Patch to fix -mcpu=G5 interface to EH runtime library.
[official-gcc.git] / gcc / regclass.c
blob1f51af610c2f135f22113036bd683d6a4d9200c5
1 /* Compute register class preferences for pseudo-registers.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996
3 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
24 /* This file contains two passes of the compiler: reg_scan and reg_class.
25 It also defines some tables of information about the hardware registers
26 and a function init_reg_sets to initialize the tables. */
28 #include "config.h"
29 #include "system.h"
30 #include "coretypes.h"
31 #include "tm.h"
32 #include "hard-reg-set.h"
33 #include "rtl.h"
34 #include "expr.h"
35 #include "tm_p.h"
36 #include "flags.h"
37 #include "basic-block.h"
38 #include "regs.h"
39 #include "function.h"
40 #include "insn-config.h"
41 #include "recog.h"
42 #include "reload.h"
43 #include "real.h"
44 #include "toplev.h"
45 #include "output.h"
46 #include "ggc.h"
47 #include "timevar.h"
49 static void init_reg_sets_1 (void);
50 static void init_reg_autoinc (void);
52 /* If we have auto-increment or auto-decrement and we can have secondary
53 reloads, we are not allowed to use classes requiring secondary
54 reloads for pseudos auto-incremented since reload can't handle it. */
56 #ifdef AUTO_INC_DEC
57 #if defined(SECONDARY_INPUT_RELOAD_CLASS) || defined(SECONDARY_OUTPUT_RELOAD_CLASS)
58 #define FORBIDDEN_INC_DEC_CLASSES
59 #endif
60 #endif
62 /* Register tables used by many passes. */
64 /* Indexed by hard register number, contains 1 for registers
65 that are fixed use (stack pointer, pc, frame pointer, etc.).
66 These are the registers that cannot be used to allocate
67 a pseudo reg for general use. */
69 char fixed_regs[FIRST_PSEUDO_REGISTER];
71 /* Same info as a HARD_REG_SET. */
73 HARD_REG_SET fixed_reg_set;
75 /* Data for initializing the above. */
77 static const char initial_fixed_regs[] = FIXED_REGISTERS;
79 /* Indexed by hard register number, contains 1 for registers
80 that are fixed use or are clobbered by function calls.
81 These are the registers that cannot be used to allocate
82 a pseudo reg whose life crosses calls unless we are able
83 to save/restore them across the calls. */
85 char call_used_regs[FIRST_PSEUDO_REGISTER];
87 /* Same info as a HARD_REG_SET. */
89 HARD_REG_SET call_used_reg_set;
91 /* HARD_REG_SET of registers we want to avoid caller saving. */
92 HARD_REG_SET losing_caller_save_reg_set;
94 /* Data for initializing the above. */
96 static const char initial_call_used_regs[] = CALL_USED_REGISTERS;
98 /* This is much like call_used_regs, except it doesn't have to
99 be a superset of FIXED_REGISTERS. This vector indicates
100 what is really call clobbered, and is used when defining
101 regs_invalidated_by_call. */
103 #ifdef CALL_REALLY_USED_REGISTERS
104 char call_really_used_regs[] = CALL_REALLY_USED_REGISTERS;
105 #endif
107 /* Indexed by hard register number, contains 1 for registers that are
108 fixed use or call used registers that cannot hold quantities across
109 calls even if we are willing to save and restore them. call fixed
110 registers are a subset of call used registers. */
112 char call_fixed_regs[FIRST_PSEUDO_REGISTER];
114 /* The same info as a HARD_REG_SET. */
116 HARD_REG_SET call_fixed_reg_set;
118 /* Number of non-fixed registers. */
120 int n_non_fixed_regs;
122 /* Indexed by hard register number, contains 1 for registers
123 that are being used for global register decls.
124 These must be exempt from ordinary flow analysis
125 and are also considered fixed. */
127 char global_regs[FIRST_PSEUDO_REGISTER];
129 /* Contains 1 for registers that are set or clobbered by calls. */
130 /* ??? Ideally, this would be just call_used_regs plus global_regs, but
131 for someone's bright idea to have call_used_regs strictly include
132 fixed_regs. Which leaves us guessing as to the set of fixed_regs
133 that are actually preserved. We know for sure that those associated
134 with the local stack frame are safe, but scant others. */
136 HARD_REG_SET regs_invalidated_by_call;
138 /* Table of register numbers in the order in which to try to use them. */
139 #ifdef REG_ALLOC_ORDER
140 int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
142 /* The inverse of reg_alloc_order. */
143 int inv_reg_alloc_order[FIRST_PSEUDO_REGISTER];
144 #endif
146 /* For each reg class, a HARD_REG_SET saying which registers are in it. */
148 HARD_REG_SET reg_class_contents[N_REG_CLASSES];
150 /* The same information, but as an array of unsigned ints. We copy from
151 these unsigned ints to the table above. We do this so the tm.h files
152 do not have to be aware of the wordsize for machines with <= 64 regs.
153 Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
155 #define N_REG_INTS \
156 ((FIRST_PSEUDO_REGISTER + (32 - 1)) / 32)
158 static const unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
159 = REG_CLASS_CONTENTS;
161 /* For each reg class, number of regs it contains. */
163 unsigned int reg_class_size[N_REG_CLASSES];
165 /* For each reg class, table listing all the containing classes. */
167 enum reg_class reg_class_superclasses[N_REG_CLASSES][N_REG_CLASSES];
169 /* For each reg class, table listing all the classes contained in it. */
171 enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
173 /* For each pair of reg classes,
174 a largest reg class contained in their union. */
176 enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
178 /* For each pair of reg classes,
179 the smallest reg class containing their union. */
181 enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
183 /* Array containing all of the register names. */
185 const char * reg_names[] = REGISTER_NAMES;
187 /* For each hard register, the widest mode object that it can contain.
188 This will be a MODE_INT mode if the register can hold integers. Otherwise
189 it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
190 register. */
192 enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
194 /* 1 if there is a register of given mode. */
196 bool have_regs_of_mode [MAX_MACHINE_MODE];
198 /* 1 if class does contain register of given mode. */
200 static char contains_reg_of_mode [N_REG_CLASSES] [MAX_MACHINE_MODE];
202 /* Maximum cost of moving from a register in one class to a register in
203 another class. Based on REGISTER_MOVE_COST. */
205 static int move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
207 /* Similar, but here we don't have to move if the first index is a subset
208 of the second so in that case the cost is zero. */
210 static int may_move_in_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
212 /* Similar, but here we don't have to move if the first index is a superset
213 of the second so in that case the cost is zero. */
215 static int may_move_out_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
217 #ifdef FORBIDDEN_INC_DEC_CLASSES
219 /* These are the classes that regs which are auto-incremented or decremented
220 cannot be put in. */
222 static int forbidden_inc_dec_class[N_REG_CLASSES];
224 /* Indexed by n, is nonzero if (REG n) is used in an auto-inc or auto-dec
225 context. */
227 static char *in_inc_dec;
229 #endif /* FORBIDDEN_INC_DEC_CLASSES */
231 #ifdef CANNOT_CHANGE_MODE_CLASS
232 /* All registers that have been subreged. Indexed by regno * MAX_MACHINE_MODE
233 + mode. */
234 bitmap_head subregs_of_mode;
235 #endif
237 /* Sample MEM values for use by memory_move_secondary_cost. */
239 static GTY(()) rtx top_of_stack[MAX_MACHINE_MODE];
241 /* Linked list of reg_info structures allocated for reg_n_info array.
242 Grouping all of the allocated structures together in one lump
243 means only one call to bzero to clear them, rather than n smaller
244 calls. */
245 struct reg_info_data {
246 struct reg_info_data *next; /* next set of reg_info structures */
247 size_t min_index; /* minimum index # */
248 size_t max_index; /* maximum index # */
249 char used_p; /* nonzero if this has been used previously */
250 reg_info data[1]; /* beginning of the reg_info data */
253 static struct reg_info_data *reg_info_head;
255 /* No more global register variables may be declared; true once
256 regclass has been initialized. */
258 static int no_global_reg_vars = 0;
260 /* Specify number of hard registers given machine mode occupy. */
261 unsigned char hard_regno_nregs[FIRST_PSEUDO_REGISTER][MAX_MACHINE_MODE];
263 /* Function called only once to initialize the above data on reg usage.
264 Once this is done, various switches may override. */
266 void
267 init_reg_sets (void)
269 int i, j;
271 /* First copy the register information from the initial int form into
272 the regsets. */
274 for (i = 0; i < N_REG_CLASSES; i++)
276 CLEAR_HARD_REG_SET (reg_class_contents[i]);
278 /* Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
279 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
280 if (int_reg_class_contents[i][j / 32]
281 & ((unsigned) 1 << (j % 32)))
282 SET_HARD_REG_BIT (reg_class_contents[i], j);
285 /* Sanity check: make sure the target macros FIXED_REGISTERS and
286 CALL_USED_REGISTERS had the right number of initializers. */
287 if (sizeof fixed_regs != sizeof initial_fixed_regs
288 || sizeof call_used_regs != sizeof initial_call_used_regs)
289 abort();
291 memcpy (fixed_regs, initial_fixed_regs, sizeof fixed_regs);
292 memcpy (call_used_regs, initial_call_used_regs, sizeof call_used_regs);
293 memset (global_regs, 0, sizeof global_regs);
295 /* Do any additional initialization regsets may need. */
296 INIT_ONCE_REG_SET ();
298 #ifdef REG_ALLOC_ORDER
299 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
300 inv_reg_alloc_order[reg_alloc_order[i]] = i;
301 #endif
304 /* After switches have been processed, which perhaps alter
305 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
307 static void
308 init_reg_sets_1 (void)
310 unsigned int i, j;
311 unsigned int /* enum machine_mode */ m;
313 /* This macro allows the fixed or call-used registers
314 and the register classes to depend on target flags. */
316 #ifdef CONDITIONAL_REGISTER_USAGE
317 CONDITIONAL_REGISTER_USAGE;
318 #endif
320 /* Compute number of hard regs in each class. */
322 memset (reg_class_size, 0, sizeof reg_class_size);
323 for (i = 0; i < N_REG_CLASSES; i++)
324 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
325 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
326 reg_class_size[i]++;
328 /* Initialize the table of subunions.
329 reg_class_subunion[I][J] gets the largest-numbered reg-class
330 that is contained in the union of classes I and J. */
332 for (i = 0; i < N_REG_CLASSES; i++)
334 for (j = 0; j < N_REG_CLASSES; j++)
336 HARD_REG_SET c;
337 int k;
339 COPY_HARD_REG_SET (c, reg_class_contents[i]);
340 IOR_HARD_REG_SET (c, reg_class_contents[j]);
341 for (k = 0; k < N_REG_CLASSES; k++)
343 GO_IF_HARD_REG_SUBSET (reg_class_contents[k], c,
344 subclass1);
345 continue;
347 subclass1:
348 /* Keep the largest subclass. */ /* SPEE 900308 */
349 GO_IF_HARD_REG_SUBSET (reg_class_contents[k],
350 reg_class_contents[(int) reg_class_subunion[i][j]],
351 subclass2);
352 reg_class_subunion[i][j] = (enum reg_class) k;
353 subclass2:
359 /* Initialize the table of superunions.
360 reg_class_superunion[I][J] gets the smallest-numbered reg-class
361 containing the union of classes I and J. */
363 for (i = 0; i < N_REG_CLASSES; i++)
365 for (j = 0; j < N_REG_CLASSES; j++)
367 HARD_REG_SET c;
368 int k;
370 COPY_HARD_REG_SET (c, reg_class_contents[i]);
371 IOR_HARD_REG_SET (c, reg_class_contents[j]);
372 for (k = 0; k < N_REG_CLASSES; k++)
373 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[k], superclass);
375 superclass:
376 reg_class_superunion[i][j] = (enum reg_class) k;
380 /* Initialize the tables of subclasses and superclasses of each reg class.
381 First clear the whole table, then add the elements as they are found. */
383 for (i = 0; i < N_REG_CLASSES; i++)
385 for (j = 0; j < N_REG_CLASSES; j++)
387 reg_class_superclasses[i][j] = LIM_REG_CLASSES;
388 reg_class_subclasses[i][j] = LIM_REG_CLASSES;
392 for (i = 0; i < N_REG_CLASSES; i++)
394 if (i == (int) NO_REGS)
395 continue;
397 for (j = i + 1; j < N_REG_CLASSES; j++)
399 enum reg_class *p;
401 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], reg_class_contents[j],
402 subclass);
403 continue;
404 subclass:
405 /* Reg class I is a subclass of J.
406 Add J to the table of superclasses of I. */
407 p = &reg_class_superclasses[i][0];
408 while (*p != LIM_REG_CLASSES) p++;
409 *p = (enum reg_class) j;
410 /* Add I to the table of superclasses of J. */
411 p = &reg_class_subclasses[j][0];
412 while (*p != LIM_REG_CLASSES) p++;
413 *p = (enum reg_class) i;
417 /* Initialize "constant" tables. */
419 CLEAR_HARD_REG_SET (fixed_reg_set);
420 CLEAR_HARD_REG_SET (call_used_reg_set);
421 CLEAR_HARD_REG_SET (call_fixed_reg_set);
422 CLEAR_HARD_REG_SET (regs_invalidated_by_call);
424 memcpy (call_fixed_regs, fixed_regs, sizeof call_fixed_regs);
426 n_non_fixed_regs = 0;
428 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
430 if (fixed_regs[i])
431 SET_HARD_REG_BIT (fixed_reg_set, i);
432 else
433 n_non_fixed_regs++;
435 if (call_used_regs[i])
436 SET_HARD_REG_BIT (call_used_reg_set, i);
437 if (call_fixed_regs[i])
438 SET_HARD_REG_BIT (call_fixed_reg_set, i);
439 if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (i)))
440 SET_HARD_REG_BIT (losing_caller_save_reg_set, i);
442 /* There are a couple of fixed registers that we know are safe to
443 exclude from being clobbered by calls:
445 The frame pointer is always preserved across calls. The arg pointer
446 is if it is fixed. The stack pointer usually is, unless
447 RETURN_POPS_ARGS, in which case an explicit CLOBBER will be present.
448 If we are generating PIC code, the PIC offset table register is
449 preserved across calls, though the target can override that. */
451 if (i == STACK_POINTER_REGNUM || i == FRAME_POINTER_REGNUM)
453 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
454 else if (i == HARD_FRAME_POINTER_REGNUM)
456 #endif
457 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
458 else if (i == ARG_POINTER_REGNUM && fixed_regs[i])
460 #endif
461 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
462 else if (i == (unsigned) PIC_OFFSET_TABLE_REGNUM && fixed_regs[i])
464 #endif
465 else if (0
466 #ifdef CALL_REALLY_USED_REGISTERS
467 || call_really_used_regs[i]
468 #else
469 || call_used_regs[i]
470 #endif
471 || global_regs[i])
472 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
475 memset (have_regs_of_mode, 0, sizeof (have_regs_of_mode));
476 memset (contains_reg_of_mode, 0, sizeof (contains_reg_of_mode));
477 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
478 for (i = 0; i < N_REG_CLASSES; i++)
479 if ((unsigned) CLASS_MAX_NREGS (i, m) <= reg_class_size[i])
480 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
481 if (!fixed_regs [j] && TEST_HARD_REG_BIT (reg_class_contents[i], j)
482 && HARD_REGNO_MODE_OK (j, m))
484 contains_reg_of_mode [i][m] = 1;
485 have_regs_of_mode [m] = 1;
486 break;
489 /* Initialize the move cost table. Find every subset of each class
490 and take the maximum cost of moving any subset to any other. */
492 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
493 if (have_regs_of_mode [m])
495 for (i = 0; i < N_REG_CLASSES; i++)
496 if (contains_reg_of_mode [i][m])
497 for (j = 0; j < N_REG_CLASSES; j++)
499 int cost;
500 enum reg_class *p1, *p2;
502 if (!contains_reg_of_mode [j][m])
504 move_cost[m][i][j] = 65536;
505 may_move_in_cost[m][i][j] = 65536;
506 may_move_out_cost[m][i][j] = 65536;
508 else
510 cost = REGISTER_MOVE_COST (m, i, j);
512 for (p2 = &reg_class_subclasses[j][0];
513 *p2 != LIM_REG_CLASSES;
514 p2++)
515 if (*p2 != i && contains_reg_of_mode [*p2][m])
516 cost = MAX (cost, move_cost [m][i][*p2]);
518 for (p1 = &reg_class_subclasses[i][0];
519 *p1 != LIM_REG_CLASSES;
520 p1++)
521 if (*p1 != j && contains_reg_of_mode [*p1][m])
522 cost = MAX (cost, move_cost [m][*p1][j]);
524 move_cost[m][i][j] = cost;
526 if (reg_class_subset_p (i, j))
527 may_move_in_cost[m][i][j] = 0;
528 else
529 may_move_in_cost[m][i][j] = cost;
531 if (reg_class_subset_p (j, i))
532 may_move_out_cost[m][i][j] = 0;
533 else
534 may_move_out_cost[m][i][j] = cost;
537 else
538 for (j = 0; j < N_REG_CLASSES; j++)
540 move_cost[m][i][j] = 65536;
541 may_move_in_cost[m][i][j] = 65536;
542 may_move_out_cost[m][i][j] = 65536;
547 /* Compute the table of register modes.
548 These values are used to record death information for individual registers
549 (as opposed to a multi-register mode). */
551 void
552 init_reg_modes_once (void)
554 int i, j;
556 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
557 for (j = 0; j < MAX_MACHINE_MODE; j++)
558 hard_regno_nregs[i][j] = HARD_REGNO_NREGS(i, (enum machine_mode)j);
560 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
562 reg_raw_mode[i] = choose_hard_reg_mode (i, 1, false);
564 /* If we couldn't find a valid mode, just use the previous mode.
565 ??? One situation in which we need to do this is on the mips where
566 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2. Ideally we'd like
567 to use DF mode for the even registers and VOIDmode for the odd
568 (for the cpu models where the odd ones are inaccessible). */
569 if (reg_raw_mode[i] == VOIDmode)
570 reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
574 /* Finish initializing the register sets and
575 initialize the register modes. */
577 void
578 init_regs (void)
580 /* This finishes what was started by init_reg_sets, but couldn't be done
581 until after register usage was specified. */
582 init_reg_sets_1 ();
584 init_reg_autoinc ();
587 /* Initialize some fake stack-frame MEM references for use in
588 memory_move_secondary_cost. */
590 void
591 init_fake_stack_mems (void)
593 #ifdef HAVE_SECONDARY_RELOADS
595 int i;
597 for (i = 0; i < MAX_MACHINE_MODE; i++)
598 top_of_stack[i] = gen_rtx_MEM (i, stack_pointer_rtx);
600 #endif
603 #ifdef HAVE_SECONDARY_RELOADS
605 /* Compute extra cost of moving registers to/from memory due to reloads.
606 Only needed if secondary reloads are required for memory moves. */
609 memory_move_secondary_cost (enum machine_mode mode, enum reg_class class, int in)
611 enum reg_class altclass;
612 int partial_cost = 0;
613 /* We need a memory reference to feed to SECONDARY... macros. */
614 /* mem may be unused even if the SECONDARY_ macros are defined. */
615 rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
618 if (in)
620 #ifdef SECONDARY_INPUT_RELOAD_CLASS
621 altclass = SECONDARY_INPUT_RELOAD_CLASS (class, mode, mem);
622 #else
623 altclass = NO_REGS;
624 #endif
626 else
628 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
629 altclass = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, mem);
630 #else
631 altclass = NO_REGS;
632 #endif
635 if (altclass == NO_REGS)
636 return 0;
638 if (in)
639 partial_cost = REGISTER_MOVE_COST (mode, altclass, class);
640 else
641 partial_cost = REGISTER_MOVE_COST (mode, class, altclass);
643 if (class == altclass)
644 /* This isn't simply a copy-to-temporary situation. Can't guess
645 what it is, so MEMORY_MOVE_COST really ought not to be calling
646 here in that case.
648 I'm tempted to put in an abort here, but returning this will
649 probably only give poor estimates, which is what we would've
650 had before this code anyways. */
651 return partial_cost;
653 /* Check if the secondary reload register will also need a
654 secondary reload. */
655 return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
657 #endif
659 /* Return a machine mode that is legitimate for hard reg REGNO and large
660 enough to save nregs. If we can't find one, return VOIDmode.
661 If CALL_SAVED is true, only consider modes that are call saved. */
663 enum machine_mode
664 choose_hard_reg_mode (unsigned int regno ATTRIBUTE_UNUSED,
665 unsigned int nregs, bool call_saved)
667 unsigned int /* enum machine_mode */ m;
668 enum machine_mode found_mode = VOIDmode, mode;
670 /* We first look for the largest integer mode that can be validly
671 held in REGNO. If none, we look for the largest floating-point mode.
672 If we still didn't find a valid mode, try CCmode. */
674 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
675 mode != VOIDmode;
676 mode = GET_MODE_WIDER_MODE (mode))
677 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
678 && HARD_REGNO_MODE_OK (regno, mode)
679 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
680 found_mode = mode;
682 if (found_mode != VOIDmode)
683 return found_mode;
685 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
686 mode != VOIDmode;
687 mode = GET_MODE_WIDER_MODE (mode))
688 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
689 && HARD_REGNO_MODE_OK (regno, mode)
690 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
691 found_mode = mode;
693 if (found_mode != VOIDmode)
694 return found_mode;
696 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
697 mode != VOIDmode;
698 mode = GET_MODE_WIDER_MODE (mode))
699 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
700 && HARD_REGNO_MODE_OK (regno, mode)
701 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
702 found_mode = mode;
704 if (found_mode != VOIDmode)
705 return found_mode;
707 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
708 mode != VOIDmode;
709 mode = GET_MODE_WIDER_MODE (mode))
710 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
711 && HARD_REGNO_MODE_OK (regno, mode)
712 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
713 found_mode = mode;
715 if (found_mode != VOIDmode)
716 return found_mode;
718 /* Iterate over all of the CCmodes. */
719 for (m = (unsigned int) CCmode; m < (unsigned int) NUM_MACHINE_MODES; ++m)
721 mode = (enum machine_mode) m;
722 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
723 && HARD_REGNO_MODE_OK (regno, mode)
724 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
725 return mode;
728 /* We can't find a mode valid for this register. */
729 return VOIDmode;
732 /* Specify the usage characteristics of the register named NAME.
733 It should be a fixed register if FIXED and a
734 call-used register if CALL_USED. */
736 void
737 fix_register (const char *name, int fixed, int call_used)
739 int i;
741 /* Decode the name and update the primary form of
742 the register info. */
744 if ((i = decode_reg_name (name)) >= 0)
746 if ((i == STACK_POINTER_REGNUM
747 #ifdef HARD_FRAME_POINTER_REGNUM
748 || i == HARD_FRAME_POINTER_REGNUM
749 #else
750 || i == FRAME_POINTER_REGNUM
751 #endif
753 && (fixed == 0 || call_used == 0))
755 static const char * const what_option[2][2] = {
756 { "call-saved", "call-used" },
757 { "no-such-option", "fixed" }};
759 error ("can't use '%s' as a %s register", name,
760 what_option[fixed][call_used]);
762 else
764 fixed_regs[i] = fixed;
765 call_used_regs[i] = call_used;
766 #ifdef CALL_REALLY_USED_REGISTERS
767 if (fixed == 0)
768 call_really_used_regs[i] = call_used;
769 #endif
772 else
774 warning ("unknown register name: %s", name);
778 /* Mark register number I as global. */
780 void
781 globalize_reg (int i)
783 if (fixed_regs[i] == 0 && no_global_reg_vars)
784 error ("global register variable follows a function definition");
786 if (global_regs[i])
788 warning ("register used for two global register variables");
789 return;
792 if (call_used_regs[i] && ! fixed_regs[i])
793 warning ("call-clobbered register used for global register variable");
795 global_regs[i] = 1;
797 /* If already fixed, nothing else to do. */
798 if (fixed_regs[i])
799 return;
801 fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
802 n_non_fixed_regs--;
804 SET_HARD_REG_BIT (fixed_reg_set, i);
805 SET_HARD_REG_BIT (call_used_reg_set, i);
806 SET_HARD_REG_BIT (call_fixed_reg_set, i);
807 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
810 /* Now the data and code for the `regclass' pass, which happens
811 just before local-alloc. */
813 /* The `costs' struct records the cost of using a hard register of each class
814 and of using memory for each pseudo. We use this data to set up
815 register class preferences. */
817 struct costs
819 int cost[N_REG_CLASSES];
820 int mem_cost;
823 /* Structure used to record preferences of given pseudo. */
824 struct reg_pref
826 /* (enum reg_class) prefclass is the preferred class. */
827 char prefclass;
829 /* altclass is a register class that we should use for allocating
830 pseudo if no register in the preferred class is available.
831 If no register in this class is available, memory is preferred.
833 It might appear to be more general to have a bitmask of classes here,
834 but since it is recommended that there be a class corresponding to the
835 union of most major pair of classes, that generality is not required. */
836 char altclass;
839 /* Record the cost of each class for each pseudo. */
841 static struct costs *costs;
843 /* Initialized once, and used to initialize cost values for each insn. */
845 static struct costs init_cost;
847 /* Record preferences of each pseudo.
848 This is available after `regclass' is run. */
850 static struct reg_pref *reg_pref;
852 /* Allocated buffers for reg_pref. */
854 static struct reg_pref *reg_pref_buffer;
856 /* Frequency of executions of current insn. */
858 static int frequency;
860 static rtx scan_one_insn (rtx, int);
861 static void record_operand_costs (rtx, struct costs *, struct reg_pref *);
862 static void dump_regclass (FILE *);
863 static void record_reg_classes (int, int, rtx *, enum machine_mode *,
864 const char **, rtx, struct costs *,
865 struct reg_pref *);
866 static int copy_cost (rtx, enum machine_mode, enum reg_class, int);
867 static void record_address_regs (rtx, enum reg_class, int);
868 #ifdef FORBIDDEN_INC_DEC_CLASSES
869 static int auto_inc_dec_reg_p (rtx, enum machine_mode);
870 #endif
871 static void reg_scan_mark_refs (rtx, rtx, int, unsigned int);
873 /* Return the reg_class in which pseudo reg number REGNO is best allocated.
874 This function is sometimes called before the info has been computed.
875 When that happens, just return GENERAL_REGS, which is innocuous. */
877 enum reg_class
878 reg_preferred_class (int regno)
880 if (reg_pref == 0)
881 return GENERAL_REGS;
882 return (enum reg_class) reg_pref[regno].prefclass;
885 enum reg_class
886 reg_alternate_class (int regno)
888 if (reg_pref == 0)
889 return ALL_REGS;
891 return (enum reg_class) reg_pref[regno].altclass;
894 /* Initialize some global data for this pass. */
896 void
897 regclass_init (void)
899 int i;
901 init_cost.mem_cost = 10000;
902 for (i = 0; i < N_REG_CLASSES; i++)
903 init_cost.cost[i] = 10000;
905 /* This prevents dump_flow_info from losing if called
906 before regclass is run. */
907 reg_pref = NULL;
909 /* No more global register variables may be declared. */
910 no_global_reg_vars = 1;
913 /* Dump register costs. */
914 static void
915 dump_regclass (FILE *dump)
917 static const char *const reg_class_names[] = REG_CLASS_NAMES;
918 int i;
919 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
921 int /* enum reg_class */ class;
922 if (REG_N_REFS (i))
924 fprintf (dump, " Register %i costs:", i);
925 for (class = 0; class < (int) N_REG_CLASSES; class++)
926 if (contains_reg_of_mode [(enum reg_class) class][PSEUDO_REGNO_MODE (i)]
927 #ifdef FORBIDDEN_INC_DEC_CLASSES
928 && (!in_inc_dec[i]
929 || !forbidden_inc_dec_class[(enum reg_class) class])
930 #endif
931 #ifdef CANNOT_CHANGE_MODE_CLASS
932 && ! invalid_mode_change_p (i, (enum reg_class) class,
933 PSEUDO_REGNO_MODE (i))
934 #endif
936 fprintf (dump, " %s:%i", reg_class_names[class],
937 costs[i].cost[(enum reg_class) class]);
938 fprintf (dump, " MEM:%i\n", costs[i].mem_cost);
944 /* Calculate the costs of insn operands. */
946 static void
947 record_operand_costs (rtx insn, struct costs *op_costs,
948 struct reg_pref *reg_pref)
950 const char *constraints[MAX_RECOG_OPERANDS];
951 enum machine_mode modes[MAX_RECOG_OPERANDS];
952 int i;
954 for (i = 0; i < recog_data.n_operands; i++)
956 constraints[i] = recog_data.constraints[i];
957 modes[i] = recog_data.operand_mode[i];
960 /* If we get here, we are set up to record the costs of all the
961 operands for this insn. Start by initializing the costs.
962 Then handle any address registers. Finally record the desired
963 classes for any pseudos, doing it twice if some pair of
964 operands are commutative. */
966 for (i = 0; i < recog_data.n_operands; i++)
968 op_costs[i] = init_cost;
970 if (GET_CODE (recog_data.operand[i]) == SUBREG)
971 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
973 if (MEM_P (recog_data.operand[i]))
974 record_address_regs (XEXP (recog_data.operand[i], 0),
975 MODE_BASE_REG_CLASS (modes[i]), frequency * 2);
976 else if (constraints[i][0] == 'p'
977 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
978 record_address_regs (recog_data.operand[i],
979 MODE_BASE_REG_CLASS (modes[i]), frequency * 2);
982 /* Check for commutative in a separate loop so everything will
983 have been initialized. We must do this even if one operand
984 is a constant--see addsi3 in m68k.md. */
986 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
987 if (constraints[i][0] == '%')
989 const char *xconstraints[MAX_RECOG_OPERANDS];
990 int j;
992 /* Handle commutative operands by swapping the constraints.
993 We assume the modes are the same. */
995 for (j = 0; j < recog_data.n_operands; j++)
996 xconstraints[j] = constraints[j];
998 xconstraints[i] = constraints[i+1];
999 xconstraints[i+1] = constraints[i];
1000 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1001 recog_data.operand, modes,
1002 xconstraints, insn, op_costs, reg_pref);
1005 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1006 recog_data.operand, modes,
1007 constraints, insn, op_costs, reg_pref);
1010 /* Subroutine of regclass, processes one insn INSN. Scan it and record each
1011 time it would save code to put a certain register in a certain class.
1012 PASS, when nonzero, inhibits some optimizations which need only be done
1013 once.
1014 Return the last insn processed, so that the scan can be continued from
1015 there. */
1017 static rtx
1018 scan_one_insn (rtx insn, int pass)
1020 enum rtx_code pat_code;
1021 rtx set, note;
1022 int i, j;
1023 struct costs op_costs[MAX_RECOG_OPERANDS];
1025 if (!INSN_P (insn))
1026 return insn;
1028 pat_code = GET_CODE (PATTERN (insn));
1029 if (pat_code == USE
1030 || pat_code == CLOBBER
1031 || pat_code == ASM_INPUT
1032 || pat_code == ADDR_VEC
1033 || pat_code == ADDR_DIFF_VEC)
1034 return insn;
1036 set = single_set (insn);
1037 extract_insn (insn);
1039 /* If this insn loads a parameter from its stack slot, then
1040 it represents a savings, rather than a cost, if the
1041 parameter is stored in memory. Record this fact. */
1043 if (set != 0 && REG_P (SET_DEST (set))
1044 && MEM_P (SET_SRC (set))
1045 && (note = find_reg_note (insn, REG_EQUIV,
1046 NULL_RTX)) != 0
1047 && MEM_P (XEXP (note, 0)))
1049 costs[REGNO (SET_DEST (set))].mem_cost
1050 -= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set)),
1051 GENERAL_REGS, 1)
1052 * frequency);
1053 record_address_regs (XEXP (SET_SRC (set), 0),
1054 MODE_BASE_REG_CLASS (VOIDmode), frequency * 2);
1055 return insn;
1058 /* Improve handling of two-address insns such as
1059 (set X (ashift CONST Y)) where CONST must be made to
1060 match X. Change it into two insns: (set X CONST)
1061 (set X (ashift X Y)). If we left this for reloading, it
1062 would probably get three insns because X and Y might go
1063 in the same place. This prevents X and Y from receiving
1064 the same hard reg.
1066 We can only do this if the modes of operands 0 and 1
1067 (which might not be the same) are tieable and we only need
1068 do this during our first pass. */
1070 if (pass == 0 && optimize
1071 && recog_data.n_operands >= 3
1072 && recog_data.constraints[1][0] == '0'
1073 && recog_data.constraints[1][1] == 0
1074 && CONSTANT_P (recog_data.operand[1])
1075 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[1])
1076 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[2])
1077 && REG_P (recog_data.operand[0])
1078 && MODES_TIEABLE_P (GET_MODE (recog_data.operand[0]),
1079 recog_data.operand_mode[1]))
1081 rtx previnsn = prev_real_insn (insn);
1082 rtx dest
1083 = gen_lowpart (recog_data.operand_mode[1],
1084 recog_data.operand[0]);
1085 rtx newinsn
1086 = emit_insn_before (gen_move_insn (dest, recog_data.operand[1]), insn);
1088 /* If this insn was the start of a basic block,
1089 include the new insn in that block.
1090 We need not check for code_label here;
1091 while a basic block can start with a code_label,
1092 INSN could not be at the beginning of that block. */
1093 if (previnsn == 0 || JUMP_P (previnsn))
1095 basic_block b;
1096 FOR_EACH_BB (b)
1097 if (insn == BB_HEAD (b))
1098 BB_HEAD (b) = newinsn;
1101 /* This makes one more setting of new insns's dest. */
1102 REG_N_SETS (REGNO (recog_data.operand[0]))++;
1103 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1104 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1106 *recog_data.operand_loc[1] = recog_data.operand[0];
1107 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1108 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1109 for (i = recog_data.n_dups - 1; i >= 0; i--)
1110 if (recog_data.dup_num[i] == 1)
1112 *recog_data.dup_loc[i] = recog_data.operand[0];
1113 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1114 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1117 return PREV_INSN (newinsn);
1120 record_operand_costs (insn, op_costs, reg_pref);
1122 /* Now add the cost for each operand to the total costs for
1123 its register. */
1125 for (i = 0; i < recog_data.n_operands; i++)
1126 if (REG_P (recog_data.operand[i])
1127 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
1129 int regno = REGNO (recog_data.operand[i]);
1130 struct costs *p = &costs[regno], *q = &op_costs[i];
1132 p->mem_cost += q->mem_cost * frequency;
1133 for (j = 0; j < N_REG_CLASSES; j++)
1134 p->cost[j] += q->cost[j] * frequency;
1137 return insn;
1140 /* Initialize information about which register classes can be used for
1141 pseudos that are auto-incremented or auto-decremented. */
1143 static void
1144 init_reg_autoinc (void)
1146 #ifdef FORBIDDEN_INC_DEC_CLASSES
1147 int i;
1149 for (i = 0; i < N_REG_CLASSES; i++)
1151 rtx r = gen_rtx_raw_REG (VOIDmode, 0);
1152 enum machine_mode m;
1153 int j;
1155 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1156 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
1158 REGNO (r) = j;
1160 for (m = VOIDmode; (int) m < (int) MAX_MACHINE_MODE;
1161 m = (enum machine_mode) ((int) m + 1))
1162 if (HARD_REGNO_MODE_OK (j, m))
1164 PUT_MODE (r, m);
1166 /* If a register is not directly suitable for an
1167 auto-increment or decrement addressing mode and
1168 requires secondary reloads, disallow its class from
1169 being used in such addresses. */
1171 if ((0
1172 #ifdef SECONDARY_RELOAD_CLASS
1173 || (SECONDARY_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
1174 != NO_REGS)
1175 #else
1176 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1177 || (SECONDARY_INPUT_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
1178 != NO_REGS)
1179 #endif
1180 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1181 || (SECONDARY_OUTPUT_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
1182 != NO_REGS)
1183 #endif
1184 #endif
1186 && ! auto_inc_dec_reg_p (r, m))
1187 forbidden_inc_dec_class[i] = 1;
1191 #endif /* FORBIDDEN_INC_DEC_CLASSES */
1194 /* This is a pass of the compiler that scans all instructions
1195 and calculates the preferred class for each pseudo-register.
1196 This information can be accessed later by calling `reg_preferred_class'.
1197 This pass comes just before local register allocation. */
1199 void
1200 regclass (rtx f, int nregs, FILE *dump)
1202 rtx insn;
1203 int i;
1204 int pass;
1206 init_recog ();
1208 costs = xmalloc (nregs * sizeof (struct costs));
1210 #ifdef FORBIDDEN_INC_DEC_CLASSES
1212 in_inc_dec = xmalloc (nregs);
1214 #endif /* FORBIDDEN_INC_DEC_CLASSES */
1216 /* Normally we scan the insns once and determine the best class to use for
1217 each register. However, if -fexpensive_optimizations are on, we do so
1218 twice, the second time using the tentative best classes to guide the
1219 selection. */
1221 for (pass = 0; pass <= flag_expensive_optimizations; pass++)
1223 basic_block bb;
1225 if (dump)
1226 fprintf (dump, "\n\nPass %i\n\n",pass);
1227 /* Zero out our accumulation of the cost of each class for each reg. */
1229 memset (costs, 0, nregs * sizeof (struct costs));
1231 #ifdef FORBIDDEN_INC_DEC_CLASSES
1232 memset (in_inc_dec, 0, nregs);
1233 #endif
1235 /* Scan the instructions and record each time it would
1236 save code to put a certain register in a certain class. */
1238 if (!optimize)
1240 frequency = REG_FREQ_MAX;
1241 for (insn = f; insn; insn = NEXT_INSN (insn))
1242 insn = scan_one_insn (insn, pass);
1244 else
1245 FOR_EACH_BB (bb)
1247 /* Show that an insn inside a loop is likely to be executed three
1248 times more than insns outside a loop. This is much more
1249 aggressive than the assumptions made elsewhere and is being
1250 tried as an experiment. */
1251 frequency = REG_FREQ_FROM_BB (bb);
1252 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
1254 insn = scan_one_insn (insn, pass);
1255 if (insn == BB_END (bb))
1256 break;
1260 /* Now for each register look at how desirable each class is
1261 and find which class is preferred. Store that in
1262 `prefclass'. Record in `altclass' the largest register
1263 class any of whose registers is better than memory. */
1265 if (pass == 0)
1266 reg_pref = reg_pref_buffer;
1268 if (dump)
1270 dump_regclass (dump);
1271 fprintf (dump,"\n");
1273 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
1275 int best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1276 enum reg_class best = ALL_REGS, alt = NO_REGS;
1277 /* This is an enum reg_class, but we call it an int
1278 to save lots of casts. */
1279 int class;
1280 struct costs *p = &costs[i];
1282 /* In non-optimizing compilation REG_N_REFS is not initialized
1283 yet. */
1284 if (optimize && !REG_N_REFS (i) && !REG_N_SETS (i))
1285 continue;
1287 for (class = (int) ALL_REGS - 1; class > 0; class--)
1289 /* Ignore classes that are too small for this operand or
1290 invalid for an operand that was auto-incremented. */
1291 if (!contains_reg_of_mode [class][PSEUDO_REGNO_MODE (i)]
1292 #ifdef FORBIDDEN_INC_DEC_CLASSES
1293 || (in_inc_dec[i] && forbidden_inc_dec_class[class])
1294 #endif
1295 #ifdef CANNOT_CHANGE_MODE_CLASS
1296 || invalid_mode_change_p (i, (enum reg_class) class,
1297 PSEUDO_REGNO_MODE (i))
1298 #endif
1301 else if (p->cost[class] < best_cost)
1303 best_cost = p->cost[class];
1304 best = (enum reg_class) class;
1306 else if (p->cost[class] == best_cost)
1307 best = reg_class_subunion[(int) best][class];
1310 /* Record the alternate register class; i.e., a class for which
1311 every register in it is better than using memory. If adding a
1312 class would make a smaller class (i.e., no union of just those
1313 classes exists), skip that class. The major unions of classes
1314 should be provided as a register class. Don't do this if we
1315 will be doing it again later. */
1317 if ((pass == 1 || dump) || ! flag_expensive_optimizations)
1318 for (class = 0; class < N_REG_CLASSES; class++)
1319 if (p->cost[class] < p->mem_cost
1320 && (reg_class_size[(int) reg_class_subunion[(int) alt][class]]
1321 > reg_class_size[(int) alt])
1322 #ifdef FORBIDDEN_INC_DEC_CLASSES
1323 && ! (in_inc_dec[i] && forbidden_inc_dec_class[class])
1324 #endif
1325 #ifdef CANNOT_CHANGE_MODE_CLASS
1326 && ! invalid_mode_change_p (i, (enum reg_class) class,
1327 PSEUDO_REGNO_MODE (i))
1328 #endif
1330 alt = reg_class_subunion[(int) alt][class];
1332 /* If we don't add any classes, nothing to try. */
1333 if (alt == best)
1334 alt = NO_REGS;
1336 if (dump
1337 && (reg_pref[i].prefclass != (int) best
1338 || reg_pref[i].altclass != (int) alt))
1340 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1341 fprintf (dump, " Register %i", i);
1342 if (alt == ALL_REGS || best == ALL_REGS)
1343 fprintf (dump, " pref %s\n", reg_class_names[(int) best]);
1344 else if (alt == NO_REGS)
1345 fprintf (dump, " pref %s or none\n", reg_class_names[(int) best]);
1346 else
1347 fprintf (dump, " pref %s, else %s\n",
1348 reg_class_names[(int) best],
1349 reg_class_names[(int) alt]);
1352 /* We cast to (int) because (char) hits bugs in some compilers. */
1353 reg_pref[i].prefclass = (int) best;
1354 reg_pref[i].altclass = (int) alt;
1358 #ifdef FORBIDDEN_INC_DEC_CLASSES
1359 free (in_inc_dec);
1360 #endif
1361 free (costs);
1364 /* Record the cost of using memory or registers of various classes for
1365 the operands in INSN.
1367 N_ALTS is the number of alternatives.
1369 N_OPS is the number of operands.
1371 OPS is an array of the operands.
1373 MODES are the modes of the operands, in case any are VOIDmode.
1375 CONSTRAINTS are the constraints to use for the operands. This array
1376 is modified by this procedure.
1378 This procedure works alternative by alternative. For each alternative
1379 we assume that we will be able to allocate all pseudos to their ideal
1380 register class and calculate the cost of using that alternative. Then
1381 we compute for each operand that is a pseudo-register, the cost of
1382 having the pseudo allocated to each register class and using it in that
1383 alternative. To this cost is added the cost of the alternative.
1385 The cost of each class for this insn is its lowest cost among all the
1386 alternatives. */
1388 static void
1389 record_reg_classes (int n_alts, int n_ops, rtx *ops,
1390 enum machine_mode *modes, const char **constraints,
1391 rtx insn, struct costs *op_costs,
1392 struct reg_pref *reg_pref)
1394 int alt;
1395 int i, j;
1396 rtx set;
1398 /* Process each alternative, each time minimizing an operand's cost with
1399 the cost for each operand in that alternative. */
1401 for (alt = 0; alt < n_alts; alt++)
1403 struct costs this_op_costs[MAX_RECOG_OPERANDS];
1404 int alt_fail = 0;
1405 int alt_cost = 0;
1406 enum reg_class classes[MAX_RECOG_OPERANDS];
1407 int allows_mem[MAX_RECOG_OPERANDS];
1408 int class;
1410 for (i = 0; i < n_ops; i++)
1412 const char *p = constraints[i];
1413 rtx op = ops[i];
1414 enum machine_mode mode = modes[i];
1415 int allows_addr = 0;
1416 int win = 0;
1417 unsigned char c;
1419 /* Initially show we know nothing about the register class. */
1420 classes[i] = NO_REGS;
1421 allows_mem[i] = 0;
1423 /* If this operand has no constraints at all, we can conclude
1424 nothing about it since anything is valid. */
1426 if (*p == 0)
1428 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1429 memset (&this_op_costs[i], 0, sizeof this_op_costs[i]);
1431 continue;
1434 /* If this alternative is only relevant when this operand
1435 matches a previous operand, we do different things depending
1436 on whether this operand is a pseudo-reg or not. We must process
1437 any modifiers for the operand before we can make this test. */
1439 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
1440 p++;
1442 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
1444 /* Copy class and whether memory is allowed from the matching
1445 alternative. Then perform any needed cost computations
1446 and/or adjustments. */
1447 j = p[0] - '0';
1448 classes[i] = classes[j];
1449 allows_mem[i] = allows_mem[j];
1451 if (!REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
1453 /* If this matches the other operand, we have no added
1454 cost and we win. */
1455 if (rtx_equal_p (ops[j], op))
1456 win = 1;
1458 /* If we can put the other operand into a register, add to
1459 the cost of this alternative the cost to copy this
1460 operand to the register used for the other operand. */
1462 else if (classes[j] != NO_REGS)
1463 alt_cost += copy_cost (op, mode, classes[j], 1), win = 1;
1465 else if (!REG_P (ops[j])
1466 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
1468 /* This op is a pseudo but the one it matches is not. */
1470 /* If we can't put the other operand into a register, this
1471 alternative can't be used. */
1473 if (classes[j] == NO_REGS)
1474 alt_fail = 1;
1476 /* Otherwise, add to the cost of this alternative the cost
1477 to copy the other operand to the register used for this
1478 operand. */
1480 else
1481 alt_cost += copy_cost (ops[j], mode, classes[j], 1);
1483 else
1485 /* The costs of this operand are not the same as the other
1486 operand since move costs are not symmetric. Moreover,
1487 if we cannot tie them, this alternative needs to do a
1488 copy, which is one instruction. */
1490 struct costs *pp = &this_op_costs[i];
1492 for (class = 0; class < N_REG_CLASSES; class++)
1493 pp->cost[class]
1494 = ((recog_data.operand_type[i] != OP_OUT
1495 ? may_move_in_cost[mode][class][(int) classes[i]]
1496 : 0)
1497 + (recog_data.operand_type[i] != OP_IN
1498 ? may_move_out_cost[mode][(int) classes[i]][class]
1499 : 0));
1501 /* If the alternative actually allows memory, make things
1502 a bit cheaper since we won't need an extra insn to
1503 load it. */
1505 pp->mem_cost
1506 = ((recog_data.operand_type[i] != OP_IN
1507 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1508 : 0)
1509 + (recog_data.operand_type[i] != OP_OUT
1510 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1511 : 0) - allows_mem[i]);
1513 /* If we have assigned a class to this register in our
1514 first pass, add a cost to this alternative corresponding
1515 to what we would add if this register were not in the
1516 appropriate class. */
1518 if (reg_pref)
1519 alt_cost
1520 += (may_move_in_cost[mode]
1521 [(unsigned char) reg_pref[REGNO (op)].prefclass]
1522 [(int) classes[i]]);
1524 if (REGNO (ops[i]) != REGNO (ops[j])
1525 && ! find_reg_note (insn, REG_DEAD, op))
1526 alt_cost += 2;
1528 /* This is in place of ordinary cost computation
1529 for this operand, so skip to the end of the
1530 alternative (should be just one character). */
1531 while (*p && *p++ != ',')
1534 constraints[i] = p;
1535 continue;
1539 /* Scan all the constraint letters. See if the operand matches
1540 any of the constraints. Collect the valid register classes
1541 and see if this operand accepts memory. */
1543 while ((c = *p))
1545 switch (c)
1547 case ',':
1548 break;
1549 case '*':
1550 /* Ignore the next letter for this pass. */
1551 c = *++p;
1552 break;
1554 case '?':
1555 alt_cost += 2;
1556 case '!': case '#': case '&':
1557 case '0': case '1': case '2': case '3': case '4':
1558 case '5': case '6': case '7': case '8': case '9':
1559 break;
1561 case 'p':
1562 allows_addr = 1;
1563 win = address_operand (op, GET_MODE (op));
1564 /* We know this operand is an address, so we want it to be
1565 allocated to a register that can be the base of an
1566 address, ie BASE_REG_CLASS. */
1567 classes[i]
1568 = reg_class_subunion[(int) classes[i]]
1569 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1570 break;
1572 case 'm': case 'o': case 'V':
1573 /* It doesn't seem worth distinguishing between offsettable
1574 and non-offsettable addresses here. */
1575 allows_mem[i] = 1;
1576 if (MEM_P (op))
1577 win = 1;
1578 break;
1580 case '<':
1581 if (MEM_P (op)
1582 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1583 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1584 win = 1;
1585 break;
1587 case '>':
1588 if (MEM_P (op)
1589 && (GET_CODE (XEXP (op, 0)) == PRE_INC
1590 || GET_CODE (XEXP (op, 0)) == POST_INC))
1591 win = 1;
1592 break;
1594 case 'E':
1595 case 'F':
1596 if (GET_CODE (op) == CONST_DOUBLE
1597 || (GET_CODE (op) == CONST_VECTOR
1598 && (GET_MODE_CLASS (GET_MODE (op))
1599 == MODE_VECTOR_FLOAT)))
1600 win = 1;
1601 break;
1603 case 'G':
1604 case 'H':
1605 if (GET_CODE (op) == CONST_DOUBLE
1606 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
1607 win = 1;
1608 break;
1610 case 's':
1611 if (GET_CODE (op) == CONST_INT
1612 || (GET_CODE (op) == CONST_DOUBLE
1613 && GET_MODE (op) == VOIDmode))
1614 break;
1615 case 'i':
1616 if (CONSTANT_P (op)
1617 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)))
1618 win = 1;
1619 break;
1621 case 'n':
1622 if (GET_CODE (op) == CONST_INT
1623 || (GET_CODE (op) == CONST_DOUBLE
1624 && GET_MODE (op) == VOIDmode))
1625 win = 1;
1626 break;
1628 case 'I':
1629 case 'J':
1630 case 'K':
1631 case 'L':
1632 case 'M':
1633 case 'N':
1634 case 'O':
1635 case 'P':
1636 if (GET_CODE (op) == CONST_INT
1637 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
1638 win = 1;
1639 break;
1641 case 'X':
1642 win = 1;
1643 break;
1645 case 'g':
1646 if (MEM_P (op)
1647 || (CONSTANT_P (op)
1648 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))))
1649 win = 1;
1650 allows_mem[i] = 1;
1651 case 'r':
1652 classes[i]
1653 = reg_class_subunion[(int) classes[i]][(int) GENERAL_REGS];
1654 break;
1656 default:
1657 if (REG_CLASS_FROM_CONSTRAINT (c, p) != NO_REGS)
1658 classes[i]
1659 = reg_class_subunion[(int) classes[i]]
1660 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
1661 #ifdef EXTRA_CONSTRAINT_STR
1662 else if (EXTRA_CONSTRAINT_STR (op, c, p))
1663 win = 1;
1665 if (EXTRA_MEMORY_CONSTRAINT (c, p))
1667 /* Every MEM can be reloaded to fit. */
1668 allows_mem[i] = 1;
1669 if (MEM_P (op))
1670 win = 1;
1672 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1674 /* Every address can be reloaded to fit. */
1675 allows_addr = 1;
1676 if (address_operand (op, GET_MODE (op)))
1677 win = 1;
1678 /* We know this operand is an address, so we want it to
1679 be allocated to a register that can be the base of an
1680 address, ie BASE_REG_CLASS. */
1681 classes[i]
1682 = reg_class_subunion[(int) classes[i]]
1683 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1685 #endif
1686 break;
1688 p += CONSTRAINT_LEN (c, p);
1689 if (c == ',')
1690 break;
1693 constraints[i] = p;
1695 /* How we account for this operand now depends on whether it is a
1696 pseudo register or not. If it is, we first check if any
1697 register classes are valid. If not, we ignore this alternative,
1698 since we want to assume that all pseudos get allocated for
1699 register preferencing. If some register class is valid, compute
1700 the costs of moving the pseudo into that class. */
1702 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1704 if (classes[i] == NO_REGS)
1706 /* We must always fail if the operand is a REG, but
1707 we did not find a suitable class.
1709 Otherwise we may perform an uninitialized read
1710 from this_op_costs after the `continue' statement
1711 below. */
1712 alt_fail = 1;
1714 else
1716 struct costs *pp = &this_op_costs[i];
1718 for (class = 0; class < N_REG_CLASSES; class++)
1719 pp->cost[class]
1720 = ((recog_data.operand_type[i] != OP_OUT
1721 ? may_move_in_cost[mode][class][(int) classes[i]]
1722 : 0)
1723 + (recog_data.operand_type[i] != OP_IN
1724 ? may_move_out_cost[mode][(int) classes[i]][class]
1725 : 0));
1727 /* If the alternative actually allows memory, make things
1728 a bit cheaper since we won't need an extra insn to
1729 load it. */
1731 pp->mem_cost
1732 = ((recog_data.operand_type[i] != OP_IN
1733 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1734 : 0)
1735 + (recog_data.operand_type[i] != OP_OUT
1736 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1737 : 0) - allows_mem[i]);
1739 /* If we have assigned a class to this register in our
1740 first pass, add a cost to this alternative corresponding
1741 to what we would add if this register were not in the
1742 appropriate class. */
1744 if (reg_pref)
1745 alt_cost
1746 += (may_move_in_cost[mode]
1747 [(unsigned char) reg_pref[REGNO (op)].prefclass]
1748 [(int) classes[i]]);
1752 /* Otherwise, if this alternative wins, either because we
1753 have already determined that or if we have a hard register of
1754 the proper class, there is no cost for this alternative. */
1756 else if (win
1757 || (REG_P (op)
1758 && reg_fits_class_p (op, classes[i], 0, GET_MODE (op))))
1761 /* If registers are valid, the cost of this alternative includes
1762 copying the object to and/or from a register. */
1764 else if (classes[i] != NO_REGS)
1766 if (recog_data.operand_type[i] != OP_OUT)
1767 alt_cost += copy_cost (op, mode, classes[i], 1);
1769 if (recog_data.operand_type[i] != OP_IN)
1770 alt_cost += copy_cost (op, mode, classes[i], 0);
1773 /* The only other way this alternative can be used is if this is a
1774 constant that could be placed into memory. */
1776 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
1777 alt_cost += MEMORY_MOVE_COST (mode, classes[i], 1);
1778 else
1779 alt_fail = 1;
1782 if (alt_fail)
1783 continue;
1785 /* Finally, update the costs with the information we've calculated
1786 about this alternative. */
1788 for (i = 0; i < n_ops; i++)
1789 if (REG_P (ops[i])
1790 && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1792 struct costs *pp = &op_costs[i], *qq = &this_op_costs[i];
1793 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
1795 pp->mem_cost = MIN (pp->mem_cost,
1796 (qq->mem_cost + alt_cost) * scale);
1798 for (class = 0; class < N_REG_CLASSES; class++)
1799 pp->cost[class] = MIN (pp->cost[class],
1800 (qq->cost[class] + alt_cost) * scale);
1804 /* If this insn is a single set copying operand 1 to operand 0
1805 and one operand is a pseudo with the other a hard reg or a pseudo
1806 that prefers a register that is in its own register class then
1807 we may want to adjust the cost of that register class to -1.
1809 Avoid the adjustment if the source does not die to avoid stressing of
1810 register allocator by preferrencing two colliding registers into single
1811 class.
1813 Also avoid the adjustment if a copy between registers of the class
1814 is expensive (ten times the cost of a default copy is considered
1815 arbitrarily expensive). This avoids losing when the preferred class
1816 is very expensive as the source of a copy instruction. */
1818 if ((set = single_set (insn)) != 0
1819 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
1820 && REG_P (ops[0]) && REG_P (ops[1])
1821 && find_regno_note (insn, REG_DEAD, REGNO (ops[1])))
1822 for (i = 0; i <= 1; i++)
1823 if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1825 unsigned int regno = REGNO (ops[!i]);
1826 enum machine_mode mode = GET_MODE (ops[!i]);
1827 int class;
1828 unsigned int nr;
1830 if (regno >= FIRST_PSEUDO_REGISTER && reg_pref != 0)
1832 enum reg_class pref = reg_pref[regno].prefclass;
1834 if ((reg_class_size[(unsigned char) pref]
1835 == (unsigned) CLASS_MAX_NREGS (pref, mode))
1836 && REGISTER_MOVE_COST (mode, pref, pref) < 10 * 2)
1837 op_costs[i].cost[(unsigned char) pref] = -1;
1839 else if (regno < FIRST_PSEUDO_REGISTER)
1840 for (class = 0; class < N_REG_CLASSES; class++)
1841 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
1842 && reg_class_size[class] == (unsigned) CLASS_MAX_NREGS (class, mode))
1844 if (reg_class_size[class] == 1)
1845 op_costs[i].cost[class] = -1;
1846 else
1848 for (nr = 0; nr < (unsigned) hard_regno_nregs[regno][mode]; nr++)
1850 if (! TEST_HARD_REG_BIT (reg_class_contents[class],
1851 regno + nr))
1852 break;
1855 if (nr == (unsigned) hard_regno_nregs[regno][mode])
1856 op_costs[i].cost[class] = -1;
1862 /* Compute the cost of loading X into (if TO_P is nonzero) or from (if
1863 TO_P is zero) a register of class CLASS in mode MODE.
1865 X must not be a pseudo. */
1867 static int
1868 copy_cost (rtx x, enum machine_mode mode ATTRIBUTE_UNUSED,
1869 enum reg_class class, int to_p ATTRIBUTE_UNUSED)
1871 #ifdef HAVE_SECONDARY_RELOADS
1872 enum reg_class secondary_class = NO_REGS;
1873 #endif
1875 /* If X is a SCRATCH, there is actually nothing to move since we are
1876 assuming optimal allocation. */
1878 if (GET_CODE (x) == SCRATCH)
1879 return 0;
1881 /* Get the class we will actually use for a reload. */
1882 class = PREFERRED_RELOAD_CLASS (x, class);
1884 #ifdef HAVE_SECONDARY_RELOADS
1885 /* If we need a secondary reload (we assume here that we are using
1886 the secondary reload as an intermediate, not a scratch register), the
1887 cost is that to load the input into the intermediate register, then
1888 to copy them. We use a special value of TO_P to avoid recursion. */
1890 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1891 if (to_p == 1)
1892 secondary_class = SECONDARY_INPUT_RELOAD_CLASS (class, mode, x);
1893 #endif
1895 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1896 if (! to_p)
1897 secondary_class = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, x);
1898 #endif
1900 if (secondary_class != NO_REGS)
1901 return (move_cost[mode][(int) secondary_class][(int) class]
1902 + copy_cost (x, mode, secondary_class, 2));
1903 #endif /* HAVE_SECONDARY_RELOADS */
1905 /* For memory, use the memory move cost, for (hard) registers, use the
1906 cost to move between the register classes, and use 2 for everything
1907 else (constants). */
1909 if (MEM_P (x) || class == NO_REGS)
1910 return MEMORY_MOVE_COST (mode, class, to_p);
1912 else if (REG_P (x))
1913 return move_cost[mode][(int) REGNO_REG_CLASS (REGNO (x))][(int) class];
1915 else
1916 /* If this is a constant, we may eventually want to call rtx_cost here. */
1917 return COSTS_N_INSNS (1);
1920 /* Record the pseudo registers we must reload into hard registers
1921 in a subexpression of a memory address, X.
1923 CLASS is the class that the register needs to be in and is either
1924 BASE_REG_CLASS or INDEX_REG_CLASS.
1926 SCALE is twice the amount to multiply the cost by (it is twice so we
1927 can represent half-cost adjustments). */
1929 static void
1930 record_address_regs (rtx x, enum reg_class class, int scale)
1932 enum rtx_code code = GET_CODE (x);
1934 switch (code)
1936 case CONST_INT:
1937 case CONST:
1938 case CC0:
1939 case PC:
1940 case SYMBOL_REF:
1941 case LABEL_REF:
1942 return;
1944 case PLUS:
1945 /* When we have an address that is a sum,
1946 we must determine whether registers are "base" or "index" regs.
1947 If there is a sum of two registers, we must choose one to be
1948 the "base". Luckily, we can use the REG_POINTER to make a good
1949 choice most of the time. We only need to do this on machines
1950 that can have two registers in an address and where the base
1951 and index register classes are different.
1953 ??? This code used to set REGNO_POINTER_FLAG in some cases, but
1954 that seems bogus since it should only be set when we are sure
1955 the register is being used as a pointer. */
1958 rtx arg0 = XEXP (x, 0);
1959 rtx arg1 = XEXP (x, 1);
1960 enum rtx_code code0 = GET_CODE (arg0);
1961 enum rtx_code code1 = GET_CODE (arg1);
1963 /* Look inside subregs. */
1964 if (code0 == SUBREG)
1965 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1966 if (code1 == SUBREG)
1967 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1969 /* If this machine only allows one register per address, it must
1970 be in the first operand. */
1972 if (MAX_REGS_PER_ADDRESS == 1)
1973 record_address_regs (arg0, class, scale);
1975 /* If index and base registers are the same on this machine, just
1976 record registers in any non-constant operands. We assume here,
1977 as well as in the tests below, that all addresses are in
1978 canonical form. */
1980 else if (INDEX_REG_CLASS == MODE_BASE_REG_CLASS (VOIDmode))
1982 record_address_regs (arg0, class, scale);
1983 if (! CONSTANT_P (arg1))
1984 record_address_regs (arg1, class, scale);
1987 /* If the second operand is a constant integer, it doesn't change
1988 what class the first operand must be. */
1990 else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
1991 record_address_regs (arg0, class, scale);
1993 /* If the second operand is a symbolic constant, the first operand
1994 must be an index register. */
1996 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
1997 record_address_regs (arg0, INDEX_REG_CLASS, scale);
1999 /* If both operands are registers but one is already a hard register
2000 of index or base class, give the other the class that the hard
2001 register is not. */
2003 #ifdef REG_OK_FOR_BASE_P
2004 else if (code0 == REG && code1 == REG
2005 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
2006 && (REG_OK_FOR_BASE_P (arg0) || REG_OK_FOR_INDEX_P (arg0)))
2007 record_address_regs (arg1,
2008 REG_OK_FOR_BASE_P (arg0)
2009 ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (VOIDmode),
2010 scale);
2011 else if (code0 == REG && code1 == REG
2012 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
2013 && (REG_OK_FOR_BASE_P (arg1) || REG_OK_FOR_INDEX_P (arg1)))
2014 record_address_regs (arg0,
2015 REG_OK_FOR_BASE_P (arg1)
2016 ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (VOIDmode),
2017 scale);
2018 #endif
2020 /* If one operand is known to be a pointer, it must be the base
2021 with the other operand the index. Likewise if the other operand
2022 is a MULT. */
2024 else if ((code0 == REG && REG_POINTER (arg0))
2025 || code1 == MULT)
2027 record_address_regs (arg0, MODE_BASE_REG_CLASS (VOIDmode), scale);
2028 record_address_regs (arg1, INDEX_REG_CLASS, scale);
2030 else if ((code1 == REG && REG_POINTER (arg1))
2031 || code0 == MULT)
2033 record_address_regs (arg0, INDEX_REG_CLASS, scale);
2034 record_address_regs (arg1, MODE_BASE_REG_CLASS (VOIDmode), scale);
2037 /* Otherwise, count equal chances that each might be a base
2038 or index register. This case should be rare. */
2040 else
2042 record_address_regs (arg0, MODE_BASE_REG_CLASS (VOIDmode),
2043 scale / 2);
2044 record_address_regs (arg0, INDEX_REG_CLASS, scale / 2);
2045 record_address_regs (arg1, MODE_BASE_REG_CLASS (VOIDmode),
2046 scale / 2);
2047 record_address_regs (arg1, INDEX_REG_CLASS, scale / 2);
2050 break;
2052 /* Double the importance of a pseudo register that is incremented
2053 or decremented, since it would take two extra insns
2054 if it ends up in the wrong place. */
2055 case POST_MODIFY:
2056 case PRE_MODIFY:
2057 record_address_regs (XEXP (x, 0), MODE_BASE_REG_CLASS (VOIDmode),
2058 2 * scale);
2059 if (REG_P (XEXP (XEXP (x, 1), 1)))
2060 record_address_regs (XEXP (XEXP (x, 1), 1),
2061 INDEX_REG_CLASS, 2 * scale);
2062 break;
2064 case POST_INC:
2065 case PRE_INC:
2066 case POST_DEC:
2067 case PRE_DEC:
2068 /* Double the importance of a pseudo register that is incremented
2069 or decremented, since it would take two extra insns
2070 if it ends up in the wrong place. If the operand is a pseudo,
2071 show it is being used in an INC_DEC context. */
2073 #ifdef FORBIDDEN_INC_DEC_CLASSES
2074 if (REG_P (XEXP (x, 0))
2075 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
2076 in_inc_dec[REGNO (XEXP (x, 0))] = 1;
2077 #endif
2079 record_address_regs (XEXP (x, 0), class, 2 * scale);
2080 break;
2082 case REG:
2084 struct costs *pp = &costs[REGNO (x)];
2085 int i;
2087 pp->mem_cost += (MEMORY_MOVE_COST (Pmode, class, 1) * scale) / 2;
2089 for (i = 0; i < N_REG_CLASSES; i++)
2090 pp->cost[i] += (may_move_in_cost[Pmode][i][(int) class] * scale) / 2;
2092 break;
2094 default:
2096 const char *fmt = GET_RTX_FORMAT (code);
2097 int i;
2098 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2099 if (fmt[i] == 'e')
2100 record_address_regs (XEXP (x, i), class, scale);
2105 #ifdef FORBIDDEN_INC_DEC_CLASSES
2107 /* Return 1 if REG is valid as an auto-increment memory reference
2108 to an object of MODE. */
2110 static int
2111 auto_inc_dec_reg_p (rtx reg, enum machine_mode mode)
2113 if (HAVE_POST_INCREMENT
2114 && memory_address_p (mode, gen_rtx_POST_INC (Pmode, reg)))
2115 return 1;
2117 if (HAVE_POST_DECREMENT
2118 && memory_address_p (mode, gen_rtx_POST_DEC (Pmode, reg)))
2119 return 1;
2121 if (HAVE_PRE_INCREMENT
2122 && memory_address_p (mode, gen_rtx_PRE_INC (Pmode, reg)))
2123 return 1;
2125 if (HAVE_PRE_DECREMENT
2126 && memory_address_p (mode, gen_rtx_PRE_DEC (Pmode, reg)))
2127 return 1;
2129 return 0;
2131 #endif
2133 static short *renumber;
2134 static size_t regno_allocated;
2135 static unsigned int reg_n_max;
2137 /* Allocate enough space to hold NUM_REGS registers for the tables used for
2138 reg_scan and flow_analysis that are indexed by the register number. If
2139 NEW_P is nonzero, initialize all of the registers, otherwise only
2140 initialize the new registers allocated. The same table is kept from
2141 function to function, only reallocating it when we need more room. If
2142 RENUMBER_P is nonzero, allocate the reg_renumber array also. */
2144 void
2145 allocate_reg_info (size_t num_regs, int new_p, int renumber_p)
2147 size_t size_info;
2148 size_t size_renumber;
2149 size_t min = (new_p) ? 0 : reg_n_max;
2150 struct reg_info_data *reg_data;
2152 if (num_regs > regno_allocated)
2154 size_t old_allocated = regno_allocated;
2156 regno_allocated = num_regs + (num_regs / 20); /* Add some slop space. */
2157 size_renumber = regno_allocated * sizeof (short);
2159 if (!reg_n_info)
2161 VARRAY_REG_INIT (reg_n_info, regno_allocated, "reg_n_info");
2162 renumber = xmalloc (size_renumber);
2163 reg_pref_buffer = xmalloc (regno_allocated
2164 * sizeof (struct reg_pref));
2167 else
2169 VARRAY_GROW (reg_n_info, regno_allocated);
2171 if (new_p) /* If we're zapping everything, no need to realloc. */
2173 free ((char *) renumber);
2174 free ((char *) reg_pref);
2175 renumber = xmalloc (size_renumber);
2176 reg_pref_buffer = xmalloc (regno_allocated
2177 * sizeof (struct reg_pref));
2180 else
2182 renumber = xrealloc (renumber, size_renumber);
2183 reg_pref_buffer = xrealloc (reg_pref_buffer,
2184 regno_allocated
2185 * sizeof (struct reg_pref));
2189 size_info = (regno_allocated - old_allocated) * sizeof (reg_info)
2190 + sizeof (struct reg_info_data) - sizeof (reg_info);
2191 reg_data = xcalloc (size_info, 1);
2192 reg_data->min_index = old_allocated;
2193 reg_data->max_index = regno_allocated - 1;
2194 reg_data->next = reg_info_head;
2195 reg_info_head = reg_data;
2198 reg_n_max = num_regs;
2199 if (min < num_regs)
2201 /* Loop through each of the segments allocated for the actual
2202 reg_info pages, and set up the pointers, zero the pages, etc. */
2203 for (reg_data = reg_info_head;
2204 reg_data && reg_data->max_index >= min;
2205 reg_data = reg_data->next)
2207 size_t min_index = reg_data->min_index;
2208 size_t max_index = reg_data->max_index;
2209 size_t max = MIN (max_index, num_regs);
2210 size_t local_min = min - min_index;
2211 size_t i;
2213 if (reg_data->min_index > num_regs)
2214 continue;
2216 if (min < min_index)
2217 local_min = 0;
2218 if (!reg_data->used_p) /* page just allocated with calloc */
2219 reg_data->used_p = 1; /* no need to zero */
2220 else
2221 memset (&reg_data->data[local_min], 0,
2222 sizeof (reg_info) * (max - min_index - local_min + 1));
2224 for (i = min_index+local_min; i <= max; i++)
2226 VARRAY_REG (reg_n_info, i) = &reg_data->data[i-min_index];
2227 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
2228 renumber[i] = -1;
2229 reg_pref_buffer[i].prefclass = (char) NO_REGS;
2230 reg_pref_buffer[i].altclass = (char) NO_REGS;
2235 /* If {pref,alt}class have already been allocated, update the pointers to
2236 the newly realloced ones. */
2237 if (reg_pref)
2238 reg_pref = reg_pref_buffer;
2240 if (renumber_p)
2241 reg_renumber = renumber;
2243 /* Tell the regset code about the new number of registers. */
2244 MAX_REGNO_REG_SET (num_regs, new_p, renumber_p);
2247 /* Free up the space allocated by allocate_reg_info. */
2248 void
2249 free_reg_info (void)
2251 if (reg_n_info)
2253 struct reg_info_data *reg_data;
2254 struct reg_info_data *reg_next;
2256 VARRAY_FREE (reg_n_info);
2257 for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
2259 reg_next = reg_data->next;
2260 free ((char *) reg_data);
2263 free (reg_pref_buffer);
2264 reg_pref_buffer = (struct reg_pref *) 0;
2265 reg_info_head = (struct reg_info_data *) 0;
2266 renumber = (short *) 0;
2268 regno_allocated = 0;
2269 reg_n_max = 0;
2272 /* This is the `regscan' pass of the compiler, run just before cse
2273 and again just before loop.
2275 It finds the first and last use of each pseudo-register
2276 and records them in the vectors regno_first_uid, regno_last_uid
2277 and counts the number of sets in the vector reg_n_sets.
2279 REPEAT is nonzero the second time this is called. */
2281 /* Maximum number of parallel sets and clobbers in any insn in this fn.
2282 Always at least 3, since the combiner could put that many together
2283 and we want this to remain correct for all the remaining passes.
2284 This corresponds to the maximum number of times note_stores will call
2285 a function for any insn. */
2287 int max_parallel;
2289 /* Used as a temporary to record the largest number of registers in
2290 PARALLEL in a SET_DEST. This is added to max_parallel. */
2292 static int max_set_parallel;
2294 void
2295 reg_scan (rtx f, unsigned int nregs, int repeat ATTRIBUTE_UNUSED)
2297 rtx insn;
2299 timevar_push (TV_REG_SCAN);
2301 allocate_reg_info (nregs, TRUE, FALSE);
2302 max_parallel = 3;
2303 max_set_parallel = 0;
2305 for (insn = f; insn; insn = NEXT_INSN (insn))
2306 if (INSN_P (insn))
2308 rtx pat = PATTERN (insn);
2309 if (GET_CODE (pat) == PARALLEL
2310 && XVECLEN (pat, 0) > max_parallel)
2311 max_parallel = XVECLEN (pat, 0);
2312 reg_scan_mark_refs (pat, insn, 0, 0);
2314 if (REG_NOTES (insn))
2315 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, 0);
2318 max_parallel += max_set_parallel;
2320 timevar_pop (TV_REG_SCAN);
2323 /* Update 'regscan' information by looking at the insns
2324 from FIRST to LAST. Some new REGs have been created,
2325 and any REG with number greater than OLD_MAX_REGNO is
2326 such a REG. We only update information for those. */
2328 void
2329 reg_scan_update (rtx first, rtx last, unsigned int old_max_regno)
2331 rtx insn;
2333 allocate_reg_info (max_reg_num (), FALSE, FALSE);
2335 for (insn = first; insn != last; insn = NEXT_INSN (insn))
2336 if (INSN_P (insn))
2338 rtx pat = PATTERN (insn);
2339 if (GET_CODE (pat) == PARALLEL
2340 && XVECLEN (pat, 0) > max_parallel)
2341 max_parallel = XVECLEN (pat, 0);
2342 reg_scan_mark_refs (pat, insn, 0, old_max_regno);
2344 if (REG_NOTES (insn))
2345 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, old_max_regno);
2349 /* X is the expression to scan. INSN is the insn it appears in.
2350 NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
2351 We should only record information for REGs with numbers
2352 greater than or equal to MIN_REGNO. */
2354 static void
2355 reg_scan_mark_refs (rtx x, rtx insn, int note_flag, unsigned int min_regno)
2357 enum rtx_code code;
2358 rtx dest;
2359 rtx note;
2361 if (!x)
2362 return;
2363 code = GET_CODE (x);
2364 switch (code)
2366 case CONST:
2367 case CONST_INT:
2368 case CONST_DOUBLE:
2369 case CONST_VECTOR:
2370 case CC0:
2371 case PC:
2372 case SYMBOL_REF:
2373 case LABEL_REF:
2374 case ADDR_VEC:
2375 case ADDR_DIFF_VEC:
2376 return;
2378 case REG:
2380 unsigned int regno = REGNO (x);
2382 if (regno >= min_regno)
2384 REGNO_LAST_NOTE_UID (regno) = INSN_UID (insn);
2385 if (!note_flag)
2386 REGNO_LAST_UID (regno) = INSN_UID (insn);
2387 if (REGNO_FIRST_UID (regno) == 0)
2388 REGNO_FIRST_UID (regno) = INSN_UID (insn);
2389 /* If we are called by reg_scan_update() (indicated by min_regno
2390 being set), we also need to update the reference count. */
2391 if (min_regno)
2392 REG_N_REFS (regno)++;
2395 break;
2397 case EXPR_LIST:
2398 if (XEXP (x, 0))
2399 reg_scan_mark_refs (XEXP (x, 0), insn, note_flag, min_regno);
2400 if (XEXP (x, 1))
2401 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2402 break;
2404 case INSN_LIST:
2405 if (XEXP (x, 1))
2406 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2407 break;
2409 case CLOBBER:
2411 rtx reg = XEXP (x, 0);
2412 if (REG_P (reg)
2413 && REGNO (reg) >= min_regno)
2415 REG_N_SETS (REGNO (reg))++;
2416 REG_N_REFS (REGNO (reg))++;
2418 else if (MEM_P (reg))
2419 reg_scan_mark_refs (XEXP (reg, 0), insn, note_flag, min_regno);
2421 break;
2423 case SET:
2424 /* Count a set of the destination if it is a register. */
2425 for (dest = SET_DEST (x);
2426 GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2427 || GET_CODE (dest) == ZERO_EXTEND;
2428 dest = XEXP (dest, 0))
2431 /* For a PARALLEL, record the number of things (less the usual one for a
2432 SET) that are set. */
2433 if (GET_CODE (dest) == PARALLEL)
2434 max_set_parallel = MAX (max_set_parallel, XVECLEN (dest, 0) - 1);
2436 if (REG_P (dest)
2437 && REGNO (dest) >= min_regno)
2439 REG_N_SETS (REGNO (dest))++;
2440 REG_N_REFS (REGNO (dest))++;
2443 /* If this is setting a pseudo from another pseudo or the sum of a
2444 pseudo and a constant integer and the other pseudo is known to be
2445 a pointer, set the destination to be a pointer as well.
2447 Likewise if it is setting the destination from an address or from a
2448 value equivalent to an address or to the sum of an address and
2449 something else.
2451 But don't do any of this if the pseudo corresponds to a user
2452 variable since it should have already been set as a pointer based
2453 on the type. */
2455 if (REG_P (SET_DEST (x))
2456 && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
2457 && REGNO (SET_DEST (x)) >= min_regno
2458 /* If the destination pseudo is set more than once, then other
2459 sets might not be to a pointer value (consider access to a
2460 union in two threads of control in the presence of global
2461 optimizations). So only set REG_POINTER on the destination
2462 pseudo if this is the only set of that pseudo. */
2463 && REG_N_SETS (REGNO (SET_DEST (x))) == 1
2464 && ! REG_USERVAR_P (SET_DEST (x))
2465 && ! REG_POINTER (SET_DEST (x))
2466 && ((REG_P (SET_SRC (x))
2467 && REG_POINTER (SET_SRC (x)))
2468 || ((GET_CODE (SET_SRC (x)) == PLUS
2469 || GET_CODE (SET_SRC (x)) == LO_SUM)
2470 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2471 && REG_P (XEXP (SET_SRC (x), 0))
2472 && REG_POINTER (XEXP (SET_SRC (x), 0)))
2473 || GET_CODE (SET_SRC (x)) == CONST
2474 || GET_CODE (SET_SRC (x)) == SYMBOL_REF
2475 || GET_CODE (SET_SRC (x)) == LABEL_REF
2476 || (GET_CODE (SET_SRC (x)) == HIGH
2477 && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
2478 || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
2479 || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
2480 || ((GET_CODE (SET_SRC (x)) == PLUS
2481 || GET_CODE (SET_SRC (x)) == LO_SUM)
2482 && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
2483 || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
2484 || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
2485 || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2486 && (GET_CODE (XEXP (note, 0)) == CONST
2487 || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
2488 || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
2489 REG_POINTER (SET_DEST (x)) = 1;
2491 /* If this is setting a register from a register or from a simple
2492 conversion of a register, propagate REG_EXPR. */
2493 if (REG_P (dest))
2495 rtx src = SET_SRC (x);
2497 while (GET_CODE (src) == SIGN_EXTEND
2498 || GET_CODE (src) == ZERO_EXTEND
2499 || GET_CODE (src) == TRUNCATE
2500 || (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)))
2501 src = XEXP (src, 0);
2503 if (!REG_ATTRS (dest) && REG_P (src))
2504 REG_ATTRS (dest) = REG_ATTRS (src);
2505 if (!REG_ATTRS (dest) && MEM_P (src))
2506 set_reg_attrs_from_mem (dest, src);
2509 /* ... fall through ... */
2511 default:
2513 const char *fmt = GET_RTX_FORMAT (code);
2514 int i;
2515 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2517 if (fmt[i] == 'e')
2518 reg_scan_mark_refs (XEXP (x, i), insn, note_flag, min_regno);
2519 else if (fmt[i] == 'E' && XVEC (x, i) != 0)
2521 int j;
2522 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2523 reg_scan_mark_refs (XVECEXP (x, i, j), insn, note_flag, min_regno);
2530 /* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
2531 is also in C2. */
2534 reg_class_subset_p (enum reg_class c1, enum reg_class c2)
2536 if (c1 == c2) return 1;
2538 if (c2 == ALL_REGS)
2539 win:
2540 return 1;
2541 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) c1],
2542 reg_class_contents[(int) c2],
2543 win);
2544 return 0;
2547 /* Return nonzero if there is a register that is in both C1 and C2. */
2550 reg_classes_intersect_p (enum reg_class c1, enum reg_class c2)
2552 HARD_REG_SET c;
2554 if (c1 == c2) return 1;
2556 if (c1 == ALL_REGS || c2 == ALL_REGS)
2557 return 1;
2559 COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
2560 AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
2562 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[(int) NO_REGS], lose);
2563 return 1;
2565 lose:
2566 return 0;
2569 /* Release any memory allocated by register sets. */
2571 void
2572 regset_release_memory (void)
2574 bitmap_release_memory ();
2577 #ifdef CANNOT_CHANGE_MODE_CLASS
2578 /* Set bits in *USED which correspond to registers which can't change
2579 their mode from FROM to any mode in which REGNO was encountered. */
2581 void
2582 cannot_change_mode_set_regs (HARD_REG_SET *used, enum machine_mode from,
2583 unsigned int regno)
2585 enum machine_mode to;
2586 int n, i;
2587 int start = regno * MAX_MACHINE_MODE;
2589 EXECUTE_IF_SET_IN_BITMAP (&subregs_of_mode, start, n,
2590 if (n >= MAX_MACHINE_MODE + start)
2591 return;
2592 to = n - start;
2593 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2594 if (! TEST_HARD_REG_BIT (*used, i)
2595 && REG_CANNOT_CHANGE_MODE_P (i, from, to))
2596 SET_HARD_REG_BIT (*used, i);
2600 /* Return 1 if REGNO has had an invalid mode change in CLASS from FROM
2601 mode. */
2603 bool
2604 invalid_mode_change_p (unsigned int regno, enum reg_class class,
2605 enum machine_mode from_mode)
2607 enum machine_mode to_mode;
2608 int n;
2609 int start = regno * MAX_MACHINE_MODE;
2611 EXECUTE_IF_SET_IN_BITMAP (&subregs_of_mode, start, n,
2612 if (n >= MAX_MACHINE_MODE + start)
2613 return 0;
2614 to_mode = n - start;
2615 if (CANNOT_CHANGE_MODE_CLASS (from_mode, to_mode, class))
2616 return 1;
2618 return 0;
2620 #endif /* CANNOT_CHANGE_MODE_CLASS */
2622 #include "gt-regclass.h"