse.c and combine.c. These are the cases that can
732 be safely handled at all points in the compilation.
734 If this is not a case we can handle, return 0. */
737 gen_lowpart_common (mode
, x
)
738 enum machine_mode mode
;
741 int msize
= GET_MODE_SIZE (mode
);
742 int xsize
= GET_MODE_SIZE (GET_MODE (x
));
745 if (GET_MODE (x
) == mode
)
748 /* MODE must occupy no more words than the mode of X. */
749 if (GET_MODE (x
) != VOIDmode
750 && ((msize
+ (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
751 > ((xsize
+ (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)))
754 offset
= subreg_lowpart_offset (mode
, GET_MODE (x
));
756 if ((GET_CODE (x
) == ZERO_EXTEND
|| GET_CODE (x
) == SIGN_EXTEND
)
757 && (GET_MODE_CLASS (mode
) == MODE_INT
758 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
))
760 /* If we are getting the low-order part of something that has been
761 sign- or zero-extended, we can either just use the object being
762 extended or make a narrower extension. If we want an even smaller
763 piece than the size of the object being extended, call ourselves
766 This case is used mostly by combine and cse. */
768 if (GET_MODE (XEXP (x
, 0)) == mode
)
770 else if (GET_MODE_SIZE (mode
) < GET_MODE_SIZE (GET_MODE (XEXP (x
, 0))))
771 return gen_lowpart_common (mode
, XEXP (x
, 0));
772 else if (GET_MODE_SIZE (mode
) < GET_MODE_SIZE (GET_MODE (x
)))
773 return gen_rtx_fmt_e (GET_CODE (x
), mode
, XEXP (x
, 0));
775 else if (GET_CODE (x
) == SUBREG
|| GET_CODE (x
) == REG
776 || GET_CODE (x
) == CONCAT
)
777 return simplify_gen_subreg (mode
, x
, GET_MODE (x
), offset
);
778 /* If X is a CONST_INT or a CONST_DOUBLE, extract the appropriate bits
779 from the low-order part of the constant. */
780 else if ((GET_MODE_CLASS (mode
) == MODE_INT
781 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
)
782 && GET_MODE (x
) == VOIDmode
783 && (GET_CODE (x
) == CONST_INT
|| GET_CODE (x
) == CONST_DOUBLE
))
785 /* If MODE is twice the host word size, X is already the desired
786 representation. Otherwise, if MODE is wider than a word, we can't
787 do this. If MODE is exactly a word, return just one CONST_INT. */
789 if (GET_MODE_BITSIZE (mode
) >= 2 * HOST_BITS_PER_WIDE_INT
)
791 else if (GET_MODE_BITSIZE (mode
) > HOST_BITS_PER_WIDE_INT
)
793 else if (GET_MODE_BITSIZE (mode
) == HOST_BITS_PER_WIDE_INT
)
794 return (GET_CODE (x
) == CONST_INT
? x
795 : GEN_INT (CONST_DOUBLE_LOW (x
)));
798 /* MODE must be narrower than HOST_BITS_PER_WIDE_INT. */
799 HOST_WIDE_INT val
= (GET_CODE (x
) == CONST_INT
? INTVAL (x
)
800 : CONST_DOUBLE_LOW (x
));
802 /* Sign extend to HOST_WIDE_INT. */
803 val
= trunc_int_for_mode (val
, mode
);
805 return (GET_CODE (x
) == CONST_INT
&& INTVAL (x
) == val
? x
810 #ifndef REAL_ARITHMETIC
811 /* If X is an integral constant but we want it in floating-point, it
812 must be the case that we have a union of an integer and a floating-point
813 value. If the machine-parameters allow it, simulate that union here
814 and return the result. The two-word and single-word cases are
817 else if (((HOST_FLOAT_FORMAT
== TARGET_FLOAT_FORMAT
818 && HOST_BITS_PER_WIDE_INT
== BITS_PER_WORD
)
819 || flag_pretend_float
)
820 && GET_MODE_CLASS (mode
) == MODE_FLOAT
821 && GET_MODE_SIZE (mode
) == UNITS_PER_WORD
822 && GET_CODE (x
) == CONST_INT
823 && sizeof (float) * HOST_BITS_PER_CHAR
== HOST_BITS_PER_WIDE_INT
)
825 union {HOST_WIDE_INT i
; float d
; } u
;
828 return CONST_DOUBLE_FROM_REAL_VALUE (u
.d
, mode
);
830 else if (((HOST_FLOAT_FORMAT
== TARGET_FLOAT_FORMAT
831 && HOST_BITS_PER_WIDE_INT
== BITS_PER_WORD
)
832 || flag_pretend_float
)
833 && GET_MODE_CLASS (mode
) == MODE_FLOAT
834 && GET_MODE_SIZE (mode
) == 2 * UNITS_PER_WORD
835 && (GET_CODE (x
) == CONST_INT
|| GET_CODE (x
) == CONST_DOUBLE
)
836 && GET_MODE (x
) == VOIDmode
837 && (sizeof (double) * HOST_BITS_PER_CHAR
838 == 2 * HOST_BITS_PER_WIDE_INT
))
840 union {HOST_WIDE_INT i
[2]; double d
; } u
;
841 HOST_WIDE_INT low
, high
;
843 if (GET_CODE (x
) == CONST_INT
)
844 low
= INTVAL (x
), high
= low
>> (HOST_BITS_PER_WIDE_INT
-1);
846 low
= CONST_DOUBLE_LOW (x
), high
= CONST_DOUBLE_HIGH (x
);
848 #ifdef HOST_WORDS_BIG_ENDIAN
849 u
.i
[0] = high
, u
.i
[1] = low
;
851 u
.i
[0] = low
, u
.i
[1] = high
;
854 return CONST_DOUBLE_FROM_REAL_VALUE (u
.d
, mode
);
857 /* Similarly, if this is converting a floating-point value into a
858 single-word integer. Only do this is the host and target parameters are
861 else if (((HOST_FLOAT_FORMAT
== TARGET_FLOAT_FORMAT
862 && HOST_BITS_PER_WIDE_INT
== BITS_PER_WORD
)
863 || flag_pretend_float
)
864 && (GET_MODE_CLASS (mode
) == MODE_INT
865 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
)
866 && GET_CODE (x
) == CONST_DOUBLE
867 && GET_MODE_CLASS (GET_MODE (x
)) == MODE_FLOAT
868 && GET_MODE_BITSIZE (mode
) == BITS_PER_WORD
)
869 return constant_subword (x
, (offset
/ UNITS_PER_WORD
), GET_MODE (x
));
871 /* Similarly, if this is converting a floating-point value into a
872 two-word integer, we can do this one word at a time and make an
873 integer. Only do this is the host and target parameters are
876 else if (((HOST_FLOAT_FORMAT
== TARGET_FLOAT_FORMAT
877 && HOST_BITS_PER_WIDE_INT
== BITS_PER_WORD
)
878 || flag_pretend_float
)
879 && (GET_MODE_CLASS (mode
) == MODE_INT
880 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
)
881 && GET_CODE (x
) == CONST_DOUBLE
882 && GET_MODE_CLASS (GET_MODE (x
)) == MODE_FLOAT
883 && GET_MODE_BITSIZE (mode
) == 2 * BITS_PER_WORD
)
885 rtx lowpart
, highpart
;
887 lowpart
= constant_subword (x
,
888 (offset
/ UNITS_PER_WORD
) + WORDS_BIG_ENDIAN
,
890 highpart
= constant_subword (x
,
891 (offset
/ UNITS_PER_WORD
) + (! WORDS_BIG_ENDIAN
),
893 if (lowpart
&& GET_CODE (lowpart
) == CONST_INT
894 && highpart
&& GET_CODE (highpart
) == CONST_INT
)
895 return immed_double_const (INTVAL (lowpart
), INTVAL (highpart
), mode
);
897 #else /* ifndef REAL_ARITHMETIC */
899 /* When we have a FP emulator, we can handle all conversions between
900 FP and integer operands. This simplifies reload because it
901 doesn't have to deal with constructs like (subreg:DI
902 (const_double:SF ...)) or (subreg:DF (const_int ...)). */
903 /* Single-precision floats are always 32-bits and double-precision
904 floats are always 64-bits. */
906 else if (GET_MODE_CLASS (mode
) == MODE_FLOAT
907 && GET_MODE_BITSIZE (mode
) == 32
908 && GET_CODE (x
) == CONST_INT
)
914 r
= REAL_VALUE_FROM_TARGET_SINGLE (i
);
915 return CONST_DOUBLE_FROM_REAL_VALUE (r
, mode
);
917 else if (GET_MODE_CLASS (mode
) == MODE_FLOAT
918 && GET_MODE_BITSIZE (mode
) == 64
919 && (GET_CODE (x
) == CONST_INT
|| GET_CODE (x
) == CONST_DOUBLE
)
920 && GET_MODE (x
) == VOIDmode
)
924 HOST_WIDE_INT low
, high
;
926 if (GET_CODE (x
) == CONST_INT
)
929 high
= low
>> (HOST_BITS_PER_WIDE_INT
- 1);
933 low
= CONST_DOUBLE_LOW (x
);
934 high
= CONST_DOUBLE_HIGH (x
);
937 /* REAL_VALUE_TARGET_DOUBLE takes the addressing order of the
939 if (WORDS_BIG_ENDIAN
)
940 i
[0] = high
, i
[1] = low
;
942 i
[0] = low
, i
[1] = high
;
944 r
= REAL_VALUE_FROM_TARGET_DOUBLE (i
);
945 return CONST_DOUBLE_FROM_REAL_VALUE (r
, mode
);
947 else if ((GET_MODE_CLASS (mode
) == MODE_INT
948 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
)
949 && GET_CODE (x
) == CONST_DOUBLE
950 && GET_MODE_CLASS (GET_MODE (x
)) == MODE_FLOAT
)
953 long i
[4]; /* Only the low 32 bits of each 'long' are used. */
954 int endian
= WORDS_BIG_ENDIAN
? 1 : 0;
956 REAL_VALUE_FROM_CONST_DOUBLE (r
, x
);
957 switch (GET_MODE_BITSIZE (GET_MODE (x
)))
960 REAL_VALUE_TO_TARGET_SINGLE (r
, i
[endian
]);
964 REAL_VALUE_TO_TARGET_DOUBLE (r
, i
);
967 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r
, i
+ endian
);
971 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r
, i
);
977 /* Now, pack the 32-bit elements of the array into a CONST_DOUBLE
979 #if HOST_BITS_PER_WIDE_INT == 32
980 return immed_double_const (i
[endian
], i
[1 - endian
], mode
);
985 if (HOST_BITS_PER_WIDE_INT
!= 64)
988 for (c
= 0; c
< 4; c
++)
991 switch (GET_MODE_BITSIZE (GET_MODE (x
)))
995 return immed_double_const (((unsigned long) i
[endian
]) |
996 (((HOST_WIDE_INT
) i
[1-endian
]) << 32),
1000 return immed_double_const (((unsigned long) i
[endian
*3]) |
1001 (((HOST_WIDE_INT
) i
[1+endian
]) << 32),
1002 ((unsigned long) i
[2-endian
]) |
1003 (((HOST_WIDE_INT
) i
[3-endian
*3]) << 32),
1011 #endif /* ifndef REAL_ARITHMETIC */
1013 /* Otherwise, we can't do this. */
1017 /* Return the real part (which has mode MODE) of a complex value X.
1018 This always comes at the low address in memory. */
1021 gen_realpart (mode
, x
)
1022 enum machine_mode mode
;
1025 if (WORDS_BIG_ENDIAN
1026 && GET_MODE_BITSIZE (mode
) < BITS_PER_WORD
1028 && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
1030 ("Can't access real part of complex value in hard register");
1031 else if (WORDS_BIG_ENDIAN
)
1032 return gen_highpart (mode
, x
);
1034 return gen_lowpart (mode
, x
);
1037 /* Return the imaginary part (which has mode MODE) of a complex value X.
1038 This always comes at the high address in memory. */
1041 gen_imagpart (mode
, x
)
1042 enum machine_mode mode
;
1045 if (WORDS_BIG_ENDIAN
)
1046 return gen_lowpart (mode
, x
);
1047 else if (! WORDS_BIG_ENDIAN
1048 && GET_MODE_BITSIZE (mode
) < BITS_PER_WORD
1050 && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
1052 ("can't access imaginary part of complex value in hard register");
1054 return gen_highpart (mode
, x
);
1057 /* Return 1 iff X, assumed to be a SUBREG,
1058 refers to the real part of the complex value in its containing reg.
1059 Complex values are always stored with the real part in the first word,
1060 regardless of WORDS_BIG_ENDIAN. */
1063 subreg_realpart_p (x
)
1066 if (GET_CODE (x
) != SUBREG
)
1069 return ((unsigned int) SUBREG_BYTE (x
)
1070 < GET_MODE_UNIT_SIZE (GET_MODE (SUBREG_REG (x
))));
1073 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a value,
1074 return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
1075 least-significant part of X.
1076 MODE specifies how big a part of X to return;
1077 it usually should not be larger than a word.
1078 If X is a MEM whose address is a QUEUED, the value may be so also. */
1081 gen_lowpart (mode
, x
)
1082 enum machine_mode mode
;
1085 rtx result
= gen_lowpart_common (mode
, x
);
1089 else if (GET_CODE (x
) == REG
)
1091 /* Must be a hard reg that's not valid in MODE. */
1092 result
= gen_lowpart_common (mode
, copy_to_reg (x
));
1097 else if (GET_CODE (x
) == MEM
)
1099 /* The only additional case we can do is MEM. */
1100 register int offset
= 0;
1101 if (WORDS_BIG_ENDIAN
)
1102 offset
= (MAX (GET_MODE_SIZE (GET_MODE (x
)), UNITS_PER_WORD
)
1103 - MAX (GET_MODE_SIZE (mode
), UNITS_PER_WORD
));
1105 if (BYTES_BIG_ENDIAN
)
1106 /* Adjust the address so that the address-after-the-data
1108 offset
-= (MIN (UNITS_PER_WORD
, GET_MODE_SIZE (mode
))
1109 - MIN (UNITS_PER_WORD
, GET_MODE_SIZE (GET_MODE (x
))));
1111 return adjust_address (x
, mode
, offset
);
1113 else if (GET_CODE (x
) == ADDRESSOF
)
1114 return gen_lowpart (mode
, force_reg (GET_MODE (x
), x
));
1119 /* Like `gen_lowpart', but refer to the most significant part.
1120 This is used to access the imaginary part of a complex number. */
1123 gen_highpart (mode
, x
)
1124 enum machine_mode mode
;
1127 unsigned int msize
= GET_MODE_SIZE (mode
);
1130 /* This case loses if X is a subreg. To catch bugs early,
1131 complain if an invalid MODE is used even in other cases. */
1132 if (msize
> UNITS_PER_WORD
1133 && msize
!= GET_MODE_UNIT_SIZE (GET_MODE (x
)))
1136 result
= simplify_gen_subreg (mode
, x
, GET_MODE (x
),
1137 subreg_highpart_offset (mode
, GET_MODE (x
)));
1139 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1140 the target if we have a MEM. gen_highpart must return a valid operand,
1141 emitting code if necessary to do so. */
1142 if (GET_CODE (result
) == MEM
)
1143 result
= validize_mem (result
);
1150 /* Like gen_highpart_mode, but accept mode of EXP operand in case EXP can
1151 be VOIDmode constant. */
1153 gen_highpart_mode (outermode
, innermode
, exp
)
1154 enum machine_mode outermode
, innermode
;
1157 if (GET_MODE (exp
) != VOIDmode
)
1159 if (GET_MODE (exp
) != innermode
)
1161 return gen_highpart (outermode
, exp
);
1163 return simplify_gen_subreg (outermode
, exp
, innermode
,
1164 subreg_highpart_offset (outermode
, innermode
));
1166 /* Return offset in bytes to get OUTERMODE low part
1167 of the value in mode INNERMODE stored in memory in target format. */
1170 subreg_lowpart_offset (outermode
, innermode
)
1171 enum machine_mode outermode
, innermode
;
1173 unsigned int offset
= 0;
1174 int difference
= (GET_MODE_SIZE (innermode
) - GET_MODE_SIZE (outermode
));
1178 if (WORDS_BIG_ENDIAN
)
1179 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
1180 if (BYTES_BIG_ENDIAN
)
1181 offset
+= difference
% UNITS_PER_WORD
;
1187 /* Return offset in bytes to get OUTERMODE high part
1188 of the value in mode INNERMODE stored in memory in target format. */
1190 subreg_highpart_offset (outermode
, innermode
)
1191 enum machine_mode outermode
, innermode
;
1193 unsigned int offset
= 0;
1194 int difference
= (GET_MODE_SIZE (innermode
) - GET_MODE_SIZE (outermode
));
1196 if (GET_MODE_SIZE (innermode
) < GET_MODE_SIZE (outermode
))
1201 if (! WORDS_BIG_ENDIAN
)
1202 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
1203 if (! BYTES_BIG_ENDIAN
)
1204 offset
+= difference
% UNITS_PER_WORD
;
1210 /* Return 1 iff X, assumed to be a SUBREG,
1211 refers to the least significant part of its containing reg.
1212 If X is not a SUBREG, always return 1 (it is its own low part!). */
1215 subreg_lowpart_p (x
)
1218 if (GET_CODE (x
) != SUBREG
)
1220 else if (GET_MODE (SUBREG_REG (x
)) == VOIDmode
)
1223 return (subreg_lowpart_offset (GET_MODE (x
), GET_MODE (SUBREG_REG (x
)))
1224 == SUBREG_BYTE (x
));
1228 /* Helper routine for all the constant cases of operand_subword.
1229 Some places invoke this directly. */
1232 constant_subword (op
, offset
, mode
)
1235 enum machine_mode mode
;
1237 int size_ratio
= HOST_BITS_PER_WIDE_INT
/ BITS_PER_WORD
;
1240 /* If OP is already an integer word, return it. */
1241 if (GET_MODE_CLASS (mode
) == MODE_INT
1242 && GET_MODE_SIZE (mode
) == UNITS_PER_WORD
)
1245 #ifdef REAL_ARITHMETIC
1246 /* The output is some bits, the width of the target machine's word.
1247 A wider-word host can surely hold them in a CONST_INT. A narrower-word
1249 if (HOST_BITS_PER_WIDE_INT
>= BITS_PER_WORD
1250 && GET_MODE_CLASS (mode
) == MODE_FLOAT
1251 && GET_MODE_BITSIZE (mode
) == 64
1252 && GET_CODE (op
) == CONST_DOUBLE
)
1257 REAL_VALUE_FROM_CONST_DOUBLE (rv
, op
);
1258 REAL_VALUE_TO_TARGET_DOUBLE (rv
, k
);
1260 /* We handle 32-bit and >= 64-bit words here. Note that the order in
1261 which the words are written depends on the word endianness.
1262 ??? This is a potential portability problem and should
1263 be fixed at some point.
1265 We must excercise caution with the sign bit. By definition there
1266 are 32 significant bits in K; there may be more in a HOST_WIDE_INT.
1267 Consider a host with a 32-bit long and a 64-bit HOST_WIDE_INT.
1268 So we explicitly mask and sign-extend as necessary. */
1269 if (BITS_PER_WORD
== 32)
1272 val
= ((val
& 0xffffffff) ^ 0x80000000) - 0x80000000;
1273 return GEN_INT (val
);
1275 #if HOST_BITS_PER_WIDE_INT >= 64
1276 else if (BITS_PER_WORD
>= 64 && offset
== 0)
1278 val
= k
[! WORDS_BIG_ENDIAN
];
1279 val
= (((val
& 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1280 val
|= (HOST_WIDE_INT
) k
[WORDS_BIG_ENDIAN
] & 0xffffffff;
1281 return GEN_INT (val
);
1284 else if (BITS_PER_WORD
== 16)
1286 val
= k
[offset
>> 1];
1287 if ((offset
& 1) == ! WORDS_BIG_ENDIAN
)
1289 val
= ((val
& 0xffff) ^ 0x8000) - 0x8000;
1290 return GEN_INT (val
);
1295 else if (HOST_BITS_PER_WIDE_INT
>= BITS_PER_WORD
1296 && GET_MODE_CLASS (mode
) == MODE_FLOAT
1297 && GET_MODE_BITSIZE (mode
) > 64
1298 && GET_CODE (op
) == CONST_DOUBLE
)
1303 REAL_VALUE_FROM_CONST_DOUBLE (rv
, op
);
1304 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv
, k
);
1306 if (BITS_PER_WORD
== 32)
1309 val
= ((val
& 0xffffffff) ^ 0x80000000) - 0x80000000;
1310 return GEN_INT (val
);
1312 #if HOST_BITS_PER_WIDE_INT >= 64
1313 else if (BITS_PER_WORD
>= 64 && offset
<= 1)
1315 val
= k
[offset
* 2 + ! WORDS_BIG_ENDIAN
];
1316 val
= (((val
& 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1317 val
|= (HOST_WIDE_INT
) k
[offset
* 2 + WORDS_BIG_ENDIAN
] & 0xffffffff;
1318 return GEN_INT (val
);
1324 #else /* no REAL_ARITHMETIC */
1325 if (((HOST_FLOAT_FORMAT
== TARGET_FLOAT_FORMAT
1326 && HOST_BITS_PER_WIDE_INT
== BITS_PER_WORD
)
1327 || flag_pretend_float
)
1328 && GET_MODE_CLASS (mode
) == MODE_FLOAT
1329 && GET_MODE_SIZE (mode
) == 2 * UNITS_PER_WORD
1330 && GET_CODE (op
) == CONST_DOUBLE
)
1332 /* The constant is stored in the host's word-ordering,
1333 but we want to access it in the target's word-ordering. Some
1334 compilers don't like a conditional inside macro args, so we have two
1335 copies of the return. */
1336 #ifdef HOST_WORDS_BIG_ENDIAN
1337 return GEN_INT (offset
== WORDS_BIG_ENDIAN
1338 ? CONST_DOUBLE_HIGH (op
) : CONST_DOUBLE_LOW (op
));
1340 return GEN_INT (offset
!= WORDS_BIG_ENDIAN
1341 ? CONST_DOUBLE_HIGH (op
) : CONST_DOUBLE_LOW (op
));
1344 #endif /* no REAL_ARITHMETIC */
1346 /* Single word float is a little harder, since single- and double-word
1347 values often do not have the same high-order bits. We have already
1348 verified that we want the only defined word of the single-word value. */
1349 #ifdef REAL_ARITHMETIC
1350 if (GET_MODE_CLASS (mode
) == MODE_FLOAT
1351 && GET_MODE_BITSIZE (mode
) == 32
1352 && GET_CODE (op
) == CONST_DOUBLE
)
1357 REAL_VALUE_FROM_CONST_DOUBLE (rv
, op
);
1358 REAL_VALUE_TO_TARGET_SINGLE (rv
, l
);
1360 /* Sign extend from known 32-bit value to HOST_WIDE_INT. */
1362 val
= ((val
& 0xffffffff) ^ 0x80000000) - 0x80000000;
1364 if (BITS_PER_WORD
== 16)
1366 if ((offset
& 1) == ! WORDS_BIG_ENDIAN
)
1368 val
= ((val
& 0xffff) ^ 0x8000) - 0x8000;
1371 return GEN_INT (val
);
1374 if (((HOST_FLOAT_FORMAT
== TARGET_FLOAT_FORMAT
1375 && HOST_BITS_PER_WIDE_INT
== BITS_PER_WORD
)
1376 || flag_pretend_float
)
1377 && sizeof (float) * 8 == HOST_BITS_PER_WIDE_INT
1378 && GET_MODE_CLASS (mode
) == MODE_FLOAT
1379 && GET_MODE_SIZE (mode
) == UNITS_PER_WORD
1380 && GET_CODE (op
) == CONST_DOUBLE
)
1383 union {float f
; HOST_WIDE_INT i
; } u
;
1385 REAL_VALUE_FROM_CONST_DOUBLE (d
, op
);
1388 return GEN_INT (u
.i
);
1390 if (((HOST_FLOAT_FORMAT
== TARGET_FLOAT_FORMAT
1391 && HOST_BITS_PER_WIDE_INT
== BITS_PER_WORD
)
1392 || flag_pretend_float
)
1393 && sizeof (double) * 8 == HOST_BITS_PER_WIDE_INT
1394 && GET_MODE_CLASS (mode
) == MODE_FLOAT
1395 && GET_MODE_SIZE (mode
) == UNITS_PER_WORD
1396 && GET_CODE (op
) == CONST_DOUBLE
)
1399 union {double d
; HOST_WIDE_INT i
; } u
;
1401 REAL_VALUE_FROM_CONST_DOUBLE (d
, op
);
1404 return GEN_INT (u
.i
);
1406 #endif /* no REAL_ARITHMETIC */
1408 /* The only remaining cases that we can handle are integers.
1409 Convert to proper endianness now since these cases need it.
1410 At this point, offset == 0 means the low-order word.
1412 We do not want to handle the case when BITS_PER_WORD <= HOST_BITS_PER_INT
1413 in general. However, if OP is (const_int 0), we can just return
1416 if (op
== const0_rtx
)
1419 if (GET_MODE_CLASS (mode
) != MODE_INT
1420 || (GET_CODE (op
) != CONST_INT
&& GET_CODE (op
) != CONST_DOUBLE
)
1421 || BITS_PER_WORD
> HOST_BITS_PER_WIDE_INT
)
1424 if (WORDS_BIG_ENDIAN
)
1425 offset
= GET_MODE_SIZE (mode
) / UNITS_PER_WORD
- 1 - offset
;
1427 /* Find out which word on the host machine this value is in and get
1428 it from the constant. */
1429 val
= (offset
/ size_ratio
== 0
1430 ? (GET_CODE (op
) == CONST_INT
? INTVAL (op
) : CONST_DOUBLE_LOW (op
))
1431 : (GET_CODE (op
) == CONST_INT
1432 ? (INTVAL (op
) < 0 ? ~0 : 0) : CONST_DOUBLE_HIGH (op
)));
1434 /* Get the value we want into the low bits of val. */
1435 if (BITS_PER_WORD
< HOST_BITS_PER_WIDE_INT
)
1436 val
= ((val
>> ((offset
% size_ratio
) * BITS_PER_WORD
)));
1438 val
= trunc_int_for_mode (val
, word_mode
);
1440 return GEN_INT (val
);
1443 /* Return subword OFFSET of operand OP.
1444 The word number, OFFSET, is interpreted as the word number starting
1445 at the low-order address. OFFSET 0 is the low-order word if not
1446 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1448 If we cannot extract the required word, we return zero. Otherwise,
1449 an rtx corresponding to the requested word will be returned.
1451 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1452 reload has completed, a valid address will always be returned. After
1453 reload, if a valid address cannot be returned, we return zero.
1455 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1456 it is the responsibility of the caller.
1458 MODE is the mode of OP in case it is a CONST_INT.
1460 ??? This is still rather broken for some cases. The problem for the
1461 moment is that all callers of this thing provide no 'goal mode' to
1462 tell us to work with. This exists because all callers were written
1463 in a word based SUBREG world.
1464 Now use of this function can be deprecated by simplify_subreg in most
1469 operand_subword (op
, offset
, validate_address
, mode
)
1471 unsigned int offset
;
1472 int validate_address
;
1473 enum machine_mode mode
;
1475 if (mode
== VOIDmode
)
1476 mode
= GET_MODE (op
);
1478 if (mode
== VOIDmode
)
1481 /* If OP is narrower than a word, fail. */
1483 && (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
))
1486 /* If we want a word outside OP, return zero. */
1488 && (offset
+ 1) * UNITS_PER_WORD
> GET_MODE_SIZE (mode
))
1491 /* Form a new MEM at the requested address. */
1492 if (GET_CODE (op
) == MEM
)
1494 rtx
new = adjust_address_nv (op
, word_mode
, offset
* UNITS_PER_WORD
);
1496 if (! validate_address
)
1499 else if (reload_completed
)
1501 if (! strict_memory_address_p (word_mode
, XEXP (new, 0)))
1505 return replace_equiv_address (new, XEXP (new, 0));
1508 /* Rest can be handled by simplify_subreg. */
1509 return simplify_gen_subreg (word_mode
, op
, mode
, (offset
* UNITS_PER_WORD
));
1512 /* Similar to `operand_subword', but never return 0. If we can't extract
1513 the required subword, put OP into a register and try again. If that fails,
1514 abort. We always validate the address in this case.
1516 MODE is the mode of OP, in case it is CONST_INT. */
1519 operand_subword_force (op
, offset
, mode
)
1521 unsigned int offset
;
1522 enum machine_mode mode
;
1524 rtx result
= operand_subword (op
, offset
, 1, mode
);
1529 if (mode
!= BLKmode
&& mode
!= VOIDmode
)
1531 /* If this is a register which can not be accessed by words, copy it
1532 to a pseudo register. */
1533 if (GET_CODE (op
) == REG
)
1534 op
= copy_to_reg (op
);
1536 op
= force_reg (mode
, op
);
1539 result
= operand_subword (op
, offset
, 1, mode
);
1546 /* Given a compare instruction, swap the operands.
1547 A test instruction is changed into a compare of 0 against the operand. */
1550 reverse_comparison (insn
)
1553 rtx body
= PATTERN (insn
);
1556 if (GET_CODE (body
) == SET
)
1557 comp
= SET_SRC (body
);
1559 comp
= SET_SRC (XVECEXP (body
, 0, 0));
1561 if (GET_CODE (comp
) == COMPARE
)
1563 rtx op0
= XEXP (comp
, 0);
1564 rtx op1
= XEXP (comp
, 1);
1565 XEXP (comp
, 0) = op1
;
1566 XEXP (comp
, 1) = op0
;
1570 rtx
new = gen_rtx_COMPARE (VOIDmode
,
1571 CONST0_RTX (GET_MODE (comp
)), comp
);
1572 if (GET_CODE (body
) == SET
)
1573 SET_SRC (body
) = new;
1575 SET_SRC (XVECEXP (body
, 0, 0)) = new;
1579 /* Return a memory reference like MEMREF, but with its mode changed
1580 to MODE and its address changed to ADDR.
1581 (VOIDmode means don't change the mode.
1582 NULL for ADDR means don't change the address.)
1583 VALIDATE is nonzero if the returned memory location is required to be
1587 change_address_1 (memref
, mode
, addr
, validate
)
1589 enum machine_mode mode
;
1595 if (GET_CODE (memref
) != MEM
)
1597 if (mode
== VOIDmode
)
1598 mode
= GET_MODE (memref
);
1600 addr
= XEXP (memref
, 0);
1604 if (reload_in_progress
|| reload_completed
)
1606 if (! memory_address_p (mode
, addr
))
1610 addr
= memory_address (mode
, addr
);
1613 if (rtx_equal_p (addr
, XEXP (memref
, 0)) && mode
== GET_MODE (memref
))
1616 new = gen_rtx_MEM (mode
, addr
);
1617 MEM_COPY_ATTRIBUTES (new, memref
);
1621 /* Return a memory reference like MEMREF, but with its mode changed
1622 to MODE and its address offset by OFFSET bytes. */
1625 adjust_address (memref
, mode
, offset
)
1627 enum machine_mode mode
;
1628 HOST_WIDE_INT offset
;
1630 /* For now, this is just a wrapper for change_address, but eventually
1631 will do memref tracking. */
1632 rtx addr
= XEXP (memref
, 0);
1634 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1635 object, we can merge it into the LO_SUM. */
1636 if (GET_MODE (memref
) != BLKmode
&& GET_CODE (addr
) == LO_SUM
1638 && offset
< GET_MODE_ALIGNMENT (GET_MODE (memref
)) / BITS_PER_UNIT
)
1639 addr
= gen_rtx_LO_SUM (mode
, XEXP (addr
, 0),
1640 plus_constant (XEXP (addr
, 1), offset
));
1642 addr
= plus_constant (addr
, offset
);
1644 return change_address (memref
, mode
, addr
);
1647 /* Likewise, but the reference is not required to be valid. */
1650 adjust_address_nv (memref
, mode
, offset
)
1652 enum machine_mode mode
;
1653 HOST_WIDE_INT offset
;
1655 /* For now, this is just a wrapper for change_address, but eventually
1656 will do memref tracking. */
1657 rtx addr
= XEXP (memref
, 0);
1659 /* If MEMREF is a LO_SUM and the offset is within the size of the
1660 object, we can merge it into the LO_SUM. */
1661 if (GET_MODE (memref
) != BLKmode
&& GET_CODE (addr
) == LO_SUM
1663 && offset
< GET_MODE_ALIGNMENT (GET_MODE (memref
)) / BITS_PER_UNIT
)
1664 addr
= gen_rtx_LO_SUM (mode
, XEXP (addr
, 0),
1665 plus_constant (XEXP (addr
, 1), offset
));
1667 addr
= plus_constant (addr
, offset
);
1669 return change_address_1 (memref
, mode
, addr
, 0);
1672 /* Return a memory reference like MEMREF, but with its address changed to
1673 ADDR. The caller is asserting that the actual piece of memory pointed
1674 to is the same, just the form of the address is being changed, such as
1675 by putting something into a register. */
1678 replace_equiv_address (memref
, addr
)
1682 /* For now, this is just a wrapper for change_address, but eventually
1683 will do memref tracking. */
1684 return change_address (memref
, VOIDmode
, addr
);
1686 /* Likewise, but the reference is not required to be valid. */
1689 replace_equiv_address_nv (memref
, addr
)
1693 /* For now, this is just a wrapper for change_address, but eventually
1694 will do memref tracking. */
1695 return change_address_1 (memref
, VOIDmode
, addr
, 0);
1698 /* Return a newly created CODE_LABEL rtx with a unique label number. */
1705 label
= gen_rtx_CODE_LABEL (VOIDmode
, 0, NULL_RTX
,
1706 NULL_RTX
, label_num
++, NULL
, NULL
);
1708 LABEL_NUSES (label
) = 0;
1709 LABEL_ALTERNATE_NAME (label
) = NULL
;
1713 /* For procedure integration. */
1715 /* Install new pointers to the first and last insns in the chain.
1716 Also, set cur_insn_uid to one higher than the last in use.
1717 Used for an inline-procedure after copying the insn chain. */
1720 set_new_first_and_last_insn (first
, last
)
1729 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
1730 cur_insn_uid
= MAX (cur_insn_uid
, INSN_UID (insn
));
1735 /* Set the range of label numbers found in the current function.
1736 This is used when belatedly compiling an inline function. */
1739 set_new_first_and_last_label_num (first
, last
)
1742 base_label_num
= label_num
;
1743 first_label_num
= first
;
1744 last_label_num
= last
;
1747 /* Set the last label number found in the current function.
1748 This is used when belatedly compiling an inline function. */
1751 set_new_last_label_num (last
)
1754 base_label_num
= label_num
;
1755 last_label_num
= last
;
1758 /* Restore all variables describing the current status from the structure *P.
1759 This is used after a nested function. */
1762 restore_emit_status (p
)
1763 struct function
*p ATTRIBUTE_UNUSED
;
1766 clear_emit_caches ();
1769 /* Clear out all parts of the state in F that can safely be discarded
1770 after the function has been compiled, to let garbage collection
1771 reclaim the memory. */
1774 free_emit_status (f
)
1777 free (f
->emit
->x_regno_reg_rtx
);
1778 free (f
->emit
->regno_pointer_align
);
1783 /* Go through all the RTL insn bodies and copy any invalid shared
1784 structure. This routine should only be called once. */
1787 unshare_all_rtl (fndecl
, insn
)
1793 /* Make sure that virtual parameters are not shared. */
1794 for (decl
= DECL_ARGUMENTS (fndecl
); decl
; decl
= TREE_CHAIN (decl
))
1795 SET_DECL_RTL (decl
, copy_rtx_if_shared (DECL_RTL (decl
)));
1797 /* Make sure that virtual stack slots are not shared. */
1798 unshare_all_decls (DECL_INITIAL (fndecl
));
1800 /* Unshare just about everything else. */
1801 unshare_all_rtl_1 (insn
);
1803 /* Make sure the addresses of stack slots found outside the insn chain
1804 (such as, in DECL_RTL of a variable) are not shared
1805 with the insn chain.
1807 This special care is necessary when the stack slot MEM does not
1808 actually appear in the insn chain. If it does appear, its address
1809 is unshared from all else at that point. */
1810 stack_slot_list
= copy_rtx_if_shared (stack_slot_list
);
1813 /* Go through all the RTL insn bodies and copy any invalid shared
1814 structure, again. This is a fairly expensive thing to do so it
1815 should be done sparingly. */
1818 unshare_all_rtl_again (insn
)
1824 for (p
= insn
; p
; p
= NEXT_INSN (p
))
1827 reset_used_flags (PATTERN (p
));
1828 reset_used_flags (REG_NOTES (p
));
1829 reset_used_flags (LOG_LINKS (p
));
1832 /* Make sure that virtual stack slots are not shared. */
1833 reset_used_decls (DECL_INITIAL (cfun
->decl
));
1835 /* Make sure that virtual parameters are not shared. */
1836 for (decl
= DECL_ARGUMENTS (cfun
->decl
); decl
; decl
= TREE_CHAIN (decl
))
1837 reset_used_flags (DECL_RTL (decl
));
1839 reset_used_flags (stack_slot_list
);
1841 unshare_all_rtl (cfun
->decl
, insn
);
1844 /* Go through all the RTL insn bodies and copy any invalid shared structure.
1845 Assumes the mark bits are cleared at entry. */
1848 unshare_all_rtl_1 (insn
)
1851 for (; insn
; insn
= NEXT_INSN (insn
))
1854 PATTERN (insn
) = copy_rtx_if_shared (PATTERN (insn
));
1855 REG_NOTES (insn
) = copy_rtx_if_shared (REG_NOTES (insn
));
1856 LOG_LINKS (insn
) = copy_rtx_if_shared (LOG_LINKS (insn
));
1860 /* Go through all virtual stack slots of a function and copy any
1861 shared structure. */
1863 unshare_all_decls (blk
)
1868 /* Copy shared decls. */
1869 for (t
= BLOCK_VARS (blk
); t
; t
= TREE_CHAIN (t
))
1870 if (DECL_RTL_SET_P (t
))
1871 SET_DECL_RTL (t
, copy_rtx_if_shared (DECL_RTL (t
)));
1873 /* Now process sub-blocks. */
1874 for (t
= BLOCK_SUBBLOCKS (blk
); t
; t
= TREE_CHAIN (t
))
1875 unshare_all_decls (t
);
1878 /* Go through all virtual stack slots of a function and mark them as
1881 reset_used_decls (blk
)
1887 for (t
= BLOCK_VARS (blk
); t
; t
= TREE_CHAIN (t
))
1888 if (DECL_RTL_SET_P (t
))
1889 reset_used_flags (DECL_RTL (t
));
1891 /* Now process sub-blocks. */
1892 for (t
= BLOCK_SUBBLOCKS (blk
); t
; t
= TREE_CHAIN (t
))
1893 reset_used_decls (t
);
1896 /* Mark ORIG as in use, and return a copy of it if it was already in use.
1897 Recursively does the same for subexpressions. */
1900 copy_rtx_if_shared (orig
)
1903 register rtx x
= orig
;
1905 register enum rtx_code code
;
1906 register const char *format_ptr
;
1912 code
= GET_CODE (x
);
1914 /* These types may be freely shared. */
1927 /* SCRATCH must be shared because they represent distinct values. */
1931 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
1932 a LABEL_REF, it isn't sharable. */
1933 if (GET_CODE (XEXP (x
, 0)) == PLUS
1934 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == SYMBOL_REF
1935 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
)
1944 /* The chain of insns is not being copied. */
1948 /* A MEM is allowed to be shared if its address is constant.
1950 We used to allow sharing of MEMs which referenced
1951 virtual_stack_vars_rtx or virtual_incoming_args_rtx, but
1952 that can lose. instantiate_virtual_regs will not unshare
1953 the MEMs, and combine may change the structure of the address
1954 because it looks safe and profitable in one context, but
1955 in some other context it creates unrecognizable RTL. */
1956 if (CONSTANT_ADDRESS_P (XEXP (x
, 0)))
1965 /* This rtx may not be shared. If it has already been seen,
1966 replace it with a copy of itself. */
1972 copy
= rtx_alloc (code
);
1974 (sizeof (*copy
) - sizeof (copy
->fld
)
1975 + sizeof (copy
->fld
[0]) * GET_RTX_LENGTH (code
)));
1981 /* Now scan the subexpressions recursively.
1982 We can store any replaced subexpressions directly into X
1983 since we know X is not shared! Any vectors in X
1984 must be copied if X was copied. */
1986 format_ptr
= GET_RTX_FORMAT (code
);
1988 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
1990 switch (*format_ptr
++)
1993 XEXP (x
, i
) = copy_rtx_if_shared (XEXP (x
, i
));
1997 if (XVEC (x
, i
) != NULL
)
2000 int len
= XVECLEN (x
, i
);
2002 if (copied
&& len
> 0)
2003 XVEC (x
, i
) = gen_rtvec_v (len
, XVEC (x
, i
)->elem
);
2004 for (j
= 0; j
< len
; j
++)
2005 XVECEXP (x
, i
, j
) = copy_rtx_if_shared (XVECEXP (x
, i
, j
));
2013 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2014 to look for shared sub-parts. */
2017 reset_used_flags (x
)
2021 register enum rtx_code code
;
2022 register const char *format_ptr
;
2027 code
= GET_CODE (x
);
2029 /* These types may be freely shared so we needn't do any resetting
2050 /* The chain of insns is not being copied. */
2059 format_ptr
= GET_RTX_FORMAT (code
);
2060 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
2062 switch (*format_ptr
++)
2065 reset_used_flags (XEXP (x
, i
));
2069 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2070 reset_used_flags (XVECEXP (x
, i
, j
));
2076 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2077 Return X or the rtx for the pseudo reg the value of X was copied into.
2078 OTHER must be valid as a SET_DEST. */
2081 make_safe_from (x
, other
)
2085 switch (GET_CODE (other
))
2088 other
= SUBREG_REG (other
);
2090 case STRICT_LOW_PART
:
2093 other
= XEXP (other
, 0);
2099 if ((GET_CODE (other
) == MEM
2101 && GET_CODE (x
) != REG
2102 && GET_CODE (x
) != SUBREG
)
2103 || (GET_CODE (other
) == REG
2104 && (REGNO (other
) < FIRST_PSEUDO_REGISTER
2105 || reg_mentioned_p (other
, x
))))
2107 rtx temp
= gen_reg_rtx (GET_MODE (x
));
2108 emit_move_insn (temp
, x
);
2114 /* Emission of insns (adding them to the doubly-linked list). */
2116 /* Return the first insn of the current sequence or current function. */
2124 /* Return the last insn emitted in current sequence or current function. */
2132 /* Specify a new insn as the last in the chain. */
2135 set_last_insn (insn
)
2138 if (NEXT_INSN (insn
) != 0)
2143 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2146 get_last_insn_anywhere ()
2148 struct sequence_stack
*stack
;
2151 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
2152 if (stack
->last
!= 0)
2157 /* Return a number larger than any instruction's uid in this function. */
2162 return cur_insn_uid
;
2165 /* Renumber instructions so that no instruction UIDs are wasted. */
2168 renumber_insns (stream
)
2173 /* If we're not supposed to renumber instructions, don't. */
2174 if (!flag_renumber_insns
)
2177 /* If there aren't that many instructions, then it's not really
2178 worth renumbering them. */
2179 if (flag_renumber_insns
== 1 && get_max_uid () < 25000)
2184 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
2187 fprintf (stream
, "Renumbering insn %d to %d\n",
2188 INSN_UID (insn
), cur_insn_uid
);
2189 INSN_UID (insn
) = cur_insn_uid
++;
2193 /* Return the next insn. If it is a SEQUENCE, return the first insn
2202 insn
= NEXT_INSN (insn
);
2203 if (insn
&& GET_CODE (insn
) == INSN
2204 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2205 insn
= XVECEXP (PATTERN (insn
), 0, 0);
2211 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2215 previous_insn (insn
)
2220 insn
= PREV_INSN (insn
);
2221 if (insn
&& GET_CODE (insn
) == INSN
2222 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2223 insn
= XVECEXP (PATTERN (insn
), 0, XVECLEN (PATTERN (insn
), 0) - 1);
2229 /* Return the next insn after INSN that is not a NOTE. This routine does not
2230 look inside SEQUENCEs. */
2233 next_nonnote_insn (insn
)
2238 insn
= NEXT_INSN (insn
);
2239 if (insn
== 0 || GET_CODE (insn
) != NOTE
)
2246 /* Return the previous insn before INSN that is not a NOTE. This routine does
2247 not look inside SEQUENCEs. */
2250 prev_nonnote_insn (insn
)
2255 insn
= PREV_INSN (insn
);
2256 if (insn
== 0 || GET_CODE (insn
) != NOTE
)
2263 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2264 or 0, if there is none. This routine does not look inside
2268 next_real_insn (insn
)
2273 insn
= NEXT_INSN (insn
);
2274 if (insn
== 0 || GET_CODE (insn
) == INSN
2275 || GET_CODE (insn
) == CALL_INSN
|| GET_CODE (insn
) == JUMP_INSN
)
2282 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2283 or 0, if there is none. This routine does not look inside
2287 prev_real_insn (insn
)
2292 insn
= PREV_INSN (insn
);
2293 if (insn
== 0 || GET_CODE (insn
) == INSN
|| GET_CODE (insn
) == CALL_INSN
2294 || GET_CODE (insn
) == JUMP_INSN
)
2301 /* Find the next insn after INSN that really does something. This routine
2302 does not look inside SEQUENCEs. Until reload has completed, this is the
2303 same as next_real_insn. */
2306 active_insn_p (insn
)
2309 return (GET_CODE (insn
) == CALL_INSN
|| GET_CODE (insn
) == JUMP_INSN
2310 || (GET_CODE (insn
) == INSN
2311 && (! reload_completed
2312 || (GET_CODE (PATTERN (insn
)) != USE
2313 && GET_CODE (PATTERN (insn
)) != CLOBBER
))));
2317 next_active_insn (insn
)
2322 insn
= NEXT_INSN (insn
);
2323 if (insn
== 0 || active_insn_p (insn
))
2330 /* Find the last insn before INSN that really does something. This routine
2331 does not look inside SEQUENCEs. Until reload has completed, this is the
2332 same as prev_real_insn. */
2335 prev_active_insn (insn
)
2340 insn
= PREV_INSN (insn
);
2341 if (insn
== 0 || active_insn_p (insn
))
2348 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
2356 insn
= NEXT_INSN (insn
);
2357 if (insn
== 0 || GET_CODE (insn
) == CODE_LABEL
)
2364 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
2372 insn
= PREV_INSN (insn
);
2373 if (insn
== 0 || GET_CODE (insn
) == CODE_LABEL
)
2381 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
2382 and REG_CC_USER notes so we can find it. */
2385 link_cc0_insns (insn
)
2388 rtx user
= next_nonnote_insn (insn
);
2390 if (GET_CODE (user
) == INSN
&& GET_CODE (PATTERN (user
)) == SEQUENCE
)
2391 user
= XVECEXP (PATTERN (user
), 0, 0);
2393 REG_NOTES (user
) = gen_rtx_INSN_LIST (REG_CC_SETTER
, insn
,
2395 REG_NOTES (insn
) = gen_rtx_INSN_LIST (REG_CC_USER
, user
, REG_NOTES (insn
));
2398 /* Return the next insn that uses CC0 after INSN, which is assumed to
2399 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
2400 applied to the result of this function should yield INSN).
2402 Normally, this is simply the next insn. However, if a REG_CC_USER note
2403 is present, it contains the insn that uses CC0.
2405 Return 0 if we can't find the insn. */
2408 next_cc0_user (insn
)
2411 rtx note
= find_reg_note (insn
, REG_CC_USER
, NULL_RTX
);
2414 return XEXP (note
, 0);
2416 insn
= next_nonnote_insn (insn
);
2417 if (insn
&& GET_CODE (insn
) == INSN
&& GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2418 insn
= XVECEXP (PATTERN (insn
), 0, 0);
2420 if (insn
&& INSN_P (insn
) && reg_mentioned_p (cc0_rtx
, PATTERN (insn
)))
2426 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
2427 note, it is the previous insn. */
2430 prev_cc0_setter (insn
)
2433 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
2436 return XEXP (note
, 0);
2438 insn
= prev_nonnote_insn (insn
);
2439 if (! sets_cc0_p (PATTERN (insn
)))
2446 /* Increment the label uses for all labels present in rtx. */
2452 register enum rtx_code code
;
2454 register const char *fmt
;
2456 code
= GET_CODE (x
);
2457 if (code
== LABEL_REF
)
2458 LABEL_NUSES (XEXP (x
, 0))++;
2460 fmt
= GET_RTX_FORMAT (code
);
2461 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2464 mark_label_nuses (XEXP (x
, i
));
2465 else if (fmt
[i
] == 'E')
2466 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
2467 mark_label_nuses (XVECEXP (x
, i
, j
));
2472 /* Try splitting insns that can be split for better scheduling.
2473 PAT is the pattern which might split.
2474 TRIAL is the insn providing PAT.
2475 LAST is non-zero if we should return the last insn of the sequence produced.
2477 If this routine succeeds in splitting, it returns the first or last
2478 replacement insn depending on the value of LAST. Otherwise, it
2479 returns TRIAL. If the insn to be returned can be split, it will be. */
2482 try_split (pat
, trial
, last
)
2486 rtx before
= PREV_INSN (trial
);
2487 rtx after
= NEXT_INSN (trial
);
2488 rtx seq
= split_insns (pat
, trial
);
2489 int has_barrier
= 0;
2492 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
2493 We may need to handle this specially. */
2494 if (after
&& GET_CODE (after
) == BARRIER
)
2497 after
= NEXT_INSN (after
);
2502 /* SEQ can either be a SEQUENCE or the pattern of a single insn.
2503 The latter case will normally arise only when being done so that
2504 it, in turn, will be split (SFmode on the 29k is an example). */
2505 if (GET_CODE (seq
) == SEQUENCE
)
2510 /* Avoid infinite loop if any insn of the result matches
2511 the original pattern. */
2512 for (i
= 0; i
< XVECLEN (seq
, 0); i
++)
2513 if (GET_CODE (XVECEXP (seq
, 0, i
)) == INSN
2514 && rtx_equal_p (PATTERN (XVECEXP (seq
, 0, i
)), pat
))
2518 for (i
= XVECLEN (seq
, 0) - 1; i
>= 0; i
--)
2519 if (GET_CODE (XVECEXP (seq
, 0, i
)) == JUMP_INSN
)
2520 mark_jump_label (PATTERN (XVECEXP (seq
, 0, i
)),
2521 XVECEXP (seq
, 0, i
), 0, 0);
2523 /* If we are splitting a CALL_INSN, look for the CALL_INSN
2524 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
2525 if (GET_CODE (trial
) == CALL_INSN
)
2526 for (i
= XVECLEN (seq
, 0) - 1; i
>= 0; i
--)
2527 if (GET_CODE (XVECEXP (seq
, 0, i
)) == CALL_INSN
)
2528 CALL_INSN_FUNCTION_USAGE (XVECEXP (seq
, 0, i
))
2529 = CALL_INSN_FUNCTION_USAGE (trial
);
2531 /* Copy EH notes. */
2532 if ((eh_note
= find_reg_note (trial
, REG_EH_REGION
, NULL_RTX
)))
2533 for (i
= 0; i
< XVECLEN (seq
, 0); i
++)
2535 rtx insn
= XVECEXP (seq
, 0, i
);
2536 if (GET_CODE (insn
) == CALL_INSN
2537 || (flag_non_call_exceptions
2538 && may_trap_p (PATTERN (insn
))))
2540 = gen_rtx_EXPR_LIST (REG_EH_REGION
, XEXP (eh_note
, 0),
2544 /* If there are LABELS inside the split insns increment the
2545 usage count so we don't delete the label. */
2546 if (GET_CODE (trial
) == INSN
)
2547 for (i
= XVECLEN (seq
, 0) - 1; i
>= 0; i
--)
2548 if (GET_CODE (XVECEXP (seq
, 0, i
)) == INSN
)
2549 mark_label_nuses (PATTERN (XVECEXP (seq
, 0, i
)));
2551 tem
= emit_insn_after (seq
, before
);
2553 delete_insn (trial
);
2555 emit_barrier_after (tem
);
2557 /* Recursively call try_split for each new insn created; by the
2558 time control returns here that insn will be fully split, so
2559 set LAST and continue from the insn after the one returned.
2560 We can't use next_active_insn here since AFTER may be a note.
2561 Ignore deleted insns, which can be occur if not optimizing. */
2562 for (tem
= NEXT_INSN (before
); tem
!= after
; tem
= NEXT_INSN (tem
))
2563 if (! INSN_DELETED_P (tem
) && INSN_P (tem
))
2564 tem
= try_split (PATTERN (tem
), tem
, 1);
2566 /* Avoid infinite loop if the result matches the original pattern. */
2567 else if (rtx_equal_p (seq
, pat
))
2571 PATTERN (trial
) = seq
;
2572 INSN_CODE (trial
) = -1;
2573 try_split (seq
, trial
, last
);
2576 /* Return either the first or the last insn, depending on which was
2579 ? (after
? prev_active_insn (after
) : last_insn
)
2580 : next_active_insn (before
);
2586 /* Make and return an INSN rtx, initializing all its slots.
2587 Store PATTERN in the pattern slots. */
2590 make_insn_raw (pattern
)
2595 insn
= rtx_alloc (INSN
);
2597 INSN_UID (insn
) = cur_insn_uid
++;
2598 PATTERN (insn
) = pattern
;
2599 INSN_CODE (insn
) = -1;
2600 LOG_LINKS (insn
) = NULL
;
2601 REG_NOTES (insn
) = NULL
;
2603 #ifdef ENABLE_RTL_CHECKING
2606 && (returnjump_p (insn
)
2607 || (GET_CODE (insn
) == SET
2608 && SET_DEST (insn
) == pc_rtx
)))
2610 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
2618 /* Like `make_insn' but make a JUMP_INSN instead of an insn. */
2621 make_jump_insn_raw (pattern
)
2626 insn
= rtx_alloc (JUMP_INSN
);
2627 INSN_UID (insn
) = cur_insn_uid
++;
2629 PATTERN (insn
) = pattern
;
2630 INSN_CODE (insn
) = -1;
2631 LOG_LINKS (insn
) = NULL
;
2632 REG_NOTES (insn
) = NULL
;
2633 JUMP_LABEL (insn
) = NULL
;
2638 /* Like `make_insn' but make a CALL_INSN instead of an insn. */
2641 make_call_insn_raw (pattern
)
2646 insn
= rtx_alloc (CALL_INSN
);
2647 INSN_UID (insn
) = cur_insn_uid
++;
2649 PATTERN (insn
) = pattern
;
2650 INSN_CODE (insn
) = -1;
2651 LOG_LINKS (insn
) = NULL
;
2652 REG_NOTES (insn
) = NULL
;
2653 CALL_INSN_FUNCTION_USAGE (insn
) = NULL
;
2658 /* Add INSN to the end of the doubly-linked list.
2659 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
2665 PREV_INSN (insn
) = last_insn
;
2666 NEXT_INSN (insn
) = 0;
2668 if (NULL
!= last_insn
)
2669 NEXT_INSN (last_insn
) = insn
;
2671 if (NULL
== first_insn
)
2677 /* Add INSN into the doubly-linked list after insn AFTER. This and
2678 the next should be the only functions called to insert an insn once
2679 delay slots have been filled since only they know how to update a
2683 add_insn_after (insn
, after
)
2686 rtx next
= NEXT_INSN (after
);
2688 if (optimize
&& INSN_DELETED_P (after
))
2691 NEXT_INSN (insn
) = next
;
2692 PREV_INSN (insn
) = after
;
2696 PREV_INSN (next
) = insn
;
2697 if (GET_CODE (next
) == INSN
&& GET_CODE (PATTERN (next
)) == SEQUENCE
)
2698 PREV_INSN (XVECEXP (PATTERN (next
), 0, 0)) = insn
;
2700 else if (last_insn
== after
)
2704 struct sequence_stack
*stack
= seq_stack
;
2705 /* Scan all pending sequences too. */
2706 for (; stack
; stack
= stack
->next
)
2707 if (after
== stack
->last
)
2717 NEXT_INSN (after
) = insn
;
2718 if (GET_CODE (after
) == INSN
&& GET_CODE (PATTERN (after
)) == SEQUENCE
)
2720 rtx sequence
= PATTERN (after
);
2721 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = insn
;
2725 /* Add INSN into the doubly-linked list before insn BEFORE. This and
2726 the previous should be the only functions called to insert an insn once
2727 delay slots have been filled since only they know how to update a
2731 add_insn_before (insn
, before
)
2734 rtx prev
= PREV_INSN (before
);
2736 if (optimize
&& INSN_DELETED_P (before
))
2739 PREV_INSN (insn
) = prev
;
2740 NEXT_INSN (insn
) = before
;
2744 NEXT_INSN (prev
) = insn
;
2745 if (GET_CODE (prev
) == INSN
&& GET_CODE (PATTERN (prev
)) == SEQUENCE
)
2747 rtx sequence
= PATTERN (prev
);
2748 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = insn
;
2751 else if (first_insn
== before
)
2755 struct sequence_stack
*stack
= seq_stack
;
2756 /* Scan all pending sequences too. */
2757 for (; stack
; stack
= stack
->next
)
2758 if (before
== stack
->first
)
2760 stack
->first
= insn
;
2768 PREV_INSN (before
) = insn
;
2769 if (GET_CODE (before
) == INSN
&& GET_CODE (PATTERN (before
)) == SEQUENCE
)
2770 PREV_INSN (XVECEXP (PATTERN (before
), 0, 0)) = insn
;
2773 /* Remove an insn from its doubly-linked list. This function knows how
2774 to handle sequences. */
2779 rtx next
= NEXT_INSN (insn
);
2780 rtx prev
= PREV_INSN (insn
);
2783 NEXT_INSN (prev
) = next
;
2784 if (GET_CODE (prev
) == INSN
&& GET_CODE (PATTERN (prev
)) == SEQUENCE
)
2786 rtx sequence
= PATTERN (prev
);
2787 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = next
;
2790 else if (first_insn
== insn
)
2794 struct sequence_stack
*stack
= seq_stack
;
2795 /* Scan all pending sequences too. */
2796 for (; stack
; stack
= stack
->next
)
2797 if (insn
== stack
->first
)
2799 stack
->first
= next
;
2809 PREV_INSN (next
) = prev
;
2810 if (GET_CODE (next
) == INSN
&& GET_CODE (PATTERN (next
)) == SEQUENCE
)
2811 PREV_INSN (XVECEXP (PATTERN (next
), 0, 0)) = prev
;
2813 else if (last_insn
== insn
)
2817 struct sequence_stack
*stack
= seq_stack
;
2818 /* Scan all pending sequences too. */
2819 for (; stack
; stack
= stack
->next
)
2820 if (insn
== stack
->last
)
2831 /* Delete all insns made since FROM.
2832 FROM becomes the new last instruction. */
2835 delete_insns_since (from
)
2841 NEXT_INSN (from
) = 0;
2845 /* This function is deprecated, please use sequences instead.
2847 Move a consecutive bunch of insns to a different place in the chain.
2848 The insns to be moved are those between FROM and TO.
2849 They are moved to a new position after the insn AFTER.
2850 AFTER must not be FROM or TO or any insn in between.
2852 This function does not know about SEQUENCEs and hence should not be
2853 called after delay-slot filling has been done. */
2856 reorder_insns (from
, to
, after
)
2857 rtx from
, to
, after
;
2859 /* Splice this bunch out of where it is now. */
2860 if (PREV_INSN (from
))
2861 NEXT_INSN (PREV_INSN (from
)) = NEXT_INSN (to
);
2863 PREV_INSN (NEXT_INSN (to
)) = PREV_INSN (from
);
2864 if (last_insn
== to
)
2865 last_insn
= PREV_INSN (from
);
2866 if (first_insn
== from
)
2867 first_insn
= NEXT_INSN (to
);
2869 /* Make the new neighbors point to it and it to them. */
2870 if (NEXT_INSN (after
))
2871 PREV_INSN (NEXT_INSN (after
)) = to
;
2873 NEXT_INSN (to
) = NEXT_INSN (after
);
2874 PREV_INSN (from
) = after
;
2875 NEXT_INSN (after
) = from
;
2876 if (after
== last_insn
)
2880 /* Return the line note insn preceding INSN. */
2883 find_line_note (insn
)
2886 if (no_line_numbers
)
2889 for (; insn
; insn
= PREV_INSN (insn
))
2890 if (GET_CODE (insn
) == NOTE
2891 && NOTE_LINE_NUMBER (insn
) >= 0)
2897 /* Like reorder_insns, but inserts line notes to preserve the line numbers
2898 of the moved insns when debugging. This may insert a note between AFTER
2899 and FROM, and another one after TO. */
2902 reorder_insns_with_line_notes (from
, to
, after
)
2903 rtx from
, to
, after
;
2905 rtx from_line
= find_line_note (from
);
2906 rtx after_line
= find_line_note (after
);
2908 reorder_insns (from
, to
, after
);
2910 if (from_line
== after_line
)
2914 emit_line_note_after (NOTE_SOURCE_FILE (from_line
),
2915 NOTE_LINE_NUMBER (from_line
),
2918 emit_line_note_after (NOTE_SOURCE_FILE (after_line
),
2919 NOTE_LINE_NUMBER (after_line
),
2923 /* Remove unnecessary notes from the instruction stream. */
2926 remove_unnecessary_notes ()
2928 rtx block_stack
= NULL_RTX
;
2929 rtx eh_stack
= NULL_RTX
;
2934 /* We must not remove the first instruction in the function because
2935 the compiler depends on the first instruction being a note. */
2936 for (insn
= NEXT_INSN (get_insns ()); insn
; insn
= next
)
2938 /* Remember what's next. */
2939 next
= NEXT_INSN (insn
);
2941 /* We're only interested in notes. */
2942 if (GET_CODE (insn
) != NOTE
)
2945 switch (NOTE_LINE_NUMBER (insn
))
2947 case NOTE_INSN_DELETED
:
2951 case NOTE_INSN_EH_REGION_BEG
:
2952 eh_stack
= alloc_INSN_LIST (insn
, eh_stack
);
2955 case NOTE_INSN_EH_REGION_END
:
2956 /* Too many end notes. */
2957 if (eh_stack
== NULL_RTX
)
2959 /* Mismatched nesting. */
2960 if (NOTE_EH_HANDLER (XEXP (eh_stack
, 0)) != NOTE_EH_HANDLER (insn
))
2963 eh_stack
= XEXP (eh_stack
, 1);
2964 free_INSN_LIST_node (tmp
);
2967 case NOTE_INSN_BLOCK_BEG
:
2968 /* By now, all notes indicating lexical blocks should have
2969 NOTE_BLOCK filled in. */
2970 if (NOTE_BLOCK (insn
) == NULL_TREE
)
2972 block_stack
= alloc_INSN_LIST (insn
, block_stack
);
2975 case NOTE_INSN_BLOCK_END
:
2976 /* Too many end notes. */
2977 if (block_stack
== NULL_RTX
)
2979 /* Mismatched nesting. */
2980 if (NOTE_BLOCK (XEXP (block_stack
, 0)) != NOTE_BLOCK (insn
))
2983 block_stack
= XEXP (block_stack
, 1);
2984 free_INSN_LIST_node (tmp
);
2986 /* Scan back to see if there are any non-note instructions
2987 between INSN and the beginning of this block. If not,
2988 then there is no PC range in the generated code that will
2989 actually be in this block, so there's no point in
2990 remembering the existence of the block. */
2991 for (tmp
= PREV_INSN (insn
); tmp
; tmp
= PREV_INSN (tmp
))
2993 /* This block contains a real instruction. Note that we
2994 don't include labels; if the only thing in the block
2995 is a label, then there are still no PC values that
2996 lie within the block. */
3000 /* We're only interested in NOTEs. */
3001 if (GET_CODE (tmp
) != NOTE
)
3004 if (NOTE_LINE_NUMBER (tmp
) == NOTE_INSN_BLOCK_BEG
)
3006 /* We just verified that this BLOCK matches us
3007 with the block_stack check above. */
3008 if (debug_ignore_block (NOTE_BLOCK (insn
)))
3015 else if (NOTE_LINE_NUMBER (tmp
) == NOTE_INSN_BLOCK_END
)
3016 /* There's a nested block. We need to leave the
3017 current block in place since otherwise the debugger
3018 wouldn't be able to show symbols from our block in
3019 the nested block. */
3025 /* Too many begin notes. */
3026 if (block_stack
|| eh_stack
)
3031 /* Emit an insn of given code and pattern
3032 at a specified place within the doubly-linked list. */
3034 /* Make an instruction with body PATTERN
3035 and output it before the instruction BEFORE. */
3038 emit_insn_before (pattern
, before
)
3039 register rtx pattern
, before
;
3041 register rtx insn
= before
;
3043 if (GET_CODE (pattern
) == SEQUENCE
)
3047 for (i
= 0; i
< XVECLEN (pattern
, 0); i
++)
3049 insn
= XVECEXP (pattern
, 0, i
);
3050 add_insn_before (insn
, before
);
3055 insn
= make_insn_raw (pattern
);
3056 add_insn_before (insn
, before
);
3062 /* Similar to emit_insn_before, but update basic block boundaries as well. */
3065 emit_block_insn_before (pattern
, before
, block
)
3066 rtx pattern
, before
;
3069 rtx prev
= PREV_INSN (before
);
3070 rtx r
= emit_insn_before (pattern
, before
);
3071 if (block
&& block
->head
== before
)
3072 block
->head
= NEXT_INSN (prev
);
3076 /* Make an instruction with body PATTERN and code JUMP_INSN
3077 and output it before the instruction BEFORE. */
3080 emit_jump_insn_before (pattern
, before
)
3081 register rtx pattern
, before
;
3085 if (GET_CODE (pattern
) == SEQUENCE
)
3086 insn
= emit_insn_before (pattern
, before
);
3089 insn
= make_jump_insn_raw (pattern
);
3090 add_insn_before (insn
, before
);
3096 /* Make an instruction with body PATTERN and code CALL_INSN
3097 and output it before the instruction BEFORE. */
3100 emit_call_insn_before (pattern
, before
)
3101 register rtx pattern
, before
;
3105 if (GET_CODE (pattern
) == SEQUENCE
)
3106 insn
= emit_insn_before (pattern
, before
);
3109 insn
= make_call_insn_raw (pattern
);
3110 add_insn_before (insn
, before
);
3111 PUT_CODE (insn
, CALL_INSN
);
3117 /* Make an insn of code BARRIER
3118 and output it before the insn BEFORE. */
3121 emit_barrier_before (before
)
3122 register rtx before
;
3124 register rtx insn
= rtx_alloc (BARRIER
);
3126 INSN_UID (insn
) = cur_insn_uid
++;
3128 add_insn_before (insn
, before
);
3132 /* Emit the label LABEL before the insn BEFORE. */
3135 emit_label_before (label
, before
)
3138 /* This can be called twice for the same label as a result of the
3139 confusion that follows a syntax error! So make it harmless. */
3140 if (INSN_UID (label
) == 0)
3142 INSN_UID (label
) = cur_insn_uid
++;
3143 add_insn_before (label
, before
);
3149 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
3152 emit_note_before (subtype
, before
)
3156 register rtx note
= rtx_alloc (NOTE
);
3157 INSN_UID (note
) = cur_insn_uid
++;
3158 NOTE_SOURCE_FILE (note
) = 0;
3159 NOTE_LINE_NUMBER (note
) = subtype
;
3161 add_insn_before (note
, before
);
3165 /* Make an insn of code INSN with body PATTERN
3166 and output it after the insn AFTER. */
3169 emit_insn_after (pattern
, after
)
3170 register rtx pattern
, after
;
3172 register rtx insn
= after
;
3174 if (GET_CODE (pattern
) == SEQUENCE
)
3178 for (i
= 0; i
< XVECLEN (pattern
, 0); i
++)
3180 insn
= XVECEXP (pattern
, 0, i
);
3181 add_insn_after (insn
, after
);
3187 insn
= make_insn_raw (pattern
);
3188 add_insn_after (insn
, after
);
3194 /* Similar to emit_insn_after, except that line notes are to be inserted so
3195 as to act as if this insn were at FROM. */
3198 emit_insn_after_with_line_notes (pattern
, after
, from
)
3199 rtx pattern
, after
, from
;
3201 rtx from_line
= find_line_note (from
);
3202 rtx after_line
= find_line_note (after
);
3203 rtx insn
= emit_insn_after (pattern
, after
);
3206 emit_line_note_after (NOTE_SOURCE_FILE (from_line
),
3207 NOTE_LINE_NUMBER (from_line
),
3211 emit_line_note_after (NOTE_SOURCE_FILE (after_line
),
3212 NOTE_LINE_NUMBER (after_line
),
3216 /* Similar to emit_insn_after, but update basic block boundaries as well. */
3219 emit_block_insn_after (pattern
, after
, block
)
3223 rtx r
= emit_insn_after (pattern
, after
);
3224 if (block
&& block
->end
== after
)
3229 /* Make an insn of code JUMP_INSN with body PATTERN
3230 and output it after the insn AFTER. */
3233 emit_jump_insn_after (pattern
, after
)
3234 register rtx pattern
, after
;
3238 if (GET_CODE (pattern
) == SEQUENCE
)
3239 insn
= emit_insn_after (pattern
, after
);
3242 insn
= make_jump_insn_raw (pattern
);
3243 add_insn_after (insn
, after
);
3249 /* Make an insn of code BARRIER
3250 and output it after the insn AFTER. */
3253 emit_barrier_after (after
)
3256 register rtx insn
= rtx_alloc (BARRIER
);
3258 INSN_UID (insn
) = cur_insn_uid
++;
3260 add_insn_after (insn
, after
);
3264 /* Emit the label LABEL after the insn AFTER. */
3267 emit_label_after (label
, after
)
3270 /* This can be called twice for the same label
3271 as a result of the confusion that follows a syntax error!
3272 So make it harmless. */
3273 if (INSN_UID (label
) == 0)
3275 INSN_UID (label
) = cur_insn_uid
++;
3276 add_insn_after (label
, after
);
3282 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
3285 emit_note_after (subtype
, after
)
3289 register rtx note
= rtx_alloc (NOTE
);
3290 INSN_UID (note
) = cur_insn_uid
++;
3291 NOTE_SOURCE_FILE (note
) = 0;
3292 NOTE_LINE_NUMBER (note
) = subtype
;
3293 add_insn_after (note
, after
);
3297 /* Emit a line note for FILE and LINE after the insn AFTER. */
3300 emit_line_note_after (file
, line
, after
)
3307 if (no_line_numbers
&& line
> 0)
3313 note
= rtx_alloc (NOTE
);
3314 INSN_UID (note
) = cur_insn_uid
++;
3315 NOTE_SOURCE_FILE (note
) = file
;
3316 NOTE_LINE_NUMBER (note
) = line
;
3317 add_insn_after (note
, after
);
3321 /* Make an insn of code INSN with pattern PATTERN
3322 and add it to the end of the doubly-linked list.
3323 If PATTERN is a SEQUENCE, take the elements of it
3324 and emit an insn for each element.
3326 Returns the last insn emitted. */
3332 rtx insn
= last_insn
;
3334 if (GET_CODE (pattern
) == SEQUENCE
)
3338 for (i
= 0; i
< XVECLEN (pattern
, 0); i
++)
3340 insn
= XVECEXP (pattern
, 0, i
);
3346 insn
= make_insn_raw (pattern
);
3353 /* Emit the insns in a chain starting with INSN.
3354 Return the last insn emitted. */
3364 rtx next
= NEXT_INSN (insn
);
3373 /* Emit the insns in a chain starting with INSN and place them in front of
3374 the insn BEFORE. Return the last insn emitted. */
3377 emit_insns_before (insn
, before
)
3385 rtx next
= NEXT_INSN (insn
);
3386 add_insn_before (insn
, before
);
3394 /* Emit the insns in a chain starting with FIRST and place them in back of
3395 the insn AFTER. Return the last insn emitted. */
3398 emit_insns_after (first
, after
)
3403 register rtx after_after
;
3411 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
3414 after_after
= NEXT_INSN (after
);
3416 NEXT_INSN (after
) = first
;
3417 PREV_INSN (first
) = after
;
3418 NEXT_INSN (last
) = after_after
;
3420 PREV_INSN (after_after
) = last
;
3422 if (after
== last_insn
)
3427 /* Make an insn of code JUMP_INSN with pattern PATTERN
3428 and add it to the end of the doubly-linked list. */
3431 emit_jump_insn (pattern
)
3434 if (GET_CODE (pattern
) == SEQUENCE
)
3435 return emit_insn (pattern
);
3438 register rtx insn
= make_jump_insn_raw (pattern
);
3444 /* Make an insn of code CALL_INSN with pattern PATTERN
3445 and add it to the end of the doubly-linked list. */
3448 emit_call_insn (pattern
)
3451 if (GET_CODE (pattern
) == SEQUENCE
)
3452 return emit_insn (pattern
);
3455 register rtx insn
= make_call_insn_raw (pattern
);
3457 PUT_CODE (insn
, CALL_INSN
);
3462 /* Add the label LABEL to the end of the doubly-linked list. */
3468 /* This can be called twice for the same label
3469 as a result of the confusion that follows a syntax error!
3470 So make it harmless. */
3471 if (INSN_UID (label
) == 0)
3473 INSN_UID (label
) = cur_insn_uid
++;
3479 /* Make an insn of code BARRIER
3480 and add it to the end of the doubly-linked list. */
3485 register rtx barrier
= rtx_alloc (BARRIER
);
3486 INSN_UID (barrier
) = cur_insn_uid
++;
3491 /* Make an insn of code NOTE
3492 with data-fields specified by FILE and LINE
3493 and add it to the end of the doubly-linked list,
3494 but only if line-numbers are desired for debugging info. */
3497 emit_line_note (file
, line
)
3501 set_file_and_line_for_stmt (file
, line
);
3504 if (no_line_numbers
)
3508 return emit_note (file
, line
);
3511 /* Make an insn of code NOTE
3512 with data-fields specified by FILE and LINE
3513 and add it to the end of the doubly-linked list.
3514 If it is a line-number NOTE, omit it if it matches the previous one. */
3517 emit_note (file
, line
)
3525 if (file
&& last_filename
&& !strcmp (file
, last_filename
)
3526 && line
== last_linenum
)
3528 last_filename
= file
;
3529 last_linenum
= line
;
3532 if (no_line_numbers
&& line
> 0)
3538 note
= rtx_alloc (NOTE
);
3539 INSN_UID (note
) = cur_insn_uid
++;
3540 NOTE_SOURCE_FILE (note
) = file
;
3541 NOTE_LINE_NUMBER (note
) = line
;
3546 /* Emit a NOTE, and don't omit it even if LINE is the previous note. */
3549 emit_line_note_force (file
, line
)
3554 return emit_line_note (file
, line
);
3557 /* Cause next statement to emit a line note even if the line number
3558 has not changed. This is used at the beginning of a function. */
3561 force_next_line_note ()
3566 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
3567 note of this type already exists, remove it first. */
3570 set_unique_reg_note (insn
, kind
, datum
)
3575 rtx note
= find_reg_note (insn
, kind
, NULL_RTX
);
3577 /* First remove the note if there already is one. */
3579 remove_note (insn
, note
);
3581 REG_NOTES (insn
) = gen_rtx_EXPR_LIST (kind
, datum
, REG_NOTES (insn
));
3584 /* Return an indication of which type of insn should have X as a body.
3585 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
3591 if (GET_CODE (x
) == CODE_LABEL
)
3593 if (GET_CODE (x
) == CALL
)
3595 if (GET_CODE (x
) == RETURN
)
3597 if (GET_CODE (x
) == SET
)
3599 if (SET_DEST (x
) == pc_rtx
)
3601 else if (GET_CODE (SET_SRC (x
)) == CALL
)
3606 if (GET_CODE (x
) == PARALLEL
)
3609 for (j
= XVECLEN (x
, 0) - 1; j
>= 0; j
--)
3610 if (GET_CODE (XVECEXP (x
, 0, j
)) == CALL
)
3612 else if (GET_CODE (XVECEXP (x
, 0, j
)) == SET
3613 && SET_DEST (XVECEXP (x
, 0, j
)) == pc_rtx
)
3615 else if (GET_CODE (XVECEXP (x
, 0, j
)) == SET
3616 && GET_CODE (SET_SRC (XVECEXP (x
, 0, j
))) == CALL
)
3622 /* Emit the rtl pattern X as an appropriate kind of insn.
3623 If X is a label, it is simply added into the insn chain. */
3629 enum rtx_code code
= classify_insn (x
);
3631 if (code
== CODE_LABEL
)
3632 return emit_label (x
);
3633 else if (code
== INSN
)
3634 return emit_insn (x
);
3635 else if (code
== JUMP_INSN
)
3637 register rtx insn
= emit_jump_insn (x
);
3638 if (any_uncondjump_p (insn
) || GET_CODE (x
) == RETURN
)
3639 return emit_barrier ();
3642 else if (code
== CALL_INSN
)
3643 return emit_call_insn (x
);
3648 /* Begin emitting insns to a sequence which can be packaged in an
3649 RTL_EXPR. If this sequence will contain something that might cause
3650 the compiler to pop arguments to function calls (because those
3651 pops have previously been deferred; see INHIBIT_DEFER_POP for more
3652 details), use do_pending_stack_adjust before calling this function.
3653 That will ensure that the deferred pops are not accidentally
3654 emitted in the middle of this sequence. */
3659 struct sequence_stack
*tem
;
3661 tem
= (struct sequence_stack
*) xmalloc (sizeof (struct sequence_stack
));
3663 tem
->next
= seq_stack
;
3664 tem
->first
= first_insn
;
3665 tem
->last
= last_insn
;
3666 tem
->sequence_rtl_expr
= seq_rtl_expr
;
3674 /* Similarly, but indicate that this sequence will be placed in T, an
3675 RTL_EXPR. See the documentation for start_sequence for more
3676 information about how to use this function. */
3679 start_sequence_for_rtl_expr (t
)
3687 /* Set up the insn chain starting with FIRST as the current sequence,
3688 saving the previously current one. See the documentation for
3689 start_sequence for more information about how to use this function. */
3692 push_to_sequence (first
)
3699 for (last
= first
; last
&& NEXT_INSN (last
); last
= NEXT_INSN (last
));
3705 /* Set up the insn chain from a chain stort in FIRST to LAST. */
3708 push_to_full_sequence (first
, last
)
3714 /* We really should have the end of the insn chain here. */
3715 if (last
&& NEXT_INSN (last
))
3719 /* Set up the outer-level insn chain
3720 as the current sequence, saving the previously current one. */
3723 push_topmost_sequence ()
3725 struct sequence_stack
*stack
, *top
= NULL
;
3729 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
3732 first_insn
= top
->first
;
3733 last_insn
= top
->last
;
3734 seq_rtl_expr
= top
->sequence_rtl_expr
;
3737 /* After emitting to the outer-level insn chain, update the outer-level
3738 insn chain, and restore the previous saved state. */
3741 pop_topmost_sequence ()
3743 struct sequence_stack
*stack
, *top
= NULL
;
3745 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
3748 top
->first
= first_insn
;
3749 top
->last
= last_insn
;
3750 /* ??? Why don't we save seq_rtl_expr here? */
3755 /* After emitting to a sequence, restore previous saved state.
3757 To get the contents of the sequence just made, you must call
3758 `gen_sequence' *before* calling here.
3760 If the compiler might have deferred popping arguments while
3761 generating this sequence, and this sequence will not be immediately
3762 inserted into the instruction stream, use do_pending_stack_adjust
3763 before calling gen_sequence. That will ensure that the deferred
3764 pops are inserted into this sequence, and not into some random
3765 location in the instruction stream. See INHIBIT_DEFER_POP for more
3766 information about deferred popping of arguments. */
3771 struct sequence_stack
*tem
= seq_stack
;
3773 first_insn
= tem
->first
;
3774 last_insn
= tem
->last
;
3775 seq_rtl_expr
= tem
->sequence_rtl_expr
;
3776 seq_stack
= tem
->next
;
3781 /* This works like end_sequence, but records the old sequence in FIRST
3785 end_full_sequence (first
, last
)
3788 *first
= first_insn
;
3793 /* Return 1 if currently emitting into a sequence. */
3798 return seq_stack
!= 0;
3801 /* Generate a SEQUENCE rtx containing the insns already emitted
3802 to the current sequence.
3804 This is how the gen_... function from a DEFINE_EXPAND
3805 constructs the SEQUENCE that it returns. */
3815 /* Count the insns in the chain. */
3817 for (tem
= first_insn
; tem
; tem
= NEXT_INSN (tem
))
3820 /* If only one insn, return it rather than a SEQUENCE.
3821 (Now that we cache SEQUENCE expressions, it isn't worth special-casing
3822 the case of an empty list.)
3823 We only return the pattern of an insn if its code is INSN and it
3824 has no notes. This ensures that no information gets lost. */
3826 && ! RTX_FRAME_RELATED_P (first_insn
)
3827 && GET_CODE (first_insn
) == INSN
3828 /* Don't throw away any reg notes. */
3829 && REG_NOTES (first_insn
) == 0)
3830 return PATTERN (first_insn
);
3832 result
= gen_rtx_SEQUENCE (VOIDmode
, rtvec_alloc (len
));
3834 for (i
= 0, tem
= first_insn
; tem
; tem
= NEXT_INSN (tem
), i
++)
3835 XVECEXP (result
, 0, i
) = tem
;
3840 /* Put the various virtual registers into REGNO_REG_RTX. */
3843 init_virtual_regs (es
)
3844 struct emit_status
*es
;
3846 rtx
*ptr
= es
->x_regno_reg_rtx
;
3847 ptr
[VIRTUAL_INCOMING_ARGS_REGNUM
] = virtual_incoming_args_rtx
;
3848 ptr
[VIRTUAL_STACK_VARS_REGNUM
] = virtual_stack_vars_rtx
;
3849 ptr
[VIRTUAL_STACK_DYNAMIC_REGNUM
] = virtual_stack_dynamic_rtx
;
3850 ptr
[VIRTUAL_OUTGOING_ARGS_REGNUM
] = virtual_outgoing_args_rtx
;
3851 ptr
[VIRTUAL_CFA_REGNUM
] = virtual_cfa_rtx
;
3855 clear_emit_caches ()
3859 /* Clear the start_sequence/gen_sequence cache. */
3860 for (i
= 0; i
< SEQUENCE_RESULT_SIZE
; i
++)
3861 sequence_result
[i
] = 0;
3865 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
3866 static rtx copy_insn_scratch_in
[MAX_RECOG_OPERANDS
];
3867 static rtx copy_insn_scratch_out
[MAX_RECOG_OPERANDS
];
3868 static int copy_insn_n_scratches
;
3870 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
3871 copied an ASM_OPERANDS.
3872 In that case, it is the original input-operand vector. */
3873 static rtvec orig_asm_operands_vector
;
3875 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
3876 copied an ASM_OPERANDS.
3877 In that case, it is the copied input-operand vector. */
3878 static rtvec copy_asm_operands_vector
;
3880 /* Likewise for the constraints vector. */
3881 static rtvec orig_asm_constraints_vector
;
3882 static rtvec copy_asm_constraints_vector
;
3884 /* Recursively create a new copy of an rtx for copy_insn.
3885 This function differs from copy_rtx in that it handles SCRATCHes and
3886 ASM_OPERANDs properly.
3887 Normally, this function is not used directly; use copy_insn as front end.
3888 However, you could first copy an insn pattern with copy_insn and then use
3889 this function afterwards to properly copy any REG_NOTEs containing
3898 register RTX_CODE code
;
3899 register const char *format_ptr
;
3901 code
= GET_CODE (orig
);
3917 for (i
= 0; i
< copy_insn_n_scratches
; i
++)
3918 if (copy_insn_scratch_in
[i
] == orig
)
3919 return copy_insn_scratch_out
[i
];
3923 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
3924 a LABEL_REF, it isn't sharable. */
3925 if (GET_CODE (XEXP (orig
, 0)) == PLUS
3926 && GET_CODE (XEXP (XEXP (orig
, 0), 0)) == SYMBOL_REF
3927 && GET_CODE (XEXP (XEXP (orig
, 0), 1)) == CONST_INT
)
3931 /* A MEM with a constant address is not sharable. The problem is that
3932 the constant address may need to be reloaded. If the mem is shared,
3933 then reloading one copy of this mem will cause all copies to appear
3934 to have been reloaded. */
3940 copy
= rtx_alloc (code
);
3942 /* Copy the various flags, and other information. We assume that
3943 all fields need copying, and then clear the fields that should
3944 not be copied. That is the sensible default behavior, and forces
3945 us to explicitly document why we are *not* copying a flag. */
3946 memcpy (copy
, orig
, sizeof (struct rtx_def
) - sizeof (rtunion
));
3948 /* We do not copy the USED flag, which is used as a mark bit during
3949 walks over the RTL. */
3952 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
3953 if (GET_RTX_CLASS (code
) == 'i')
3957 copy
->frame_related
= 0;
3960 format_ptr
= GET_RTX_FORMAT (GET_CODE (copy
));
3962 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (copy
)); i
++)
3964 copy
->fld
[i
] = orig
->fld
[i
];
3965 switch (*format_ptr
++)
3968 if (XEXP (orig
, i
) != NULL
)
3969 XEXP (copy
, i
) = copy_insn_1 (XEXP (orig
, i
));
3974 if (XVEC (orig
, i
) == orig_asm_constraints_vector
)
3975 XVEC (copy
, i
) = copy_asm_constraints_vector
;
3976 else if (XVEC (orig
, i
) == orig_asm_operands_vector
)
3977 XVEC (copy
, i
) = copy_asm_operands_vector
;
3978 else if (XVEC (orig
, i
) != NULL
)
3980 XVEC (copy
, i
) = rtvec_alloc (XVECLEN (orig
, i
));
3981 for (j
= 0; j
< XVECLEN (copy
, i
); j
++)
3982 XVECEXP (copy
, i
, j
) = copy_insn_1 (XVECEXP (orig
, i
, j
));
3993 /* These are left unchanged. */
4001 if (code
== SCRATCH
)
4003 i
= copy_insn_n_scratches
++;
4004 if (i
>= MAX_RECOG_OPERANDS
)
4006 copy_insn_scratch_in
[i
] = orig
;
4007 copy_insn_scratch_out
[i
] = copy
;
4009 else if (code
== ASM_OPERANDS
)
4011 orig_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (orig
);
4012 copy_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (copy
);
4013 orig_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig
);
4014 copy_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy
);
4020 /* Create a new copy of an rtx.
4021 This function differs from copy_rtx in that it handles SCRATCHes and
4022 ASM_OPERANDs properly.
4023 INSN doesn't really have to be a full INSN; it could be just the
4029 copy_insn_n_scratches
= 0;
4030 orig_asm_operands_vector
= 0;
4031 orig_asm_constraints_vector
= 0;
4032 copy_asm_operands_vector
= 0;
4033 copy_asm_constraints_vector
= 0;
4034 return copy_insn_1 (insn
);
4037 /* Initialize data structures and variables in this file
4038 before generating rtl for each function. */
4043 struct function
*f
= cfun
;
4045 f
->emit
= (struct emit_status
*) xmalloc (sizeof (struct emit_status
));
4048 seq_rtl_expr
= NULL
;
4050 reg_rtx_no
= LAST_VIRTUAL_REGISTER
+ 1;
4053 first_label_num
= label_num
;
4057 clear_emit_caches ();
4059 /* Init the tables that describe all the pseudo regs. */
4061 f
->emit
->regno_pointer_align_length
= LAST_VIRTUAL_REGISTER
+ 101;
4063 f
->emit
->regno_pointer_align
4064 = (unsigned char *) xcalloc (f
->emit
->regno_pointer_align_length
,
4065 sizeof (unsigned char));
4068 = (rtx
*) xcalloc (f
->emit
->regno_pointer_align_length
* sizeof (rtx
),
4071 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
4072 init_virtual_regs (f
->emit
);
4074 /* Indicate that the virtual registers and stack locations are
4076 REG_POINTER (stack_pointer_rtx
) = 1;
4077 REG_POINTER (frame_pointer_rtx
) = 1;
4078 REG_POINTER (hard_frame_pointer_rtx
) = 1;
4079 REG_POINTER (arg_pointer_rtx
) = 1;
4081 REG_POINTER (virtual_incoming_args_rtx
) = 1;
4082 REG_POINTER (virtual_stack_vars_rtx
) = 1;
4083 REG_POINTER (virtual_stack_dynamic_rtx
) = 1;
4084 REG_POINTER (virtual_outgoing_args_rtx
) = 1;
4085 REG_POINTER (virtual_cfa_rtx
) = 1;
4087 #ifdef STACK_BOUNDARY
4088 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM
) = STACK_BOUNDARY
;
4089 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
4090 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
4091 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM
) = STACK_BOUNDARY
;
4093 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM
) = STACK_BOUNDARY
;
4094 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM
) = STACK_BOUNDARY
;
4095 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM
) = STACK_BOUNDARY
;
4096 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM
) = STACK_BOUNDARY
;
4097 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM
) = BITS_PER_WORD
;
4100 #ifdef INIT_EXPANDERS
4105 /* Mark SS for GC. */
4108 mark_sequence_stack (ss
)
4109 struct sequence_stack
*ss
;
4113 ggc_mark_rtx (ss
->first
);
4114 ggc_mark_tree (ss
->sequence_rtl_expr
);
4119 /* Mark ES for GC. */
4122 mark_emit_status (es
)
4123 struct emit_status
*es
;
4131 for (i
= es
->regno_pointer_align_length
, r
= es
->x_regno_reg_rtx
;
4135 mark_sequence_stack (es
->sequence_stack
);
4136 ggc_mark_tree (es
->sequence_rtl_expr
);
4137 ggc_mark_rtx (es
->x_first_insn
);
4140 /* Create some permanent unique rtl objects shared between all functions.
4141 LINE_NUMBERS is nonzero if line numbers are to be generated. */
4144 init_emit_once (line_numbers
)
4148 enum machine_mode mode
;
4149 enum machine_mode double_mode
;
4151 /* Initialize the CONST_INT hash table. */
4152 const_int_htab
= htab_create (37, const_int_htab_hash
,
4153 const_int_htab_eq
, NULL
);
4154 ggc_add_root (&const_int_htab
, 1, sizeof (const_int_htab
),
4157 no_line_numbers
= ! line_numbers
;
4159 /* Compute the word and byte modes. */
4161 byte_mode
= VOIDmode
;
4162 word_mode
= VOIDmode
;
4163 double_mode
= VOIDmode
;
4165 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
4166 mode
= GET_MODE_WIDER_MODE (mode
))
4168 if (GET_MODE_BITSIZE (mode
) == BITS_PER_UNIT
4169 && byte_mode
== VOIDmode
)
4172 if (GET_MODE_BITSIZE (mode
) == BITS_PER_WORD
4173 && word_mode
== VOIDmode
)
4177 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); mode
!= VOIDmode
;
4178 mode
= GET_MODE_WIDER_MODE (mode
))
4180 if (GET_MODE_BITSIZE (mode
) == DOUBLE_TYPE_SIZE
4181 && double_mode
== VOIDmode
)
4185 ptr_mode
= mode_for_size (POINTER_SIZE
, GET_MODE_CLASS (Pmode
), 0);
4187 /* Assign register numbers to the globally defined register rtx.
4188 This must be done at runtime because the register number field
4189 is in a union and some compilers can't initialize unions. */
4191 pc_rtx
= gen_rtx (PC
, VOIDmode
);
4192 cc0_rtx
= gen_rtx (CC0
, VOIDmode
);
4193 stack_pointer_rtx
= gen_raw_REG (Pmode
, STACK_POINTER_REGNUM
);
4194 frame_pointer_rtx
= gen_raw_REG (Pmode
, FRAME_POINTER_REGNUM
);
4195 if (hard_frame_pointer_rtx
== 0)
4196 hard_frame_pointer_rtx
= gen_raw_REG (Pmode
,
4197 HARD_FRAME_POINTER_REGNUM
);
4198 if (arg_pointer_rtx
== 0)
4199 arg_pointer_rtx
= gen_raw_REG (Pmode
, ARG_POINTER_REGNUM
);
4200 virtual_incoming_args_rtx
=
4201 gen_raw_REG (Pmode
, VIRTUAL_INCOMING_ARGS_REGNUM
);
4202 virtual_stack_vars_rtx
=
4203 gen_raw_REG (Pmode
, VIRTUAL_STACK_VARS_REGNUM
);
4204 virtual_stack_dynamic_rtx
=
4205 gen_raw_REG (Pmode
, VIRTUAL_STACK_DYNAMIC_REGNUM
);
4206 virtual_outgoing_args_rtx
=
4207 gen_raw_REG (Pmode
, VIRTUAL_OUTGOING_ARGS_REGNUM
);
4208 virtual_cfa_rtx
= gen_raw_REG (Pmode
, VIRTUAL_CFA_REGNUM
);
4210 /* These rtx must be roots if GC is enabled. */
4211 ggc_add_rtx_root (global_rtl
, GR_MAX
);
4213 #ifdef INIT_EXPANDERS
4214 /* This is to initialize {init|mark|free}_machine_status before the first
4215 call to push_function_context_to. This is needed by the Chill front
4216 end which calls push_function_context_to before the first cal to
4217 init_function_start. */
4221 /* Create the unique rtx's for certain rtx codes and operand values. */
4223 /* Don't use gen_rtx here since gen_rtx in this case
4224 tries to use these variables. */
4225 for (i
= - MAX_SAVED_CONST_INT
; i
<= MAX_SAVED_CONST_INT
; i
++)
4226 const_int_rtx
[i
+ MAX_SAVED_CONST_INT
] =
4227 gen_rtx_raw_CONST_INT (VOIDmode
, i
);
4228 ggc_add_rtx_root (const_int_rtx
, 2 * MAX_SAVED_CONST_INT
+ 1);
4230 if (STORE_FLAG_VALUE
>= - MAX_SAVED_CONST_INT
4231 && STORE_FLAG_VALUE
<= MAX_SAVED_CONST_INT
)
4232 const_true_rtx
= const_int_rtx
[STORE_FLAG_VALUE
+ MAX_SAVED_CONST_INT
];
4234 const_true_rtx
= gen_rtx_CONST_INT (VOIDmode
, STORE_FLAG_VALUE
);
4236 dconst0
= REAL_VALUE_ATOF ("0", double_mode
);
4237 dconst1
= REAL_VALUE_ATOF ("1", double_mode
);
4238 dconst2
= REAL_VALUE_ATOF ("2", double_mode
);
4239 dconstm1
= REAL_VALUE_ATOF ("-1", double_mode
);
4241 for (i
= 0; i
<= 2; i
++)
4243 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); mode
!= VOIDmode
;
4244 mode
= GET_MODE_WIDER_MODE (mode
))
4246 rtx tem
= rtx_alloc (CONST_DOUBLE
);
4247 union real_extract u
;
4249 /* Zero any holes in a structure. */
4250 memset ((char *) &u
, 0, sizeof u
);
4251 u
.d
= i
== 0 ? dconst0
: i
== 1 ? dconst1
: dconst2
;
4253 /* Avoid trailing garbage in the rtx. */
4254 if (sizeof (u
) < sizeof (HOST_WIDE_INT
))
4255 CONST_DOUBLE_LOW (tem
) = 0;
4256 if (sizeof (u
) < 2 * sizeof (HOST_WIDE_INT
))
4257 CONST_DOUBLE_HIGH (tem
) = 0;
4259 memcpy (&CONST_DOUBLE_LOW (tem
), &u
, sizeof u
);
4260 CONST_DOUBLE_MEM (tem
) = cc0_rtx
;
4261 CONST_DOUBLE_CHAIN (tem
) = NULL_RTX
;
4262 PUT_MODE (tem
, mode
);
4264 const_tiny_rtx
[i
][(int) mode
] = tem
;
4267 const_tiny_rtx
[i
][(int) VOIDmode
] = GEN_INT (i
);
4269 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
4270 mode
= GET_MODE_WIDER_MODE (mode
))
4271 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
4273 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT
);
4275 mode
= GET_MODE_WIDER_MODE (mode
))
4276 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
4279 for (i
= (int) CCmode
; i
< (int) MAX_MACHINE_MODE
; ++i
)
4280 if (GET_MODE_CLASS ((enum machine_mode
) i
) == MODE_CC
)
4281 const_tiny_rtx
[0][i
] = const0_rtx
;
4283 const_tiny_rtx
[0][(int) BImode
] = const0_rtx
;
4284 if (STORE_FLAG_VALUE
== 1)
4285 const_tiny_rtx
[1][(int) BImode
] = const1_rtx
;
4287 /* For bounded pointers, `&const_tiny_rtx[0][0]' is not the same as
4288 `(rtx *) const_tiny_rtx'. The former has bounds that only cover
4289 `const_tiny_rtx[0]', whereas the latter has bounds that cover all. */
4290 ggc_add_rtx_root ((rtx
*) const_tiny_rtx
, sizeof const_tiny_rtx
/ sizeof (rtx
));
4291 ggc_add_rtx_root (&const_true_rtx
, 1);
4293 #ifdef RETURN_ADDRESS_POINTER_REGNUM
4294 return_address_pointer_rtx
4295 = gen_raw_REG (Pmode
, RETURN_ADDRESS_POINTER_REGNUM
);
4299 struct_value_rtx
= STRUCT_VALUE
;
4301 struct_value_rtx
= gen_rtx_REG (Pmode
, STRUCT_VALUE_REGNUM
);
4304 #ifdef STRUCT_VALUE_INCOMING
4305 struct_value_incoming_rtx
= STRUCT_VALUE_INCOMING
;
4307 #ifdef STRUCT_VALUE_INCOMING_REGNUM
4308 struct_value_incoming_rtx
4309 = gen_rtx_REG (Pmode
, STRUCT_VALUE_INCOMING_REGNUM
);
4311 struct_value_incoming_rtx
= struct_value_rtx
;
4315 #ifdef STATIC_CHAIN_REGNUM
4316 static_chain_rtx
= gen_rtx_REG (Pmode
, STATIC_CHAIN_REGNUM
);
4318 #ifdef STATIC_CHAIN_INCOMING_REGNUM
4319 if (STATIC_CHAIN_INCOMING_REGNUM
!= STATIC_CHAIN_REGNUM
)
4320 static_chain_incoming_rtx
4321 = gen_rtx_REG (Pmode
, STATIC_CHAIN_INCOMING_REGNUM
);
4324 static_chain_incoming_rtx
= static_chain_rtx
;
4328 static_chain_rtx
= STATIC_CHAIN
;
4330 #ifdef STATIC_CHAIN_INCOMING
4331 static_chain_incoming_rtx
= STATIC_CHAIN_INCOMING
;
4333 static_chain_incoming_rtx
= static_chain_rtx
;
4337 if (PIC_OFFSET_TABLE_REGNUM
!= INVALID_REGNUM
)
4338 pic_offset_table_rtx
= gen_rtx_REG (Pmode
, PIC_OFFSET_TABLE_REGNUM
);
4340 ggc_add_rtx_root (&pic_offset_table_rtx
, 1);
4341 ggc_add_rtx_root (&struct_value_rtx
, 1);
4342 ggc_add_rtx_root (&struct_value_incoming_rtx
, 1);
4343 ggc_add_rtx_root (&static_chain_rtx
, 1);
4344 ggc_add_rtx_root (&static_chain_incoming_rtx
, 1);
4345 ggc_add_rtx_root (&return_address_pointer_rtx
, 1);
4348 /* Query and clear/ restore no_line_numbers. This is used by the
4349 switch / case handling in stmt.c to give proper line numbers in
4350 warnings about unreachable code. */
4353 force_line_numbers ()
4355 int old
= no_line_numbers
;
4357 no_line_numbers
= 0;
4359 force_next_line_note ();
4364 restore_line_number_status (old_value
)
4367 no_line_numbers
= old_value
;