* tm.texi (REGISTER_MOVE_COST): Add a mode argument.
[official-gcc.git] / gcc / emit-rtl.c
blob9f2a4ae459522549da9963d3e595799a6d09fe8d
1 /* Emit RTL for the GNU C-Compiler expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
23 /* Middle-to-low level generation of rtx code and insns.
25 This file contains the functions `gen_rtx', `gen_reg_rtx'
26 and `gen_label_rtx' that are the usual ways of creating rtl
27 expressions for most purposes.
29 It also has the functions for creating insns and linking
30 them in the doubly-linked chain.
32 The patterns of the insns are created by machine-dependent
33 routines in insn-emit.c, which is generated automatically from
34 the machine description. These routines use `gen_rtx' to make
35 the individual rtx's of the pattern; what is machine dependent
36 is the kind of rtx's they make and what arguments they use. */
38 #include "config.h"
39 #include "system.h"
40 #include "toplev.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "regs.h"
48 #include "hard-reg-set.h"
49 #include "hashtab.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "real.h"
53 #include "obstack.h"
54 #include "bitmap.h"
55 #include "basic-block.h"
56 #include "ggc.h"
57 #include "defaults.h"
59 /* Commonly used modes. */
61 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
62 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
63 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
64 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
67 /* This is *not* reset after each function. It gives each CODE_LABEL
68 in the entire compilation a unique label number. */
70 static int label_num = 1;
72 /* Highest label number in current function.
73 Zero means use the value of label_num instead.
74 This is nonzero only when belatedly compiling an inline function. */
76 static int last_label_num;
78 /* Value label_num had when set_new_first_and_last_label_number was called.
79 If label_num has not changed since then, last_label_num is valid. */
81 static int base_label_num;
83 /* Nonzero means do not generate NOTEs for source line numbers. */
85 static int no_line_numbers;
87 /* Commonly used rtx's, so that we only need space for one copy.
88 These are initialized once for the entire compilation.
89 All of these except perhaps the floating-point CONST_DOUBLEs
90 are unique; no other rtx-object will be equal to any of these. */
92 rtx global_rtl[GR_MAX];
94 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
95 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
96 record a copy of const[012]_rtx. */
98 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
100 rtx const_true_rtx;
102 REAL_VALUE_TYPE dconst0;
103 REAL_VALUE_TYPE dconst1;
104 REAL_VALUE_TYPE dconst2;
105 REAL_VALUE_TYPE dconstm1;
107 /* All references to the following fixed hard registers go through
108 these unique rtl objects. On machines where the frame-pointer and
109 arg-pointer are the same register, they use the same unique object.
111 After register allocation, other rtl objects which used to be pseudo-regs
112 may be clobbered to refer to the frame-pointer register.
113 But references that were originally to the frame-pointer can be
114 distinguished from the others because they contain frame_pointer_rtx.
116 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
117 tricky: until register elimination has taken place hard_frame_pointer_rtx
118 should be used if it is being set, and frame_pointer_rtx otherwise. After
119 register elimination hard_frame_pointer_rtx should always be used.
120 On machines where the two registers are same (most) then these are the
121 same.
123 In an inline procedure, the stack and frame pointer rtxs may not be
124 used for anything else. */
125 rtx struct_value_rtx; /* (REG:Pmode STRUCT_VALUE_REGNUM) */
126 rtx struct_value_incoming_rtx; /* (REG:Pmode STRUCT_VALUE_INCOMING_REGNUM) */
127 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
128 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
129 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
131 /* This is used to implement __builtin_return_address for some machines.
132 See for instance the MIPS port. */
133 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
135 /* We make one copy of (const_int C) where C is in
136 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
137 to save space during the compilation and simplify comparisons of
138 integers. */
140 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
142 /* A hash table storing CONST_INTs whose absolute value is greater
143 than MAX_SAVED_CONST_INT. */
145 static htab_t const_int_htab;
147 /* start_sequence and gen_sequence can make a lot of rtx expressions which are
148 shortly thrown away. We use two mechanisms to prevent this waste:
150 For sizes up to 5 elements, we keep a SEQUENCE and its associated
151 rtvec for use by gen_sequence. One entry for each size is
152 sufficient because most cases are calls to gen_sequence followed by
153 immediately emitting the SEQUENCE. Reuse is safe since emitting a
154 sequence is destructive on the insn in it anyway and hence can't be
155 redone.
157 We do not bother to save this cached data over nested function calls.
158 Instead, we just reinitialize them. */
160 #define SEQUENCE_RESULT_SIZE 5
162 static rtx sequence_result[SEQUENCE_RESULT_SIZE];
164 /* During RTL generation, we also keep a list of free INSN rtl codes. */
165 static rtx free_insn;
167 #define first_insn (cfun->emit->x_first_insn)
168 #define last_insn (cfun->emit->x_last_insn)
169 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
170 #define last_linenum (cfun->emit->x_last_linenum)
171 #define last_filename (cfun->emit->x_last_filename)
172 #define first_label_num (cfun->emit->x_first_label_num)
174 static rtx make_jump_insn_raw PARAMS ((rtx));
175 static rtx make_call_insn_raw PARAMS ((rtx));
176 static rtx find_line_note PARAMS ((rtx));
177 static void mark_sequence_stack PARAMS ((struct sequence_stack *));
178 static void unshare_all_rtl_1 PARAMS ((rtx));
179 static void unshare_all_decls PARAMS ((tree));
180 static void reset_used_decls PARAMS ((tree));
181 static hashval_t const_int_htab_hash PARAMS ((const void *));
182 static int const_int_htab_eq PARAMS ((const void *,
183 const void *));
184 static int rtx_htab_mark_1 PARAMS ((void **, void *));
185 static void rtx_htab_mark PARAMS ((void *));
188 /* Returns a hash code for X (which is a really a CONST_INT). */
190 static hashval_t
191 const_int_htab_hash (x)
192 const void *x;
194 return (hashval_t) INTVAL ((const struct rtx_def *) x);
197 /* Returns non-zero if the value represented by X (which is really a
198 CONST_INT) is the same as that given by Y (which is really a
199 HOST_WIDE_INT *). */
201 static int
202 const_int_htab_eq (x, y)
203 const void *x;
204 const void *y;
206 return (INTVAL ((const struct rtx_def *) x) == *((const HOST_WIDE_INT *) y));
209 /* Mark the hash-table element X (which is really a pointer to an
210 rtx). */
212 static int
213 rtx_htab_mark_1 (x, data)
214 void **x;
215 void *data ATTRIBUTE_UNUSED;
217 ggc_mark_rtx (*x);
218 return 1;
221 /* Mark all the elements of HTAB (which is really an htab_t full of
222 rtxs). */
224 static void
225 rtx_htab_mark (htab)
226 void *htab;
228 htab_traverse (*((htab_t *) htab), rtx_htab_mark_1, NULL);
231 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
232 don't attempt to share with the various global pieces of rtl (such as
233 frame_pointer_rtx). */
236 gen_raw_REG (mode, regno)
237 enum machine_mode mode;
238 int regno;
240 rtx x = gen_rtx_raw_REG (mode, regno);
241 ORIGINAL_REGNO (x) = regno;
242 return x;
245 /* There are some RTL codes that require special attention; the generation
246 functions do the raw handling. If you add to this list, modify
247 special_rtx in gengenrtl.c as well. */
250 gen_rtx_CONST_INT (mode, arg)
251 enum machine_mode mode ATTRIBUTE_UNUSED;
252 HOST_WIDE_INT arg;
254 void **slot;
256 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
257 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
259 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
260 if (const_true_rtx && arg == STORE_FLAG_VALUE)
261 return const_true_rtx;
262 #endif
264 /* Look up the CONST_INT in the hash table. */
265 slot = htab_find_slot_with_hash (const_int_htab, &arg,
266 (hashval_t) arg, INSERT);
267 if (*slot == 0)
268 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
270 return (rtx) *slot;
273 /* CONST_DOUBLEs needs special handling because their length is known
274 only at run-time. */
277 gen_rtx_CONST_DOUBLE (mode, arg0, arg1, arg2)
278 enum machine_mode mode;
279 rtx arg0;
280 HOST_WIDE_INT arg1, arg2;
282 rtx r = rtx_alloc (CONST_DOUBLE);
283 int i;
285 PUT_MODE (r, mode);
286 XEXP (r, 0) = arg0;
287 X0EXP (r, 1) = NULL_RTX;
288 XWINT (r, 2) = arg1;
289 XWINT (r, 3) = arg2;
291 for (i = GET_RTX_LENGTH (CONST_DOUBLE) - 1; i > 3; --i)
292 XWINT (r, i) = 0;
294 return r;
298 gen_rtx_REG (mode, regno)
299 enum machine_mode mode;
300 int regno;
302 /* In case the MD file explicitly references the frame pointer, have
303 all such references point to the same frame pointer. This is
304 used during frame pointer elimination to distinguish the explicit
305 references to these registers from pseudos that happened to be
306 assigned to them.
308 If we have eliminated the frame pointer or arg pointer, we will
309 be using it as a normal register, for example as a spill
310 register. In such cases, we might be accessing it in a mode that
311 is not Pmode and therefore cannot use the pre-allocated rtx.
313 Also don't do this when we are making new REGs in reload, since
314 we don't want to get confused with the real pointers. */
316 if (mode == Pmode && !reload_in_progress)
318 if (regno == FRAME_POINTER_REGNUM)
319 return frame_pointer_rtx;
320 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
321 if (regno == HARD_FRAME_POINTER_REGNUM)
322 return hard_frame_pointer_rtx;
323 #endif
324 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
325 if (regno == ARG_POINTER_REGNUM)
326 return arg_pointer_rtx;
327 #endif
328 #ifdef RETURN_ADDRESS_POINTER_REGNUM
329 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
330 return return_address_pointer_rtx;
331 #endif
332 if (regno == STACK_POINTER_REGNUM)
333 return stack_pointer_rtx;
336 return gen_raw_REG (mode, regno);
340 gen_rtx_MEM (mode, addr)
341 enum machine_mode mode;
342 rtx addr;
344 rtx rt = gen_rtx_raw_MEM (mode, addr);
346 /* This field is not cleared by the mere allocation of the rtx, so
347 we clear it here. */
348 MEM_ALIAS_SET (rt) = 0;
350 return rt;
353 /* rtx gen_rtx (code, mode, [element1, ..., elementn])
355 ** This routine generates an RTX of the size specified by
356 ** <code>, which is an RTX code. The RTX structure is initialized
357 ** from the arguments <element1> through <elementn>, which are
358 ** interpreted according to the specific RTX type's format. The
359 ** special machine mode associated with the rtx (if any) is specified
360 ** in <mode>.
362 ** gen_rtx can be invoked in a way which resembles the lisp-like
363 ** rtx it will generate. For example, the following rtx structure:
365 ** (plus:QI (mem:QI (reg:SI 1))
366 ** (mem:QI (plusw:SI (reg:SI 2) (reg:SI 3))))
368 ** ...would be generated by the following C code:
370 ** gen_rtx (PLUS, QImode,
371 ** gen_rtx (MEM, QImode,
372 ** gen_rtx (REG, SImode, 1)),
373 ** gen_rtx (MEM, QImode,
374 ** gen_rtx (PLUS, SImode,
375 ** gen_rtx (REG, SImode, 2),
376 ** gen_rtx (REG, SImode, 3)))),
379 /*VARARGS2*/
381 gen_rtx VPARAMS ((enum rtx_code code, enum machine_mode mode, ...))
383 #ifndef ANSI_PROTOTYPES
384 enum rtx_code code;
385 enum machine_mode mode;
386 #endif
387 va_list p;
388 register int i; /* Array indices... */
389 register const char *fmt; /* Current rtx's format... */
390 register rtx rt_val; /* RTX to return to caller... */
392 VA_START (p, mode);
394 #ifndef ANSI_PROTOTYPES
395 code = va_arg (p, enum rtx_code);
396 mode = va_arg (p, enum machine_mode);
397 #endif
399 switch (code)
401 case CONST_INT:
402 rt_val = gen_rtx_CONST_INT (mode, va_arg (p, HOST_WIDE_INT));
403 break;
405 case CONST_DOUBLE:
407 rtx arg0 = va_arg (p, rtx);
408 HOST_WIDE_INT arg1 = va_arg (p, HOST_WIDE_INT);
409 HOST_WIDE_INT arg2 = va_arg (p, HOST_WIDE_INT);
410 rt_val = gen_rtx_CONST_DOUBLE (mode, arg0, arg1, arg2);
412 break;
414 case REG:
415 rt_val = gen_rtx_REG (mode, va_arg (p, int));
416 break;
418 case MEM:
419 rt_val = gen_rtx_MEM (mode, va_arg (p, rtx));
420 break;
422 default:
423 rt_val = rtx_alloc (code); /* Allocate the storage space. */
424 rt_val->mode = mode; /* Store the machine mode... */
426 fmt = GET_RTX_FORMAT (code); /* Find the right format... */
427 for (i = 0; i < GET_RTX_LENGTH (code); i++)
429 switch (*fmt++)
431 case '0': /* Unused field. */
432 break;
434 case 'i': /* An integer? */
435 XINT (rt_val, i) = va_arg (p, int);
436 break;
438 case 'w': /* A wide integer? */
439 XWINT (rt_val, i) = va_arg (p, HOST_WIDE_INT);
440 break;
442 case 's': /* A string? */
443 XSTR (rt_val, i) = va_arg (p, char *);
444 break;
446 case 'e': /* An expression? */
447 case 'u': /* An insn? Same except when printing. */
448 XEXP (rt_val, i) = va_arg (p, rtx);
449 break;
451 case 'E': /* An RTX vector? */
452 XVEC (rt_val, i) = va_arg (p, rtvec);
453 break;
455 case 'b': /* A bitmap? */
456 XBITMAP (rt_val, i) = va_arg (p, bitmap);
457 break;
459 case 't': /* A tree? */
460 XTREE (rt_val, i) = va_arg (p, tree);
461 break;
463 default:
464 abort ();
467 break;
470 va_end (p);
471 return rt_val;
474 /* gen_rtvec (n, [rt1, ..., rtn])
476 ** This routine creates an rtvec and stores within it the
477 ** pointers to rtx's which are its arguments.
480 /*VARARGS1*/
481 rtvec
482 gen_rtvec VPARAMS ((int n, ...))
484 #ifndef ANSI_PROTOTYPES
485 int n;
486 #endif
487 int i;
488 va_list p;
489 rtx *vector;
491 VA_START (p, n);
493 #ifndef ANSI_PROTOTYPES
494 n = va_arg (p, int);
495 #endif
497 if (n == 0)
498 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
500 vector = (rtx *) alloca (n * sizeof (rtx));
502 for (i = 0; i < n; i++)
503 vector[i] = va_arg (p, rtx);
504 va_end (p);
506 return gen_rtvec_v (n, vector);
509 rtvec
510 gen_rtvec_v (n, argp)
511 int n;
512 rtx *argp;
514 register int i;
515 register rtvec rt_val;
517 if (n == 0)
518 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
520 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
522 for (i = 0; i < n; i++)
523 rt_val->elem[i] = *argp++;
525 return rt_val;
529 /* Generate a REG rtx for a new pseudo register of mode MODE.
530 This pseudo is assigned the next sequential register number. */
533 gen_reg_rtx (mode)
534 enum machine_mode mode;
536 struct function *f = cfun;
537 register rtx val;
539 /* Don't let anything called after initial flow analysis create new
540 registers. */
541 if (no_new_pseudos)
542 abort ();
544 if (generating_concat_p
545 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
546 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
548 /* For complex modes, don't make a single pseudo.
549 Instead, make a CONCAT of two pseudos.
550 This allows noncontiguous allocation of the real and imaginary parts,
551 which makes much better code. Besides, allocating DCmode
552 pseudos overstrains reload on some machines like the 386. */
553 rtx realpart, imagpart;
554 int size = GET_MODE_UNIT_SIZE (mode);
555 enum machine_mode partmode
556 = mode_for_size (size * BITS_PER_UNIT,
557 (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
558 ? MODE_FLOAT : MODE_INT),
561 realpart = gen_reg_rtx (partmode);
562 imagpart = gen_reg_rtx (partmode);
563 return gen_rtx_CONCAT (mode, realpart, imagpart);
566 /* Make sure regno_pointer_align and regno_reg_rtx are large enough
567 to have an element for this pseudo reg number. */
569 if (reg_rtx_no == f->emit->regno_pointer_align_length)
571 int old_size = f->emit->regno_pointer_align_length;
572 rtx *new1;
573 char *new;
574 new = xrealloc (f->emit->regno_pointer_align, old_size * 2);
575 memset (new + old_size, 0, old_size);
576 f->emit->regno_pointer_align = (unsigned char *) new;
578 new1 = (rtx *) xrealloc (f->emit->x_regno_reg_rtx,
579 old_size * 2 * sizeof (rtx));
580 memset (new1 + old_size, 0, old_size * sizeof (rtx));
581 regno_reg_rtx = new1;
583 f->emit->regno_pointer_align_length = old_size * 2;
586 val = gen_raw_REG (mode, reg_rtx_no);
587 regno_reg_rtx[reg_rtx_no++] = val;
588 return val;
591 /* Identify REG (which may be a CONCAT) as a user register. */
593 void
594 mark_user_reg (reg)
595 rtx reg;
597 if (GET_CODE (reg) == CONCAT)
599 REG_USERVAR_P (XEXP (reg, 0)) = 1;
600 REG_USERVAR_P (XEXP (reg, 1)) = 1;
602 else if (GET_CODE (reg) == REG)
603 REG_USERVAR_P (reg) = 1;
604 else
605 abort ();
608 /* Identify REG as a probable pointer register and show its alignment
609 as ALIGN, if nonzero. */
611 void
612 mark_reg_pointer (reg, align)
613 rtx reg;
614 int align;
616 if (! REG_POINTER (reg))
618 REG_POINTER (reg) = 1;
620 if (align)
621 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
623 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
624 /* We can no-longer be sure just how aligned this pointer is */
625 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
628 /* Return 1 plus largest pseudo reg number used in the current function. */
631 max_reg_num ()
633 return reg_rtx_no;
636 /* Return 1 + the largest label number used so far in the current function. */
639 max_label_num ()
641 if (last_label_num && label_num == base_label_num)
642 return last_label_num;
643 return label_num;
646 /* Return first label number used in this function (if any were used). */
649 get_first_label_num ()
651 return first_label_num;
654 /* Return a value representing some low-order bits of X, where the number
655 of low-order bits is given by MODE. Note that no conversion is done
656 between floating-point and fixed-point values, rather, the bit
657 representation is returned.
659 This function handles the cases in common between gen_lowpart, below,
660 and two variants in cse.c and combine.c. These are the cases that can
661 be safely handled at all points in the compilation.
663 If this is not a case we can handle, return 0. */
666 gen_lowpart_common (mode, x)
667 enum machine_mode mode;
668 register rtx x;
670 int word = 0;
672 if (GET_MODE (x) == mode)
673 return x;
675 /* MODE must occupy no more words than the mode of X. */
676 if (GET_MODE (x) != VOIDmode
677 && ((GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
678 > ((GET_MODE_SIZE (GET_MODE (x)) + (UNITS_PER_WORD - 1))
679 / UNITS_PER_WORD)))
680 return 0;
682 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD)
683 word = ((GET_MODE_SIZE (GET_MODE (x))
684 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD))
685 / UNITS_PER_WORD);
687 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
688 && (GET_MODE_CLASS (mode) == MODE_INT
689 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
691 /* If we are getting the low-order part of something that has been
692 sign- or zero-extended, we can either just use the object being
693 extended or make a narrower extension. If we want an even smaller
694 piece than the size of the object being extended, call ourselves
695 recursively.
697 This case is used mostly by combine and cse. */
699 if (GET_MODE (XEXP (x, 0)) == mode)
700 return XEXP (x, 0);
701 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
702 return gen_lowpart_common (mode, XEXP (x, 0));
703 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x)))
704 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
706 else if (GET_CODE (x) == SUBREG
707 && (GET_MODE_SIZE (mode) <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
708 || GET_MODE_SIZE (mode) <= UNITS_PER_WORD
709 || GET_MODE_SIZE (mode) == GET_MODE_UNIT_SIZE (GET_MODE (x))))
710 return (GET_MODE (SUBREG_REG (x)) == mode && SUBREG_WORD (x) == 0
711 ? SUBREG_REG (x)
712 : gen_rtx_SUBREG (mode, SUBREG_REG (x), SUBREG_WORD (x) + word));
713 else if (GET_CODE (x) == REG)
715 /* Let the backend decide how many registers to skip. This is needed
716 in particular for Sparc64 where fp regs are smaller than a word. */
717 /* ??? Note that subregs are now ambiguous, in that those against
718 pseudos are sized by the Word Size, while those against hard
719 regs are sized by the underlying register size. Better would be
720 to always interpret the subreg offset parameter as bytes or bits. */
722 if (WORDS_BIG_ENDIAN && REGNO (x) < FIRST_PSEUDO_REGISTER
723 && GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (mode))
724 word = (HARD_REGNO_NREGS (REGNO (x), GET_MODE (x))
725 - HARD_REGNO_NREGS (REGNO (x), mode));
727 /* If the register is not valid for MODE, return 0. If we don't
728 do this, there is no way to fix up the resulting REG later.
729 But we do do this if the current REG is not valid for its
730 mode. This latter is a kludge, but is required due to the
731 way that parameters are passed on some machines, most
732 notably Sparc. */
733 if (REGNO (x) < FIRST_PSEUDO_REGISTER
734 && ! HARD_REGNO_MODE_OK (REGNO (x) + word, mode)
735 && HARD_REGNO_MODE_OK (REGNO (x), GET_MODE (x)))
736 return 0;
737 else if (REGNO (x) < FIRST_PSEUDO_REGISTER
738 /* integrate.c can't handle parts of a return value register. */
739 && (! REG_FUNCTION_VALUE_P (x)
740 || ! rtx_equal_function_value_matters)
741 #ifdef CLASS_CANNOT_CHANGE_MODE
742 && ! (CLASS_CANNOT_CHANGE_MODE_P (mode, GET_MODE (x))
743 && GET_MODE_CLASS (GET_MODE (x)) != MODE_COMPLEX_INT
744 && GET_MODE_CLASS (GET_MODE (x)) != MODE_COMPLEX_FLOAT
745 && (TEST_HARD_REG_BIT
746 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
747 REGNO (x))))
748 #endif
749 /* We want to keep the stack, frame, and arg pointers
750 special. */
751 && x != frame_pointer_rtx
752 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
753 && x != arg_pointer_rtx
754 #endif
755 && x != stack_pointer_rtx)
756 return gen_rtx_REG (mode, REGNO (x) + word);
757 else
758 return gen_rtx_SUBREG (mode, x, word);
760 /* If X is a CONST_INT or a CONST_DOUBLE, extract the appropriate bits
761 from the low-order part of the constant. */
762 else if ((GET_MODE_CLASS (mode) == MODE_INT
763 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
764 && GET_MODE (x) == VOIDmode
765 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE))
767 /* If MODE is twice the host word size, X is already the desired
768 representation. Otherwise, if MODE is wider than a word, we can't
769 do this. If MODE is exactly a word, return just one CONST_INT. */
771 if (GET_MODE_BITSIZE (mode) >= 2 * HOST_BITS_PER_WIDE_INT)
772 return x;
773 else if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
774 return 0;
775 else if (GET_MODE_BITSIZE (mode) == HOST_BITS_PER_WIDE_INT)
776 return (GET_CODE (x) == CONST_INT ? x
777 : GEN_INT (CONST_DOUBLE_LOW (x)));
778 else
780 /* MODE must be narrower than HOST_BITS_PER_WIDE_INT. */
781 HOST_WIDE_INT val = (GET_CODE (x) == CONST_INT ? INTVAL (x)
782 : CONST_DOUBLE_LOW (x));
784 /* Sign extend to HOST_WIDE_INT. */
785 val = trunc_int_for_mode (val, mode);
787 return (GET_CODE (x) == CONST_INT && INTVAL (x) == val ? x
788 : GEN_INT (val));
792 #ifndef REAL_ARITHMETIC
793 /* If X is an integral constant but we want it in floating-point, it
794 must be the case that we have a union of an integer and a floating-point
795 value. If the machine-parameters allow it, simulate that union here
796 and return the result. The two-word and single-word cases are
797 different. */
799 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
800 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
801 || flag_pretend_float)
802 && GET_MODE_CLASS (mode) == MODE_FLOAT
803 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
804 && GET_CODE (x) == CONST_INT
805 && sizeof (float) * HOST_BITS_PER_CHAR == HOST_BITS_PER_WIDE_INT)
807 union {HOST_WIDE_INT i; float d; } u;
809 u.i = INTVAL (x);
810 return CONST_DOUBLE_FROM_REAL_VALUE (u.d, mode);
812 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
813 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
814 || flag_pretend_float)
815 && GET_MODE_CLASS (mode) == MODE_FLOAT
816 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
817 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
818 && GET_MODE (x) == VOIDmode
819 && (sizeof (double) * HOST_BITS_PER_CHAR
820 == 2 * HOST_BITS_PER_WIDE_INT))
822 union {HOST_WIDE_INT i[2]; double d; } u;
823 HOST_WIDE_INT low, high;
825 if (GET_CODE (x) == CONST_INT)
826 low = INTVAL (x), high = low >> (HOST_BITS_PER_WIDE_INT -1);
827 else
828 low = CONST_DOUBLE_LOW (x), high = CONST_DOUBLE_HIGH (x);
830 #ifdef HOST_WORDS_BIG_ENDIAN
831 u.i[0] = high, u.i[1] = low;
832 #else
833 u.i[0] = low, u.i[1] = high;
834 #endif
836 return CONST_DOUBLE_FROM_REAL_VALUE (u.d, mode);
839 /* Similarly, if this is converting a floating-point value into a
840 single-word integer. Only do this is the host and target parameters are
841 compatible. */
843 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
844 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
845 || flag_pretend_float)
846 && (GET_MODE_CLASS (mode) == MODE_INT
847 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
848 && GET_CODE (x) == CONST_DOUBLE
849 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
850 && GET_MODE_BITSIZE (mode) == BITS_PER_WORD)
851 return operand_subword (x, word, 0, GET_MODE (x));
853 /* Similarly, if this is converting a floating-point value into a
854 two-word integer, we can do this one word at a time and make an
855 integer. Only do this is the host and target parameters are
856 compatible. */
858 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
859 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
860 || flag_pretend_float)
861 && (GET_MODE_CLASS (mode) == MODE_INT
862 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
863 && GET_CODE (x) == CONST_DOUBLE
864 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
865 && GET_MODE_BITSIZE (mode) == 2 * BITS_PER_WORD)
867 rtx lowpart
868 = operand_subword (x, word + WORDS_BIG_ENDIAN, 0, GET_MODE (x));
869 rtx highpart
870 = operand_subword (x, word + ! WORDS_BIG_ENDIAN, 0, GET_MODE (x));
872 if (lowpart && GET_CODE (lowpart) == CONST_INT
873 && highpart && GET_CODE (highpart) == CONST_INT)
874 return immed_double_const (INTVAL (lowpart), INTVAL (highpart), mode);
876 #else /* ifndef REAL_ARITHMETIC */
878 /* When we have a FP emulator, we can handle all conversions between
879 FP and integer operands. This simplifies reload because it
880 doesn't have to deal with constructs like (subreg:DI
881 (const_double:SF ...)) or (subreg:DF (const_int ...)). */
883 else if (mode == SFmode
884 && GET_CODE (x) == CONST_INT)
886 REAL_VALUE_TYPE r;
887 HOST_WIDE_INT i;
889 i = INTVAL (x);
890 r = REAL_VALUE_FROM_TARGET_SINGLE (i);
891 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
893 else if (mode == DFmode
894 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
895 && GET_MODE (x) == VOIDmode)
897 REAL_VALUE_TYPE r;
898 HOST_WIDE_INT i[2];
899 HOST_WIDE_INT low, high;
901 if (GET_CODE (x) == CONST_INT)
903 low = INTVAL (x);
904 high = low >> (HOST_BITS_PER_WIDE_INT - 1);
906 else
908 low = CONST_DOUBLE_LOW (x);
909 high = CONST_DOUBLE_HIGH (x);
912 /* REAL_VALUE_TARGET_DOUBLE takes the addressing order of the
913 target machine. */
914 if (WORDS_BIG_ENDIAN)
915 i[0] = high, i[1] = low;
916 else
917 i[0] = low, i[1] = high;
919 r = REAL_VALUE_FROM_TARGET_DOUBLE (i);
920 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
922 else if ((GET_MODE_CLASS (mode) == MODE_INT
923 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
924 && GET_CODE (x) == CONST_DOUBLE
925 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
927 REAL_VALUE_TYPE r;
928 long i[4]; /* Only the low 32 bits of each 'long' are used. */
929 int endian = WORDS_BIG_ENDIAN ? 1 : 0;
931 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
932 switch (GET_MODE (x))
934 case SFmode:
935 REAL_VALUE_TO_TARGET_SINGLE (r, i[endian]);
936 i[1 - endian] = 0;
937 break;
938 case DFmode:
939 REAL_VALUE_TO_TARGET_DOUBLE (r, i);
940 break;
941 #if LONG_DOUBLE_TYPE_SIZE == 96
942 case XFmode:
943 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i + endian);
944 i[3-3*endian] = 0;
945 #else
946 case TFmode:
947 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i);
948 #endif
949 break;
950 default:
951 abort ();
954 /* Now, pack the 32-bit elements of the array into a CONST_DOUBLE
955 and return it. */
956 #if HOST_BITS_PER_WIDE_INT == 32
957 return immed_double_const (i[endian], i[1 - endian], mode);
958 #else
960 int c;
962 if (HOST_BITS_PER_WIDE_INT != 64)
963 abort ();
965 for (c = 0; c < 4; c++)
966 i[c] &= ~ (0L);
968 switch (GET_MODE (x))
970 case SFmode:
971 case DFmode:
972 return immed_double_const (((unsigned long) i[endian]) |
973 (((HOST_WIDE_INT) i[1-endian]) << 32),
974 0, mode);
975 default:
976 return immed_double_const (((unsigned long) i[endian*3]) |
977 (((HOST_WIDE_INT) i[1+endian]) << 32),
978 ((unsigned long) i[2-endian]) |
979 (((HOST_WIDE_INT) i[3-endian*3]) << 32),
980 mode);
983 #endif
985 #endif /* ifndef REAL_ARITHMETIC */
987 /* Otherwise, we can't do this. */
988 return 0;
991 /* Return the real part (which has mode MODE) of a complex value X.
992 This always comes at the low address in memory. */
995 gen_realpart (mode, x)
996 enum machine_mode mode;
997 register rtx x;
999 if (GET_CODE (x) == CONCAT && GET_MODE (XEXP (x, 0)) == mode)
1000 return XEXP (x, 0);
1001 else if (WORDS_BIG_ENDIAN
1002 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1003 && REG_P (x)
1004 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1005 fatal ("Unable to access real part of complex value in a hard register on this target");
1006 else if (WORDS_BIG_ENDIAN)
1007 return gen_highpart (mode, x);
1008 else
1009 return gen_lowpart (mode, x);
1012 /* Return the imaginary part (which has mode MODE) of a complex value X.
1013 This always comes at the high address in memory. */
1016 gen_imagpart (mode, x)
1017 enum machine_mode mode;
1018 register rtx x;
1020 if (GET_CODE (x) == CONCAT && GET_MODE (XEXP (x, 0)) == mode)
1021 return XEXP (x, 1);
1022 else if (WORDS_BIG_ENDIAN)
1023 return gen_lowpart (mode, x);
1024 else if (!WORDS_BIG_ENDIAN
1025 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1026 && REG_P (x)
1027 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1028 fatal ("Unable to access imaginary part of complex value in a hard register on this target");
1029 else
1030 return gen_highpart (mode, x);
1033 /* Return 1 iff X, assumed to be a SUBREG,
1034 refers to the real part of the complex value in its containing reg.
1035 Complex values are always stored with the real part in the first word,
1036 regardless of WORDS_BIG_ENDIAN. */
1039 subreg_realpart_p (x)
1040 rtx x;
1042 if (GET_CODE (x) != SUBREG)
1043 abort ();
1045 return ((unsigned int) SUBREG_WORD (x) * UNITS_PER_WORD
1046 < GET_MODE_UNIT_SIZE (GET_MODE (SUBREG_REG (x))));
1049 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a value,
1050 return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
1051 least-significant part of X.
1052 MODE specifies how big a part of X to return;
1053 it usually should not be larger than a word.
1054 If X is a MEM whose address is a QUEUED, the value may be so also. */
1057 gen_lowpart (mode, x)
1058 enum machine_mode mode;
1059 register rtx x;
1061 rtx result = gen_lowpart_common (mode, x);
1063 if (result)
1064 return result;
1065 else if (GET_CODE (x) == REG)
1067 /* Must be a hard reg that's not valid in MODE. */
1068 result = gen_lowpart_common (mode, copy_to_reg (x));
1069 if (result == 0)
1070 abort ();
1071 return result;
1073 else if (GET_CODE (x) == MEM)
1075 /* The only additional case we can do is MEM. */
1076 register int offset = 0;
1077 if (WORDS_BIG_ENDIAN)
1078 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
1079 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
1081 if (BYTES_BIG_ENDIAN)
1082 /* Adjust the address so that the address-after-the-data
1083 is unchanged. */
1084 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
1085 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
1087 return change_address (x, mode, plus_constant (XEXP (x, 0), offset));
1089 else if (GET_CODE (x) == ADDRESSOF)
1090 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
1091 else
1092 abort ();
1095 /* Like `gen_lowpart', but refer to the most significant part.
1096 This is used to access the imaginary part of a complex number. */
1099 gen_highpart (mode, x)
1100 enum machine_mode mode;
1101 register rtx x;
1103 /* This case loses if X is a subreg. To catch bugs early,
1104 complain if an invalid MODE is used even in other cases. */
1105 if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
1106 && GET_MODE_SIZE (mode) != GET_MODE_UNIT_SIZE (GET_MODE (x)))
1107 abort ();
1108 if (GET_CODE (x) == CONST_DOUBLE
1109 #if !(TARGET_FLOAT_FORMAT != HOST_FLOAT_FORMAT || defined (REAL_IS_NOT_DOUBLE))
1110 && GET_MODE_CLASS (GET_MODE (x)) != MODE_FLOAT
1111 #endif
1113 return GEN_INT (CONST_DOUBLE_HIGH (x) & GET_MODE_MASK (mode));
1114 else if (GET_CODE (x) == CONST_INT)
1116 if (HOST_BITS_PER_WIDE_INT <= BITS_PER_WORD)
1117 return const0_rtx;
1118 return GEN_INT (INTVAL (x) >> (HOST_BITS_PER_WIDE_INT - BITS_PER_WORD));
1120 else if (GET_CODE (x) == MEM)
1122 register int offset = 0;
1123 if (! WORDS_BIG_ENDIAN)
1124 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
1125 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
1127 if (! BYTES_BIG_ENDIAN
1128 && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
1129 offset -= (GET_MODE_SIZE (mode)
1130 - MIN (UNITS_PER_WORD,
1131 GET_MODE_SIZE (GET_MODE (x))));
1133 return change_address (x, mode, plus_constant (XEXP (x, 0), offset));
1135 else if (GET_CODE (x) == SUBREG)
1137 /* The only time this should occur is when we are looking at a
1138 multi-word item with a SUBREG whose mode is the same as that of the
1139 item. It isn't clear what we would do if it wasn't. */
1140 if (SUBREG_WORD (x) != 0)
1141 abort ();
1142 return gen_highpart (mode, SUBREG_REG (x));
1144 else if (GET_CODE (x) == REG)
1146 int word;
1148 /* Let the backend decide how many registers to skip. This is needed
1149 in particular for sparc64 where fp regs are smaller than a word. */
1150 /* ??? Note that subregs are now ambiguous, in that those against
1151 pseudos are sized by the word size, while those against hard
1152 regs are sized by the underlying register size. Better would be
1153 to always interpret the subreg offset parameter as bytes or bits. */
1155 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode))
1156 abort ();
1157 else if (WORDS_BIG_ENDIAN)
1158 word = 0;
1159 else if (REGNO (x) < FIRST_PSEUDO_REGISTER)
1160 word = (HARD_REGNO_NREGS (REGNO (x), GET_MODE (x))
1161 - HARD_REGNO_NREGS (REGNO (x), mode));
1162 else
1163 word = ((GET_MODE_SIZE (GET_MODE (x))
1164 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD))
1165 / UNITS_PER_WORD);
1167 if (REGNO (x) < FIRST_PSEUDO_REGISTER
1168 /* integrate.c can't handle parts of a return value register. */
1169 && (! REG_FUNCTION_VALUE_P (x)
1170 || ! rtx_equal_function_value_matters)
1171 /* We want to keep the stack, frame, and arg pointers special. */
1172 && x != frame_pointer_rtx
1173 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1174 && x != arg_pointer_rtx
1175 #endif
1176 && x != stack_pointer_rtx)
1177 return gen_rtx_REG (mode, REGNO (x) + word);
1178 else
1179 return gen_rtx_SUBREG (mode, x, word);
1181 else
1182 abort ();
1185 /* Return 1 iff X, assumed to be a SUBREG,
1186 refers to the least significant part of its containing reg.
1187 If X is not a SUBREG, always return 1 (it is its own low part!). */
1190 subreg_lowpart_p (x)
1191 rtx x;
1193 if (GET_CODE (x) != SUBREG)
1194 return 1;
1195 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1196 return 0;
1198 if (WORDS_BIG_ENDIAN
1199 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) > UNITS_PER_WORD)
1200 return (SUBREG_WORD (x)
1201 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
1202 - MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD))
1203 / UNITS_PER_WORD));
1205 return SUBREG_WORD (x) == 0;
1208 /* Return subword I of operand OP.
1209 The word number, I, is interpreted as the word number starting at the
1210 low-order address. Word 0 is the low-order word if not WORDS_BIG_ENDIAN,
1211 otherwise it is the high-order word.
1213 If we cannot extract the required word, we return zero. Otherwise, an
1214 rtx corresponding to the requested word will be returned.
1216 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1217 reload has completed, a valid address will always be returned. After
1218 reload, if a valid address cannot be returned, we return zero.
1220 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1221 it is the responsibility of the caller.
1223 MODE is the mode of OP in case it is a CONST_INT. */
1226 operand_subword (op, i, validate_address, mode)
1227 rtx op;
1228 unsigned int i;
1229 int validate_address;
1230 enum machine_mode mode;
1232 HOST_WIDE_INT val;
1233 int size_ratio = HOST_BITS_PER_WIDE_INT / BITS_PER_WORD;
1235 if (mode == VOIDmode)
1236 mode = GET_MODE (op);
1238 if (mode == VOIDmode)
1239 abort ();
1241 /* If OP is narrower than a word, fail. */
1242 if (mode != BLKmode
1243 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1244 return 0;
1246 /* If we want a word outside OP, return zero. */
1247 if (mode != BLKmode
1248 && (i + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1249 return const0_rtx;
1251 /* If OP is already an integer word, return it. */
1252 if (GET_MODE_CLASS (mode) == MODE_INT
1253 && GET_MODE_SIZE (mode) == UNITS_PER_WORD)
1254 return op;
1256 /* If OP is a REG or SUBREG, we can handle it very simply. */
1257 if (GET_CODE (op) == REG)
1259 /* ??? There is a potential problem with this code. It does not
1260 properly handle extractions of a subword from a hard register
1261 that is larger than word_mode. Presumably the check for
1262 HARD_REGNO_MODE_OK catches these most of these cases. */
1264 /* If OP is a hard register, but OP + I is not a hard register,
1265 then extracting a subword is impossible.
1267 For example, consider if OP is the last hard register and it is
1268 larger than word_mode. If we wanted word N (for N > 0) because a
1269 part of that hard register was known to contain a useful value,
1270 then OP + I would refer to a pseudo, not the hard register we
1271 actually wanted. */
1272 if (REGNO (op) < FIRST_PSEUDO_REGISTER
1273 && REGNO (op) + i >= FIRST_PSEUDO_REGISTER)
1274 return 0;
1276 /* If the register is not valid for MODE, return 0. Note we
1277 have to check both OP and OP + I since they may refer to
1278 different parts of the register file.
1280 Consider if OP refers to the last 96bit FP register and we want
1281 subword 3 because that subword is known to contain a value we
1282 needed. */
1283 if (REGNO (op) < FIRST_PSEUDO_REGISTER
1284 && (! HARD_REGNO_MODE_OK (REGNO (op), word_mode)
1285 || ! HARD_REGNO_MODE_OK (REGNO (op) + i, word_mode)))
1286 return 0;
1287 else if (REGNO (op) >= FIRST_PSEUDO_REGISTER
1288 || (REG_FUNCTION_VALUE_P (op)
1289 && rtx_equal_function_value_matters)
1290 /* We want to keep the stack, frame, and arg pointers
1291 special. */
1292 || op == frame_pointer_rtx
1293 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1294 || op == arg_pointer_rtx
1295 #endif
1296 || op == stack_pointer_rtx)
1297 return gen_rtx_SUBREG (word_mode, op, i);
1298 else
1299 return gen_rtx_REG (word_mode, REGNO (op) + i);
1301 else if (GET_CODE (op) == SUBREG)
1302 return gen_rtx_SUBREG (word_mode, SUBREG_REG (op), i + SUBREG_WORD (op));
1303 else if (GET_CODE (op) == CONCAT)
1305 unsigned int partwords
1306 = GET_MODE_UNIT_SIZE (GET_MODE (op)) / UNITS_PER_WORD;
1308 if (i < partwords)
1309 return operand_subword (XEXP (op, 0), i, validate_address, mode);
1310 return operand_subword (XEXP (op, 1), i - partwords,
1311 validate_address, mode);
1314 /* Form a new MEM at the requested address. */
1315 if (GET_CODE (op) == MEM)
1317 rtx addr = plus_constant (XEXP (op, 0), i * UNITS_PER_WORD);
1318 rtx new;
1320 if (validate_address)
1322 if (reload_completed)
1324 if (! strict_memory_address_p (word_mode, addr))
1325 return 0;
1327 else
1328 addr = memory_address (word_mode, addr);
1331 new = gen_rtx_MEM (word_mode, addr);
1332 MEM_COPY_ATTRIBUTES (new, op);
1333 return new;
1336 /* The only remaining cases are when OP is a constant. If the host and
1337 target floating formats are the same, handling two-word floating
1338 constants are easy. Note that REAL_VALUE_TO_TARGET_{SINGLE,DOUBLE}
1339 are defined as returning one or two 32 bit values, respectively,
1340 and not values of BITS_PER_WORD bits. */
1341 #ifdef REAL_ARITHMETIC
1342 /* The output is some bits, the width of the target machine's word.
1343 A wider-word host can surely hold them in a CONST_INT. A narrower-word
1344 host can't. */
1345 if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1346 && GET_MODE_CLASS (mode) == MODE_FLOAT
1347 && GET_MODE_BITSIZE (mode) == 64
1348 && GET_CODE (op) == CONST_DOUBLE)
1350 long k[2];
1351 REAL_VALUE_TYPE rv;
1353 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1354 REAL_VALUE_TO_TARGET_DOUBLE (rv, k);
1356 /* We handle 32-bit and >= 64-bit words here. Note that the order in
1357 which the words are written depends on the word endianness.
1358 ??? This is a potential portability problem and should
1359 be fixed at some point.
1361 We must excercise caution with the sign bit. By definition there
1362 are 32 significant bits in K; there may be more in a HOST_WIDE_INT.
1363 Consider a host with a 32-bit long and a 64-bit HOST_WIDE_INT.
1364 So we explicitly mask and sign-extend as necessary. */
1365 if (BITS_PER_WORD == 32)
1367 val = k[i];
1368 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1369 return GEN_INT (val);
1371 #if HOST_BITS_PER_WIDE_INT >= 64
1372 else if (BITS_PER_WORD >= 64 && i == 0)
1374 val = k[! WORDS_BIG_ENDIAN];
1375 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1376 val |= (HOST_WIDE_INT) k[WORDS_BIG_ENDIAN] & 0xffffffff;
1377 return GEN_INT (val);
1379 #endif
1380 else if (BITS_PER_WORD == 16)
1382 val = k[i >> 1];
1383 if ((i & 1) == !WORDS_BIG_ENDIAN)
1384 val >>= 16;
1385 val &= 0xffff;
1386 return GEN_INT (val);
1388 else
1389 abort ();
1391 else if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1392 && GET_MODE_CLASS (mode) == MODE_FLOAT
1393 && GET_MODE_BITSIZE (mode) > 64
1394 && GET_CODE (op) == CONST_DOUBLE)
1396 long k[4];
1397 REAL_VALUE_TYPE rv;
1399 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1400 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, k);
1402 if (BITS_PER_WORD == 32)
1404 val = k[i];
1405 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1406 return GEN_INT (val);
1408 #if HOST_BITS_PER_WIDE_INT >= 64
1409 else if (BITS_PER_WORD >= 64 && i <= 1)
1411 val = k[i*2 + ! WORDS_BIG_ENDIAN];
1412 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1413 val |= (HOST_WIDE_INT) k[i*2 + WORDS_BIG_ENDIAN] & 0xffffffff;
1414 return GEN_INT (val);
1416 #endif
1417 else
1418 abort ();
1420 #else /* no REAL_ARITHMETIC */
1421 if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
1422 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1423 || flag_pretend_float)
1424 && GET_MODE_CLASS (mode) == MODE_FLOAT
1425 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1426 && GET_CODE (op) == CONST_DOUBLE)
1428 /* The constant is stored in the host's word-ordering,
1429 but we want to access it in the target's word-ordering. Some
1430 compilers don't like a conditional inside macro args, so we have two
1431 copies of the return. */
1432 #ifdef HOST_WORDS_BIG_ENDIAN
1433 return GEN_INT (i == WORDS_BIG_ENDIAN
1434 ? CONST_DOUBLE_HIGH (op) : CONST_DOUBLE_LOW (op));
1435 #else
1436 return GEN_INT (i != WORDS_BIG_ENDIAN
1437 ? CONST_DOUBLE_HIGH (op) : CONST_DOUBLE_LOW (op));
1438 #endif
1440 #endif /* no REAL_ARITHMETIC */
1442 /* Single word float is a little harder, since single- and double-word
1443 values often do not have the same high-order bits. We have already
1444 verified that we want the only defined word of the single-word value. */
1445 #ifdef REAL_ARITHMETIC
1446 if (GET_MODE_CLASS (mode) == MODE_FLOAT
1447 && GET_MODE_BITSIZE (mode) == 32
1448 && GET_CODE (op) == CONST_DOUBLE)
1450 long l;
1451 REAL_VALUE_TYPE rv;
1453 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1454 REAL_VALUE_TO_TARGET_SINGLE (rv, l);
1456 /* Sign extend from known 32-bit value to HOST_WIDE_INT. */
1457 val = l;
1458 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1460 if (BITS_PER_WORD == 16)
1462 if ((i & 1) == !WORDS_BIG_ENDIAN)
1463 val >>= 16;
1464 val &= 0xffff;
1467 return GEN_INT (val);
1469 #else
1470 if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
1471 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1472 || flag_pretend_float)
1473 && sizeof (float) * 8 == HOST_BITS_PER_WIDE_INT
1474 && GET_MODE_CLASS (mode) == MODE_FLOAT
1475 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
1476 && GET_CODE (op) == CONST_DOUBLE)
1478 double d;
1479 union {float f; HOST_WIDE_INT i; } u;
1481 REAL_VALUE_FROM_CONST_DOUBLE (d, op);
1483 u.f = d;
1484 return GEN_INT (u.i);
1486 if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
1487 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1488 || flag_pretend_float)
1489 && sizeof (double) * 8 == HOST_BITS_PER_WIDE_INT
1490 && GET_MODE_CLASS (mode) == MODE_FLOAT
1491 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
1492 && GET_CODE (op) == CONST_DOUBLE)
1494 double d;
1495 union {double d; HOST_WIDE_INT i; } u;
1497 REAL_VALUE_FROM_CONST_DOUBLE (d, op);
1499 u.d = d;
1500 return GEN_INT (u.i);
1502 #endif /* no REAL_ARITHMETIC */
1504 /* The only remaining cases that we can handle are integers.
1505 Convert to proper endianness now since these cases need it.
1506 At this point, i == 0 means the low-order word.
1508 We do not want to handle the case when BITS_PER_WORD <= HOST_BITS_PER_INT
1509 in general. However, if OP is (const_int 0), we can just return
1510 it for any word. */
1512 if (op == const0_rtx)
1513 return op;
1515 if (GET_MODE_CLASS (mode) != MODE_INT
1516 || (GET_CODE (op) != CONST_INT && GET_CODE (op) != CONST_DOUBLE)
1517 || BITS_PER_WORD > HOST_BITS_PER_WIDE_INT)
1518 return 0;
1520 if (WORDS_BIG_ENDIAN)
1521 i = GET_MODE_SIZE (mode) / UNITS_PER_WORD - 1 - i;
1523 /* Find out which word on the host machine this value is in and get
1524 it from the constant. */
1525 val = (i / size_ratio == 0
1526 ? (GET_CODE (op) == CONST_INT ? INTVAL (op) : CONST_DOUBLE_LOW (op))
1527 : (GET_CODE (op) == CONST_INT
1528 ? (INTVAL (op) < 0 ? ~0 : 0) : CONST_DOUBLE_HIGH (op)));
1530 /* Get the value we want into the low bits of val. */
1531 if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT)
1532 val = ((val >> ((i % size_ratio) * BITS_PER_WORD)));
1534 val = trunc_int_for_mode (val, word_mode);
1536 return GEN_INT (val);
1539 /* Similar to `operand_subword', but never return 0. If we can't extract
1540 the required subword, put OP into a register and try again. If that fails,
1541 abort. We always validate the address in this case. It is not valid
1542 to call this function after reload; it is mostly meant for RTL
1543 generation.
1545 MODE is the mode of OP, in case it is CONST_INT. */
1548 operand_subword_force (op, i, mode)
1549 rtx op;
1550 unsigned int i;
1551 enum machine_mode mode;
1553 rtx result = operand_subword (op, i, 1, mode);
1555 if (result)
1556 return result;
1558 if (mode != BLKmode && mode != VOIDmode)
1560 /* If this is a register which can not be accessed by words, copy it
1561 to a pseudo register. */
1562 if (GET_CODE (op) == REG)
1563 op = copy_to_reg (op);
1564 else
1565 op = force_reg (mode, op);
1568 result = operand_subword (op, i, 1, mode);
1569 if (result == 0)
1570 abort ();
1572 return result;
1575 /* Given a compare instruction, swap the operands.
1576 A test instruction is changed into a compare of 0 against the operand. */
1578 void
1579 reverse_comparison (insn)
1580 rtx insn;
1582 rtx body = PATTERN (insn);
1583 rtx comp;
1585 if (GET_CODE (body) == SET)
1586 comp = SET_SRC (body);
1587 else
1588 comp = SET_SRC (XVECEXP (body, 0, 0));
1590 if (GET_CODE (comp) == COMPARE)
1592 rtx op0 = XEXP (comp, 0);
1593 rtx op1 = XEXP (comp, 1);
1594 XEXP (comp, 0) = op1;
1595 XEXP (comp, 1) = op0;
1597 else
1599 rtx new = gen_rtx_COMPARE (VOIDmode,
1600 CONST0_RTX (GET_MODE (comp)), comp);
1601 if (GET_CODE (body) == SET)
1602 SET_SRC (body) = new;
1603 else
1604 SET_SRC (XVECEXP (body, 0, 0)) = new;
1608 /* Return a memory reference like MEMREF, but with its mode changed
1609 to MODE and its address changed to ADDR.
1610 (VOIDmode means don't change the mode.
1611 NULL for ADDR means don't change the address.) */
1614 change_address (memref, mode, addr)
1615 rtx memref;
1616 enum machine_mode mode;
1617 rtx addr;
1619 rtx new;
1621 if (GET_CODE (memref) != MEM)
1622 abort ();
1623 if (mode == VOIDmode)
1624 mode = GET_MODE (memref);
1625 if (addr == 0)
1626 addr = XEXP (memref, 0);
1628 /* If reload is in progress or has completed, ADDR must be valid.
1629 Otherwise, we can call memory_address to make it valid. */
1630 if (reload_completed || reload_in_progress)
1632 if (! memory_address_p (mode, addr))
1633 abort ();
1635 else
1636 addr = memory_address (mode, addr);
1638 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1639 return memref;
1641 new = gen_rtx_MEM (mode, addr);
1642 MEM_COPY_ATTRIBUTES (new, memref);
1643 return new;
1646 /* Return a newly created CODE_LABEL rtx with a unique label number. */
1649 gen_label_rtx ()
1651 register rtx label;
1653 label = gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX,
1654 NULL_RTX, label_num++, NULL_PTR, NULL_PTR);
1656 LABEL_NUSES (label) = 0;
1657 LABEL_ALTERNATE_NAME (label) = NULL;
1658 return label;
1661 /* For procedure integration. */
1663 /* Install new pointers to the first and last insns in the chain.
1664 Also, set cur_insn_uid to one higher than the last in use.
1665 Used for an inline-procedure after copying the insn chain. */
1667 void
1668 set_new_first_and_last_insn (first, last)
1669 rtx first, last;
1671 rtx insn;
1673 first_insn = first;
1674 last_insn = last;
1675 cur_insn_uid = 0;
1677 for (insn = first; insn; insn = NEXT_INSN (insn))
1678 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
1680 cur_insn_uid++;
1683 /* Set the range of label numbers found in the current function.
1684 This is used when belatedly compiling an inline function. */
1686 void
1687 set_new_first_and_last_label_num (first, last)
1688 int first, last;
1690 base_label_num = label_num;
1691 first_label_num = first;
1692 last_label_num = last;
1695 /* Set the last label number found in the current function.
1696 This is used when belatedly compiling an inline function. */
1698 void
1699 set_new_last_label_num (last)
1700 int last;
1702 base_label_num = label_num;
1703 last_label_num = last;
1706 /* Restore all variables describing the current status from the structure *P.
1707 This is used after a nested function. */
1709 void
1710 restore_emit_status (p)
1711 struct function *p ATTRIBUTE_UNUSED;
1713 last_label_num = 0;
1714 clear_emit_caches ();
1717 /* Clear out all parts of the state in F that can safely be discarded
1718 after the function has been compiled, to let garbage collection
1719 reclaim the memory. */
1721 void
1722 free_emit_status (f)
1723 struct function *f;
1725 free (f->emit->x_regno_reg_rtx);
1726 free (f->emit->regno_pointer_align);
1727 free (f->emit);
1728 f->emit = NULL;
1731 /* Go through all the RTL insn bodies and copy any invalid shared
1732 structure. This routine should only be called once. */
1734 void
1735 unshare_all_rtl (fndecl, insn)
1736 tree fndecl;
1737 rtx insn;
1739 tree decl;
1741 /* Make sure that virtual parameters are not shared. */
1742 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1743 DECL_RTL (decl) = copy_rtx_if_shared (DECL_RTL (decl));
1745 /* Make sure that virtual stack slots are not shared. */
1746 unshare_all_decls (DECL_INITIAL (fndecl));
1748 /* Unshare just about everything else. */
1749 unshare_all_rtl_1 (insn);
1751 /* Make sure the addresses of stack slots found outside the insn chain
1752 (such as, in DECL_RTL of a variable) are not shared
1753 with the insn chain.
1755 This special care is necessary when the stack slot MEM does not
1756 actually appear in the insn chain. If it does appear, its address
1757 is unshared from all else at that point. */
1758 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
1761 /* Go through all the RTL insn bodies and copy any invalid shared
1762 structure, again. This is a fairly expensive thing to do so it
1763 should be done sparingly. */
1765 void
1766 unshare_all_rtl_again (insn)
1767 rtx insn;
1769 rtx p;
1770 tree decl;
1772 for (p = insn; p; p = NEXT_INSN (p))
1773 if (INSN_P (p))
1775 reset_used_flags (PATTERN (p));
1776 reset_used_flags (REG_NOTES (p));
1777 reset_used_flags (LOG_LINKS (p));
1780 /* Make sure that virtual stack slots are not shared. */
1781 reset_used_decls (DECL_INITIAL (cfun->decl));
1783 /* Make sure that virtual parameters are not shared. */
1784 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
1785 reset_used_flags (DECL_RTL (decl));
1787 reset_used_flags (stack_slot_list);
1789 unshare_all_rtl (cfun->decl, insn);
1792 /* Go through all the RTL insn bodies and copy any invalid shared structure.
1793 Assumes the mark bits are cleared at entry. */
1795 static void
1796 unshare_all_rtl_1 (insn)
1797 rtx insn;
1799 for (; insn; insn = NEXT_INSN (insn))
1800 if (INSN_P (insn))
1802 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
1803 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
1804 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
1808 /* Go through all virtual stack slots of a function and copy any
1809 shared structure. */
1810 static void
1811 unshare_all_decls (blk)
1812 tree blk;
1814 tree t;
1816 /* Copy shared decls. */
1817 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
1818 DECL_RTL (t) = copy_rtx_if_shared (DECL_RTL (t));
1820 /* Now process sub-blocks. */
1821 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
1822 unshare_all_decls (t);
1825 /* Go through all virtual stack slots of a function and mark them as
1826 not shared. */
1827 static void
1828 reset_used_decls (blk)
1829 tree blk;
1831 tree t;
1833 /* Mark decls. */
1834 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
1835 reset_used_flags (DECL_RTL (t));
1837 /* Now process sub-blocks. */
1838 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
1839 reset_used_decls (t);
1842 /* Mark ORIG as in use, and return a copy of it if it was already in use.
1843 Recursively does the same for subexpressions. */
1846 copy_rtx_if_shared (orig)
1847 rtx orig;
1849 register rtx x = orig;
1850 register int i;
1851 register enum rtx_code code;
1852 register const char *format_ptr;
1853 int copied = 0;
1855 if (x == 0)
1856 return 0;
1858 code = GET_CODE (x);
1860 /* These types may be freely shared. */
1862 switch (code)
1864 case REG:
1865 case QUEUED:
1866 case CONST_INT:
1867 case CONST_DOUBLE:
1868 case SYMBOL_REF:
1869 case CODE_LABEL:
1870 case PC:
1871 case CC0:
1872 case SCRATCH:
1873 /* SCRATCH must be shared because they represent distinct values. */
1874 return x;
1876 case CONST:
1877 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
1878 a LABEL_REF, it isn't sharable. */
1879 if (GET_CODE (XEXP (x, 0)) == PLUS
1880 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
1881 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
1882 return x;
1883 break;
1885 case INSN:
1886 case JUMP_INSN:
1887 case CALL_INSN:
1888 case NOTE:
1889 case BARRIER:
1890 /* The chain of insns is not being copied. */
1891 return x;
1893 case MEM:
1894 /* A MEM is allowed to be shared if its address is constant.
1896 We used to allow sharing of MEMs which referenced
1897 virtual_stack_vars_rtx or virtual_incoming_args_rtx, but
1898 that can lose. instantiate_virtual_regs will not unshare
1899 the MEMs, and combine may change the structure of the address
1900 because it looks safe and profitable in one context, but
1901 in some other context it creates unrecognizable RTL. */
1902 if (CONSTANT_ADDRESS_P (XEXP (x, 0)))
1903 return x;
1905 break;
1907 default:
1908 break;
1911 /* This rtx may not be shared. If it has already been seen,
1912 replace it with a copy of itself. */
1914 if (x->used)
1916 register rtx copy;
1918 copy = rtx_alloc (code);
1919 memcpy (copy, x,
1920 (sizeof (*copy) - sizeof (copy->fld)
1921 + sizeof (copy->fld[0]) * GET_RTX_LENGTH (code)));
1922 x = copy;
1923 copied = 1;
1925 x->used = 1;
1927 /* Now scan the subexpressions recursively.
1928 We can store any replaced subexpressions directly into X
1929 since we know X is not shared! Any vectors in X
1930 must be copied if X was copied. */
1932 format_ptr = GET_RTX_FORMAT (code);
1934 for (i = 0; i < GET_RTX_LENGTH (code); i++)
1936 switch (*format_ptr++)
1938 case 'e':
1939 XEXP (x, i) = copy_rtx_if_shared (XEXP (x, i));
1940 break;
1942 case 'E':
1943 if (XVEC (x, i) != NULL)
1945 register int j;
1946 int len = XVECLEN (x, i);
1948 if (copied && len > 0)
1949 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
1950 for (j = 0; j < len; j++)
1951 XVECEXP (x, i, j) = copy_rtx_if_shared (XVECEXP (x, i, j));
1953 break;
1956 return x;
1959 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
1960 to look for shared sub-parts. */
1962 void
1963 reset_used_flags (x)
1964 rtx x;
1966 register int i, j;
1967 register enum rtx_code code;
1968 register const char *format_ptr;
1970 if (x == 0)
1971 return;
1973 code = GET_CODE (x);
1975 /* These types may be freely shared so we needn't do any resetting
1976 for them. */
1978 switch (code)
1980 case REG:
1981 case QUEUED:
1982 case CONST_INT:
1983 case CONST_DOUBLE:
1984 case SYMBOL_REF:
1985 case CODE_LABEL:
1986 case PC:
1987 case CC0:
1988 return;
1990 case INSN:
1991 case JUMP_INSN:
1992 case CALL_INSN:
1993 case NOTE:
1994 case LABEL_REF:
1995 case BARRIER:
1996 /* The chain of insns is not being copied. */
1997 return;
1999 default:
2000 break;
2003 x->used = 0;
2005 format_ptr = GET_RTX_FORMAT (code);
2006 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2008 switch (*format_ptr++)
2010 case 'e':
2011 reset_used_flags (XEXP (x, i));
2012 break;
2014 case 'E':
2015 for (j = 0; j < XVECLEN (x, i); j++)
2016 reset_used_flags (XVECEXP (x, i, j));
2017 break;
2022 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2023 Return X or the rtx for the pseudo reg the value of X was copied into.
2024 OTHER must be valid as a SET_DEST. */
2027 make_safe_from (x, other)
2028 rtx x, other;
2030 while (1)
2031 switch (GET_CODE (other))
2033 case SUBREG:
2034 other = SUBREG_REG (other);
2035 break;
2036 case STRICT_LOW_PART:
2037 case SIGN_EXTEND:
2038 case ZERO_EXTEND:
2039 other = XEXP (other, 0);
2040 break;
2041 default:
2042 goto done;
2044 done:
2045 if ((GET_CODE (other) == MEM
2046 && ! CONSTANT_P (x)
2047 && GET_CODE (x) != REG
2048 && GET_CODE (x) != SUBREG)
2049 || (GET_CODE (other) == REG
2050 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2051 || reg_mentioned_p (other, x))))
2053 rtx temp = gen_reg_rtx (GET_MODE (x));
2054 emit_move_insn (temp, x);
2055 return temp;
2057 return x;
2060 /* Emission of insns (adding them to the doubly-linked list). */
2062 /* Return the first insn of the current sequence or current function. */
2065 get_insns ()
2067 return first_insn;
2070 /* Return the last insn emitted in current sequence or current function. */
2073 get_last_insn ()
2075 return last_insn;
2078 /* Specify a new insn as the last in the chain. */
2080 void
2081 set_last_insn (insn)
2082 rtx insn;
2084 if (NEXT_INSN (insn) != 0)
2085 abort ();
2086 last_insn = insn;
2089 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2092 get_last_insn_anywhere ()
2094 struct sequence_stack *stack;
2095 if (last_insn)
2096 return last_insn;
2097 for (stack = seq_stack; stack; stack = stack->next)
2098 if (stack->last != 0)
2099 return stack->last;
2100 return 0;
2103 /* Return a number larger than any instruction's uid in this function. */
2106 get_max_uid ()
2108 return cur_insn_uid;
2111 /* Renumber instructions so that no instruction UIDs are wasted. */
2113 void
2114 renumber_insns (stream)
2115 FILE *stream;
2117 rtx insn;
2119 /* If we're not supposed to renumber instructions, don't. */
2120 if (!flag_renumber_insns)
2121 return;
2123 /* If there aren't that many instructions, then it's not really
2124 worth renumbering them. */
2125 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
2126 return;
2128 cur_insn_uid = 1;
2130 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2132 if (stream)
2133 fprintf (stream, "Renumbering insn %d to %d\n",
2134 INSN_UID (insn), cur_insn_uid);
2135 INSN_UID (insn) = cur_insn_uid++;
2139 /* Return the next insn. If it is a SEQUENCE, return the first insn
2140 of the sequence. */
2143 next_insn (insn)
2144 rtx insn;
2146 if (insn)
2148 insn = NEXT_INSN (insn);
2149 if (insn && GET_CODE (insn) == INSN
2150 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2151 insn = XVECEXP (PATTERN (insn), 0, 0);
2154 return insn;
2157 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2158 of the sequence. */
2161 previous_insn (insn)
2162 rtx insn;
2164 if (insn)
2166 insn = PREV_INSN (insn);
2167 if (insn && GET_CODE (insn) == INSN
2168 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2169 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2172 return insn;
2175 /* Return the next insn after INSN that is not a NOTE. This routine does not
2176 look inside SEQUENCEs. */
2179 next_nonnote_insn (insn)
2180 rtx insn;
2182 while (insn)
2184 insn = NEXT_INSN (insn);
2185 if (insn == 0 || GET_CODE (insn) != NOTE)
2186 break;
2189 return insn;
2192 /* Return the previous insn before INSN that is not a NOTE. This routine does
2193 not look inside SEQUENCEs. */
2196 prev_nonnote_insn (insn)
2197 rtx insn;
2199 while (insn)
2201 insn = PREV_INSN (insn);
2202 if (insn == 0 || GET_CODE (insn) != NOTE)
2203 break;
2206 return insn;
2209 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2210 or 0, if there is none. This routine does not look inside
2211 SEQUENCEs. */
2214 next_real_insn (insn)
2215 rtx insn;
2217 while (insn)
2219 insn = NEXT_INSN (insn);
2220 if (insn == 0 || GET_CODE (insn) == INSN
2221 || GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN)
2222 break;
2225 return insn;
2228 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2229 or 0, if there is none. This routine does not look inside
2230 SEQUENCEs. */
2233 prev_real_insn (insn)
2234 rtx insn;
2236 while (insn)
2238 insn = PREV_INSN (insn);
2239 if (insn == 0 || GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN
2240 || GET_CODE (insn) == JUMP_INSN)
2241 break;
2244 return insn;
2247 /* Find the next insn after INSN that really does something. This routine
2248 does not look inside SEQUENCEs. Until reload has completed, this is the
2249 same as next_real_insn. */
2252 active_insn_p (insn)
2253 rtx insn;
2255 return (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
2256 || (GET_CODE (insn) == INSN
2257 && (! reload_completed
2258 || (GET_CODE (PATTERN (insn)) != USE
2259 && GET_CODE (PATTERN (insn)) != CLOBBER))));
2263 next_active_insn (insn)
2264 rtx insn;
2266 while (insn)
2268 insn = NEXT_INSN (insn);
2269 if (insn == 0 || active_insn_p (insn))
2270 break;
2273 return insn;
2276 /* Find the last insn before INSN that really does something. This routine
2277 does not look inside SEQUENCEs. Until reload has completed, this is the
2278 same as prev_real_insn. */
2281 prev_active_insn (insn)
2282 rtx insn;
2284 while (insn)
2286 insn = PREV_INSN (insn);
2287 if (insn == 0 || active_insn_p (insn))
2288 break;
2291 return insn;
2294 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
2297 next_label (insn)
2298 rtx insn;
2300 while (insn)
2302 insn = NEXT_INSN (insn);
2303 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
2304 break;
2307 return insn;
2310 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
2313 prev_label (insn)
2314 rtx insn;
2316 while (insn)
2318 insn = PREV_INSN (insn);
2319 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
2320 break;
2323 return insn;
2326 #ifdef HAVE_cc0
2327 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
2328 and REG_CC_USER notes so we can find it. */
2330 void
2331 link_cc0_insns (insn)
2332 rtx insn;
2334 rtx user = next_nonnote_insn (insn);
2336 if (GET_CODE (user) == INSN && GET_CODE (PATTERN (user)) == SEQUENCE)
2337 user = XVECEXP (PATTERN (user), 0, 0);
2339 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
2340 REG_NOTES (user));
2341 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
2344 /* Return the next insn that uses CC0 after INSN, which is assumed to
2345 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
2346 applied to the result of this function should yield INSN).
2348 Normally, this is simply the next insn. However, if a REG_CC_USER note
2349 is present, it contains the insn that uses CC0.
2351 Return 0 if we can't find the insn. */
2354 next_cc0_user (insn)
2355 rtx insn;
2357 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
2359 if (note)
2360 return XEXP (note, 0);
2362 insn = next_nonnote_insn (insn);
2363 if (insn && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
2364 insn = XVECEXP (PATTERN (insn), 0, 0);
2366 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
2367 return insn;
2369 return 0;
2372 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
2373 note, it is the previous insn. */
2376 prev_cc0_setter (insn)
2377 rtx insn;
2379 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2381 if (note)
2382 return XEXP (note, 0);
2384 insn = prev_nonnote_insn (insn);
2385 if (! sets_cc0_p (PATTERN (insn)))
2386 abort ();
2388 return insn;
2390 #endif
2392 /* Try splitting insns that can be split for better scheduling.
2393 PAT is the pattern which might split.
2394 TRIAL is the insn providing PAT.
2395 LAST is non-zero if we should return the last insn of the sequence produced.
2397 If this routine succeeds in splitting, it returns the first or last
2398 replacement insn depending on the value of LAST. Otherwise, it
2399 returns TRIAL. If the insn to be returned can be split, it will be. */
2402 try_split (pat, trial, last)
2403 rtx pat, trial;
2404 int last;
2406 rtx before = PREV_INSN (trial);
2407 rtx after = NEXT_INSN (trial);
2408 rtx seq = split_insns (pat, trial);
2409 int has_barrier = 0;
2410 rtx tem;
2412 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
2413 We may need to handle this specially. */
2414 if (after && GET_CODE (after) == BARRIER)
2416 has_barrier = 1;
2417 after = NEXT_INSN (after);
2420 if (seq)
2422 /* SEQ can either be a SEQUENCE or the pattern of a single insn.
2423 The latter case will normally arise only when being done so that
2424 it, in turn, will be split (SFmode on the 29k is an example). */
2425 if (GET_CODE (seq) == SEQUENCE)
2427 int i;
2429 /* Avoid infinite loop if any insn of the result matches
2430 the original pattern. */
2431 for (i = 0; i < XVECLEN (seq, 0); i++)
2432 if (GET_CODE (XVECEXP (seq, 0, i)) == INSN
2433 && rtx_equal_p (PATTERN (XVECEXP (seq, 0, i)), pat))
2434 return trial;
2436 /* If we are splitting a JUMP_INSN, look for the JUMP_INSN in
2437 SEQ and copy our JUMP_LABEL to it. If JUMP_LABEL is non-zero,
2438 increment the usage count so we don't delete the label. */
2440 if (GET_CODE (trial) == JUMP_INSN)
2441 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
2442 if (GET_CODE (XVECEXP (seq, 0, i)) == JUMP_INSN)
2444 JUMP_LABEL (XVECEXP (seq, 0, i)) = JUMP_LABEL (trial);
2446 if (JUMP_LABEL (trial))
2447 LABEL_NUSES (JUMP_LABEL (trial))++;
2450 /* If we are splitting a CALL_INSN, look for the CALL_INSN
2451 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
2452 if (GET_CODE (trial) == CALL_INSN)
2453 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
2454 if (GET_CODE (XVECEXP (seq, 0, i)) == CALL_INSN)
2455 CALL_INSN_FUNCTION_USAGE (XVECEXP (seq, 0, i))
2456 = CALL_INSN_FUNCTION_USAGE (trial);
2458 tem = emit_insn_after (seq, before);
2460 delete_insn (trial);
2461 if (has_barrier)
2462 emit_barrier_after (tem);
2464 /* Recursively call try_split for each new insn created; by the
2465 time control returns here that insn will be fully split, so
2466 set LAST and continue from the insn after the one returned.
2467 We can't use next_active_insn here since AFTER may be a note.
2468 Ignore deleted insns, which can be occur if not optimizing. */
2469 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
2470 if (! INSN_DELETED_P (tem) && INSN_P (tem))
2471 tem = try_split (PATTERN (tem), tem, 1);
2473 /* Avoid infinite loop if the result matches the original pattern. */
2474 else if (rtx_equal_p (seq, pat))
2475 return trial;
2476 else
2478 PATTERN (trial) = seq;
2479 INSN_CODE (trial) = -1;
2480 try_split (seq, trial, last);
2483 /* Return either the first or the last insn, depending on which was
2484 requested. */
2485 return last
2486 ? (after ? prev_active_insn (after) : last_insn)
2487 : next_active_insn (before);
2490 return trial;
2493 /* Make and return an INSN rtx, initializing all its slots.
2494 Store PATTERN in the pattern slots. */
2497 make_insn_raw (pattern)
2498 rtx pattern;
2500 register rtx insn;
2502 insn = rtx_alloc (INSN);
2504 INSN_UID (insn) = cur_insn_uid++;
2505 PATTERN (insn) = pattern;
2506 INSN_CODE (insn) = -1;
2507 LOG_LINKS (insn) = NULL;
2508 REG_NOTES (insn) = NULL;
2510 #ifdef ENABLE_RTL_CHECKING
2511 if (insn
2512 && INSN_P (insn)
2513 && (returnjump_p (insn)
2514 || (GET_CODE (insn) == SET
2515 && SET_DEST (insn) == pc_rtx)))
2517 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
2518 debug_rtx (insn);
2520 #endif
2522 return insn;
2525 /* Like `make_insn' but make a JUMP_INSN instead of an insn. */
2527 static rtx
2528 make_jump_insn_raw (pattern)
2529 rtx pattern;
2531 register rtx insn;
2533 insn = rtx_alloc (JUMP_INSN);
2534 INSN_UID (insn) = cur_insn_uid++;
2536 PATTERN (insn) = pattern;
2537 INSN_CODE (insn) = -1;
2538 LOG_LINKS (insn) = NULL;
2539 REG_NOTES (insn) = NULL;
2540 JUMP_LABEL (insn) = NULL;
2542 return insn;
2545 /* Like `make_insn' but make a CALL_INSN instead of an insn. */
2547 static rtx
2548 make_call_insn_raw (pattern)
2549 rtx pattern;
2551 register rtx insn;
2553 insn = rtx_alloc (CALL_INSN);
2554 INSN_UID (insn) = cur_insn_uid++;
2556 PATTERN (insn) = pattern;
2557 INSN_CODE (insn) = -1;
2558 LOG_LINKS (insn) = NULL;
2559 REG_NOTES (insn) = NULL;
2560 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
2562 return insn;
2565 /* Add INSN to the end of the doubly-linked list.
2566 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
2568 void
2569 add_insn (insn)
2570 register rtx insn;
2572 PREV_INSN (insn) = last_insn;
2573 NEXT_INSN (insn) = 0;
2575 if (NULL != last_insn)
2576 NEXT_INSN (last_insn) = insn;
2578 if (NULL == first_insn)
2579 first_insn = insn;
2581 last_insn = insn;
2584 /* Add INSN into the doubly-linked list after insn AFTER. This and
2585 the next should be the only functions called to insert an insn once
2586 delay slots have been filled since only they know how to update a
2587 SEQUENCE. */
2589 void
2590 add_insn_after (insn, after)
2591 rtx insn, after;
2593 rtx next = NEXT_INSN (after);
2595 if (optimize && INSN_DELETED_P (after))
2596 abort ();
2598 NEXT_INSN (insn) = next;
2599 PREV_INSN (insn) = after;
2601 if (next)
2603 PREV_INSN (next) = insn;
2604 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
2605 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
2607 else if (last_insn == after)
2608 last_insn = insn;
2609 else
2611 struct sequence_stack *stack = seq_stack;
2612 /* Scan all pending sequences too. */
2613 for (; stack; stack = stack->next)
2614 if (after == stack->last)
2616 stack->last = insn;
2617 break;
2620 if (stack == 0)
2621 abort ();
2624 NEXT_INSN (after) = insn;
2625 if (GET_CODE (after) == INSN && GET_CODE (PATTERN (after)) == SEQUENCE)
2627 rtx sequence = PATTERN (after);
2628 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
2632 /* Add INSN into the doubly-linked list before insn BEFORE. This and
2633 the previous should be the only functions called to insert an insn once
2634 delay slots have been filled since only they know how to update a
2635 SEQUENCE. */
2637 void
2638 add_insn_before (insn, before)
2639 rtx insn, before;
2641 rtx prev = PREV_INSN (before);
2643 if (optimize && INSN_DELETED_P (before))
2644 abort ();
2646 PREV_INSN (insn) = prev;
2647 NEXT_INSN (insn) = before;
2649 if (prev)
2651 NEXT_INSN (prev) = insn;
2652 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
2654 rtx sequence = PATTERN (prev);
2655 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
2658 else if (first_insn == before)
2659 first_insn = insn;
2660 else
2662 struct sequence_stack *stack = seq_stack;
2663 /* Scan all pending sequences too. */
2664 for (; stack; stack = stack->next)
2665 if (before == stack->first)
2667 stack->first = insn;
2668 break;
2671 if (stack == 0)
2672 abort ();
2675 PREV_INSN (before) = insn;
2676 if (GET_CODE (before) == INSN && GET_CODE (PATTERN (before)) == SEQUENCE)
2677 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
2680 /* Remove an insn from its doubly-linked list. This function knows how
2681 to handle sequences. */
2682 void
2683 remove_insn (insn)
2684 rtx insn;
2686 rtx next = NEXT_INSN (insn);
2687 rtx prev = PREV_INSN (insn);
2688 if (prev)
2690 NEXT_INSN (prev) = next;
2691 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
2693 rtx sequence = PATTERN (prev);
2694 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
2697 else if (first_insn == insn)
2698 first_insn = next;
2699 else
2701 struct sequence_stack *stack = seq_stack;
2702 /* Scan all pending sequences too. */
2703 for (; stack; stack = stack->next)
2704 if (insn == stack->first)
2706 stack->first = next;
2707 break;
2710 if (stack == 0)
2711 abort ();
2714 if (next)
2716 PREV_INSN (next) = prev;
2717 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
2718 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
2720 else if (last_insn == insn)
2721 last_insn = prev;
2722 else
2724 struct sequence_stack *stack = seq_stack;
2725 /* Scan all pending sequences too. */
2726 for (; stack; stack = stack->next)
2727 if (insn == stack->last)
2729 stack->last = prev;
2730 break;
2733 if (stack == 0)
2734 abort ();
2738 /* Delete all insns made since FROM.
2739 FROM becomes the new last instruction. */
2741 void
2742 delete_insns_since (from)
2743 rtx from;
2745 if (from == 0)
2746 first_insn = 0;
2747 else
2748 NEXT_INSN (from) = 0;
2749 last_insn = from;
2752 /* This function is deprecated, please use sequences instead.
2754 Move a consecutive bunch of insns to a different place in the chain.
2755 The insns to be moved are those between FROM and TO.
2756 They are moved to a new position after the insn AFTER.
2757 AFTER must not be FROM or TO or any insn in between.
2759 This function does not know about SEQUENCEs and hence should not be
2760 called after delay-slot filling has been done. */
2762 void
2763 reorder_insns (from, to, after)
2764 rtx from, to, after;
2766 /* Splice this bunch out of where it is now. */
2767 if (PREV_INSN (from))
2768 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
2769 if (NEXT_INSN (to))
2770 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
2771 if (last_insn == to)
2772 last_insn = PREV_INSN (from);
2773 if (first_insn == from)
2774 first_insn = NEXT_INSN (to);
2776 /* Make the new neighbors point to it and it to them. */
2777 if (NEXT_INSN (after))
2778 PREV_INSN (NEXT_INSN (after)) = to;
2780 NEXT_INSN (to) = NEXT_INSN (after);
2781 PREV_INSN (from) = after;
2782 NEXT_INSN (after) = from;
2783 if (after == last_insn)
2784 last_insn = to;
2787 /* Return the line note insn preceding INSN. */
2789 static rtx
2790 find_line_note (insn)
2791 rtx insn;
2793 if (no_line_numbers)
2794 return 0;
2796 for (; insn; insn = PREV_INSN (insn))
2797 if (GET_CODE (insn) == NOTE
2798 && NOTE_LINE_NUMBER (insn) >= 0)
2799 break;
2801 return insn;
2804 /* Like reorder_insns, but inserts line notes to preserve the line numbers
2805 of the moved insns when debugging. This may insert a note between AFTER
2806 and FROM, and another one after TO. */
2808 void
2809 reorder_insns_with_line_notes (from, to, after)
2810 rtx from, to, after;
2812 rtx from_line = find_line_note (from);
2813 rtx after_line = find_line_note (after);
2815 reorder_insns (from, to, after);
2817 if (from_line == after_line)
2818 return;
2820 if (from_line)
2821 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
2822 NOTE_LINE_NUMBER (from_line),
2823 after);
2824 if (after_line)
2825 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
2826 NOTE_LINE_NUMBER (after_line),
2827 to);
2830 /* Remove unnecessary notes from the instruction stream. */
2832 void
2833 remove_unnecessary_notes ()
2835 rtx insn;
2836 rtx next;
2838 /* We must not remove the first instruction in the function because
2839 the compiler depends on the first instruction being a note. */
2840 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
2842 /* Remember what's next. */
2843 next = NEXT_INSN (insn);
2845 /* We're only interested in notes. */
2846 if (GET_CODE (insn) != NOTE)
2847 continue;
2849 /* By now, all notes indicating lexical blocks should have
2850 NOTE_BLOCK filled in. */
2851 if ((NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
2852 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
2853 && NOTE_BLOCK (insn) == NULL_TREE)
2854 abort ();
2856 /* Remove NOTE_INSN_DELETED notes. */
2857 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED)
2858 remove_insn (insn);
2859 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
2861 /* Scan back to see if there are any non-note instructions
2862 between INSN and the beginning of this block. If not,
2863 then there is no PC range in the generated code that will
2864 actually be in this block, so there's no point in
2865 remembering the existence of the block. */
2866 rtx prev;
2868 for (prev = PREV_INSN (insn); prev; prev = PREV_INSN (prev))
2870 /* This block contains a real instruction. Note that we
2871 don't include labels; if the only thing in the block
2872 is a label, then there are still no PC values that
2873 lie within the block. */
2874 if (INSN_P (prev))
2875 break;
2877 /* We're only interested in NOTEs. */
2878 if (GET_CODE (prev) != NOTE)
2879 continue;
2881 if (NOTE_LINE_NUMBER (prev) == NOTE_INSN_BLOCK_BEG)
2883 /* If the BLOCKs referred to by these notes don't
2884 match, then something is wrong with our BLOCK
2885 nesting structure. */
2886 if (NOTE_BLOCK (prev) != NOTE_BLOCK (insn))
2887 abort ();
2889 if (debug_ignore_block (NOTE_BLOCK (insn)))
2891 remove_insn (prev);
2892 remove_insn (insn);
2894 break;
2896 else if (NOTE_LINE_NUMBER (prev) == NOTE_INSN_BLOCK_END)
2897 /* There's a nested block. We need to leave the
2898 current block in place since otherwise the debugger
2899 wouldn't be able to show symbols from our block in
2900 the nested block. */
2901 break;
2908 /* Emit an insn of given code and pattern
2909 at a specified place within the doubly-linked list. */
2911 /* Make an instruction with body PATTERN
2912 and output it before the instruction BEFORE. */
2915 emit_insn_before (pattern, before)
2916 register rtx pattern, before;
2918 register rtx insn = before;
2920 if (GET_CODE (pattern) == SEQUENCE)
2922 register int i;
2924 for (i = 0; i < XVECLEN (pattern, 0); i++)
2926 insn = XVECEXP (pattern, 0, i);
2927 add_insn_before (insn, before);
2930 else
2932 insn = make_insn_raw (pattern);
2933 add_insn_before (insn, before);
2936 return insn;
2939 /* Similar to emit_insn_before, but update basic block boundaries as well. */
2942 emit_block_insn_before (pattern, before, block)
2943 rtx pattern, before;
2944 basic_block block;
2946 rtx prev = PREV_INSN (before);
2947 rtx r = emit_insn_before (pattern, before);
2948 if (block && block->head == before)
2949 block->head = NEXT_INSN (prev);
2950 return r;
2953 /* Make an instruction with body PATTERN and code JUMP_INSN
2954 and output it before the instruction BEFORE. */
2957 emit_jump_insn_before (pattern, before)
2958 register rtx pattern, before;
2960 register rtx insn;
2962 if (GET_CODE (pattern) == SEQUENCE)
2963 insn = emit_insn_before (pattern, before);
2964 else
2966 insn = make_jump_insn_raw (pattern);
2967 add_insn_before (insn, before);
2970 return insn;
2973 /* Make an instruction with body PATTERN and code CALL_INSN
2974 and output it before the instruction BEFORE. */
2977 emit_call_insn_before (pattern, before)
2978 register rtx pattern, before;
2980 register rtx insn;
2982 if (GET_CODE (pattern) == SEQUENCE)
2983 insn = emit_insn_before (pattern, before);
2984 else
2986 insn = make_call_insn_raw (pattern);
2987 add_insn_before (insn, before);
2988 PUT_CODE (insn, CALL_INSN);
2991 return insn;
2994 /* Make an insn of code BARRIER
2995 and output it before the insn BEFORE. */
2998 emit_barrier_before (before)
2999 register rtx before;
3001 register rtx insn = rtx_alloc (BARRIER);
3003 INSN_UID (insn) = cur_insn_uid++;
3005 add_insn_before (insn, before);
3006 return insn;
3009 /* Emit the label LABEL before the insn BEFORE. */
3012 emit_label_before (label, before)
3013 rtx label, before;
3015 /* This can be called twice for the same label as a result of the
3016 confusion that follows a syntax error! So make it harmless. */
3017 if (INSN_UID (label) == 0)
3019 INSN_UID (label) = cur_insn_uid++;
3020 add_insn_before (label, before);
3023 return label;
3026 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
3029 emit_note_before (subtype, before)
3030 int subtype;
3031 rtx before;
3033 register rtx note = rtx_alloc (NOTE);
3034 INSN_UID (note) = cur_insn_uid++;
3035 NOTE_SOURCE_FILE (note) = 0;
3036 NOTE_LINE_NUMBER (note) = subtype;
3038 add_insn_before (note, before);
3039 return note;
3042 /* Make an insn of code INSN with body PATTERN
3043 and output it after the insn AFTER. */
3046 emit_insn_after (pattern, after)
3047 register rtx pattern, after;
3049 register rtx insn = after;
3051 if (GET_CODE (pattern) == SEQUENCE)
3053 register int i;
3055 for (i = 0; i < XVECLEN (pattern, 0); i++)
3057 insn = XVECEXP (pattern, 0, i);
3058 add_insn_after (insn, after);
3059 after = insn;
3062 else
3064 insn = make_insn_raw (pattern);
3065 add_insn_after (insn, after);
3068 return insn;
3071 /* Similar to emit_insn_after, except that line notes are to be inserted so
3072 as to act as if this insn were at FROM. */
3074 void
3075 emit_insn_after_with_line_notes (pattern, after, from)
3076 rtx pattern, after, from;
3078 rtx from_line = find_line_note (from);
3079 rtx after_line = find_line_note (after);
3080 rtx insn = emit_insn_after (pattern, after);
3082 if (from_line)
3083 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
3084 NOTE_LINE_NUMBER (from_line),
3085 after);
3087 if (after_line)
3088 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
3089 NOTE_LINE_NUMBER (after_line),
3090 insn);
3093 /* Similar to emit_insn_after, but update basic block boundaries as well. */
3096 emit_block_insn_after (pattern, after, block)
3097 rtx pattern, after;
3098 basic_block block;
3100 rtx r = emit_insn_after (pattern, after);
3101 if (block && block->end == after)
3102 block->end = r;
3103 return r;
3106 /* Make an insn of code JUMP_INSN with body PATTERN
3107 and output it after the insn AFTER. */
3110 emit_jump_insn_after (pattern, after)
3111 register rtx pattern, after;
3113 register rtx insn;
3115 if (GET_CODE (pattern) == SEQUENCE)
3116 insn = emit_insn_after (pattern, after);
3117 else
3119 insn = make_jump_insn_raw (pattern);
3120 add_insn_after (insn, after);
3123 return insn;
3126 /* Make an insn of code BARRIER
3127 and output it after the insn AFTER. */
3130 emit_barrier_after (after)
3131 register rtx after;
3133 register rtx insn = rtx_alloc (BARRIER);
3135 INSN_UID (insn) = cur_insn_uid++;
3137 add_insn_after (insn, after);
3138 return insn;
3141 /* Emit the label LABEL after the insn AFTER. */
3144 emit_label_after (label, after)
3145 rtx label, after;
3147 /* This can be called twice for the same label
3148 as a result of the confusion that follows a syntax error!
3149 So make it harmless. */
3150 if (INSN_UID (label) == 0)
3152 INSN_UID (label) = cur_insn_uid++;
3153 add_insn_after (label, after);
3156 return label;
3159 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
3162 emit_note_after (subtype, after)
3163 int subtype;
3164 rtx after;
3166 register rtx note = rtx_alloc (NOTE);
3167 INSN_UID (note) = cur_insn_uid++;
3168 NOTE_SOURCE_FILE (note) = 0;
3169 NOTE_LINE_NUMBER (note) = subtype;
3170 add_insn_after (note, after);
3171 return note;
3174 /* Emit a line note for FILE and LINE after the insn AFTER. */
3177 emit_line_note_after (file, line, after)
3178 const char *file;
3179 int line;
3180 rtx after;
3182 register rtx note;
3184 if (no_line_numbers && line > 0)
3186 cur_insn_uid++;
3187 return 0;
3190 note = rtx_alloc (NOTE);
3191 INSN_UID (note) = cur_insn_uid++;
3192 NOTE_SOURCE_FILE (note) = file;
3193 NOTE_LINE_NUMBER (note) = line;
3194 add_insn_after (note, after);
3195 return note;
3198 /* Make an insn of code INSN with pattern PATTERN
3199 and add it to the end of the doubly-linked list.
3200 If PATTERN is a SEQUENCE, take the elements of it
3201 and emit an insn for each element.
3203 Returns the last insn emitted. */
3206 emit_insn (pattern)
3207 rtx pattern;
3209 rtx insn = last_insn;
3211 if (GET_CODE (pattern) == SEQUENCE)
3213 register int i;
3215 for (i = 0; i < XVECLEN (pattern, 0); i++)
3217 insn = XVECEXP (pattern, 0, i);
3218 add_insn (insn);
3221 else
3223 insn = make_insn_raw (pattern);
3224 add_insn (insn);
3227 return insn;
3230 /* Emit the insns in a chain starting with INSN.
3231 Return the last insn emitted. */
3234 emit_insns (insn)
3235 rtx insn;
3237 rtx last = 0;
3239 while (insn)
3241 rtx next = NEXT_INSN (insn);
3242 add_insn (insn);
3243 last = insn;
3244 insn = next;
3247 return last;
3250 /* Emit the insns in a chain starting with INSN and place them in front of
3251 the insn BEFORE. Return the last insn emitted. */
3254 emit_insns_before (insn, before)
3255 rtx insn;
3256 rtx before;
3258 rtx last = 0;
3260 while (insn)
3262 rtx next = NEXT_INSN (insn);
3263 add_insn_before (insn, before);
3264 last = insn;
3265 insn = next;
3268 return last;
3271 /* Emit the insns in a chain starting with FIRST and place them in back of
3272 the insn AFTER. Return the last insn emitted. */
3275 emit_insns_after (first, after)
3276 register rtx first;
3277 register rtx after;
3279 register rtx last;
3280 register rtx after_after;
3282 if (!after)
3283 abort ();
3285 if (!first)
3286 return first;
3288 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
3289 continue;
3291 after_after = NEXT_INSN (after);
3293 NEXT_INSN (after) = first;
3294 PREV_INSN (first) = after;
3295 NEXT_INSN (last) = after_after;
3296 if (after_after)
3297 PREV_INSN (after_after) = last;
3299 if (after == last_insn)
3300 last_insn = last;
3301 return last;
3304 /* Make an insn of code JUMP_INSN with pattern PATTERN
3305 and add it to the end of the doubly-linked list. */
3308 emit_jump_insn (pattern)
3309 rtx pattern;
3311 if (GET_CODE (pattern) == SEQUENCE)
3312 return emit_insn (pattern);
3313 else
3315 register rtx insn = make_jump_insn_raw (pattern);
3316 add_insn (insn);
3317 return insn;
3321 /* Make an insn of code CALL_INSN with pattern PATTERN
3322 and add it to the end of the doubly-linked list. */
3325 emit_call_insn (pattern)
3326 rtx pattern;
3328 if (GET_CODE (pattern) == SEQUENCE)
3329 return emit_insn (pattern);
3330 else
3332 register rtx insn = make_call_insn_raw (pattern);
3333 add_insn (insn);
3334 PUT_CODE (insn, CALL_INSN);
3335 return insn;
3339 /* Add the label LABEL to the end of the doubly-linked list. */
3342 emit_label (label)
3343 rtx label;
3345 /* This can be called twice for the same label
3346 as a result of the confusion that follows a syntax error!
3347 So make it harmless. */
3348 if (INSN_UID (label) == 0)
3350 INSN_UID (label) = cur_insn_uid++;
3351 add_insn (label);
3353 return label;
3356 /* Make an insn of code BARRIER
3357 and add it to the end of the doubly-linked list. */
3360 emit_barrier ()
3362 register rtx barrier = rtx_alloc (BARRIER);
3363 INSN_UID (barrier) = cur_insn_uid++;
3364 add_insn (barrier);
3365 return barrier;
3368 /* Make an insn of code NOTE
3369 with data-fields specified by FILE and LINE
3370 and add it to the end of the doubly-linked list,
3371 but only if line-numbers are desired for debugging info. */
3374 emit_line_note (file, line)
3375 const char *file;
3376 int line;
3378 set_file_and_line_for_stmt (file, line);
3380 #if 0
3381 if (no_line_numbers)
3382 return 0;
3383 #endif
3385 return emit_note (file, line);
3388 /* Make an insn of code NOTE
3389 with data-fields specified by FILE and LINE
3390 and add it to the end of the doubly-linked list.
3391 If it is a line-number NOTE, omit it if it matches the previous one. */
3394 emit_note (file, line)
3395 const char *file;
3396 int line;
3398 register rtx note;
3400 if (line > 0)
3402 if (file && last_filename && !strcmp (file, last_filename)
3403 && line == last_linenum)
3404 return 0;
3405 last_filename = file;
3406 last_linenum = line;
3409 if (no_line_numbers && line > 0)
3411 cur_insn_uid++;
3412 return 0;
3415 note = rtx_alloc (NOTE);
3416 INSN_UID (note) = cur_insn_uid++;
3417 NOTE_SOURCE_FILE (note) = file;
3418 NOTE_LINE_NUMBER (note) = line;
3419 add_insn (note);
3420 return note;
3423 /* Emit a NOTE, and don't omit it even if LINE is the previous note. */
3426 emit_line_note_force (file, line)
3427 const char *file;
3428 int line;
3430 last_linenum = -1;
3431 return emit_line_note (file, line);
3434 /* Cause next statement to emit a line note even if the line number
3435 has not changed. This is used at the beginning of a function. */
3437 void
3438 force_next_line_note ()
3440 last_linenum = -1;
3443 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
3444 note of this type already exists, remove it first. */
3446 void
3447 set_unique_reg_note (insn, kind, datum)
3448 rtx insn;
3449 enum reg_note kind;
3450 rtx datum;
3452 rtx note = find_reg_note (insn, kind, NULL_RTX);
3454 /* First remove the note if there already is one. */
3455 if (note)
3456 remove_note (insn, note);
3458 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
3461 /* Return an indication of which type of insn should have X as a body.
3462 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
3464 enum rtx_code
3465 classify_insn (x)
3466 rtx x;
3468 if (GET_CODE (x) == CODE_LABEL)
3469 return CODE_LABEL;
3470 if (GET_CODE (x) == CALL)
3471 return CALL_INSN;
3472 if (GET_CODE (x) == RETURN)
3473 return JUMP_INSN;
3474 if (GET_CODE (x) == SET)
3476 if (SET_DEST (x) == pc_rtx)
3477 return JUMP_INSN;
3478 else if (GET_CODE (SET_SRC (x)) == CALL)
3479 return CALL_INSN;
3480 else
3481 return INSN;
3483 if (GET_CODE (x) == PARALLEL)
3485 register int j;
3486 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
3487 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
3488 return CALL_INSN;
3489 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
3490 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
3491 return JUMP_INSN;
3492 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
3493 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
3494 return CALL_INSN;
3496 return INSN;
3499 /* Emit the rtl pattern X as an appropriate kind of insn.
3500 If X is a label, it is simply added into the insn chain. */
3503 emit (x)
3504 rtx x;
3506 enum rtx_code code = classify_insn (x);
3508 if (code == CODE_LABEL)
3509 return emit_label (x);
3510 else if (code == INSN)
3511 return emit_insn (x);
3512 else if (code == JUMP_INSN)
3514 register rtx insn = emit_jump_insn (x);
3515 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
3516 return emit_barrier ();
3517 return insn;
3519 else if (code == CALL_INSN)
3520 return emit_call_insn (x);
3521 else
3522 abort ();
3525 /* Begin emitting insns to a sequence which can be packaged in an
3526 RTL_EXPR. If this sequence will contain something that might cause
3527 the compiler to pop arguments to function calls (because those
3528 pops have previously been deferred; see INHIBIT_DEFER_POP for more
3529 details), use do_pending_stack_adjust before calling this function.
3530 That will ensure that the deferred pops are not accidentally
3531 emitted in the middle of this sequence. */
3533 void
3534 start_sequence ()
3536 struct sequence_stack *tem;
3538 tem = (struct sequence_stack *) xmalloc (sizeof (struct sequence_stack));
3540 tem->next = seq_stack;
3541 tem->first = first_insn;
3542 tem->last = last_insn;
3543 tem->sequence_rtl_expr = seq_rtl_expr;
3545 seq_stack = tem;
3547 first_insn = 0;
3548 last_insn = 0;
3551 /* Similarly, but indicate that this sequence will be placed in T, an
3552 RTL_EXPR. See the documentation for start_sequence for more
3553 information about how to use this function. */
3555 void
3556 start_sequence_for_rtl_expr (t)
3557 tree t;
3559 start_sequence ();
3561 seq_rtl_expr = t;
3564 /* Set up the insn chain starting with FIRST as the current sequence,
3565 saving the previously current one. See the documentation for
3566 start_sequence for more information about how to use this function. */
3568 void
3569 push_to_sequence (first)
3570 rtx first;
3572 rtx last;
3574 start_sequence ();
3576 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
3578 first_insn = first;
3579 last_insn = last;
3582 /* Set up the insn chain from a chain stort in FIRST to LAST. */
3584 void
3585 push_to_full_sequence (first, last)
3586 rtx first, last;
3588 start_sequence ();
3589 first_insn = first;
3590 last_insn = last;
3591 /* We really should have the end of the insn chain here. */
3592 if (last && NEXT_INSN (last))
3593 abort ();
3596 /* Set up the outer-level insn chain
3597 as the current sequence, saving the previously current one. */
3599 void
3600 push_topmost_sequence ()
3602 struct sequence_stack *stack, *top = NULL;
3604 start_sequence ();
3606 for (stack = seq_stack; stack; stack = stack->next)
3607 top = stack;
3609 first_insn = top->first;
3610 last_insn = top->last;
3611 seq_rtl_expr = top->sequence_rtl_expr;
3614 /* After emitting to the outer-level insn chain, update the outer-level
3615 insn chain, and restore the previous saved state. */
3617 void
3618 pop_topmost_sequence ()
3620 struct sequence_stack *stack, *top = NULL;
3622 for (stack = seq_stack; stack; stack = stack->next)
3623 top = stack;
3625 top->first = first_insn;
3626 top->last = last_insn;
3627 /* ??? Why don't we save seq_rtl_expr here? */
3629 end_sequence ();
3632 /* After emitting to a sequence, restore previous saved state.
3634 To get the contents of the sequence just made, you must call
3635 `gen_sequence' *before* calling here.
3637 If the compiler might have deferred popping arguments while
3638 generating this sequence, and this sequence will not be immediately
3639 inserted into the instruction stream, use do_pending_stack_adjust
3640 before calling gen_sequence. That will ensure that the deferred
3641 pops are inserted into this sequence, and not into some random
3642 location in the instruction stream. See INHIBIT_DEFER_POP for more
3643 information about deferred popping of arguments. */
3645 void
3646 end_sequence ()
3648 struct sequence_stack *tem = seq_stack;
3650 first_insn = tem->first;
3651 last_insn = tem->last;
3652 seq_rtl_expr = tem->sequence_rtl_expr;
3653 seq_stack = tem->next;
3655 free (tem);
3658 /* This works like end_sequence, but records the old sequence in FIRST
3659 and LAST. */
3661 void
3662 end_full_sequence (first, last)
3663 rtx *first, *last;
3665 *first = first_insn;
3666 *last = last_insn;
3667 end_sequence();
3670 /* Return 1 if currently emitting into a sequence. */
3673 in_sequence_p ()
3675 return seq_stack != 0;
3678 /* Generate a SEQUENCE rtx containing the insns already emitted
3679 to the current sequence.
3681 This is how the gen_... function from a DEFINE_EXPAND
3682 constructs the SEQUENCE that it returns. */
3685 gen_sequence ()
3687 rtx result;
3688 rtx tem;
3689 int i;
3690 int len;
3692 /* Count the insns in the chain. */
3693 len = 0;
3694 for (tem = first_insn; tem; tem = NEXT_INSN (tem))
3695 len++;
3697 /* If only one insn, return it rather than a SEQUENCE.
3698 (Now that we cache SEQUENCE expressions, it isn't worth special-casing
3699 the case of an empty list.)
3700 We only return the pattern of an insn if its code is INSN and it
3701 has no notes. This ensures that no information gets lost. */
3702 if (len == 1
3703 && ! RTX_FRAME_RELATED_P (first_insn)
3704 && GET_CODE (first_insn) == INSN
3705 /* Don't throw away any reg notes. */
3706 && REG_NOTES (first_insn) == 0)
3707 return PATTERN (first_insn);
3709 result = gen_rtx_SEQUENCE (VOIDmode, rtvec_alloc (len));
3711 for (i = 0, tem = first_insn; tem; tem = NEXT_INSN (tem), i++)
3712 XVECEXP (result, 0, i) = tem;
3714 return result;
3717 /* Put the various virtual registers into REGNO_REG_RTX. */
3719 void
3720 init_virtual_regs (es)
3721 struct emit_status *es;
3723 rtx *ptr = es->x_regno_reg_rtx;
3724 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
3725 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
3726 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
3727 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
3728 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
3731 void
3732 clear_emit_caches ()
3734 int i;
3736 /* Clear the start_sequence/gen_sequence cache. */
3737 for (i = 0; i < SEQUENCE_RESULT_SIZE; i++)
3738 sequence_result[i] = 0;
3739 free_insn = 0;
3742 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
3743 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
3744 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
3745 static int copy_insn_n_scratches;
3747 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
3748 copied an ASM_OPERANDS.
3749 In that case, it is the original input-operand vector. */
3750 static rtvec orig_asm_operands_vector;
3752 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
3753 copied an ASM_OPERANDS.
3754 In that case, it is the copied input-operand vector. */
3755 static rtvec copy_asm_operands_vector;
3757 /* Likewise for the constraints vector. */
3758 static rtvec orig_asm_constraints_vector;
3759 static rtvec copy_asm_constraints_vector;
3761 /* Recursively create a new copy of an rtx for copy_insn.
3762 This function differs from copy_rtx in that it handles SCRATCHes and
3763 ASM_OPERANDs properly.
3764 Normally, this function is not used directly; use copy_insn as front end.
3765 However, you could first copy an insn pattern with copy_insn and then use
3766 this function afterwards to properly copy any REG_NOTEs containing
3767 SCRATCHes. */
3770 copy_insn_1 (orig)
3771 register rtx orig;
3773 register rtx copy;
3774 register int i, j;
3775 register RTX_CODE code;
3776 register const char *format_ptr;
3778 code = GET_CODE (orig);
3780 switch (code)
3782 case REG:
3783 case QUEUED:
3784 case CONST_INT:
3785 case CONST_DOUBLE:
3786 case SYMBOL_REF:
3787 case CODE_LABEL:
3788 case PC:
3789 case CC0:
3790 case ADDRESSOF:
3791 return orig;
3793 case SCRATCH:
3794 for (i = 0; i < copy_insn_n_scratches; i++)
3795 if (copy_insn_scratch_in[i] == orig)
3796 return copy_insn_scratch_out[i];
3797 break;
3799 case CONST:
3800 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
3801 a LABEL_REF, it isn't sharable. */
3802 if (GET_CODE (XEXP (orig, 0)) == PLUS
3803 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
3804 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
3805 return orig;
3806 break;
3808 /* A MEM with a constant address is not sharable. The problem is that
3809 the constant address may need to be reloaded. If the mem is shared,
3810 then reloading one copy of this mem will cause all copies to appear
3811 to have been reloaded. */
3813 default:
3814 break;
3817 copy = rtx_alloc (code);
3819 /* Copy the various flags, and other information. We assume that
3820 all fields need copying, and then clear the fields that should
3821 not be copied. That is the sensible default behavior, and forces
3822 us to explicitly document why we are *not* copying a flag. */
3823 memcpy (copy, orig, sizeof (struct rtx_def) - sizeof (rtunion));
3825 /* We do not copy the USED flag, which is used as a mark bit during
3826 walks over the RTL. */
3827 copy->used = 0;
3829 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
3830 if (GET_RTX_CLASS (code) == 'i')
3832 copy->jump = 0;
3833 copy->call = 0;
3834 copy->frame_related = 0;
3837 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
3839 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
3841 copy->fld[i] = orig->fld[i];
3842 switch (*format_ptr++)
3844 case 'e':
3845 if (XEXP (orig, i) != NULL)
3846 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
3847 break;
3849 case 'E':
3850 case 'V':
3851 if (XVEC (orig, i) == orig_asm_constraints_vector)
3852 XVEC (copy, i) = copy_asm_constraints_vector;
3853 else if (XVEC (orig, i) == orig_asm_operands_vector)
3854 XVEC (copy, i) = copy_asm_operands_vector;
3855 else if (XVEC (orig, i) != NULL)
3857 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
3858 for (j = 0; j < XVECLEN (copy, i); j++)
3859 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
3861 break;
3863 case 't':
3864 case 'w':
3865 case 'i':
3866 case 's':
3867 case 'S':
3868 case 'u':
3869 case '0':
3870 /* These are left unchanged. */
3871 break;
3873 default:
3874 abort ();
3878 if (code == SCRATCH)
3880 i = copy_insn_n_scratches++;
3881 if (i >= MAX_RECOG_OPERANDS)
3882 abort ();
3883 copy_insn_scratch_in[i] = orig;
3884 copy_insn_scratch_out[i] = copy;
3886 else if (code == ASM_OPERANDS)
3888 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
3889 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
3890 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
3891 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
3894 return copy;
3897 /* Create a new copy of an rtx.
3898 This function differs from copy_rtx in that it handles SCRATCHes and
3899 ASM_OPERANDs properly.
3900 INSN doesn't really have to be a full INSN; it could be just the
3901 pattern. */
3903 copy_insn (insn)
3904 rtx insn;
3906 copy_insn_n_scratches = 0;
3907 orig_asm_operands_vector = 0;
3908 orig_asm_constraints_vector = 0;
3909 copy_asm_operands_vector = 0;
3910 copy_asm_constraints_vector = 0;
3911 return copy_insn_1 (insn);
3914 /* Initialize data structures and variables in this file
3915 before generating rtl for each function. */
3917 void
3918 init_emit ()
3920 struct function *f = cfun;
3922 f->emit = (struct emit_status *) xmalloc (sizeof (struct emit_status));
3923 first_insn = NULL;
3924 last_insn = NULL;
3925 seq_rtl_expr = NULL;
3926 cur_insn_uid = 1;
3927 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
3928 last_linenum = 0;
3929 last_filename = 0;
3930 first_label_num = label_num;
3931 last_label_num = 0;
3932 seq_stack = NULL;
3934 clear_emit_caches ();
3936 /* Init the tables that describe all the pseudo regs. */
3938 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
3940 f->emit->regno_pointer_align
3941 = (unsigned char *) xcalloc (f->emit->regno_pointer_align_length,
3942 sizeof (unsigned char));
3944 regno_reg_rtx
3945 = (rtx *) xcalloc (f->emit->regno_pointer_align_length * sizeof (rtx),
3946 sizeof (rtx));
3948 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
3949 init_virtual_regs (f->emit);
3951 /* Indicate that the virtual registers and stack locations are
3952 all pointers. */
3953 REG_POINTER (stack_pointer_rtx) = 1;
3954 REG_POINTER (frame_pointer_rtx) = 1;
3955 REG_POINTER (hard_frame_pointer_rtx) = 1;
3956 REG_POINTER (arg_pointer_rtx) = 1;
3958 REG_POINTER (virtual_incoming_args_rtx) = 1;
3959 REG_POINTER (virtual_stack_vars_rtx) = 1;
3960 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
3961 REG_POINTER (virtual_outgoing_args_rtx) = 1;
3962 REG_POINTER (virtual_cfa_rtx) = 1;
3964 #ifdef STACK_BOUNDARY
3965 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
3966 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
3967 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
3968 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
3970 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
3971 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
3972 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
3973 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
3974 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
3975 #endif
3977 #ifdef INIT_EXPANDERS
3978 INIT_EXPANDERS;
3979 #endif
3982 /* Mark SS for GC. */
3984 static void
3985 mark_sequence_stack (ss)
3986 struct sequence_stack *ss;
3988 while (ss)
3990 ggc_mark_rtx (ss->first);
3991 ggc_mark_tree (ss->sequence_rtl_expr);
3992 ss = ss->next;
3996 /* Mark ES for GC. */
3998 void
3999 mark_emit_status (es)
4000 struct emit_status *es;
4002 rtx *r;
4003 int i;
4005 if (es == 0)
4006 return;
4008 for (i = es->regno_pointer_align_length, r = es->x_regno_reg_rtx;
4009 i > 0; --i, ++r)
4010 ggc_mark_rtx (*r);
4012 mark_sequence_stack (es->sequence_stack);
4013 ggc_mark_tree (es->sequence_rtl_expr);
4014 ggc_mark_rtx (es->x_first_insn);
4017 /* Create some permanent unique rtl objects shared between all functions.
4018 LINE_NUMBERS is nonzero if line numbers are to be generated. */
4020 void
4021 init_emit_once (line_numbers)
4022 int line_numbers;
4024 int i;
4025 enum machine_mode mode;
4026 enum machine_mode double_mode;
4028 /* Initialize the CONST_INT hash table. */
4029 const_int_htab = htab_create (37, const_int_htab_hash,
4030 const_int_htab_eq, NULL);
4031 ggc_add_root (&const_int_htab, 1, sizeof (const_int_htab),
4032 rtx_htab_mark);
4034 no_line_numbers = ! line_numbers;
4036 /* Compute the word and byte modes. */
4038 byte_mode = VOIDmode;
4039 word_mode = VOIDmode;
4040 double_mode = VOIDmode;
4042 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
4043 mode = GET_MODE_WIDER_MODE (mode))
4045 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
4046 && byte_mode == VOIDmode)
4047 byte_mode = mode;
4049 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
4050 && word_mode == VOIDmode)
4051 word_mode = mode;
4054 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
4055 mode = GET_MODE_WIDER_MODE (mode))
4057 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
4058 && double_mode == VOIDmode)
4059 double_mode = mode;
4062 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
4064 /* Assign register numbers to the globally defined register rtx.
4065 This must be done at runtime because the register number field
4066 is in a union and some compilers can't initialize unions. */
4068 pc_rtx = gen_rtx (PC, VOIDmode);
4069 cc0_rtx = gen_rtx (CC0, VOIDmode);
4070 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
4071 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
4072 if (hard_frame_pointer_rtx == 0)
4073 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
4074 HARD_FRAME_POINTER_REGNUM);
4075 if (arg_pointer_rtx == 0)
4076 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
4077 virtual_incoming_args_rtx =
4078 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
4079 virtual_stack_vars_rtx =
4080 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
4081 virtual_stack_dynamic_rtx =
4082 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
4083 virtual_outgoing_args_rtx =
4084 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
4085 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
4087 /* These rtx must be roots if GC is enabled. */
4088 ggc_add_rtx_root (global_rtl, GR_MAX);
4090 #ifdef INIT_EXPANDERS
4091 /* This is to initialize save_machine_status and restore_machine_status before
4092 the first call to push_function_context_to. This is needed by the Chill
4093 front end which calls push_function_context_to before the first cal to
4094 init_function_start. */
4095 INIT_EXPANDERS;
4096 #endif
4098 /* Create the unique rtx's for certain rtx codes and operand values. */
4100 /* Don't use gen_rtx here since gen_rtx in this case
4101 tries to use these variables. */
4102 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
4103 const_int_rtx[i + MAX_SAVED_CONST_INT] =
4104 gen_rtx_raw_CONST_INT (VOIDmode, i);
4105 ggc_add_rtx_root (const_int_rtx, 2 * MAX_SAVED_CONST_INT + 1);
4107 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
4108 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
4109 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
4110 else
4111 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
4113 dconst0 = REAL_VALUE_ATOF ("0", double_mode);
4114 dconst1 = REAL_VALUE_ATOF ("1", double_mode);
4115 dconst2 = REAL_VALUE_ATOF ("2", double_mode);
4116 dconstm1 = REAL_VALUE_ATOF ("-1", double_mode);
4118 for (i = 0; i <= 2; i++)
4120 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
4121 mode = GET_MODE_WIDER_MODE (mode))
4123 rtx tem = rtx_alloc (CONST_DOUBLE);
4124 union real_extract u;
4126 memset ((char *) &u, 0, sizeof u); /* Zero any holes in a structure. */
4127 u.d = i == 0 ? dconst0 : i == 1 ? dconst1 : dconst2;
4129 memcpy (&CONST_DOUBLE_LOW (tem), &u, sizeof u);
4130 CONST_DOUBLE_MEM (tem) = cc0_rtx;
4131 CONST_DOUBLE_CHAIN (tem) = NULL_RTX;
4132 PUT_MODE (tem, mode);
4134 const_tiny_rtx[i][(int) mode] = tem;
4137 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
4139 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
4140 mode = GET_MODE_WIDER_MODE (mode))
4141 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
4143 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
4144 mode != VOIDmode;
4145 mode = GET_MODE_WIDER_MODE (mode))
4146 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
4149 for (mode = CCmode; mode < MAX_MACHINE_MODE; ++mode)
4150 if (GET_MODE_CLASS (mode) == MODE_CC)
4151 const_tiny_rtx[0][(int) mode] = const0_rtx;
4153 const_tiny_rtx[0][(int) BImode] = const0_rtx;
4154 if (STORE_FLAG_VALUE == 1)
4155 const_tiny_rtx[1][(int) BImode] = const1_rtx;
4157 /* For bounded pointers, `&const_tiny_rtx[0][0]' is not the same as
4158 `(rtx *) const_tiny_rtx'. The former has bounds that only cover
4159 `const_tiny_rtx[0]', whereas the latter has bounds that cover all. */
4160 ggc_add_rtx_root ((rtx *) const_tiny_rtx, sizeof const_tiny_rtx / sizeof (rtx));
4161 ggc_add_rtx_root (&const_true_rtx, 1);
4163 #ifdef RETURN_ADDRESS_POINTER_REGNUM
4164 return_address_pointer_rtx
4165 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
4166 #endif
4168 #ifdef STRUCT_VALUE
4169 struct_value_rtx = STRUCT_VALUE;
4170 #else
4171 struct_value_rtx = gen_rtx_REG (Pmode, STRUCT_VALUE_REGNUM);
4172 #endif
4174 #ifdef STRUCT_VALUE_INCOMING
4175 struct_value_incoming_rtx = STRUCT_VALUE_INCOMING;
4176 #else
4177 #ifdef STRUCT_VALUE_INCOMING_REGNUM
4178 struct_value_incoming_rtx
4179 = gen_rtx_REG (Pmode, STRUCT_VALUE_INCOMING_REGNUM);
4180 #else
4181 struct_value_incoming_rtx = struct_value_rtx;
4182 #endif
4183 #endif
4185 #ifdef STATIC_CHAIN_REGNUM
4186 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
4188 #ifdef STATIC_CHAIN_INCOMING_REGNUM
4189 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
4190 static_chain_incoming_rtx
4191 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
4192 else
4193 #endif
4194 static_chain_incoming_rtx = static_chain_rtx;
4195 #endif
4197 #ifdef STATIC_CHAIN
4198 static_chain_rtx = STATIC_CHAIN;
4200 #ifdef STATIC_CHAIN_INCOMING
4201 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
4202 #else
4203 static_chain_incoming_rtx = static_chain_rtx;
4204 #endif
4205 #endif
4207 #ifdef PIC_OFFSET_TABLE_REGNUM
4208 pic_offset_table_rtx = gen_rtx_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
4209 #endif
4211 ggc_add_rtx_root (&pic_offset_table_rtx, 1);
4212 ggc_add_rtx_root (&struct_value_rtx, 1);
4213 ggc_add_rtx_root (&struct_value_incoming_rtx, 1);
4214 ggc_add_rtx_root (&static_chain_rtx, 1);
4215 ggc_add_rtx_root (&static_chain_incoming_rtx, 1);
4216 ggc_add_rtx_root (&return_address_pointer_rtx, 1);
4219 /* Query and clear/ restore no_line_numbers. This is used by the
4220 switch / case handling in stmt.c to give proper line numbers in
4221 warnings about unreachable code. */
4224 force_line_numbers ()
4226 int old = no_line_numbers;
4228 no_line_numbers = 0;
4229 if (old)
4230 force_next_line_note ();
4231 return old;
4234 void
4235 restore_line_number_status (old_value)
4236 int old_value;
4238 no_line_numbers = old_value;