Allow target to override gnu-user.h crti and crtn
[official-gcc.git] / gcc / ada / sem_ch8.adb
bloba1bcbffea7f41a9f7c21abf4e5daf4143c4f34c5
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 8 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Debug; use Debug;
28 with Einfo; use Einfo;
29 with Elists; use Elists;
30 with Errout; use Errout;
31 with Exp_Disp; use Exp_Disp;
32 with Exp_Tss; use Exp_Tss;
33 with Exp_Util; use Exp_Util;
34 with Freeze; use Freeze;
35 with Ghost; use Ghost;
36 with Impunit; use Impunit;
37 with Lib; use Lib;
38 with Lib.Load; use Lib.Load;
39 with Lib.Xref; use Lib.Xref;
40 with Namet; use Namet;
41 with Namet.Sp; use Namet.Sp;
42 with Nlists; use Nlists;
43 with Nmake; use Nmake;
44 with Opt; use Opt;
45 with Output; use Output;
46 with Restrict; use Restrict;
47 with Rident; use Rident;
48 with Rtsfind; use Rtsfind;
49 with Sem; use Sem;
50 with Sem_Aux; use Sem_Aux;
51 with Sem_Cat; use Sem_Cat;
52 with Sem_Ch3; use Sem_Ch3;
53 with Sem_Ch4; use Sem_Ch4;
54 with Sem_Ch6; use Sem_Ch6;
55 with Sem_Ch12; use Sem_Ch12;
56 with Sem_Ch13; use Sem_Ch13;
57 with Sem_Dim; use Sem_Dim;
58 with Sem_Disp; use Sem_Disp;
59 with Sem_Dist; use Sem_Dist;
60 with Sem_Elab; use Sem_Elab;
61 with Sem_Eval; use Sem_Eval;
62 with Sem_Prag; use Sem_Prag;
63 with Sem_Res; use Sem_Res;
64 with Sem_Util; use Sem_Util;
65 with Sem_Type; use Sem_Type;
66 with Stand; use Stand;
67 with Sinfo; use Sinfo;
68 with Sinfo.CN; use Sinfo.CN;
69 with Snames; use Snames;
70 with Style;
71 with Table;
72 with Tbuild; use Tbuild;
73 with Uintp; use Uintp;
75 package body Sem_Ch8 is
77 ------------------------------------
78 -- Visibility and Name Resolution --
79 ------------------------------------
81 -- This package handles name resolution and the collection of possible
82 -- interpretations for overloaded names, prior to overload resolution.
84 -- Name resolution is the process that establishes a mapping between source
85 -- identifiers and the entities they denote at each point in the program.
86 -- Each entity is represented by a defining occurrence. Each identifier
87 -- that denotes an entity points to the corresponding defining occurrence.
88 -- This is the entity of the applied occurrence. Each occurrence holds
89 -- an index into the names table, where source identifiers are stored.
91 -- Each entry in the names table for an identifier or designator uses the
92 -- Info pointer to hold a link to the currently visible entity that has
93 -- this name (see subprograms Get_Name_Entity_Id and Set_Name_Entity_Id
94 -- in package Sem_Util). The visibility is initialized at the beginning of
95 -- semantic processing to make entities in package Standard immediately
96 -- visible. The visibility table is used in a more subtle way when
97 -- compiling subunits (see below).
99 -- Entities that have the same name (i.e. homonyms) are chained. In the
100 -- case of overloaded entities, this chain holds all the possible meanings
101 -- of a given identifier. The process of overload resolution uses type
102 -- information to select from this chain the unique meaning of a given
103 -- identifier.
105 -- Entities are also chained in their scope, through the Next_Entity link.
106 -- As a consequence, the name space is organized as a sparse matrix, where
107 -- each row corresponds to a scope, and each column to a source identifier.
108 -- Open scopes, that is to say scopes currently being compiled, have their
109 -- corresponding rows of entities in order, innermost scope first.
111 -- The scopes of packages that are mentioned in context clauses appear in
112 -- no particular order, interspersed among open scopes. This is because
113 -- in the course of analyzing the context of a compilation, a package
114 -- declaration is first an open scope, and subsequently an element of the
115 -- context. If subunits or child units are present, a parent unit may
116 -- appear under various guises at various times in the compilation.
118 -- When the compilation of the innermost scope is complete, the entities
119 -- defined therein are no longer visible. If the scope is not a package
120 -- declaration, these entities are never visible subsequently, and can be
121 -- removed from visibility chains. If the scope is a package declaration,
122 -- its visible declarations may still be accessible. Therefore the entities
123 -- defined in such a scope are left on the visibility chains, and only
124 -- their visibility (immediately visibility or potential use-visibility)
125 -- is affected.
127 -- The ordering of homonyms on their chain does not necessarily follow
128 -- the order of their corresponding scopes on the scope stack. For
129 -- example, if package P and the enclosing scope both contain entities
130 -- named E, then when compiling the package body the chain for E will
131 -- hold the global entity first, and the local one (corresponding to
132 -- the current inner scope) next. As a result, name resolution routines
133 -- do not assume any relative ordering of the homonym chains, either
134 -- for scope nesting or to order of appearance of context clauses.
136 -- When compiling a child unit, entities in the parent scope are always
137 -- immediately visible. When compiling the body of a child unit, private
138 -- entities in the parent must also be made immediately visible. There
139 -- are separate routines to make the visible and private declarations
140 -- visible at various times (see package Sem_Ch7).
142 -- +--------+ +-----+
143 -- | In use |-------->| EU1 |-------------------------->
144 -- +--------+ +-----+
145 -- | |
146 -- +--------+ +-----+ +-----+
147 -- | Stand. |---------------->| ES1 |--------------->| ES2 |--->
148 -- +--------+ +-----+ +-----+
149 -- | |
150 -- +---------+ | +-----+
151 -- | with'ed |------------------------------>| EW2 |--->
152 -- +---------+ | +-----+
153 -- | |
154 -- +--------+ +-----+ +-----+
155 -- | Scope2 |---------------->| E12 |--------------->| E22 |--->
156 -- +--------+ +-----+ +-----+
157 -- | |
158 -- +--------+ +-----+ +-----+
159 -- | Scope1 |---------------->| E11 |--------------->| E12 |--->
160 -- +--------+ +-----+ +-----+
161 -- ^ | |
162 -- | | |
163 -- | +---------+ | |
164 -- | | with'ed |----------------------------------------->
165 -- | +---------+ | |
166 -- | | |
167 -- Scope stack | |
168 -- (innermost first) | |
169 -- +----------------------------+
170 -- Names table => | Id1 | | | | Id2 |
171 -- +----------------------------+
173 -- Name resolution must deal with several syntactic forms: simple names,
174 -- qualified names, indexed names, and various forms of calls.
176 -- Each identifier points to an entry in the names table. The resolution
177 -- of a simple name consists in traversing the homonym chain, starting
178 -- from the names table. If an entry is immediately visible, it is the one
179 -- designated by the identifier. If only potentially use-visible entities
180 -- are on the chain, we must verify that they do not hide each other. If
181 -- the entity we find is overloadable, we collect all other overloadable
182 -- entities on the chain as long as they are not hidden.
184 -- To resolve expanded names, we must find the entity at the intersection
185 -- of the entity chain for the scope (the prefix) and the homonym chain
186 -- for the selector. In general, homonym chains will be much shorter than
187 -- entity chains, so it is preferable to start from the names table as
188 -- well. If the entity found is overloadable, we must collect all other
189 -- interpretations that are defined in the scope denoted by the prefix.
191 -- For records, protected types, and tasks, their local entities are
192 -- removed from visibility chains on exit from the corresponding scope.
193 -- From the outside, these entities are always accessed by selected
194 -- notation, and the entity chain for the record type, protected type,
195 -- etc. is traversed sequentially in order to find the designated entity.
197 -- The discriminants of a type and the operations of a protected type or
198 -- task are unchained on exit from the first view of the type, (such as
199 -- a private or incomplete type declaration, or a protected type speci-
200 -- fication) and re-chained when compiling the second view.
202 -- In the case of operators, we do not make operators on derived types
203 -- explicit. As a result, the notation P."+" may denote either a user-
204 -- defined function with name "+", or else an implicit declaration of the
205 -- operator "+" in package P. The resolution of expanded names always
206 -- tries to resolve an operator name as such an implicitly defined entity,
207 -- in addition to looking for explicit declarations.
209 -- All forms of names that denote entities (simple names, expanded names,
210 -- character literals in some cases) have a Entity attribute, which
211 -- identifies the entity denoted by the name.
213 ---------------------
214 -- The Scope Stack --
215 ---------------------
217 -- The Scope stack keeps track of the scopes currently been compiled.
218 -- Every entity that contains declarations (including records) is placed
219 -- on the scope stack while it is being processed, and removed at the end.
220 -- Whenever a non-package scope is exited, the entities defined therein
221 -- are removed from the visibility table, so that entities in outer scopes
222 -- become visible (see previous description). On entry to Sem, the scope
223 -- stack only contains the package Standard. As usual, subunits complicate
224 -- this picture ever so slightly.
226 -- The Rtsfind mechanism can force a call to Semantics while another
227 -- compilation is in progress. The unit retrieved by Rtsfind must be
228 -- compiled in its own context, and has no access to the visibility of
229 -- the unit currently being compiled. The procedures Save_Scope_Stack and
230 -- Restore_Scope_Stack make entities in current open scopes invisible
231 -- before compiling the retrieved unit, and restore the compilation
232 -- environment afterwards.
234 ------------------------
235 -- Compiling subunits --
236 ------------------------
238 -- Subunits must be compiled in the environment of the corresponding stub,
239 -- that is to say with the same visibility into the parent (and its
240 -- context) that is available at the point of the stub declaration, but
241 -- with the additional visibility provided by the context clause of the
242 -- subunit itself. As a result, compilation of a subunit forces compilation
243 -- of the parent (see description in lib-). At the point of the stub
244 -- declaration, Analyze is called recursively to compile the proper body of
245 -- the subunit, but without reinitializing the names table, nor the scope
246 -- stack (i.e. standard is not pushed on the stack). In this fashion the
247 -- context of the subunit is added to the context of the parent, and the
248 -- subunit is compiled in the correct environment. Note that in the course
249 -- of processing the context of a subunit, Standard will appear twice on
250 -- the scope stack: once for the parent of the subunit, and once for the
251 -- unit in the context clause being compiled. However, the two sets of
252 -- entities are not linked by homonym chains, so that the compilation of
253 -- any context unit happens in a fresh visibility environment.
255 -------------------------------
256 -- Processing of USE Clauses --
257 -------------------------------
259 -- Every defining occurrence has a flag indicating if it is potentially use
260 -- visible. Resolution of simple names examines this flag. The processing
261 -- of use clauses consists in setting this flag on all visible entities
262 -- defined in the corresponding package. On exit from the scope of the use
263 -- clause, the corresponding flag must be reset. However, a package may
264 -- appear in several nested use clauses (pathological but legal, alas)
265 -- which forces us to use a slightly more involved scheme:
267 -- a) The defining occurrence for a package holds a flag -In_Use- to
268 -- indicate that it is currently in the scope of a use clause. If a
269 -- redundant use clause is encountered, then the corresponding occurrence
270 -- of the package name is flagged -Redundant_Use-.
272 -- b) On exit from a scope, the use clauses in its declarative part are
273 -- scanned. The visibility flag is reset in all entities declared in
274 -- package named in a use clause, as long as the package is not flagged
275 -- as being in a redundant use clause (in which case the outer use
276 -- clause is still in effect, and the direct visibility of its entities
277 -- must be retained).
279 -- Note that entities are not removed from their homonym chains on exit
280 -- from the package specification. A subsequent use clause does not need
281 -- to rechain the visible entities, but only to establish their direct
282 -- visibility.
284 -----------------------------------
285 -- Handling private declarations --
286 -----------------------------------
288 -- The principle that each entity has a single defining occurrence clashes
289 -- with the presence of two separate definitions for private types: the
290 -- first is the private type declaration, and second is the full type
291 -- declaration. It is important that all references to the type point to
292 -- the same defining occurrence, namely the first one. To enforce the two
293 -- separate views of the entity, the corresponding information is swapped
294 -- between the two declarations. Outside of the package, the defining
295 -- occurrence only contains the private declaration information, while in
296 -- the private part and the body of the package the defining occurrence
297 -- contains the full declaration. To simplify the swap, the defining
298 -- occurrence that currently holds the private declaration points to the
299 -- full declaration. During semantic processing the defining occurrence
300 -- also points to a list of private dependents, that is to say access types
301 -- or composite types whose designated types or component types are
302 -- subtypes or derived types of the private type in question. After the
303 -- full declaration has been seen, the private dependents are updated to
304 -- indicate that they have full definitions.
306 ------------------------------------
307 -- Handling of Undefined Messages --
308 ------------------------------------
310 -- In normal mode, only the first use of an undefined identifier generates
311 -- a message. The table Urefs is used to record error messages that have
312 -- been issued so that second and subsequent ones do not generate further
313 -- messages. However, the second reference causes text to be added to the
314 -- original undefined message noting "(more references follow)". The
315 -- full error list option (-gnatf) forces messages to be generated for
316 -- every reference and disconnects the use of this table.
318 type Uref_Entry is record
319 Node : Node_Id;
320 -- Node for identifier for which original message was posted. The
321 -- Chars field of this identifier is used to detect later references
322 -- to the same identifier.
324 Err : Error_Msg_Id;
325 -- Records error message Id of original undefined message. Reset to
326 -- No_Error_Msg after the second occurrence, where it is used to add
327 -- text to the original message as described above.
329 Nvis : Boolean;
330 -- Set if the message is not visible rather than undefined
332 Loc : Source_Ptr;
333 -- Records location of error message. Used to make sure that we do
334 -- not consider a, b : undefined as two separate instances, which
335 -- would otherwise happen, since the parser converts this sequence
336 -- to a : undefined; b : undefined.
338 end record;
340 package Urefs is new Table.Table (
341 Table_Component_Type => Uref_Entry,
342 Table_Index_Type => Nat,
343 Table_Low_Bound => 1,
344 Table_Initial => 10,
345 Table_Increment => 100,
346 Table_Name => "Urefs");
348 Candidate_Renaming : Entity_Id;
349 -- Holds a candidate interpretation that appears in a subprogram renaming
350 -- declaration and does not match the given specification, but matches at
351 -- least on the first formal. Allows better error message when given
352 -- specification omits defaulted parameters, a common error.
354 -----------------------
355 -- Local Subprograms --
356 -----------------------
358 procedure Analyze_Generic_Renaming
359 (N : Node_Id;
360 K : Entity_Kind);
361 -- Common processing for all three kinds of generic renaming declarations.
362 -- Enter new name and indicate that it renames the generic unit.
364 procedure Analyze_Renamed_Character
365 (N : Node_Id;
366 New_S : Entity_Id;
367 Is_Body : Boolean);
368 -- Renamed entity is given by a character literal, which must belong
369 -- to the return type of the new entity. Is_Body indicates whether the
370 -- declaration is a renaming_as_body. If the original declaration has
371 -- already been frozen (because of an intervening body, e.g.) the body of
372 -- the function must be built now. The same applies to the following
373 -- various renaming procedures.
375 procedure Analyze_Renamed_Dereference
376 (N : Node_Id;
377 New_S : Entity_Id;
378 Is_Body : Boolean);
379 -- Renamed entity is given by an explicit dereference. Prefix must be a
380 -- conformant access_to_subprogram type.
382 procedure Analyze_Renamed_Entry
383 (N : Node_Id;
384 New_S : Entity_Id;
385 Is_Body : Boolean);
386 -- If the renamed entity in a subprogram renaming is an entry or protected
387 -- subprogram, build a body for the new entity whose only statement is a
388 -- call to the renamed entity.
390 procedure Analyze_Renamed_Family_Member
391 (N : Node_Id;
392 New_S : Entity_Id;
393 Is_Body : Boolean);
394 -- Used when the renamed entity is an indexed component. The prefix must
395 -- denote an entry family.
397 procedure Analyze_Renamed_Primitive_Operation
398 (N : Node_Id;
399 New_S : Entity_Id;
400 Is_Body : Boolean);
401 -- If the renamed entity in a subprogram renaming is a primitive operation
402 -- or a class-wide operation in prefix form, save the target object,
403 -- which must be added to the list of actuals in any subsequent call.
404 -- The renaming operation is intrinsic because the compiler must in
405 -- fact generate a wrapper for it (6.3.1 (10 1/2)).
407 procedure Attribute_Renaming (N : Node_Id);
408 -- Analyze renaming of attribute as subprogram. The renaming declaration N
409 -- is rewritten as a subprogram body that returns the attribute reference
410 -- applied to the formals of the function.
412 procedure Set_Entity_Or_Discriminal (N : Node_Id; E : Entity_Id);
413 -- Set Entity, with style check if need be. For a discriminant reference,
414 -- replace by the corresponding discriminal, i.e. the parameter of the
415 -- initialization procedure that corresponds to the discriminant.
417 procedure Check_Frozen_Renaming (N : Node_Id; Subp : Entity_Id);
418 -- A renaming_as_body may occur after the entity of the original decla-
419 -- ration has been frozen. In that case, the body of the new entity must
420 -- be built now, because the usual mechanism of building the renamed
421 -- body at the point of freezing will not work. Subp is the subprogram
422 -- for which N provides the Renaming_As_Body.
424 procedure Check_In_Previous_With_Clause
425 (N : Node_Id;
426 Nam : Node_Id);
427 -- N is a use_package clause and Nam the package name, or N is a use_type
428 -- clause and Nam is the prefix of the type name. In either case, verify
429 -- that the package is visible at that point in the context: either it
430 -- appears in a previous with_clause, or because it is a fully qualified
431 -- name and the root ancestor appears in a previous with_clause.
433 procedure Check_Library_Unit_Renaming (N : Node_Id; Old_E : Entity_Id);
434 -- Verify that the entity in a renaming declaration that is a library unit
435 -- is itself a library unit and not a nested unit or subunit. Also check
436 -- that if the renaming is a child unit of a generic parent, then the
437 -- renamed unit must also be a child unit of that parent. Finally, verify
438 -- that a renamed generic unit is not an implicit child declared within
439 -- an instance of the parent.
441 procedure Chain_Use_Clause (N : Node_Id);
442 -- Chain use clause onto list of uses clauses headed by First_Use_Clause in
443 -- the proper scope table entry. This is usually the current scope, but it
444 -- will be an inner scope when installing the use clauses of the private
445 -- declarations of a parent unit prior to compiling the private part of a
446 -- child unit. This chain is traversed when installing/removing use clauses
447 -- when compiling a subunit or instantiating a generic body on the fly,
448 -- when it is necessary to save and restore full environments.
450 function Enclosing_Instance return Entity_Id;
451 -- In an instance nested within another one, several semantic checks are
452 -- unnecessary because the legality of the nested instance has been checked
453 -- in the enclosing generic unit. This applies in particular to legality
454 -- checks on actuals for formal subprograms of the inner instance, which
455 -- are checked as subprogram renamings, and may be complicated by confusion
456 -- in private/full views. This function returns the instance enclosing the
457 -- current one if there is such, else it returns Empty.
459 -- If the renaming determines the entity for the default of a formal
460 -- subprogram nested within another instance, choose the innermost
461 -- candidate. This is because if the formal has a box, and we are within
462 -- an enclosing instance where some candidate interpretations are local
463 -- to this enclosing instance, we know that the default was properly
464 -- resolved when analyzing the generic, so we prefer the local
465 -- candidates to those that are external. This is not always the case
466 -- but is a reasonable heuristic on the use of nested generics. The
467 -- proper solution requires a full renaming model.
469 function Entity_Of_Unit (U : Node_Id) return Entity_Id;
470 -- Return the appropriate entity for determining which unit has a deeper
471 -- scope: the defining entity for U, unless U is a package instance, in
472 -- which case we retrieve the entity of the instance spec.
474 procedure Find_Expanded_Name (N : Node_Id);
475 -- The input is a selected component known to be an expanded name. Verify
476 -- legality of selector given the scope denoted by prefix, and change node
477 -- N into a expanded name with a properly set Entity field.
479 function Find_Most_Prev (Use_Clause : Node_Id) return Node_Id;
480 -- Find the most previous use clause (that is, the first one to appear in
481 -- the source) by traversing the previous clause chain that exists in both
482 -- N_Use_Package_Clause nodes and N_Use_Type_Clause nodes.
483 -- ??? a better subprogram name is in order
485 function Find_Renamed_Entity
486 (N : Node_Id;
487 Nam : Node_Id;
488 New_S : Entity_Id;
489 Is_Actual : Boolean := False) return Entity_Id;
490 -- Find the renamed entity that corresponds to the given parameter profile
491 -- in a subprogram renaming declaration. The renamed entity may be an
492 -- operator, a subprogram, an entry, or a protected operation. Is_Actual
493 -- indicates that the renaming is the one generated for an actual subpro-
494 -- gram in an instance, for which special visibility checks apply.
496 function Has_Implicit_Character_Literal (N : Node_Id) return Boolean;
497 -- Find a type derived from Character or Wide_Character in the prefix of N.
498 -- Used to resolved qualified names whose selector is a character literal.
500 function Has_Private_With (E : Entity_Id) return Boolean;
501 -- Ada 2005 (AI-262): Determines if the current compilation unit has a
502 -- private with on E.
504 function Has_Implicit_Operator (N : Node_Id) return Boolean;
505 -- N is an expanded name whose selector is an operator name (e.g. P."+").
506 -- declarative part contains an implicit declaration of an operator if it
507 -- has a declaration of a type to which one of the predefined operators
508 -- apply. The existence of this routine is an implementation artifact. A
509 -- more straightforward but more space-consuming choice would be to make
510 -- all inherited operators explicit in the symbol table.
512 procedure Inherit_Renamed_Profile (New_S : Entity_Id; Old_S : Entity_Id);
513 -- A subprogram defined by a renaming declaration inherits the parameter
514 -- profile of the renamed entity. The subtypes given in the subprogram
515 -- specification are discarded and replaced with those of the renamed
516 -- subprogram, which are then used to recheck the default values.
518 function Is_Appropriate_For_Entry_Prefix (T : Entity_Id) return Boolean;
519 -- True if it is of a task type, a protected type, or else an access to one
520 -- of these types.
522 function Is_Appropriate_For_Record (T : Entity_Id) return Boolean;
523 -- Prefix is appropriate for record if it is of a record type, or an access
524 -- to such.
526 function Most_Descendant_Use_Clause
527 (Clause1 : Entity_Id;
528 Clause2 : Entity_Id) return Entity_Id;
529 -- Determine which use clause parameter is the most descendant in terms of
530 -- scope.
531 -- ??? a better subprogram name is in order
533 procedure Premature_Usage (N : Node_Id);
534 -- Diagnose usage of an entity before it is visible
536 procedure Use_One_Package
537 (N : Node_Id;
538 Pack_Name : Entity_Id := Empty;
539 Force : Boolean := False);
540 -- Make visible entities declared in package P potentially use-visible
541 -- in the current context. Also used in the analysis of subunits, when
542 -- re-installing use clauses of parent units. N is the use_clause that
543 -- names P (and possibly other packages).
545 procedure Use_One_Type
546 (Id : Node_Id;
547 Installed : Boolean := False;
548 Force : Boolean := False);
549 -- Id is the subtype mark from a use_type_clause. This procedure makes
550 -- the primitive operators of the type potentially use-visible. The
551 -- boolean flag Installed indicates that the clause is being reinstalled
552 -- after previous analysis, and primitive operations are already chained
553 -- on the Used_Operations list of the clause.
555 procedure Write_Info;
556 -- Write debugging information on entities declared in current scope
558 --------------------------------
559 -- Analyze_Exception_Renaming --
560 --------------------------------
562 -- The language only allows a single identifier, but the tree holds an
563 -- identifier list. The parser has already issued an error message if
564 -- there is more than one element in the list.
566 procedure Analyze_Exception_Renaming (N : Node_Id) is
567 Id : constant Entity_Id := Defining_Entity (N);
568 Nam : constant Node_Id := Name (N);
570 begin
571 Check_SPARK_05_Restriction ("exception renaming is not allowed", N);
573 Enter_Name (Id);
574 Analyze (Nam);
576 Set_Ekind (Id, E_Exception);
577 Set_Etype (Id, Standard_Exception_Type);
578 Set_Is_Pure (Id, Is_Pure (Current_Scope));
580 if Is_Entity_Name (Nam)
581 and then Present (Entity (Nam))
582 and then Ekind (Entity (Nam)) = E_Exception
583 then
584 if Present (Renamed_Object (Entity (Nam))) then
585 Set_Renamed_Object (Id, Renamed_Object (Entity (Nam)));
586 else
587 Set_Renamed_Object (Id, Entity (Nam));
588 end if;
590 -- The exception renaming declaration may become Ghost if it renames
591 -- a Ghost entity.
593 Mark_Ghost_Renaming (N, Entity (Nam));
594 else
595 Error_Msg_N ("invalid exception name in renaming", Nam);
596 end if;
598 -- Implementation-defined aspect specifications can appear in a renaming
599 -- declaration, but not language-defined ones. The call to procedure
600 -- Analyze_Aspect_Specifications will take care of this error check.
602 if Has_Aspects (N) then
603 Analyze_Aspect_Specifications (N, Id);
604 end if;
605 end Analyze_Exception_Renaming;
607 ---------------------------
608 -- Analyze_Expanded_Name --
609 ---------------------------
611 procedure Analyze_Expanded_Name (N : Node_Id) is
612 begin
613 -- If the entity pointer is already set, this is an internal node, or a
614 -- node that is analyzed more than once, after a tree modification. In
615 -- such a case there is no resolution to perform, just set the type. In
616 -- either case, start by analyzing the prefix.
618 Analyze (Prefix (N));
620 if Present (Entity (N)) then
621 if Is_Type (Entity (N)) then
622 Set_Etype (N, Entity (N));
623 else
624 Set_Etype (N, Etype (Entity (N)));
625 end if;
627 else
628 Find_Expanded_Name (N);
629 end if;
631 -- In either case, propagate dimension of entity to expanded name
633 Analyze_Dimension (N);
634 end Analyze_Expanded_Name;
636 ---------------------------------------
637 -- Analyze_Generic_Function_Renaming --
638 ---------------------------------------
640 procedure Analyze_Generic_Function_Renaming (N : Node_Id) is
641 begin
642 Analyze_Generic_Renaming (N, E_Generic_Function);
643 end Analyze_Generic_Function_Renaming;
645 --------------------------------------
646 -- Analyze_Generic_Package_Renaming --
647 --------------------------------------
649 procedure Analyze_Generic_Package_Renaming (N : Node_Id) is
650 begin
651 -- Test for the Text_IO special unit case here, since we may be renaming
652 -- one of the subpackages of Text_IO, then join common routine.
654 Check_Text_IO_Special_Unit (Name (N));
656 Analyze_Generic_Renaming (N, E_Generic_Package);
657 end Analyze_Generic_Package_Renaming;
659 ----------------------------------------
660 -- Analyze_Generic_Procedure_Renaming --
661 ----------------------------------------
663 procedure Analyze_Generic_Procedure_Renaming (N : Node_Id) is
664 begin
665 Analyze_Generic_Renaming (N, E_Generic_Procedure);
666 end Analyze_Generic_Procedure_Renaming;
668 ------------------------------
669 -- Analyze_Generic_Renaming --
670 ------------------------------
672 procedure Analyze_Generic_Renaming
673 (N : Node_Id;
674 K : Entity_Kind)
676 New_P : constant Entity_Id := Defining_Entity (N);
677 Inst : Boolean := False;
678 Old_P : Entity_Id;
680 begin
681 if Name (N) = Error then
682 return;
683 end if;
685 Check_SPARK_05_Restriction ("generic renaming is not allowed", N);
687 Generate_Definition (New_P);
689 if Current_Scope /= Standard_Standard then
690 Set_Is_Pure (New_P, Is_Pure (Current_Scope));
691 end if;
693 if Nkind (Name (N)) = N_Selected_Component then
694 Check_Generic_Child_Unit (Name (N), Inst);
695 else
696 Analyze (Name (N));
697 end if;
699 if not Is_Entity_Name (Name (N)) then
700 Error_Msg_N ("expect entity name in renaming declaration", Name (N));
701 Old_P := Any_Id;
702 else
703 Old_P := Entity (Name (N));
704 end if;
706 Enter_Name (New_P);
707 Set_Ekind (New_P, K);
709 if Etype (Old_P) = Any_Type then
710 null;
712 elsif Ekind (Old_P) /= K then
713 Error_Msg_N ("invalid generic unit name", Name (N));
715 else
716 if Present (Renamed_Object (Old_P)) then
717 Set_Renamed_Object (New_P, Renamed_Object (Old_P));
718 else
719 Set_Renamed_Object (New_P, Old_P);
720 end if;
722 -- The generic renaming declaration may become Ghost if it renames a
723 -- Ghost entity.
725 Mark_Ghost_Renaming (N, Old_P);
727 Set_Is_Pure (New_P, Is_Pure (Old_P));
728 Set_Is_Preelaborated (New_P, Is_Preelaborated (Old_P));
730 Set_Etype (New_P, Etype (Old_P));
731 Set_Has_Completion (New_P);
733 if In_Open_Scopes (Old_P) then
734 Error_Msg_N ("within its scope, generic denotes its instance", N);
735 end if;
737 -- For subprograms, propagate the Intrinsic flag, to allow, e.g.
738 -- renamings and subsequent instantiations of Unchecked_Conversion.
740 if Ekind_In (Old_P, E_Generic_Function, E_Generic_Procedure) then
741 Set_Is_Intrinsic_Subprogram
742 (New_P, Is_Intrinsic_Subprogram (Old_P));
743 end if;
745 Check_Library_Unit_Renaming (N, Old_P);
746 end if;
748 -- Implementation-defined aspect specifications can appear in a renaming
749 -- declaration, but not language-defined ones. The call to procedure
750 -- Analyze_Aspect_Specifications will take care of this error check.
752 if Has_Aspects (N) then
753 Analyze_Aspect_Specifications (N, New_P);
754 end if;
755 end Analyze_Generic_Renaming;
757 -----------------------------
758 -- Analyze_Object_Renaming --
759 -----------------------------
761 procedure Analyze_Object_Renaming (N : Node_Id) is
762 Id : constant Entity_Id := Defining_Identifier (N);
763 Loc : constant Source_Ptr := Sloc (N);
764 Nam : constant Node_Id := Name (N);
765 Dec : Node_Id;
766 T : Entity_Id;
767 T2 : Entity_Id;
769 procedure Check_Constrained_Object;
770 -- If the nominal type is unconstrained but the renamed object is
771 -- constrained, as can happen with renaming an explicit dereference or
772 -- a function return, build a constrained subtype from the object. If
773 -- the renaming is for a formal in an accept statement, the analysis
774 -- has already established its actual subtype. This is only relevant
775 -- if the renamed object is an explicit dereference.
777 ------------------------------
778 -- Check_Constrained_Object --
779 ------------------------------
781 procedure Check_Constrained_Object is
782 Typ : constant Entity_Id := Etype (Nam);
783 Subt : Entity_Id;
785 begin
786 if Nkind_In (Nam, N_Function_Call, N_Explicit_Dereference)
787 and then Is_Composite_Type (Etype (Nam))
788 and then not Is_Constrained (Etype (Nam))
789 and then not Has_Unknown_Discriminants (Etype (Nam))
790 and then Expander_Active
791 then
792 -- If Actual_Subtype is already set, nothing to do
794 if Ekind_In (Id, E_Variable, E_Constant)
795 and then Present (Actual_Subtype (Id))
796 then
797 null;
799 -- A renaming of an unchecked union has no actual subtype
801 elsif Is_Unchecked_Union (Typ) then
802 null;
804 -- If a record is limited its size is invariant. This is the case
805 -- in particular with record types with an access discirminant
806 -- that are used in iterators. This is an optimization, but it
807 -- also prevents typing anomalies when the prefix is further
808 -- expanded. Limited types with discriminants are included.
810 elsif Is_Limited_Record (Typ)
811 or else
812 (Ekind (Typ) = E_Limited_Private_Type
813 and then Has_Discriminants (Typ)
814 and then Is_Access_Type (Etype (First_Discriminant (Typ))))
815 then
816 null;
818 else
819 Subt := Make_Temporary (Loc, 'T');
820 Remove_Side_Effects (Nam);
821 Insert_Action (N,
822 Make_Subtype_Declaration (Loc,
823 Defining_Identifier => Subt,
824 Subtype_Indication =>
825 Make_Subtype_From_Expr (Nam, Typ)));
826 Rewrite (Subtype_Mark (N), New_Occurrence_Of (Subt, Loc));
827 Set_Etype (Nam, Subt);
829 -- Freeze subtype at once, to prevent order of elaboration
830 -- issues in the backend. The renamed object exists, so its
831 -- type is already frozen in any case.
833 Freeze_Before (N, Subt);
834 end if;
835 end if;
836 end Check_Constrained_Object;
838 -- Start of processing for Analyze_Object_Renaming
840 begin
841 if Nam = Error then
842 return;
843 end if;
845 Check_SPARK_05_Restriction ("object renaming is not allowed", N);
847 Set_Is_Pure (Id, Is_Pure (Current_Scope));
848 Enter_Name (Id);
850 -- The renaming of a component that depends on a discriminant requires
851 -- an actual subtype, because in subsequent use of the object Gigi will
852 -- be unable to locate the actual bounds. This explicit step is required
853 -- when the renaming is generated in removing side effects of an
854 -- already-analyzed expression.
856 if Nkind (Nam) = N_Selected_Component and then Analyzed (Nam) then
858 -- The object renaming declaration may become Ghost if it renames a
859 -- Ghost entity.
861 if Is_Entity_Name (Nam) then
862 Mark_Ghost_Renaming (N, Entity (Nam));
863 end if;
865 T := Etype (Nam);
866 Dec := Build_Actual_Subtype_Of_Component (Etype (Nam), Nam);
868 if Present (Dec) then
869 Insert_Action (N, Dec);
870 T := Defining_Identifier (Dec);
871 Set_Etype (Nam, T);
872 end if;
874 -- Complete analysis of the subtype mark in any case, for ASIS use
876 if Present (Subtype_Mark (N)) then
877 Find_Type (Subtype_Mark (N));
878 end if;
880 elsif Present (Subtype_Mark (N)) then
881 Find_Type (Subtype_Mark (N));
882 T := Entity (Subtype_Mark (N));
883 Analyze (Nam);
885 -- The object renaming declaration may become Ghost if it renames a
886 -- Ghost entity.
888 if Is_Entity_Name (Nam) then
889 Mark_Ghost_Renaming (N, Entity (Nam));
890 end if;
892 -- Reject renamings of conversions unless the type is tagged, or
893 -- the conversion is implicit (which can occur for cases of anonymous
894 -- access types in Ada 2012).
896 if Nkind (Nam) = N_Type_Conversion
897 and then Comes_From_Source (Nam)
898 and then not Is_Tagged_Type (T)
899 then
900 Error_Msg_N
901 ("renaming of conversion only allowed for tagged types", Nam);
902 end if;
904 Resolve (Nam, T);
906 -- If the renamed object is a function call of a limited type,
907 -- the expansion of the renaming is complicated by the presence
908 -- of various temporaries and subtypes that capture constraints
909 -- of the renamed object. Rewrite node as an object declaration,
910 -- whose expansion is simpler. Given that the object is limited
911 -- there is no copy involved and no performance hit.
913 if Nkind (Nam) = N_Function_Call
914 and then Is_Limited_View (Etype (Nam))
915 and then not Is_Constrained (Etype (Nam))
916 and then Comes_From_Source (N)
917 then
918 Set_Etype (Id, T);
919 Set_Ekind (Id, E_Constant);
920 Rewrite (N,
921 Make_Object_Declaration (Loc,
922 Defining_Identifier => Id,
923 Constant_Present => True,
924 Object_Definition => New_Occurrence_Of (Etype (Nam), Loc),
925 Expression => Relocate_Node (Nam)));
926 return;
927 end if;
929 -- Ada 2012 (AI05-149): Reject renaming of an anonymous access object
930 -- when renaming declaration has a named access type. The Ada 2012
931 -- coverage rules allow an anonymous access type in the context of
932 -- an expected named general access type, but the renaming rules
933 -- require the types to be the same. (An exception is when the type
934 -- of the renaming is also an anonymous access type, which can only
935 -- happen due to a renaming created by the expander.)
937 if Nkind (Nam) = N_Type_Conversion
938 and then not Comes_From_Source (Nam)
939 and then Ekind (Etype (Expression (Nam))) = E_Anonymous_Access_Type
940 and then Ekind (T) /= E_Anonymous_Access_Type
941 then
942 Wrong_Type (Expression (Nam), T); -- Should we give better error???
943 end if;
945 -- Check that a class-wide object is not being renamed as an object
946 -- of a specific type. The test for access types is needed to exclude
947 -- cases where the renamed object is a dynamically tagged access
948 -- result, such as occurs in certain expansions.
950 if Is_Tagged_Type (T) then
951 Check_Dynamically_Tagged_Expression
952 (Expr => Nam,
953 Typ => T,
954 Related_Nod => N);
955 end if;
957 -- Ada 2005 (AI-230/AI-254): Access renaming
959 else pragma Assert (Present (Access_Definition (N)));
960 T :=
961 Access_Definition
962 (Related_Nod => N,
963 N => Access_Definition (N));
965 Analyze (Nam);
967 -- The object renaming declaration may become Ghost if it renames a
968 -- Ghost entity.
970 if Is_Entity_Name (Nam) then
971 Mark_Ghost_Renaming (N, Entity (Nam));
972 end if;
974 -- Ada 2005 AI05-105: if the declaration has an anonymous access
975 -- type, the renamed object must also have an anonymous type, and
976 -- this is a name resolution rule. This was implicit in the last part
977 -- of the first sentence in 8.5.1(3/2), and is made explicit by this
978 -- recent AI.
980 if not Is_Overloaded (Nam) then
981 if Ekind (Etype (Nam)) /= Ekind (T) then
982 Error_Msg_N
983 ("expect anonymous access type in object renaming", N);
984 end if;
986 else
987 declare
988 I : Interp_Index;
989 It : Interp;
990 Typ : Entity_Id := Empty;
991 Seen : Boolean := False;
993 begin
994 Get_First_Interp (Nam, I, It);
995 while Present (It.Typ) loop
997 -- Renaming is ambiguous if more than one candidate
998 -- interpretation is type-conformant with the context.
1000 if Ekind (It.Typ) = Ekind (T) then
1001 if Ekind (T) = E_Anonymous_Access_Subprogram_Type
1002 and then
1003 Type_Conformant
1004 (Designated_Type (T), Designated_Type (It.Typ))
1005 then
1006 if not Seen then
1007 Seen := True;
1008 else
1009 Error_Msg_N
1010 ("ambiguous expression in renaming", Nam);
1011 end if;
1013 elsif Ekind (T) = E_Anonymous_Access_Type
1014 and then
1015 Covers (Designated_Type (T), Designated_Type (It.Typ))
1016 then
1017 if not Seen then
1018 Seen := True;
1019 else
1020 Error_Msg_N
1021 ("ambiguous expression in renaming", Nam);
1022 end if;
1023 end if;
1025 if Covers (T, It.Typ) then
1026 Typ := It.Typ;
1027 Set_Etype (Nam, Typ);
1028 Set_Is_Overloaded (Nam, False);
1029 end if;
1030 end if;
1032 Get_Next_Interp (I, It);
1033 end loop;
1034 end;
1035 end if;
1037 Resolve (Nam, T);
1039 -- Do not perform the legality checks below when the resolution of
1040 -- the renaming name failed because the associated type is Any_Type.
1042 if Etype (Nam) = Any_Type then
1043 null;
1045 -- Ada 2005 (AI-231): In the case where the type is defined by an
1046 -- access_definition, the renamed entity shall be of an access-to-
1047 -- constant type if and only if the access_definition defines an
1048 -- access-to-constant type. ARM 8.5.1(4)
1050 elsif Constant_Present (Access_Definition (N))
1051 and then not Is_Access_Constant (Etype (Nam))
1052 then
1053 Error_Msg_N
1054 ("(Ada 2005): the renamed object is not access-to-constant "
1055 & "(RM 8.5.1(6))", N);
1057 elsif not Constant_Present (Access_Definition (N))
1058 and then Is_Access_Constant (Etype (Nam))
1059 then
1060 Error_Msg_N
1061 ("(Ada 2005): the renamed object is not access-to-variable "
1062 & "(RM 8.5.1(6))", N);
1063 end if;
1065 if Is_Access_Subprogram_Type (Etype (Nam)) then
1066 Check_Subtype_Conformant
1067 (Designated_Type (T), Designated_Type (Etype (Nam)));
1069 elsif not Subtypes_Statically_Match
1070 (Designated_Type (T),
1071 Available_View (Designated_Type (Etype (Nam))))
1072 then
1073 Error_Msg_N
1074 ("subtype of renamed object does not statically match", N);
1075 end if;
1076 end if;
1078 -- Special processing for renaming function return object. Some errors
1079 -- and warnings are produced only for calls that come from source.
1081 if Nkind (Nam) = N_Function_Call then
1082 case Ada_Version is
1084 -- Usage is illegal in Ada 83, but renamings are also introduced
1085 -- during expansion, and error does not apply to those.
1087 when Ada_83 =>
1088 if Comes_From_Source (N) then
1089 Error_Msg_N
1090 ("(Ada 83) cannot rename function return object", Nam);
1091 end if;
1093 -- In Ada 95, warn for odd case of renaming parameterless function
1094 -- call if this is not a limited type (where this is useful).
1096 when others =>
1097 if Warn_On_Object_Renames_Function
1098 and then No (Parameter_Associations (Nam))
1099 and then not Is_Limited_Type (Etype (Nam))
1100 and then Comes_From_Source (Nam)
1101 then
1102 Error_Msg_N
1103 ("renaming function result object is suspicious?R?", Nam);
1104 Error_Msg_NE
1105 ("\function & will be called only once?R?", Nam,
1106 Entity (Name (Nam)));
1107 Error_Msg_N -- CODEFIX
1108 ("\suggest using an initialized constant object "
1109 & "instead?R?", Nam);
1110 end if;
1111 end case;
1112 end if;
1114 Check_Constrained_Object;
1116 -- An object renaming requires an exact match of the type. Class-wide
1117 -- matching is not allowed.
1119 if Is_Class_Wide_Type (T)
1120 and then Base_Type (Etype (Nam)) /= Base_Type (T)
1121 then
1122 Wrong_Type (Nam, T);
1123 end if;
1125 T2 := Etype (Nam);
1127 -- Ada 2005 (AI-326): Handle wrong use of incomplete type
1129 if Nkind (Nam) = N_Explicit_Dereference
1130 and then Ekind (Etype (T2)) = E_Incomplete_Type
1131 then
1132 Error_Msg_NE ("invalid use of incomplete type&", Id, T2);
1133 return;
1135 elsif Ekind (Etype (T)) = E_Incomplete_Type then
1136 Error_Msg_NE ("invalid use of incomplete type&", Id, T);
1137 return;
1138 end if;
1140 -- Ada 2005 (AI-327)
1142 if Ada_Version >= Ada_2005
1143 and then Nkind (Nam) = N_Attribute_Reference
1144 and then Attribute_Name (Nam) = Name_Priority
1145 then
1146 null;
1148 elsif Ada_Version >= Ada_2005 and then Nkind (Nam) in N_Has_Entity then
1149 declare
1150 Nam_Decl : Node_Id;
1151 Nam_Ent : Entity_Id;
1153 begin
1154 if Nkind (Nam) = N_Attribute_Reference then
1155 Nam_Ent := Entity (Prefix (Nam));
1156 else
1157 Nam_Ent := Entity (Nam);
1158 end if;
1160 Nam_Decl := Parent (Nam_Ent);
1162 if Has_Null_Exclusion (N)
1163 and then not Has_Null_Exclusion (Nam_Decl)
1164 then
1165 -- Ada 2005 (AI-423): If the object name denotes a generic
1166 -- formal object of a generic unit G, and the object renaming
1167 -- declaration occurs within the body of G or within the body
1168 -- of a generic unit declared within the declarative region
1169 -- of G, then the declaration of the formal object of G must
1170 -- have a null exclusion or a null-excluding subtype.
1172 if Is_Formal_Object (Nam_Ent)
1173 and then In_Generic_Scope (Id)
1174 then
1175 if not Can_Never_Be_Null (Etype (Nam_Ent)) then
1176 Error_Msg_N
1177 ("renamed formal does not exclude `NULL` "
1178 & "(RM 8.5.1(4.6/2))", N);
1180 elsif In_Package_Body (Scope (Id)) then
1181 Error_Msg_N
1182 ("formal object does not have a null exclusion"
1183 & "(RM 8.5.1(4.6/2))", N);
1184 end if;
1186 -- Ada 2005 (AI-423): Otherwise, the subtype of the object name
1187 -- shall exclude null.
1189 elsif not Can_Never_Be_Null (Etype (Nam_Ent)) then
1190 Error_Msg_N
1191 ("renamed object does not exclude `NULL` "
1192 & "(RM 8.5.1(4.6/2))", N);
1194 -- An instance is illegal if it contains a renaming that
1195 -- excludes null, and the actual does not. The renaming
1196 -- declaration has already indicated that the declaration
1197 -- of the renamed actual in the instance will raise
1198 -- constraint_error.
1200 elsif Nkind (Nam_Decl) = N_Object_Declaration
1201 and then In_Instance
1202 and then
1203 Present (Corresponding_Generic_Association (Nam_Decl))
1204 and then Nkind (Expression (Nam_Decl)) =
1205 N_Raise_Constraint_Error
1206 then
1207 Error_Msg_N
1208 ("renamed actual does not exclude `NULL` "
1209 & "(RM 8.5.1(4.6/2))", N);
1211 -- Finally, if there is a null exclusion, the subtype mark
1212 -- must not be null-excluding.
1214 elsif No (Access_Definition (N))
1215 and then Can_Never_Be_Null (T)
1216 then
1217 Error_Msg_NE
1218 ("`NOT NULL` not allowed (& already excludes null)",
1219 N, T);
1221 end if;
1223 elsif Can_Never_Be_Null (T)
1224 and then not Can_Never_Be_Null (Etype (Nam_Ent))
1225 then
1226 Error_Msg_N
1227 ("renamed object does not exclude `NULL` "
1228 & "(RM 8.5.1(4.6/2))", N);
1230 elsif Has_Null_Exclusion (N)
1231 and then No (Access_Definition (N))
1232 and then Can_Never_Be_Null (T)
1233 then
1234 Error_Msg_NE
1235 ("`NOT NULL` not allowed (& already excludes null)", N, T);
1236 end if;
1237 end;
1238 end if;
1240 -- Set the Ekind of the entity, unless it has been set already, as is
1241 -- the case for the iteration object over a container with no variable
1242 -- indexing. In that case it's been marked as a constant, and we do not
1243 -- want to change it to a variable.
1245 if Ekind (Id) /= E_Constant then
1246 Set_Ekind (Id, E_Variable);
1247 end if;
1249 -- Initialize the object size and alignment. Note that we used to call
1250 -- Init_Size_Align here, but that's wrong for objects which have only
1251 -- an Esize, not an RM_Size field.
1253 Init_Object_Size_Align (Id);
1255 if T = Any_Type or else Etype (Nam) = Any_Type then
1256 return;
1258 -- Verify that the renamed entity is an object or a function call. It
1259 -- may have been rewritten in several ways.
1261 elsif Is_Object_Reference (Nam) then
1262 if Comes_From_Source (N) then
1263 if Is_Dependent_Component_Of_Mutable_Object (Nam) then
1264 Error_Msg_N
1265 ("illegal renaming of discriminant-dependent component", Nam);
1266 end if;
1268 -- If the renaming comes from source and the renamed object is a
1269 -- dereference, then mark the prefix as needing debug information,
1270 -- since it might have been rewritten hence internally generated
1271 -- and Debug_Renaming_Declaration will link the renaming to it.
1273 if Nkind (Nam) = N_Explicit_Dereference
1274 and then Is_Entity_Name (Prefix (Nam))
1275 then
1276 Set_Debug_Info_Needed (Entity (Prefix (Nam)));
1277 end if;
1278 end if;
1280 -- A static function call may have been folded into a literal
1282 elsif Nkind (Original_Node (Nam)) = N_Function_Call
1284 -- When expansion is disabled, attribute reference is not rewritten
1285 -- as function call. Otherwise it may be rewritten as a conversion,
1286 -- so check original node.
1288 or else (Nkind (Original_Node (Nam)) = N_Attribute_Reference
1289 and then Is_Function_Attribute_Name
1290 (Attribute_Name (Original_Node (Nam))))
1292 -- Weird but legal, equivalent to renaming a function call. Illegal
1293 -- if the literal is the result of constant-folding an attribute
1294 -- reference that is not a function.
1296 or else (Is_Entity_Name (Nam)
1297 and then Ekind (Entity (Nam)) = E_Enumeration_Literal
1298 and then
1299 Nkind (Original_Node (Nam)) /= N_Attribute_Reference)
1301 or else (Nkind (Nam) = N_Type_Conversion
1302 and then Is_Tagged_Type (Entity (Subtype_Mark (Nam))))
1303 then
1304 null;
1306 elsif Nkind (Nam) = N_Type_Conversion then
1307 Error_Msg_N
1308 ("renaming of conversion only allowed for tagged types", Nam);
1310 -- Ada 2005 (AI-327)
1312 elsif Ada_Version >= Ada_2005
1313 and then Nkind (Nam) = N_Attribute_Reference
1314 and then Attribute_Name (Nam) = Name_Priority
1315 then
1316 null;
1318 -- Allow internally generated x'Ref resulting in N_Reference node
1320 elsif Nkind (Nam) = N_Reference then
1321 null;
1323 else
1324 Error_Msg_N ("expect object name in renaming", Nam);
1325 end if;
1327 Set_Etype (Id, T2);
1329 if not Is_Variable (Nam) then
1330 Set_Ekind (Id, E_Constant);
1331 Set_Never_Set_In_Source (Id, True);
1332 Set_Is_True_Constant (Id, True);
1333 end if;
1335 -- The entity of the renaming declaration needs to reflect whether the
1336 -- renamed object is volatile. Is_Volatile is set if the renamed object
1337 -- is volatile in the RM legality sense.
1339 Set_Is_Volatile (Id, Is_Volatile_Object (Nam));
1341 -- Also copy settings of Atomic/Independent/Volatile_Full_Access
1343 if Is_Entity_Name (Nam) then
1344 Set_Is_Atomic (Id, Is_Atomic (Entity (Nam)));
1345 Set_Is_Independent (Id, Is_Independent (Entity (Nam)));
1346 Set_Is_Volatile_Full_Access (Id,
1347 Is_Volatile_Full_Access (Entity (Nam)));
1348 end if;
1350 -- Treat as volatile if we just set the Volatile flag
1352 if Is_Volatile (Id)
1354 -- Or if we are renaming an entity which was marked this way
1356 -- Are there more cases, e.g. X(J) where X is Treat_As_Volatile ???
1358 or else (Is_Entity_Name (Nam)
1359 and then Treat_As_Volatile (Entity (Nam)))
1360 then
1361 Set_Treat_As_Volatile (Id, True);
1362 end if;
1364 -- Now make the link to the renamed object
1366 Set_Renamed_Object (Id, Nam);
1368 -- Implementation-defined aspect specifications can appear in a renaming
1369 -- declaration, but not language-defined ones. The call to procedure
1370 -- Analyze_Aspect_Specifications will take care of this error check.
1372 if Has_Aspects (N) then
1373 Analyze_Aspect_Specifications (N, Id);
1374 end if;
1376 -- Deal with dimensions
1378 Analyze_Dimension (N);
1379 end Analyze_Object_Renaming;
1381 ------------------------------
1382 -- Analyze_Package_Renaming --
1383 ------------------------------
1385 procedure Analyze_Package_Renaming (N : Node_Id) is
1386 New_P : constant Entity_Id := Defining_Entity (N);
1387 Old_P : Entity_Id;
1388 Spec : Node_Id;
1390 begin
1391 if Name (N) = Error then
1392 return;
1393 end if;
1395 -- Check for Text_IO special unit (we may be renaming a Text_IO child)
1397 Check_Text_IO_Special_Unit (Name (N));
1399 if Current_Scope /= Standard_Standard then
1400 Set_Is_Pure (New_P, Is_Pure (Current_Scope));
1401 end if;
1403 Enter_Name (New_P);
1404 Analyze (Name (N));
1406 if Is_Entity_Name (Name (N)) then
1407 Old_P := Entity (Name (N));
1408 else
1409 Old_P := Any_Id;
1410 end if;
1412 if Etype (Old_P) = Any_Type then
1413 Error_Msg_N ("expect package name in renaming", Name (N));
1415 elsif Ekind (Old_P) /= E_Package
1416 and then not (Ekind (Old_P) = E_Generic_Package
1417 and then In_Open_Scopes (Old_P))
1418 then
1419 if Ekind (Old_P) = E_Generic_Package then
1420 Error_Msg_N
1421 ("generic package cannot be renamed as a package", Name (N));
1422 else
1423 Error_Msg_Sloc := Sloc (Old_P);
1424 Error_Msg_NE
1425 ("expect package name in renaming, found& declared#",
1426 Name (N), Old_P);
1427 end if;
1429 -- Set basic attributes to minimize cascaded errors
1431 Set_Ekind (New_P, E_Package);
1432 Set_Etype (New_P, Standard_Void_Type);
1434 -- Here for OK package renaming
1436 else
1437 -- Entities in the old package are accessible through the renaming
1438 -- entity. The simplest implementation is to have both packages share
1439 -- the entity list.
1441 Set_Ekind (New_P, E_Package);
1442 Set_Etype (New_P, Standard_Void_Type);
1444 if Present (Renamed_Object (Old_P)) then
1445 Set_Renamed_Object (New_P, Renamed_Object (Old_P));
1446 else
1447 Set_Renamed_Object (New_P, Old_P);
1448 end if;
1450 -- The package renaming declaration may become Ghost if it renames a
1451 -- Ghost entity.
1453 Mark_Ghost_Renaming (N, Old_P);
1455 Set_Has_Completion (New_P);
1456 Set_First_Entity (New_P, First_Entity (Old_P));
1457 Set_Last_Entity (New_P, Last_Entity (Old_P));
1458 Set_First_Private_Entity (New_P, First_Private_Entity (Old_P));
1459 Check_Library_Unit_Renaming (N, Old_P);
1460 Generate_Reference (Old_P, Name (N));
1462 -- If the renaming is in the visible part of a package, then we set
1463 -- Renamed_In_Spec for the renamed package, to prevent giving
1464 -- warnings about no entities referenced. Such a warning would be
1465 -- overenthusiastic, since clients can see entities in the renamed
1466 -- package via the visible package renaming.
1468 declare
1469 Ent : constant Entity_Id := Cunit_Entity (Current_Sem_Unit);
1470 begin
1471 if Ekind (Ent) = E_Package
1472 and then not In_Private_Part (Ent)
1473 and then In_Extended_Main_Source_Unit (N)
1474 and then Ekind (Old_P) = E_Package
1475 then
1476 Set_Renamed_In_Spec (Old_P);
1477 end if;
1478 end;
1480 -- If this is the renaming declaration of a package instantiation
1481 -- within itself, it is the declaration that ends the list of actuals
1482 -- for the instantiation. At this point, the subtypes that rename
1483 -- the actuals are flagged as generic, to avoid spurious ambiguities
1484 -- if the actuals for two distinct formals happen to coincide. If
1485 -- the actual is a private type, the subtype has a private completion
1486 -- that is flagged in the same fashion.
1488 -- Resolution is identical to what is was in the original generic.
1489 -- On exit from the generic instance, these are turned into regular
1490 -- subtypes again, so they are compatible with types in their class.
1492 if not Is_Generic_Instance (Old_P) then
1493 return;
1494 else
1495 Spec := Specification (Unit_Declaration_Node (Old_P));
1496 end if;
1498 if Nkind (Spec) = N_Package_Specification
1499 and then Present (Generic_Parent (Spec))
1500 and then Old_P = Current_Scope
1501 and then Chars (New_P) = Chars (Generic_Parent (Spec))
1502 then
1503 declare
1504 E : Entity_Id;
1506 begin
1507 E := First_Entity (Old_P);
1508 while Present (E) and then E /= New_P loop
1509 if Is_Type (E)
1510 and then Nkind (Parent (E)) = N_Subtype_Declaration
1511 then
1512 Set_Is_Generic_Actual_Type (E);
1514 if Is_Private_Type (E)
1515 and then Present (Full_View (E))
1516 then
1517 Set_Is_Generic_Actual_Type (Full_View (E));
1518 end if;
1519 end if;
1521 Next_Entity (E);
1522 end loop;
1523 end;
1524 end if;
1525 end if;
1527 -- Implementation-defined aspect specifications can appear in a renaming
1528 -- declaration, but not language-defined ones. The call to procedure
1529 -- Analyze_Aspect_Specifications will take care of this error check.
1531 if Has_Aspects (N) then
1532 Analyze_Aspect_Specifications (N, New_P);
1533 end if;
1534 end Analyze_Package_Renaming;
1536 -------------------------------
1537 -- Analyze_Renamed_Character --
1538 -------------------------------
1540 procedure Analyze_Renamed_Character
1541 (N : Node_Id;
1542 New_S : Entity_Id;
1543 Is_Body : Boolean)
1545 C : constant Node_Id := Name (N);
1547 begin
1548 if Ekind (New_S) = E_Function then
1549 Resolve (C, Etype (New_S));
1551 if Is_Body then
1552 Check_Frozen_Renaming (N, New_S);
1553 end if;
1555 else
1556 Error_Msg_N ("character literal can only be renamed as function", N);
1557 end if;
1558 end Analyze_Renamed_Character;
1560 ---------------------------------
1561 -- Analyze_Renamed_Dereference --
1562 ---------------------------------
1564 procedure Analyze_Renamed_Dereference
1565 (N : Node_Id;
1566 New_S : Entity_Id;
1567 Is_Body : Boolean)
1569 Nam : constant Node_Id := Name (N);
1570 P : constant Node_Id := Prefix (Nam);
1571 Typ : Entity_Id;
1572 Ind : Interp_Index;
1573 It : Interp;
1575 begin
1576 if not Is_Overloaded (P) then
1577 if Ekind (Etype (Nam)) /= E_Subprogram_Type
1578 or else not Type_Conformant (Etype (Nam), New_S)
1579 then
1580 Error_Msg_N ("designated type does not match specification", P);
1581 else
1582 Resolve (P);
1583 end if;
1585 return;
1587 else
1588 Typ := Any_Type;
1589 Get_First_Interp (Nam, Ind, It);
1591 while Present (It.Nam) loop
1593 if Ekind (It.Nam) = E_Subprogram_Type
1594 and then Type_Conformant (It.Nam, New_S)
1595 then
1596 if Typ /= Any_Id then
1597 Error_Msg_N ("ambiguous renaming", P);
1598 return;
1599 else
1600 Typ := It.Nam;
1601 end if;
1602 end if;
1604 Get_Next_Interp (Ind, It);
1605 end loop;
1607 if Typ = Any_Type then
1608 Error_Msg_N ("designated type does not match specification", P);
1609 else
1610 Resolve (N, Typ);
1612 if Is_Body then
1613 Check_Frozen_Renaming (N, New_S);
1614 end if;
1615 end if;
1616 end if;
1617 end Analyze_Renamed_Dereference;
1619 ---------------------------
1620 -- Analyze_Renamed_Entry --
1621 ---------------------------
1623 procedure Analyze_Renamed_Entry
1624 (N : Node_Id;
1625 New_S : Entity_Id;
1626 Is_Body : Boolean)
1628 Nam : constant Node_Id := Name (N);
1629 Sel : constant Node_Id := Selector_Name (Nam);
1630 Is_Actual : constant Boolean := Present (Corresponding_Formal_Spec (N));
1631 Old_S : Entity_Id;
1633 begin
1634 if Entity (Sel) = Any_Id then
1636 -- Selector is undefined on prefix. Error emitted already
1638 Set_Has_Completion (New_S);
1639 return;
1640 end if;
1642 -- Otherwise find renamed entity and build body of New_S as a call to it
1644 Old_S := Find_Renamed_Entity (N, Selector_Name (Nam), New_S);
1646 if Old_S = Any_Id then
1647 Error_Msg_N (" no subprogram or entry matches specification", N);
1648 else
1649 if Is_Body then
1650 Check_Subtype_Conformant (New_S, Old_S, N);
1651 Generate_Reference (New_S, Defining_Entity (N), 'b');
1652 Style.Check_Identifier (Defining_Entity (N), New_S);
1654 else
1655 -- Only mode conformance required for a renaming_as_declaration
1657 Check_Mode_Conformant (New_S, Old_S, N);
1658 end if;
1660 Inherit_Renamed_Profile (New_S, Old_S);
1662 -- The prefix can be an arbitrary expression that yields a task or
1663 -- protected object, so it must be resolved.
1665 Resolve (Prefix (Nam), Scope (Old_S));
1666 end if;
1668 Set_Convention (New_S, Convention (Old_S));
1669 Set_Has_Completion (New_S, Inside_A_Generic);
1671 -- AI05-0225: If the renamed entity is a procedure or entry of a
1672 -- protected object, the target object must be a variable.
1674 if Ekind (Scope (Old_S)) in Protected_Kind
1675 and then Ekind (New_S) = E_Procedure
1676 and then not Is_Variable (Prefix (Nam))
1677 then
1678 if Is_Actual then
1679 Error_Msg_N
1680 ("target object of protected operation used as actual for "
1681 & "formal procedure must be a variable", Nam);
1682 else
1683 Error_Msg_N
1684 ("target object of protected operation renamed as procedure, "
1685 & "must be a variable", Nam);
1686 end if;
1687 end if;
1689 if Is_Body then
1690 Check_Frozen_Renaming (N, New_S);
1691 end if;
1692 end Analyze_Renamed_Entry;
1694 -----------------------------------
1695 -- Analyze_Renamed_Family_Member --
1696 -----------------------------------
1698 procedure Analyze_Renamed_Family_Member
1699 (N : Node_Id;
1700 New_S : Entity_Id;
1701 Is_Body : Boolean)
1703 Nam : constant Node_Id := Name (N);
1704 P : constant Node_Id := Prefix (Nam);
1705 Old_S : Entity_Id;
1707 begin
1708 if (Is_Entity_Name (P) and then Ekind (Entity (P)) = E_Entry_Family)
1709 or else (Nkind (P) = N_Selected_Component
1710 and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family)
1711 then
1712 if Is_Entity_Name (P) then
1713 Old_S := Entity (P);
1714 else
1715 Old_S := Entity (Selector_Name (P));
1716 end if;
1718 if not Entity_Matches_Spec (Old_S, New_S) then
1719 Error_Msg_N ("entry family does not match specification", N);
1721 elsif Is_Body then
1722 Check_Subtype_Conformant (New_S, Old_S, N);
1723 Generate_Reference (New_S, Defining_Entity (N), 'b');
1724 Style.Check_Identifier (Defining_Entity (N), New_S);
1725 end if;
1727 else
1728 Error_Msg_N ("no entry family matches specification", N);
1729 end if;
1731 Set_Has_Completion (New_S, Inside_A_Generic);
1733 if Is_Body then
1734 Check_Frozen_Renaming (N, New_S);
1735 end if;
1736 end Analyze_Renamed_Family_Member;
1738 -----------------------------------------
1739 -- Analyze_Renamed_Primitive_Operation --
1740 -----------------------------------------
1742 procedure Analyze_Renamed_Primitive_Operation
1743 (N : Node_Id;
1744 New_S : Entity_Id;
1745 Is_Body : Boolean)
1747 Old_S : Entity_Id;
1749 function Conforms
1750 (Subp : Entity_Id;
1751 Ctyp : Conformance_Type) return Boolean;
1752 -- Verify that the signatures of the renamed entity and the new entity
1753 -- match. The first formal of the renamed entity is skipped because it
1754 -- is the target object in any subsequent call.
1756 --------------
1757 -- Conforms --
1758 --------------
1760 function Conforms
1761 (Subp : Entity_Id;
1762 Ctyp : Conformance_Type) return Boolean
1764 Old_F : Entity_Id;
1765 New_F : Entity_Id;
1767 begin
1768 if Ekind (Subp) /= Ekind (New_S) then
1769 return False;
1770 end if;
1772 Old_F := Next_Formal (First_Formal (Subp));
1773 New_F := First_Formal (New_S);
1774 while Present (Old_F) and then Present (New_F) loop
1775 if not Conforming_Types (Etype (Old_F), Etype (New_F), Ctyp) then
1776 return False;
1777 end if;
1779 if Ctyp >= Mode_Conformant
1780 and then Ekind (Old_F) /= Ekind (New_F)
1781 then
1782 return False;
1783 end if;
1785 Next_Formal (New_F);
1786 Next_Formal (Old_F);
1787 end loop;
1789 return True;
1790 end Conforms;
1792 -- Start of processing for Analyze_Renamed_Primitive_Operation
1794 begin
1795 if not Is_Overloaded (Selector_Name (Name (N))) then
1796 Old_S := Entity (Selector_Name (Name (N)));
1798 if not Conforms (Old_S, Type_Conformant) then
1799 Old_S := Any_Id;
1800 end if;
1802 else
1803 -- Find the operation that matches the given signature
1805 declare
1806 It : Interp;
1807 Ind : Interp_Index;
1809 begin
1810 Old_S := Any_Id;
1811 Get_First_Interp (Selector_Name (Name (N)), Ind, It);
1813 while Present (It.Nam) loop
1814 if Conforms (It.Nam, Type_Conformant) then
1815 Old_S := It.Nam;
1816 end if;
1818 Get_Next_Interp (Ind, It);
1819 end loop;
1820 end;
1821 end if;
1823 if Old_S = Any_Id then
1824 Error_Msg_N (" no subprogram or entry matches specification", N);
1826 else
1827 if Is_Body then
1828 if not Conforms (Old_S, Subtype_Conformant) then
1829 Error_Msg_N ("subtype conformance error in renaming", N);
1830 end if;
1832 Generate_Reference (New_S, Defining_Entity (N), 'b');
1833 Style.Check_Identifier (Defining_Entity (N), New_S);
1835 else
1836 -- Only mode conformance required for a renaming_as_declaration
1838 if not Conforms (Old_S, Mode_Conformant) then
1839 Error_Msg_N ("mode conformance error in renaming", N);
1840 end if;
1842 -- Enforce the rule given in (RM 6.3.1 (10.1/2)): a prefixed
1843 -- view of a subprogram is intrinsic, because the compiler has
1844 -- to generate a wrapper for any call to it. If the name in a
1845 -- subprogram renaming is a prefixed view, the entity is thus
1846 -- intrinsic, and 'Access cannot be applied to it.
1848 Set_Convention (New_S, Convention_Intrinsic);
1849 end if;
1851 -- Inherit_Renamed_Profile (New_S, Old_S);
1853 -- The prefix can be an arbitrary expression that yields an
1854 -- object, so it must be resolved.
1856 Resolve (Prefix (Name (N)));
1857 end if;
1858 end Analyze_Renamed_Primitive_Operation;
1860 ---------------------------------
1861 -- Analyze_Subprogram_Renaming --
1862 ---------------------------------
1864 procedure Analyze_Subprogram_Renaming (N : Node_Id) is
1865 Formal_Spec : constant Entity_Id := Corresponding_Formal_Spec (N);
1866 Is_Actual : constant Boolean := Present (Formal_Spec);
1867 Nam : constant Node_Id := Name (N);
1868 Save_AV : constant Ada_Version_Type := Ada_Version;
1869 Save_AVP : constant Node_Id := Ada_Version_Pragma;
1870 Save_AV_Exp : constant Ada_Version_Type := Ada_Version_Explicit;
1871 Spec : constant Node_Id := Specification (N);
1873 Old_S : Entity_Id := Empty;
1874 Rename_Spec : Entity_Id;
1876 procedure Build_Class_Wide_Wrapper
1877 (Ren_Id : out Entity_Id;
1878 Wrap_Id : out Entity_Id);
1879 -- Ada 2012 (AI05-0071): A generic/instance scenario involving a formal
1880 -- type with unknown discriminants and a generic primitive operation of
1881 -- the said type with a box require special processing when the actual
1882 -- is a class-wide type:
1884 -- generic
1885 -- type Formal_Typ (<>) is private;
1886 -- with procedure Prim_Op (Param : Formal_Typ) is <>;
1887 -- package Gen is ...
1889 -- package Inst is new Gen (Actual_Typ'Class);
1891 -- In this case the general renaming mechanism used in the prologue of
1892 -- an instance no longer applies:
1894 -- procedure Prim_Op (Param : Formal_Typ) renames Prim_Op;
1896 -- The above is replaced the following wrapper/renaming combination:
1898 -- procedure Wrapper (Param : Formal_Typ) is -- wrapper
1899 -- begin
1900 -- Prim_Op (Param); -- primitive
1901 -- end Wrapper;
1903 -- procedure Prim_Op (Param : Formal_Typ) renames Wrapper;
1905 -- This transformation applies only if there is no explicit visible
1906 -- class-wide operation at the point of the instantiation. Ren_Id is
1907 -- the entity of the renaming declaration. When the transformation
1908 -- applies, Wrap_Id is the entity of the generated class-wide wrapper
1909 -- (or Any_Id). Otherwise, Wrap_Id is the entity of the class-wide
1910 -- operation.
1912 procedure Check_Null_Exclusion
1913 (Ren : Entity_Id;
1914 Sub : Entity_Id);
1915 -- Ada 2005 (AI-423): Given renaming Ren of subprogram Sub, check the
1916 -- following AI rules:
1918 -- If Ren is a renaming of a formal subprogram and one of its
1919 -- parameters has a null exclusion, then the corresponding formal
1920 -- in Sub must also have one. Otherwise the subtype of the Sub's
1921 -- formal parameter must exclude null.
1923 -- If Ren is a renaming of a formal function and its return
1924 -- profile has a null exclusion, then Sub's return profile must
1925 -- have one. Otherwise the subtype of Sub's return profile must
1926 -- exclude null.
1928 procedure Check_SPARK_Primitive_Operation (Subp_Id : Entity_Id);
1929 -- Ensure that a SPARK renaming denoted by its entity Subp_Id does not
1930 -- declare a primitive operation of a tagged type (SPARK RM 6.1.1(3)).
1932 procedure Freeze_Actual_Profile;
1933 -- In Ada 2012, enforce the freezing rule concerning formal incomplete
1934 -- types: a callable entity freezes its profile, unless it has an
1935 -- incomplete untagged formal (RM 13.14(10.2/3)).
1937 function Has_Class_Wide_Actual return Boolean;
1938 -- Ada 2012 (AI05-071, AI05-0131): True if N is the renaming for a
1939 -- defaulted formal subprogram where the actual for the controlling
1940 -- formal type is class-wide.
1942 function Original_Subprogram (Subp : Entity_Id) return Entity_Id;
1943 -- Find renamed entity when the declaration is a renaming_as_body and
1944 -- the renamed entity may itself be a renaming_as_body. Used to enforce
1945 -- rule that a renaming_as_body is illegal if the declaration occurs
1946 -- before the subprogram it completes is frozen, and renaming indirectly
1947 -- renames the subprogram itself.(Defect Report 8652/0027).
1949 ------------------------------
1950 -- Build_Class_Wide_Wrapper --
1951 ------------------------------
1953 procedure Build_Class_Wide_Wrapper
1954 (Ren_Id : out Entity_Id;
1955 Wrap_Id : out Entity_Id)
1957 Loc : constant Source_Ptr := Sloc (N);
1959 function Build_Call
1960 (Subp_Id : Entity_Id;
1961 Params : List_Id) return Node_Id;
1962 -- Create a dispatching call to invoke routine Subp_Id with actuals
1963 -- built from the parameter specifications of list Params.
1965 function Build_Expr_Fun_Call
1966 (Subp_Id : Entity_Id;
1967 Params : List_Id) return Node_Id;
1968 -- Create a dispatching call to invoke function Subp_Id with actuals
1969 -- built from the parameter specifications of list Params. Return
1970 -- directly the call, so that it can be used inside an expression
1971 -- function. This is a specificity of the GNATprove mode.
1973 function Build_Spec (Subp_Id : Entity_Id) return Node_Id;
1974 -- Create a subprogram specification based on the subprogram profile
1975 -- of Subp_Id.
1977 function Find_Primitive (Typ : Entity_Id) return Entity_Id;
1978 -- Find a primitive subprogram of type Typ which matches the profile
1979 -- of the renaming declaration.
1981 procedure Interpretation_Error (Subp_Id : Entity_Id);
1982 -- Emit a continuation error message suggesting subprogram Subp_Id as
1983 -- a possible interpretation.
1985 function Is_Intrinsic_Equality (Subp_Id : Entity_Id) return Boolean;
1986 -- Determine whether subprogram Subp_Id denotes the intrinsic "="
1987 -- operator.
1989 function Is_Suitable_Candidate (Subp_Id : Entity_Id) return Boolean;
1990 -- Determine whether subprogram Subp_Id is a suitable candidate for
1991 -- the role of a wrapped subprogram.
1993 ----------------
1994 -- Build_Call --
1995 ----------------
1997 function Build_Call
1998 (Subp_Id : Entity_Id;
1999 Params : List_Id) return Node_Id
2001 Actuals : constant List_Id := New_List;
2002 Call_Ref : constant Node_Id := New_Occurrence_Of (Subp_Id, Loc);
2003 Formal : Node_Id;
2005 begin
2006 -- Build the actual parameters of the call
2008 Formal := First (Params);
2009 while Present (Formal) loop
2010 Append_To (Actuals,
2011 Make_Identifier (Loc, Chars (Defining_Identifier (Formal))));
2012 Next (Formal);
2013 end loop;
2015 -- Generate:
2016 -- return Subp_Id (Actuals);
2018 if Ekind_In (Subp_Id, E_Function, E_Operator) then
2019 return
2020 Make_Simple_Return_Statement (Loc,
2021 Expression =>
2022 Make_Function_Call (Loc,
2023 Name => Call_Ref,
2024 Parameter_Associations => Actuals));
2026 -- Generate:
2027 -- Subp_Id (Actuals);
2029 else
2030 return
2031 Make_Procedure_Call_Statement (Loc,
2032 Name => Call_Ref,
2033 Parameter_Associations => Actuals);
2034 end if;
2035 end Build_Call;
2037 -------------------------
2038 -- Build_Expr_Fun_Call --
2039 -------------------------
2041 function Build_Expr_Fun_Call
2042 (Subp_Id : Entity_Id;
2043 Params : List_Id) return Node_Id
2045 Actuals : constant List_Id := New_List;
2046 Call_Ref : constant Node_Id := New_Occurrence_Of (Subp_Id, Loc);
2047 Formal : Node_Id;
2049 begin
2050 pragma Assert (Ekind_In (Subp_Id, E_Function, E_Operator));
2052 -- Build the actual parameters of the call
2054 Formal := First (Params);
2055 while Present (Formal) loop
2056 Append_To (Actuals,
2057 Make_Identifier (Loc, Chars (Defining_Identifier (Formal))));
2058 Next (Formal);
2059 end loop;
2061 -- Generate:
2062 -- Subp_Id (Actuals);
2064 return
2065 Make_Function_Call (Loc,
2066 Name => Call_Ref,
2067 Parameter_Associations => Actuals);
2068 end Build_Expr_Fun_Call;
2070 ----------------
2071 -- Build_Spec --
2072 ----------------
2074 function Build_Spec (Subp_Id : Entity_Id) return Node_Id is
2075 Params : constant List_Id := Copy_Parameter_List (Subp_Id);
2076 Spec_Id : constant Entity_Id :=
2077 Make_Defining_Identifier (Loc,
2078 Chars => New_External_Name (Chars (Subp_Id), 'R'));
2080 begin
2081 if Ekind (Formal_Spec) = E_Procedure then
2082 return
2083 Make_Procedure_Specification (Loc,
2084 Defining_Unit_Name => Spec_Id,
2085 Parameter_Specifications => Params);
2086 else
2087 return
2088 Make_Function_Specification (Loc,
2089 Defining_Unit_Name => Spec_Id,
2090 Parameter_Specifications => Params,
2091 Result_Definition =>
2092 New_Copy_Tree (Result_Definition (Spec)));
2093 end if;
2094 end Build_Spec;
2096 --------------------
2097 -- Find_Primitive --
2098 --------------------
2100 function Find_Primitive (Typ : Entity_Id) return Entity_Id is
2101 procedure Replace_Parameter_Types (Spec : Node_Id);
2102 -- Given a specification Spec, replace all class-wide parameter
2103 -- types with reference to type Typ.
2105 -----------------------------
2106 -- Replace_Parameter_Types --
2107 -----------------------------
2109 procedure Replace_Parameter_Types (Spec : Node_Id) is
2110 Formal : Node_Id;
2111 Formal_Id : Entity_Id;
2112 Formal_Typ : Node_Id;
2114 begin
2115 Formal := First (Parameter_Specifications (Spec));
2116 while Present (Formal) loop
2117 Formal_Id := Defining_Identifier (Formal);
2118 Formal_Typ := Parameter_Type (Formal);
2120 -- Create a new entity for each class-wide formal to prevent
2121 -- aliasing with the original renaming. Replace the type of
2122 -- such a parameter with the candidate type.
2124 if Nkind (Formal_Typ) = N_Identifier
2125 and then Is_Class_Wide_Type (Etype (Formal_Typ))
2126 then
2127 Set_Defining_Identifier (Formal,
2128 Make_Defining_Identifier (Loc, Chars (Formal_Id)));
2130 Set_Parameter_Type (Formal, New_Occurrence_Of (Typ, Loc));
2131 end if;
2133 Next (Formal);
2134 end loop;
2135 end Replace_Parameter_Types;
2137 -- Local variables
2139 Alt_Ren : constant Node_Id := New_Copy_Tree (N);
2140 Alt_Nam : constant Node_Id := Name (Alt_Ren);
2141 Alt_Spec : constant Node_Id := Specification (Alt_Ren);
2142 Subp_Id : Entity_Id;
2144 -- Start of processing for Find_Primitive
2146 begin
2147 -- Each attempt to find a suitable primitive of a particular type
2148 -- operates on its own copy of the original renaming. As a result
2149 -- the original renaming is kept decoration and side-effect free.
2151 -- Inherit the overloaded status of the renamed subprogram name
2153 if Is_Overloaded (Nam) then
2154 Set_Is_Overloaded (Alt_Nam);
2155 Save_Interps (Nam, Alt_Nam);
2156 end if;
2158 -- The copied renaming is hidden from visibility to prevent the
2159 -- pollution of the enclosing context.
2161 Set_Defining_Unit_Name (Alt_Spec, Make_Temporary (Loc, 'R'));
2163 -- The types of all class-wide parameters must be changed to the
2164 -- candidate type.
2166 Replace_Parameter_Types (Alt_Spec);
2168 -- Try to find a suitable primitive which matches the altered
2169 -- profile of the renaming specification.
2171 Subp_Id :=
2172 Find_Renamed_Entity
2173 (N => Alt_Ren,
2174 Nam => Name (Alt_Ren),
2175 New_S => Analyze_Subprogram_Specification (Alt_Spec),
2176 Is_Actual => Is_Actual);
2178 -- Do not return Any_Id if the resolion of the altered profile
2179 -- failed as this complicates further checks on the caller side,
2180 -- return Empty instead.
2182 if Subp_Id = Any_Id then
2183 return Empty;
2184 else
2185 return Subp_Id;
2186 end if;
2187 end Find_Primitive;
2189 --------------------------
2190 -- Interpretation_Error --
2191 --------------------------
2193 procedure Interpretation_Error (Subp_Id : Entity_Id) is
2194 begin
2195 Error_Msg_Sloc := Sloc (Subp_Id);
2197 if Is_Internal (Subp_Id) then
2198 Error_Msg_NE
2199 ("\\possible interpretation: predefined & #",
2200 Spec, Formal_Spec);
2201 else
2202 Error_Msg_NE
2203 ("\\possible interpretation: & defined #", Spec, Formal_Spec);
2204 end if;
2205 end Interpretation_Error;
2207 ---------------------------
2208 -- Is_Intrinsic_Equality --
2209 ---------------------------
2211 function Is_Intrinsic_Equality (Subp_Id : Entity_Id) return Boolean is
2212 begin
2213 return
2214 Ekind (Subp_Id) = E_Operator
2215 and then Chars (Subp_Id) = Name_Op_Eq
2216 and then Is_Intrinsic_Subprogram (Subp_Id);
2217 end Is_Intrinsic_Equality;
2219 ---------------------------
2220 -- Is_Suitable_Candidate --
2221 ---------------------------
2223 function Is_Suitable_Candidate (Subp_Id : Entity_Id) return Boolean is
2224 begin
2225 if No (Subp_Id) then
2226 return False;
2228 -- An intrinsic subprogram is never a good candidate. This is an
2229 -- indication of a missing primitive, either defined directly or
2230 -- inherited from a parent tagged type.
2232 elsif Is_Intrinsic_Subprogram (Subp_Id) then
2233 return False;
2235 else
2236 return True;
2237 end if;
2238 end Is_Suitable_Candidate;
2240 -- Local variables
2242 Actual_Typ : Entity_Id := Empty;
2243 -- The actual class-wide type for Formal_Typ
2245 CW_Prim_OK : Boolean;
2246 CW_Prim_Op : Entity_Id;
2247 -- The class-wide subprogram (if available) which corresponds to the
2248 -- renamed generic formal subprogram.
2250 Formal_Typ : Entity_Id := Empty;
2251 -- The generic formal type with unknown discriminants
2253 Root_Prim_OK : Boolean;
2254 Root_Prim_Op : Entity_Id;
2255 -- The root type primitive (if available) which corresponds to the
2256 -- renamed generic formal subprogram.
2258 Root_Typ : Entity_Id := Empty;
2259 -- The root type of Actual_Typ
2261 Body_Decl : Node_Id;
2262 Formal : Node_Id;
2263 Prim_Op : Entity_Id;
2264 Spec_Decl : Node_Id;
2265 New_Spec : Node_Id;
2267 -- Start of processing for Build_Class_Wide_Wrapper
2269 begin
2270 -- Analyze the specification of the renaming in case the generation
2271 -- of the class-wide wrapper fails.
2273 Ren_Id := Analyze_Subprogram_Specification (Spec);
2274 Wrap_Id := Any_Id;
2276 -- Do not attempt to build a wrapper if the renaming is in error
2278 if Error_Posted (Nam) then
2279 return;
2280 end if;
2282 -- Analyze the renamed name, but do not resolve it. The resolution is
2283 -- completed once a suitable subprogram is found.
2285 Analyze (Nam);
2287 -- When the renamed name denotes the intrinsic operator equals, the
2288 -- name must be treated as overloaded. This allows for a potential
2289 -- match against the root type's predefined equality function.
2291 if Is_Intrinsic_Equality (Entity (Nam)) then
2292 Set_Is_Overloaded (Nam);
2293 Collect_Interps (Nam);
2294 end if;
2296 -- Step 1: Find the generic formal type with unknown discriminants
2297 -- and its corresponding class-wide actual type from the renamed
2298 -- generic formal subprogram.
2300 Formal := First_Formal (Formal_Spec);
2301 while Present (Formal) loop
2302 if Has_Unknown_Discriminants (Etype (Formal))
2303 and then not Is_Class_Wide_Type (Etype (Formal))
2304 and then Is_Class_Wide_Type (Get_Instance_Of (Etype (Formal)))
2305 then
2306 Formal_Typ := Etype (Formal);
2307 Actual_Typ := Get_Instance_Of (Formal_Typ);
2308 Root_Typ := Etype (Actual_Typ);
2309 exit;
2310 end if;
2312 Next_Formal (Formal);
2313 end loop;
2315 -- The specification of the generic formal subprogram should always
2316 -- contain a formal type with unknown discriminants whose actual is
2317 -- a class-wide type, otherwise this indicates a failure in routine
2318 -- Has_Class_Wide_Actual.
2320 pragma Assert (Present (Formal_Typ));
2322 -- Step 2: Find the proper class-wide subprogram or primitive which
2323 -- corresponds to the renamed generic formal subprogram.
2325 CW_Prim_Op := Find_Primitive (Actual_Typ);
2326 CW_Prim_OK := Is_Suitable_Candidate (CW_Prim_Op);
2327 Root_Prim_Op := Find_Primitive (Root_Typ);
2328 Root_Prim_OK := Is_Suitable_Candidate (Root_Prim_Op);
2330 -- The class-wide actual type has two subprograms which correspond to
2331 -- the renamed generic formal subprogram:
2333 -- with procedure Prim_Op (Param : Formal_Typ);
2335 -- procedure Prim_Op (Param : Actual_Typ); -- may be inherited
2336 -- procedure Prim_Op (Param : Actual_Typ'Class);
2338 -- Even though the declaration of the two subprograms is legal, a
2339 -- call to either one is ambiguous and therefore illegal.
2341 if CW_Prim_OK and Root_Prim_OK then
2343 -- A user-defined primitive has precedence over a predefined one
2345 if Is_Internal (CW_Prim_Op)
2346 and then not Is_Internal (Root_Prim_Op)
2347 then
2348 Prim_Op := Root_Prim_Op;
2350 elsif Is_Internal (Root_Prim_Op)
2351 and then not Is_Internal (CW_Prim_Op)
2352 then
2353 Prim_Op := CW_Prim_Op;
2355 elsif CW_Prim_Op = Root_Prim_Op then
2356 Prim_Op := Root_Prim_Op;
2358 -- Otherwise both candidate subprograms are user-defined and
2359 -- ambiguous.
2361 else
2362 Error_Msg_NE
2363 ("ambiguous actual for generic subprogram &",
2364 Spec, Formal_Spec);
2365 Interpretation_Error (Root_Prim_Op);
2366 Interpretation_Error (CW_Prim_Op);
2367 return;
2368 end if;
2370 elsif CW_Prim_OK and not Root_Prim_OK then
2371 Prim_Op := CW_Prim_Op;
2373 elsif not CW_Prim_OK and Root_Prim_OK then
2374 Prim_Op := Root_Prim_Op;
2376 -- An intrinsic equality may act as a suitable candidate in the case
2377 -- of a null type extension where the parent's equality is hidden. A
2378 -- call to an intrinsic equality is expanded as dispatching.
2380 elsif Present (Root_Prim_Op)
2381 and then Is_Intrinsic_Equality (Root_Prim_Op)
2382 then
2383 Prim_Op := Root_Prim_Op;
2385 -- Otherwise there are no candidate subprograms. Let the caller
2386 -- diagnose the error.
2388 else
2389 return;
2390 end if;
2392 -- At this point resolution has taken place and the name is no longer
2393 -- overloaded. Mark the primitive as referenced.
2395 Set_Is_Overloaded (Name (N), False);
2396 Set_Referenced (Prim_Op);
2398 -- Do not generate a wrapper when the only candidate is a class-wide
2399 -- subprogram. Instead modify the renaming to directly map the actual
2400 -- to the generic formal.
2402 if CW_Prim_OK and then Prim_Op = CW_Prim_Op then
2403 Wrap_Id := Prim_Op;
2404 Rewrite (Nam, New_Occurrence_Of (Prim_Op, Loc));
2405 return;
2406 end if;
2408 -- Step 3: Create the declaration and the body of the wrapper, insert
2409 -- all the pieces into the tree.
2411 -- In GNATprove mode, create a function wrapper in the form of an
2412 -- expression function, so that an implicit postcondition relating
2413 -- the result of calling the wrapper function and the result of the
2414 -- dispatching call to the wrapped function is known during proof.
2416 if GNATprove_Mode
2417 and then Ekind_In (Ren_Id, E_Function, E_Operator)
2418 then
2419 New_Spec := Build_Spec (Ren_Id);
2420 Body_Decl :=
2421 Make_Expression_Function (Loc,
2422 Specification => New_Spec,
2423 Expression =>
2424 Build_Expr_Fun_Call
2425 (Subp_Id => Prim_Op,
2426 Params => Parameter_Specifications (New_Spec)));
2428 Wrap_Id := Defining_Entity (Body_Decl);
2430 -- Otherwise, create separate spec and body for the subprogram
2432 else
2433 Spec_Decl :=
2434 Make_Subprogram_Declaration (Loc,
2435 Specification => Build_Spec (Ren_Id));
2436 Insert_Before_And_Analyze (N, Spec_Decl);
2438 Wrap_Id := Defining_Entity (Spec_Decl);
2440 Body_Decl :=
2441 Make_Subprogram_Body (Loc,
2442 Specification => Build_Spec (Ren_Id),
2443 Declarations => New_List,
2444 Handled_Statement_Sequence =>
2445 Make_Handled_Sequence_Of_Statements (Loc,
2446 Statements => New_List (
2447 Build_Call
2448 (Subp_Id => Prim_Op,
2449 Params =>
2450 Parameter_Specifications
2451 (Specification (Spec_Decl))))));
2453 Set_Corresponding_Body (Spec_Decl, Defining_Entity (Body_Decl));
2454 end if;
2456 -- If the operator carries an Eliminated pragma, indicate that the
2457 -- wrapper is also to be eliminated, to prevent spurious error when
2458 -- using gnatelim on programs that include box-initialization of
2459 -- equality operators.
2461 Set_Is_Eliminated (Wrap_Id, Is_Eliminated (Prim_Op));
2463 -- In GNATprove mode, insert the body in the tree for analysis
2465 if GNATprove_Mode then
2466 Insert_Before_And_Analyze (N, Body_Decl);
2467 end if;
2469 -- The generated body does not freeze and must be analyzed when the
2470 -- class-wide wrapper is frozen. The body is only needed if expansion
2471 -- is enabled.
2473 if Expander_Active then
2474 Append_Freeze_Action (Wrap_Id, Body_Decl);
2475 end if;
2477 -- Step 4: The subprogram renaming aliases the wrapper
2479 Rewrite (Nam, New_Occurrence_Of (Wrap_Id, Loc));
2480 end Build_Class_Wide_Wrapper;
2482 --------------------------
2483 -- Check_Null_Exclusion --
2484 --------------------------
2486 procedure Check_Null_Exclusion
2487 (Ren : Entity_Id;
2488 Sub : Entity_Id)
2490 Ren_Formal : Entity_Id;
2491 Sub_Formal : Entity_Id;
2493 begin
2494 -- Parameter check
2496 Ren_Formal := First_Formal (Ren);
2497 Sub_Formal := First_Formal (Sub);
2498 while Present (Ren_Formal) and then Present (Sub_Formal) loop
2499 if Has_Null_Exclusion (Parent (Ren_Formal))
2500 and then
2501 not (Has_Null_Exclusion (Parent (Sub_Formal))
2502 or else Can_Never_Be_Null (Etype (Sub_Formal)))
2503 then
2504 Error_Msg_NE
2505 ("`NOT NULL` required for parameter &",
2506 Parent (Sub_Formal), Sub_Formal);
2507 end if;
2509 Next_Formal (Ren_Formal);
2510 Next_Formal (Sub_Formal);
2511 end loop;
2513 -- Return profile check
2515 if Nkind (Parent (Ren)) = N_Function_Specification
2516 and then Nkind (Parent (Sub)) = N_Function_Specification
2517 and then Has_Null_Exclusion (Parent (Ren))
2518 and then not (Has_Null_Exclusion (Parent (Sub))
2519 or else Can_Never_Be_Null (Etype (Sub)))
2520 then
2521 Error_Msg_N
2522 ("return must specify `NOT NULL`",
2523 Result_Definition (Parent (Sub)));
2524 end if;
2525 end Check_Null_Exclusion;
2527 -------------------------------------
2528 -- Check_SPARK_Primitive_Operation --
2529 -------------------------------------
2531 procedure Check_SPARK_Primitive_Operation (Subp_Id : Entity_Id) is
2532 Prag : constant Node_Id := SPARK_Pragma (Subp_Id);
2533 Typ : Entity_Id;
2535 begin
2536 -- Nothing to do when the subprogram is not subject to SPARK_Mode On
2537 -- because this check applies to SPARK code only.
2539 if not (Present (Prag)
2540 and then Get_SPARK_Mode_From_Annotation (Prag) = On)
2541 then
2542 return;
2544 -- Nothing to do when the subprogram is not a primitive operation
2546 elsif not Is_Primitive (Subp_Id) then
2547 return;
2548 end if;
2550 Typ := Find_Dispatching_Type (Subp_Id);
2552 -- Nothing to do when the subprogram is a primitive operation of an
2553 -- untagged type.
2555 if No (Typ) then
2556 return;
2557 end if;
2559 -- At this point a renaming declaration introduces a new primitive
2560 -- operation for a tagged type.
2562 Error_Msg_Node_2 := Typ;
2563 Error_Msg_NE
2564 ("subprogram renaming & cannot declare primitive for type & "
2565 & "(SPARK RM 6.1.1(3))", N, Subp_Id);
2566 end Check_SPARK_Primitive_Operation;
2568 ---------------------------
2569 -- Freeze_Actual_Profile --
2570 ---------------------------
2572 procedure Freeze_Actual_Profile is
2573 F : Entity_Id;
2574 Has_Untagged_Inc : Boolean;
2575 Instantiation_Node : constant Node_Id := Parent (N);
2577 begin
2578 if Ada_Version >= Ada_2012 then
2579 F := First_Formal (Formal_Spec);
2580 Has_Untagged_Inc := False;
2581 while Present (F) loop
2582 if Ekind (Etype (F)) = E_Incomplete_Type
2583 and then not Is_Tagged_Type (Etype (F))
2584 then
2585 Has_Untagged_Inc := True;
2586 exit;
2587 end if;
2589 F := Next_Formal (F);
2590 end loop;
2592 if Ekind (Formal_Spec) = E_Function
2593 and then not Is_Tagged_Type (Etype (Formal_Spec))
2594 then
2595 Has_Untagged_Inc := True;
2596 end if;
2598 if not Has_Untagged_Inc then
2599 F := First_Formal (Old_S);
2600 while Present (F) loop
2601 Freeze_Before (Instantiation_Node, Etype (F));
2603 if Is_Incomplete_Or_Private_Type (Etype (F))
2604 and then No (Underlying_Type (Etype (F)))
2605 then
2606 -- Exclude generic types, or types derived from them.
2607 -- They will be frozen in the enclosing instance.
2609 if Is_Generic_Type (Etype (F))
2610 or else Is_Generic_Type (Root_Type (Etype (F)))
2611 then
2612 null;
2614 -- A limited view of a type declared elsewhere needs no
2615 -- freezing actions.
2617 elsif From_Limited_With (Etype (F)) then
2618 null;
2620 else
2621 Error_Msg_NE
2622 ("type& must be frozen before this point",
2623 Instantiation_Node, Etype (F));
2624 end if;
2625 end if;
2627 F := Next_Formal (F);
2628 end loop;
2629 end if;
2630 end if;
2631 end Freeze_Actual_Profile;
2633 ---------------------------
2634 -- Has_Class_Wide_Actual --
2635 ---------------------------
2637 function Has_Class_Wide_Actual return Boolean is
2638 Formal : Entity_Id;
2639 Formal_Typ : Entity_Id;
2641 begin
2642 if Is_Actual then
2643 Formal := First_Formal (Formal_Spec);
2644 while Present (Formal) loop
2645 Formal_Typ := Etype (Formal);
2647 if Has_Unknown_Discriminants (Formal_Typ)
2648 and then not Is_Class_Wide_Type (Formal_Typ)
2649 and then Is_Class_Wide_Type (Get_Instance_Of (Formal_Typ))
2650 then
2651 return True;
2652 end if;
2654 Next_Formal (Formal);
2655 end loop;
2656 end if;
2658 return False;
2659 end Has_Class_Wide_Actual;
2661 -------------------------
2662 -- Original_Subprogram --
2663 -------------------------
2665 function Original_Subprogram (Subp : Entity_Id) return Entity_Id is
2666 Orig_Decl : Node_Id;
2667 Orig_Subp : Entity_Id;
2669 begin
2670 -- First case: renamed entity is itself a renaming
2672 if Present (Alias (Subp)) then
2673 return Alias (Subp);
2675 elsif Nkind (Unit_Declaration_Node (Subp)) = N_Subprogram_Declaration
2676 and then Present (Corresponding_Body (Unit_Declaration_Node (Subp)))
2677 then
2678 -- Check if renamed entity is a renaming_as_body
2680 Orig_Decl :=
2681 Unit_Declaration_Node
2682 (Corresponding_Body (Unit_Declaration_Node (Subp)));
2684 if Nkind (Orig_Decl) = N_Subprogram_Renaming_Declaration then
2685 Orig_Subp := Entity (Name (Orig_Decl));
2687 if Orig_Subp = Rename_Spec then
2689 -- Circularity detected
2691 return Orig_Subp;
2693 else
2694 return (Original_Subprogram (Orig_Subp));
2695 end if;
2696 else
2697 return Subp;
2698 end if;
2699 else
2700 return Subp;
2701 end if;
2702 end Original_Subprogram;
2704 -- Local variables
2706 CW_Actual : constant Boolean := Has_Class_Wide_Actual;
2707 -- Ada 2012 (AI05-071, AI05-0131): True if the renaming is for a
2708 -- defaulted formal subprogram when the actual for a related formal
2709 -- type is class-wide.
2711 Inst_Node : Node_Id := Empty;
2712 New_S : Entity_Id;
2714 -- Start of processing for Analyze_Subprogram_Renaming
2716 begin
2717 -- We must test for the attribute renaming case before the Analyze
2718 -- call because otherwise Sem_Attr will complain that the attribute
2719 -- is missing an argument when it is analyzed.
2721 if Nkind (Nam) = N_Attribute_Reference then
2723 -- In the case of an abstract formal subprogram association, rewrite
2724 -- an actual given by a stream attribute as the name of the
2725 -- corresponding stream primitive of the type.
2727 -- In a generic context the stream operations are not generated, and
2728 -- this must be treated as a normal attribute reference, to be
2729 -- expanded in subsequent instantiations.
2731 if Is_Actual
2732 and then Is_Abstract_Subprogram (Formal_Spec)
2733 and then Expander_Active
2734 then
2735 declare
2736 Prefix_Type : constant Entity_Id := Entity (Prefix (Nam));
2737 Stream_Prim : Entity_Id;
2739 begin
2740 -- The class-wide forms of the stream attributes are not
2741 -- primitive dispatching operations (even though they
2742 -- internally dispatch to a stream attribute).
2744 if Is_Class_Wide_Type (Prefix_Type) then
2745 Error_Msg_N
2746 ("attribute must be a primitive dispatching operation",
2747 Nam);
2748 return;
2749 end if;
2751 -- Retrieve the primitive subprogram associated with the
2752 -- attribute. This can only be a stream attribute, since those
2753 -- are the only ones that are dispatching (and the actual for
2754 -- an abstract formal subprogram must be dispatching
2755 -- operation).
2757 case Attribute_Name (Nam) is
2758 when Name_Input =>
2759 Stream_Prim :=
2760 Find_Optional_Prim_Op (Prefix_Type, TSS_Stream_Input);
2762 when Name_Output =>
2763 Stream_Prim :=
2764 Find_Optional_Prim_Op (Prefix_Type, TSS_Stream_Output);
2766 when Name_Read =>
2767 Stream_Prim :=
2768 Find_Optional_Prim_Op (Prefix_Type, TSS_Stream_Read);
2770 when Name_Write =>
2771 Stream_Prim :=
2772 Find_Optional_Prim_Op (Prefix_Type, TSS_Stream_Write);
2774 when others =>
2775 Error_Msg_N
2776 ("attribute must be a primitive dispatching operation",
2777 Nam);
2778 return;
2779 end case;
2781 -- If no operation was found, and the type is limited, the user
2782 -- should have defined one.
2784 if No (Stream_Prim) then
2785 if Is_Limited_Type (Prefix_Type) then
2786 Error_Msg_NE
2787 ("stream operation not defined for type&",
2788 N, Prefix_Type);
2789 return;
2791 -- Otherwise, compiler should have generated default
2793 else
2794 raise Program_Error;
2795 end if;
2796 end if;
2798 -- Rewrite the attribute into the name of its corresponding
2799 -- primitive dispatching subprogram. We can then proceed with
2800 -- the usual processing for subprogram renamings.
2802 declare
2803 Prim_Name : constant Node_Id :=
2804 Make_Identifier (Sloc (Nam),
2805 Chars => Chars (Stream_Prim));
2806 begin
2807 Set_Entity (Prim_Name, Stream_Prim);
2808 Rewrite (Nam, Prim_Name);
2809 Analyze (Nam);
2810 end;
2811 end;
2813 -- Normal processing for a renaming of an attribute
2815 else
2816 Attribute_Renaming (N);
2817 return;
2818 end if;
2819 end if;
2821 -- Check whether this declaration corresponds to the instantiation of a
2822 -- formal subprogram.
2824 -- If this is an instantiation, the corresponding actual is frozen and
2825 -- error messages can be made more precise. If this is a default
2826 -- subprogram, the entity is already established in the generic, and is
2827 -- not retrieved by visibility. If it is a default with a box, the
2828 -- candidate interpretations, if any, have been collected when building
2829 -- the renaming declaration. If overloaded, the proper interpretation is
2830 -- determined in Find_Renamed_Entity. If the entity is an operator,
2831 -- Find_Renamed_Entity applies additional visibility checks.
2833 if Is_Actual then
2834 Inst_Node := Unit_Declaration_Node (Formal_Spec);
2836 -- Check whether the renaming is for a defaulted actual subprogram
2837 -- with a class-wide actual.
2839 -- The class-wide wrapper is not needed in GNATprove_Mode and there
2840 -- is an external axiomatization on the package.
2842 if CW_Actual
2843 and then Box_Present (Inst_Node)
2844 and then not
2845 (GNATprove_Mode
2846 and then
2847 Present (Containing_Package_With_Ext_Axioms (Formal_Spec)))
2848 then
2849 Build_Class_Wide_Wrapper (New_S, Old_S);
2851 elsif Is_Entity_Name (Nam)
2852 and then Present (Entity (Nam))
2853 and then not Comes_From_Source (Nam)
2854 and then not Is_Overloaded (Nam)
2855 then
2856 Old_S := Entity (Nam);
2858 -- The subprogram renaming declaration may become Ghost if it
2859 -- renames a Ghost entity.
2861 Mark_Ghost_Renaming (N, Old_S);
2863 New_S := Analyze_Subprogram_Specification (Spec);
2865 -- Operator case
2867 if Ekind (Old_S) = E_Operator then
2869 -- Box present
2871 if Box_Present (Inst_Node) then
2872 Old_S := Find_Renamed_Entity (N, Name (N), New_S, Is_Actual);
2874 -- If there is an immediately visible homonym of the operator
2875 -- and the declaration has a default, this is worth a warning
2876 -- because the user probably did not intend to get the pre-
2877 -- defined operator, visible in the generic declaration. To
2878 -- find if there is an intended candidate, analyze the renaming
2879 -- again in the current context.
2881 elsif Scope (Old_S) = Standard_Standard
2882 and then Present (Default_Name (Inst_Node))
2883 then
2884 declare
2885 Decl : constant Node_Id := New_Copy_Tree (N);
2886 Hidden : Entity_Id;
2888 begin
2889 Set_Entity (Name (Decl), Empty);
2890 Analyze (Name (Decl));
2891 Hidden :=
2892 Find_Renamed_Entity (Decl, Name (Decl), New_S, True);
2894 if Present (Hidden)
2895 and then In_Open_Scopes (Scope (Hidden))
2896 and then Is_Immediately_Visible (Hidden)
2897 and then Comes_From_Source (Hidden)
2898 and then Hidden /= Old_S
2899 then
2900 Error_Msg_Sloc := Sloc (Hidden);
2901 Error_Msg_N
2902 ("default subprogram is resolved in the generic "
2903 & "declaration (RM 12.6(17))??", N);
2904 Error_Msg_NE ("\and will not use & #??", N, Hidden);
2905 end if;
2906 end;
2907 end if;
2908 end if;
2910 else
2911 Analyze (Nam);
2913 -- The subprogram renaming declaration may become Ghost if it
2914 -- renames a Ghost entity.
2916 if Is_Entity_Name (Nam) then
2917 Mark_Ghost_Renaming (N, Entity (Nam));
2918 end if;
2920 New_S := Analyze_Subprogram_Specification (Spec);
2921 end if;
2923 else
2924 -- Renamed entity must be analyzed first, to avoid being hidden by
2925 -- new name (which might be the same in a generic instance).
2927 Analyze (Nam);
2929 -- The subprogram renaming declaration may become Ghost if it renames
2930 -- a Ghost entity.
2932 if Is_Entity_Name (Nam) then
2933 Mark_Ghost_Renaming (N, Entity (Nam));
2934 end if;
2936 -- The renaming defines a new overloaded entity, which is analyzed
2937 -- like a subprogram declaration.
2939 New_S := Analyze_Subprogram_Specification (Spec);
2940 end if;
2942 if Current_Scope /= Standard_Standard then
2943 Set_Is_Pure (New_S, Is_Pure (Current_Scope));
2944 end if;
2946 -- Set SPARK mode from current context
2948 Set_SPARK_Pragma (New_S, SPARK_Mode_Pragma);
2949 Set_SPARK_Pragma_Inherited (New_S);
2951 Rename_Spec := Find_Corresponding_Spec (N);
2953 -- Case of Renaming_As_Body
2955 if Present (Rename_Spec) then
2956 Check_Previous_Null_Procedure (N, Rename_Spec);
2958 -- Renaming declaration is the completion of the declaration of
2959 -- Rename_Spec. We build an actual body for it at the freezing point.
2961 Set_Corresponding_Spec (N, Rename_Spec);
2963 -- Deal with special case of stream functions of abstract types
2964 -- and interfaces.
2966 if Nkind (Unit_Declaration_Node (Rename_Spec)) =
2967 N_Abstract_Subprogram_Declaration
2968 then
2969 -- Input stream functions are abstract if the object type is
2970 -- abstract. Similarly, all default stream functions for an
2971 -- interface type are abstract. However, these subprograms may
2972 -- receive explicit declarations in representation clauses, making
2973 -- the attribute subprograms usable as defaults in subsequent
2974 -- type extensions.
2975 -- In this case we rewrite the declaration to make the subprogram
2976 -- non-abstract. We remove the previous declaration, and insert
2977 -- the new one at the point of the renaming, to prevent premature
2978 -- access to unfrozen types. The new declaration reuses the
2979 -- specification of the previous one, and must not be analyzed.
2981 pragma Assert
2982 (Is_Primitive (Entity (Nam))
2983 and then
2984 Is_Abstract_Type (Find_Dispatching_Type (Entity (Nam))));
2985 declare
2986 Old_Decl : constant Node_Id :=
2987 Unit_Declaration_Node (Rename_Spec);
2988 New_Decl : constant Node_Id :=
2989 Make_Subprogram_Declaration (Sloc (N),
2990 Specification =>
2991 Relocate_Node (Specification (Old_Decl)));
2992 begin
2993 Remove (Old_Decl);
2994 Insert_After (N, New_Decl);
2995 Set_Is_Abstract_Subprogram (Rename_Spec, False);
2996 Set_Analyzed (New_Decl);
2997 end;
2998 end if;
3000 Set_Corresponding_Body (Unit_Declaration_Node (Rename_Spec), New_S);
3002 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
3003 Error_Msg_N ("(Ada 83) renaming cannot serve as a body", N);
3004 end if;
3006 Set_Convention (New_S, Convention (Rename_Spec));
3007 Check_Fully_Conformant (New_S, Rename_Spec);
3008 Set_Public_Status (New_S);
3010 if No_Return (Rename_Spec)
3011 and then not No_Return (Entity (Nam))
3012 then
3013 Error_Msg_N ("renaming completes a No_Return procedure", N);
3014 Error_Msg_N
3015 ("\renamed procedure must be nonreturning (RM 6.5.1 (7/2))", N);
3016 end if;
3018 -- The specification does not introduce new formals, but only
3019 -- repeats the formals of the original subprogram declaration.
3020 -- For cross-reference purposes, and for refactoring tools, we
3021 -- treat the formals of the renaming declaration as body formals.
3023 Reference_Body_Formals (Rename_Spec, New_S);
3025 -- Indicate that the entity in the declaration functions like the
3026 -- corresponding body, and is not a new entity. The body will be
3027 -- constructed later at the freeze point, so indicate that the
3028 -- completion has not been seen yet.
3030 Set_Ekind (New_S, E_Subprogram_Body);
3031 New_S := Rename_Spec;
3032 Set_Has_Completion (Rename_Spec, False);
3034 -- Ada 2005: check overriding indicator
3036 if Present (Overridden_Operation (Rename_Spec)) then
3037 if Must_Not_Override (Specification (N)) then
3038 Error_Msg_NE
3039 ("subprogram& overrides inherited operation",
3040 N, Rename_Spec);
3042 elsif Style_Check
3043 and then not Must_Override (Specification (N))
3044 then
3045 Style.Missing_Overriding (N, Rename_Spec);
3046 end if;
3048 elsif Must_Override (Specification (N)) then
3049 Error_Msg_NE ("subprogram& is not overriding", N, Rename_Spec);
3050 end if;
3052 -- Normal subprogram renaming (not renaming as body)
3054 else
3055 Generate_Definition (New_S);
3056 New_Overloaded_Entity (New_S);
3058 if not (Is_Entity_Name (Nam)
3059 and then Is_Intrinsic_Subprogram (Entity (Nam)))
3060 then
3061 Check_Delayed_Subprogram (New_S);
3062 end if;
3064 -- Verify that a SPARK renaming does not declare a primitive
3065 -- operation of a tagged type.
3067 Check_SPARK_Primitive_Operation (New_S);
3068 end if;
3070 -- There is no need for elaboration checks on the new entity, which may
3071 -- be called before the next freezing point where the body will appear.
3072 -- Elaboration checks refer to the real entity, not the one created by
3073 -- the renaming declaration.
3075 Set_Kill_Elaboration_Checks (New_S, True);
3077 -- If we had a previous error, indicate a completely is present to stop
3078 -- junk cascaded messages, but don't take any further action.
3080 if Etype (Nam) = Any_Type then
3081 Set_Has_Completion (New_S);
3082 return;
3084 -- Case where name has the form of a selected component
3086 elsif Nkind (Nam) = N_Selected_Component then
3088 -- A name which has the form A.B can designate an entry of task A, a
3089 -- protected operation of protected object A, or finally a primitive
3090 -- operation of object A. In the later case, A is an object of some
3091 -- tagged type, or an access type that denotes one such. To further
3092 -- distinguish these cases, note that the scope of a task entry or
3093 -- protected operation is type of the prefix.
3095 -- The prefix could be an overloaded function call that returns both
3096 -- kinds of operations. This overloading pathology is left to the
3097 -- dedicated reader ???
3099 declare
3100 T : constant Entity_Id := Etype (Prefix (Nam));
3102 begin
3103 if Present (T)
3104 and then
3105 (Is_Tagged_Type (T)
3106 or else
3107 (Is_Access_Type (T)
3108 and then Is_Tagged_Type (Designated_Type (T))))
3109 and then Scope (Entity (Selector_Name (Nam))) /= T
3110 then
3111 Analyze_Renamed_Primitive_Operation
3112 (N, New_S, Present (Rename_Spec));
3113 return;
3115 else
3116 -- Renamed entity is an entry or protected operation. For those
3117 -- cases an explicit body is built (at the point of freezing of
3118 -- this entity) that contains a call to the renamed entity.
3120 -- This is not allowed for renaming as body if the renamed
3121 -- spec is already frozen (see RM 8.5.4(5) for details).
3123 if Present (Rename_Spec) and then Is_Frozen (Rename_Spec) then
3124 Error_Msg_N
3125 ("renaming-as-body cannot rename entry as subprogram", N);
3126 Error_Msg_NE
3127 ("\since & is already frozen (RM 8.5.4(5))",
3128 N, Rename_Spec);
3129 else
3130 Analyze_Renamed_Entry (N, New_S, Present (Rename_Spec));
3131 end if;
3133 return;
3134 end if;
3135 end;
3137 -- Case where name is an explicit dereference X.all
3139 elsif Nkind (Nam) = N_Explicit_Dereference then
3141 -- Renamed entity is designated by access_to_subprogram expression.
3142 -- Must build body to encapsulate call, as in the entry case.
3144 Analyze_Renamed_Dereference (N, New_S, Present (Rename_Spec));
3145 return;
3147 -- Indexed component
3149 elsif Nkind (Nam) = N_Indexed_Component then
3150 Analyze_Renamed_Family_Member (N, New_S, Present (Rename_Spec));
3151 return;
3153 -- Character literal
3155 elsif Nkind (Nam) = N_Character_Literal then
3156 Analyze_Renamed_Character (N, New_S, Present (Rename_Spec));
3157 return;
3159 -- Only remaining case is where we have a non-entity name, or a renaming
3160 -- of some other non-overloadable entity.
3162 elsif not Is_Entity_Name (Nam)
3163 or else not Is_Overloadable (Entity (Nam))
3164 then
3165 -- Do not mention the renaming if it comes from an instance
3167 if not Is_Actual then
3168 Error_Msg_N ("expect valid subprogram name in renaming", N);
3169 else
3170 Error_Msg_NE ("no visible subprogram for formal&", N, Nam);
3171 end if;
3173 return;
3174 end if;
3176 -- Find the renamed entity that matches the given specification. Disable
3177 -- Ada_83 because there is no requirement of full conformance between
3178 -- renamed entity and new entity, even though the same circuit is used.
3180 -- This is a bit of an odd case, which introduces a really irregular use
3181 -- of Ada_Version[_Explicit]. Would be nice to find cleaner way to do
3182 -- this. ???
3184 Ada_Version := Ada_Version_Type'Max (Ada_Version, Ada_95);
3185 Ada_Version_Pragma := Empty;
3186 Ada_Version_Explicit := Ada_Version;
3188 if No (Old_S) then
3189 Old_S := Find_Renamed_Entity (N, Name (N), New_S, Is_Actual);
3191 -- The visible operation may be an inherited abstract operation that
3192 -- was overridden in the private part, in which case a call will
3193 -- dispatch to the overriding operation. Use the overriding one in
3194 -- the renaming declaration, to prevent spurious errors below.
3196 if Is_Overloadable (Old_S)
3197 and then Is_Abstract_Subprogram (Old_S)
3198 and then No (DTC_Entity (Old_S))
3199 and then Present (Alias (Old_S))
3200 and then not Is_Abstract_Subprogram (Alias (Old_S))
3201 and then Present (Overridden_Operation (Alias (Old_S)))
3202 then
3203 Old_S := Alias (Old_S);
3204 end if;
3206 -- When the renamed subprogram is overloaded and used as an actual
3207 -- of a generic, its entity is set to the first available homonym.
3208 -- We must first disambiguate the name, then set the proper entity.
3210 if Is_Actual and then Is_Overloaded (Nam) then
3211 Set_Entity (Nam, Old_S);
3212 end if;
3213 end if;
3215 -- Most common case: subprogram renames subprogram. No body is generated
3216 -- in this case, so we must indicate the declaration is complete as is.
3217 -- and inherit various attributes of the renamed subprogram.
3219 if No (Rename_Spec) then
3220 Set_Has_Completion (New_S);
3221 Set_Is_Imported (New_S, Is_Imported (Entity (Nam)));
3222 Set_Is_Pure (New_S, Is_Pure (Entity (Nam)));
3223 Set_Is_Preelaborated (New_S, Is_Preelaborated (Entity (Nam)));
3225 -- Ada 2005 (AI-423): Check the consistency of null exclusions
3226 -- between a subprogram and its correct renaming.
3228 -- Note: the Any_Id check is a guard that prevents compiler crashes
3229 -- when performing a null exclusion check between a renaming and a
3230 -- renamed subprogram that has been found to be illegal.
3232 if Ada_Version >= Ada_2005 and then Entity (Nam) /= Any_Id then
3233 Check_Null_Exclusion
3234 (Ren => New_S,
3235 Sub => Entity (Nam));
3236 end if;
3238 -- Enforce the Ada 2005 rule that the renamed entity cannot require
3239 -- overriding. The flag Requires_Overriding is set very selectively
3240 -- and misses some other illegal cases. The additional conditions
3241 -- checked below are sufficient but not necessary ???
3243 -- The rule does not apply to the renaming generated for an actual
3244 -- subprogram in an instance.
3246 if Is_Actual then
3247 null;
3249 -- Guard against previous errors, and omit renamings of predefined
3250 -- operators.
3252 elsif not Ekind_In (Old_S, E_Function, E_Procedure) then
3253 null;
3255 elsif Requires_Overriding (Old_S)
3256 or else
3257 (Is_Abstract_Subprogram (Old_S)
3258 and then Present (Find_Dispatching_Type (Old_S))
3259 and then not Is_Abstract_Type (Find_Dispatching_Type (Old_S)))
3260 then
3261 Error_Msg_N
3262 ("renamed entity cannot be subprogram that requires overriding "
3263 & "(RM 8.5.4 (5.1))", N);
3264 end if;
3266 declare
3267 Prev : constant Entity_Id := Overridden_Operation (New_S);
3268 begin
3269 if Present (Prev)
3270 and then
3271 (Has_Non_Trivial_Precondition (Prev)
3272 or else Has_Non_Trivial_Precondition (Old_S))
3273 then
3274 Error_Msg_NE
3275 ("conflicting inherited classwide preconditions in renaming "
3276 & "of& (RM 6.1.1 (17)", N, Old_S);
3277 end if;
3278 end;
3279 end if;
3281 if Old_S /= Any_Id then
3282 if Is_Actual and then From_Default (N) then
3284 -- This is an implicit reference to the default actual
3286 Generate_Reference (Old_S, Nam, Typ => 'i', Force => True);
3288 else
3289 Generate_Reference (Old_S, Nam);
3290 end if;
3292 Check_Internal_Protected_Use (N, Old_S);
3294 -- For a renaming-as-body, require subtype conformance, but if the
3295 -- declaration being completed has not been frozen, then inherit the
3296 -- convention of the renamed subprogram prior to checking conformance
3297 -- (unless the renaming has an explicit convention established; the
3298 -- rule stated in the RM doesn't seem to address this ???).
3300 if Present (Rename_Spec) then
3301 Generate_Reference (Rename_Spec, Defining_Entity (Spec), 'b');
3302 Style.Check_Identifier (Defining_Entity (Spec), Rename_Spec);
3304 if not Is_Frozen (Rename_Spec) then
3305 if not Has_Convention_Pragma (Rename_Spec) then
3306 Set_Convention (New_S, Convention (Old_S));
3307 end if;
3309 if Ekind (Old_S) /= E_Operator then
3310 Check_Mode_Conformant (New_S, Old_S, Spec);
3311 end if;
3313 if Original_Subprogram (Old_S) = Rename_Spec then
3314 Error_Msg_N ("unfrozen subprogram cannot rename itself ", N);
3315 end if;
3316 else
3317 Check_Subtype_Conformant (New_S, Old_S, Spec);
3318 end if;
3320 Check_Frozen_Renaming (N, Rename_Spec);
3322 -- Check explicitly that renamed entity is not intrinsic, because
3323 -- in a generic the renamed body is not built. In this case,
3324 -- the renaming_as_body is a completion.
3326 if Inside_A_Generic then
3327 if Is_Frozen (Rename_Spec)
3328 and then Is_Intrinsic_Subprogram (Old_S)
3329 then
3330 Error_Msg_N
3331 ("subprogram in renaming_as_body cannot be intrinsic",
3332 Name (N));
3333 end if;
3335 Set_Has_Completion (Rename_Spec);
3336 end if;
3338 elsif Ekind (Old_S) /= E_Operator then
3340 -- If this a defaulted subprogram for a class-wide actual there is
3341 -- no check for mode conformance, given that the signatures don't
3342 -- match (the source mentions T but the actual mentions T'Class).
3344 if CW_Actual then
3345 null;
3346 elsif not Is_Actual or else No (Enclosing_Instance) then
3347 Check_Mode_Conformant (New_S, Old_S);
3348 end if;
3350 if Is_Actual and then Error_Posted (New_S) then
3351 Error_Msg_NE ("invalid actual subprogram: & #!", N, Old_S);
3352 end if;
3353 end if;
3355 if No (Rename_Spec) then
3357 -- The parameter profile of the new entity is that of the renamed
3358 -- entity: the subtypes given in the specification are irrelevant.
3360 Inherit_Renamed_Profile (New_S, Old_S);
3362 -- A call to the subprogram is transformed into a call to the
3363 -- renamed entity. This is transitive if the renamed entity is
3364 -- itself a renaming.
3366 if Present (Alias (Old_S)) then
3367 Set_Alias (New_S, Alias (Old_S));
3368 else
3369 Set_Alias (New_S, Old_S);
3370 end if;
3372 -- Note that we do not set Is_Intrinsic_Subprogram if we have a
3373 -- renaming as body, since the entity in this case is not an
3374 -- intrinsic (it calls an intrinsic, but we have a real body for
3375 -- this call, and it is in this body that the required intrinsic
3376 -- processing will take place).
3378 -- Also, if this is a renaming of inequality, the renamed operator
3379 -- is intrinsic, but what matters is the corresponding equality
3380 -- operator, which may be user-defined.
3382 Set_Is_Intrinsic_Subprogram
3383 (New_S,
3384 Is_Intrinsic_Subprogram (Old_S)
3385 and then
3386 (Chars (Old_S) /= Name_Op_Ne
3387 or else Ekind (Old_S) = E_Operator
3388 or else Is_Intrinsic_Subprogram
3389 (Corresponding_Equality (Old_S))));
3391 if Ekind (Alias (New_S)) = E_Operator then
3392 Set_Has_Delayed_Freeze (New_S, False);
3393 end if;
3395 -- If the renaming corresponds to an association for an abstract
3396 -- formal subprogram, then various attributes must be set to
3397 -- indicate that the renaming is an abstract dispatching operation
3398 -- with a controlling type.
3400 if Is_Actual and then Is_Abstract_Subprogram (Formal_Spec) then
3402 -- Mark the renaming as abstract here, so Find_Dispatching_Type
3403 -- see it as corresponding to a generic association for a
3404 -- formal abstract subprogram
3406 Set_Is_Abstract_Subprogram (New_S);
3408 declare
3409 New_S_Ctrl_Type : constant Entity_Id :=
3410 Find_Dispatching_Type (New_S);
3411 Old_S_Ctrl_Type : constant Entity_Id :=
3412 Find_Dispatching_Type (Old_S);
3414 begin
3416 -- The actual must match the (instance of the) formal,
3417 -- and must be a controlling type.
3419 if Old_S_Ctrl_Type /= New_S_Ctrl_Type
3420 or else No (New_S_Ctrl_Type)
3421 then
3422 Error_Msg_NE
3423 ("actual must be dispatching subprogram for type&",
3424 Nam, New_S_Ctrl_Type);
3426 else
3427 Set_Is_Dispatching_Operation (New_S);
3428 Check_Controlling_Formals (New_S_Ctrl_Type, New_S);
3430 -- If the actual in the formal subprogram is itself a
3431 -- formal abstract subprogram association, there's no
3432 -- dispatch table component or position to inherit.
3434 if Present (DTC_Entity (Old_S)) then
3435 Set_DTC_Entity (New_S, DTC_Entity (Old_S));
3436 Set_DT_Position_Value (New_S, DT_Position (Old_S));
3437 end if;
3438 end if;
3439 end;
3440 end if;
3441 end if;
3443 if Is_Actual then
3444 null;
3446 -- The following is illegal, because F hides whatever other F may
3447 -- be around:
3448 -- function F (...) renames F;
3450 elsif Old_S = New_S
3451 or else (Nkind (Nam) /= N_Expanded_Name
3452 and then Chars (Old_S) = Chars (New_S))
3453 then
3454 Error_Msg_N ("subprogram cannot rename itself", N);
3456 -- This is illegal even if we use a selector:
3457 -- function F (...) renames Pkg.F;
3458 -- because F is still hidden.
3460 elsif Nkind (Nam) = N_Expanded_Name
3461 and then Entity (Prefix (Nam)) = Current_Scope
3462 and then Chars (Selector_Name (Nam)) = Chars (New_S)
3463 then
3464 -- This is an error, but we overlook the error and accept the
3465 -- renaming if the special Overriding_Renamings mode is in effect.
3467 if not Overriding_Renamings then
3468 Error_Msg_NE
3469 ("implicit operation& is not visible (RM 8.3 (15))",
3470 Nam, Old_S);
3471 end if;
3472 end if;
3474 Set_Convention (New_S, Convention (Old_S));
3476 if Is_Abstract_Subprogram (Old_S) then
3477 if Present (Rename_Spec) then
3478 Error_Msg_N
3479 ("a renaming-as-body cannot rename an abstract subprogram",
3481 Set_Has_Completion (Rename_Spec);
3482 else
3483 Set_Is_Abstract_Subprogram (New_S);
3484 end if;
3485 end if;
3487 Check_Library_Unit_Renaming (N, Old_S);
3489 -- Pathological case: procedure renames entry in the scope of its
3490 -- task. Entry is given by simple name, but body must be built for
3491 -- procedure. Of course if called it will deadlock.
3493 if Ekind (Old_S) = E_Entry then
3494 Set_Has_Completion (New_S, False);
3495 Set_Alias (New_S, Empty);
3496 end if;
3498 -- Do not freeze the renaming nor the renamed entity when the context
3499 -- is an enclosing generic. Freezing is an expansion activity, and in
3500 -- addition the renamed entity may depend on the generic formals of
3501 -- the enclosing generic.
3503 if Is_Actual and not Inside_A_Generic then
3504 Freeze_Before (N, Old_S);
3505 Freeze_Actual_Profile;
3506 Set_Has_Delayed_Freeze (New_S, False);
3507 Freeze_Before (N, New_S);
3509 -- An abstract subprogram is only allowed as an actual in the case
3510 -- where the formal subprogram is also abstract.
3512 if (Ekind (Old_S) = E_Procedure or else Ekind (Old_S) = E_Function)
3513 and then Is_Abstract_Subprogram (Old_S)
3514 and then not Is_Abstract_Subprogram (Formal_Spec)
3515 then
3516 Error_Msg_N
3517 ("abstract subprogram not allowed as generic actual", Nam);
3518 end if;
3519 end if;
3521 else
3522 -- A common error is to assume that implicit operators for types are
3523 -- defined in Standard, or in the scope of a subtype. In those cases
3524 -- where the renamed entity is given with an expanded name, it is
3525 -- worth mentioning that operators for the type are not declared in
3526 -- the scope given by the prefix.
3528 if Nkind (Nam) = N_Expanded_Name
3529 and then Nkind (Selector_Name (Nam)) = N_Operator_Symbol
3530 and then Scope (Entity (Nam)) = Standard_Standard
3531 then
3532 declare
3533 T : constant Entity_Id :=
3534 Base_Type (Etype (First_Formal (New_S)));
3535 begin
3536 Error_Msg_Node_2 := Prefix (Nam);
3537 Error_Msg_NE
3538 ("operator for type& is not declared in&", Prefix (Nam), T);
3539 end;
3541 else
3542 Error_Msg_NE
3543 ("no visible subprogram matches the specification for&",
3544 Spec, New_S);
3545 end if;
3547 if Present (Candidate_Renaming) then
3548 declare
3549 F1 : Entity_Id;
3550 F2 : Entity_Id;
3551 T1 : Entity_Id;
3553 begin
3554 F1 := First_Formal (Candidate_Renaming);
3555 F2 := First_Formal (New_S);
3556 T1 := First_Subtype (Etype (F1));
3557 while Present (F1) and then Present (F2) loop
3558 Next_Formal (F1);
3559 Next_Formal (F2);
3560 end loop;
3562 if Present (F1) and then Present (Default_Value (F1)) then
3563 if Present (Next_Formal (F1)) then
3564 Error_Msg_NE
3565 ("\missing specification for & and other formals with "
3566 & "defaults", Spec, F1);
3567 else
3568 Error_Msg_NE ("\missing specification for &", Spec, F1);
3569 end if;
3570 end if;
3572 if Nkind (Nam) = N_Operator_Symbol
3573 and then From_Default (N)
3574 then
3575 Error_Msg_Node_2 := T1;
3576 Error_Msg_NE
3577 ("default & on & is not directly visible", Nam, Nam);
3578 end if;
3579 end;
3580 end if;
3581 end if;
3583 -- Ada 2005 AI 404: if the new subprogram is dispatching, verify that
3584 -- controlling access parameters are known non-null for the renamed
3585 -- subprogram. Test also applies to a subprogram instantiation that
3586 -- is dispatching. Test is skipped if some previous error was detected
3587 -- that set Old_S to Any_Id.
3589 if Ada_Version >= Ada_2005
3590 and then Old_S /= Any_Id
3591 and then not Is_Dispatching_Operation (Old_S)
3592 and then Is_Dispatching_Operation (New_S)
3593 then
3594 declare
3595 Old_F : Entity_Id;
3596 New_F : Entity_Id;
3598 begin
3599 Old_F := First_Formal (Old_S);
3600 New_F := First_Formal (New_S);
3601 while Present (Old_F) loop
3602 if Ekind (Etype (Old_F)) = E_Anonymous_Access_Type
3603 and then Is_Controlling_Formal (New_F)
3604 and then not Can_Never_Be_Null (Old_F)
3605 then
3606 Error_Msg_N ("access parameter is controlling,", New_F);
3607 Error_Msg_NE
3608 ("\corresponding parameter of& must be explicitly null "
3609 & "excluding", New_F, Old_S);
3610 end if;
3612 Next_Formal (Old_F);
3613 Next_Formal (New_F);
3614 end loop;
3615 end;
3616 end if;
3618 -- A useful warning, suggested by Ada Bug Finder (Ada-Europe 2005)
3619 -- is to warn if an operator is being renamed as a different operator.
3620 -- If the operator is predefined, examine the kind of the entity, not
3621 -- the abbreviated declaration in Standard.
3623 if Comes_From_Source (N)
3624 and then Present (Old_S)
3625 and then (Nkind (Old_S) = N_Defining_Operator_Symbol
3626 or else Ekind (Old_S) = E_Operator)
3627 and then Nkind (New_S) = N_Defining_Operator_Symbol
3628 and then Chars (Old_S) /= Chars (New_S)
3629 then
3630 Error_Msg_NE
3631 ("& is being renamed as a different operator??", N, Old_S);
3632 end if;
3634 -- Check for renaming of obsolescent subprogram
3636 Check_Obsolescent_2005_Entity (Entity (Nam), Nam);
3638 -- Another warning or some utility: if the new subprogram as the same
3639 -- name as the old one, the old one is not hidden by an outer homograph,
3640 -- the new one is not a public symbol, and the old one is otherwise
3641 -- directly visible, the renaming is superfluous.
3643 if Chars (Old_S) = Chars (New_S)
3644 and then Comes_From_Source (N)
3645 and then Scope (Old_S) /= Standard_Standard
3646 and then Warn_On_Redundant_Constructs
3647 and then (Is_Immediately_Visible (Old_S)
3648 or else Is_Potentially_Use_Visible (Old_S))
3649 and then Is_Overloadable (Current_Scope)
3650 and then Chars (Current_Scope) /= Chars (Old_S)
3651 then
3652 Error_Msg_N
3653 ("redundant renaming, entity is directly visible?r?", Name (N));
3654 end if;
3656 -- Implementation-defined aspect specifications can appear in a renaming
3657 -- declaration, but not language-defined ones. The call to procedure
3658 -- Analyze_Aspect_Specifications will take care of this error check.
3660 if Has_Aspects (N) then
3661 Analyze_Aspect_Specifications (N, New_S);
3662 end if;
3664 Ada_Version := Save_AV;
3665 Ada_Version_Pragma := Save_AVP;
3666 Ada_Version_Explicit := Save_AV_Exp;
3668 -- In GNATprove mode, the renamings of actual subprograms are replaced
3669 -- with wrapper functions that make it easier to propagate axioms to the
3670 -- points of call within an instance. Wrappers are generated if formal
3671 -- subprogram is subject to axiomatization.
3673 -- The types in the wrapper profiles are obtained from (instances of)
3674 -- the types of the formal subprogram.
3676 if Is_Actual
3677 and then GNATprove_Mode
3678 and then Present (Containing_Package_With_Ext_Axioms (Formal_Spec))
3679 and then not Inside_A_Generic
3680 then
3681 if Ekind (Old_S) = E_Function then
3682 Rewrite (N, Build_Function_Wrapper (Formal_Spec, Old_S));
3683 Analyze (N);
3685 elsif Ekind (Old_S) = E_Operator then
3686 Rewrite (N, Build_Operator_Wrapper (Formal_Spec, Old_S));
3687 Analyze (N);
3688 end if;
3689 end if;
3691 -- Check if we are looking at an Ada 2012 defaulted formal subprogram
3692 -- and mark any use_package_clauses that affect the visibility of the
3693 -- implicit generic actual.
3695 -- Also, we may be looking at an internal renaming of a user-defined
3696 -- subprogram created for a generic formal subprogram association,
3697 -- which will also have to be marked here. This can occur when the
3698 -- corresponding formal subprogram contains references to other generic
3699 -- formals.
3701 if Is_Generic_Actual_Subprogram (New_S)
3702 and then (Is_Intrinsic_Subprogram (New_S)
3703 or else From_Default (N)
3704 or else Nkind (N) = N_Subprogram_Renaming_Declaration)
3705 then
3706 Mark_Use_Clauses (New_S);
3708 -- Handle overloaded subprograms
3710 if Present (Alias (New_S)) then
3711 Mark_Use_Clauses (Alias (New_S));
3712 end if;
3713 end if;
3714 end Analyze_Subprogram_Renaming;
3716 -------------------------
3717 -- Analyze_Use_Package --
3718 -------------------------
3720 -- Resolve the package names in the use clause, and make all the visible
3721 -- entities defined in the package potentially use-visible. If the package
3722 -- is already in use from a previous use clause, its visible entities are
3723 -- already use-visible. In that case, mark the occurrence as a redundant
3724 -- use. If the package is an open scope, i.e. if the use clause occurs
3725 -- within the package itself, ignore it.
3727 procedure Analyze_Use_Package (N : Node_Id; Chain : Boolean := True) is
3728 procedure Analyze_Package_Name (Clause : Node_Id);
3729 -- Perform analysis on a package name from a use_package_clause
3731 procedure Analyze_Package_Name_List (Head_Clause : Node_Id);
3732 -- Similar to Analyze_Package_Name but iterates over all the names
3733 -- in a use clause.
3735 --------------------------
3736 -- Analyze_Package_Name --
3737 --------------------------
3739 procedure Analyze_Package_Name (Clause : Node_Id) is
3740 Pack : constant Node_Id := Name (Clause);
3741 Pref : Node_Id;
3743 begin
3744 pragma Assert (Nkind (Clause) = N_Use_Package_Clause);
3745 Analyze (Pack);
3747 -- Verify that the package standard is not directly named in a
3748 -- use_package_clause.
3750 if Nkind (Parent (Clause)) = N_Compilation_Unit
3751 and then Nkind (Pack) = N_Expanded_Name
3752 then
3753 Pref := Prefix (Pack);
3755 while Nkind (Pref) = N_Expanded_Name loop
3756 Pref := Prefix (Pref);
3757 end loop;
3759 if Entity (Pref) = Standard_Standard then
3760 Error_Msg_N
3761 ("predefined package Standard cannot appear in a context "
3762 & "clause", Pref);
3763 end if;
3764 end if;
3765 end Analyze_Package_Name;
3767 -------------------------------
3768 -- Analyze_Package_Name_List --
3769 -------------------------------
3771 procedure Analyze_Package_Name_List (Head_Clause : Node_Id) is
3772 Curr : Node_Id;
3774 begin
3775 -- Due to the way source use clauses are split during parsing we are
3776 -- forced to simply iterate through all entities in scope until the
3777 -- clause representing the last name in the list is found.
3779 Curr := Head_Clause;
3780 while Present (Curr) loop
3781 Analyze_Package_Name (Curr);
3783 -- Stop iterating over the names in the use clause when we are at
3784 -- the last one.
3786 exit when not More_Ids (Curr) and then Prev_Ids (Curr);
3787 Next (Curr);
3788 end loop;
3789 end Analyze_Package_Name_List;
3791 -- Local variables
3793 Pack : Entity_Id;
3795 -- Start of processing for Analyze_Use_Package
3797 begin
3798 Check_SPARK_05_Restriction ("use clause is not allowed", N);
3800 Set_Hidden_By_Use_Clause (N, No_Elist);
3802 -- Use clause not allowed in a spec of a predefined package declaration
3803 -- except that packages whose file name starts a-n are OK (these are
3804 -- children of Ada.Numerics, which are never loaded by Rtsfind).
3806 if Is_Predefined_Unit (Current_Sem_Unit)
3807 and then Get_Name_String
3808 (Unit_File_Name (Current_Sem_Unit)) (1 .. 3) /= "a-n"
3809 and then Nkind (Unit (Cunit (Current_Sem_Unit))) =
3810 N_Package_Declaration
3811 then
3812 Error_Msg_N ("use clause not allowed in predefined spec", N);
3813 end if;
3815 -- Loop through all package names from the original use clause in
3816 -- order to analyze referenced packages. A use_package_clause with only
3817 -- one name does not have More_Ids or Prev_Ids set, while a clause with
3818 -- More_Ids only starts the chain produced by the parser.
3820 if not More_Ids (N) and then not Prev_Ids (N) then
3821 Analyze_Package_Name (N);
3823 elsif More_Ids (N) and then not Prev_Ids (N) then
3824 Analyze_Package_Name_List (N);
3825 end if;
3827 if not Is_Entity_Name (Name (N)) then
3828 Error_Msg_N ("& is not a package", Name (N));
3830 return;
3831 end if;
3833 if Chain then
3834 Chain_Use_Clause (N);
3835 end if;
3837 Pack := Entity (Name (N));
3839 -- There are many cases where scopes are manipulated during analysis, so
3840 -- check that Pack's current use clause has not already been chained
3841 -- before setting its previous use clause.
3843 if Ekind (Pack) = E_Package
3844 and then Present (Current_Use_Clause (Pack))
3845 and then Current_Use_Clause (Pack) /= N
3846 and then No (Prev_Use_Clause (N))
3847 and then Prev_Use_Clause (Current_Use_Clause (Pack)) /= N
3848 then
3849 Set_Prev_Use_Clause (N, Current_Use_Clause (Pack));
3850 end if;
3852 -- Mark all entities as potentially use visible.
3854 if Ekind (Pack) /= E_Package and then Etype (Pack) /= Any_Type then
3855 if Ekind (Pack) = E_Generic_Package then
3856 Error_Msg_N -- CODEFIX
3857 ("a generic package is not allowed in a use clause", Name (N));
3859 elsif Ekind_In (Pack, E_Generic_Function, E_Generic_Package)
3860 then
3861 Error_Msg_N -- CODEFIX
3862 ("a generic subprogram is not allowed in a use clause",
3863 Name (N));
3865 elsif Ekind_In (Pack, E_Function, E_Procedure, E_Operator) then
3866 Error_Msg_N -- CODEFIX
3867 ("a subprogram is not allowed in a use clause", Name (N));
3869 else
3870 Error_Msg_N ("& is not allowed in a use clause", Name (N));
3871 end if;
3873 else
3874 if Nkind (Parent (N)) = N_Compilation_Unit then
3875 Check_In_Previous_With_Clause (N, Name (N));
3876 end if;
3878 Use_One_Package (N, Name (N));
3879 end if;
3881 Mark_Ghost_Clause (N);
3882 end Analyze_Use_Package;
3884 ----------------------
3885 -- Analyze_Use_Type --
3886 ----------------------
3888 procedure Analyze_Use_Type (N : Node_Id; Chain : Boolean := True) is
3889 E : Entity_Id;
3890 Id : Node_Id;
3892 begin
3893 Set_Hidden_By_Use_Clause (N, No_Elist);
3895 -- Chain clause to list of use clauses in current scope when flagged
3897 if Chain then
3898 Chain_Use_Clause (N);
3899 end if;
3901 -- Obtain the base type of the type denoted within the use_type_clause's
3902 -- subtype mark.
3904 Id := Subtype_Mark (N);
3905 Find_Type (Id);
3906 E := Base_Type (Entity (Id));
3908 -- There are many cases where a use_type_clause may be reanalyzed due to
3909 -- manipulation of the scope stack so we much guard against those cases
3910 -- here, otherwise, we must add the new use_type_clause to the previous
3911 -- use_type_clause chain in order to mark redundant use_type_clauses as
3912 -- used. When the redundant use-type clauses appear in a parent unit and
3913 -- a child unit we must prevent a circularity in the chain that would
3914 -- otherwise result from the separate steps of analysis and installation
3915 -- of the parent context.
3917 if Present (Current_Use_Clause (E))
3918 and then Current_Use_Clause (E) /= N
3919 and then Prev_Use_Clause (Current_Use_Clause (E)) /= N
3920 and then No (Prev_Use_Clause (N))
3921 then
3922 Set_Prev_Use_Clause (N, Current_Use_Clause (E));
3923 end if;
3925 -- If the Used_Operations list is already initialized, the clause has
3926 -- been analyzed previously, and it is being reinstalled, for example
3927 -- when the clause appears in a package spec and we are compiling the
3928 -- corresponding package body. In that case, make the entities on the
3929 -- existing list use_visible, and mark the corresponding types In_Use.
3931 if Present (Used_Operations (N)) then
3932 declare
3933 Elmt : Elmt_Id;
3935 begin
3936 Use_One_Type (Subtype_Mark (N), Installed => True);
3938 Elmt := First_Elmt (Used_Operations (N));
3939 while Present (Elmt) loop
3940 Set_Is_Potentially_Use_Visible (Node (Elmt));
3941 Next_Elmt (Elmt);
3942 end loop;
3943 end;
3945 return;
3946 end if;
3948 -- Otherwise, create new list and attach to it the operations that are
3949 -- made use-visible by the clause.
3951 Set_Used_Operations (N, New_Elmt_List);
3952 E := Entity (Id);
3954 if E /= Any_Type then
3955 Use_One_Type (Id);
3957 if Nkind (Parent (N)) = N_Compilation_Unit then
3958 if Nkind (Id) = N_Identifier then
3959 Error_Msg_N ("type is not directly visible", Id);
3961 elsif Is_Child_Unit (Scope (E))
3962 and then Scope (E) /= System_Aux_Id
3963 then
3964 Check_In_Previous_With_Clause (N, Prefix (Id));
3965 end if;
3966 end if;
3968 else
3969 -- If the use_type_clause appears in a compilation unit context,
3970 -- check whether it comes from a unit that may appear in a
3971 -- limited_with_clause, for a better error message.
3973 if Nkind (Parent (N)) = N_Compilation_Unit
3974 and then Nkind (Id) /= N_Identifier
3975 then
3976 declare
3977 Item : Node_Id;
3978 Pref : Node_Id;
3980 function Mentioned (Nam : Node_Id) return Boolean;
3981 -- Check whether the prefix of expanded name for the type
3982 -- appears in the prefix of some limited_with_clause.
3984 ---------------
3985 -- Mentioned --
3986 ---------------
3988 function Mentioned (Nam : Node_Id) return Boolean is
3989 begin
3990 return Nkind (Name (Item)) = N_Selected_Component
3991 and then Chars (Prefix (Name (Item))) = Chars (Nam);
3992 end Mentioned;
3994 begin
3995 Pref := Prefix (Id);
3996 Item := First (Context_Items (Parent (N)));
3997 while Present (Item) and then Item /= N loop
3998 if Nkind (Item) = N_With_Clause
3999 and then Limited_Present (Item)
4000 and then Mentioned (Pref)
4001 then
4002 Change_Error_Text
4003 (Get_Msg_Id, "premature usage of incomplete type");
4004 end if;
4006 Next (Item);
4007 end loop;
4008 end;
4009 end if;
4010 end if;
4012 Mark_Ghost_Clause (N);
4013 end Analyze_Use_Type;
4015 ------------------------
4016 -- Attribute_Renaming --
4017 ------------------------
4019 procedure Attribute_Renaming (N : Node_Id) is
4020 Loc : constant Source_Ptr := Sloc (N);
4021 Nam : constant Node_Id := Name (N);
4022 Spec : constant Node_Id := Specification (N);
4023 New_S : constant Entity_Id := Defining_Unit_Name (Spec);
4024 Aname : constant Name_Id := Attribute_Name (Nam);
4026 Form_Num : Nat := 0;
4027 Expr_List : List_Id := No_List;
4029 Attr_Node : Node_Id;
4030 Body_Node : Node_Id;
4031 Param_Spec : Node_Id;
4033 begin
4034 Generate_Definition (New_S);
4036 -- This procedure is called in the context of subprogram renaming, and
4037 -- thus the attribute must be one that is a subprogram. All of those
4038 -- have at least one formal parameter, with the exceptions of the GNAT
4039 -- attribute 'Img, which GNAT treats as renameable.
4041 if not Is_Non_Empty_List (Parameter_Specifications (Spec)) then
4042 if Aname /= Name_Img then
4043 Error_Msg_N
4044 ("subprogram renaming an attribute must have formals", N);
4045 return;
4046 end if;
4048 else
4049 Param_Spec := First (Parameter_Specifications (Spec));
4050 while Present (Param_Spec) loop
4051 Form_Num := Form_Num + 1;
4053 if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
4054 Find_Type (Parameter_Type (Param_Spec));
4056 -- The profile of the new entity denotes the base type (s) of
4057 -- the types given in the specification. For access parameters
4058 -- there are no subtypes involved.
4060 Rewrite (Parameter_Type (Param_Spec),
4061 New_Occurrence_Of
4062 (Base_Type (Entity (Parameter_Type (Param_Spec))), Loc));
4063 end if;
4065 if No (Expr_List) then
4066 Expr_List := New_List;
4067 end if;
4069 Append_To (Expr_List,
4070 Make_Identifier (Loc,
4071 Chars => Chars (Defining_Identifier (Param_Spec))));
4073 -- The expressions in the attribute reference are not freeze
4074 -- points. Neither is the attribute as a whole, see below.
4076 Set_Must_Not_Freeze (Last (Expr_List));
4077 Next (Param_Spec);
4078 end loop;
4079 end if;
4081 -- Immediate error if too many formals. Other mismatches in number or
4082 -- types of parameters are detected when we analyze the body of the
4083 -- subprogram that we construct.
4085 if Form_Num > 2 then
4086 Error_Msg_N ("too many formals for attribute", N);
4088 -- Error if the attribute reference has expressions that look like
4089 -- formal parameters.
4091 elsif Present (Expressions (Nam)) then
4092 Error_Msg_N ("illegal expressions in attribute reference", Nam);
4094 elsif
4095 Nam_In (Aname, Name_Compose, Name_Exponent, Name_Leading_Part,
4096 Name_Pos, Name_Round, Name_Scaling,
4097 Name_Val)
4098 then
4099 if Nkind (N) = N_Subprogram_Renaming_Declaration
4100 and then Present (Corresponding_Formal_Spec (N))
4101 then
4102 Error_Msg_N
4103 ("generic actual cannot be attribute involving universal type",
4104 Nam);
4105 else
4106 Error_Msg_N
4107 ("attribute involving a universal type cannot be renamed",
4108 Nam);
4109 end if;
4110 end if;
4112 -- Rewrite attribute node to have a list of expressions corresponding to
4113 -- the subprogram formals. A renaming declaration is not a freeze point,
4114 -- and the analysis of the attribute reference should not freeze the
4115 -- type of the prefix. We use the original node in the renaming so that
4116 -- its source location is preserved, and checks on stream attributes are
4117 -- properly applied.
4119 Attr_Node := Relocate_Node (Nam);
4120 Set_Expressions (Attr_Node, Expr_List);
4122 Set_Must_Not_Freeze (Attr_Node);
4123 Set_Must_Not_Freeze (Prefix (Nam));
4125 -- Case of renaming a function
4127 if Nkind (Spec) = N_Function_Specification then
4128 if Is_Procedure_Attribute_Name (Aname) then
4129 Error_Msg_N ("attribute can only be renamed as procedure", Nam);
4130 return;
4131 end if;
4133 Find_Type (Result_Definition (Spec));
4134 Rewrite (Result_Definition (Spec),
4135 New_Occurrence_Of
4136 (Base_Type (Entity (Result_Definition (Spec))), Loc));
4138 Body_Node :=
4139 Make_Subprogram_Body (Loc,
4140 Specification => Spec,
4141 Declarations => New_List,
4142 Handled_Statement_Sequence =>
4143 Make_Handled_Sequence_Of_Statements (Loc,
4144 Statements => New_List (
4145 Make_Simple_Return_Statement (Loc,
4146 Expression => Attr_Node))));
4148 -- Case of renaming a procedure
4150 else
4151 if not Is_Procedure_Attribute_Name (Aname) then
4152 Error_Msg_N ("attribute can only be renamed as function", Nam);
4153 return;
4154 end if;
4156 Body_Node :=
4157 Make_Subprogram_Body (Loc,
4158 Specification => Spec,
4159 Declarations => New_List,
4160 Handled_Statement_Sequence =>
4161 Make_Handled_Sequence_Of_Statements (Loc,
4162 Statements => New_List (Attr_Node)));
4163 end if;
4165 -- Signal the ABE mechanism that the generated subprogram body has not
4166 -- ABE ramifications.
4168 Set_Was_Attribute_Reference (Body_Node);
4170 -- In case of tagged types we add the body of the generated function to
4171 -- the freezing actions of the type (because in the general case such
4172 -- type is still not frozen). We exclude from this processing generic
4173 -- formal subprograms found in instantiations.
4175 -- We must exclude restricted run-time libraries because
4176 -- entity AST_Handler is defined in package System.Aux_Dec which is not
4177 -- available in those platforms. Note that we cannot use the function
4178 -- Restricted_Profile (instead of Configurable_Run_Time_Mode) because
4179 -- the ZFP run-time library is not defined as a profile, and we do not
4180 -- want to deal with AST_Handler in ZFP mode.
4182 if not Configurable_Run_Time_Mode
4183 and then not Present (Corresponding_Formal_Spec (N))
4184 and then Etype (Nam) /= RTE (RE_AST_Handler)
4185 then
4186 declare
4187 P : constant Node_Id := Prefix (Nam);
4189 begin
4190 -- The prefix of 'Img is an object that is evaluated for each call
4191 -- of the function that renames it.
4193 if Aname = Name_Img then
4194 Preanalyze_And_Resolve (P);
4196 -- For all other attribute renamings, the prefix is a subtype
4198 else
4199 Find_Type (P);
4200 end if;
4202 -- If the target type is not yet frozen, add the body to the
4203 -- actions to be elaborated at freeze time.
4205 if Is_Tagged_Type (Etype (P))
4206 and then In_Open_Scopes (Scope (Etype (P)))
4207 then
4208 Ensure_Freeze_Node (Etype (P));
4209 Append_Freeze_Action (Etype (P), Body_Node);
4210 else
4211 Rewrite (N, Body_Node);
4212 Analyze (N);
4213 Set_Etype (New_S, Base_Type (Etype (New_S)));
4214 end if;
4215 end;
4217 -- Generic formal subprograms or AST_Handler renaming
4219 else
4220 Rewrite (N, Body_Node);
4221 Analyze (N);
4222 Set_Etype (New_S, Base_Type (Etype (New_S)));
4223 end if;
4225 if Is_Compilation_Unit (New_S) then
4226 Error_Msg_N
4227 ("a library unit can only rename another library unit", N);
4228 end if;
4230 -- We suppress elaboration warnings for the resulting entity, since
4231 -- clearly they are not needed, and more particularly, in the case
4232 -- of a generic formal subprogram, the resulting entity can appear
4233 -- after the instantiation itself, and thus look like a bogus case
4234 -- of access before elaboration.
4236 if Legacy_Elaboration_Checks then
4237 Set_Suppress_Elaboration_Warnings (New_S);
4238 end if;
4239 end Attribute_Renaming;
4241 ----------------------
4242 -- Chain_Use_Clause --
4243 ----------------------
4245 procedure Chain_Use_Clause (N : Node_Id) is
4246 Level : Int := Scope_Stack.Last;
4247 Pack : Entity_Id;
4249 begin
4250 -- Common case
4252 if not Is_Compilation_Unit (Current_Scope)
4253 or else not Is_Child_Unit (Current_Scope)
4254 then
4255 null;
4257 -- Common case for compilation unit
4259 elsif Defining_Entity (N => Parent (N),
4260 Empty_On_Errors => True) = Current_Scope
4261 then
4262 null;
4264 else
4265 -- If declaration appears in some other scope, it must be in some
4266 -- parent unit when compiling a child.
4268 Pack := Defining_Entity (Parent (N), Empty_On_Errors => True);
4270 if not In_Open_Scopes (Pack) then
4271 null;
4273 -- If the use clause appears in an ancestor and we are in the
4274 -- private part of the immediate parent, the use clauses are
4275 -- already installed.
4277 elsif Pack /= Scope (Current_Scope)
4278 and then In_Private_Part (Scope (Current_Scope))
4279 then
4280 null;
4282 else
4283 -- Find entry for parent unit in scope stack
4285 while Scope_Stack.Table (Level).Entity /= Pack loop
4286 Level := Level - 1;
4287 end loop;
4288 end if;
4289 end if;
4291 Set_Next_Use_Clause (N,
4292 Scope_Stack.Table (Level).First_Use_Clause);
4293 Scope_Stack.Table (Level).First_Use_Clause := N;
4294 end Chain_Use_Clause;
4296 ---------------------------
4297 -- Check_Frozen_Renaming --
4298 ---------------------------
4300 procedure Check_Frozen_Renaming (N : Node_Id; Subp : Entity_Id) is
4301 B_Node : Node_Id;
4302 Old_S : Entity_Id;
4304 begin
4305 if Is_Frozen (Subp) and then not Has_Completion (Subp) then
4306 B_Node :=
4307 Build_Renamed_Body
4308 (Parent (Declaration_Node (Subp)), Defining_Entity (N));
4310 if Is_Entity_Name (Name (N)) then
4311 Old_S := Entity (Name (N));
4313 if not Is_Frozen (Old_S)
4314 and then Operating_Mode /= Check_Semantics
4315 then
4316 Append_Freeze_Action (Old_S, B_Node);
4317 else
4318 Insert_After (N, B_Node);
4319 Analyze (B_Node);
4320 end if;
4322 if Is_Intrinsic_Subprogram (Old_S)
4323 and then not In_Instance
4324 and then not Relaxed_RM_Semantics
4325 then
4326 Error_Msg_N
4327 ("subprogram used in renaming_as_body cannot be intrinsic",
4328 Name (N));
4329 end if;
4331 else
4332 Insert_After (N, B_Node);
4333 Analyze (B_Node);
4334 end if;
4335 end if;
4336 end Check_Frozen_Renaming;
4338 -------------------------------
4339 -- Set_Entity_Or_Discriminal --
4340 -------------------------------
4342 procedure Set_Entity_Or_Discriminal (N : Node_Id; E : Entity_Id) is
4343 P : Node_Id;
4345 begin
4346 -- If the entity is not a discriminant, or else expansion is disabled,
4347 -- simply set the entity.
4349 if not In_Spec_Expression
4350 or else Ekind (E) /= E_Discriminant
4351 or else Inside_A_Generic
4352 then
4353 Set_Entity_With_Checks (N, E);
4355 -- The replacement of a discriminant by the corresponding discriminal
4356 -- is not done for a task discriminant that appears in a default
4357 -- expression of an entry parameter. See Exp_Ch2.Expand_Discriminant
4358 -- for details on their handling.
4360 elsif Is_Concurrent_Type (Scope (E)) then
4361 P := Parent (N);
4362 while Present (P)
4363 and then not Nkind_In (P, N_Parameter_Specification,
4364 N_Component_Declaration)
4365 loop
4366 P := Parent (P);
4367 end loop;
4369 if Present (P)
4370 and then Nkind (P) = N_Parameter_Specification
4371 then
4372 null;
4374 else
4375 Set_Entity (N, Discriminal (E));
4376 end if;
4378 -- Otherwise, this is a discriminant in a context in which
4379 -- it is a reference to the corresponding parameter of the
4380 -- init proc for the enclosing type.
4382 else
4383 Set_Entity (N, Discriminal (E));
4384 end if;
4385 end Set_Entity_Or_Discriminal;
4387 -----------------------------------
4388 -- Check_In_Previous_With_Clause --
4389 -----------------------------------
4391 procedure Check_In_Previous_With_Clause
4392 (N : Node_Id;
4393 Nam : Entity_Id)
4395 Pack : constant Entity_Id := Entity (Original_Node (Nam));
4396 Item : Node_Id;
4397 Par : Node_Id;
4399 begin
4400 Item := First (Context_Items (Parent (N)));
4401 while Present (Item) and then Item /= N loop
4402 if Nkind (Item) = N_With_Clause
4404 -- Protect the frontend against previous critical errors
4406 and then Nkind (Name (Item)) /= N_Selected_Component
4407 and then Entity (Name (Item)) = Pack
4408 then
4409 Par := Nam;
4411 -- Find root library unit in with_clause
4413 while Nkind (Par) = N_Expanded_Name loop
4414 Par := Prefix (Par);
4415 end loop;
4417 if Is_Child_Unit (Entity (Original_Node (Par))) then
4418 Error_Msg_NE ("& is not directly visible", Par, Entity (Par));
4419 else
4420 return;
4421 end if;
4422 end if;
4424 Next (Item);
4425 end loop;
4427 -- On exit, package is not mentioned in a previous with_clause.
4428 -- Check if its prefix is.
4430 if Nkind (Nam) = N_Expanded_Name then
4431 Check_In_Previous_With_Clause (N, Prefix (Nam));
4433 elsif Pack /= Any_Id then
4434 Error_Msg_NE ("& is not visible", Nam, Pack);
4435 end if;
4436 end Check_In_Previous_With_Clause;
4438 ---------------------------------
4439 -- Check_Library_Unit_Renaming --
4440 ---------------------------------
4442 procedure Check_Library_Unit_Renaming (N : Node_Id; Old_E : Entity_Id) is
4443 New_E : Entity_Id;
4445 begin
4446 if Nkind (Parent (N)) /= N_Compilation_Unit then
4447 return;
4449 -- Check for library unit. Note that we used to check for the scope
4450 -- being Standard here, but that was wrong for Standard itself.
4452 elsif not Is_Compilation_Unit (Old_E)
4453 and then not Is_Child_Unit (Old_E)
4454 then
4455 Error_Msg_N ("renamed unit must be a library unit", Name (N));
4457 -- Entities defined in Standard (operators and boolean literals) cannot
4458 -- be renamed as library units.
4460 elsif Scope (Old_E) = Standard_Standard
4461 and then Sloc (Old_E) = Standard_Location
4462 then
4463 Error_Msg_N ("renamed unit must be a library unit", Name (N));
4465 elsif Present (Parent_Spec (N))
4466 and then Nkind (Unit (Parent_Spec (N))) = N_Generic_Package_Declaration
4467 and then not Is_Child_Unit (Old_E)
4468 then
4469 Error_Msg_N
4470 ("renamed unit must be a child unit of generic parent", Name (N));
4472 elsif Nkind (N) in N_Generic_Renaming_Declaration
4473 and then Nkind (Name (N)) = N_Expanded_Name
4474 and then Is_Generic_Instance (Entity (Prefix (Name (N))))
4475 and then Is_Generic_Unit (Old_E)
4476 then
4477 Error_Msg_N
4478 ("renamed generic unit must be a library unit", Name (N));
4480 elsif Is_Package_Or_Generic_Package (Old_E) then
4482 -- Inherit categorization flags
4484 New_E := Defining_Entity (N);
4485 Set_Is_Pure (New_E, Is_Pure (Old_E));
4486 Set_Is_Preelaborated (New_E, Is_Preelaborated (Old_E));
4487 Set_Is_Remote_Call_Interface (New_E,
4488 Is_Remote_Call_Interface (Old_E));
4489 Set_Is_Remote_Types (New_E, Is_Remote_Types (Old_E));
4490 Set_Is_Shared_Passive (New_E, Is_Shared_Passive (Old_E));
4491 end if;
4492 end Check_Library_Unit_Renaming;
4494 ------------------------
4495 -- Enclosing_Instance --
4496 ------------------------
4498 function Enclosing_Instance return Entity_Id is
4499 S : Entity_Id;
4501 begin
4502 if not Is_Generic_Instance (Current_Scope) then
4503 return Empty;
4504 end if;
4506 S := Scope (Current_Scope);
4507 while S /= Standard_Standard loop
4508 if Is_Generic_Instance (S) then
4509 return S;
4510 end if;
4512 S := Scope (S);
4513 end loop;
4515 return Empty;
4516 end Enclosing_Instance;
4518 ---------------
4519 -- End_Scope --
4520 ---------------
4522 procedure End_Scope is
4523 Id : Entity_Id;
4524 Prev : Entity_Id;
4525 Outer : Entity_Id;
4527 begin
4528 Id := First_Entity (Current_Scope);
4529 while Present (Id) loop
4530 -- An entity in the current scope is not necessarily the first one
4531 -- on its homonym chain. Find its predecessor if any,
4532 -- If it is an internal entity, it will not be in the visibility
4533 -- chain altogether, and there is nothing to unchain.
4535 if Id /= Current_Entity (Id) then
4536 Prev := Current_Entity (Id);
4537 while Present (Prev)
4538 and then Present (Homonym (Prev))
4539 and then Homonym (Prev) /= Id
4540 loop
4541 Prev := Homonym (Prev);
4542 end loop;
4544 -- Skip to end of loop if Id is not in the visibility chain
4546 if No (Prev) or else Homonym (Prev) /= Id then
4547 goto Next_Ent;
4548 end if;
4550 else
4551 Prev := Empty;
4552 end if;
4554 Set_Is_Immediately_Visible (Id, False);
4556 Outer := Homonym (Id);
4557 while Present (Outer) and then Scope (Outer) = Current_Scope loop
4558 Outer := Homonym (Outer);
4559 end loop;
4561 -- Reset homonym link of other entities, but do not modify link
4562 -- between entities in current scope, so that the back-end can have
4563 -- a proper count of local overloadings.
4565 if No (Prev) then
4566 Set_Name_Entity_Id (Chars (Id), Outer);
4568 elsif Scope (Prev) /= Scope (Id) then
4569 Set_Homonym (Prev, Outer);
4570 end if;
4572 <<Next_Ent>>
4573 Next_Entity (Id);
4574 end loop;
4576 -- If the scope generated freeze actions, place them before the
4577 -- current declaration and analyze them. Type declarations and
4578 -- the bodies of initialization procedures can generate such nodes.
4579 -- We follow the parent chain until we reach a list node, which is
4580 -- the enclosing list of declarations. If the list appears within
4581 -- a protected definition, move freeze nodes outside the protected
4582 -- type altogether.
4584 if Present
4585 (Scope_Stack.Table (Scope_Stack.Last).Pending_Freeze_Actions)
4586 then
4587 declare
4588 Decl : Node_Id;
4589 L : constant List_Id := Scope_Stack.Table
4590 (Scope_Stack.Last).Pending_Freeze_Actions;
4592 begin
4593 if Is_Itype (Current_Scope) then
4594 Decl := Associated_Node_For_Itype (Current_Scope);
4595 else
4596 Decl := Parent (Current_Scope);
4597 end if;
4599 Pop_Scope;
4601 while not (Is_List_Member (Decl))
4602 or else Nkind_In (Parent (Decl), N_Protected_Definition,
4603 N_Task_Definition)
4604 loop
4605 Decl := Parent (Decl);
4606 end loop;
4608 Insert_List_Before_And_Analyze (Decl, L);
4609 end;
4611 else
4612 Pop_Scope;
4613 end if;
4614 end End_Scope;
4616 ---------------------
4617 -- End_Use_Clauses --
4618 ---------------------
4620 procedure End_Use_Clauses (Clause : Node_Id) is
4621 U : Node_Id;
4623 begin
4624 -- Remove use_type_clauses first, because they affect the visibility of
4625 -- operators in subsequent used packages.
4627 U := Clause;
4628 while Present (U) loop
4629 if Nkind (U) = N_Use_Type_Clause then
4630 End_Use_Type (U);
4631 end if;
4633 Next_Use_Clause (U);
4634 end loop;
4636 U := Clause;
4637 while Present (U) loop
4638 if Nkind (U) = N_Use_Package_Clause then
4639 End_Use_Package (U);
4640 end if;
4642 Next_Use_Clause (U);
4643 end loop;
4644 end End_Use_Clauses;
4646 ---------------------
4647 -- End_Use_Package --
4648 ---------------------
4650 procedure End_Use_Package (N : Node_Id) is
4651 Pack : Entity_Id;
4652 Pack_Name : Node_Id;
4653 Id : Entity_Id;
4654 Elmt : Elmt_Id;
4656 function Is_Primitive_Operator_In_Use
4657 (Op : Entity_Id;
4658 F : Entity_Id) return Boolean;
4659 -- Check whether Op is a primitive operator of a use-visible type
4661 ----------------------------------
4662 -- Is_Primitive_Operator_In_Use --
4663 ----------------------------------
4665 function Is_Primitive_Operator_In_Use
4666 (Op : Entity_Id;
4667 F : Entity_Id) return Boolean
4669 T : constant Entity_Id := Base_Type (Etype (F));
4670 begin
4671 return In_Use (T) and then Scope (T) = Scope (Op);
4672 end Is_Primitive_Operator_In_Use;
4674 -- Start of processing for End_Use_Package
4676 begin
4677 Pack_Name := Name (N);
4679 -- Test that Pack_Name actually denotes a package before processing
4681 if Is_Entity_Name (Pack_Name)
4682 and then Ekind (Entity (Pack_Name)) = E_Package
4683 then
4684 Pack := Entity (Pack_Name);
4686 if In_Open_Scopes (Pack) then
4687 null;
4689 elsif not Redundant_Use (Pack_Name) then
4690 Set_In_Use (Pack, False);
4691 Set_Current_Use_Clause (Pack, Empty);
4693 Id := First_Entity (Pack);
4694 while Present (Id) loop
4696 -- Preserve use-visibility of operators that are primitive
4697 -- operators of a type that is use-visible through an active
4698 -- use_type_clause.
4700 if Nkind (Id) = N_Defining_Operator_Symbol
4701 and then
4702 (Is_Primitive_Operator_In_Use (Id, First_Formal (Id))
4703 or else
4704 (Present (Next_Formal (First_Formal (Id)))
4705 and then
4706 Is_Primitive_Operator_In_Use
4707 (Id, Next_Formal (First_Formal (Id)))))
4708 then
4709 null;
4710 else
4711 Set_Is_Potentially_Use_Visible (Id, False);
4712 end if;
4714 if Is_Private_Type (Id)
4715 and then Present (Full_View (Id))
4716 then
4717 Set_Is_Potentially_Use_Visible (Full_View (Id), False);
4718 end if;
4720 Next_Entity (Id);
4721 end loop;
4723 if Present (Renamed_Object (Pack)) then
4724 Set_In_Use (Renamed_Object (Pack), False);
4725 Set_Current_Use_Clause (Renamed_Object (Pack), Empty);
4726 end if;
4728 if Chars (Pack) = Name_System
4729 and then Scope (Pack) = Standard_Standard
4730 and then Present_System_Aux
4731 then
4732 Id := First_Entity (System_Aux_Id);
4733 while Present (Id) loop
4734 Set_Is_Potentially_Use_Visible (Id, False);
4736 if Is_Private_Type (Id)
4737 and then Present (Full_View (Id))
4738 then
4739 Set_Is_Potentially_Use_Visible (Full_View (Id), False);
4740 end if;
4742 Next_Entity (Id);
4743 end loop;
4745 Set_In_Use (System_Aux_Id, False);
4746 end if;
4747 else
4748 Set_Redundant_Use (Pack_Name, False);
4749 end if;
4750 end if;
4752 if Present (Hidden_By_Use_Clause (N)) then
4753 Elmt := First_Elmt (Hidden_By_Use_Clause (N));
4754 while Present (Elmt) loop
4755 declare
4756 E : constant Entity_Id := Node (Elmt);
4758 begin
4759 -- Reset either Use_Visibility or Direct_Visibility, depending
4760 -- on how the entity was hidden by the use clause.
4762 if In_Use (Scope (E))
4763 and then Used_As_Generic_Actual (Scope (E))
4764 then
4765 Set_Is_Potentially_Use_Visible (Node (Elmt));
4766 else
4767 Set_Is_Immediately_Visible (Node (Elmt));
4768 end if;
4770 Next_Elmt (Elmt);
4771 end;
4772 end loop;
4774 Set_Hidden_By_Use_Clause (N, No_Elist);
4775 end if;
4776 end End_Use_Package;
4778 ------------------
4779 -- End_Use_Type --
4780 ------------------
4782 procedure End_Use_Type (N : Node_Id) is
4783 Elmt : Elmt_Id;
4784 Id : Entity_Id;
4785 T : Entity_Id;
4787 -- Start of processing for End_Use_Type
4789 begin
4790 Id := Subtype_Mark (N);
4792 -- A call to Rtsfind may occur while analyzing a use_type_clause, in
4793 -- which case the type marks are not resolved yet, so guard against that
4794 -- here.
4796 if Is_Entity_Name (Id) and then Present (Entity (Id)) then
4797 T := Entity (Id);
4799 if T = Any_Type or else From_Limited_With (T) then
4800 null;
4802 -- Note that the use_type_clause may mention a subtype of the type
4803 -- whose primitive operations have been made visible. Here as
4804 -- elsewhere, it is the base type that matters for visibility.
4806 elsif In_Open_Scopes (Scope (Base_Type (T))) then
4807 null;
4809 elsif not Redundant_Use (Id) then
4810 Set_In_Use (T, False);
4811 Set_In_Use (Base_Type (T), False);
4812 Set_Current_Use_Clause (T, Empty);
4813 Set_Current_Use_Clause (Base_Type (T), Empty);
4814 end if;
4815 end if;
4817 if Is_Empty_Elmt_List (Used_Operations (N)) then
4818 return;
4820 else
4821 Elmt := First_Elmt (Used_Operations (N));
4822 while Present (Elmt) loop
4823 Set_Is_Potentially_Use_Visible (Node (Elmt), False);
4824 Next_Elmt (Elmt);
4825 end loop;
4826 end if;
4827 end End_Use_Type;
4829 --------------------
4830 -- Entity_Of_Unit --
4831 --------------------
4833 function Entity_Of_Unit (U : Node_Id) return Entity_Id is
4834 begin
4835 if Nkind (U) = N_Package_Instantiation and then Analyzed (U) then
4836 return Defining_Entity (Instance_Spec (U));
4837 else
4838 return Defining_Entity (U);
4839 end if;
4840 end Entity_Of_Unit;
4842 ----------------------
4843 -- Find_Direct_Name --
4844 ----------------------
4846 procedure Find_Direct_Name
4847 (N : Node_Id;
4848 Errors_OK : Boolean := True;
4849 Marker_OK : Boolean := True;
4850 Reference_OK : Boolean := True)
4852 E : Entity_Id;
4853 E2 : Entity_Id;
4854 Msg : Boolean;
4856 Homonyms : Entity_Id;
4857 -- Saves start of homonym chain
4859 Inst : Entity_Id := Empty;
4860 -- Enclosing instance, if any
4862 Nvis_Entity : Boolean;
4863 -- Set True to indicate that there is at least one entity on the homonym
4864 -- chain which, while not visible, is visible enough from the user point
4865 -- of view to warrant an error message of "not visible" rather than
4866 -- undefined.
4868 Nvis_Is_Private_Subprg : Boolean := False;
4869 -- Ada 2005 (AI-262): Set True to indicate that a form of Beaujolais
4870 -- effect concerning library subprograms has been detected. Used to
4871 -- generate the precise error message.
4873 function From_Actual_Package (E : Entity_Id) return Boolean;
4874 -- Returns true if the entity is an actual for a package that is itself
4875 -- an actual for a formal package of the current instance. Such an
4876 -- entity requires special handling because it may be use-visible but
4877 -- hides directly visible entities defined outside the instance, because
4878 -- the corresponding formal did so in the generic.
4880 function Is_Actual_Parameter return Boolean;
4881 -- This function checks if the node N is an identifier that is an actual
4882 -- parameter of a procedure call. If so it returns True, otherwise it
4883 -- return False. The reason for this check is that at this stage we do
4884 -- not know what procedure is being called if the procedure might be
4885 -- overloaded, so it is premature to go setting referenced flags or
4886 -- making calls to Generate_Reference. We will wait till Resolve_Actuals
4887 -- for that processing
4889 function Known_But_Invisible (E : Entity_Id) return Boolean;
4890 -- This function determines whether a reference to the entity E, which
4891 -- is not visible, can reasonably be considered to be known to the
4892 -- writer of the reference. This is a heuristic test, used only for
4893 -- the purposes of figuring out whether we prefer to complain that an
4894 -- entity is undefined or invisible (and identify the declaration of
4895 -- the invisible entity in the latter case). The point here is that we
4896 -- don't want to complain that something is invisible and then point to
4897 -- something entirely mysterious to the writer.
4899 procedure Nvis_Messages;
4900 -- Called if there are no visible entries for N, but there is at least
4901 -- one non-directly visible, or hidden declaration. This procedure
4902 -- outputs an appropriate set of error messages.
4904 procedure Undefined (Nvis : Boolean);
4905 -- This function is called if the current node has no corresponding
4906 -- visible entity or entities. The value set in Msg indicates whether
4907 -- an error message was generated (multiple error messages for the
4908 -- same variable are generally suppressed, see body for details).
4909 -- Msg is True if an error message was generated, False if not. This
4910 -- value is used by the caller to determine whether or not to output
4911 -- additional messages where appropriate. The parameter is set False
4912 -- to get the message "X is undefined", and True to get the message
4913 -- "X is not visible".
4915 -------------------------
4916 -- From_Actual_Package --
4917 -------------------------
4919 function From_Actual_Package (E : Entity_Id) return Boolean is
4920 Scop : constant Entity_Id := Scope (E);
4921 -- Declared scope of candidate entity
4923 function Declared_In_Actual (Pack : Entity_Id) return Boolean;
4924 -- Recursive function that does the work and examines actuals of
4925 -- actual packages of current instance.
4927 ------------------------
4928 -- Declared_In_Actual --
4929 ------------------------
4931 function Declared_In_Actual (Pack : Entity_Id) return Boolean is
4932 Act : Entity_Id;
4934 begin
4935 if No (Associated_Formal_Package (Pack)) then
4936 return False;
4938 else
4939 Act := First_Entity (Pack);
4940 while Present (Act) loop
4941 if Renamed_Object (Pack) = Scop then
4942 return True;
4944 -- Check for end of list of actuals
4946 elsif Ekind (Act) = E_Package
4947 and then Renamed_Object (Act) = Pack
4948 then
4949 return False;
4951 elsif Ekind (Act) = E_Package
4952 and then Declared_In_Actual (Act)
4953 then
4954 return True;
4955 end if;
4957 Next_Entity (Act);
4958 end loop;
4960 return False;
4961 end if;
4962 end Declared_In_Actual;
4964 -- Local variables
4966 Act : Entity_Id;
4968 -- Start of processing for From_Actual_Package
4970 begin
4971 if not In_Instance then
4972 return False;
4974 else
4975 Inst := Current_Scope;
4976 while Present (Inst)
4977 and then Ekind (Inst) /= E_Package
4978 and then not Is_Generic_Instance (Inst)
4979 loop
4980 Inst := Scope (Inst);
4981 end loop;
4983 if No (Inst) then
4984 return False;
4985 end if;
4987 Act := First_Entity (Inst);
4988 while Present (Act) loop
4989 if Ekind (Act) = E_Package
4990 and then Declared_In_Actual (Act)
4991 then
4992 return True;
4993 end if;
4995 Next_Entity (Act);
4996 end loop;
4998 return False;
4999 end if;
5000 end From_Actual_Package;
5002 -------------------------
5003 -- Is_Actual_Parameter --
5004 -------------------------
5006 function Is_Actual_Parameter return Boolean is
5007 begin
5008 return
5009 Nkind (N) = N_Identifier
5010 and then
5011 (Nkind (Parent (N)) = N_Procedure_Call_Statement
5012 or else
5013 (Nkind (Parent (N)) = N_Parameter_Association
5014 and then N = Explicit_Actual_Parameter (Parent (N))
5015 and then Nkind (Parent (Parent (N))) =
5016 N_Procedure_Call_Statement));
5017 end Is_Actual_Parameter;
5019 -------------------------
5020 -- Known_But_Invisible --
5021 -------------------------
5023 function Known_But_Invisible (E : Entity_Id) return Boolean is
5024 Fname : File_Name_Type;
5026 begin
5027 -- Entities in Standard are always considered to be known
5029 if Sloc (E) <= Standard_Location then
5030 return True;
5032 -- An entity that does not come from source is always considered
5033 -- to be unknown, since it is an artifact of code expansion.
5035 elsif not Comes_From_Source (E) then
5036 return False;
5038 -- In gnat internal mode, we consider all entities known. The
5039 -- historical reason behind this discrepancy is not known??? But the
5040 -- only effect is to modify the error message given, so it is not
5041 -- critical. Since it only affects the exact wording of error
5042 -- messages in illegal programs, we do not mention this as an
5043 -- effect of -gnatg, since it is not a language modification.
5045 elsif GNAT_Mode then
5046 return True;
5047 end if;
5049 -- Here we have an entity that is not from package Standard, and
5050 -- which comes from Source. See if it comes from an internal file.
5052 Fname := Unit_File_Name (Get_Source_Unit (E));
5054 -- Case of from internal file
5056 if In_Internal_Unit (E) then
5058 -- Private part entities in internal files are never considered
5059 -- to be known to the writer of normal application code.
5061 if Is_Hidden (E) then
5062 return False;
5063 end if;
5065 -- Entities from System packages other than System and
5066 -- System.Storage_Elements are not considered to be known.
5067 -- System.Auxxxx files are also considered known to the user.
5069 -- Should refine this at some point to generally distinguish
5070 -- between known and unknown internal files ???
5072 Get_Name_String (Fname);
5074 return
5075 Name_Len < 2
5076 or else
5077 Name_Buffer (1 .. 2) /= "s-"
5078 or else
5079 Name_Buffer (3 .. 8) = "stoele"
5080 or else
5081 Name_Buffer (3 .. 5) = "aux";
5083 -- If not an internal file, then entity is definitely known, even if
5084 -- it is in a private part (the message generated will note that it
5085 -- is in a private part).
5087 else
5088 return True;
5089 end if;
5090 end Known_But_Invisible;
5092 -------------------
5093 -- Nvis_Messages --
5094 -------------------
5096 procedure Nvis_Messages is
5097 Comp_Unit : Node_Id;
5098 Ent : Entity_Id;
5099 Found : Boolean := False;
5100 Hidden : Boolean := False;
5101 Item : Node_Id;
5103 begin
5104 if not Errors_OK then
5105 return;
5106 end if;
5108 -- Ada 2005 (AI-262): Generate a precise error concerning the
5109 -- Beaujolais effect that was previously detected
5111 if Nvis_Is_Private_Subprg then
5113 pragma Assert (Nkind (E2) = N_Defining_Identifier
5114 and then Ekind (E2) = E_Function
5115 and then Scope (E2) = Standard_Standard
5116 and then Has_Private_With (E2));
5118 -- Find the sloc corresponding to the private with'ed unit
5120 Comp_Unit := Cunit (Current_Sem_Unit);
5121 Error_Msg_Sloc := No_Location;
5123 Item := First (Context_Items (Comp_Unit));
5124 while Present (Item) loop
5125 if Nkind (Item) = N_With_Clause
5126 and then Private_Present (Item)
5127 and then Entity (Name (Item)) = E2
5128 then
5129 Error_Msg_Sloc := Sloc (Item);
5130 exit;
5131 end if;
5133 Next (Item);
5134 end loop;
5136 pragma Assert (Error_Msg_Sloc /= No_Location);
5138 Error_Msg_N ("(Ada 2005): hidden by private with clause #", N);
5139 return;
5140 end if;
5142 Undefined (Nvis => True);
5144 if Msg then
5146 -- First loop does hidden declarations
5148 Ent := Homonyms;
5149 while Present (Ent) loop
5150 if Is_Potentially_Use_Visible (Ent) then
5151 if not Hidden then
5152 Error_Msg_N -- CODEFIX
5153 ("multiple use clauses cause hiding!", N);
5154 Hidden := True;
5155 end if;
5157 Error_Msg_Sloc := Sloc (Ent);
5158 Error_Msg_N -- CODEFIX
5159 ("hidden declaration#!", N);
5160 end if;
5162 Ent := Homonym (Ent);
5163 end loop;
5165 -- If we found hidden declarations, then that's enough, don't
5166 -- bother looking for non-visible declarations as well.
5168 if Hidden then
5169 return;
5170 end if;
5172 -- Second loop does non-directly visible declarations
5174 Ent := Homonyms;
5175 while Present (Ent) loop
5176 if not Is_Potentially_Use_Visible (Ent) then
5178 -- Do not bother the user with unknown entities
5180 if not Known_But_Invisible (Ent) then
5181 goto Continue;
5182 end if;
5184 Error_Msg_Sloc := Sloc (Ent);
5186 -- Output message noting that there is a non-visible
5187 -- declaration, distinguishing the private part case.
5189 if Is_Hidden (Ent) then
5190 Error_Msg_N ("non-visible (private) declaration#!", N);
5192 -- If the entity is declared in a generic package, it
5193 -- cannot be visible, so there is no point in adding it
5194 -- to the list of candidates if another homograph from a
5195 -- non-generic package has been seen.
5197 elsif Ekind (Scope (Ent)) = E_Generic_Package
5198 and then Found
5199 then
5200 null;
5202 else
5203 Error_Msg_N -- CODEFIX
5204 ("non-visible declaration#!", N);
5206 if Ekind (Scope (Ent)) /= E_Generic_Package then
5207 Found := True;
5208 end if;
5210 if Is_Compilation_Unit (Ent)
5211 and then
5212 Nkind (Parent (Parent (N))) = N_Use_Package_Clause
5213 then
5214 Error_Msg_Qual_Level := 99;
5215 Error_Msg_NE -- CODEFIX
5216 ("\\missing `WITH &;`", N, Ent);
5217 Error_Msg_Qual_Level := 0;
5218 end if;
5220 if Ekind (Ent) = E_Discriminant
5221 and then Present (Corresponding_Discriminant (Ent))
5222 and then Scope (Corresponding_Discriminant (Ent)) =
5223 Etype (Scope (Ent))
5224 then
5225 Error_Msg_N
5226 ("inherited discriminant not allowed here" &
5227 " (RM 3.8 (12), 3.8.1 (6))!", N);
5228 end if;
5229 end if;
5231 -- Set entity and its containing package as referenced. We
5232 -- can't be sure of this, but this seems a better choice
5233 -- to avoid unused entity messages.
5235 if Comes_From_Source (Ent) then
5236 Set_Referenced (Ent);
5237 Set_Referenced (Cunit_Entity (Get_Source_Unit (Ent)));
5238 end if;
5239 end if;
5241 <<Continue>>
5242 Ent := Homonym (Ent);
5243 end loop;
5244 end if;
5245 end Nvis_Messages;
5247 ---------------
5248 -- Undefined --
5249 ---------------
5251 procedure Undefined (Nvis : Boolean) is
5252 Emsg : Error_Msg_Id;
5254 begin
5255 -- We should never find an undefined internal name. If we do, then
5256 -- see if we have previous errors. If so, ignore on the grounds that
5257 -- it is probably a cascaded message (e.g. a block label from a badly
5258 -- formed block). If no previous errors, then we have a real internal
5259 -- error of some kind so raise an exception.
5261 if Is_Internal_Name (Chars (N)) then
5262 if Total_Errors_Detected /= 0 then
5263 return;
5264 else
5265 raise Program_Error;
5266 end if;
5267 end if;
5269 -- A very specialized error check, if the undefined variable is
5270 -- a case tag, and the case type is an enumeration type, check
5271 -- for a possible misspelling, and if so, modify the identifier
5273 -- Named aggregate should also be handled similarly ???
5275 if Errors_OK
5276 and then Nkind (N) = N_Identifier
5277 and then Nkind (Parent (N)) = N_Case_Statement_Alternative
5278 then
5279 declare
5280 Case_Stm : constant Node_Id := Parent (Parent (N));
5281 Case_Typ : constant Entity_Id := Etype (Expression (Case_Stm));
5283 Lit : Node_Id;
5285 begin
5286 if Is_Enumeration_Type (Case_Typ)
5287 and then not Is_Standard_Character_Type (Case_Typ)
5288 then
5289 Lit := First_Literal (Case_Typ);
5290 Get_Name_String (Chars (Lit));
5292 if Chars (Lit) /= Chars (N)
5293 and then Is_Bad_Spelling_Of (Chars (N), Chars (Lit))
5294 then
5295 Error_Msg_Node_2 := Lit;
5296 Error_Msg_N -- CODEFIX
5297 ("& is undefined, assume misspelling of &", N);
5298 Rewrite (N, New_Occurrence_Of (Lit, Sloc (N)));
5299 return;
5300 end if;
5302 Lit := Next_Literal (Lit);
5303 end if;
5304 end;
5305 end if;
5307 -- Normal processing
5309 Set_Entity (N, Any_Id);
5310 Set_Etype (N, Any_Type);
5312 if Errors_OK then
5314 -- We use the table Urefs to keep track of entities for which we
5315 -- have issued errors for undefined references. Multiple errors
5316 -- for a single name are normally suppressed, however we modify
5317 -- the error message to alert the programmer to this effect.
5319 for J in Urefs.First .. Urefs.Last loop
5320 if Chars (N) = Chars (Urefs.Table (J).Node) then
5321 if Urefs.Table (J).Err /= No_Error_Msg
5322 and then Sloc (N) /= Urefs.Table (J).Loc
5323 then
5324 Error_Msg_Node_1 := Urefs.Table (J).Node;
5326 if Urefs.Table (J).Nvis then
5327 Change_Error_Text (Urefs.Table (J).Err,
5328 "& is not visible (more references follow)");
5329 else
5330 Change_Error_Text (Urefs.Table (J).Err,
5331 "& is undefined (more references follow)");
5332 end if;
5334 Urefs.Table (J).Err := No_Error_Msg;
5335 end if;
5337 -- Although we will set Msg False, and thus suppress the
5338 -- message, we also set Error_Posted True, to avoid any
5339 -- cascaded messages resulting from the undefined reference.
5341 Msg := False;
5342 Set_Error_Posted (N);
5343 return;
5344 end if;
5345 end loop;
5347 -- If entry not found, this is first undefined occurrence
5349 if Nvis then
5350 Error_Msg_N ("& is not visible!", N);
5351 Emsg := Get_Msg_Id;
5353 else
5354 Error_Msg_N ("& is undefined!", N);
5355 Emsg := Get_Msg_Id;
5357 -- A very bizarre special check, if the undefined identifier
5358 -- is Put or Put_Line, then add a special error message (since
5359 -- this is a very common error for beginners to make).
5361 if Nam_In (Chars (N), Name_Put, Name_Put_Line) then
5362 Error_Msg_N -- CODEFIX
5363 ("\\possible missing `WITH Ada.Text_'I'O; " &
5364 "USE Ada.Text_'I'O`!", N);
5366 -- Another special check if N is the prefix of a selected
5367 -- component which is a known unit: add message complaining
5368 -- about missing with for this unit.
5370 elsif Nkind (Parent (N)) = N_Selected_Component
5371 and then N = Prefix (Parent (N))
5372 and then Is_Known_Unit (Parent (N))
5373 then
5374 Error_Msg_Node_2 := Selector_Name (Parent (N));
5375 Error_Msg_N -- CODEFIX
5376 ("\\missing `WITH &.&;`", Prefix (Parent (N)));
5377 end if;
5379 -- Now check for possible misspellings
5381 declare
5382 E : Entity_Id;
5383 Ematch : Entity_Id := Empty;
5385 Last_Name_Id : constant Name_Id :=
5386 Name_Id (Nat (First_Name_Id) +
5387 Name_Entries_Count - 1);
5389 begin
5390 for Nam in First_Name_Id .. Last_Name_Id loop
5391 E := Get_Name_Entity_Id (Nam);
5393 if Present (E)
5394 and then (Is_Immediately_Visible (E)
5395 or else
5396 Is_Potentially_Use_Visible (E))
5397 then
5398 if Is_Bad_Spelling_Of (Chars (N), Nam) then
5399 Ematch := E;
5400 exit;
5401 end if;
5402 end if;
5403 end loop;
5405 if Present (Ematch) then
5406 Error_Msg_NE -- CODEFIX
5407 ("\possible misspelling of&", N, Ematch);
5408 end if;
5409 end;
5410 end if;
5412 -- Make entry in undefined references table unless the full errors
5413 -- switch is set, in which case by refraining from generating the
5414 -- table entry we guarantee that we get an error message for every
5415 -- undefined reference. The entry is not added if we are ignoring
5416 -- errors.
5418 if not All_Errors_Mode and then Ignore_Errors_Enable = 0 then
5419 Urefs.Append (
5420 (Node => N,
5421 Err => Emsg,
5422 Nvis => Nvis,
5423 Loc => Sloc (N)));
5424 end if;
5426 Msg := True;
5427 end if;
5428 end Undefined;
5430 -- Local variables
5432 Nested_Inst : Entity_Id := Empty;
5433 -- The entity of a nested instance which appears within Inst (if any)
5435 -- Start of processing for Find_Direct_Name
5437 begin
5438 -- If the entity pointer is already set, this is an internal node, or
5439 -- a node that is analyzed more than once, after a tree modification.
5440 -- In such a case there is no resolution to perform, just set the type.
5442 if Present (Entity (N)) then
5443 if Is_Type (Entity (N)) then
5444 Set_Etype (N, Entity (N));
5446 else
5447 declare
5448 Entyp : constant Entity_Id := Etype (Entity (N));
5450 begin
5451 -- One special case here. If the Etype field is already set,
5452 -- and references the packed array type corresponding to the
5453 -- etype of the referenced entity, then leave it alone. This
5454 -- happens for trees generated from Exp_Pakd, where expressions
5455 -- can be deliberately "mis-typed" to the packed array type.
5457 if Is_Array_Type (Entyp)
5458 and then Is_Packed (Entyp)
5459 and then Present (Etype (N))
5460 and then Etype (N) = Packed_Array_Impl_Type (Entyp)
5461 then
5462 null;
5464 -- If not that special case, then just reset the Etype
5466 else
5467 Set_Etype (N, Etype (Entity (N)));
5468 end if;
5469 end;
5470 end if;
5472 -- Although the marking of use clauses happens at the end of
5473 -- Find_Direct_Name, a certain case where a generic actual satisfies
5474 -- a use clause must be checked here due to how the generic machinery
5475 -- handles the analysis of said actuals.
5477 if In_Instance
5478 and then Nkind (Parent (N)) = N_Generic_Association
5479 then
5480 Mark_Use_Clauses (Entity (N));
5481 end if;
5483 return;
5484 end if;
5486 -- Preserve relevant elaboration-related attributes of the context which
5487 -- are no longer available or very expensive to recompute once analysis,
5488 -- resolution, and expansion are over.
5490 if Nkind (N) = N_Identifier then
5491 Mark_Elaboration_Attributes
5492 (N_Id => N,
5493 Modes => True);
5494 end if;
5496 -- Here if Entity pointer was not set, we need full visibility analysis
5497 -- First we generate debugging output if the debug E flag is set.
5499 if Debug_Flag_E then
5500 Write_Str ("Looking for ");
5501 Write_Name (Chars (N));
5502 Write_Eol;
5503 end if;
5505 Homonyms := Current_Entity (N);
5506 Nvis_Entity := False;
5508 E := Homonyms;
5509 while Present (E) loop
5511 -- If entity is immediately visible or potentially use visible, then
5512 -- process the entity and we are done.
5514 if Is_Immediately_Visible (E) then
5515 goto Immediately_Visible_Entity;
5517 elsif Is_Potentially_Use_Visible (E) then
5518 goto Potentially_Use_Visible_Entity;
5520 -- Note if a known but invisible entity encountered
5522 elsif Known_But_Invisible (E) then
5523 Nvis_Entity := True;
5524 end if;
5526 -- Move to next entity in chain and continue search
5528 E := Homonym (E);
5529 end loop;
5531 -- If no entries on homonym chain that were potentially visible,
5532 -- and no entities reasonably considered as non-visible, then
5533 -- we have a plain undefined reference, with no additional
5534 -- explanation required.
5536 if not Nvis_Entity then
5537 Undefined (Nvis => False);
5539 -- Otherwise there is at least one entry on the homonym chain that
5540 -- is reasonably considered as being known and non-visible.
5542 else
5543 Nvis_Messages;
5544 end if;
5546 goto Done;
5548 -- Processing for a potentially use visible entry found. We must search
5549 -- the rest of the homonym chain for two reasons. First, if there is a
5550 -- directly visible entry, then none of the potentially use-visible
5551 -- entities are directly visible (RM 8.4(10)). Second, we need to check
5552 -- for the case of multiple potentially use-visible entries hiding one
5553 -- another and as a result being non-directly visible (RM 8.4(11)).
5555 <<Potentially_Use_Visible_Entity>> declare
5556 Only_One_Visible : Boolean := True;
5557 All_Overloadable : Boolean := Is_Overloadable (E);
5559 begin
5560 E2 := Homonym (E);
5561 while Present (E2) loop
5562 if Is_Immediately_Visible (E2) then
5564 -- If the use-visible entity comes from the actual for a
5565 -- formal package, it hides a directly visible entity from
5566 -- outside the instance.
5568 if From_Actual_Package (E)
5569 and then Scope_Depth (E2) < Scope_Depth (Inst)
5570 then
5571 goto Found;
5572 else
5573 E := E2;
5574 goto Immediately_Visible_Entity;
5575 end if;
5577 elsif Is_Potentially_Use_Visible (E2) then
5578 Only_One_Visible := False;
5579 All_Overloadable := All_Overloadable and Is_Overloadable (E2);
5581 -- Ada 2005 (AI-262): Protect against a form of Beaujolais effect
5582 -- that can occur in private_with clauses. Example:
5584 -- with A;
5585 -- private with B; package A is
5586 -- package C is function B return Integer;
5587 -- use A; end A;
5588 -- V1 : Integer := B;
5589 -- private function B return Integer;
5590 -- V2 : Integer := B;
5591 -- end C;
5593 -- V1 resolves to A.B, but V2 resolves to library unit B
5595 elsif Ekind (E2) = E_Function
5596 and then Scope (E2) = Standard_Standard
5597 and then Has_Private_With (E2)
5598 then
5599 Only_One_Visible := False;
5600 All_Overloadable := False;
5601 Nvis_Is_Private_Subprg := True;
5602 exit;
5603 end if;
5605 E2 := Homonym (E2);
5606 end loop;
5608 -- On falling through this loop, we have checked that there are no
5609 -- immediately visible entities. Only_One_Visible is set if exactly
5610 -- one potentially use visible entity exists. All_Overloadable is
5611 -- set if all the potentially use visible entities are overloadable.
5612 -- The condition for legality is that either there is one potentially
5613 -- use visible entity, or if there is more than one, then all of them
5614 -- are overloadable.
5616 if Only_One_Visible or All_Overloadable then
5617 goto Found;
5619 -- If there is more than one potentially use-visible entity and at
5620 -- least one of them non-overloadable, we have an error (RM 8.4(11)).
5621 -- Note that E points to the first such entity on the homonym list.
5623 else
5624 -- If one of the entities is declared in an actual package, it
5625 -- was visible in the generic, and takes precedence over other
5626 -- entities that are potentially use-visible. The same applies
5627 -- if the entity is declared in a local instantiation of the
5628 -- current instance.
5630 if In_Instance then
5632 -- Find the current instance
5634 Inst := Current_Scope;
5635 while Present (Inst) and then Inst /= Standard_Standard loop
5636 if Is_Generic_Instance (Inst) then
5637 exit;
5638 end if;
5640 Inst := Scope (Inst);
5641 end loop;
5643 -- Reexamine the candidate entities, giving priority to those
5644 -- that were visible within the generic.
5646 E2 := E;
5647 while Present (E2) loop
5648 Nested_Inst := Nearest_Enclosing_Instance (E2);
5650 -- The entity is declared within an actual package, or in a
5651 -- nested instance. The ">=" accounts for the case where the
5652 -- current instance and the nested instance are the same.
5654 if From_Actual_Package (E2)
5655 or else (Present (Nested_Inst)
5656 and then Scope_Depth (Nested_Inst) >=
5657 Scope_Depth (Inst))
5658 then
5659 E := E2;
5660 goto Found;
5661 end if;
5663 E2 := Homonym (E2);
5664 end loop;
5666 Nvis_Messages;
5667 goto Done;
5669 elsif Is_Predefined_Unit (Current_Sem_Unit) then
5670 -- A use clause in the body of a system file creates conflict
5671 -- with some entity in a user scope, while rtsfind is active.
5672 -- Keep only the entity coming from another predefined unit.
5674 E2 := E;
5675 while Present (E2) loop
5676 if In_Predefined_Unit (E2) then
5677 E := E2;
5678 goto Found;
5679 end if;
5681 E2 := Homonym (E2);
5682 end loop;
5684 -- Entity must exist because predefined unit is correct
5686 raise Program_Error;
5688 else
5689 Nvis_Messages;
5690 goto Done;
5691 end if;
5692 end if;
5693 end;
5695 -- Come here with E set to the first immediately visible entity on
5696 -- the homonym chain. This is the one we want unless there is another
5697 -- immediately visible entity further on in the chain for an inner
5698 -- scope (RM 8.3(8)).
5700 <<Immediately_Visible_Entity>> declare
5701 Level : Int;
5702 Scop : Entity_Id;
5704 begin
5705 -- Find scope level of initial entity. When compiling through
5706 -- Rtsfind, the previous context is not completely invisible, and
5707 -- an outer entity may appear on the chain, whose scope is below
5708 -- the entry for Standard that delimits the current scope stack.
5709 -- Indicate that the level for this spurious entry is outside of
5710 -- the current scope stack.
5712 Level := Scope_Stack.Last;
5713 loop
5714 Scop := Scope_Stack.Table (Level).Entity;
5715 exit when Scop = Scope (E);
5716 Level := Level - 1;
5717 exit when Scop = Standard_Standard;
5718 end loop;
5720 -- Now search remainder of homonym chain for more inner entry
5721 -- If the entity is Standard itself, it has no scope, and we
5722 -- compare it with the stack entry directly.
5724 E2 := Homonym (E);
5725 while Present (E2) loop
5726 if Is_Immediately_Visible (E2) then
5728 -- If a generic package contains a local declaration that
5729 -- has the same name as the generic, there may be a visibility
5730 -- conflict in an instance, where the local declaration must
5731 -- also hide the name of the corresponding package renaming.
5732 -- We check explicitly for a package declared by a renaming,
5733 -- whose renamed entity is an instance that is on the scope
5734 -- stack, and that contains a homonym in the same scope. Once
5735 -- we have found it, we know that the package renaming is not
5736 -- immediately visible, and that the identifier denotes the
5737 -- other entity (and its homonyms if overloaded).
5739 if Scope (E) = Scope (E2)
5740 and then Ekind (E) = E_Package
5741 and then Present (Renamed_Object (E))
5742 and then Is_Generic_Instance (Renamed_Object (E))
5743 and then In_Open_Scopes (Renamed_Object (E))
5744 and then Comes_From_Source (N)
5745 then
5746 Set_Is_Immediately_Visible (E, False);
5747 E := E2;
5749 else
5750 for J in Level + 1 .. Scope_Stack.Last loop
5751 if Scope_Stack.Table (J).Entity = Scope (E2)
5752 or else Scope_Stack.Table (J).Entity = E2
5753 then
5754 Level := J;
5755 E := E2;
5756 exit;
5757 end if;
5758 end loop;
5759 end if;
5760 end if;
5762 E2 := Homonym (E2);
5763 end loop;
5765 -- At the end of that loop, E is the innermost immediately
5766 -- visible entity, so we are all set.
5767 end;
5769 -- Come here with entity found, and stored in E
5771 <<Found>> begin
5773 -- Check violation of No_Wide_Characters restriction
5775 Check_Wide_Character_Restriction (E, N);
5777 -- When distribution features are available (Get_PCS_Name /=
5778 -- Name_No_DSA), a remote access-to-subprogram type is converted
5779 -- into a record type holding whatever information is needed to
5780 -- perform a remote call on an RCI subprogram. In that case we
5781 -- rewrite any occurrence of the RAS type into the equivalent record
5782 -- type here. 'Access attribute references and RAS dereferences are
5783 -- then implemented using specific TSSs. However when distribution is
5784 -- not available (case of Get_PCS_Name = Name_No_DSA), we bypass the
5785 -- generation of these TSSs, and we must keep the RAS type in its
5786 -- original access-to-subprogram form (since all calls through a
5787 -- value of such type will be local anyway in the absence of a PCS).
5789 if Comes_From_Source (N)
5790 and then Is_Remote_Access_To_Subprogram_Type (E)
5791 and then Ekind (E) = E_Access_Subprogram_Type
5792 and then Expander_Active
5793 and then Get_PCS_Name /= Name_No_DSA
5794 then
5795 Rewrite (N, New_Occurrence_Of (Equivalent_Type (E), Sloc (N)));
5796 goto Done;
5797 end if;
5799 -- Set the entity. Note that the reason we call Set_Entity for the
5800 -- overloadable case, as opposed to Set_Entity_With_Checks is
5801 -- that in the overloaded case, the initial call can set the wrong
5802 -- homonym. The call that sets the right homonym is in Sem_Res and
5803 -- that call does use Set_Entity_With_Checks, so we don't miss
5804 -- a style check.
5806 if Is_Overloadable (E) then
5807 Set_Entity (N, E);
5808 else
5809 Set_Entity_With_Checks (N, E);
5810 end if;
5812 if Is_Type (E) then
5813 Set_Etype (N, E);
5814 else
5815 Set_Etype (N, Get_Full_View (Etype (E)));
5816 end if;
5818 if Debug_Flag_E then
5819 Write_Str (" found ");
5820 Write_Entity_Info (E, " ");
5821 end if;
5823 -- If the Ekind of the entity is Void, it means that all homonyms
5824 -- are hidden from all visibility (RM 8.3(5,14-20)). However, this
5825 -- test is skipped if the current scope is a record and the name is
5826 -- a pragma argument expression (case of Atomic and Volatile pragmas
5827 -- and possibly other similar pragmas added later, which are allowed
5828 -- to reference components in the current record).
5830 if Ekind (E) = E_Void
5831 and then
5832 (not Is_Record_Type (Current_Scope)
5833 or else Nkind (Parent (N)) /= N_Pragma_Argument_Association)
5834 then
5835 Premature_Usage (N);
5837 -- If the entity is overloadable, collect all interpretations of the
5838 -- name for subsequent overload resolution. We optimize a bit here to
5839 -- do this only if we have an overloadable entity that is not on its
5840 -- own on the homonym chain.
5842 elsif Is_Overloadable (E)
5843 and then (Present (Homonym (E)) or else Current_Entity (N) /= E)
5844 then
5845 Collect_Interps (N);
5847 -- If no homonyms were visible, the entity is unambiguous
5849 if not Is_Overloaded (N) then
5850 if Reference_OK and then not Is_Actual_Parameter then
5851 Generate_Reference (E, N);
5852 end if;
5853 end if;
5855 -- Case of non-overloadable entity, set the entity providing that
5856 -- we do not have the case of a discriminant reference within a
5857 -- default expression. Such references are replaced with the
5858 -- corresponding discriminal, which is the formal corresponding to
5859 -- to the discriminant in the initialization procedure.
5861 else
5862 -- Entity is unambiguous, indicate that it is referenced here
5864 -- For a renaming of an object, always generate simple reference,
5865 -- we don't try to keep track of assignments in this case, except
5866 -- in SPARK mode where renamings are traversed for generating
5867 -- local effects of subprograms.
5869 if Reference_OK
5870 and then Is_Object (E)
5871 and then Present (Renamed_Object (E))
5872 and then not GNATprove_Mode
5873 then
5874 Generate_Reference (E, N);
5876 -- If the renamed entity is a private protected component,
5877 -- reference the original component as well. This needs to be
5878 -- done because the private renamings are installed before any
5879 -- analysis has occurred. Reference to a private component will
5880 -- resolve to the renaming and the original component will be
5881 -- left unreferenced, hence the following.
5883 if Is_Prival (E) then
5884 Generate_Reference (Prival_Link (E), N);
5885 end if;
5887 -- One odd case is that we do not want to set the Referenced flag
5888 -- if the entity is a label, and the identifier is the label in
5889 -- the source, since this is not a reference from the point of
5890 -- view of the user.
5892 elsif Nkind (Parent (N)) = N_Label then
5893 declare
5894 R : constant Boolean := Referenced (E);
5896 begin
5897 -- Generate reference unless this is an actual parameter
5898 -- (see comment below)
5900 if Reference_OK and then Is_Actual_Parameter then
5901 Generate_Reference (E, N);
5902 Set_Referenced (E, R);
5903 end if;
5904 end;
5906 -- Normal case, not a label: generate reference
5908 else
5909 if Reference_OK and then not Is_Actual_Parameter then
5911 -- Package or generic package is always a simple reference
5913 if Ekind_In (E, E_Package, E_Generic_Package) then
5914 Generate_Reference (E, N, 'r');
5916 -- Else see if we have a left hand side
5918 else
5919 case Is_LHS (N) is
5920 when Yes =>
5921 Generate_Reference (E, N, 'm');
5923 when No =>
5924 Generate_Reference (E, N, 'r');
5926 -- If we don't know now, generate reference later
5928 when Unknown =>
5929 Deferred_References.Append ((E, N));
5930 end case;
5931 end if;
5932 end if;
5933 end if;
5935 Set_Entity_Or_Discriminal (N, E);
5937 -- The name may designate a generalized reference, in which case
5938 -- the dereference interpretation will be included. Context is
5939 -- one in which a name is legal.
5941 if Ada_Version >= Ada_2012
5942 and then
5943 (Nkind (Parent (N)) in N_Subexpr
5944 or else Nkind_In (Parent (N), N_Assignment_Statement,
5945 N_Object_Declaration,
5946 N_Parameter_Association))
5947 then
5948 Check_Implicit_Dereference (N, Etype (E));
5949 end if;
5950 end if;
5951 end;
5953 -- Mark relevant use-type and use-package clauses as effective if the
5954 -- node in question is not overloaded and therefore does not require
5955 -- resolution.
5957 -- Note: Generic actual subprograms do not follow the normal resolution
5958 -- path, so ignore the fact that they are overloaded and mark them
5959 -- anyway.
5961 if Nkind (N) not in N_Subexpr or else not Is_Overloaded (N) then
5962 Mark_Use_Clauses (N);
5963 end if;
5965 -- Come here with entity set
5967 <<Done>>
5968 Check_Restriction_No_Use_Of_Entity (N);
5970 -- Annotate the tree by creating a variable reference marker in case the
5971 -- original variable reference is folded or optimized away. The variable
5972 -- reference marker is automatically saved for later examination by the
5973 -- ABE Processing phase. Variable references which act as actuals in a
5974 -- call require special processing and are left to Resolve_Actuals. The
5975 -- reference is a write when it appears on the left hand side of an
5976 -- assignment.
5978 if Marker_OK
5979 and then Needs_Variable_Reference_Marker
5980 (N => N,
5981 Calls_OK => False)
5982 then
5983 declare
5984 Is_Assignment_LHS : constant Boolean := Is_LHS (N) = Yes;
5986 begin
5987 Build_Variable_Reference_Marker
5988 (N => N,
5989 Read => not Is_Assignment_LHS,
5990 Write => Is_Assignment_LHS);
5991 end;
5992 end if;
5993 end Find_Direct_Name;
5995 ------------------------
5996 -- Find_Expanded_Name --
5997 ------------------------
5999 -- This routine searches the homonym chain of the entity until it finds
6000 -- an entity declared in the scope denoted by the prefix. If the entity
6001 -- is private, it may nevertheless be immediately visible, if we are in
6002 -- the scope of its declaration.
6004 procedure Find_Expanded_Name (N : Node_Id) is
6005 function In_Abstract_View_Pragma (Nod : Node_Id) return Boolean;
6006 -- Determine whether expanded name Nod appears within a pragma which is
6007 -- a suitable context for an abstract view of a state or variable. The
6008 -- following pragmas fall in this category:
6009 -- Depends
6010 -- Global
6011 -- Initializes
6012 -- Refined_Depends
6013 -- Refined_Global
6015 -- In addition, pragma Abstract_State is also considered suitable even
6016 -- though it is an illegal context for an abstract view as this allows
6017 -- for proper resolution of abstract views of variables. This illegal
6018 -- context is later flagged in the analysis of indicator Part_Of.
6020 -----------------------------
6021 -- In_Abstract_View_Pragma --
6022 -----------------------------
6024 function In_Abstract_View_Pragma (Nod : Node_Id) return Boolean is
6025 Par : Node_Id;
6027 begin
6028 -- Climb the parent chain looking for a pragma
6030 Par := Nod;
6031 while Present (Par) loop
6032 if Nkind (Par) = N_Pragma then
6033 if Nam_In (Pragma_Name_Unmapped (Par),
6034 Name_Abstract_State,
6035 Name_Depends,
6036 Name_Global,
6037 Name_Initializes,
6038 Name_Refined_Depends,
6039 Name_Refined_Global)
6040 then
6041 return True;
6043 -- Otherwise the pragma is not a legal context for an abstract
6044 -- view.
6046 else
6047 exit;
6048 end if;
6050 -- Prevent the search from going too far
6052 elsif Is_Body_Or_Package_Declaration (Par) then
6053 exit;
6054 end if;
6056 Par := Parent (Par);
6057 end loop;
6059 return False;
6060 end In_Abstract_View_Pragma;
6062 -- Local variables
6064 Selector : constant Node_Id := Selector_Name (N);
6066 Candidate : Entity_Id := Empty;
6067 P_Name : Entity_Id;
6068 Id : Entity_Id;
6070 -- Start of processing for Find_Expanded_Name
6072 begin
6073 P_Name := Entity (Prefix (N));
6075 -- If the prefix is a renamed package, look for the entity in the
6076 -- original package.
6078 if Ekind (P_Name) = E_Package
6079 and then Present (Renamed_Object (P_Name))
6080 then
6081 P_Name := Renamed_Object (P_Name);
6083 -- Rewrite node with entity field pointing to renamed object
6085 Rewrite (Prefix (N), New_Copy (Prefix (N)));
6086 Set_Entity (Prefix (N), P_Name);
6088 -- If the prefix is an object of a concurrent type, look for
6089 -- the entity in the associated task or protected type.
6091 elsif Is_Concurrent_Type (Etype (P_Name)) then
6092 P_Name := Etype (P_Name);
6093 end if;
6095 Id := Current_Entity (Selector);
6097 declare
6098 Is_New_Candidate : Boolean;
6100 begin
6101 while Present (Id) loop
6102 if Scope (Id) = P_Name then
6103 Candidate := Id;
6104 Is_New_Candidate := True;
6106 -- Handle abstract views of states and variables. These are
6107 -- acceptable candidates only when the reference to the view
6108 -- appears in certain pragmas.
6110 if Ekind (Id) = E_Abstract_State
6111 and then From_Limited_With (Id)
6112 and then Present (Non_Limited_View (Id))
6113 then
6114 if In_Abstract_View_Pragma (N) then
6115 Candidate := Non_Limited_View (Id);
6116 Is_New_Candidate := True;
6118 -- Hide the candidate because it is not used in a proper
6119 -- context.
6121 else
6122 Candidate := Empty;
6123 Is_New_Candidate := False;
6124 end if;
6125 end if;
6127 -- Ada 2005 (AI-217): Handle shadow entities associated with
6128 -- types declared in limited-withed nested packages. We don't need
6129 -- to handle E_Incomplete_Subtype entities because the entities
6130 -- in the limited view are always E_Incomplete_Type and
6131 -- E_Class_Wide_Type entities (see Build_Limited_Views).
6133 -- Regarding the expression used to evaluate the scope, it
6134 -- is important to note that the limited view also has shadow
6135 -- entities associated nested packages. For this reason the
6136 -- correct scope of the entity is the scope of the real entity.
6137 -- The non-limited view may itself be incomplete, in which case
6138 -- get the full view if available.
6140 elsif Ekind_In (Id, E_Incomplete_Type, E_Class_Wide_Type)
6141 and then From_Limited_With (Id)
6142 and then Present (Non_Limited_View (Id))
6143 and then Scope (Non_Limited_View (Id)) = P_Name
6144 then
6145 Candidate := Get_Full_View (Non_Limited_View (Id));
6146 Is_New_Candidate := True;
6148 -- An unusual case arises with a fully qualified name for an
6149 -- entity local to a generic child unit package, within an
6150 -- instantiation of that package. The name of the unit now
6151 -- denotes the renaming created within the instance. This is
6152 -- only relevant in an instance body, see below.
6154 elsif Is_Generic_Instance (Scope (Id))
6155 and then In_Open_Scopes (Scope (Id))
6156 and then In_Instance_Body
6157 and then Ekind (Scope (Id)) = E_Package
6158 and then Ekind (Id) = E_Package
6159 and then Renamed_Entity (Id) = Scope (Id)
6160 and then Is_Immediately_Visible (P_Name)
6161 then
6162 Is_New_Candidate := True;
6164 else
6165 Is_New_Candidate := False;
6166 end if;
6168 if Is_New_Candidate then
6170 -- If entity is a child unit, either it is a visible child of
6171 -- the prefix, or we are in the body of a generic prefix, as
6172 -- will happen when a child unit is instantiated in the body
6173 -- of a generic parent. This is because the instance body does
6174 -- not restore the full compilation context, given that all
6175 -- non-local references have been captured.
6177 if Is_Child_Unit (Id) or else P_Name = Standard_Standard then
6178 exit when Is_Visible_Lib_Unit (Id)
6179 or else (Is_Child_Unit (Id)
6180 and then In_Open_Scopes (Scope (Id))
6181 and then In_Instance_Body);
6182 else
6183 exit when not Is_Hidden (Id);
6184 end if;
6186 exit when Is_Immediately_Visible (Id);
6187 end if;
6189 Id := Homonym (Id);
6190 end loop;
6191 end;
6193 if No (Id)
6194 and then Ekind_In (P_Name, E_Procedure, E_Function)
6195 and then Is_Generic_Instance (P_Name)
6196 then
6197 -- Expanded name denotes entity in (instance of) generic subprogram.
6198 -- The entity may be in the subprogram instance, or may denote one of
6199 -- the formals, which is declared in the enclosing wrapper package.
6201 P_Name := Scope (P_Name);
6203 Id := Current_Entity (Selector);
6204 while Present (Id) loop
6205 exit when Scope (Id) = P_Name;
6206 Id := Homonym (Id);
6207 end loop;
6208 end if;
6210 if No (Id) or else Chars (Id) /= Chars (Selector) then
6211 Set_Etype (N, Any_Type);
6213 -- If we are looking for an entity defined in System, try to find it
6214 -- in the child package that may have been provided as an extension
6215 -- to System. The Extend_System pragma will have supplied the name of
6216 -- the extension, which may have to be loaded.
6218 if Chars (P_Name) = Name_System
6219 and then Scope (P_Name) = Standard_Standard
6220 and then Present (System_Extend_Unit)
6221 and then Present_System_Aux (N)
6222 then
6223 Set_Entity (Prefix (N), System_Aux_Id);
6224 Find_Expanded_Name (N);
6225 return;
6227 -- There is an implicit instance of the predefined operator in
6228 -- the given scope. The operator entity is defined in Standard.
6229 -- Has_Implicit_Operator makes the node into an Expanded_Name.
6231 elsif Nkind (Selector) = N_Operator_Symbol
6232 and then Has_Implicit_Operator (N)
6233 then
6234 return;
6236 -- If there is no literal defined in the scope denoted by the
6237 -- prefix, the literal may belong to (a type derived from)
6238 -- Standard_Character, for which we have no explicit literals.
6240 elsif Nkind (Selector) = N_Character_Literal
6241 and then Has_Implicit_Character_Literal (N)
6242 then
6243 return;
6245 else
6246 -- If the prefix is a single concurrent object, use its name in
6247 -- the error message, rather than that of the anonymous type.
6249 if Is_Concurrent_Type (P_Name)
6250 and then Is_Internal_Name (Chars (P_Name))
6251 then
6252 Error_Msg_Node_2 := Entity (Prefix (N));
6253 else
6254 Error_Msg_Node_2 := P_Name;
6255 end if;
6257 if P_Name = System_Aux_Id then
6258 P_Name := Scope (P_Name);
6259 Set_Entity (Prefix (N), P_Name);
6260 end if;
6262 if Present (Candidate) then
6264 -- If we know that the unit is a child unit we can give a more
6265 -- accurate error message.
6267 if Is_Child_Unit (Candidate) then
6269 -- If the candidate is a private child unit and we are in
6270 -- the visible part of a public unit, specialize the error
6271 -- message. There might be a private with_clause for it,
6272 -- but it is not currently active.
6274 if Is_Private_Descendant (Candidate)
6275 and then Ekind (Current_Scope) = E_Package
6276 and then not In_Private_Part (Current_Scope)
6277 and then not Is_Private_Descendant (Current_Scope)
6278 then
6279 Error_Msg_N
6280 ("private child unit& is not visible here", Selector);
6282 -- Normal case where we have a missing with for a child unit
6284 else
6285 Error_Msg_Qual_Level := 99;
6286 Error_Msg_NE -- CODEFIX
6287 ("missing `WITH &;`", Selector, Candidate);
6288 Error_Msg_Qual_Level := 0;
6289 end if;
6291 -- Here we don't know that this is a child unit
6293 else
6294 Error_Msg_NE ("& is not a visible entity of&", N, Selector);
6295 end if;
6297 else
6298 -- Within the instantiation of a child unit, the prefix may
6299 -- denote the parent instance, but the selector has the name
6300 -- of the original child. That is to say, when A.B appears
6301 -- within an instantiation of generic child unit B, the scope
6302 -- stack includes an instance of A (P_Name) and an instance
6303 -- of B under some other name. We scan the scope to find this
6304 -- child instance, which is the desired entity.
6305 -- Note that the parent may itself be a child instance, if
6306 -- the reference is of the form A.B.C, in which case A.B has
6307 -- already been rewritten with the proper entity.
6309 if In_Open_Scopes (P_Name)
6310 and then Is_Generic_Instance (P_Name)
6311 then
6312 declare
6313 Gen_Par : constant Entity_Id :=
6314 Generic_Parent (Specification
6315 (Unit_Declaration_Node (P_Name)));
6316 S : Entity_Id := Current_Scope;
6317 P : Entity_Id;
6319 begin
6320 for J in reverse 0 .. Scope_Stack.Last loop
6321 S := Scope_Stack.Table (J).Entity;
6323 exit when S = Standard_Standard;
6325 if Ekind_In (S, E_Function,
6326 E_Package,
6327 E_Procedure)
6328 then
6329 P :=
6330 Generic_Parent (Specification
6331 (Unit_Declaration_Node (S)));
6333 -- Check that P is a generic child of the generic
6334 -- parent of the prefix.
6336 if Present (P)
6337 and then Chars (P) = Chars (Selector)
6338 and then Scope (P) = Gen_Par
6339 then
6340 Id := S;
6341 goto Found;
6342 end if;
6343 end if;
6345 end loop;
6346 end;
6347 end if;
6349 -- If this is a selection from Ada, System or Interfaces, then
6350 -- we assume a missing with for the corresponding package.
6352 if Is_Known_Unit (N)
6353 and then not (Present (Entity (Prefix (N)))
6354 and then Scope (Entity (Prefix (N))) /=
6355 Standard_Standard)
6356 then
6357 if not Error_Posted (N) then
6358 Error_Msg_Node_2 := Selector;
6359 Error_Msg_N -- CODEFIX
6360 ("missing `WITH &.&;`", Prefix (N));
6361 end if;
6363 -- If this is a selection from a dummy package, then suppress
6364 -- the error message, of course the entity is missing if the
6365 -- package is missing.
6367 elsif Sloc (Error_Msg_Node_2) = No_Location then
6368 null;
6370 -- Here we have the case of an undefined component
6372 else
6373 -- The prefix may hide a homonym in the context that
6374 -- declares the desired entity. This error can use a
6375 -- specialized message.
6377 if In_Open_Scopes (P_Name) then
6378 declare
6379 H : constant Entity_Id := Homonym (P_Name);
6381 begin
6382 if Present (H)
6383 and then Is_Compilation_Unit (H)
6384 and then
6385 (Is_Immediately_Visible (H)
6386 or else Is_Visible_Lib_Unit (H))
6387 then
6388 Id := First_Entity (H);
6389 while Present (Id) loop
6390 if Chars (Id) = Chars (Selector) then
6391 Error_Msg_Qual_Level := 99;
6392 Error_Msg_Name_1 := Chars (Selector);
6393 Error_Msg_NE
6394 ("% not declared in&", N, P_Name);
6395 Error_Msg_NE
6396 ("\use fully qualified name starting with "
6397 & "Standard to make& visible", N, H);
6398 Error_Msg_Qual_Level := 0;
6399 goto Done;
6400 end if;
6402 Next_Entity (Id);
6403 end loop;
6404 end if;
6406 -- If not found, standard error message
6408 Error_Msg_NE ("& not declared in&", N, Selector);
6410 <<Done>> null;
6411 end;
6413 else
6414 -- Might be worth specializing the case when the prefix
6415 -- is a limited view.
6416 -- ... not declared in limited view of...
6418 Error_Msg_NE ("& not declared in&", N, Selector);
6419 end if;
6421 -- Check for misspelling of some entity in prefix
6423 Id := First_Entity (P_Name);
6424 while Present (Id) loop
6425 if Is_Bad_Spelling_Of (Chars (Id), Chars (Selector))
6426 and then not Is_Internal_Name (Chars (Id))
6427 then
6428 Error_Msg_NE -- CODEFIX
6429 ("possible misspelling of&", Selector, Id);
6430 exit;
6431 end if;
6433 Next_Entity (Id);
6434 end loop;
6436 -- Specialize the message if this may be an instantiation
6437 -- of a child unit that was not mentioned in the context.
6439 if Nkind (Parent (N)) = N_Package_Instantiation
6440 and then Is_Generic_Instance (Entity (Prefix (N)))
6441 and then Is_Compilation_Unit
6442 (Generic_Parent (Parent (Entity (Prefix (N)))))
6443 then
6444 Error_Msg_Node_2 := Selector;
6445 Error_Msg_N -- CODEFIX
6446 ("\missing `WITH &.&;`", Prefix (N));
6447 end if;
6448 end if;
6449 end if;
6451 Id := Any_Id;
6452 end if;
6453 end if;
6455 <<Found>>
6456 if Comes_From_Source (N)
6457 and then Is_Remote_Access_To_Subprogram_Type (Id)
6458 and then Ekind (Id) = E_Access_Subprogram_Type
6459 and then Present (Equivalent_Type (Id))
6460 then
6461 -- If we are not actually generating distribution code (i.e. the
6462 -- current PCS is the dummy non-distributed version), then the
6463 -- Equivalent_Type will be missing, and Id should be treated as
6464 -- a regular access-to-subprogram type.
6466 Id := Equivalent_Type (Id);
6467 Set_Chars (Selector, Chars (Id));
6468 end if;
6470 -- Ada 2005 (AI-50217): Check usage of entities in limited withed units
6472 if Ekind (P_Name) = E_Package and then From_Limited_With (P_Name) then
6473 if From_Limited_With (Id)
6474 or else Is_Type (Id)
6475 or else Ekind (Id) = E_Package
6476 then
6477 null;
6478 else
6479 Error_Msg_N
6480 ("limited withed package can only be used to access incomplete "
6481 & "types", N);
6482 end if;
6483 end if;
6485 if Is_Task_Type (P_Name)
6486 and then ((Ekind (Id) = E_Entry
6487 and then Nkind (Parent (N)) /= N_Attribute_Reference)
6488 or else
6489 (Ekind (Id) = E_Entry_Family
6490 and then
6491 Nkind (Parent (Parent (N))) /= N_Attribute_Reference))
6492 then
6493 -- If both the task type and the entry are in scope, this may still
6494 -- be the expanded name of an entry formal.
6496 if In_Open_Scopes (Id)
6497 and then Nkind (Parent (N)) = N_Selected_Component
6498 then
6499 null;
6501 else
6502 -- It is an entry call after all, either to the current task
6503 -- (which will deadlock) or to an enclosing task.
6505 Analyze_Selected_Component (N);
6506 return;
6507 end if;
6508 end if;
6510 Change_Selected_Component_To_Expanded_Name (N);
6512 -- Preserve relevant elaboration-related attributes of the context which
6513 -- are no longer available or very expensive to recompute once analysis,
6514 -- resolution, and expansion are over.
6516 Mark_Elaboration_Attributes
6517 (N_Id => N,
6518 Modes => True);
6520 -- Set appropriate type
6522 if Is_Type (Id) then
6523 Set_Etype (N, Id);
6524 else
6525 Set_Etype (N, Get_Full_View (Etype (Id)));
6526 end if;
6528 -- Do style check and generate reference, but skip both steps if this
6529 -- entity has homonyms, since we may not have the right homonym set yet.
6530 -- The proper homonym will be set during the resolve phase.
6532 if Has_Homonym (Id) then
6533 Set_Entity (N, Id);
6535 else
6536 Set_Entity_Or_Discriminal (N, Id);
6538 case Is_LHS (N) is
6539 when Yes =>
6540 Generate_Reference (Id, N, 'm');
6542 when No =>
6543 Generate_Reference (Id, N, 'r');
6545 when Unknown =>
6546 Deferred_References.Append ((Id, N));
6547 end case;
6548 end if;
6550 -- Check for violation of No_Wide_Characters
6552 Check_Wide_Character_Restriction (Id, N);
6554 -- If the Ekind of the entity is Void, it means that all homonyms are
6555 -- hidden from all visibility (RM 8.3(5,14-20)).
6557 if Ekind (Id) = E_Void then
6558 Premature_Usage (N);
6560 elsif Is_Overloadable (Id) and then Present (Homonym (Id)) then
6561 declare
6562 H : Entity_Id := Homonym (Id);
6564 begin
6565 while Present (H) loop
6566 if Scope (H) = Scope (Id)
6567 and then (not Is_Hidden (H)
6568 or else Is_Immediately_Visible (H))
6569 then
6570 Collect_Interps (N);
6571 exit;
6572 end if;
6574 H := Homonym (H);
6575 end loop;
6577 -- If an extension of System is present, collect possible explicit
6578 -- overloadings declared in the extension.
6580 if Chars (P_Name) = Name_System
6581 and then Scope (P_Name) = Standard_Standard
6582 and then Present (System_Extend_Unit)
6583 and then Present_System_Aux (N)
6584 then
6585 H := Current_Entity (Id);
6587 while Present (H) loop
6588 if Scope (H) = System_Aux_Id then
6589 Add_One_Interp (N, H, Etype (H));
6590 end if;
6592 H := Homonym (H);
6593 end loop;
6594 end if;
6595 end;
6596 end if;
6598 if Nkind (Selector_Name (N)) = N_Operator_Symbol
6599 and then Scope (Id) /= Standard_Standard
6600 then
6601 -- In addition to user-defined operators in the given scope, there
6602 -- may be an implicit instance of the predefined operator. The
6603 -- operator (defined in Standard) is found in Has_Implicit_Operator,
6604 -- and added to the interpretations. Procedure Add_One_Interp will
6605 -- determine which hides which.
6607 if Has_Implicit_Operator (N) then
6608 null;
6609 end if;
6610 end if;
6612 -- If there is a single interpretation for N we can generate a
6613 -- reference to the unique entity found.
6615 if Is_Overloadable (Id) and then not Is_Overloaded (N) then
6616 Generate_Reference (Id, N);
6617 end if;
6619 -- Mark relevant use-type and use-package clauses as effective if the
6620 -- node in question is not overloaded and therefore does not require
6621 -- resolution.
6623 if Nkind (N) not in N_Subexpr or else not Is_Overloaded (N) then
6624 Mark_Use_Clauses (N);
6625 end if;
6627 Check_Restriction_No_Use_Of_Entity (N);
6629 -- Annotate the tree by creating a variable reference marker in case the
6630 -- original variable reference is folded or optimized away. The variable
6631 -- reference marker is automatically saved for later examination by the
6632 -- ABE Processing phase. Variable references which act as actuals in a
6633 -- call require special processing and are left to Resolve_Actuals. The
6634 -- reference is a write when it appears on the left hand side of an
6635 -- assignment.
6637 if Needs_Variable_Reference_Marker
6638 (N => N,
6639 Calls_OK => False)
6640 then
6641 declare
6642 Is_Assignment_LHS : constant Boolean := Is_LHS (N) = Yes;
6644 begin
6645 Build_Variable_Reference_Marker
6646 (N => N,
6647 Read => not Is_Assignment_LHS,
6648 Write => Is_Assignment_LHS);
6649 end;
6650 end if;
6651 end Find_Expanded_Name;
6653 --------------------
6654 -- Find_Most_Prev --
6655 --------------------
6657 function Find_Most_Prev (Use_Clause : Node_Id) return Node_Id is
6658 Curr : Node_Id;
6660 begin
6661 -- Loop through the Prev_Use_Clause chain
6663 Curr := Use_Clause;
6664 while Present (Prev_Use_Clause (Curr)) loop
6665 Curr := Prev_Use_Clause (Curr);
6666 end loop;
6668 return Curr;
6669 end Find_Most_Prev;
6671 -------------------------
6672 -- Find_Renamed_Entity --
6673 -------------------------
6675 function Find_Renamed_Entity
6676 (N : Node_Id;
6677 Nam : Node_Id;
6678 New_S : Entity_Id;
6679 Is_Actual : Boolean := False) return Entity_Id
6681 Ind : Interp_Index;
6682 I1 : Interp_Index := 0; -- Suppress junk warnings
6683 It : Interp;
6684 It1 : Interp;
6685 Old_S : Entity_Id;
6686 Inst : Entity_Id;
6688 function Is_Visible_Operation (Op : Entity_Id) return Boolean;
6689 -- If the renamed entity is an implicit operator, check whether it is
6690 -- visible because its operand type is properly visible. This check
6691 -- applies to explicit renamed entities that appear in the source in a
6692 -- renaming declaration or a formal subprogram instance, but not to
6693 -- default generic actuals with a name.
6695 function Report_Overload return Entity_Id;
6696 -- List possible interpretations, and specialize message in the
6697 -- case of a generic actual.
6699 function Within (Inner, Outer : Entity_Id) return Boolean;
6700 -- Determine whether a candidate subprogram is defined within the
6701 -- enclosing instance. If yes, it has precedence over outer candidates.
6703 --------------------------
6704 -- Is_Visible_Operation --
6705 --------------------------
6707 function Is_Visible_Operation (Op : Entity_Id) return Boolean is
6708 Scop : Entity_Id;
6709 Typ : Entity_Id;
6710 Btyp : Entity_Id;
6712 begin
6713 if Ekind (Op) /= E_Operator
6714 or else Scope (Op) /= Standard_Standard
6715 or else (In_Instance
6716 and then (not Is_Actual
6717 or else Present (Enclosing_Instance)))
6718 then
6719 return True;
6721 else
6722 -- For a fixed point type operator, check the resulting type,
6723 -- because it may be a mixed mode integer * fixed operation.
6725 if Present (Next_Formal (First_Formal (New_S)))
6726 and then Is_Fixed_Point_Type (Etype (New_S))
6727 then
6728 Typ := Etype (New_S);
6729 else
6730 Typ := Etype (First_Formal (New_S));
6731 end if;
6733 Btyp := Base_Type (Typ);
6735 if Nkind (Nam) /= N_Expanded_Name then
6736 return (In_Open_Scopes (Scope (Btyp))
6737 or else Is_Potentially_Use_Visible (Btyp)
6738 or else In_Use (Btyp)
6739 or else In_Use (Scope (Btyp)));
6741 else
6742 Scop := Entity (Prefix (Nam));
6744 if Ekind (Scop) = E_Package
6745 and then Present (Renamed_Object (Scop))
6746 then
6747 Scop := Renamed_Object (Scop);
6748 end if;
6750 -- Operator is visible if prefix of expanded name denotes
6751 -- scope of type, or else type is defined in System_Aux
6752 -- and the prefix denotes System.
6754 return Scope (Btyp) = Scop
6755 or else (Scope (Btyp) = System_Aux_Id
6756 and then Scope (Scope (Btyp)) = Scop);
6757 end if;
6758 end if;
6759 end Is_Visible_Operation;
6761 ------------
6762 -- Within --
6763 ------------
6765 function Within (Inner, Outer : Entity_Id) return Boolean is
6766 Sc : Entity_Id;
6768 begin
6769 Sc := Scope (Inner);
6770 while Sc /= Standard_Standard loop
6771 if Sc = Outer then
6772 return True;
6773 else
6774 Sc := Scope (Sc);
6775 end if;
6776 end loop;
6778 return False;
6779 end Within;
6781 ---------------------
6782 -- Report_Overload --
6783 ---------------------
6785 function Report_Overload return Entity_Id is
6786 begin
6787 if Is_Actual then
6788 Error_Msg_NE -- CODEFIX
6789 ("ambiguous actual subprogram&, " &
6790 "possible interpretations:", N, Nam);
6791 else
6792 Error_Msg_N -- CODEFIX
6793 ("ambiguous subprogram, " &
6794 "possible interpretations:", N);
6795 end if;
6797 List_Interps (Nam, N);
6798 return Old_S;
6799 end Report_Overload;
6801 -- Start of processing for Find_Renamed_Entity
6803 begin
6804 Old_S := Any_Id;
6805 Candidate_Renaming := Empty;
6807 if Is_Overloaded (Nam) then
6808 Get_First_Interp (Nam, Ind, It);
6809 while Present (It.Nam) loop
6810 if Entity_Matches_Spec (It.Nam, New_S)
6811 and then Is_Visible_Operation (It.Nam)
6812 then
6813 if Old_S /= Any_Id then
6815 -- Note: The call to Disambiguate only happens if a
6816 -- previous interpretation was found, in which case I1
6817 -- has received a value.
6819 It1 := Disambiguate (Nam, I1, Ind, Etype (Old_S));
6821 if It1 = No_Interp then
6822 Inst := Enclosing_Instance;
6824 if Present (Inst) then
6825 if Within (It.Nam, Inst) then
6826 if Within (Old_S, Inst) then
6828 -- Choose the innermost subprogram, which would
6829 -- have hidden the outer one in the generic.
6831 if Scope_Depth (It.Nam) <
6832 Scope_Depth (Old_S)
6833 then
6834 return Old_S;
6835 else
6836 return It.Nam;
6837 end if;
6838 end if;
6840 elsif Within (Old_S, Inst) then
6841 return (Old_S);
6843 else
6844 return Report_Overload;
6845 end if;
6847 -- If not within an instance, ambiguity is real
6849 else
6850 return Report_Overload;
6851 end if;
6853 else
6854 Old_S := It1.Nam;
6855 exit;
6856 end if;
6858 else
6859 I1 := Ind;
6860 Old_S := It.Nam;
6861 end if;
6863 elsif
6864 Present (First_Formal (It.Nam))
6865 and then Present (First_Formal (New_S))
6866 and then (Base_Type (Etype (First_Formal (It.Nam))) =
6867 Base_Type (Etype (First_Formal (New_S))))
6868 then
6869 Candidate_Renaming := It.Nam;
6870 end if;
6872 Get_Next_Interp (Ind, It);
6873 end loop;
6875 Set_Entity (Nam, Old_S);
6877 if Old_S /= Any_Id then
6878 Set_Is_Overloaded (Nam, False);
6879 end if;
6881 -- Non-overloaded case
6883 else
6884 if Is_Actual
6885 and then Present (Enclosing_Instance)
6886 and then Entity_Matches_Spec (Entity (Nam), New_S)
6887 then
6888 Old_S := Entity (Nam);
6890 elsif Entity_Matches_Spec (Entity (Nam), New_S) then
6891 Candidate_Renaming := New_S;
6893 if Is_Visible_Operation (Entity (Nam)) then
6894 Old_S := Entity (Nam);
6895 end if;
6897 elsif Present (First_Formal (Entity (Nam)))
6898 and then Present (First_Formal (New_S))
6899 and then (Base_Type (Etype (First_Formal (Entity (Nam)))) =
6900 Base_Type (Etype (First_Formal (New_S))))
6901 then
6902 Candidate_Renaming := Entity (Nam);
6903 end if;
6904 end if;
6906 return Old_S;
6907 end Find_Renamed_Entity;
6909 -----------------------------
6910 -- Find_Selected_Component --
6911 -----------------------------
6913 procedure Find_Selected_Component (N : Node_Id) is
6914 P : constant Node_Id := Prefix (N);
6916 P_Name : Entity_Id;
6917 -- Entity denoted by prefix
6919 P_Type : Entity_Id;
6920 -- and its type
6922 Nam : Node_Id;
6924 function Available_Subtype return Boolean;
6925 -- A small optimization: if the prefix is constrained and the component
6926 -- is an array type we may already have a usable subtype for it, so we
6927 -- can use it rather than generating a new one, because the bounds
6928 -- will be the values of the discriminants and not discriminant refs.
6929 -- This simplifies value tracing in GNATProve. For consistency, both
6930 -- the entity name and the subtype come from the constrained component.
6932 -- This is only used in GNATProve mode: when generating code it may be
6933 -- necessary to create an itype in the scope of use of the selected
6934 -- component, e.g. in the context of a expanded record equality.
6936 function Is_Reference_In_Subunit return Boolean;
6937 -- In a subunit, the scope depth is not a proper measure of hiding,
6938 -- because the context of the proper body may itself hide entities in
6939 -- parent units. This rare case requires inspecting the tree directly
6940 -- because the proper body is inserted in the main unit and its context
6941 -- is simply added to that of the parent.
6943 -----------------------
6944 -- Available_Subtype --
6945 -----------------------
6947 function Available_Subtype return Boolean is
6948 Comp : Entity_Id;
6950 begin
6951 if GNATprove_Mode then
6952 Comp := First_Entity (Etype (P));
6953 while Present (Comp) loop
6954 if Chars (Comp) = Chars (Selector_Name (N)) then
6955 Set_Etype (N, Etype (Comp));
6956 Set_Entity (Selector_Name (N), Comp);
6957 Set_Etype (Selector_Name (N), Etype (Comp));
6958 return True;
6959 end if;
6961 Next_Component (Comp);
6962 end loop;
6963 end if;
6965 return False;
6966 end Available_Subtype;
6968 -----------------------------
6969 -- Is_Reference_In_Subunit --
6970 -----------------------------
6972 function Is_Reference_In_Subunit return Boolean is
6973 Clause : Node_Id;
6974 Comp_Unit : Node_Id;
6976 begin
6977 Comp_Unit := N;
6978 while Present (Comp_Unit)
6979 and then Nkind (Comp_Unit) /= N_Compilation_Unit
6980 loop
6981 Comp_Unit := Parent (Comp_Unit);
6982 end loop;
6984 if No (Comp_Unit) or else Nkind (Unit (Comp_Unit)) /= N_Subunit then
6985 return False;
6986 end if;
6988 -- Now check whether the package is in the context of the subunit
6990 Clause := First (Context_Items (Comp_Unit));
6991 while Present (Clause) loop
6992 if Nkind (Clause) = N_With_Clause
6993 and then Entity (Name (Clause)) = P_Name
6994 then
6995 return True;
6996 end if;
6998 Clause := Next (Clause);
6999 end loop;
7001 return False;
7002 end Is_Reference_In_Subunit;
7004 -- Start of processing for Find_Selected_Component
7006 begin
7007 Analyze (P);
7009 if Nkind (P) = N_Error then
7010 return;
7011 end if;
7013 -- Selector name cannot be a character literal or an operator symbol in
7014 -- SPARK, except for the operator symbol in a renaming.
7016 if Restriction_Check_Required (SPARK_05) then
7017 if Nkind (Selector_Name (N)) = N_Character_Literal then
7018 Check_SPARK_05_Restriction
7019 ("character literal cannot be prefixed", N);
7020 elsif Nkind (Selector_Name (N)) = N_Operator_Symbol
7021 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
7022 then
7023 Check_SPARK_05_Restriction
7024 ("operator symbol cannot be prefixed", N);
7025 end if;
7026 end if;
7028 -- If the selector already has an entity, the node has been constructed
7029 -- in the course of expansion, and is known to be valid. Do not verify
7030 -- that it is defined for the type (it may be a private component used
7031 -- in the expansion of record equality).
7033 if Present (Entity (Selector_Name (N))) then
7034 if No (Etype (N)) or else Etype (N) = Any_Type then
7035 declare
7036 Sel_Name : constant Node_Id := Selector_Name (N);
7037 Selector : constant Entity_Id := Entity (Sel_Name);
7038 C_Etype : Node_Id;
7040 begin
7041 Set_Etype (Sel_Name, Etype (Selector));
7043 if not Is_Entity_Name (P) then
7044 Resolve (P);
7045 end if;
7047 -- Build an actual subtype except for the first parameter
7048 -- of an init proc, where this actual subtype is by
7049 -- definition incorrect, since the object is uninitialized
7050 -- (and does not even have defined discriminants etc.)
7052 if Is_Entity_Name (P)
7053 and then Ekind (Entity (P)) = E_Function
7054 then
7055 Nam := New_Copy (P);
7057 if Is_Overloaded (P) then
7058 Save_Interps (P, Nam);
7059 end if;
7061 Rewrite (P, Make_Function_Call (Sloc (P), Name => Nam));
7062 Analyze_Call (P);
7063 Analyze_Selected_Component (N);
7064 return;
7066 elsif Ekind (Selector) = E_Component
7067 and then (not Is_Entity_Name (P)
7068 or else Chars (Entity (P)) /= Name_uInit)
7069 then
7070 -- Check if we already have an available subtype we can use
7072 if Ekind (Etype (P)) = E_Record_Subtype
7073 and then Nkind (Parent (Etype (P))) = N_Subtype_Declaration
7074 and then Is_Array_Type (Etype (Selector))
7075 and then not Is_Packed (Etype (Selector))
7076 and then Available_Subtype
7077 then
7078 return;
7080 -- Do not build the subtype when referencing components of
7081 -- dispatch table wrappers. Required to avoid generating
7082 -- elaboration code with HI runtimes.
7084 elsif RTU_Loaded (Ada_Tags)
7085 and then
7086 ((RTE_Available (RE_Dispatch_Table_Wrapper)
7087 and then Scope (Selector) =
7088 RTE (RE_Dispatch_Table_Wrapper))
7089 or else
7090 (RTE_Available (RE_No_Dispatch_Table_Wrapper)
7091 and then Scope (Selector) =
7092 RTE (RE_No_Dispatch_Table_Wrapper)))
7093 then
7094 C_Etype := Empty;
7095 else
7096 C_Etype :=
7097 Build_Actual_Subtype_Of_Component
7098 (Etype (Selector), N);
7099 end if;
7101 else
7102 C_Etype := Empty;
7103 end if;
7105 if No (C_Etype) then
7106 C_Etype := Etype (Selector);
7107 else
7108 Insert_Action (N, C_Etype);
7109 C_Etype := Defining_Identifier (C_Etype);
7110 end if;
7112 Set_Etype (N, C_Etype);
7113 end;
7115 -- If this is the name of an entry or protected operation, and
7116 -- the prefix is an access type, insert an explicit dereference,
7117 -- so that entry calls are treated uniformly.
7119 if Is_Access_Type (Etype (P))
7120 and then Is_Concurrent_Type (Designated_Type (Etype (P)))
7121 then
7122 declare
7123 New_P : constant Node_Id :=
7124 Make_Explicit_Dereference (Sloc (P),
7125 Prefix => Relocate_Node (P));
7126 begin
7127 Rewrite (P, New_P);
7128 Set_Etype (P, Designated_Type (Etype (Prefix (P))));
7129 end;
7130 end if;
7132 -- If the selected component appears within a default expression
7133 -- and it has an actual subtype, the preanalysis has not yet
7134 -- completed its analysis, because Insert_Actions is disabled in
7135 -- that context. Within the init proc of the enclosing type we
7136 -- must complete this analysis, if an actual subtype was created.
7138 elsif Inside_Init_Proc then
7139 declare
7140 Typ : constant Entity_Id := Etype (N);
7141 Decl : constant Node_Id := Declaration_Node (Typ);
7142 begin
7143 if Nkind (Decl) = N_Subtype_Declaration
7144 and then not Analyzed (Decl)
7145 and then Is_List_Member (Decl)
7146 and then No (Parent (Decl))
7147 then
7148 Remove (Decl);
7149 Insert_Action (N, Decl);
7150 end if;
7151 end;
7152 end if;
7154 return;
7156 elsif Is_Entity_Name (P) then
7157 P_Name := Entity (P);
7159 -- The prefix may denote an enclosing type which is the completion
7160 -- of an incomplete type declaration.
7162 if Is_Type (P_Name) then
7163 Set_Entity (P, Get_Full_View (P_Name));
7164 Set_Etype (P, Entity (P));
7165 P_Name := Entity (P);
7166 end if;
7168 P_Type := Base_Type (Etype (P));
7170 if Debug_Flag_E then
7171 Write_Str ("Found prefix type to be ");
7172 Write_Entity_Info (P_Type, " "); Write_Eol;
7173 end if;
7175 -- The designated type may be a limited view with no components.
7176 -- Check whether the non-limited view is available, because in some
7177 -- cases this will not be set when installing the context. Rewrite
7178 -- the node by introducing an explicit dereference at once, and
7179 -- setting the type of the rewritten prefix to the non-limited view
7180 -- of the original designated type.
7182 if Is_Access_Type (P_Type) then
7183 declare
7184 Desig_Typ : constant Entity_Id :=
7185 Directly_Designated_Type (P_Type);
7187 begin
7188 if Is_Incomplete_Type (Desig_Typ)
7189 and then From_Limited_With (Desig_Typ)
7190 and then Present (Non_Limited_View (Desig_Typ))
7191 then
7192 Rewrite (P,
7193 Make_Explicit_Dereference (Sloc (P),
7194 Prefix => Relocate_Node (P)));
7196 Set_Etype (P, Get_Full_View (Non_Limited_View (Desig_Typ)));
7197 P_Type := Etype (P);
7198 end if;
7199 end;
7200 end if;
7202 -- First check for components of a record object (not the
7203 -- result of a call, which is handled below).
7205 if Is_Appropriate_For_Record (P_Type)
7206 and then not Is_Overloadable (P_Name)
7207 and then not Is_Type (P_Name)
7208 then
7209 -- Selected component of record. Type checking will validate
7210 -- name of selector.
7212 -- ??? Could we rewrite an implicit dereference into an explicit
7213 -- one here?
7215 Analyze_Selected_Component (N);
7217 -- Reference to type name in predicate/invariant expression
7219 elsif Is_Appropriate_For_Entry_Prefix (P_Type)
7220 and then not In_Open_Scopes (P_Name)
7221 and then (not Is_Concurrent_Type (Etype (P_Name))
7222 or else not In_Open_Scopes (Etype (P_Name)))
7223 then
7224 -- Call to protected operation or entry. Type checking is
7225 -- needed on the prefix.
7227 Analyze_Selected_Component (N);
7229 elsif (In_Open_Scopes (P_Name)
7230 and then Ekind (P_Name) /= E_Void
7231 and then not Is_Overloadable (P_Name))
7232 or else (Is_Concurrent_Type (Etype (P_Name))
7233 and then In_Open_Scopes (Etype (P_Name)))
7234 then
7235 -- Prefix denotes an enclosing loop, block, or task, i.e. an
7236 -- enclosing construct that is not a subprogram or accept.
7238 -- A special case: a protected body may call an operation
7239 -- on an external object of the same type, in which case it
7240 -- is not an expanded name. If the prefix is the type itself,
7241 -- or the context is a single synchronized object it can only
7242 -- be interpreted as an expanded name.
7244 if Is_Concurrent_Type (Etype (P_Name)) then
7245 if Is_Type (P_Name)
7246 or else Present (Anonymous_Object (Etype (P_Name)))
7247 then
7248 Find_Expanded_Name (N);
7250 else
7251 Analyze_Selected_Component (N);
7252 return;
7253 end if;
7255 else
7256 Find_Expanded_Name (N);
7257 end if;
7259 elsif Ekind (P_Name) = E_Package then
7260 Find_Expanded_Name (N);
7262 elsif Is_Overloadable (P_Name) then
7264 -- The subprogram may be a renaming (of an enclosing scope) as
7265 -- in the case of the name of the generic within an instantiation.
7267 if Ekind_In (P_Name, E_Procedure, E_Function)
7268 and then Present (Alias (P_Name))
7269 and then Is_Generic_Instance (Alias (P_Name))
7270 then
7271 P_Name := Alias (P_Name);
7272 end if;
7274 if Is_Overloaded (P) then
7276 -- The prefix must resolve to a unique enclosing construct
7278 declare
7279 Found : Boolean := False;
7280 Ind : Interp_Index;
7281 It : Interp;
7283 begin
7284 Get_First_Interp (P, Ind, It);
7285 while Present (It.Nam) loop
7286 if In_Open_Scopes (It.Nam) then
7287 if Found then
7288 Error_Msg_N (
7289 "prefix must be unique enclosing scope", N);
7290 Set_Entity (N, Any_Id);
7291 Set_Etype (N, Any_Type);
7292 return;
7294 else
7295 Found := True;
7296 P_Name := It.Nam;
7297 end if;
7298 end if;
7300 Get_Next_Interp (Ind, It);
7301 end loop;
7302 end;
7303 end if;
7305 if In_Open_Scopes (P_Name) then
7306 Set_Entity (P, P_Name);
7307 Set_Is_Overloaded (P, False);
7308 Find_Expanded_Name (N);
7310 else
7311 -- If no interpretation as an expanded name is possible, it
7312 -- must be a selected component of a record returned by a
7313 -- function call. Reformat prefix as a function call, the rest
7314 -- is done by type resolution.
7316 -- Error if the prefix is procedure or entry, as is P.X
7318 if Ekind (P_Name) /= E_Function
7319 and then
7320 (not Is_Overloaded (P)
7321 or else Nkind (Parent (N)) = N_Procedure_Call_Statement)
7322 then
7323 -- Prefix may mention a package that is hidden by a local
7324 -- declaration: let the user know. Scan the full homonym
7325 -- chain, the candidate package may be anywhere on it.
7327 if Present (Homonym (Current_Entity (P_Name))) then
7328 P_Name := Current_Entity (P_Name);
7330 while Present (P_Name) loop
7331 exit when Ekind (P_Name) = E_Package;
7332 P_Name := Homonym (P_Name);
7333 end loop;
7335 if Present (P_Name) then
7336 if not Is_Reference_In_Subunit then
7337 Error_Msg_Sloc := Sloc (Entity (Prefix (N)));
7338 Error_Msg_NE
7339 ("package& is hidden by declaration#", N, P_Name);
7340 end if;
7342 Set_Entity (Prefix (N), P_Name);
7343 Find_Expanded_Name (N);
7344 return;
7346 else
7347 P_Name := Entity (Prefix (N));
7348 end if;
7349 end if;
7351 Error_Msg_NE
7352 ("invalid prefix in selected component&", N, P_Name);
7353 Change_Selected_Component_To_Expanded_Name (N);
7354 Set_Entity (N, Any_Id);
7355 Set_Etype (N, Any_Type);
7357 -- Here we have a function call, so do the reformatting
7359 else
7360 Nam := New_Copy (P);
7361 Save_Interps (P, Nam);
7363 -- We use Replace here because this is one of those cases
7364 -- where the parser has missclassified the node, and we fix
7365 -- things up and then do the semantic analysis on the fixed
7366 -- up node. Normally we do this using one of the Sinfo.CN
7367 -- routines, but this is too tricky for that.
7369 -- Note that using Rewrite would be wrong, because we would
7370 -- have a tree where the original node is unanalyzed, and
7371 -- this violates the required interface for ASIS.
7373 Replace (P,
7374 Make_Function_Call (Sloc (P), Name => Nam));
7376 -- Now analyze the reformatted node
7378 Analyze_Call (P);
7380 -- If the prefix is illegal after this transformation, there
7381 -- may be visibility errors on the prefix. The safest is to
7382 -- treat the selected component as an error.
7384 if Error_Posted (P) then
7385 Set_Etype (N, Any_Type);
7386 return;
7388 else
7389 Analyze_Selected_Component (N);
7390 end if;
7391 end if;
7392 end if;
7394 -- Remaining cases generate various error messages
7396 else
7397 -- Format node as expanded name, to avoid cascaded errors
7399 -- If the limited_with transformation was applied earlier, restore
7400 -- source for proper error reporting.
7402 if not Comes_From_Source (P)
7403 and then Nkind (P) = N_Explicit_Dereference
7404 then
7405 Rewrite (P, Prefix (P));
7406 P_Type := Etype (P);
7407 end if;
7409 Change_Selected_Component_To_Expanded_Name (N);
7410 Set_Entity (N, Any_Id);
7411 Set_Etype (N, Any_Type);
7413 -- Issue error message, but avoid this if error issued already.
7414 -- Use identifier of prefix if one is available.
7416 if P_Name = Any_Id then
7417 null;
7419 -- It is not an error if the prefix is the current instance of
7420 -- type name, e.g. the expression of a type aspect, when it is
7421 -- analyzed for ASIS use.
7423 elsif Is_Entity_Name (P) and then Is_Current_Instance (P) then
7424 null;
7426 elsif Ekind (P_Name) = E_Void then
7427 Premature_Usage (P);
7429 elsif Nkind (P) /= N_Attribute_Reference then
7431 -- This may have been meant as a prefixed call to a primitive
7432 -- of an untagged type. If it is a function call check type of
7433 -- its first formal and add explanation.
7435 declare
7436 F : constant Entity_Id :=
7437 Current_Entity (Selector_Name (N));
7438 begin
7439 if Present (F)
7440 and then Is_Overloadable (F)
7441 and then Present (First_Entity (F))
7442 and then not Is_Tagged_Type (Etype (First_Entity (F)))
7443 then
7444 Error_Msg_N
7445 ("prefixed call is only allowed for objects of a "
7446 & "tagged type", N);
7447 end if;
7448 end;
7450 Error_Msg_N ("invalid prefix in selected component&", P);
7452 if Is_Access_Type (P_Type)
7453 and then Ekind (Designated_Type (P_Type)) = E_Incomplete_Type
7454 then
7455 Error_Msg_N
7456 ("\dereference must not be of an incomplete type "
7457 & "(RM 3.10.1)", P);
7458 end if;
7460 else
7461 Error_Msg_N ("invalid prefix in selected component", P);
7462 end if;
7463 end if;
7465 -- Selector name is restricted in SPARK
7467 if Nkind (N) = N_Expanded_Name
7468 and then Restriction_Check_Required (SPARK_05)
7469 then
7470 if Is_Subprogram (P_Name) then
7471 Check_SPARK_05_Restriction
7472 ("prefix of expanded name cannot be a subprogram", P);
7473 elsif Ekind (P_Name) = E_Loop then
7474 Check_SPARK_05_Restriction
7475 ("prefix of expanded name cannot be a loop statement", P);
7476 end if;
7477 end if;
7479 else
7480 -- If prefix is not the name of an entity, it must be an expression,
7481 -- whose type is appropriate for a record. This is determined by
7482 -- type resolution.
7484 Analyze_Selected_Component (N);
7485 end if;
7487 Analyze_Dimension (N);
7488 end Find_Selected_Component;
7490 ---------------
7491 -- Find_Type --
7492 ---------------
7494 procedure Find_Type (N : Node_Id) is
7495 C : Entity_Id;
7496 Typ : Entity_Id;
7497 T : Entity_Id;
7498 T_Name : Entity_Id;
7500 begin
7501 if N = Error then
7502 return;
7504 elsif Nkind (N) = N_Attribute_Reference then
7506 -- Class attribute. This is not valid in Ada 83 mode, but we do not
7507 -- need to enforce that at this point, since the declaration of the
7508 -- tagged type in the prefix would have been flagged already.
7510 if Attribute_Name (N) = Name_Class then
7511 Check_Restriction (No_Dispatch, N);
7512 Find_Type (Prefix (N));
7514 -- Propagate error from bad prefix
7516 if Etype (Prefix (N)) = Any_Type then
7517 Set_Entity (N, Any_Type);
7518 Set_Etype (N, Any_Type);
7519 return;
7520 end if;
7522 T := Base_Type (Entity (Prefix (N)));
7524 -- Case where type is not known to be tagged. Its appearance in
7525 -- the prefix of the 'Class attribute indicates that the full view
7526 -- will be tagged.
7528 if not Is_Tagged_Type (T) then
7529 if Ekind (T) = E_Incomplete_Type then
7531 -- It is legal to denote the class type of an incomplete
7532 -- type. The full type will have to be tagged, of course.
7533 -- In Ada 2005 this usage is declared obsolescent, so we
7534 -- warn accordingly. This usage is only legal if the type
7535 -- is completed in the current scope, and not for a limited
7536 -- view of a type.
7538 if Ada_Version >= Ada_2005 then
7540 -- Test whether the Available_View of a limited type view
7541 -- is tagged, since the limited view may not be marked as
7542 -- tagged if the type itself has an untagged incomplete
7543 -- type view in its package.
7545 if From_Limited_With (T)
7546 and then not Is_Tagged_Type (Available_View (T))
7547 then
7548 Error_Msg_N
7549 ("prefix of Class attribute must be tagged", N);
7550 Set_Etype (N, Any_Type);
7551 Set_Entity (N, Any_Type);
7552 return;
7554 -- ??? This test is temporarily disabled (always
7555 -- False) because it causes an unwanted warning on
7556 -- GNAT sources (built with -gnatg, which includes
7557 -- Warn_On_Obsolescent_ Feature). Once this issue
7558 -- is cleared in the sources, it can be enabled.
7560 elsif Warn_On_Obsolescent_Feature and then False then
7561 Error_Msg_N
7562 ("applying 'Class to an untagged incomplete type"
7563 & " is an obsolescent feature (RM J.11)?r?", N);
7564 end if;
7565 end if;
7567 Set_Is_Tagged_Type (T);
7568 Set_Direct_Primitive_Operations (T, New_Elmt_List);
7569 Make_Class_Wide_Type (T);
7570 Set_Entity (N, Class_Wide_Type (T));
7571 Set_Etype (N, Class_Wide_Type (T));
7573 elsif Ekind (T) = E_Private_Type
7574 and then not Is_Generic_Type (T)
7575 and then In_Private_Part (Scope (T))
7576 then
7577 -- The Class attribute can be applied to an untagged private
7578 -- type fulfilled by a tagged type prior to the full type
7579 -- declaration (but only within the parent package's private
7580 -- part). Create the class-wide type now and check that the
7581 -- full type is tagged later during its analysis. Note that
7582 -- we do not mark the private type as tagged, unlike the
7583 -- case of incomplete types, because the type must still
7584 -- appear untagged to outside units.
7586 if No (Class_Wide_Type (T)) then
7587 Make_Class_Wide_Type (T);
7588 end if;
7590 Set_Entity (N, Class_Wide_Type (T));
7591 Set_Etype (N, Class_Wide_Type (T));
7593 else
7594 -- Should we introduce a type Any_Tagged and use Wrong_Type
7595 -- here, it would be a bit more consistent???
7597 Error_Msg_NE
7598 ("tagged type required, found}",
7599 Prefix (N), First_Subtype (T));
7600 Set_Entity (N, Any_Type);
7601 return;
7602 end if;
7604 -- Case of tagged type
7606 else
7607 if Is_Concurrent_Type (T) then
7608 if No (Corresponding_Record_Type (Entity (Prefix (N)))) then
7610 -- Previous error. Create a class-wide type for the
7611 -- synchronized type itself, with minimal semantic
7612 -- attributes, to catch other errors in some ACATS tests.
7614 pragma Assert (Serious_Errors_Detected /= 0);
7615 Make_Class_Wide_Type (T);
7616 C := Class_Wide_Type (T);
7617 Set_First_Entity (C, First_Entity (T));
7619 else
7620 C := Class_Wide_Type
7621 (Corresponding_Record_Type (Entity (Prefix (N))));
7622 end if;
7624 else
7625 C := Class_Wide_Type (Entity (Prefix (N)));
7626 end if;
7628 Set_Entity_With_Checks (N, C);
7629 Generate_Reference (C, N);
7630 Set_Etype (N, C);
7631 end if;
7633 -- Base attribute, not allowed in Ada 83
7635 elsif Attribute_Name (N) = Name_Base then
7636 Error_Msg_Name_1 := Name_Base;
7637 Check_SPARK_05_Restriction
7638 ("attribute% is only allowed as prefix of another attribute", N);
7640 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
7641 Error_Msg_N
7642 ("(Ada 83) Base attribute not allowed in subtype mark", N);
7644 else
7645 Find_Type (Prefix (N));
7646 Typ := Entity (Prefix (N));
7648 if Ada_Version >= Ada_95
7649 and then not Is_Scalar_Type (Typ)
7650 and then not Is_Generic_Type (Typ)
7651 then
7652 Error_Msg_N
7653 ("prefix of Base attribute must be scalar type",
7654 Prefix (N));
7656 elsif Warn_On_Redundant_Constructs
7657 and then Base_Type (Typ) = Typ
7658 then
7659 Error_Msg_NE -- CODEFIX
7660 ("redundant attribute, & is its own base type?r?", N, Typ);
7661 end if;
7663 T := Base_Type (Typ);
7665 -- Rewrite attribute reference with type itself (see similar
7666 -- processing in Analyze_Attribute, case Base). Preserve prefix
7667 -- if present, for other legality checks.
7669 if Nkind (Prefix (N)) = N_Expanded_Name then
7670 Rewrite (N,
7671 Make_Expanded_Name (Sloc (N),
7672 Chars => Chars (T),
7673 Prefix => New_Copy (Prefix (Prefix (N))),
7674 Selector_Name => New_Occurrence_Of (T, Sloc (N))));
7676 else
7677 Rewrite (N, New_Occurrence_Of (T, Sloc (N)));
7678 end if;
7680 Set_Entity (N, T);
7681 Set_Etype (N, T);
7682 end if;
7684 elsif Attribute_Name (N) = Name_Stub_Type then
7686 -- This is handled in Analyze_Attribute
7688 Analyze (N);
7690 -- All other attributes are invalid in a subtype mark
7692 else
7693 Error_Msg_N ("invalid attribute in subtype mark", N);
7694 end if;
7696 else
7697 Analyze (N);
7699 if Is_Entity_Name (N) then
7700 T_Name := Entity (N);
7701 else
7702 Error_Msg_N ("subtype mark required in this context", N);
7703 Set_Etype (N, Any_Type);
7704 return;
7705 end if;
7707 if T_Name = Any_Id or else Etype (N) = Any_Type then
7709 -- Undefined id. Make it into a valid type
7711 Set_Entity (N, Any_Type);
7713 elsif not Is_Type (T_Name)
7714 and then T_Name /= Standard_Void_Type
7715 then
7716 Error_Msg_Sloc := Sloc (T_Name);
7717 Error_Msg_N ("subtype mark required in this context", N);
7718 Error_Msg_NE ("\\found & declared#", N, T_Name);
7719 Set_Entity (N, Any_Type);
7721 else
7722 -- If the type is an incomplete type created to handle
7723 -- anonymous access components of a record type, then the
7724 -- incomplete type is the visible entity and subsequent
7725 -- references will point to it. Mark the original full
7726 -- type as referenced, to prevent spurious warnings.
7728 if Is_Incomplete_Type (T_Name)
7729 and then Present (Full_View (T_Name))
7730 and then not Comes_From_Source (T_Name)
7731 then
7732 Set_Referenced (Full_View (T_Name));
7733 end if;
7735 T_Name := Get_Full_View (T_Name);
7737 -- Ada 2005 (AI-251, AI-50217): Handle interfaces visible through
7738 -- limited-with clauses
7740 if From_Limited_With (T_Name)
7741 and then Ekind (T_Name) in Incomplete_Kind
7742 and then Present (Non_Limited_View (T_Name))
7743 and then Is_Interface (Non_Limited_View (T_Name))
7744 then
7745 T_Name := Non_Limited_View (T_Name);
7746 end if;
7748 if In_Open_Scopes (T_Name) then
7749 if Ekind (Base_Type (T_Name)) = E_Task_Type then
7751 -- In Ada 2005, a task name can be used in an access
7752 -- definition within its own body. It cannot be used
7753 -- in the discriminant part of the task declaration,
7754 -- nor anywhere else in the declaration because entries
7755 -- cannot have access parameters.
7757 if Ada_Version >= Ada_2005
7758 and then Nkind (Parent (N)) = N_Access_Definition
7759 then
7760 Set_Entity (N, T_Name);
7761 Set_Etype (N, T_Name);
7763 if Has_Completion (T_Name) then
7764 return;
7766 else
7767 Error_Msg_N
7768 ("task type cannot be used as type mark " &
7769 "within its own declaration", N);
7770 end if;
7772 else
7773 Error_Msg_N
7774 ("task type cannot be used as type mark " &
7775 "within its own spec or body", N);
7776 end if;
7778 elsif Ekind (Base_Type (T_Name)) = E_Protected_Type then
7780 -- In Ada 2005, a protected name can be used in an access
7781 -- definition within its own body.
7783 if Ada_Version >= Ada_2005
7784 and then Nkind (Parent (N)) = N_Access_Definition
7785 then
7786 Set_Entity (N, T_Name);
7787 Set_Etype (N, T_Name);
7788 return;
7790 else
7791 Error_Msg_N
7792 ("protected type cannot be used as type mark " &
7793 "within its own spec or body", N);
7794 end if;
7796 else
7797 Error_Msg_N ("type declaration cannot refer to itself", N);
7798 end if;
7800 Set_Etype (N, Any_Type);
7801 Set_Entity (N, Any_Type);
7802 Set_Error_Posted (T_Name);
7803 return;
7804 end if;
7806 Set_Entity (N, T_Name);
7807 Set_Etype (N, T_Name);
7808 end if;
7809 end if;
7811 if Present (Etype (N)) and then Comes_From_Source (N) then
7812 if Is_Fixed_Point_Type (Etype (N)) then
7813 Check_Restriction (No_Fixed_Point, N);
7814 elsif Is_Floating_Point_Type (Etype (N)) then
7815 Check_Restriction (No_Floating_Point, N);
7816 end if;
7818 -- A Ghost type must appear in a specific context
7820 if Is_Ghost_Entity (Etype (N)) then
7821 Check_Ghost_Context (Etype (N), N);
7822 end if;
7823 end if;
7824 end Find_Type;
7826 ------------------------------------
7827 -- Has_Implicit_Character_Literal --
7828 ------------------------------------
7830 function Has_Implicit_Character_Literal (N : Node_Id) return Boolean is
7831 Id : Entity_Id;
7832 Found : Boolean := False;
7833 P : constant Entity_Id := Entity (Prefix (N));
7834 Priv_Id : Entity_Id := Empty;
7836 begin
7837 if Ekind (P) = E_Package and then not In_Open_Scopes (P) then
7838 Priv_Id := First_Private_Entity (P);
7839 end if;
7841 if P = Standard_Standard then
7842 Change_Selected_Component_To_Expanded_Name (N);
7843 Rewrite (N, Selector_Name (N));
7844 Analyze (N);
7845 Set_Etype (Original_Node (N), Standard_Character);
7846 return True;
7847 end if;
7849 Id := First_Entity (P);
7850 while Present (Id) and then Id /= Priv_Id loop
7851 if Is_Standard_Character_Type (Id) and then Is_Base_Type (Id) then
7853 -- We replace the node with the literal itself, resolve as a
7854 -- character, and set the type correctly.
7856 if not Found then
7857 Change_Selected_Component_To_Expanded_Name (N);
7858 Rewrite (N, Selector_Name (N));
7859 Analyze (N);
7860 Set_Etype (N, Id);
7861 Set_Etype (Original_Node (N), Id);
7862 Found := True;
7864 else
7865 -- More than one type derived from Character in given scope.
7866 -- Collect all possible interpretations.
7868 Add_One_Interp (N, Id, Id);
7869 end if;
7870 end if;
7872 Next_Entity (Id);
7873 end loop;
7875 return Found;
7876 end Has_Implicit_Character_Literal;
7878 ----------------------
7879 -- Has_Private_With --
7880 ----------------------
7882 function Has_Private_With (E : Entity_Id) return Boolean is
7883 Comp_Unit : constant Node_Id := Cunit (Current_Sem_Unit);
7884 Item : Node_Id;
7886 begin
7887 Item := First (Context_Items (Comp_Unit));
7888 while Present (Item) loop
7889 if Nkind (Item) = N_With_Clause
7890 and then Private_Present (Item)
7891 and then Entity (Name (Item)) = E
7892 then
7893 return True;
7894 end if;
7896 Next (Item);
7897 end loop;
7899 return False;
7900 end Has_Private_With;
7902 ---------------------------
7903 -- Has_Implicit_Operator --
7904 ---------------------------
7906 function Has_Implicit_Operator (N : Node_Id) return Boolean is
7907 Op_Id : constant Name_Id := Chars (Selector_Name (N));
7908 P : constant Entity_Id := Entity (Prefix (N));
7909 Id : Entity_Id;
7910 Priv_Id : Entity_Id := Empty;
7912 procedure Add_Implicit_Operator
7913 (T : Entity_Id;
7914 Op_Type : Entity_Id := Empty);
7915 -- Add implicit interpretation to node N, using the type for which a
7916 -- predefined operator exists. If the operator yields a boolean type,
7917 -- the Operand_Type is implicitly referenced by the operator, and a
7918 -- reference to it must be generated.
7920 ---------------------------
7921 -- Add_Implicit_Operator --
7922 ---------------------------
7924 procedure Add_Implicit_Operator
7925 (T : Entity_Id;
7926 Op_Type : Entity_Id := Empty)
7928 Predef_Op : Entity_Id;
7930 begin
7931 Predef_Op := Current_Entity (Selector_Name (N));
7932 while Present (Predef_Op)
7933 and then Scope (Predef_Op) /= Standard_Standard
7934 loop
7935 Predef_Op := Homonym (Predef_Op);
7936 end loop;
7938 if Nkind (N) = N_Selected_Component then
7939 Change_Selected_Component_To_Expanded_Name (N);
7940 end if;
7942 -- If the context is an unanalyzed function call, determine whether
7943 -- a binary or unary interpretation is required.
7945 if Nkind (Parent (N)) = N_Indexed_Component then
7946 declare
7947 Is_Binary_Call : constant Boolean :=
7948 Present
7949 (Next (First (Expressions (Parent (N)))));
7950 Is_Binary_Op : constant Boolean :=
7951 First_Entity
7952 (Predef_Op) /= Last_Entity (Predef_Op);
7953 Predef_Op2 : constant Entity_Id := Homonym (Predef_Op);
7955 begin
7956 if Is_Binary_Call then
7957 if Is_Binary_Op then
7958 Add_One_Interp (N, Predef_Op, T);
7959 else
7960 Add_One_Interp (N, Predef_Op2, T);
7961 end if;
7963 else
7964 if not Is_Binary_Op then
7965 Add_One_Interp (N, Predef_Op, T);
7966 else
7967 Add_One_Interp (N, Predef_Op2, T);
7968 end if;
7969 end if;
7970 end;
7972 else
7973 Add_One_Interp (N, Predef_Op, T);
7975 -- For operators with unary and binary interpretations, if
7976 -- context is not a call, add both
7978 if Present (Homonym (Predef_Op)) then
7979 Add_One_Interp (N, Homonym (Predef_Op), T);
7980 end if;
7981 end if;
7983 -- The node is a reference to a predefined operator, and
7984 -- an implicit reference to the type of its operands.
7986 if Present (Op_Type) then
7987 Generate_Operator_Reference (N, Op_Type);
7988 else
7989 Generate_Operator_Reference (N, T);
7990 end if;
7991 end Add_Implicit_Operator;
7993 -- Start of processing for Has_Implicit_Operator
7995 begin
7996 if Ekind (P) = E_Package and then not In_Open_Scopes (P) then
7997 Priv_Id := First_Private_Entity (P);
7998 end if;
8000 Id := First_Entity (P);
8002 case Op_Id is
8004 -- Boolean operators: an implicit declaration exists if the scope
8005 -- contains a declaration for a derived Boolean type, or for an
8006 -- array of Boolean type.
8008 when Name_Op_And
8009 | Name_Op_Not
8010 | Name_Op_Or
8011 | Name_Op_Xor
8013 while Id /= Priv_Id loop
8014 if Valid_Boolean_Arg (Id) and then Is_Base_Type (Id) then
8015 Add_Implicit_Operator (Id);
8016 return True;
8017 end if;
8019 Next_Entity (Id);
8020 end loop;
8022 -- Equality: look for any non-limited type (result is Boolean)
8024 when Name_Op_Eq
8025 | Name_Op_Ne
8027 while Id /= Priv_Id loop
8028 if Is_Type (Id)
8029 and then not Is_Limited_Type (Id)
8030 and then Is_Base_Type (Id)
8031 then
8032 Add_Implicit_Operator (Standard_Boolean, Id);
8033 return True;
8034 end if;
8036 Next_Entity (Id);
8037 end loop;
8039 -- Comparison operators: scalar type, or array of scalar
8041 when Name_Op_Ge
8042 | Name_Op_Gt
8043 | Name_Op_Le
8044 | Name_Op_Lt
8046 while Id /= Priv_Id loop
8047 if (Is_Scalar_Type (Id)
8048 or else (Is_Array_Type (Id)
8049 and then Is_Scalar_Type (Component_Type (Id))))
8050 and then Is_Base_Type (Id)
8051 then
8052 Add_Implicit_Operator (Standard_Boolean, Id);
8053 return True;
8054 end if;
8056 Next_Entity (Id);
8057 end loop;
8059 -- Arithmetic operators: any numeric type
8061 when Name_Op_Abs
8062 | Name_Op_Add
8063 | Name_Op_Divide
8064 | Name_Op_Expon
8065 | Name_Op_Mod
8066 | Name_Op_Multiply
8067 | Name_Op_Rem
8068 | Name_Op_Subtract
8070 while Id /= Priv_Id loop
8071 if Is_Numeric_Type (Id) and then Is_Base_Type (Id) then
8072 Add_Implicit_Operator (Id);
8073 return True;
8074 end if;
8076 Next_Entity (Id);
8077 end loop;
8079 -- Concatenation: any one-dimensional array type
8081 when Name_Op_Concat =>
8082 while Id /= Priv_Id loop
8083 if Is_Array_Type (Id)
8084 and then Number_Dimensions (Id) = 1
8085 and then Is_Base_Type (Id)
8086 then
8087 Add_Implicit_Operator (Id);
8088 return True;
8089 end if;
8091 Next_Entity (Id);
8092 end loop;
8094 -- What is the others condition here? Should we be using a
8095 -- subtype of Name_Id that would restrict to operators ???
8097 when others =>
8098 null;
8099 end case;
8101 -- If we fall through, then we do not have an implicit operator
8103 return False;
8104 end Has_Implicit_Operator;
8106 -----------------------------------
8107 -- Has_Loop_In_Inner_Open_Scopes --
8108 -----------------------------------
8110 function Has_Loop_In_Inner_Open_Scopes (S : Entity_Id) return Boolean is
8111 begin
8112 -- Several scope stacks are maintained by Scope_Stack. The base of the
8113 -- currently active scope stack is denoted by the Is_Active_Stack_Base
8114 -- flag in the scope stack entry. Note that the scope stacks used to
8115 -- simply be delimited implicitly by the presence of Standard_Standard
8116 -- at their base, but there now are cases where this is not sufficient
8117 -- because Standard_Standard actually may appear in the middle of the
8118 -- active set of scopes.
8120 for J in reverse 0 .. Scope_Stack.Last loop
8122 -- S was reached without seing a loop scope first
8124 if Scope_Stack.Table (J).Entity = S then
8125 return False;
8127 -- S was not yet reached, so it contains at least one inner loop
8129 elsif Ekind (Scope_Stack.Table (J).Entity) = E_Loop then
8130 return True;
8131 end if;
8133 -- Check Is_Active_Stack_Base to tell us when to stop, as there are
8134 -- cases where Standard_Standard appears in the middle of the active
8135 -- set of scopes. This affects the declaration and overriding of
8136 -- private inherited operations in instantiations of generic child
8137 -- units.
8139 pragma Assert (not Scope_Stack.Table (J).Is_Active_Stack_Base);
8140 end loop;
8142 raise Program_Error; -- unreachable
8143 end Has_Loop_In_Inner_Open_Scopes;
8145 --------------------
8146 -- In_Open_Scopes --
8147 --------------------
8149 function In_Open_Scopes (S : Entity_Id) return Boolean is
8150 begin
8151 -- Several scope stacks are maintained by Scope_Stack. The base of the
8152 -- currently active scope stack is denoted by the Is_Active_Stack_Base
8153 -- flag in the scope stack entry. Note that the scope stacks used to
8154 -- simply be delimited implicitly by the presence of Standard_Standard
8155 -- at their base, but there now are cases where this is not sufficient
8156 -- because Standard_Standard actually may appear in the middle of the
8157 -- active set of scopes.
8159 for J in reverse 0 .. Scope_Stack.Last loop
8160 if Scope_Stack.Table (J).Entity = S then
8161 return True;
8162 end if;
8164 -- Check Is_Active_Stack_Base to tell us when to stop, as there are
8165 -- cases where Standard_Standard appears in the middle of the active
8166 -- set of scopes. This affects the declaration and overriding of
8167 -- private inherited operations in instantiations of generic child
8168 -- units.
8170 exit when Scope_Stack.Table (J).Is_Active_Stack_Base;
8171 end loop;
8173 return False;
8174 end In_Open_Scopes;
8176 -----------------------------
8177 -- Inherit_Renamed_Profile --
8178 -----------------------------
8180 procedure Inherit_Renamed_Profile (New_S : Entity_Id; Old_S : Entity_Id) is
8181 New_F : Entity_Id;
8182 Old_F : Entity_Id;
8183 Old_T : Entity_Id;
8184 New_T : Entity_Id;
8186 begin
8187 if Ekind (Old_S) = E_Operator then
8188 New_F := First_Formal (New_S);
8190 while Present (New_F) loop
8191 Set_Etype (New_F, Base_Type (Etype (New_F)));
8192 Next_Formal (New_F);
8193 end loop;
8195 Set_Etype (New_S, Base_Type (Etype (New_S)));
8197 else
8198 New_F := First_Formal (New_S);
8199 Old_F := First_Formal (Old_S);
8201 while Present (New_F) loop
8202 New_T := Etype (New_F);
8203 Old_T := Etype (Old_F);
8205 -- If the new type is a renaming of the old one, as is the case
8206 -- for actuals in instances, retain its name, to simplify later
8207 -- disambiguation.
8209 if Nkind (Parent (New_T)) = N_Subtype_Declaration
8210 and then Is_Entity_Name (Subtype_Indication (Parent (New_T)))
8211 and then Entity (Subtype_Indication (Parent (New_T))) = Old_T
8212 then
8213 null;
8214 else
8215 Set_Etype (New_F, Old_T);
8216 end if;
8218 Next_Formal (New_F);
8219 Next_Formal (Old_F);
8220 end loop;
8222 pragma Assert (No (Old_F));
8224 if Ekind_In (Old_S, E_Function, E_Enumeration_Literal) then
8225 Set_Etype (New_S, Etype (Old_S));
8226 end if;
8227 end if;
8228 end Inherit_Renamed_Profile;
8230 ----------------
8231 -- Initialize --
8232 ----------------
8234 procedure Initialize is
8235 begin
8236 Urefs.Init;
8237 end Initialize;
8239 -------------------------
8240 -- Install_Use_Clauses --
8241 -------------------------
8243 procedure Install_Use_Clauses
8244 (Clause : Node_Id;
8245 Force_Installation : Boolean := False)
8247 U : Node_Id;
8249 begin
8250 U := Clause;
8251 while Present (U) loop
8253 -- Case of USE package
8255 if Nkind (U) = N_Use_Package_Clause then
8256 Use_One_Package (U, Name (U), True);
8258 -- Case of USE TYPE
8260 else
8261 Use_One_Type (Subtype_Mark (U), Force => Force_Installation);
8263 end if;
8265 Next_Use_Clause (U);
8266 end loop;
8267 end Install_Use_Clauses;
8269 -------------------------------------
8270 -- Is_Appropriate_For_Entry_Prefix --
8271 -------------------------------------
8273 function Is_Appropriate_For_Entry_Prefix (T : Entity_Id) return Boolean is
8274 P_Type : Entity_Id := T;
8276 begin
8277 if Is_Access_Type (P_Type) then
8278 P_Type := Designated_Type (P_Type);
8279 end if;
8281 return Is_Task_Type (P_Type) or else Is_Protected_Type (P_Type);
8282 end Is_Appropriate_For_Entry_Prefix;
8284 -------------------------------
8285 -- Is_Appropriate_For_Record --
8286 -------------------------------
8288 function Is_Appropriate_For_Record (T : Entity_Id) return Boolean is
8290 function Has_Components (T1 : Entity_Id) return Boolean;
8291 -- Determine if given type has components (i.e. is either a record
8292 -- type or a type that has discriminants).
8294 --------------------
8295 -- Has_Components --
8296 --------------------
8298 function Has_Components (T1 : Entity_Id) return Boolean is
8299 begin
8300 return Is_Record_Type (T1)
8301 or else (Is_Private_Type (T1) and then Has_Discriminants (T1))
8302 or else (Is_Task_Type (T1) and then Has_Discriminants (T1))
8303 or else (Is_Incomplete_Type (T1)
8304 and then From_Limited_With (T1)
8305 and then Present (Non_Limited_View (T1))
8306 and then Is_Record_Type
8307 (Get_Full_View (Non_Limited_View (T1))));
8308 end Has_Components;
8310 -- Start of processing for Is_Appropriate_For_Record
8312 begin
8313 return
8314 Present (T)
8315 and then (Has_Components (T)
8316 or else (Is_Access_Type (T)
8317 and then Has_Components (Designated_Type (T))));
8318 end Is_Appropriate_For_Record;
8320 ----------------------
8321 -- Mark_Use_Clauses --
8322 ----------------------
8324 procedure Mark_Use_Clauses (Id : Node_Or_Entity_Id) is
8325 procedure Mark_Parameters (Call : Entity_Id);
8326 -- Perform use_type_clause marking for all parameters in a subprogram
8327 -- or operator call.
8329 procedure Mark_Use_Package (Pak : Entity_Id);
8330 -- Move up the Prev_Use_Clause chain for packages denoted by Pak -
8331 -- marking each clause in the chain as effective in the process.
8333 procedure Mark_Use_Type (E : Entity_Id);
8334 -- Similar to Do_Use_Package_Marking except we move up the
8335 -- Prev_Use_Clause chain for the type denoted by E.
8337 ---------------------
8338 -- Mark_Parameters --
8339 ---------------------
8341 procedure Mark_Parameters (Call : Entity_Id) is
8342 Curr : Node_Id;
8344 begin
8345 -- Move through all of the formals
8347 Curr := First_Formal (Call);
8348 while Present (Curr) loop
8349 Mark_Use_Type (Curr);
8351 Curr := Next_Formal (Curr);
8352 end loop;
8354 -- Handle the return type
8356 Mark_Use_Type (Call);
8357 end Mark_Parameters;
8359 ----------------------
8360 -- Mark_Use_Package --
8361 ----------------------
8363 procedure Mark_Use_Package (Pak : Entity_Id) is
8364 Curr : Node_Id;
8366 begin
8367 -- Ignore cases where the scope of the type is not a package (e.g.
8368 -- Standard_Standard).
8370 if Ekind (Pak) /= E_Package then
8371 return;
8372 end if;
8374 Curr := Current_Use_Clause (Pak);
8375 while Present (Curr)
8376 and then not Is_Effective_Use_Clause (Curr)
8377 loop
8378 -- We need to mark the previous use clauses as effective, but
8379 -- each use clause may in turn render other use_package_clauses
8380 -- effective. Additionally, it is possible to have a parent
8381 -- package renamed as a child of itself so we must check the
8382 -- prefix entity is not the same as the package we are marking.
8384 if Nkind (Name (Curr)) /= N_Identifier
8385 and then Present (Prefix (Name (Curr)))
8386 and then Entity (Prefix (Name (Curr))) /= Pak
8387 then
8388 Mark_Use_Package (Entity (Prefix (Name (Curr))));
8390 -- It is also possible to have a child package without a prefix
8391 -- that relies on a previous use_package_clause.
8393 elsif Nkind (Name (Curr)) = N_Identifier
8394 and then Is_Child_Unit (Entity (Name (Curr)))
8395 then
8396 Mark_Use_Package (Scope (Entity (Name (Curr))));
8397 end if;
8399 -- Mark the use_package_clause as effective and move up the chain
8401 Set_Is_Effective_Use_Clause (Curr);
8403 Curr := Prev_Use_Clause (Curr);
8404 end loop;
8405 end Mark_Use_Package;
8407 -------------------
8408 -- Mark_Use_Type --
8409 -------------------
8411 procedure Mark_Use_Type (E : Entity_Id) is
8412 Curr : Node_Id;
8413 Base : Entity_Id;
8415 begin
8416 -- Ignore void types and unresolved string literals and primitives
8418 if Nkind (E) = N_String_Literal
8419 or else Nkind (Etype (E)) not in N_Entity
8420 or else not Is_Type (Etype (E))
8421 then
8422 return;
8423 end if;
8425 -- Primitives with class-wide operands might additionally render
8426 -- their base type's use_clauses effective - so do a recursive check
8427 -- here.
8429 Base := Base_Type (Etype (E));
8431 if Ekind (Base) = E_Class_Wide_Type then
8432 Mark_Use_Type (Base);
8433 end if;
8435 -- The package containing the type or operator function being used
8436 -- may be in use as well, so mark any use_package_clauses for it as
8437 -- effective. There are also additional sanity checks performed here
8438 -- for ignoring previous errors.
8440 Mark_Use_Package (Scope (Base));
8442 if Nkind (E) in N_Op
8443 and then Present (Entity (E))
8444 and then Present (Scope (Entity (E)))
8445 then
8446 Mark_Use_Package (Scope (Entity (E)));
8447 end if;
8449 Curr := Current_Use_Clause (Base);
8450 while Present (Curr)
8451 and then not Is_Effective_Use_Clause (Curr)
8452 loop
8453 -- Current use_type_clause may render other use_package_clauses
8454 -- effective.
8456 if Nkind (Subtype_Mark (Curr)) /= N_Identifier
8457 and then Present (Prefix (Subtype_Mark (Curr)))
8458 then
8459 Mark_Use_Package (Entity (Prefix (Subtype_Mark (Curr))));
8460 end if;
8462 -- Mark the use_type_clause as effective and move up the chain
8464 Set_Is_Effective_Use_Clause (Curr);
8466 Curr := Prev_Use_Clause (Curr);
8467 end loop;
8468 end Mark_Use_Type;
8470 -- Start of processing for Mark_Use_Clauses
8472 begin
8473 -- Use clauses in and of themselves do not count as a "use" of a
8474 -- package.
8476 if Nkind_In (Parent (Id), N_Use_Package_Clause, N_Use_Type_Clause) then
8477 return;
8478 end if;
8480 -- Handle entities
8482 if Nkind (Id) in N_Entity then
8484 -- Mark the entity's package
8486 if Is_Potentially_Use_Visible (Id) then
8487 Mark_Use_Package (Scope (Id));
8488 end if;
8490 -- Mark enumeration literals
8492 if Ekind (Id) = E_Enumeration_Literal then
8493 Mark_Use_Type (Id);
8495 -- Mark primitives
8497 elsif (Ekind (Id) in Overloadable_Kind
8498 or else Ekind_In (Id, E_Generic_Function,
8499 E_Generic_Procedure))
8500 and then (Is_Potentially_Use_Visible (Id)
8501 or else Is_Intrinsic_Subprogram (Id)
8502 or else (Ekind_In (Id, E_Function, E_Procedure)
8503 and then Is_Generic_Actual_Subprogram (Id)))
8504 then
8505 Mark_Parameters (Id);
8506 end if;
8508 -- Handle nodes
8510 else
8511 -- Mark operators
8513 if Nkind (Id) in N_Op then
8515 -- At this point the left operand may not be resolved if we are
8516 -- encountering multiple operators next to eachother in an
8517 -- expression.
8519 if Nkind (Id) in N_Binary_Op
8520 and then not (Nkind (Left_Opnd (Id)) in N_Op)
8521 then
8522 Mark_Use_Type (Left_Opnd (Id));
8523 end if;
8525 Mark_Use_Type (Right_Opnd (Id));
8526 Mark_Use_Type (Id);
8528 -- Mark entity identifiers
8530 elsif Nkind (Id) in N_Has_Entity
8531 and then (Is_Potentially_Use_Visible (Entity (Id))
8532 or else (Is_Generic_Instance (Entity (Id))
8533 and then Is_Immediately_Visible (Entity (Id))))
8534 then
8535 -- Ignore fully qualified names as they do not count as a "use" of
8536 -- a package.
8538 if Nkind_In (Id, N_Identifier, N_Operator_Symbol)
8539 or else (Present (Prefix (Id))
8540 and then Scope (Entity (Id)) /= Entity (Prefix (Id)))
8541 then
8542 Mark_Use_Clauses (Entity (Id));
8543 end if;
8544 end if;
8545 end if;
8546 end Mark_Use_Clauses;
8548 --------------------------------
8549 -- Most_Descendant_Use_Clause --
8550 --------------------------------
8552 function Most_Descendant_Use_Clause
8553 (Clause1 : Entity_Id;
8554 Clause2 : Entity_Id) return Entity_Id
8556 Scope1 : Entity_Id;
8557 Scope2 : Entity_Id;
8559 begin
8560 if Clause1 = Clause2 then
8561 return Clause1;
8562 end if;
8564 -- We determine which one is the most descendant by the scope distance
8565 -- to the ultimate parent unit.
8567 Scope1 := Entity_Of_Unit (Unit (Parent (Clause1)));
8568 Scope2 := Entity_Of_Unit (Unit (Parent (Clause2)));
8569 while Scope1 /= Standard_Standard
8570 and then Scope2 /= Standard_Standard
8571 loop
8572 Scope1 := Scope (Scope1);
8573 Scope2 := Scope (Scope2);
8575 if not Present (Scope1) then
8576 return Clause1;
8577 elsif not Present (Scope2) then
8578 return Clause2;
8579 end if;
8580 end loop;
8582 if Scope1 = Standard_Standard then
8583 return Clause1;
8584 end if;
8586 return Clause2;
8587 end Most_Descendant_Use_Clause;
8589 ---------------
8590 -- Pop_Scope --
8591 ---------------
8593 procedure Pop_Scope is
8594 SST : Scope_Stack_Entry renames Scope_Stack.Table (Scope_Stack.Last);
8595 S : constant Entity_Id := SST.Entity;
8597 begin
8598 if Debug_Flag_E then
8599 Write_Info;
8600 end if;
8602 -- Set Default_Storage_Pool field of the library unit if necessary
8604 if Ekind_In (S, E_Package, E_Generic_Package)
8605 and then
8606 Nkind (Parent (Unit_Declaration_Node (S))) = N_Compilation_Unit
8607 then
8608 declare
8609 Aux : constant Node_Id :=
8610 Aux_Decls_Node (Parent (Unit_Declaration_Node (S)));
8611 begin
8612 if No (Default_Storage_Pool (Aux)) then
8613 Set_Default_Storage_Pool (Aux, Default_Pool);
8614 end if;
8615 end;
8616 end if;
8618 Scope_Suppress := SST.Save_Scope_Suppress;
8619 Local_Suppress_Stack_Top := SST.Save_Local_Suppress_Stack_Top;
8620 Check_Policy_List := SST.Save_Check_Policy_List;
8621 Default_Pool := SST.Save_Default_Storage_Pool;
8622 No_Tagged_Streams := SST.Save_No_Tagged_Streams;
8623 SPARK_Mode := SST.Save_SPARK_Mode;
8624 SPARK_Mode_Pragma := SST.Save_SPARK_Mode_Pragma;
8625 Default_SSO := SST.Save_Default_SSO;
8626 Uneval_Old := SST.Save_Uneval_Old;
8628 if Debug_Flag_W then
8629 Write_Str ("<-- exiting scope: ");
8630 Write_Name (Chars (Current_Scope));
8631 Write_Str (", Depth=");
8632 Write_Int (Int (Scope_Stack.Last));
8633 Write_Eol;
8634 end if;
8636 End_Use_Clauses (SST.First_Use_Clause);
8638 -- If the actions to be wrapped are still there they will get lost
8639 -- causing incomplete code to be generated. It is better to abort in
8640 -- this case (and we do the abort even with assertions off since the
8641 -- penalty is incorrect code generation).
8643 if SST.Actions_To_Be_Wrapped /= Scope_Actions'(others => No_List) then
8644 raise Program_Error;
8645 end if;
8647 -- Free last subprogram name if allocated, and pop scope
8649 Free (SST.Last_Subprogram_Name);
8650 Scope_Stack.Decrement_Last;
8651 end Pop_Scope;
8653 ----------------
8654 -- Push_Scope --
8655 ----------------
8657 procedure Push_Scope (S : Entity_Id) is
8658 E : constant Entity_Id := Scope (S);
8660 begin
8661 if Ekind (S) = E_Void then
8662 null;
8664 -- Set scope depth if not a non-concurrent type, and we have not yet set
8665 -- the scope depth. This means that we have the first occurrence of the
8666 -- scope, and this is where the depth is set.
8668 elsif (not Is_Type (S) or else Is_Concurrent_Type (S))
8669 and then not Scope_Depth_Set (S)
8670 then
8671 if S = Standard_Standard then
8672 Set_Scope_Depth_Value (S, Uint_0);
8674 elsif Is_Child_Unit (S) then
8675 Set_Scope_Depth_Value (S, Uint_1);
8677 elsif not Is_Record_Type (Current_Scope) then
8678 if Ekind (S) = E_Loop then
8679 Set_Scope_Depth_Value (S, Scope_Depth (Current_Scope));
8680 else
8681 Set_Scope_Depth_Value (S, Scope_Depth (Current_Scope) + 1);
8682 end if;
8683 end if;
8684 end if;
8686 Scope_Stack.Increment_Last;
8688 declare
8689 SST : Scope_Stack_Entry renames Scope_Stack.Table (Scope_Stack.Last);
8691 begin
8692 SST.Entity := S;
8693 SST.Save_Scope_Suppress := Scope_Suppress;
8694 SST.Save_Local_Suppress_Stack_Top := Local_Suppress_Stack_Top;
8695 SST.Save_Check_Policy_List := Check_Policy_List;
8696 SST.Save_Default_Storage_Pool := Default_Pool;
8697 SST.Save_No_Tagged_Streams := No_Tagged_Streams;
8698 SST.Save_SPARK_Mode := SPARK_Mode;
8699 SST.Save_SPARK_Mode_Pragma := SPARK_Mode_Pragma;
8700 SST.Save_Default_SSO := Default_SSO;
8701 SST.Save_Uneval_Old := Uneval_Old;
8703 -- Each new scope pushed onto the scope stack inherits the component
8704 -- alignment of the previous scope. This emulates the "visibility"
8705 -- semantics of pragma Component_Alignment.
8707 if Scope_Stack.Last > Scope_Stack.First then
8708 SST.Component_Alignment_Default :=
8709 Scope_Stack.Table
8710 (Scope_Stack.Last - 1). Component_Alignment_Default;
8712 -- Otherwise, this is the first scope being pushed on the scope
8713 -- stack. Inherit the component alignment from the configuration
8714 -- form of pragma Component_Alignment (if any).
8716 else
8717 SST.Component_Alignment_Default :=
8718 Configuration_Component_Alignment;
8719 end if;
8721 SST.Last_Subprogram_Name := null;
8722 SST.Is_Transient := False;
8723 SST.Node_To_Be_Wrapped := Empty;
8724 SST.Pending_Freeze_Actions := No_List;
8725 SST.Actions_To_Be_Wrapped := (others => No_List);
8726 SST.First_Use_Clause := Empty;
8727 SST.Is_Active_Stack_Base := False;
8728 SST.Previous_Visibility := False;
8729 SST.Locked_Shared_Objects := No_Elist;
8730 end;
8732 if Debug_Flag_W then
8733 Write_Str ("--> new scope: ");
8734 Write_Name (Chars (Current_Scope));
8735 Write_Str (", Id=");
8736 Write_Int (Int (Current_Scope));
8737 Write_Str (", Depth=");
8738 Write_Int (Int (Scope_Stack.Last));
8739 Write_Eol;
8740 end if;
8742 -- Deal with copying flags from the previous scope to this one. This is
8743 -- not necessary if either scope is standard, or if the new scope is a
8744 -- child unit.
8746 if S /= Standard_Standard
8747 and then Scope (S) /= Standard_Standard
8748 and then not Is_Child_Unit (S)
8749 then
8750 if Nkind (E) not in N_Entity then
8751 return;
8752 end if;
8754 -- Copy categorization flags from Scope (S) to S, this is not done
8755 -- when Scope (S) is Standard_Standard since propagation is from
8756 -- library unit entity inwards. Copy other relevant attributes as
8757 -- well (Discard_Names in particular).
8759 -- We only propagate inwards for library level entities,
8760 -- inner level subprograms do not inherit the categorization.
8762 if Is_Library_Level_Entity (S) then
8763 Set_Is_Preelaborated (S, Is_Preelaborated (E));
8764 Set_Is_Shared_Passive (S, Is_Shared_Passive (E));
8765 Set_Discard_Names (S, Discard_Names (E));
8766 Set_Suppress_Value_Tracking_On_Call
8767 (S, Suppress_Value_Tracking_On_Call (E));
8768 Set_Categorization_From_Scope (E => S, Scop => E);
8769 end if;
8770 end if;
8772 if Is_Child_Unit (S)
8773 and then Present (E)
8774 and then Ekind_In (E, E_Package, E_Generic_Package)
8775 and then
8776 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
8777 then
8778 declare
8779 Aux : constant Node_Id :=
8780 Aux_Decls_Node (Parent (Unit_Declaration_Node (E)));
8781 begin
8782 if Present (Default_Storage_Pool (Aux)) then
8783 Default_Pool := Default_Storage_Pool (Aux);
8784 end if;
8785 end;
8786 end if;
8787 end Push_Scope;
8789 ---------------------
8790 -- Premature_Usage --
8791 ---------------------
8793 procedure Premature_Usage (N : Node_Id) is
8794 Kind : constant Node_Kind := Nkind (Parent (Entity (N)));
8795 E : Entity_Id := Entity (N);
8797 begin
8798 -- Within an instance, the analysis of the actual for a formal object
8799 -- does not see the name of the object itself. This is significant only
8800 -- if the object is an aggregate, where its analysis does not do any
8801 -- name resolution on component associations. (see 4717-008). In such a
8802 -- case, look for the visible homonym on the chain.
8804 if In_Instance and then Present (Homonym (E)) then
8805 E := Homonym (E);
8806 while Present (E) and then not In_Open_Scopes (Scope (E)) loop
8807 E := Homonym (E);
8808 end loop;
8810 if Present (E) then
8811 Set_Entity (N, E);
8812 Set_Etype (N, Etype (E));
8813 return;
8814 end if;
8815 end if;
8817 if Kind = N_Component_Declaration then
8818 Error_Msg_N
8819 ("component&! cannot be used before end of record declaration", N);
8821 elsif Kind = N_Parameter_Specification then
8822 Error_Msg_N
8823 ("formal parameter&! cannot be used before end of specification",
8826 elsif Kind = N_Discriminant_Specification then
8827 Error_Msg_N
8828 ("discriminant&! cannot be used before end of discriminant part",
8831 elsif Kind = N_Procedure_Specification
8832 or else Kind = N_Function_Specification
8833 then
8834 Error_Msg_N
8835 ("subprogram&! cannot be used before end of its declaration",
8838 elsif Kind = N_Full_Type_Declaration then
8839 Error_Msg_N
8840 ("type& cannot be used before end of its declaration!", N);
8842 else
8843 Error_Msg_N
8844 ("object& cannot be used before end of its declaration!", N);
8846 -- If the premature reference appears as the expression in its own
8847 -- declaration, rewrite it to prevent compiler loops in subsequent
8848 -- uses of this mangled declaration in address clauses.
8850 if Nkind (Parent (N)) = N_Object_Declaration then
8851 Set_Entity (N, Any_Id);
8852 end if;
8853 end if;
8854 end Premature_Usage;
8856 ------------------------
8857 -- Present_System_Aux --
8858 ------------------------
8860 function Present_System_Aux (N : Node_Id := Empty) return Boolean is
8861 Loc : Source_Ptr;
8862 Aux_Name : Unit_Name_Type;
8863 Unum : Unit_Number_Type;
8864 Withn : Node_Id;
8865 With_Sys : Node_Id;
8866 The_Unit : Node_Id;
8868 function Find_System (C_Unit : Node_Id) return Entity_Id;
8869 -- Scan context clause of compilation unit to find with_clause
8870 -- for System.
8872 -----------------
8873 -- Find_System --
8874 -----------------
8876 function Find_System (C_Unit : Node_Id) return Entity_Id is
8877 With_Clause : Node_Id;
8879 begin
8880 With_Clause := First (Context_Items (C_Unit));
8881 while Present (With_Clause) loop
8882 if (Nkind (With_Clause) = N_With_Clause
8883 and then Chars (Name (With_Clause)) = Name_System)
8884 and then Comes_From_Source (With_Clause)
8885 then
8886 return With_Clause;
8887 end if;
8889 Next (With_Clause);
8890 end loop;
8892 return Empty;
8893 end Find_System;
8895 -- Start of processing for Present_System_Aux
8897 begin
8898 -- The child unit may have been loaded and analyzed already
8900 if Present (System_Aux_Id) then
8901 return True;
8903 -- If no previous pragma for System.Aux, nothing to load
8905 elsif No (System_Extend_Unit) then
8906 return False;
8908 -- Use the unit name given in the pragma to retrieve the unit.
8909 -- Verify that System itself appears in the context clause of the
8910 -- current compilation. If System is not present, an error will
8911 -- have been reported already.
8913 else
8914 With_Sys := Find_System (Cunit (Current_Sem_Unit));
8916 The_Unit := Unit (Cunit (Current_Sem_Unit));
8918 if No (With_Sys)
8919 and then
8920 (Nkind (The_Unit) = N_Package_Body
8921 or else (Nkind (The_Unit) = N_Subprogram_Body
8922 and then not Acts_As_Spec (Cunit (Current_Sem_Unit))))
8923 then
8924 With_Sys := Find_System (Library_Unit (Cunit (Current_Sem_Unit)));
8925 end if;
8927 if No (With_Sys) and then Present (N) then
8929 -- If we are compiling a subunit, we need to examine its
8930 -- context as well (Current_Sem_Unit is the parent unit);
8932 The_Unit := Parent (N);
8933 while Nkind (The_Unit) /= N_Compilation_Unit loop
8934 The_Unit := Parent (The_Unit);
8935 end loop;
8937 if Nkind (Unit (The_Unit)) = N_Subunit then
8938 With_Sys := Find_System (The_Unit);
8939 end if;
8940 end if;
8942 if No (With_Sys) then
8943 return False;
8944 end if;
8946 Loc := Sloc (With_Sys);
8947 Get_Name_String (Chars (Expression (System_Extend_Unit)));
8948 Name_Buffer (8 .. Name_Len + 7) := Name_Buffer (1 .. Name_Len);
8949 Name_Buffer (1 .. 7) := "system.";
8950 Name_Buffer (Name_Len + 8) := '%';
8951 Name_Buffer (Name_Len + 9) := 's';
8952 Name_Len := Name_Len + 9;
8953 Aux_Name := Name_Find;
8955 Unum :=
8956 Load_Unit
8957 (Load_Name => Aux_Name,
8958 Required => False,
8959 Subunit => False,
8960 Error_Node => With_Sys);
8962 if Unum /= No_Unit then
8963 Semantics (Cunit (Unum));
8964 System_Aux_Id :=
8965 Defining_Entity (Specification (Unit (Cunit (Unum))));
8967 Withn :=
8968 Make_With_Clause (Loc,
8969 Name =>
8970 Make_Expanded_Name (Loc,
8971 Chars => Chars (System_Aux_Id),
8972 Prefix =>
8973 New_Occurrence_Of (Scope (System_Aux_Id), Loc),
8974 Selector_Name => New_Occurrence_Of (System_Aux_Id, Loc)));
8976 Set_Entity (Name (Withn), System_Aux_Id);
8978 Set_Corresponding_Spec (Withn, System_Aux_Id);
8979 Set_First_Name (Withn);
8980 Set_Implicit_With (Withn);
8981 Set_Library_Unit (Withn, Cunit (Unum));
8983 Insert_After (With_Sys, Withn);
8984 Mark_Rewrite_Insertion (Withn);
8985 Set_Context_Installed (Withn);
8987 return True;
8989 -- Here if unit load failed
8991 else
8992 Error_Msg_Name_1 := Name_System;
8993 Error_Msg_Name_2 := Chars (Expression (System_Extend_Unit));
8994 Error_Msg_N
8995 ("extension package `%.%` does not exist",
8996 Opt.System_Extend_Unit);
8997 return False;
8998 end if;
8999 end if;
9000 end Present_System_Aux;
9002 -------------------------
9003 -- Restore_Scope_Stack --
9004 -------------------------
9006 procedure Restore_Scope_Stack
9007 (List : Elist_Id;
9008 Handle_Use : Boolean := True)
9010 SS_Last : constant Int := Scope_Stack.Last;
9011 Elmt : Elmt_Id;
9013 begin
9014 -- Restore visibility of previous scope stack, if any, using the list
9015 -- we saved (we use Remove, since this list will not be used again).
9017 loop
9018 Elmt := Last_Elmt (List);
9019 exit when Elmt = No_Elmt;
9020 Set_Is_Immediately_Visible (Node (Elmt));
9021 Remove_Last_Elmt (List);
9022 end loop;
9024 -- Restore use clauses
9026 if SS_Last >= Scope_Stack.First
9027 and then Scope_Stack.Table (SS_Last).Entity /= Standard_Standard
9028 and then Handle_Use
9029 then
9030 Install_Use_Clauses
9031 (Scope_Stack.Table (SS_Last).First_Use_Clause,
9032 Force_Installation => True);
9033 end if;
9034 end Restore_Scope_Stack;
9036 ----------------------
9037 -- Save_Scope_Stack --
9038 ----------------------
9040 -- Save_Scope_Stack/Restore_Scope_Stack were originally designed to avoid
9041 -- consuming any memory. That is, Save_Scope_Stack took care of removing
9042 -- from immediate visibility entities and Restore_Scope_Stack took care
9043 -- of restoring their visibility analyzing the context of each entity. The
9044 -- problem of such approach is that it was fragile and caused unexpected
9045 -- visibility problems, and indeed one test was found where there was a
9046 -- real problem.
9048 -- Furthermore, the following experiment was carried out:
9050 -- - Save_Scope_Stack was modified to store in an Elist1 all those
9051 -- entities whose attribute Is_Immediately_Visible is modified
9052 -- from True to False.
9054 -- - Restore_Scope_Stack was modified to store in another Elist2
9055 -- all the entities whose attribute Is_Immediately_Visible is
9056 -- modified from False to True.
9058 -- - Extra code was added to verify that all the elements of Elist1
9059 -- are found in Elist2
9061 -- This test shows that there may be more occurrences of this problem which
9062 -- have not yet been detected. As a result, we replaced that approach by
9063 -- the current one in which Save_Scope_Stack returns the list of entities
9064 -- whose visibility is changed, and that list is passed to Restore_Scope_
9065 -- Stack to undo that change. This approach is simpler and safer, although
9066 -- it consumes more memory.
9068 function Save_Scope_Stack (Handle_Use : Boolean := True) return Elist_Id is
9069 Result : constant Elist_Id := New_Elmt_List;
9070 E : Entity_Id;
9071 S : Entity_Id;
9072 SS_Last : constant Int := Scope_Stack.Last;
9074 procedure Remove_From_Visibility (E : Entity_Id);
9075 -- If E is immediately visible then append it to the result and remove
9076 -- it temporarily from visibility.
9078 ----------------------------
9079 -- Remove_From_Visibility --
9080 ----------------------------
9082 procedure Remove_From_Visibility (E : Entity_Id) is
9083 begin
9084 if Is_Immediately_Visible (E) then
9085 Append_Elmt (E, Result);
9086 Set_Is_Immediately_Visible (E, False);
9087 end if;
9088 end Remove_From_Visibility;
9090 -- Start of processing for Save_Scope_Stack
9092 begin
9093 if SS_Last >= Scope_Stack.First
9094 and then Scope_Stack.Table (SS_Last).Entity /= Standard_Standard
9095 then
9096 if Handle_Use then
9097 End_Use_Clauses (Scope_Stack.Table (SS_Last).First_Use_Clause);
9098 end if;
9100 -- If the call is from within a compilation unit, as when called from
9101 -- Rtsfind, make current entries in scope stack invisible while we
9102 -- analyze the new unit.
9104 for J in reverse 0 .. SS_Last loop
9105 exit when Scope_Stack.Table (J).Entity = Standard_Standard
9106 or else No (Scope_Stack.Table (J).Entity);
9108 S := Scope_Stack.Table (J).Entity;
9110 Remove_From_Visibility (S);
9112 E := First_Entity (S);
9113 while Present (E) loop
9114 Remove_From_Visibility (E);
9115 Next_Entity (E);
9116 end loop;
9117 end loop;
9119 end if;
9121 return Result;
9122 end Save_Scope_Stack;
9124 -------------
9125 -- Set_Use --
9126 -------------
9128 procedure Set_Use (L : List_Id) is
9129 Decl : Node_Id;
9131 begin
9132 if Present (L) then
9133 Decl := First (L);
9134 while Present (Decl) loop
9135 if Nkind (Decl) = N_Use_Package_Clause then
9136 Chain_Use_Clause (Decl);
9137 Use_One_Package (Decl, Name (Decl));
9139 elsif Nkind (Decl) = N_Use_Type_Clause then
9140 Chain_Use_Clause (Decl);
9141 Use_One_Type (Subtype_Mark (Decl));
9143 end if;
9145 Next (Decl);
9146 end loop;
9147 end if;
9148 end Set_Use;
9150 -----------------------------
9151 -- Update_Use_Clause_Chain --
9152 -----------------------------
9154 procedure Update_Use_Clause_Chain is
9156 procedure Update_Chain_In_Scope (Level : Int);
9157 -- Iterate through one level in the scope stack verifying each use-type
9158 -- clause within said level is used then reset the Current_Use_Clause
9159 -- to a redundant use clause outside of the current ending scope if such
9160 -- a clause exists.
9162 ---------------------------
9163 -- Update_Chain_In_Scope --
9164 ---------------------------
9166 procedure Update_Chain_In_Scope (Level : Int) is
9167 Curr : Node_Id;
9168 N : Node_Id;
9170 begin
9171 -- Loop through all use clauses within the scope dictated by Level
9173 Curr := Scope_Stack.Table (Level).First_Use_Clause;
9174 while Present (Curr) loop
9176 -- Retrieve the subtype mark or name within the current current
9177 -- use clause.
9179 if Nkind (Curr) = N_Use_Type_Clause then
9180 N := Subtype_Mark (Curr);
9181 else
9182 N := Name (Curr);
9183 end if;
9185 -- If warnings for unreferenced entities are enabled and the
9186 -- current use clause has not been marked effective.
9188 if Check_Unreferenced
9189 and then Comes_From_Source (Curr)
9190 and then not Is_Effective_Use_Clause (Curr)
9191 and then not In_Instance
9192 and then not In_Inlined_Body
9193 then
9194 -- We are dealing with a potentially unused use_package_clause
9196 if Nkind (Curr) = N_Use_Package_Clause then
9198 -- Renamings and formal subprograms may cause the associated
9199 -- node to be marked as effective instead of the original.
9201 if not (Present (Associated_Node (N))
9202 and then Present
9203 (Current_Use_Clause
9204 (Associated_Node (N)))
9205 and then Is_Effective_Use_Clause
9206 (Current_Use_Clause
9207 (Associated_Node (N))))
9208 then
9209 Error_Msg_Node_1 := Entity (N);
9210 Error_Msg_NE
9211 ("use clause for package & has no effect?u?",
9212 Curr, Entity (N));
9213 end if;
9215 -- We are dealing with an unused use_type_clause
9217 else
9218 Error_Msg_Node_1 := Etype (N);
9219 Error_Msg_NE
9220 ("use clause for } has no effect?u?", Curr, Etype (N));
9221 end if;
9222 end if;
9224 -- Verify that we haven't already processed a redundant
9225 -- use_type_clause within the same scope before we move the
9226 -- current use clause up to a previous one for type T.
9228 if Present (Prev_Use_Clause (Curr)) then
9229 Set_Current_Use_Clause (Entity (N), Prev_Use_Clause (Curr));
9230 end if;
9232 Curr := Next_Use_Clause (Curr);
9233 end loop;
9234 end Update_Chain_In_Scope;
9236 -- Start of processing for Update_Use_Clause_Chain
9238 begin
9239 Update_Chain_In_Scope (Scope_Stack.Last);
9241 -- Deal with use clauses within the context area if the current
9242 -- scope is a compilation unit.
9244 if Is_Compilation_Unit (Current_Scope)
9245 and then Sloc (Scope_Stack.Table
9246 (Scope_Stack.Last - 1).Entity) = Standard_Location
9247 then
9248 Update_Chain_In_Scope (Scope_Stack.Last - 1);
9249 end if;
9250 end Update_Use_Clause_Chain;
9252 ---------------------
9253 -- Use_One_Package --
9254 ---------------------
9256 procedure Use_One_Package
9257 (N : Node_Id;
9258 Pack_Name : Entity_Id := Empty;
9259 Force : Boolean := False)
9261 procedure Note_Redundant_Use (Clause : Node_Id);
9262 -- Mark the name in a use clause as redundant if the corresponding
9263 -- entity is already use-visible. Emit a warning if the use clause comes
9264 -- from source and the proper warnings are enabled.
9266 ------------------------
9267 -- Note_Redundant_Use --
9268 ------------------------
9270 procedure Note_Redundant_Use (Clause : Node_Id) is
9271 Decl : constant Node_Id := Parent (Clause);
9272 Pack_Name : constant Entity_Id := Entity (Clause);
9274 Cur_Use : Node_Id := Current_Use_Clause (Pack_Name);
9275 Prev_Use : Node_Id := Empty;
9276 Redundant : Node_Id := Empty;
9277 -- The Use_Clause which is actually redundant. In the simplest case
9278 -- it is Pack itself, but when we compile a body we install its
9279 -- context before that of its spec, in which case it is the
9280 -- use_clause in the spec that will appear to be redundant, and we
9281 -- want the warning to be placed on the body. Similar complications
9282 -- appear when the redundancy is between a child unit and one of its
9283 -- ancestors.
9285 begin
9286 -- Could be renamed...
9288 if No (Cur_Use) then
9289 Cur_Use := Current_Use_Clause (Renamed_Entity (Pack_Name));
9290 end if;
9292 Set_Redundant_Use (Clause, True);
9294 if not Comes_From_Source (Clause)
9295 or else In_Instance
9296 or else not Warn_On_Redundant_Constructs
9297 then
9298 return;
9299 end if;
9301 if not Is_Compilation_Unit (Current_Scope) then
9303 -- If the use_clause is in an inner scope, it is made redundant by
9304 -- some clause in the current context, with one exception: If we
9305 -- are compiling a nested package body, and the use_clause comes
9306 -- from then corresponding spec, the clause is not necessarily
9307 -- fully redundant, so we should not warn. If a warning was
9308 -- warranted, it would have been given when the spec was
9309 -- processed.
9311 if Nkind (Parent (Decl)) = N_Package_Specification then
9312 declare
9313 Package_Spec_Entity : constant Entity_Id :=
9314 Defining_Unit_Name (Parent (Decl));
9315 begin
9316 if In_Package_Body (Package_Spec_Entity) then
9317 return;
9318 end if;
9319 end;
9320 end if;
9322 Redundant := Clause;
9323 Prev_Use := Cur_Use;
9325 elsif Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Body then
9326 declare
9327 Cur_Unit : constant Unit_Number_Type :=
9328 Get_Source_Unit (Cur_Use);
9329 New_Unit : constant Unit_Number_Type :=
9330 Get_Source_Unit (Clause);
9332 Scop : Entity_Id;
9334 begin
9335 if Cur_Unit = New_Unit then
9337 -- Redundant clause in same body
9339 Redundant := Clause;
9340 Prev_Use := Cur_Use;
9342 elsif Cur_Unit = Current_Sem_Unit then
9344 -- If the new clause is not in the current unit it has been
9345 -- analyzed first, and it makes the other one redundant.
9346 -- However, if the new clause appears in a subunit, Cur_Unit
9347 -- is still the parent, and in that case the redundant one
9348 -- is the one appearing in the subunit.
9350 if Nkind (Unit (Cunit (New_Unit))) = N_Subunit then
9351 Redundant := Clause;
9352 Prev_Use := Cur_Use;
9354 -- Most common case: redundant clause in body, original
9355 -- clause in spec. Current scope is spec entity.
9357 elsif Current_Scope = Cunit_Entity (Current_Sem_Unit) then
9358 Redundant := Cur_Use;
9359 Prev_Use := Clause;
9361 else
9362 -- The new clause may appear in an unrelated unit, when
9363 -- the parents of a generic are being installed prior to
9364 -- instantiation. In this case there must be no warning.
9365 -- We detect this case by checking whether the current
9366 -- top of the stack is related to the current
9367 -- compilation.
9369 Scop := Current_Scope;
9370 while Present (Scop)
9371 and then Scop /= Standard_Standard
9372 loop
9373 if Is_Compilation_Unit (Scop)
9374 and then not Is_Child_Unit (Scop)
9375 then
9376 return;
9378 elsif Scop = Cunit_Entity (Current_Sem_Unit) then
9379 exit;
9380 end if;
9382 Scop := Scope (Scop);
9383 end loop;
9385 Redundant := Cur_Use;
9386 Prev_Use := Clause;
9387 end if;
9389 elsif New_Unit = Current_Sem_Unit then
9390 Redundant := Clause;
9391 Prev_Use := Cur_Use;
9393 else
9394 -- Neither is the current unit, so they appear in parent or
9395 -- sibling units. Warning will be emitted elsewhere.
9397 return;
9398 end if;
9399 end;
9401 elsif Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Declaration
9402 and then Present (Parent_Spec (Unit (Cunit (Current_Sem_Unit))))
9403 then
9404 -- Use_clause is in child unit of current unit, and the child unit
9405 -- appears in the context of the body of the parent, so it has
9406 -- been installed first, even though it is the redundant one.
9407 -- Depending on their placement in the context, the visible or the
9408 -- private parts of the two units, either might appear as
9409 -- redundant, but the message has to be on the current unit.
9411 if Get_Source_Unit (Cur_Use) = Current_Sem_Unit then
9412 Redundant := Cur_Use;
9413 Prev_Use := Clause;
9414 else
9415 Redundant := Clause;
9416 Prev_Use := Cur_Use;
9417 end if;
9419 -- If the new use clause appears in the private part of a parent
9420 -- unit it may appear to be redundant w.r.t. a use clause in a
9421 -- child unit, but the previous use clause was needed in the
9422 -- visible part of the child, and no warning should be emitted.
9424 if Nkind (Parent (Decl)) = N_Package_Specification
9425 and then List_Containing (Decl) =
9426 Private_Declarations (Parent (Decl))
9427 then
9428 declare
9429 Par : constant Entity_Id := Defining_Entity (Parent (Decl));
9430 Spec : constant Node_Id :=
9431 Specification (Unit (Cunit (Current_Sem_Unit)));
9433 begin
9434 if Is_Compilation_Unit (Par)
9435 and then Par /= Cunit_Entity (Current_Sem_Unit)
9436 and then Parent (Cur_Use) = Spec
9437 and then List_Containing (Cur_Use) =
9438 Visible_Declarations (Spec)
9439 then
9440 return;
9441 end if;
9442 end;
9443 end if;
9445 -- Finally, if the current use clause is in the context then the
9446 -- clause is redundant when it is nested within the unit.
9448 elsif Nkind (Parent (Cur_Use)) = N_Compilation_Unit
9449 and then Nkind (Parent (Parent (Clause))) /= N_Compilation_Unit
9450 and then Get_Source_Unit (Cur_Use) = Get_Source_Unit (Clause)
9451 then
9452 Redundant := Clause;
9453 Prev_Use := Cur_Use;
9455 end if;
9457 if Present (Redundant) and then Parent (Redundant) /= Prev_Use then
9459 -- Make sure we are looking at most-descendant use_package_clause
9460 -- by traversing the chain with Find_Most_Prev and then verifying
9461 -- there is no scope manipulation via Most_Descendant_Use_Clause.
9463 if Nkind (Prev_Use) = N_Use_Package_Clause
9464 and then
9465 (Nkind (Parent (Prev_Use)) /= N_Compilation_Unit
9466 or else Most_Descendant_Use_Clause
9467 (Prev_Use, Find_Most_Prev (Prev_Use)) /= Prev_Use)
9468 then
9469 Prev_Use := Find_Most_Prev (Prev_Use);
9470 end if;
9472 Error_Msg_Sloc := Sloc (Prev_Use);
9473 Error_Msg_NE -- CODEFIX
9474 ("& is already use-visible through previous use_clause #??",
9475 Redundant, Pack_Name);
9476 end if;
9477 end Note_Redundant_Use;
9479 -- Local variables
9481 Current_Instance : Entity_Id := Empty;
9482 Id : Entity_Id;
9483 P : Entity_Id;
9484 Prev : Entity_Id;
9485 Private_With_OK : Boolean := False;
9486 Real_P : Entity_Id;
9488 -- Start of processing for Use_One_Package
9490 begin
9491 -- Use_One_Package may have been called recursively to handle an
9492 -- implicit use for a auxiliary system package, so set P accordingly
9493 -- and skip redundancy checks.
9495 if No (Pack_Name) and then Present_System_Aux (N) then
9496 P := System_Aux_Id;
9498 -- Check for redundant use_package_clauses
9500 else
9501 -- Ignore cases where we are dealing with a non user defined package
9502 -- like Standard_Standard or something other than a valid package.
9504 if not Is_Entity_Name (Pack_Name)
9505 or else No (Entity (Pack_Name))
9506 or else Ekind (Entity (Pack_Name)) /= E_Package
9507 then
9508 return;
9509 end if;
9511 -- When a renaming exists we must check it for redundancy. The
9512 -- original package would have already been seen at this point.
9514 if Present (Renamed_Object (Entity (Pack_Name))) then
9515 P := Renamed_Object (Entity (Pack_Name));
9516 else
9517 P := Entity (Pack_Name);
9518 end if;
9520 -- Check for redundant clauses then set the current use clause for
9521 -- P if were are not "forcing" an installation from a scope
9522 -- reinstallation that is done throughout analysis for various
9523 -- reasons.
9525 if In_Use (P) then
9526 Note_Redundant_Use (Pack_Name);
9528 if not Force then
9529 Set_Current_Use_Clause (P, N);
9530 end if;
9532 return;
9534 -- Warn about detected redundant clauses
9536 elsif not Force
9537 and then In_Open_Scopes (P)
9538 and then not Is_Hidden_Open_Scope (P)
9539 then
9540 if Warn_On_Redundant_Constructs and then P = Current_Scope then
9541 Error_Msg_NE -- CODEFIX
9542 ("& is already use-visible within itself?r?",
9543 Pack_Name, P);
9544 end if;
9546 return;
9547 end if;
9549 -- Set P back to the non-renamed package so that visiblilty of the
9550 -- entities within the package can be properly set below.
9552 P := Entity (Pack_Name);
9553 end if;
9555 Set_In_Use (P);
9556 Set_Current_Use_Clause (P, N);
9558 -- Ada 2005 (AI-50217): Check restriction
9560 if From_Limited_With (P) then
9561 Error_Msg_N ("limited withed package cannot appear in use clause", N);
9562 end if;
9564 -- Find enclosing instance, if any
9566 if In_Instance then
9567 Current_Instance := Current_Scope;
9568 while not Is_Generic_Instance (Current_Instance) loop
9569 Current_Instance := Scope (Current_Instance);
9570 end loop;
9572 if No (Hidden_By_Use_Clause (N)) then
9573 Set_Hidden_By_Use_Clause (N, New_Elmt_List);
9574 end if;
9575 end if;
9577 -- If unit is a package renaming, indicate that the renamed package is
9578 -- also in use (the flags on both entities must remain consistent, and a
9579 -- subsequent use of either of them should be recognized as redundant).
9581 if Present (Renamed_Object (P)) then
9582 Set_In_Use (Renamed_Object (P));
9583 Set_Current_Use_Clause (Renamed_Object (P), N);
9584 Real_P := Renamed_Object (P);
9585 else
9586 Real_P := P;
9587 end if;
9589 -- Ada 2005 (AI-262): Check the use_clause of a private withed package
9590 -- found in the private part of a package specification
9592 if In_Private_Part (Current_Scope)
9593 and then Has_Private_With (P)
9594 and then Is_Child_Unit (Current_Scope)
9595 and then Is_Child_Unit (P)
9596 and then Is_Ancestor_Package (Scope (Current_Scope), P)
9597 then
9598 Private_With_OK := True;
9599 end if;
9601 -- Loop through entities in one package making them potentially
9602 -- use-visible.
9604 Id := First_Entity (P);
9605 while Present (Id)
9606 and then (Id /= First_Private_Entity (P)
9607 or else Private_With_OK) -- Ada 2005 (AI-262)
9608 loop
9609 Prev := Current_Entity (Id);
9610 while Present (Prev) loop
9611 if Is_Immediately_Visible (Prev)
9612 and then (not Is_Overloadable (Prev)
9613 or else not Is_Overloadable (Id)
9614 or else (Type_Conformant (Id, Prev)))
9615 then
9616 if No (Current_Instance) then
9618 -- Potentially use-visible entity remains hidden
9620 goto Next_Usable_Entity;
9622 -- A use clause within an instance hides outer global entities,
9623 -- which are not used to resolve local entities in the
9624 -- instance. Note that the predefined entities in Standard
9625 -- could not have been hidden in the generic by a use clause,
9626 -- and therefore remain visible. Other compilation units whose
9627 -- entities appear in Standard must be hidden in an instance.
9629 -- To determine whether an entity is external to the instance
9630 -- we compare the scope depth of its scope with that of the
9631 -- current instance. However, a generic actual of a subprogram
9632 -- instance is declared in the wrapper package but will not be
9633 -- hidden by a use-visible entity. similarly, an entity that is
9634 -- declared in an enclosing instance will not be hidden by an
9635 -- an entity declared in a generic actual, which can only have
9636 -- been use-visible in the generic and will not have hidden the
9637 -- entity in the generic parent.
9639 -- If Id is called Standard, the predefined package with the
9640 -- same name is in the homonym chain. It has to be ignored
9641 -- because it has no defined scope (being the only entity in
9642 -- the system with this mandated behavior).
9644 elsif not Is_Hidden (Id)
9645 and then Present (Scope (Prev))
9646 and then not Is_Wrapper_Package (Scope (Prev))
9647 and then Scope_Depth (Scope (Prev)) <
9648 Scope_Depth (Current_Instance)
9649 and then (Scope (Prev) /= Standard_Standard
9650 or else Sloc (Prev) > Standard_Location)
9651 then
9652 if In_Open_Scopes (Scope (Prev))
9653 and then Is_Generic_Instance (Scope (Prev))
9654 and then Present (Associated_Formal_Package (P))
9655 then
9656 null;
9658 else
9659 Set_Is_Potentially_Use_Visible (Id);
9660 Set_Is_Immediately_Visible (Prev, False);
9661 Append_Elmt (Prev, Hidden_By_Use_Clause (N));
9662 end if;
9663 end if;
9665 -- A user-defined operator is not use-visible if the predefined
9666 -- operator for the type is immediately visible, which is the case
9667 -- if the type of the operand is in an open scope. This does not
9668 -- apply to user-defined operators that have operands of different
9669 -- types, because the predefined mixed mode operations (multiply
9670 -- and divide) apply to universal types and do not hide anything.
9672 elsif Ekind (Prev) = E_Operator
9673 and then Operator_Matches_Spec (Prev, Id)
9674 and then In_Open_Scopes
9675 (Scope (Base_Type (Etype (First_Formal (Id)))))
9676 and then (No (Next_Formal (First_Formal (Id)))
9677 or else Etype (First_Formal (Id)) =
9678 Etype (Next_Formal (First_Formal (Id)))
9679 or else Chars (Prev) = Name_Op_Expon)
9680 then
9681 goto Next_Usable_Entity;
9683 -- In an instance, two homonyms may become use_visible through the
9684 -- actuals of distinct formal packages. In the generic, only the
9685 -- current one would have been visible, so make the other one
9686 -- not use_visible.
9688 -- In certain pathological cases it is possible that unrelated
9689 -- homonyms from distinct formal packages may exist in an
9690 -- uninstalled scope. We must test for that here.
9692 elsif Present (Current_Instance)
9693 and then Is_Potentially_Use_Visible (Prev)
9694 and then not Is_Overloadable (Prev)
9695 and then Scope (Id) /= Scope (Prev)
9696 and then Used_As_Generic_Actual (Scope (Prev))
9697 and then Used_As_Generic_Actual (Scope (Id))
9698 and then Is_List_Member (Scope (Prev))
9699 and then not In_Same_List (Current_Use_Clause (Scope (Prev)),
9700 Current_Use_Clause (Scope (Id)))
9701 then
9702 Set_Is_Potentially_Use_Visible (Prev, False);
9703 Append_Elmt (Prev, Hidden_By_Use_Clause (N));
9704 end if;
9706 Prev := Homonym (Prev);
9707 end loop;
9709 -- On exit, we know entity is not hidden, unless it is private
9711 if not Is_Hidden (Id)
9712 and then ((not Is_Child_Unit (Id)) or else Is_Visible_Lib_Unit (Id))
9713 then
9714 Set_Is_Potentially_Use_Visible (Id);
9716 if Is_Private_Type (Id) and then Present (Full_View (Id)) then
9717 Set_Is_Potentially_Use_Visible (Full_View (Id));
9718 end if;
9719 end if;
9721 <<Next_Usable_Entity>>
9722 Next_Entity (Id);
9723 end loop;
9725 -- Child units are also made use-visible by a use clause, but they may
9726 -- appear after all visible declarations in the parent entity list.
9728 while Present (Id) loop
9729 if Is_Child_Unit (Id) and then Is_Visible_Lib_Unit (Id) then
9730 Set_Is_Potentially_Use_Visible (Id);
9731 end if;
9733 Next_Entity (Id);
9734 end loop;
9736 if Chars (Real_P) = Name_System
9737 and then Scope (Real_P) = Standard_Standard
9738 and then Present_System_Aux (N)
9739 then
9740 Use_One_Package (N);
9741 end if;
9742 end Use_One_Package;
9744 ------------------
9745 -- Use_One_Type --
9746 ------------------
9748 procedure Use_One_Type
9749 (Id : Node_Id;
9750 Installed : Boolean := False;
9751 Force : Boolean := False)
9753 function Spec_Reloaded_For_Body return Boolean;
9754 -- Determine whether the compilation unit is a package body and the use
9755 -- type clause is in the spec of the same package. Even though the spec
9756 -- was analyzed first, its context is reloaded when analysing the body.
9758 procedure Use_Class_Wide_Operations (Typ : Entity_Id);
9759 -- AI05-150: if the use_type_clause carries the "all" qualifier,
9760 -- class-wide operations of ancestor types are use-visible if the
9761 -- ancestor type is visible.
9763 ----------------------------
9764 -- Spec_Reloaded_For_Body --
9765 ----------------------------
9767 function Spec_Reloaded_For_Body return Boolean is
9768 begin
9769 if Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Body then
9770 declare
9771 Spec : constant Node_Id :=
9772 Parent (List_Containing (Parent (Id)));
9774 begin
9775 -- Check whether type is declared in a package specification,
9776 -- and current unit is the corresponding package body. The
9777 -- use clauses themselves may be within a nested package.
9779 return
9780 Nkind (Spec) = N_Package_Specification
9781 and then In_Same_Source_Unit
9782 (Corresponding_Body (Parent (Spec)),
9783 Cunit_Entity (Current_Sem_Unit));
9784 end;
9785 end if;
9787 return False;
9788 end Spec_Reloaded_For_Body;
9790 -------------------------------
9791 -- Use_Class_Wide_Operations --
9792 -------------------------------
9794 procedure Use_Class_Wide_Operations (Typ : Entity_Id) is
9795 function Is_Class_Wide_Operation_Of
9796 (Op : Entity_Id;
9797 T : Entity_Id) return Boolean;
9798 -- Determine whether a subprogram has a class-wide parameter or
9799 -- result that is T'Class.
9801 ---------------------------------
9802 -- Is_Class_Wide_Operation_Of --
9803 ---------------------------------
9805 function Is_Class_Wide_Operation_Of
9806 (Op : Entity_Id;
9807 T : Entity_Id) return Boolean
9809 Formal : Entity_Id;
9811 begin
9812 Formal := First_Formal (Op);
9813 while Present (Formal) loop
9814 if Etype (Formal) = Class_Wide_Type (T) then
9815 return True;
9816 end if;
9818 Next_Formal (Formal);
9819 end loop;
9821 if Etype (Op) = Class_Wide_Type (T) then
9822 return True;
9823 end if;
9825 return False;
9826 end Is_Class_Wide_Operation_Of;
9828 -- Local variables
9830 Ent : Entity_Id;
9831 Scop : Entity_Id;
9833 -- Start of processing for Use_Class_Wide_Operations
9835 begin
9836 Scop := Scope (Typ);
9837 if not Is_Hidden (Scop) then
9838 Ent := First_Entity (Scop);
9839 while Present (Ent) loop
9840 if Is_Overloadable (Ent)
9841 and then Is_Class_Wide_Operation_Of (Ent, Typ)
9842 and then not Is_Potentially_Use_Visible (Ent)
9843 then
9844 Set_Is_Potentially_Use_Visible (Ent);
9845 Append_Elmt (Ent, Used_Operations (Parent (Id)));
9846 end if;
9848 Next_Entity (Ent);
9849 end loop;
9850 end if;
9852 if Is_Derived_Type (Typ) then
9853 Use_Class_Wide_Operations (Etype (Base_Type (Typ)));
9854 end if;
9855 end Use_Class_Wide_Operations;
9857 -- Local variables
9859 Elmt : Elmt_Id;
9860 Is_Known_Used : Boolean;
9861 Op_List : Elist_Id;
9862 T : Entity_Id;
9864 -- Start of processing for Use_One_Type
9866 begin
9867 if Entity (Id) = Any_Type then
9868 return;
9869 end if;
9871 -- It is the type determined by the subtype mark (8.4(8)) whose
9872 -- operations become potentially use-visible.
9874 T := Base_Type (Entity (Id));
9876 -- Either the type itself is used, the package where it is declared is
9877 -- in use or the entity is declared in the current package, thus
9878 -- use-visible.
9880 Is_Known_Used :=
9881 (In_Use (T)
9882 and then ((Present (Current_Use_Clause (T))
9883 and then All_Present (Current_Use_Clause (T)))
9884 or else not All_Present (Parent (Id))))
9885 or else In_Use (Scope (T))
9886 or else Scope (T) = Current_Scope;
9888 Set_Redundant_Use (Id,
9889 Is_Known_Used or else Is_Potentially_Use_Visible (T));
9891 if Ekind (T) = E_Incomplete_Type then
9892 Error_Msg_N ("premature usage of incomplete type", Id);
9894 elsif In_Open_Scopes (Scope (T)) then
9895 null;
9897 -- A limited view cannot appear in a use_type_clause. However, an access
9898 -- type whose designated type is limited has the flag but is not itself
9899 -- a limited view unless we only have a limited view of its enclosing
9900 -- package.
9902 elsif From_Limited_With (T) and then From_Limited_With (Scope (T)) then
9903 Error_Msg_N
9904 ("incomplete type from limited view cannot appear in use clause",
9905 Id);
9907 -- If the use clause is redundant, Used_Operations will usually be
9908 -- empty, but we need to set it to empty here in one case: If we are
9909 -- instantiating a generic library unit, then we install the ancestors
9910 -- of that unit in the scope stack, which involves reprocessing use
9911 -- clauses in those ancestors. Such a use clause will typically have a
9912 -- nonempty Used_Operations unless it was redundant in the generic unit,
9913 -- even if it is redundant at the place of the instantiation.
9915 elsif Redundant_Use (Id) then
9917 -- We must avoid incorrectly setting the Current_Use_Clause when we
9918 -- are working with a redundant clause that has already been linked
9919 -- in the Prev_Use_Clause chain, otherwise the chain will break.
9921 if Present (Current_Use_Clause (T))
9922 and then Present (Prev_Use_Clause (Current_Use_Clause (T)))
9923 and then Parent (Id) = Prev_Use_Clause (Current_Use_Clause (T))
9924 then
9925 null;
9926 else
9927 Set_Current_Use_Clause (T, Parent (Id));
9928 end if;
9930 Set_Used_Operations (Parent (Id), New_Elmt_List);
9932 -- If the subtype mark designates a subtype in a different package,
9933 -- we have to check that the parent type is visible, otherwise the
9934 -- use_type_clause is a no-op. Not clear how to do that???
9936 else
9937 Set_Current_Use_Clause (T, Parent (Id));
9938 Set_In_Use (T);
9940 -- If T is tagged, primitive operators on class-wide operands are
9941 -- also available.
9943 if Is_Tagged_Type (T) then
9944 Set_In_Use (Class_Wide_Type (T));
9945 end if;
9947 -- Iterate over primitive operations of the type. If an operation is
9948 -- already use_visible, it is the result of a previous use_clause,
9949 -- and already appears on the corresponding entity chain. If the
9950 -- clause is being reinstalled, operations are already use-visible.
9952 if Installed then
9953 null;
9955 else
9956 Op_List := Collect_Primitive_Operations (T);
9957 Elmt := First_Elmt (Op_List);
9958 while Present (Elmt) loop
9959 if (Nkind (Node (Elmt)) = N_Defining_Operator_Symbol
9960 or else Chars (Node (Elmt)) in Any_Operator_Name)
9961 and then not Is_Hidden (Node (Elmt))
9962 and then not Is_Potentially_Use_Visible (Node (Elmt))
9963 then
9964 Set_Is_Potentially_Use_Visible (Node (Elmt));
9965 Append_Elmt (Node (Elmt), Used_Operations (Parent (Id)));
9967 elsif Ada_Version >= Ada_2012
9968 and then All_Present (Parent (Id))
9969 and then not Is_Hidden (Node (Elmt))
9970 and then not Is_Potentially_Use_Visible (Node (Elmt))
9971 then
9972 Set_Is_Potentially_Use_Visible (Node (Elmt));
9973 Append_Elmt (Node (Elmt), Used_Operations (Parent (Id)));
9974 end if;
9976 Next_Elmt (Elmt);
9977 end loop;
9978 end if;
9980 if Ada_Version >= Ada_2012
9981 and then All_Present (Parent (Id))
9982 and then Is_Tagged_Type (T)
9983 then
9984 Use_Class_Wide_Operations (T);
9985 end if;
9986 end if;
9988 -- If warning on redundant constructs, check for unnecessary WITH
9990 if not Force
9991 and then Warn_On_Redundant_Constructs
9992 and then Is_Known_Used
9994 -- with P; with P; use P;
9995 -- package P is package X is package body X is
9996 -- type T ... use P.T;
9998 -- The compilation unit is the body of X. GNAT first compiles the
9999 -- spec of X, then proceeds to the body. At that point P is marked
10000 -- as use visible. The analysis then reinstalls the spec along with
10001 -- its context. The use clause P.T is now recognized as redundant,
10002 -- but in the wrong context. Do not emit a warning in such cases.
10003 -- Do not emit a warning either if we are in an instance, there is
10004 -- no redundancy between an outer use_clause and one that appears
10005 -- within the generic.
10007 and then not Spec_Reloaded_For_Body
10008 and then not In_Instance
10009 and then not In_Inlined_Body
10010 then
10011 -- The type already has a use clause
10013 if In_Use (T) then
10015 -- Case where we know the current use clause for the type
10017 if Present (Current_Use_Clause (T)) then
10018 Use_Clause_Known : declare
10019 Clause1 : constant Node_Id :=
10020 Find_Most_Prev (Current_Use_Clause (T));
10021 Clause2 : constant Node_Id := Parent (Id);
10022 Ent1 : Entity_Id;
10023 Ent2 : Entity_Id;
10024 Err_No : Node_Id;
10025 Unit1 : Node_Id;
10026 Unit2 : Node_Id;
10028 -- Start of processing for Use_Clause_Known
10030 begin
10031 -- If both current use_type_clause and the use_type_clause
10032 -- for the type are at the compilation unit level, one of
10033 -- the units must be an ancestor of the other, and the
10034 -- warning belongs on the descendant.
10036 if Nkind (Parent (Clause1)) = N_Compilation_Unit
10037 and then
10038 Nkind (Parent (Clause2)) = N_Compilation_Unit
10039 then
10040 -- If the unit is a subprogram body that acts as spec,
10041 -- the context clause is shared with the constructed
10042 -- subprogram spec. Clearly there is no redundancy.
10044 if Clause1 = Clause2 then
10045 return;
10046 end if;
10048 Unit1 := Unit (Parent (Clause1));
10049 Unit2 := Unit (Parent (Clause2));
10051 -- If both clauses are on same unit, or one is the body
10052 -- of the other, or one of them is in a subunit, report
10053 -- redundancy on the later one.
10055 if Unit1 = Unit2 or else Nkind (Unit1) = N_Subunit then
10056 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
10057 Error_Msg_NE -- CODEFIX
10058 ("& is already use-visible through previous "
10059 & "use_type_clause #??", Clause1, T);
10060 return;
10062 elsif Nkind_In (Unit2, N_Package_Body, N_Subprogram_Body)
10063 and then Nkind (Unit1) /= Nkind (Unit2)
10064 and then Nkind (Unit1) /= N_Subunit
10065 then
10066 Error_Msg_Sloc := Sloc (Clause1);
10067 Error_Msg_NE -- CODEFIX
10068 ("& is already use-visible through previous "
10069 & "use_type_clause #??", Current_Use_Clause (T), T);
10070 return;
10071 end if;
10073 -- There is a redundant use_type_clause in a child unit.
10074 -- Determine which of the units is more deeply nested.
10075 -- If a unit is a package instance, retrieve the entity
10076 -- and its scope from the instance spec.
10078 Ent1 := Entity_Of_Unit (Unit1);
10079 Ent2 := Entity_Of_Unit (Unit2);
10081 if Scope (Ent2) = Standard_Standard then
10082 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
10083 Err_No := Clause1;
10085 elsif Scope (Ent1) = Standard_Standard then
10086 Error_Msg_Sloc := Sloc (Id);
10087 Err_No := Clause2;
10089 -- If both units are child units, we determine which one
10090 -- is the descendant by the scope distance to the
10091 -- ultimate parent unit.
10093 else
10094 declare
10095 S1 : Entity_Id;
10096 S2 : Entity_Id;
10098 begin
10099 S1 := Scope (Ent1);
10100 S2 := Scope (Ent2);
10101 while Present (S1)
10102 and then Present (S2)
10103 and then S1 /= Standard_Standard
10104 and then S2 /= Standard_Standard
10105 loop
10106 S1 := Scope (S1);
10107 S2 := Scope (S2);
10108 end loop;
10110 if S1 = Standard_Standard then
10111 Error_Msg_Sloc := Sloc (Id);
10112 Err_No := Clause2;
10113 else
10114 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
10115 Err_No := Clause1;
10116 end if;
10117 end;
10118 end if;
10120 if Parent (Id) /= Err_No then
10121 if Most_Descendant_Use_Clause
10122 (Err_No, Parent (Id)) = Parent (Id)
10123 then
10124 Error_Msg_Sloc := Sloc (Err_No);
10125 Err_No := Parent (Id);
10126 end if;
10128 Error_Msg_NE -- CODEFIX
10129 ("& is already use-visible through previous "
10130 & "use_type_clause #??", Err_No, Id);
10131 end if;
10133 -- Case where current use_type_clause and use_type_clause
10134 -- for the type are not both at the compilation unit level.
10135 -- In this case we don't have location information.
10137 else
10138 Error_Msg_NE -- CODEFIX
10139 ("& is already use-visible through previous "
10140 & "use_type_clause??", Id, T);
10141 end if;
10142 end Use_Clause_Known;
10144 -- Here if Current_Use_Clause is not set for T, another case where
10145 -- we do not have the location information available.
10147 else
10148 Error_Msg_NE -- CODEFIX
10149 ("& is already use-visible through previous "
10150 & "use_type_clause??", Id, T);
10151 end if;
10153 -- The package where T is declared is already used
10155 elsif In_Use (Scope (T)) then
10156 Error_Msg_Sloc :=
10157 Sloc (Find_Most_Prev (Current_Use_Clause (Scope (T))));
10158 Error_Msg_NE -- CODEFIX
10159 ("& is already use-visible through package use clause #??",
10160 Id, T);
10162 -- The current scope is the package where T is declared
10164 else
10165 Error_Msg_Node_2 := Scope (T);
10166 Error_Msg_NE -- CODEFIX
10167 ("& is already use-visible inside package &??", Id, T);
10168 end if;
10169 end if;
10170 end Use_One_Type;
10172 ----------------
10173 -- Write_Info --
10174 ----------------
10176 procedure Write_Info is
10177 Id : Entity_Id := First_Entity (Current_Scope);
10179 begin
10180 -- No point in dumping standard entities
10182 if Current_Scope = Standard_Standard then
10183 return;
10184 end if;
10186 Write_Str ("========================================================");
10187 Write_Eol;
10188 Write_Str (" Defined Entities in ");
10189 Write_Name (Chars (Current_Scope));
10190 Write_Eol;
10191 Write_Str ("========================================================");
10192 Write_Eol;
10194 if No (Id) then
10195 Write_Str ("-- none --");
10196 Write_Eol;
10198 else
10199 while Present (Id) loop
10200 Write_Entity_Info (Id, " ");
10201 Next_Entity (Id);
10202 end loop;
10203 end if;
10205 if Scope (Current_Scope) = Standard_Standard then
10207 -- Print information on the current unit itself
10209 Write_Entity_Info (Current_Scope, " ");
10210 end if;
10212 Write_Eol;
10213 end Write_Info;
10215 --------
10216 -- ws --
10217 --------
10219 procedure ws is
10220 S : Entity_Id;
10221 begin
10222 for J in reverse 1 .. Scope_Stack.Last loop
10223 S := Scope_Stack.Table (J).Entity;
10224 Write_Int (Int (S));
10225 Write_Str (" === ");
10226 Write_Name (Chars (S));
10227 Write_Eol;
10228 end loop;
10229 end ws;
10231 --------
10232 -- we --
10233 --------
10235 procedure we (S : Entity_Id) is
10236 E : Entity_Id;
10237 begin
10238 E := First_Entity (S);
10239 while Present (E) loop
10240 Write_Int (Int (E));
10241 Write_Str (" === ");
10242 Write_Name (Chars (E));
10243 Write_Eol;
10244 Next_Entity (E);
10245 end loop;
10246 end we;
10247 end Sem_Ch8;