Allow target to override gnu-user.h crti and crtn
[official-gcc.git] / gcc / ada / layout.adb
blob91640c15f86d360f2abd91dacbdb6cfdfe769a24
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- L A Y O U T --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 2001-2018, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Debug; use Debug;
28 with Einfo; use Einfo;
29 with Errout; use Errout;
30 with Opt; use Opt;
31 with Sem_Aux; use Sem_Aux;
32 with Sem_Ch13; use Sem_Ch13;
33 with Sem_Eval; use Sem_Eval;
34 with Sem_Util; use Sem_Util;
35 with Sinfo; use Sinfo;
36 with Snames; use Snames;
37 with Ttypes; use Ttypes;
38 with Uintp; use Uintp;
40 package body Layout is
42 ------------------------
43 -- Local Declarations --
44 ------------------------
46 SSU : constant Int := Ttypes.System_Storage_Unit;
47 -- Short hand for System_Storage_Unit
49 -----------------------
50 -- Local Subprograms --
51 -----------------------
53 procedure Compute_Size_Depends_On_Discriminant (E : Entity_Id);
54 -- Given an array type or an array subtype E, compute whether its size
55 -- depends on the value of one or more discriminants and set the flag
56 -- Size_Depends_On_Discriminant accordingly. This need not be called
57 -- in front end layout mode since it does the computation on its own.
59 procedure Set_Composite_Alignment (E : Entity_Id);
60 -- This procedure is called for record types and subtypes, and also for
61 -- atomic array types and subtypes. If no alignment is set, and the size
62 -- is 2 or 4 (or 8 if the word size is 8), then the alignment is set to
63 -- match the size.
65 ----------------------------
66 -- Adjust_Esize_Alignment --
67 ----------------------------
69 procedure Adjust_Esize_Alignment (E : Entity_Id) is
70 Abits : Int;
71 Esize_Set : Boolean;
73 begin
74 -- Nothing to do if size unknown
76 if Unknown_Esize (E) then
77 return;
78 end if;
80 -- Determine if size is constrained by an attribute definition clause
81 -- which must be obeyed. If so, we cannot increase the size in this
82 -- routine.
84 -- For a type, the issue is whether an object size clause has been set.
85 -- A normal size clause constrains only the value size (RM_Size)
87 if Is_Type (E) then
88 Esize_Set := Has_Object_Size_Clause (E);
90 -- For an object, the issue is whether a size clause is present
92 else
93 Esize_Set := Has_Size_Clause (E);
94 end if;
96 -- If size is known it must be a multiple of the storage unit size
98 if Esize (E) mod SSU /= 0 then
100 -- If not, and size specified, then give error
102 if Esize_Set then
103 Error_Msg_NE
104 ("size for& not a multiple of storage unit size",
105 Size_Clause (E), E);
106 return;
108 -- Otherwise bump up size to a storage unit boundary
110 else
111 Set_Esize (E, (Esize (E) + SSU - 1) / SSU * SSU);
112 end if;
113 end if;
115 -- Now we have the size set, it must be a multiple of the alignment
116 -- nothing more we can do here if the alignment is unknown here.
118 if Unknown_Alignment (E) then
119 return;
120 end if;
122 -- At this point both the Esize and Alignment are known, so we need
123 -- to make sure they are consistent.
125 Abits := UI_To_Int (Alignment (E)) * SSU;
127 if Esize (E) mod Abits = 0 then
128 return;
129 end if;
131 -- Here we have a situation where the Esize is not a multiple of the
132 -- alignment. We must either increase Esize or reduce the alignment to
133 -- correct this situation.
135 -- The case in which we can decrease the alignment is where the
136 -- alignment was not set by an alignment clause, and the type in
137 -- question is a discrete type, where it is definitely safe to reduce
138 -- the alignment. For example:
140 -- t : integer range 1 .. 2;
141 -- for t'size use 8;
143 -- In this situation, the initial alignment of t is 4, copied from
144 -- the Integer base type, but it is safe to reduce it to 1 at this
145 -- stage, since we will only be loading a single storage unit.
147 if Is_Discrete_Type (Etype (E)) and then not Has_Alignment_Clause (E)
148 then
149 loop
150 Abits := Abits / 2;
151 exit when Esize (E) mod Abits = 0;
152 end loop;
154 Init_Alignment (E, Abits / SSU);
155 return;
156 end if;
158 -- Now the only possible approach left is to increase the Esize but we
159 -- can't do that if the size was set by a specific clause.
161 if Esize_Set then
162 Error_Msg_NE
163 ("size for& is not a multiple of alignment",
164 Size_Clause (E), E);
166 -- Otherwise we can indeed increase the size to a multiple of alignment
168 else
169 Set_Esize (E, ((Esize (E) + (Abits - 1)) / Abits) * Abits);
170 end if;
171 end Adjust_Esize_Alignment;
173 ------------------------------------------
174 -- Compute_Size_Depends_On_Discriminant --
175 ------------------------------------------
177 procedure Compute_Size_Depends_On_Discriminant (E : Entity_Id) is
178 Indx : Node_Id;
179 Ityp : Entity_Id;
180 Lo : Node_Id;
181 Hi : Node_Id;
182 Res : Boolean := False;
184 begin
185 -- Loop to process array indexes
187 Indx := First_Index (E);
188 while Present (Indx) loop
189 Ityp := Etype (Indx);
191 -- If an index of the array is a generic formal type then there is
192 -- no point in determining a size for the array type.
194 if Is_Generic_Type (Ityp) then
195 return;
196 end if;
198 Lo := Type_Low_Bound (Ityp);
199 Hi := Type_High_Bound (Ityp);
201 if (Nkind (Lo) = N_Identifier
202 and then Ekind (Entity (Lo)) = E_Discriminant)
203 or else
204 (Nkind (Hi) = N_Identifier
205 and then Ekind (Entity (Hi)) = E_Discriminant)
206 then
207 Res := True;
208 end if;
210 Next_Index (Indx);
211 end loop;
213 if Res then
214 Set_Size_Depends_On_Discriminant (E);
215 end if;
216 end Compute_Size_Depends_On_Discriminant;
218 -------------------
219 -- Layout_Object --
220 -------------------
222 procedure Layout_Object (E : Entity_Id) is
223 pragma Unreferenced (E);
224 begin
225 -- Nothing to do for now, assume backend does the layout
227 return;
228 end Layout_Object;
230 -----------------
231 -- Layout_Type --
232 -----------------
234 procedure Layout_Type (E : Entity_Id) is
235 Desig_Type : Entity_Id;
237 begin
238 -- For string literal types, for now, kill the size always, this is
239 -- because gigi does not like or need the size to be set ???
241 if Ekind (E) = E_String_Literal_Subtype then
242 Set_Esize (E, Uint_0);
243 Set_RM_Size (E, Uint_0);
244 return;
245 end if;
247 -- For access types, set size/alignment. This is system address size,
248 -- except for fat pointers (unconstrained array access types), where the
249 -- size is two times the address size, to accommodate the two pointers
250 -- that are required for a fat pointer (data and template). Note that
251 -- E_Access_Protected_Subprogram_Type is not an access type for this
252 -- purpose since it is not a pointer but is equivalent to a record. For
253 -- access subtypes, copy the size from the base type since Gigi
254 -- represents them the same way.
256 if Is_Access_Type (E) then
257 Desig_Type := Underlying_Type (Designated_Type (E));
259 -- If we only have a limited view of the type, see whether the
260 -- non-limited view is available.
262 if From_Limited_With (Designated_Type (E))
263 and then Ekind (Designated_Type (E)) = E_Incomplete_Type
264 and then Present (Non_Limited_View (Designated_Type (E)))
265 then
266 Desig_Type := Non_Limited_View (Designated_Type (E));
267 end if;
269 -- If Esize already set (e.g. by a size clause), then nothing further
270 -- to be done here.
272 if Known_Esize (E) then
273 null;
275 -- Access to subprogram is a strange beast, and we let the backend
276 -- figure out what is needed (it may be some kind of fat pointer,
277 -- including the static link for example.
279 elsif Is_Access_Protected_Subprogram_Type (E) then
280 null;
282 -- For access subtypes, copy the size information from base type
284 elsif Ekind (E) = E_Access_Subtype then
285 Set_Size_Info (E, Base_Type (E));
286 Set_RM_Size (E, RM_Size (Base_Type (E)));
288 -- For other access types, we use either address size, or, if a fat
289 -- pointer is used (pointer-to-unconstrained array case), twice the
290 -- address size to accommodate a fat pointer.
292 elsif Present (Desig_Type)
293 and then Is_Array_Type (Desig_Type)
294 and then not Is_Constrained (Desig_Type)
295 and then not Has_Completion_In_Body (Desig_Type)
297 -- Debug Flag -gnatd6 says make all pointers to unconstrained thin
299 and then not Debug_Flag_6
300 then
301 Init_Size (E, 2 * System_Address_Size);
303 -- Check for bad convention set
305 if Warn_On_Export_Import
306 and then
307 (Convention (E) = Convention_C
308 or else
309 Convention (E) = Convention_CPP)
310 then
311 Error_Msg_N
312 ("?x?this access type does not correspond to C pointer", E);
313 end if;
315 -- If the designated type is a limited view it is unanalyzed. We can
316 -- examine the declaration itself to determine whether it will need a
317 -- fat pointer.
319 elsif Present (Desig_Type)
320 and then Present (Parent (Desig_Type))
321 and then Nkind (Parent (Desig_Type)) = N_Full_Type_Declaration
322 and then Nkind (Type_Definition (Parent (Desig_Type))) =
323 N_Unconstrained_Array_Definition
324 and then not Debug_Flag_6
325 then
326 Init_Size (E, 2 * System_Address_Size);
328 -- If unnesting subprograms, subprogram access types contain the
329 -- address of both the subprogram and an activation record. But if we
330 -- set that, we'll get a warning on different unchecked conversion
331 -- sizes in the RTS. So leave unset in that case.
333 elsif Unnest_Subprogram_Mode
334 and then Is_Access_Subprogram_Type (E)
335 then
336 null;
338 -- Normal case of thin pointer
340 else
341 Init_Size (E, System_Address_Size);
342 end if;
344 Set_Elem_Alignment (E);
346 -- Scalar types: set size and alignment
348 elsif Is_Scalar_Type (E) then
350 -- For discrete types, the RM_Size and Esize must be set already,
351 -- since this is part of the earlier processing and the front end is
352 -- always required to lay out the sizes of such types (since they are
353 -- available as static attributes). All we do is to check that this
354 -- rule is indeed obeyed.
356 if Is_Discrete_Type (E) then
358 -- If the RM_Size is not set, then here is where we set it
360 -- Note: an RM_Size of zero looks like not set here, but this
361 -- is a rare case, and we can simply reset it without any harm.
363 if not Known_RM_Size (E) then
364 Set_Discrete_RM_Size (E);
365 end if;
367 -- If Esize for a discrete type is not set then set it
369 if not Known_Esize (E) then
370 declare
371 S : Int := 8;
373 begin
374 loop
375 -- If size is big enough, set it and exit
377 if S >= RM_Size (E) then
378 Init_Esize (E, S);
379 exit;
381 -- If the RM_Size is greater than 64 (happens only when
382 -- strange values are specified by the user, then Esize
383 -- is simply a copy of RM_Size, it will be further
384 -- refined later on)
386 elsif S = 64 then
387 Set_Esize (E, RM_Size (E));
388 exit;
390 -- Otherwise double possible size and keep trying
392 else
393 S := S * 2;
394 end if;
395 end loop;
396 end;
397 end if;
399 -- For non-discrete scalar types, if the RM_Size is not set, then set
400 -- it now to a copy of the Esize if the Esize is set.
402 else
403 if Known_Esize (E) and then Unknown_RM_Size (E) then
404 Set_RM_Size (E, Esize (E));
405 end if;
406 end if;
408 Set_Elem_Alignment (E);
410 -- Non-elementary (composite) types
412 else
413 -- For packed arrays, take size and alignment values from the packed
414 -- array type if a packed array type has been created and the fields
415 -- are not currently set.
417 if Is_Array_Type (E)
418 and then Present (Packed_Array_Impl_Type (E))
419 then
420 declare
421 PAT : constant Entity_Id := Packed_Array_Impl_Type (E);
423 begin
424 if Unknown_Esize (E) then
425 Set_Esize (E, Esize (PAT));
426 end if;
428 if Unknown_RM_Size (E) then
429 Set_RM_Size (E, RM_Size (PAT));
430 end if;
432 if Unknown_Alignment (E) then
433 Set_Alignment (E, Alignment (PAT));
434 end if;
435 end;
436 end if;
438 -- If Esize is set, and RM_Size is not, RM_Size is copied from Esize.
439 -- At least for now this seems reasonable, and is in any case needed
440 -- for compatibility with old versions of gigi.
442 if Known_Esize (E) and then Unknown_RM_Size (E) then
443 Set_RM_Size (E, Esize (E));
444 end if;
446 -- For array base types, set component size if object size of the
447 -- component type is known and is a small power of 2 (8, 16, 32, 64),
448 -- since this is what will always be used.
450 if Ekind (E) = E_Array_Type and then Unknown_Component_Size (E) then
451 declare
452 CT : constant Entity_Id := Component_Type (E);
454 begin
455 -- For some reason, access types can cause trouble, So let's
456 -- just do this for scalar types ???
458 if Present (CT)
459 and then Is_Scalar_Type (CT)
460 and then Known_Static_Esize (CT)
461 then
462 declare
463 S : constant Uint := Esize (CT);
464 begin
465 if Addressable (S) then
466 Set_Component_Size (E, S);
467 end if;
468 end;
469 end if;
470 end;
471 end if;
472 end if;
474 -- Even if the backend performs the layout, we still do a little in
475 -- the front end
477 -- Processing for record types
479 if Is_Record_Type (E) then
481 -- Special remaining processing for record types with a known
482 -- size of 16, 32, or 64 bits whose alignment is not yet set.
483 -- For these types, we set a corresponding alignment matching
484 -- the size if possible, or as large as possible if not.
486 if Convention (E) = Convention_Ada and then not Debug_Flag_Q then
487 Set_Composite_Alignment (E);
488 end if;
490 -- Processing for array types
492 elsif Is_Array_Type (E) then
494 -- For arrays that are required to be atomic/VFA, we do the same
495 -- processing as described above for short records, since we
496 -- really need to have the alignment set for the whole array.
498 if Is_Atomic_Or_VFA (E) and then not Debug_Flag_Q then
499 Set_Composite_Alignment (E);
500 end if;
502 -- For unpacked array types, set an alignment of 1 if we know
503 -- that the component alignment is not greater than 1. The reason
504 -- we do this is to avoid unnecessary copying of slices of such
505 -- arrays when passed to subprogram parameters (see special test
506 -- in Exp_Ch6.Expand_Actuals).
508 if not Is_Packed (E) and then Unknown_Alignment (E) then
509 if Known_Static_Component_Size (E)
510 and then Component_Size (E) = 1
511 then
512 Set_Alignment (E, Uint_1);
513 end if;
514 end if;
516 -- We need to know whether the size depends on the value of one
517 -- or more discriminants to select the return mechanism. Skip if
518 -- errors are present, to prevent cascaded messages.
520 if Serious_Errors_Detected = 0 then
521 Compute_Size_Depends_On_Discriminant (E);
522 end if;
523 end if;
525 -- Final step is to check that Esize and RM_Size are compatible
527 if Known_Static_Esize (E) and then Known_Static_RM_Size (E) then
528 if Esize (E) < RM_Size (E) then
530 -- Esize is less than RM_Size. That's not good. First we test
531 -- whether this was set deliberately with an Object_Size clause
532 -- and if so, object to the clause.
534 if Has_Object_Size_Clause (E) then
535 Error_Msg_Uint_1 := RM_Size (E);
536 Error_Msg_F
537 ("object size is too small, minimum allowed is ^",
538 Expression (Get_Attribute_Definition_Clause
539 (E, Attribute_Object_Size)));
540 end if;
542 -- Adjust Esize up to RM_Size value
544 declare
545 Size : constant Uint := RM_Size (E);
547 begin
548 Set_Esize (E, RM_Size (E));
550 -- For scalar types, increase Object_Size to power of 2, but
551 -- not less than a storage unit in any case (i.e., normally
552 -- this means it will be storage-unit addressable).
554 if Is_Scalar_Type (E) then
555 if Size <= SSU then
556 Init_Esize (E, SSU);
557 elsif Size <= 16 then
558 Init_Esize (E, 16);
559 elsif Size <= 32 then
560 Init_Esize (E, 32);
561 else
562 Set_Esize (E, (Size + 63) / 64 * 64);
563 end if;
565 -- Finally, make sure that alignment is consistent with
566 -- the newly assigned size.
568 while Alignment (E) * SSU < Esize (E)
569 and then Alignment (E) < Maximum_Alignment
570 loop
571 Set_Alignment (E, 2 * Alignment (E));
572 end loop;
573 end if;
574 end;
575 end if;
576 end if;
577 end Layout_Type;
579 -----------------------------
580 -- Set_Composite_Alignment --
581 -----------------------------
583 procedure Set_Composite_Alignment (E : Entity_Id) is
584 Siz : Uint;
585 Align : Nat;
587 begin
588 -- If alignment is already set, then nothing to do
590 if Known_Alignment (E) then
591 return;
592 end if;
594 -- Alignment is not known, see if we can set it, taking into account
595 -- the setting of the Optimize_Alignment mode.
597 -- If Optimize_Alignment is set to Space, then we try to give packed
598 -- records an aligmment of 1, unless there is some reason we can't.
600 if Optimize_Alignment_Space (E)
601 and then Is_Record_Type (E)
602 and then Is_Packed (E)
603 then
604 -- No effect for record with atomic/VFA components
606 if Is_Atomic_Or_VFA (E) then
607 Error_Msg_N ("Optimize_Alignment has no effect for &??", E);
609 if Is_Atomic (E) then
610 Error_Msg_N
611 ("\pragma ignored for atomic record??", E);
612 else
613 Error_Msg_N
614 ("\pragma ignored for bolatile full access record??", E);
615 end if;
617 return;
618 end if;
620 -- No effect if independent components
622 if Has_Independent_Components (E) then
623 Error_Msg_N ("Optimize_Alignment has no effect for &??", E);
624 Error_Msg_N
625 ("\pragma ignored for record with independent components??", E);
626 return;
627 end if;
629 -- No effect if any component is atomic/VFA or is a by-reference type
631 declare
632 Ent : Entity_Id;
634 begin
635 Ent := First_Component_Or_Discriminant (E);
636 while Present (Ent) loop
637 if Is_By_Reference_Type (Etype (Ent))
638 or else Is_Atomic_Or_VFA (Etype (Ent))
639 or else Is_Atomic_Or_VFA (Ent)
640 then
641 Error_Msg_N ("Optimize_Alignment has no effect for &??", E);
643 if Is_Atomic (Etype (Ent)) or else Is_Atomic (Ent) then
644 Error_Msg_N
645 ("\pragma is ignored if atomic "
646 & "components present??", E);
647 else
648 Error_Msg_N
649 ("\pragma is ignored if bolatile full access "
650 & "components present??", E);
651 end if;
653 return;
654 else
655 Next_Component_Or_Discriminant (Ent);
656 end if;
657 end loop;
658 end;
660 -- Optimize_Alignment has no effect on variable length record
662 if not Size_Known_At_Compile_Time (E) then
663 Error_Msg_N ("Optimize_Alignment has no effect for &??", E);
664 Error_Msg_N ("\pragma is ignored for variable length record??", E);
665 return;
666 end if;
668 -- All tests passed, we can set alignment to 1
670 Align := 1;
672 -- Not a record, or not packed
674 else
675 -- The only other cases we worry about here are where the size is
676 -- statically known at compile time.
678 if Known_Static_Esize (E) then
679 Siz := Esize (E);
680 elsif Unknown_Esize (E) and then Known_Static_RM_Size (E) then
681 Siz := RM_Size (E);
682 else
683 return;
684 end if;
686 -- Size is known, alignment is not set
688 -- Reset alignment to match size if the known size is exactly 2, 4,
689 -- or 8 storage units.
691 if Siz = 2 * SSU then
692 Align := 2;
693 elsif Siz = 4 * SSU then
694 Align := 4;
695 elsif Siz = 8 * SSU then
696 Align := 8;
698 -- If Optimize_Alignment is set to Space, then make sure the
699 -- alignment matches the size, for example, if the size is 17
700 -- bytes then we want an alignment of 1 for the type.
702 elsif Optimize_Alignment_Space (E) then
703 if Siz mod (8 * SSU) = 0 then
704 Align := 8;
705 elsif Siz mod (4 * SSU) = 0 then
706 Align := 4;
707 elsif Siz mod (2 * SSU) = 0 then
708 Align := 2;
709 else
710 Align := 1;
711 end if;
713 -- If Optimize_Alignment is set to Time, then we reset for odd
714 -- "in between sizes", for example a 17 bit record is given an
715 -- alignment of 4.
717 elsif Optimize_Alignment_Time (E)
718 and then Siz > SSU
719 and then Siz <= 8 * SSU
720 then
721 if Siz <= 2 * SSU then
722 Align := 2;
723 elsif Siz <= 4 * SSU then
724 Align := 4;
725 else -- Siz <= 8 * SSU then
726 Align := 8;
727 end if;
729 -- No special alignment fiddling needed
731 else
732 return;
733 end if;
734 end if;
736 -- Here we have Set Align to the proposed improved value. Make sure the
737 -- value set does not exceed Maximum_Alignment for the target.
739 if Align > Maximum_Alignment then
740 Align := Maximum_Alignment;
741 end if;
743 -- Further processing for record types only to reduce the alignment
744 -- set by the above processing in some specific cases. We do not
745 -- do this for atomic/VFA records, since we need max alignment there,
747 if Is_Record_Type (E) and then not Is_Atomic_Or_VFA (E) then
749 -- For records, there is generally no point in setting alignment
750 -- higher than word size since we cannot do better than move by
751 -- words in any case. Omit this if we are optimizing for time,
752 -- since conceivably we may be able to do better.
754 if Align > System_Word_Size / SSU
755 and then not Optimize_Alignment_Time (E)
756 then
757 Align := System_Word_Size / SSU;
758 end if;
760 -- Check components. If any component requires a higher alignment,
761 -- then we set that higher alignment in any case. Don't do this if
762 -- we have Optimize_Alignment set to Space. Note that that covers
763 -- the case of packed records, where we already set alignment to 1.
765 if not Optimize_Alignment_Space (E) then
766 declare
767 Comp : Entity_Id;
769 begin
770 Comp := First_Component (E);
771 while Present (Comp) loop
772 if Known_Alignment (Etype (Comp)) then
773 declare
774 Calign : constant Uint := Alignment (Etype (Comp));
776 begin
777 -- The cases to process are when the alignment of the
778 -- component type is larger than the alignment we have
779 -- so far, and either there is no component clause for
780 -- the component, or the length set by the component
781 -- clause matches the length of the component type.
783 if Calign > Align
784 and then
785 (Unknown_Esize (Comp)
786 or else (Known_Static_Esize (Comp)
787 and then
788 Esize (Comp) = Calign * SSU))
789 then
790 Align := UI_To_Int (Calign);
791 end if;
792 end;
793 end if;
795 Next_Component (Comp);
796 end loop;
797 end;
798 end if;
799 end if;
801 -- Set chosen alignment, and increase Esize if necessary to match the
802 -- chosen alignment.
804 Set_Alignment (E, UI_From_Int (Align));
806 if Known_Static_Esize (E)
807 and then Esize (E) < Align * SSU
808 then
809 Set_Esize (E, UI_From_Int (Align * SSU));
810 end if;
811 end Set_Composite_Alignment;
813 --------------------------
814 -- Set_Discrete_RM_Size --
815 --------------------------
817 procedure Set_Discrete_RM_Size (Def_Id : Entity_Id) is
818 FST : constant Entity_Id := First_Subtype (Def_Id);
820 begin
821 -- All discrete types except for the base types in standard are
822 -- constrained, so indicate this by setting Is_Constrained.
824 Set_Is_Constrained (Def_Id);
826 -- Set generic types to have an unknown size, since the representation
827 -- of a generic type is irrelevant, in view of the fact that they have
828 -- nothing to do with code.
830 if Is_Generic_Type (Root_Type (FST)) then
831 Set_RM_Size (Def_Id, Uint_0);
833 -- If the subtype statically matches the first subtype, then it is
834 -- required to have exactly the same layout. This is required by
835 -- aliasing considerations.
837 elsif Def_Id /= FST and then
838 Subtypes_Statically_Match (Def_Id, FST)
839 then
840 Set_RM_Size (Def_Id, RM_Size (FST));
841 Set_Size_Info (Def_Id, FST);
843 -- In all other cases the RM_Size is set to the minimum size. Note that
844 -- this routine is never called for subtypes for which the RM_Size is
845 -- set explicitly by an attribute clause.
847 else
848 Set_RM_Size (Def_Id, UI_From_Int (Minimum_Size (Def_Id)));
849 end if;
850 end Set_Discrete_RM_Size;
852 ------------------------
853 -- Set_Elem_Alignment --
854 ------------------------
856 procedure Set_Elem_Alignment (E : Entity_Id; Align : Nat := 0) is
857 begin
858 -- Do not set alignment for packed array types, this is handled in the
859 -- backend.
861 if Is_Packed_Array_Impl_Type (E) then
862 return;
864 -- If there is an alignment clause, then we respect it
866 elsif Has_Alignment_Clause (E) then
867 return;
869 -- If the size is not set, then don't attempt to set the alignment. This
870 -- happens in the backend layout case for access-to-subprogram types.
872 elsif not Known_Static_Esize (E) then
873 return;
875 -- For access types, do not set the alignment if the size is less than
876 -- the allowed minimum size. This avoids cascaded error messages.
878 elsif Is_Access_Type (E) and then Esize (E) < System_Address_Size then
879 return;
880 end if;
882 -- We attempt to set the alignment in all the other cases
884 declare
885 S : Int;
886 A : Nat;
887 M : Nat;
889 begin
890 -- The given Esize may be larger that int'last because of a previous
891 -- error, and the call to UI_To_Int will fail, so use default.
893 if Esize (E) / SSU > Ttypes.Maximum_Alignment then
894 S := Ttypes.Maximum_Alignment;
896 -- If this is an access type and the target doesn't have strict
897 -- alignment, then cap the alignment to that of a regular access
898 -- type. This will avoid giving fat pointers twice the usual
899 -- alignment for no practical benefit since the misalignment doesn't
900 -- really matter.
902 elsif Is_Access_Type (E)
903 and then not Target_Strict_Alignment
904 then
905 S := System_Address_Size / SSU;
907 else
908 S := UI_To_Int (Esize (E)) / SSU;
909 end if;
911 -- If the default alignment of "double" floating-point types is
912 -- specifically capped, enforce the cap.
914 if Ttypes.Target_Double_Float_Alignment > 0
915 and then S = 8
916 and then Is_Floating_Point_Type (E)
917 then
918 M := Ttypes.Target_Double_Float_Alignment;
920 -- If the default alignment of "double" or larger scalar types is
921 -- specifically capped, enforce the cap.
923 elsif Ttypes.Target_Double_Scalar_Alignment > 0
924 and then S >= 8
925 and then Is_Scalar_Type (E)
926 then
927 M := Ttypes.Target_Double_Scalar_Alignment;
929 -- Otherwise enforce the overall alignment cap
931 else
932 M := Ttypes.Maximum_Alignment;
933 end if;
935 -- We calculate the alignment as the largest power-of-two multiple
936 -- of System.Storage_Unit that does not exceed the object size of
937 -- the type and the maximum allowed alignment, if none was specified.
938 -- Otherwise we only cap it to the maximum allowed alignment.
940 if Align = 0 then
941 A := 1;
942 while 2 * A <= S and then 2 * A <= M loop
943 A := 2 * A;
944 end loop;
945 else
946 A := Nat'Min (Align, M);
947 end if;
949 -- If alignment is currently not set, then we can safely set it to
950 -- this new calculated value.
952 if Unknown_Alignment (E) then
953 Init_Alignment (E, A);
955 -- Cases where we have inherited an alignment
957 -- For constructed types, always reset the alignment, these are
958 -- generally invisible to the user anyway, and that way we are
959 -- sure that no constructed types have weird alignments.
961 elsif not Comes_From_Source (E) then
962 Init_Alignment (E, A);
964 -- If this inherited alignment is the same as the one we computed,
965 -- then obviously everything is fine, and we do not need to reset it.
967 elsif Alignment (E) = A then
968 null;
970 else
971 -- Now we come to the difficult cases of subtypes for which we
972 -- have inherited an alignment different from the computed one.
973 -- We resort to the presence of alignment and size clauses to
974 -- guide our choices. Note that they can generally be present
975 -- only on the first subtype (except for Object_Size) and that
976 -- we need to look at the Rep_Item chain to correctly handle
977 -- derived types.
979 declare
980 FST : constant Entity_Id := First_Subtype (E);
982 function Has_Attribute_Clause
983 (E : Entity_Id;
984 Id : Attribute_Id) return Boolean;
985 -- Wrapper around Get_Attribute_Definition_Clause which tests
986 -- for the presence of the specified attribute clause.
988 --------------------------
989 -- Has_Attribute_Clause --
990 --------------------------
992 function Has_Attribute_Clause
993 (E : Entity_Id;
994 Id : Attribute_Id) return Boolean is
995 begin
996 return Present (Get_Attribute_Definition_Clause (E, Id));
997 end Has_Attribute_Clause;
999 begin
1000 -- If the alignment comes from a clause, then we respect it.
1001 -- Consider for example:
1003 -- type R is new Character;
1004 -- for R'Alignment use 1;
1005 -- for R'Size use 16;
1006 -- subtype S is R;
1008 -- Here R has a specified size of 16 and a specified alignment
1009 -- of 1, and it seems right for S to inherit both values.
1011 if Has_Attribute_Clause (FST, Attribute_Alignment) then
1012 null;
1014 -- Now we come to the cases where we have inherited alignment
1015 -- and size, and overridden the size but not the alignment.
1017 elsif Has_Attribute_Clause (FST, Attribute_Size)
1018 or else Has_Attribute_Clause (FST, Attribute_Object_Size)
1019 or else Has_Attribute_Clause (E, Attribute_Object_Size)
1020 then
1021 -- This is tricky, it might be thought that we should try to
1022 -- inherit the alignment, since that's what the RM implies,
1023 -- but that leads to complex rules and oddities. Consider
1024 -- for example:
1026 -- type R is new Character;
1027 -- for R'Size use 16;
1029 -- It seems quite bogus in this case to inherit an alignment
1030 -- of 1 from the parent type Character. Furthermore, if that
1031 -- is what the programmer really wanted for some odd reason,
1032 -- then he could specify the alignment directly.
1034 -- Moreover we really don't want to inherit the alignment in
1035 -- the case of a specified Object_Size for a subtype, since
1036 -- there would be no way of overriding to give a reasonable
1037 -- value (as we don't have an Object_Alignment attribute).
1038 -- Consider for example:
1040 -- subtype R is Character;
1041 -- for R'Object_Size use 16;
1043 -- If we inherit the alignment of 1, then it will be very
1044 -- inefficient for the subtype and this cannot be fixed.
1046 -- So we make the decision that if Size (or Object_Size) is
1047 -- given and the alignment is not specified with a clause,
1048 -- we reset the alignment to the appropriate value for the
1049 -- specified size. This is a nice simple rule to implement
1050 -- and document.
1052 -- There is a theoretical glitch, which is that a confirming
1053 -- size clause could now change the alignment, which, if we
1054 -- really think that confirming rep clauses should have no
1055 -- effect, could be seen as a no-no. However that's already
1056 -- implemented by Alignment_Check_For_Size_Change so we do
1057 -- not change the philosophy here.
1059 -- Historical note: in versions prior to Nov 6th, 2011, an
1060 -- odd distinction was made between inherited alignments
1061 -- larger than the computed alignment (where the larger
1062 -- alignment was inherited) and inherited alignments smaller
1063 -- than the computed alignment (where the smaller alignment
1064 -- was overridden). This was a dubious fix to get around an
1065 -- ACATS problem which seems to have disappeared anyway, and
1066 -- in any case, this peculiarity was never documented.
1068 Init_Alignment (E, A);
1070 -- If no Size (or Object_Size) was specified, then we have
1071 -- inherited the object size, so we should also inherit the
1072 -- alignment and not modify it.
1074 else
1075 null;
1076 end if;
1077 end;
1078 end if;
1079 end;
1080 end Set_Elem_Alignment;
1082 end Layout;