contrib.texi: Update contributions.
[official-gcc.git] / gcc / lambda.h
blob2d321fbab6dd96290fb7da263f32919a6bec37c7
1 /* Lambda matrix and vector interface.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
3 Contributed by Daniel Berlin <dberlin@dberlin.org>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #ifndef LAMBDA_H
22 #define LAMBDA_H
24 #include "vec.h"
26 /* An integer vector. A vector formally consists of an element of a vector
27 space. A vector space is a set that is closed under vector addition
28 and scalar multiplication. In this vector space, an element is a list of
29 integers. */
30 typedef int *lambda_vector;
31 DEF_VEC_P(lambda_vector);
32 DEF_VEC_ALLOC_P(lambda_vector,heap);
34 typedef VEC(lambda_vector, heap) *lambda_vector_vec_p;
35 DEF_VEC_P (lambda_vector_vec_p);
36 DEF_VEC_ALLOC_P (lambda_vector_vec_p, heap);
38 /* An integer matrix. A matrix consists of m vectors of length n (IE
39 all vectors are the same length). */
40 typedef lambda_vector *lambda_matrix;
42 DEF_VEC_P (lambda_matrix);
43 DEF_VEC_ALLOC_P (lambda_matrix, heap);
45 /* A transformation matrix, which is a self-contained ROWSIZE x COLSIZE
46 matrix. Rather than use floats, we simply keep a single DENOMINATOR that
47 represents the denominator for every element in the matrix. */
48 typedef struct lambda_trans_matrix_s
50 lambda_matrix matrix;
51 int rowsize;
52 int colsize;
53 int denominator;
54 } *lambda_trans_matrix;
55 #define LTM_MATRIX(T) ((T)->matrix)
56 #define LTM_ROWSIZE(T) ((T)->rowsize)
57 #define LTM_COLSIZE(T) ((T)->colsize)
58 #define LTM_DENOMINATOR(T) ((T)->denominator)
60 /* A vector representing a statement in the body of a loop.
61 The COEFFICIENTS vector contains a coefficient for each induction variable
62 in the loop nest containing the statement.
63 The DENOMINATOR represents the denominator for each coefficient in the
64 COEFFICIENT vector.
66 This structure is used during code generation in order to rewrite the old
67 induction variable uses in a statement in terms of the newly created
68 induction variables. */
69 typedef struct lambda_body_vector_s
71 lambda_vector coefficients;
72 int size;
73 int denominator;
74 } *lambda_body_vector;
75 #define LBV_COEFFICIENTS(T) ((T)->coefficients)
76 #define LBV_SIZE(T) ((T)->size)
77 #define LBV_DENOMINATOR(T) ((T)->denominator)
79 /* Piecewise linear expression.
80 This structure represents a linear expression with terms for the invariants
81 and induction variables of a loop.
82 COEFFICIENTS is a vector of coefficients for the induction variables, one
83 per loop in the loop nest.
84 CONSTANT is the constant portion of the linear expression
85 INVARIANT_COEFFICIENTS is a vector of coefficients for the loop invariants,
86 one per invariant.
87 DENOMINATOR is the denominator for all of the coefficients and constants in
88 the expression.
89 The linear expressions can be linked together using the NEXT field, in
90 order to represent MAX or MIN of a group of linear expressions. */
91 typedef struct lambda_linear_expression_s
93 lambda_vector coefficients;
94 int constant;
95 lambda_vector invariant_coefficients;
96 int denominator;
97 struct lambda_linear_expression_s *next;
98 } *lambda_linear_expression;
100 #define LLE_COEFFICIENTS(T) ((T)->coefficients)
101 #define LLE_CONSTANT(T) ((T)->constant)
102 #define LLE_INVARIANT_COEFFICIENTS(T) ((T)->invariant_coefficients)
103 #define LLE_DENOMINATOR(T) ((T)->denominator)
104 #define LLE_NEXT(T) ((T)->next)
106 struct obstack;
108 lambda_linear_expression lambda_linear_expression_new (int, int,
109 struct obstack *);
110 void print_lambda_linear_expression (FILE *, lambda_linear_expression, int,
111 int, char);
113 /* Loop structure. Our loop structure consists of a constant representing the
114 STEP of the loop, a set of linear expressions representing the LOWER_BOUND
115 of the loop, a set of linear expressions representing the UPPER_BOUND of
116 the loop, and a set of linear expressions representing the LINEAR_OFFSET of
117 the loop. The linear offset is a set of linear expressions that are
118 applied to *both* the lower bound, and the upper bound. */
119 typedef struct lambda_loop_s
121 lambda_linear_expression lower_bound;
122 lambda_linear_expression upper_bound;
123 lambda_linear_expression linear_offset;
124 int step;
125 } *lambda_loop;
127 #define LL_LOWER_BOUND(T) ((T)->lower_bound)
128 #define LL_UPPER_BOUND(T) ((T)->upper_bound)
129 #define LL_LINEAR_OFFSET(T) ((T)->linear_offset)
130 #define LL_STEP(T) ((T)->step)
132 /* Loop nest structure.
133 The loop nest structure consists of a set of loop structures (defined
134 above) in LOOPS, along with an integer representing the DEPTH of the loop,
135 and an integer representing the number of INVARIANTS in the loop. Both of
136 these integers are used to size the associated coefficient vectors in the
137 linear expression structures. */
138 typedef struct lambda_loopnest_s
140 lambda_loop *loops;
141 int depth;
142 int invariants;
143 } *lambda_loopnest;
145 #define LN_LOOPS(T) ((T)->loops)
146 #define LN_DEPTH(T) ((T)->depth)
147 #define LN_INVARIANTS(T) ((T)->invariants)
149 lambda_loopnest lambda_loopnest_new (int, int, struct obstack *);
150 lambda_loopnest lambda_loopnest_transform (lambda_loopnest,
151 lambda_trans_matrix,
152 struct obstack *);
153 struct loop;
154 bool perfect_nest_p (struct loop *);
155 void print_lambda_loopnest (FILE *, lambda_loopnest, char);
157 #define lambda_loop_new() (lambda_loop) ggc_alloc_cleared (sizeof (struct lambda_loop_s))
159 void print_lambda_loop (FILE *, lambda_loop, int, int, char);
161 lambda_matrix lambda_matrix_new (int, int);
163 void lambda_matrix_id (lambda_matrix, int);
164 bool lambda_matrix_id_p (lambda_matrix, int);
165 void lambda_matrix_copy (lambda_matrix, lambda_matrix, int, int);
166 void lambda_matrix_negate (lambda_matrix, lambda_matrix, int, int);
167 void lambda_matrix_transpose (lambda_matrix, lambda_matrix, int, int);
168 void lambda_matrix_add (lambda_matrix, lambda_matrix, lambda_matrix, int,
169 int);
170 void lambda_matrix_add_mc (lambda_matrix, int, lambda_matrix, int,
171 lambda_matrix, int, int);
172 void lambda_matrix_mult (lambda_matrix, lambda_matrix, lambda_matrix,
173 int, int, int);
174 void lambda_matrix_delete_rows (lambda_matrix, int, int, int);
175 void lambda_matrix_row_exchange (lambda_matrix, int, int);
176 void lambda_matrix_row_add (lambda_matrix, int, int, int, int);
177 void lambda_matrix_row_negate (lambda_matrix mat, int, int);
178 void lambda_matrix_row_mc (lambda_matrix, int, int, int);
179 void lambda_matrix_col_exchange (lambda_matrix, int, int, int);
180 void lambda_matrix_col_add (lambda_matrix, int, int, int, int);
181 void lambda_matrix_col_negate (lambda_matrix, int, int);
182 void lambda_matrix_col_mc (lambda_matrix, int, int, int);
183 int lambda_matrix_inverse (lambda_matrix, lambda_matrix, int);
184 void lambda_matrix_hermite (lambda_matrix, int, lambda_matrix, lambda_matrix);
185 void lambda_matrix_left_hermite (lambda_matrix, int, int, lambda_matrix, lambda_matrix);
186 void lambda_matrix_right_hermite (lambda_matrix, int, int, lambda_matrix, lambda_matrix);
187 int lambda_matrix_first_nz_vec (lambda_matrix, int, int, int);
188 void lambda_matrix_project_to_null (lambda_matrix, int, int, int,
189 lambda_vector);
190 void print_lambda_matrix (FILE *, lambda_matrix, int, int);
192 lambda_trans_matrix lambda_trans_matrix_new (int, int);
193 bool lambda_trans_matrix_nonsingular_p (lambda_trans_matrix);
194 bool lambda_trans_matrix_fullrank_p (lambda_trans_matrix);
195 int lambda_trans_matrix_rank (lambda_trans_matrix);
196 lambda_trans_matrix lambda_trans_matrix_basis (lambda_trans_matrix);
197 lambda_trans_matrix lambda_trans_matrix_padding (lambda_trans_matrix);
198 lambda_trans_matrix lambda_trans_matrix_inverse (lambda_trans_matrix);
199 void print_lambda_trans_matrix (FILE *, lambda_trans_matrix);
200 void lambda_matrix_vector_mult (lambda_matrix, int, int, lambda_vector,
201 lambda_vector);
202 bool lambda_trans_matrix_id_p (lambda_trans_matrix);
204 lambda_body_vector lambda_body_vector_new (int, struct obstack *);
205 lambda_body_vector lambda_body_vector_compute_new (lambda_trans_matrix,
206 lambda_body_vector,
207 struct obstack *);
208 void print_lambda_body_vector (FILE *, lambda_body_vector);
209 lambda_loopnest gcc_loopnest_to_lambda_loopnest (struct loop *,
210 VEC(tree,heap) **,
211 VEC(tree,heap) **,
212 struct obstack *);
213 void lambda_loopnest_to_gcc_loopnest (struct loop *,
214 VEC(tree,heap) *, VEC(tree,heap) *,
215 VEC(gimple,heap) **,
216 lambda_loopnest, lambda_trans_matrix,
217 struct obstack *);
218 void remove_iv (gimple);
219 tree find_induction_var_from_exit_cond (struct loop *);
221 static inline void lambda_vector_negate (lambda_vector, lambda_vector, int);
222 static inline void lambda_vector_mult_const (lambda_vector, lambda_vector, int, int);
223 static inline void lambda_vector_add (lambda_vector, lambda_vector,
224 lambda_vector, int);
225 static inline void lambda_vector_add_mc (lambda_vector, int, lambda_vector, int,
226 lambda_vector, int);
227 static inline void lambda_vector_copy (lambda_vector, lambda_vector, int);
228 static inline bool lambda_vector_zerop (lambda_vector, int);
229 static inline void lambda_vector_clear (lambda_vector, int);
230 static inline bool lambda_vector_equal (lambda_vector, lambda_vector, int);
231 static inline int lambda_vector_min_nz (lambda_vector, int, int);
232 static inline int lambda_vector_first_nz (lambda_vector, int, int);
233 static inline void print_lambda_vector (FILE *, lambda_vector, int);
235 /* Allocate a new vector of given SIZE. */
237 static inline lambda_vector
238 lambda_vector_new (int size)
240 return GGC_CNEWVEC (int, size);
245 /* Multiply vector VEC1 of length SIZE by a constant CONST1,
246 and store the result in VEC2. */
248 static inline void
249 lambda_vector_mult_const (lambda_vector vec1, lambda_vector vec2,
250 int size, int const1)
252 int i;
254 if (const1 == 0)
255 lambda_vector_clear (vec2, size);
256 else
257 for (i = 0; i < size; i++)
258 vec2[i] = const1 * vec1[i];
261 /* Negate vector VEC1 with length SIZE and store it in VEC2. */
263 static inline void
264 lambda_vector_negate (lambda_vector vec1, lambda_vector vec2,
265 int size)
267 lambda_vector_mult_const (vec1, vec2, size, -1);
270 /* VEC3 = VEC1+VEC2, where all three the vectors are of length SIZE. */
272 static inline void
273 lambda_vector_add (lambda_vector vec1, lambda_vector vec2,
274 lambda_vector vec3, int size)
276 int i;
277 for (i = 0; i < size; i++)
278 vec3[i] = vec1[i] + vec2[i];
281 /* VEC3 = CONSTANT1*VEC1 + CONSTANT2*VEC2. All vectors have length SIZE. */
283 static inline void
284 lambda_vector_add_mc (lambda_vector vec1, int const1,
285 lambda_vector vec2, int const2,
286 lambda_vector vec3, int size)
288 int i;
289 for (i = 0; i < size; i++)
290 vec3[i] = const1 * vec1[i] + const2 * vec2[i];
293 /* Copy the elements of vector VEC1 with length SIZE to VEC2. */
295 static inline void
296 lambda_vector_copy (lambda_vector vec1, lambda_vector vec2,
297 int size)
299 memcpy (vec2, vec1, size * sizeof (*vec1));
302 /* Return true if vector VEC1 of length SIZE is the zero vector. */
304 static inline bool
305 lambda_vector_zerop (lambda_vector vec1, int size)
307 int i;
308 for (i = 0; i < size; i++)
309 if (vec1[i] != 0)
310 return false;
311 return true;
314 /* Clear out vector VEC1 of length SIZE. */
316 static inline void
317 lambda_vector_clear (lambda_vector vec1, int size)
319 memset (vec1, 0, size * sizeof (*vec1));
322 /* Return true if two vectors are equal. */
324 static inline bool
325 lambda_vector_equal (lambda_vector vec1, lambda_vector vec2, int size)
327 int i;
328 for (i = 0; i < size; i++)
329 if (vec1[i] != vec2[i])
330 return false;
331 return true;
334 /* Return the minimum nonzero element in vector VEC1 between START and N.
335 We must have START <= N. */
337 static inline int
338 lambda_vector_min_nz (lambda_vector vec1, int n, int start)
340 int j;
341 int min = -1;
343 gcc_assert (start <= n);
344 for (j = start; j < n; j++)
346 if (vec1[j])
347 if (min < 0 || vec1[j] < vec1[min])
348 min = j;
350 gcc_assert (min >= 0);
352 return min;
355 /* Return the first nonzero element of vector VEC1 between START and N.
356 We must have START <= N. Returns N if VEC1 is the zero vector. */
358 static inline int
359 lambda_vector_first_nz (lambda_vector vec1, int n, int start)
361 int j = start;
362 while (j < n && vec1[j] == 0)
363 j++;
364 return j;
368 /* Multiply a vector by a matrix. */
370 static inline void
371 lambda_vector_matrix_mult (lambda_vector vect, int m, lambda_matrix mat,
372 int n, lambda_vector dest)
374 int i, j;
375 lambda_vector_clear (dest, n);
376 for (i = 0; i < n; i++)
377 for (j = 0; j < m; j++)
378 dest[i] += mat[j][i] * vect[j];
381 /* Compare two vectors returning an integer less than, equal to, or
382 greater than zero if the first argument is considered to be respectively
383 less than, equal to, or greater than the second.
384 We use the lexicographic order. */
386 static inline int
387 lambda_vector_compare (lambda_vector vec1, int length1, lambda_vector vec2,
388 int length2)
390 int min_length;
391 int i;
393 if (length1 < length2)
394 min_length = length1;
395 else
396 min_length = length2;
398 for (i = 0; i < min_length; i++)
399 if (vec1[i] < vec2[i])
400 return -1;
401 else if (vec1[i] > vec2[i])
402 return 1;
403 else
404 continue;
406 return length1 - length2;
409 /* Print out a vector VEC of length N to OUTFILE. */
411 static inline void
412 print_lambda_vector (FILE * outfile, lambda_vector vector, int n)
414 int i;
416 for (i = 0; i < n; i++)
417 fprintf (outfile, "%3d ", vector[i]);
418 fprintf (outfile, "\n");
421 /* Compute the greatest common divisor of two numbers using
422 Euclid's algorithm. */
424 static inline int
425 gcd (int a, int b)
427 int x, y, z;
429 x = abs (a);
430 y = abs (b);
432 while (x > 0)
434 z = y % x;
435 y = x;
436 x = z;
439 return y;
442 /* Compute the greatest common divisor of a VECTOR of SIZE numbers. */
444 static inline int
445 lambda_vector_gcd (lambda_vector vector, int size)
447 int i;
448 int gcd1 = 0;
450 if (size > 0)
452 gcd1 = vector[0];
453 for (i = 1; i < size; i++)
454 gcd1 = gcd (gcd1, vector[i]);
456 return gcd1;
459 /* Returns true when the vector V is lexicographically positive, in
460 other words, when the first nonzero element is positive. */
462 static inline bool
463 lambda_vector_lexico_pos (lambda_vector v,
464 unsigned n)
466 unsigned i;
467 for (i = 0; i < n; i++)
469 if (v[i] == 0)
470 continue;
471 if (v[i] < 0)
472 return false;
473 if (v[i] > 0)
474 return true;
476 return true;
479 /* Given a vector of induction variables IVS, and a vector of
480 coefficients COEFS, build a tree that is a linear combination of
481 the induction variables. */
483 static inline tree
484 build_linear_expr (tree type, lambda_vector coefs, VEC (tree, heap) *ivs)
486 unsigned i;
487 tree iv;
488 tree expr = fold_convert (type, integer_zero_node);
490 for (i = 0; VEC_iterate (tree, ivs, i, iv); i++)
492 int k = coefs[i];
494 if (k == 1)
495 expr = fold_build2 (PLUS_EXPR, type, expr, iv);
497 else if (k != 0)
498 expr = fold_build2 (PLUS_EXPR, type, expr,
499 fold_build2 (MULT_EXPR, type, iv,
500 build_int_cst (type, k)));
503 return expr;
506 /* Returns the dependence level for a vector DIST of size LENGTH.
507 LEVEL = 0 means a lexicographic dependence, i.e. a dependence due
508 to the sequence of statements, not carried by any loop. */
511 static inline unsigned
512 dependence_level (lambda_vector dist_vect, int length)
514 int i;
516 for (i = 0; i < length; i++)
517 if (dist_vect[i] != 0)
518 return i + 1;
520 return 0;
523 #endif /* LAMBDA_H */