* varasm.c (default_assemble_integer): Return false for values wider
[official-gcc.git] / gcc / cfg.c
blobc8f1de51ae47b80ccd66708d8ff02a77e8ac6a7c
1 /* Control flow graph manipulation code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file contains low level functions to manipulate the CFG and
23 analyze it. All other modules should not transform the data structure
24 directly and use abstraction instead. The file is supposed to be
25 ordered bottom-up and should not contain any code dependent on a
26 particular intermediate language (RTL or trees).
28 Available functionality:
29 - Initialization/deallocation
30 init_flow, clear_edges
31 - Low level basic block manipulation
32 alloc_block, expunge_block
33 - Edge manipulation
34 make_edge, make_single_succ_edge, cached_make_edge, remove_edge
35 - Low level edge redirection (without updating instruction chain)
36 redirect_edge_succ, redirect_edge_succ_nodup, redirect_edge_pred
37 - Dumping and debugging
38 dump_flow_info, debug_flow_info, dump_edge_info
39 - Allocation of AUX fields for basic blocks
40 alloc_aux_for_blocks, free_aux_for_blocks, alloc_aux_for_block
41 - clear_bb_flags
42 - Consistency checking
43 verify_flow_info
44 - Dumping and debugging
45 print_rtl_with_bb, dump_bb, debug_bb, debug_bb_n
48 #include "config.h"
49 #include "system.h"
50 #include "coretypes.h"
51 #include "tm.h"
52 #include "tree.h"
53 #include "rtl.h"
54 #include "hard-reg-set.h"
55 #include "basic-block.h"
56 #include "regs.h"
57 #include "flags.h"
58 #include "output.h"
59 #include "function.h"
60 #include "except.h"
61 #include "toplev.h"
62 #include "tm_p.h"
63 #include "obstack.h"
64 #include "alloc-pool.h"
65 #include "timevar.h"
66 #include "ggc.h"
68 /* The obstack on which the flow graph components are allocated. */
70 struct obstack flow_obstack;
71 static char *flow_firstobj;
73 /* Number of basic blocks in the current function. */
75 int n_basic_blocks;
77 /* First free basic block number. */
79 int last_basic_block;
81 /* Number of edges in the current function. */
83 int n_edges;
85 /* The basic block array. */
87 varray_type basic_block_info;
89 /* The special entry and exit blocks. */
90 basic_block ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR;
92 /* Memory alloc pool for bb member rbi. */
93 alloc_pool rbi_pool;
95 void debug_flow_info (void);
96 static void free_edge (edge);
98 /* Indicate the presence of the profile. */
99 enum profile_status profile_status;
101 /* Called once at initialization time. */
103 void
104 init_flow (void)
106 static int initialized;
108 n_edges = 0;
110 if (!initialized)
112 gcc_obstack_init (&flow_obstack);
113 flow_firstobj = obstack_alloc (&flow_obstack, 0);
114 initialized = 1;
116 else
118 obstack_free (&flow_obstack, flow_firstobj);
119 flow_firstobj = obstack_alloc (&flow_obstack, 0);
122 ENTRY_BLOCK_PTR = ggc_alloc_cleared (sizeof (*ENTRY_BLOCK_PTR));
123 ENTRY_BLOCK_PTR->index = ENTRY_BLOCK;
124 EXIT_BLOCK_PTR = ggc_alloc_cleared (sizeof (*EXIT_BLOCK_PTR));
125 EXIT_BLOCK_PTR->index = EXIT_BLOCK;
126 ENTRY_BLOCK_PTR->next_bb = EXIT_BLOCK_PTR;
127 EXIT_BLOCK_PTR->prev_bb = ENTRY_BLOCK_PTR;
130 /* Helper function for remove_edge and clear_edges. Frees edge structure
131 without actually unlinking it from the pred/succ lists. */
133 static void
134 free_edge (edge e ATTRIBUTE_UNUSED)
136 n_edges--;
137 ggc_free (e);
140 /* Free the memory associated with the edge structures. */
142 void
143 clear_edges (void)
145 basic_block bb;
146 edge e;
148 FOR_EACH_BB (bb)
150 edge e = bb->succ;
152 while (e)
154 edge next = e->succ_next;
156 free_edge (e);
157 e = next;
160 bb->succ = NULL;
161 bb->pred = NULL;
164 e = ENTRY_BLOCK_PTR->succ;
165 while (e)
167 edge next = e->succ_next;
169 free_edge (e);
170 e = next;
173 EXIT_BLOCK_PTR->pred = NULL;
174 ENTRY_BLOCK_PTR->succ = NULL;
176 gcc_assert (!n_edges);
179 /* Allocate memory for basic_block. */
181 basic_block
182 alloc_block (void)
184 basic_block bb;
185 bb = ggc_alloc_cleared (sizeof (*bb));
186 return bb;
189 /* Create memory pool for rbi_pool. */
191 void
192 alloc_rbi_pool (void)
194 rbi_pool = create_alloc_pool ("rbi pool",
195 sizeof (struct reorder_block_def),
196 n_basic_blocks + 2);
199 /* Free rbi_pool. */
201 void
202 free_rbi_pool (void)
204 free_alloc_pool (rbi_pool);
207 /* Initialize rbi (the structure containing data used by basic block
208 duplication and reordering) for the given basic block. */
210 void
211 initialize_bb_rbi (basic_block bb)
213 gcc_assert (!bb->rbi);
214 bb->rbi = pool_alloc (rbi_pool);
215 memset (bb->rbi, 0, sizeof (struct reorder_block_def));
218 /* Link block B to chain after AFTER. */
219 void
220 link_block (basic_block b, basic_block after)
222 b->next_bb = after->next_bb;
223 b->prev_bb = after;
224 after->next_bb = b;
225 b->next_bb->prev_bb = b;
228 /* Unlink block B from chain. */
229 void
230 unlink_block (basic_block b)
232 b->next_bb->prev_bb = b->prev_bb;
233 b->prev_bb->next_bb = b->next_bb;
234 b->prev_bb = NULL;
235 b->next_bb = NULL;
238 /* Sequentially order blocks and compact the arrays. */
239 void
240 compact_blocks (void)
242 int i;
243 basic_block bb;
245 i = 0;
246 FOR_EACH_BB (bb)
248 BASIC_BLOCK (i) = bb;
249 bb->index = i;
250 i++;
253 gcc_assert (i == n_basic_blocks);
255 for (; i < last_basic_block; i++)
256 BASIC_BLOCK (i) = NULL;
258 last_basic_block = n_basic_blocks;
261 /* Remove block B from the basic block array. */
263 void
264 expunge_block (basic_block b)
266 unlink_block (b);
267 BASIC_BLOCK (b->index) = NULL;
268 n_basic_blocks--;
269 /* We should be able to ggc_free here, but we are not.
270 The dead SSA_NAMES are left pointing to dead statements that are pointing
271 to dead basic blocks making garbage collector to die.
272 We should be able to release all dead SSA_NAMES and at the same time we should
273 clear out BB pointer of dead statements consistently. */
276 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
277 created edge. Use this only if you are sure that this edge can't
278 possibly already exist. */
280 edge
281 unchecked_make_edge (basic_block src, basic_block dst, int flags)
283 edge e;
284 e = ggc_alloc_cleared (sizeof (*e));
285 n_edges++;
287 e->succ_next = src->succ;
288 e->pred_next = dst->pred;
289 e->src = src;
290 e->dest = dst;
291 e->flags = flags;
293 src->succ = e;
294 dst->pred = e;
296 return e;
299 /* Create an edge connecting SRC and DST with FLAGS optionally using
300 edge cache CACHE. Return the new edge, NULL if already exist. */
302 edge
303 cached_make_edge (sbitmap *edge_cache, basic_block src, basic_block dst, int flags)
305 int use_edge_cache;
306 edge e;
308 /* Don't bother with edge cache for ENTRY or EXIT, if there aren't that
309 many edges to them, or we didn't allocate memory for it. */
310 use_edge_cache = (edge_cache
311 && src != ENTRY_BLOCK_PTR && dst != EXIT_BLOCK_PTR);
313 /* Make sure we don't add duplicate edges. */
314 switch (use_edge_cache)
316 default:
317 /* Quick test for non-existence of the edge. */
318 if (! TEST_BIT (edge_cache[src->index], dst->index))
319 break;
321 /* The edge exists; early exit if no work to do. */
322 if (flags == 0)
323 return NULL;
325 /* Fall through. */
326 case 0:
327 for (e = src->succ; e; e = e->succ_next)
328 if (e->dest == dst)
330 e->flags |= flags;
331 return NULL;
333 break;
336 e = unchecked_make_edge (src, dst, flags);
338 if (use_edge_cache)
339 SET_BIT (edge_cache[src->index], dst->index);
341 return e;
344 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
345 created edge or NULL if already exist. */
347 edge
348 make_edge (basic_block src, basic_block dest, int flags)
350 return cached_make_edge (NULL, src, dest, flags);
353 /* Create an edge connecting SRC to DEST and set probability by knowing
354 that it is the single edge leaving SRC. */
356 edge
357 make_single_succ_edge (basic_block src, basic_block dest, int flags)
359 edge e = make_edge (src, dest, flags);
361 e->probability = REG_BR_PROB_BASE;
362 e->count = src->count;
363 return e;
366 /* This function will remove an edge from the flow graph. */
368 void
369 remove_edge (edge e)
371 edge last_pred = NULL;
372 edge last_succ = NULL;
373 edge tmp;
374 basic_block src, dest;
376 src = e->src;
377 dest = e->dest;
378 for (tmp = src->succ; tmp && tmp != e; tmp = tmp->succ_next)
379 last_succ = tmp;
381 gcc_assert (tmp);
382 if (last_succ)
383 last_succ->succ_next = e->succ_next;
384 else
385 src->succ = e->succ_next;
387 for (tmp = dest->pred; tmp && tmp != e; tmp = tmp->pred_next)
388 last_pred = tmp;
390 gcc_assert (tmp);
391 if (last_pred)
392 last_pred->pred_next = e->pred_next;
393 else
394 dest->pred = e->pred_next;
396 free_edge (e);
399 /* Redirect an edge's successor from one block to another. */
401 void
402 redirect_edge_succ (edge e, basic_block new_succ)
404 edge *pe;
406 /* Disconnect the edge from the old successor block. */
407 for (pe = &e->dest->pred; *pe != e; pe = &(*pe)->pred_next)
408 continue;
409 *pe = (*pe)->pred_next;
411 /* Reconnect the edge to the new successor block. */
412 e->pred_next = new_succ->pred;
413 new_succ->pred = e;
414 e->dest = new_succ;
417 /* Like previous but avoid possible duplicate edge. */
419 edge
420 redirect_edge_succ_nodup (edge e, basic_block new_succ)
422 edge s;
424 /* Check whether the edge is already present. */
425 for (s = e->src->succ; s; s = s->succ_next)
426 if (s->dest == new_succ && s != e)
427 break;
429 if (s)
431 s->flags |= e->flags;
432 s->probability += e->probability;
433 if (s->probability > REG_BR_PROB_BASE)
434 s->probability = REG_BR_PROB_BASE;
435 s->count += e->count;
436 remove_edge (e);
437 e = s;
439 else
440 redirect_edge_succ (e, new_succ);
442 return e;
445 /* Redirect an edge's predecessor from one block to another. */
447 void
448 redirect_edge_pred (edge e, basic_block new_pred)
450 edge *pe;
452 /* Disconnect the edge from the old predecessor block. */
453 for (pe = &e->src->succ; *pe != e; pe = &(*pe)->succ_next)
454 continue;
456 *pe = (*pe)->succ_next;
458 /* Reconnect the edge to the new predecessor block. */
459 e->succ_next = new_pred->succ;
460 new_pred->succ = e;
461 e->src = new_pred;
464 /* Clear all basic block flags, with the exception of partitioning. */
465 void
466 clear_bb_flags (void)
468 basic_block bb;
470 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
471 bb->flags = BB_PARTITION (bb);
474 /* Check the consistency of profile information. We can't do that
475 in verify_flow_info, as the counts may get invalid for incompletely
476 solved graphs, later eliminating of conditionals or roundoff errors.
477 It is still practical to have them reported for debugging of simple
478 testcases. */
479 void
480 check_bb_profile (basic_block bb, FILE * file)
482 edge e;
483 int sum = 0;
484 gcov_type lsum;
486 if (profile_status == PROFILE_ABSENT)
487 return;
489 if (bb != EXIT_BLOCK_PTR)
491 for (e = bb->succ; e; e = e->succ_next)
492 sum += e->probability;
493 if (bb->succ && abs (sum - REG_BR_PROB_BASE) > 100)
494 fprintf (file, "Invalid sum of outgoing probabilities %.1f%%\n",
495 sum * 100.0 / REG_BR_PROB_BASE);
496 lsum = 0;
497 for (e = bb->succ; e; e = e->succ_next)
498 lsum += e->count;
499 if (bb->succ && (lsum - bb->count > 100 || lsum - bb->count < -100))
500 fprintf (file, "Invalid sum of outgoing counts %i, should be %i\n",
501 (int) lsum, (int) bb->count);
503 if (bb != ENTRY_BLOCK_PTR)
505 sum = 0;
506 for (e = bb->pred; e; e = e->pred_next)
507 sum += EDGE_FREQUENCY (e);
508 if (abs (sum - bb->frequency) > 100)
509 fprintf (file,
510 "Invalid sum of incoming frequencies %i, should be %i\n",
511 sum, bb->frequency);
512 lsum = 0;
513 for (e = bb->pred; e; e = e->pred_next)
514 lsum += e->count;
515 if (lsum - bb->count > 100 || lsum - bb->count < -100)
516 fprintf (file, "Invalid sum of incoming counts %i, should be %i\n",
517 (int) lsum, (int) bb->count);
521 void
522 dump_flow_info (FILE *file)
524 int i;
525 basic_block bb;
526 static const char * const reg_class_names[] = REG_CLASS_NAMES;
528 if (reg_n_info)
530 int max_regno = max_reg_num ();
531 fprintf (file, "%d registers.\n", max_regno);
532 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
533 if (REG_N_REFS (i))
535 enum reg_class class, altclass;
537 fprintf (file, "\nRegister %d used %d times across %d insns",
538 i, REG_N_REFS (i), REG_LIVE_LENGTH (i));
539 if (REG_BASIC_BLOCK (i) >= 0)
540 fprintf (file, " in block %d", REG_BASIC_BLOCK (i));
541 if (REG_N_SETS (i))
542 fprintf (file, "; set %d time%s", REG_N_SETS (i),
543 (REG_N_SETS (i) == 1) ? "" : "s");
544 if (regno_reg_rtx[i] != NULL && REG_USERVAR_P (regno_reg_rtx[i]))
545 fprintf (file, "; user var");
546 if (REG_N_DEATHS (i) != 1)
547 fprintf (file, "; dies in %d places", REG_N_DEATHS (i));
548 if (REG_N_CALLS_CROSSED (i) == 1)
549 fprintf (file, "; crosses 1 call");
550 else if (REG_N_CALLS_CROSSED (i))
551 fprintf (file, "; crosses %d calls", REG_N_CALLS_CROSSED (i));
552 if (regno_reg_rtx[i] != NULL
553 && PSEUDO_REGNO_BYTES (i) != UNITS_PER_WORD)
554 fprintf (file, "; %d bytes", PSEUDO_REGNO_BYTES (i));
556 class = reg_preferred_class (i);
557 altclass = reg_alternate_class (i);
558 if (class != GENERAL_REGS || altclass != ALL_REGS)
560 if (altclass == ALL_REGS || class == ALL_REGS)
561 fprintf (file, "; pref %s", reg_class_names[(int) class]);
562 else if (altclass == NO_REGS)
563 fprintf (file, "; %s or none", reg_class_names[(int) class]);
564 else
565 fprintf (file, "; pref %s, else %s",
566 reg_class_names[(int) class],
567 reg_class_names[(int) altclass]);
570 if (regno_reg_rtx[i] != NULL && REG_POINTER (regno_reg_rtx[i]))
571 fprintf (file, "; pointer");
572 fprintf (file, ".\n");
576 fprintf (file, "\n%d basic blocks, %d edges.\n", n_basic_blocks, n_edges);
577 FOR_EACH_BB (bb)
579 edge e;
581 fprintf (file, "\nBasic block %d ", bb->index);
582 fprintf (file, "prev %d, next %d, ",
583 bb->prev_bb->index, bb->next_bb->index);
584 fprintf (file, "loop_depth %d, count ", bb->loop_depth);
585 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
586 fprintf (file, ", freq %i", bb->frequency);
587 if (maybe_hot_bb_p (bb))
588 fprintf (file, ", maybe hot");
589 if (probably_never_executed_bb_p (bb))
590 fprintf (file, ", probably never executed");
591 fprintf (file, ".\n");
593 fprintf (file, "Predecessors: ");
594 for (e = bb->pred; e; e = e->pred_next)
595 dump_edge_info (file, e, 0);
597 fprintf (file, "\nSuccessors: ");
598 for (e = bb->succ; e; e = e->succ_next)
599 dump_edge_info (file, e, 1);
601 fprintf (file, "\nRegisters live at start:");
602 dump_regset (bb->global_live_at_start, file);
604 fprintf (file, "\nRegisters live at end:");
605 dump_regset (bb->global_live_at_end, file);
607 putc ('\n', file);
609 if (bb->global_live_at_start)
611 fprintf (file, "\nRegisters live at start:");
612 dump_regset (bb->global_live_at_start, file);
615 if (bb->global_live_at_end)
617 fprintf (file, "\nRegisters live at end:");
618 dump_regset (bb->global_live_at_end, file);
621 putc ('\n', file);
622 check_bb_profile (bb, file);
625 putc ('\n', file);
628 void
629 debug_flow_info (void)
631 dump_flow_info (stderr);
634 void
635 dump_edge_info (FILE *file, edge e, int do_succ)
637 basic_block side = (do_succ ? e->dest : e->src);
639 if (side == ENTRY_BLOCK_PTR)
640 fputs (" ENTRY", file);
641 else if (side == EXIT_BLOCK_PTR)
642 fputs (" EXIT", file);
643 else
644 fprintf (file, " %d", side->index);
646 if (e->probability)
647 fprintf (file, " [%.1f%%] ", e->probability * 100.0 / REG_BR_PROB_BASE);
649 if (e->count)
651 fprintf (file, " count:");
652 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
655 if (e->flags)
657 static const char * const bitnames[] = {
658 "fallthru", "ab", "abcall", "eh", "fake", "dfs_back",
659 "can_fallthru", "irreducible", "sibcall", "loop_exit",
660 "true", "false", "exec"
662 int comma = 0;
663 int i, flags = e->flags;
665 fputs (" (", file);
666 for (i = 0; flags; i++)
667 if (flags & (1 << i))
669 flags &= ~(1 << i);
671 if (comma)
672 fputc (',', file);
673 if (i < (int) ARRAY_SIZE (bitnames))
674 fputs (bitnames[i], file);
675 else
676 fprintf (file, "%d", i);
677 comma = 1;
680 fputc (')', file);
684 /* Simple routines to easily allocate AUX fields of basic blocks. */
686 static struct obstack block_aux_obstack;
687 static void *first_block_aux_obj = 0;
688 static struct obstack edge_aux_obstack;
689 static void *first_edge_aux_obj = 0;
691 /* Allocate a memory block of SIZE as BB->aux. The obstack must
692 be first initialized by alloc_aux_for_blocks. */
694 inline void
695 alloc_aux_for_block (basic_block bb, int size)
697 /* Verify that aux field is clear. */
698 gcc_assert (!bb->aux && first_block_aux_obj);
699 bb->aux = obstack_alloc (&block_aux_obstack, size);
700 memset (bb->aux, 0, size);
703 /* Initialize the block_aux_obstack and if SIZE is nonzero, call
704 alloc_aux_for_block for each basic block. */
706 void
707 alloc_aux_for_blocks (int size)
709 static int initialized;
711 if (!initialized)
713 gcc_obstack_init (&block_aux_obstack);
714 initialized = 1;
716 else
717 /* Check whether AUX data are still allocated. */
718 gcc_assert (!first_block_aux_obj);
720 first_block_aux_obj = obstack_alloc (&block_aux_obstack, 0);
721 if (size)
723 basic_block bb;
725 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
726 alloc_aux_for_block (bb, size);
730 /* Clear AUX pointers of all blocks. */
732 void
733 clear_aux_for_blocks (void)
735 basic_block bb;
737 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
738 bb->aux = NULL;
741 /* Free data allocated in block_aux_obstack and clear AUX pointers
742 of all blocks. */
744 void
745 free_aux_for_blocks (void)
747 gcc_assert (first_block_aux_obj);
748 obstack_free (&block_aux_obstack, first_block_aux_obj);
749 first_block_aux_obj = NULL;
751 clear_aux_for_blocks ();
754 /* Allocate a memory edge of SIZE as BB->aux. The obstack must
755 be first initialized by alloc_aux_for_edges. */
757 inline void
758 alloc_aux_for_edge (edge e, int size)
760 /* Verify that aux field is clear. */
761 gcc_assert (!e->aux && first_edge_aux_obj);
762 e->aux = obstack_alloc (&edge_aux_obstack, size);
763 memset (e->aux, 0, size);
766 /* Initialize the edge_aux_obstack and if SIZE is nonzero, call
767 alloc_aux_for_edge for each basic edge. */
769 void
770 alloc_aux_for_edges (int size)
772 static int initialized;
774 if (!initialized)
776 gcc_obstack_init (&edge_aux_obstack);
777 initialized = 1;
779 else
780 /* Check whether AUX data are still allocated. */
781 gcc_assert (!first_edge_aux_obj);
783 first_edge_aux_obj = obstack_alloc (&edge_aux_obstack, 0);
784 if (size)
786 basic_block bb;
788 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
790 edge e;
792 for (e = bb->succ; e; e = e->succ_next)
793 alloc_aux_for_edge (e, size);
798 /* Clear AUX pointers of all edges. */
800 void
801 clear_aux_for_edges (void)
803 basic_block bb;
804 edge e;
806 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
808 for (e = bb->succ; e; e = e->succ_next)
809 e->aux = NULL;
813 /* Free data allocated in edge_aux_obstack and clear AUX pointers
814 of all edges. */
816 void
817 free_aux_for_edges (void)
819 gcc_assert (first_edge_aux_obj);
820 obstack_free (&edge_aux_obstack, first_edge_aux_obj);
821 first_edge_aux_obj = NULL;
823 clear_aux_for_edges ();
826 void
827 debug_bb (basic_block bb)
829 dump_bb (bb, stderr, 0);
832 basic_block
833 debug_bb_n (int n)
835 basic_block bb = BASIC_BLOCK (n);
836 dump_bb (bb, stderr, 0);
837 return bb;
840 /* Dumps cfg related information about basic block BB to FILE. */
842 static void
843 dump_cfg_bb_info (FILE *file, basic_block bb)
845 unsigned i;
846 bool first = true;
847 static const char * const bb_bitnames[] =
849 "dirty", "new", "reachable", "visited", "irreducible_loop", "superblock"
851 const unsigned n_bitnames = sizeof (bb_bitnames) / sizeof (char *);
852 edge e;
854 fprintf (file, "Basic block %d", bb->index);
855 for (i = 0; i < n_bitnames; i++)
856 if (bb->flags & (1 << i))
858 if (first)
859 fprintf (file, " (");
860 else
861 fprintf (file, ", ");
862 first = false;
863 fprintf (file, bb_bitnames[i]);
865 if (!first)
866 fprintf (file, ")");
867 fprintf (file, "\n");
869 fprintf (file, "Predecessors: ");
870 for (e = bb->pred; e; e = e->pred_next)
871 dump_edge_info (file, e, 0);
873 fprintf (file, "\nSuccessors: ");
874 for (e = bb->succ; e; e = e->succ_next)
875 dump_edge_info (file, e, 1);
876 fprintf (file, "\n\n");
879 /* Dumps a brief description of cfg to FILE. */
881 void
882 brief_dump_cfg (FILE *file)
884 basic_block bb;
886 FOR_EACH_BB (bb)
888 dump_cfg_bb_info (file, bb);
892 /* An edge originally destinating BB of FREQUENCY and COUNT has been proved to
893 leave the block by TAKEN_EDGE. Update profile of BB such that edge E can be
894 redirected to destination of TAKEN_EDGE.
896 This function may leave the profile inconsistent in the case TAKEN_EDGE
897 frequency or count is believed to be lower than FREQUENCY or COUNT
898 respectively. */
899 void
900 update_bb_profile_for_threading (basic_block bb, int edge_frequency,
901 gcov_type count, edge taken_edge)
903 edge c;
904 int prob;
906 bb->count -= count;
907 if (bb->count < 0)
908 bb->count = 0;
910 /* Compute the probability of TAKEN_EDGE being reached via threaded edge.
911 Watch for overflows. */
912 if (bb->frequency)
913 prob = edge_frequency * REG_BR_PROB_BASE / bb->frequency;
914 else
915 prob = 0;
916 if (prob > taken_edge->probability)
918 if (dump_file)
919 fprintf (dump_file, "Jump threading proved probability of edge "
920 "%i->%i too small (it is %i, should be %i).\n",
921 taken_edge->src->index, taken_edge->dest->index,
922 taken_edge->probability, prob);
923 prob = taken_edge->probability;
926 /* Now rescale the probabilities. */
927 taken_edge->probability -= prob;
928 prob = REG_BR_PROB_BASE - prob;
929 bb->frequency -= edge_frequency;
930 if (bb->frequency < 0)
931 bb->frequency = 0;
932 if (prob <= 0)
934 if (dump_file)
935 fprintf (dump_file, "Edge frequencies of bb %i has been reset, "
936 "frequency of block should end up being 0, it is %i\n",
937 bb->index, bb->frequency);
938 bb->succ->probability = REG_BR_PROB_BASE;
939 for (c = bb->succ->succ_next; c; c = c->succ_next)
940 c->probability = 0;
942 else
943 for (c = bb->succ; c; c = c->succ_next)
944 c->probability = ((c->probability * REG_BR_PROB_BASE) / (double) prob);
946 if (bb != taken_edge->src)
947 abort ();
948 taken_edge->count -= count;
949 if (taken_edge->count < 0)
950 taken_edge->count = 0;