2009-08-05 Paul Thomas <pault@gcc.gnu.org>
[official-gcc.git] / gcc / fwprop.c
blobdf4edf93574153854abef843f03f57177982e10d
1 /* RTL-based forward propagation pass for GNU compiler.
2 Copyright (C) 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
3 Contributed by Paolo Bonzini and Steven Bosscher.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "toplev.h"
27 #include "timevar.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "emit-rtl.h"
31 #include "insn-config.h"
32 #include "recog.h"
33 #include "flags.h"
34 #include "obstack.h"
35 #include "basic-block.h"
36 #include "output.h"
37 #include "df.h"
38 #include "target.h"
39 #include "cfgloop.h"
40 #include "tree-pass.h"
41 #include "domwalk.h"
44 /* This pass does simple forward propagation and simplification when an
45 operand of an insn can only come from a single def. This pass uses
46 df.c, so it is global. However, we only do limited analysis of
47 available expressions.
49 1) The pass tries to propagate the source of the def into the use,
50 and checks if the result is independent of the substituted value.
51 For example, the high word of a (zero_extend:DI (reg:SI M)) is always
52 zero, independent of the source register.
54 In particular, we propagate constants into the use site. Sometimes
55 RTL expansion did not put the constant in the same insn on purpose,
56 to satisfy a predicate, and the result will fail to be recognized;
57 but this happens rarely and in this case we can still create a
58 REG_EQUAL note. For multi-word operations, this
60 (set (subreg:SI (reg:DI 120) 0) (const_int 0))
61 (set (subreg:SI (reg:DI 120) 4) (const_int -1))
62 (set (subreg:SI (reg:DI 122) 0)
63 (ior:SI (subreg:SI (reg:DI 119) 0) (subreg:SI (reg:DI 120) 0)))
64 (set (subreg:SI (reg:DI 122) 4)
65 (ior:SI (subreg:SI (reg:DI 119) 4) (subreg:SI (reg:DI 120) 4)))
67 can be simplified to the much simpler
69 (set (subreg:SI (reg:DI 122) 0) (subreg:SI (reg:DI 119)))
70 (set (subreg:SI (reg:DI 122) 4) (const_int -1))
72 This particular propagation is also effective at putting together
73 complex addressing modes. We are more aggressive inside MEMs, in
74 that all definitions are propagated if the use is in a MEM; if the
75 result is a valid memory address we check address_cost to decide
76 whether the substitution is worthwhile.
78 2) The pass propagates register copies. This is not as effective as
79 the copy propagation done by CSE's canon_reg, which works by walking
80 the instruction chain, it can help the other transformations.
82 We should consider removing this optimization, and instead reorder the
83 RTL passes, because GCSE does this transformation too. With some luck,
84 the CSE pass at the end of rest_of_handle_gcse could also go away.
86 3) The pass looks for paradoxical subregs that are actually unnecessary.
87 Things like this:
89 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
90 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
91 (set (reg:SI 122) (plus:SI (subreg:SI (reg:QI 120) 0)
92 (subreg:SI (reg:QI 121) 0)))
94 are very common on machines that can only do word-sized operations.
95 For each use of a paradoxical subreg (subreg:WIDER (reg:NARROW N) 0),
96 if it has a single def and it is (subreg:NARROW (reg:WIDE M) 0),
97 we can replace the paradoxical subreg with simply (reg:WIDE M). The
98 above will simplify this to
100 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
101 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
102 (set (reg:SI 122) (plus:SI (reg:SI 118) (reg:SI 119)))
104 where the first two insns are now dead.
106 We used to use reaching definitions to find which uses have a
107 single reaching definition (sounds obvious...), but this is too
108 complex a problem in nasty testcases like PR33928. Now we use the
109 multiple definitions problem in df-problems.c. The similarity
110 between that problem and SSA form creation is taken further, in
111 that fwprop does a dominator walk to create its chains; however,
112 instead of creating a PHI function where multiple definitions meet
113 I just punt and record only singleton use-def chains, which is
114 all that is needed by fwprop. */
117 static int num_changes;
119 DEF_VEC_P(df_ref);
120 DEF_VEC_ALLOC_P(df_ref,heap);
121 VEC(df_ref,heap) *use_def_ref;
122 VEC(df_ref,heap) *reg_defs;
123 VEC(df_ref,heap) *reg_defs_stack;
126 /* Return the only def in USE's use-def chain, or NULL if there is
127 more than one def in the chain. */
129 static inline df_ref
130 get_def_for_use (df_ref use)
132 return VEC_index (df_ref, use_def_ref, DF_REF_ID (use));
136 /* Update the reg_defs vector with non-partial definitions in DEF_REC.
137 TOP_FLAG says which artificials uses should be used, when DEF_REC
138 is an artificial def vector. LOCAL_MD is modified as after a
139 df_md_simulate_* function; we do more or less the same processing
140 done there, so we do not use those functions. */
142 #define DF_MD_GEN_FLAGS \
143 (DF_REF_PARTIAL | DF_REF_CONDITIONAL | DF_REF_MAY_CLOBBER)
145 static void
146 process_defs (bitmap local_md, df_ref *def_rec, int top_flag)
148 df_ref def;
149 while ((def = *def_rec++) != NULL)
151 df_ref curr_def = VEC_index (df_ref, reg_defs, DF_REF_REGNO (def));
152 unsigned int dregno;
154 if ((DF_REF_FLAGS (def) & DF_REF_AT_TOP) != top_flag)
155 continue;
157 dregno = DF_REF_REGNO (def);
158 if (curr_def)
159 VEC_safe_push (df_ref, heap, reg_defs_stack, curr_def);
160 else
162 /* Do not store anything if "transitioning" from NULL to NULL. But
163 otherwise, push a special entry on the stack to tell the
164 leave_block callback that the entry in reg_defs was NULL. */
165 if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS)
167 else
168 VEC_safe_push (df_ref, heap, reg_defs_stack, def);
171 if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS)
173 bitmap_set_bit (local_md, dregno);
174 VEC_replace (df_ref, reg_defs, dregno, NULL);
176 else
178 bitmap_clear_bit (local_md, dregno);
179 VEC_replace (df_ref, reg_defs, dregno, def);
185 /* Fill the use_def_ref vector with values for the uses in USE_REC,
186 taking reaching definitions info from LOCAL_MD and REG_DEFS.
187 TOP_FLAG says which artificials uses should be used, when USE_REC
188 is an artificial use vector. */
190 static void
191 process_uses (bitmap local_md, df_ref *use_rec, int top_flag)
193 df_ref use;
194 while ((use = *use_rec++) != NULL)
195 if ((DF_REF_FLAGS (use) & DF_REF_AT_TOP) == top_flag)
197 unsigned int uregno = DF_REF_REGNO (use);
198 if (VEC_index (df_ref, reg_defs, uregno)
199 && !bitmap_bit_p (local_md, uregno))
200 VEC_replace (df_ref, use_def_ref, DF_REF_ID (use),
201 VEC_index (df_ref, reg_defs, uregno));
206 static void
207 single_def_use_enter_block (struct dom_walk_data *walk_data, basic_block bb)
209 bitmap local_md = (bitmap) walk_data->global_data;
210 int bb_index = bb->index;
211 struct df_md_bb_info *bb_info = df_md_get_bb_info (bb_index);
212 rtx insn;
214 bitmap_copy (local_md, bb_info->in);
216 /* Push a marker for the leave_block callback. */
217 VEC_safe_push (df_ref, heap, reg_defs_stack, NULL);
219 process_uses (local_md, df_get_artificial_uses (bb_index), DF_REF_AT_TOP);
220 process_defs (local_md, df_get_artificial_defs (bb_index), DF_REF_AT_TOP);
222 FOR_BB_INSNS (bb, insn)
223 if (INSN_P (insn))
225 unsigned int uid = INSN_UID (insn);
226 process_uses (local_md, DF_INSN_UID_USES (uid), 0);
227 process_uses (local_md, DF_INSN_UID_EQ_USES (uid), 0);
228 process_defs (local_md, DF_INSN_UID_DEFS (uid), 0);
231 process_uses (local_md, df_get_artificial_uses (bb_index), 0);
232 process_defs (local_md, df_get_artificial_defs (bb_index), 0);
235 /* Pop the definitions created in this basic block when leaving its
236 dominated parts. */
238 static void
239 single_def_use_leave_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
240 basic_block bb ATTRIBUTE_UNUSED)
242 df_ref saved_def;
243 while ((saved_def = VEC_pop (df_ref, reg_defs_stack)) != NULL)
245 unsigned int dregno = DF_REF_REGNO (saved_def);
247 /* See also process_defs. */
248 if (saved_def == VEC_index (df_ref, reg_defs, dregno))
249 VEC_replace (df_ref, reg_defs, dregno, NULL);
250 else
251 VEC_replace (df_ref, reg_defs, dregno, saved_def);
256 /* Build a vector holding the reaching definitions of uses reached by a
257 single dominating definition. */
259 static void
260 build_single_def_use_links (void)
262 struct dom_walk_data walk_data;
263 bitmap local_md;
265 /* We use the multiple definitions problem to compute our restricted
266 use-def chains. */
267 df_set_flags (DF_EQ_NOTES);
268 df_md_add_problem ();
269 df_analyze ();
270 df_maybe_reorganize_use_refs (DF_REF_ORDER_BY_INSN_WITH_NOTES);
272 use_def_ref = VEC_alloc (df_ref, heap, DF_USES_TABLE_SIZE ());
273 VEC_safe_grow_cleared (df_ref, heap, use_def_ref, DF_USES_TABLE_SIZE ());
275 reg_defs = VEC_alloc (df_ref, heap, max_reg_num ());
276 VEC_safe_grow_cleared (df_ref, heap, reg_defs, max_reg_num ());
278 reg_defs_stack = VEC_alloc (df_ref, heap, n_basic_blocks * 10);
279 local_md = BITMAP_ALLOC (NULL);
281 /* Walk the dominator tree looking for single reaching definitions
282 dominating the uses. This is similar to how SSA form is built. */
283 walk_data.dom_direction = CDI_DOMINATORS;
284 walk_data.initialize_block_local_data = NULL;
285 walk_data.before_dom_children = single_def_use_enter_block;
286 walk_data.after_dom_children = single_def_use_leave_block;
287 walk_data.global_data = local_md;
289 init_walk_dominator_tree (&walk_data);
290 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
291 fini_walk_dominator_tree (&walk_data);
293 BITMAP_FREE (local_md);
294 VEC_free (df_ref, heap, reg_defs);
295 VEC_free (df_ref, heap, reg_defs_stack);
299 /* Do not try to replace constant addresses or addresses of local and
300 argument slots. These MEM expressions are made only once and inserted
301 in many instructions, as well as being used to control symbol table
302 output. It is not safe to clobber them.
304 There are some uncommon cases where the address is already in a register
305 for some reason, but we cannot take advantage of that because we have
306 no easy way to unshare the MEM. In addition, looking up all stack
307 addresses is costly. */
309 static bool
310 can_simplify_addr (rtx addr)
312 rtx reg;
314 if (CONSTANT_ADDRESS_P (addr))
315 return false;
317 if (GET_CODE (addr) == PLUS)
318 reg = XEXP (addr, 0);
319 else
320 reg = addr;
322 return (!REG_P (reg)
323 || (REGNO (reg) != FRAME_POINTER_REGNUM
324 && REGNO (reg) != HARD_FRAME_POINTER_REGNUM
325 && REGNO (reg) != ARG_POINTER_REGNUM));
328 /* Returns a canonical version of X for the address, from the point of view,
329 that all multiplications are represented as MULT instead of the multiply
330 by a power of 2 being represented as ASHIFT.
332 Every ASHIFT we find has been made by simplify_gen_binary and was not
333 there before, so it is not shared. So we can do this in place. */
335 static void
336 canonicalize_address (rtx x)
338 for (;;)
339 switch (GET_CODE (x))
341 case ASHIFT:
342 if (CONST_INT_P (XEXP (x, 1))
343 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (GET_MODE (x))
344 && INTVAL (XEXP (x, 1)) >= 0)
346 HOST_WIDE_INT shift = INTVAL (XEXP (x, 1));
347 PUT_CODE (x, MULT);
348 XEXP (x, 1) = gen_int_mode ((HOST_WIDE_INT) 1 << shift,
349 GET_MODE (x));
352 x = XEXP (x, 0);
353 break;
355 case PLUS:
356 if (GET_CODE (XEXP (x, 0)) == PLUS
357 || GET_CODE (XEXP (x, 0)) == ASHIFT
358 || GET_CODE (XEXP (x, 0)) == CONST)
359 canonicalize_address (XEXP (x, 0));
361 x = XEXP (x, 1);
362 break;
364 case CONST:
365 x = XEXP (x, 0);
366 break;
368 default:
369 return;
373 /* OLD is a memory address. Return whether it is good to use NEW instead,
374 for a memory access in the given MODE. */
376 static bool
377 should_replace_address (rtx old_rtx, rtx new_rtx, enum machine_mode mode,
378 bool speed)
380 int gain;
382 if (rtx_equal_p (old_rtx, new_rtx) || !memory_address_p (mode, new_rtx))
383 return false;
385 /* Copy propagation is always ok. */
386 if (REG_P (old_rtx) && REG_P (new_rtx))
387 return true;
389 /* Prefer the new address if it is less expensive. */
390 gain = address_cost (old_rtx, mode, speed) - address_cost (new_rtx, mode, speed);
392 /* If the addresses have equivalent cost, prefer the new address
393 if it has the highest `rtx_cost'. That has the potential of
394 eliminating the most insns without additional costs, and it
395 is the same that cse.c used to do. */
396 if (gain == 0)
397 gain = rtx_cost (new_rtx, SET, speed) - rtx_cost (old_rtx, SET, speed);
399 return (gain > 0);
403 /* Flags for the last parameter of propagate_rtx_1. */
405 enum {
406 /* If PR_CAN_APPEAR is true, propagate_rtx_1 always returns true;
407 if it is false, propagate_rtx_1 returns false if, for at least
408 one occurrence OLD, it failed to collapse the result to a constant.
409 For example, (mult:M (reg:M A) (minus:M (reg:M B) (reg:M A))) may
410 collapse to zero if replacing (reg:M B) with (reg:M A).
412 PR_CAN_APPEAR is disregarded inside MEMs: in that case,
413 propagate_rtx_1 just tries to make cheaper and valid memory
414 addresses. */
415 PR_CAN_APPEAR = 1,
417 /* If PR_HANDLE_MEM is not set, propagate_rtx_1 won't attempt any replacement
418 outside memory addresses. This is needed because propagate_rtx_1 does
419 not do any analysis on memory; thus it is very conservative and in general
420 it will fail if non-read-only MEMs are found in the source expression.
422 PR_HANDLE_MEM is set when the source of the propagation was not
423 another MEM. Then, it is safe not to treat non-read-only MEMs as
424 ``opaque'' objects. */
425 PR_HANDLE_MEM = 2,
427 /* Set when costs should be optimized for speed. */
428 PR_OPTIMIZE_FOR_SPEED = 4
432 /* Replace all occurrences of OLD in *PX with NEW and try to simplify the
433 resulting expression. Replace *PX with a new RTL expression if an
434 occurrence of OLD was found.
436 This is only a wrapper around simplify-rtx.c: do not add any pattern
437 matching code here. (The sole exception is the handling of LO_SUM, but
438 that is because there is no simplify_gen_* function for LO_SUM). */
440 static bool
441 propagate_rtx_1 (rtx *px, rtx old_rtx, rtx new_rtx, int flags)
443 rtx x = *px, tem = NULL_RTX, op0, op1, op2;
444 enum rtx_code code = GET_CODE (x);
445 enum machine_mode mode = GET_MODE (x);
446 enum machine_mode op_mode;
447 bool can_appear = (flags & PR_CAN_APPEAR) != 0;
448 bool valid_ops = true;
450 if (!(flags & PR_HANDLE_MEM) && MEM_P (x) && !MEM_READONLY_P (x))
452 /* If unsafe, change MEMs to CLOBBERs or SCRATCHes (to preserve whether
453 they have side effects or not). */
454 *px = (side_effects_p (x)
455 ? gen_rtx_CLOBBER (GET_MODE (x), const0_rtx)
456 : gen_rtx_SCRATCH (GET_MODE (x)));
457 return false;
460 /* If X is OLD_RTX, return NEW_RTX. But not if replacing only within an
461 address, and we are *not* inside one. */
462 if (x == old_rtx)
464 *px = new_rtx;
465 return can_appear;
468 /* If this is an expression, try recursive substitution. */
469 switch (GET_RTX_CLASS (code))
471 case RTX_UNARY:
472 op0 = XEXP (x, 0);
473 op_mode = GET_MODE (op0);
474 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
475 if (op0 == XEXP (x, 0))
476 return true;
477 tem = simplify_gen_unary (code, mode, op0, op_mode);
478 break;
480 case RTX_BIN_ARITH:
481 case RTX_COMM_ARITH:
482 op0 = XEXP (x, 0);
483 op1 = XEXP (x, 1);
484 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
485 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
486 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
487 return true;
488 tem = simplify_gen_binary (code, mode, op0, op1);
489 break;
491 case RTX_COMPARE:
492 case RTX_COMM_COMPARE:
493 op0 = XEXP (x, 0);
494 op1 = XEXP (x, 1);
495 op_mode = GET_MODE (op0) != VOIDmode ? GET_MODE (op0) : GET_MODE (op1);
496 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
497 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
498 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
499 return true;
500 tem = simplify_gen_relational (code, mode, op_mode, op0, op1);
501 break;
503 case RTX_TERNARY:
504 case RTX_BITFIELD_OPS:
505 op0 = XEXP (x, 0);
506 op1 = XEXP (x, 1);
507 op2 = XEXP (x, 2);
508 op_mode = GET_MODE (op0);
509 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
510 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
511 valid_ops &= propagate_rtx_1 (&op2, old_rtx, new_rtx, flags);
512 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1) && op2 == XEXP (x, 2))
513 return true;
514 if (op_mode == VOIDmode)
515 op_mode = GET_MODE (op0);
516 tem = simplify_gen_ternary (code, mode, op_mode, op0, op1, op2);
517 break;
519 case RTX_EXTRA:
520 /* The only case we try to handle is a SUBREG. */
521 if (code == SUBREG)
523 op0 = XEXP (x, 0);
524 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
525 if (op0 == XEXP (x, 0))
526 return true;
527 tem = simplify_gen_subreg (mode, op0, GET_MODE (SUBREG_REG (x)),
528 SUBREG_BYTE (x));
530 break;
532 case RTX_OBJ:
533 if (code == MEM && x != new_rtx)
535 rtx new_op0;
536 op0 = XEXP (x, 0);
538 /* There are some addresses that we cannot work on. */
539 if (!can_simplify_addr (op0))
540 return true;
542 op0 = new_op0 = targetm.delegitimize_address (op0);
543 valid_ops &= propagate_rtx_1 (&new_op0, old_rtx, new_rtx,
544 flags | PR_CAN_APPEAR);
546 /* Dismiss transformation that we do not want to carry on. */
547 if (!valid_ops
548 || new_op0 == op0
549 || !(GET_MODE (new_op0) == GET_MODE (op0)
550 || GET_MODE (new_op0) == VOIDmode))
551 return true;
553 canonicalize_address (new_op0);
555 /* Copy propagations are always ok. Otherwise check the costs. */
556 if (!(REG_P (old_rtx) && REG_P (new_rtx))
557 && !should_replace_address (op0, new_op0, GET_MODE (x),
558 flags & PR_OPTIMIZE_FOR_SPEED))
559 return true;
561 tem = replace_equiv_address_nv (x, new_op0);
564 else if (code == LO_SUM)
566 op0 = XEXP (x, 0);
567 op1 = XEXP (x, 1);
569 /* The only simplification we do attempts to remove references to op0
570 or make it constant -- in both cases, op0's invalidity will not
571 make the result invalid. */
572 propagate_rtx_1 (&op0, old_rtx, new_rtx, flags | PR_CAN_APPEAR);
573 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
574 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
575 return true;
577 /* (lo_sum (high x) x) -> x */
578 if (GET_CODE (op0) == HIGH && rtx_equal_p (XEXP (op0, 0), op1))
579 tem = op1;
580 else
581 tem = gen_rtx_LO_SUM (mode, op0, op1);
583 /* OP1 is likely not a legitimate address, otherwise there would have
584 been no LO_SUM. We want it to disappear if it is invalid, return
585 false in that case. */
586 return memory_address_p (mode, tem);
589 else if (code == REG)
591 if (rtx_equal_p (x, old_rtx))
593 *px = new_rtx;
594 return can_appear;
597 break;
599 default:
600 break;
603 /* No change, no trouble. */
604 if (tem == NULL_RTX)
605 return true;
607 *px = tem;
609 /* The replacement we made so far is valid, if all of the recursive
610 replacements were valid, or we could simplify everything to
611 a constant. */
612 return valid_ops || can_appear || CONSTANT_P (tem);
616 /* for_each_rtx traversal function that returns 1 if BODY points to
617 a non-constant mem. */
619 static int
620 varying_mem_p (rtx *body, void *data ATTRIBUTE_UNUSED)
622 rtx x = *body;
623 return MEM_P (x) && !MEM_READONLY_P (x);
627 /* Replace all occurrences of OLD in X with NEW and try to simplify the
628 resulting expression (in mode MODE). Return a new expression if it is
629 a constant, otherwise X.
631 Simplifications where occurrences of NEW collapse to a constant are always
632 accepted. All simplifications are accepted if NEW is a pseudo too.
633 Otherwise, we accept simplifications that have a lower or equal cost. */
635 static rtx
636 propagate_rtx (rtx x, enum machine_mode mode, rtx old_rtx, rtx new_rtx,
637 bool speed)
639 rtx tem;
640 bool collapsed;
641 int flags;
643 if (REG_P (new_rtx) && REGNO (new_rtx) < FIRST_PSEUDO_REGISTER)
644 return NULL_RTX;
646 flags = 0;
647 if (REG_P (new_rtx) || CONSTANT_P (new_rtx))
648 flags |= PR_CAN_APPEAR;
649 if (!for_each_rtx (&new_rtx, varying_mem_p, NULL))
650 flags |= PR_HANDLE_MEM;
652 if (speed)
653 flags |= PR_OPTIMIZE_FOR_SPEED;
655 tem = x;
656 collapsed = propagate_rtx_1 (&tem, old_rtx, copy_rtx (new_rtx), flags);
657 if (tem == x || !collapsed)
658 return NULL_RTX;
660 /* gen_lowpart_common will not be able to process VOIDmode entities other
661 than CONST_INTs. */
662 if (GET_MODE (tem) == VOIDmode && !CONST_INT_P (tem))
663 return NULL_RTX;
665 if (GET_MODE (tem) == VOIDmode)
666 tem = rtl_hooks.gen_lowpart_no_emit (mode, tem);
667 else
668 gcc_assert (GET_MODE (tem) == mode);
670 return tem;
676 /* Return true if the register from reference REF is killed
677 between FROM to (but not including) TO. */
679 static bool
680 local_ref_killed_between_p (df_ref ref, rtx from, rtx to)
682 rtx insn;
684 for (insn = from; insn != to; insn = NEXT_INSN (insn))
686 df_ref *def_rec;
687 if (!INSN_P (insn))
688 continue;
690 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
692 df_ref def = *def_rec;
693 if (DF_REF_REGNO (ref) == DF_REF_REGNO (def))
694 return true;
697 return false;
701 /* Check if the given DEF is available in INSN. This would require full
702 computation of available expressions; we check only restricted conditions:
703 - if DEF is the sole definition of its register, go ahead;
704 - in the same basic block, we check for no definitions killing the
705 definition of DEF_INSN;
706 - if USE's basic block has DEF's basic block as the sole predecessor,
707 we check if the definition is killed after DEF_INSN or before
708 TARGET_INSN insn, in their respective basic blocks. */
709 static bool
710 use_killed_between (df_ref use, rtx def_insn, rtx target_insn)
712 basic_block def_bb = BLOCK_FOR_INSN (def_insn);
713 basic_block target_bb = BLOCK_FOR_INSN (target_insn);
714 int regno;
715 df_ref def;
717 /* We used to have a def reaching a use that is _before_ the def,
718 with the def not dominating the use even though the use and def
719 are in the same basic block, when a register may be used
720 uninitialized in a loop. This should not happen anymore since
721 we do not use reaching definitions, but still we test for such
722 cases and assume that DEF is not available. */
723 if (def_bb == target_bb
724 ? DF_INSN_LUID (def_insn) >= DF_INSN_LUID (target_insn)
725 : !dominated_by_p (CDI_DOMINATORS, target_bb, def_bb))
726 return true;
728 /* Check if the reg in USE has only one definition. We already
729 know that this definition reaches use, or we wouldn't be here.
730 However, this is invalid for hard registers because if they are
731 live at the beginning of the function it does not mean that we
732 have an uninitialized access. */
733 regno = DF_REF_REGNO (use);
734 def = DF_REG_DEF_CHAIN (regno);
735 if (def
736 && DF_REF_NEXT_REG (def) == NULL
737 && regno >= FIRST_PSEUDO_REGISTER)
738 return false;
740 /* Check locally if we are in the same basic block. */
741 if (def_bb == target_bb)
742 return local_ref_killed_between_p (use, def_insn, target_insn);
744 /* Finally, if DEF_BB is the sole predecessor of TARGET_BB. */
745 if (single_pred_p (target_bb)
746 && single_pred (target_bb) == def_bb)
748 df_ref x;
750 /* See if USE is killed between DEF_INSN and the last insn in the
751 basic block containing DEF_INSN. */
752 x = df_bb_regno_last_def_find (def_bb, regno);
753 if (x && DF_INSN_LUID (DF_REF_INSN (x)) >= DF_INSN_LUID (def_insn))
754 return true;
756 /* See if USE is killed between TARGET_INSN and the first insn in the
757 basic block containing TARGET_INSN. */
758 x = df_bb_regno_first_def_find (target_bb, regno);
759 if (x && DF_INSN_LUID (DF_REF_INSN (x)) < DF_INSN_LUID (target_insn))
760 return true;
762 return false;
765 /* Otherwise assume the worst case. */
766 return true;
770 /* Check if all uses in DEF_INSN can be used in TARGET_INSN. This
771 would require full computation of available expressions;
772 we check only restricted conditions, see use_killed_between. */
773 static bool
774 all_uses_available_at (rtx def_insn, rtx target_insn)
776 df_ref *use_rec;
777 struct df_insn_info *insn_info = DF_INSN_INFO_GET (def_insn);
778 rtx def_set = single_set (def_insn);
780 gcc_assert (def_set);
782 /* If target_insn comes right after def_insn, which is very common
783 for addresses, we can use a quicker test. */
784 if (NEXT_INSN (def_insn) == target_insn
785 && REG_P (SET_DEST (def_set)))
787 rtx def_reg = SET_DEST (def_set);
789 /* If the insn uses the reg that it defines, the substitution is
790 invalid. */
791 for (use_rec = DF_INSN_INFO_USES (insn_info); *use_rec; use_rec++)
793 df_ref use = *use_rec;
794 if (rtx_equal_p (DF_REF_REG (use), def_reg))
795 return false;
797 for (use_rec = DF_INSN_INFO_EQ_USES (insn_info); *use_rec; use_rec++)
799 df_ref use = *use_rec;
800 if (rtx_equal_p (DF_REF_REG (use), def_reg))
801 return false;
804 else
806 /* Look at all the uses of DEF_INSN, and see if they are not
807 killed between DEF_INSN and TARGET_INSN. */
808 for (use_rec = DF_INSN_INFO_USES (insn_info); *use_rec; use_rec++)
810 df_ref use = *use_rec;
811 if (use_killed_between (use, def_insn, target_insn))
812 return false;
814 for (use_rec = DF_INSN_INFO_EQ_USES (insn_info); *use_rec; use_rec++)
816 df_ref use = *use_rec;
817 if (use_killed_between (use, def_insn, target_insn))
818 return false;
822 return true;
826 struct find_occurrence_data
828 rtx find;
829 rtx *retval;
832 /* Callback for for_each_rtx, used in find_occurrence.
833 See if PX is the rtx we have to find. Return 1 to stop for_each_rtx
834 if successful, or 0 to continue traversing otherwise. */
836 static int
837 find_occurrence_callback (rtx *px, void *data)
839 struct find_occurrence_data *fod = (struct find_occurrence_data *) data;
840 rtx x = *px;
841 rtx find = fod->find;
843 if (x == find)
845 fod->retval = px;
846 return 1;
849 return 0;
852 /* Return a pointer to one of the occurrences of register FIND in *PX. */
854 static rtx *
855 find_occurrence (rtx *px, rtx find)
857 struct find_occurrence_data data;
859 gcc_assert (REG_P (find)
860 || (GET_CODE (find) == SUBREG
861 && REG_P (SUBREG_REG (find))));
863 data.find = find;
864 data.retval = NULL;
865 for_each_rtx (px, find_occurrence_callback, &data);
866 return data.retval;
870 /* Inside INSN, the expression rooted at *LOC has been changed, moving some
871 uses from USE_VEC. Find those that are present, and create new items
872 in the data flow object of the pass. Mark any new uses as having the
873 given TYPE. */
874 static void
875 update_df (rtx insn, rtx *loc, df_ref *use_rec, enum df_ref_type type,
876 int new_flags)
878 bool changed = false;
880 /* Add a use for the registers that were propagated. */
881 while (*use_rec)
883 df_ref use = *use_rec;
884 df_ref orig_use = use, new_use;
885 int width = -1;
886 int offset = -1;
887 enum machine_mode mode = VOIDmode;
888 rtx *new_loc = find_occurrence (loc, DF_REF_REG (orig_use));
889 use_rec++;
891 if (!new_loc)
892 continue;
894 if (DF_REF_FLAGS_IS_SET (orig_use, DF_REF_SIGN_EXTRACT | DF_REF_ZERO_EXTRACT))
896 width = DF_REF_EXTRACT_WIDTH (orig_use);
897 offset = DF_REF_EXTRACT_OFFSET (orig_use);
898 mode = DF_REF_EXTRACT_MODE (orig_use);
901 /* Add a new insn use. Use the original type, because it says if the
902 use was within a MEM. */
903 new_use = df_ref_create (DF_REF_REG (orig_use), new_loc,
904 insn, BLOCK_FOR_INSN (insn),
905 type, DF_REF_FLAGS (orig_use) | new_flags,
906 width, offset, mode);
908 /* Set up the use-def chain. */
909 gcc_assert (DF_REF_ID (new_use) == (int) VEC_length (df_ref, use_def_ref));
910 VEC_safe_push (df_ref, heap, use_def_ref, get_def_for_use (orig_use));
911 changed = true;
913 if (changed)
914 df_insn_rescan (insn);
918 /* Try substituting NEW into LOC, which originated from forward propagation
919 of USE's value from DEF_INSN. SET_REG_EQUAL says whether we are
920 substituting the whole SET_SRC, so we can set a REG_EQUAL note if the
921 new insn is not recognized. Return whether the substitution was
922 performed. */
924 static bool
925 try_fwprop_subst (df_ref use, rtx *loc, rtx new_rtx, rtx def_insn, bool set_reg_equal)
927 rtx insn = DF_REF_INSN (use);
928 enum df_ref_type type = DF_REF_TYPE (use);
929 int flags = DF_REF_FLAGS (use);
930 rtx set = single_set (insn);
931 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
932 int old_cost = rtx_cost (SET_SRC (set), SET, speed);
933 bool ok;
935 if (dump_file)
937 fprintf (dump_file, "\nIn insn %d, replacing\n ", INSN_UID (insn));
938 print_inline_rtx (dump_file, *loc, 2);
939 fprintf (dump_file, "\n with ");
940 print_inline_rtx (dump_file, new_rtx, 2);
941 fprintf (dump_file, "\n");
944 validate_unshare_change (insn, loc, new_rtx, true);
945 if (!verify_changes (0))
947 if (dump_file)
948 fprintf (dump_file, "Changes to insn %d not recognized\n",
949 INSN_UID (insn));
950 ok = false;
953 else if (DF_REF_TYPE (use) == DF_REF_REG_USE
954 && rtx_cost (SET_SRC (set), SET, speed) > old_cost)
956 if (dump_file)
957 fprintf (dump_file, "Changes to insn %d not profitable\n",
958 INSN_UID (insn));
959 ok = false;
962 else
964 if (dump_file)
965 fprintf (dump_file, "Changed insn %d\n", INSN_UID (insn));
966 ok = true;
969 if (ok)
971 confirm_change_group ();
972 num_changes++;
974 df_ref_remove (use);
975 if (!CONSTANT_P (new_rtx))
977 struct df_insn_info *insn_info = DF_INSN_INFO_GET (def_insn);
978 update_df (insn, loc, DF_INSN_INFO_USES (insn_info), type, flags);
979 update_df (insn, loc, DF_INSN_INFO_EQ_USES (insn_info), type, flags);
982 else
984 cancel_changes (0);
986 /* Can also record a simplified value in a REG_EQUAL note,
987 making a new one if one does not already exist. */
988 if (set_reg_equal)
990 if (dump_file)
991 fprintf (dump_file, " Setting REG_EQUAL note\n");
993 set_unique_reg_note (insn, REG_EQUAL, copy_rtx (new_rtx));
995 /* ??? Is this still necessary if we add the note through
996 set_unique_reg_note? */
997 if (!CONSTANT_P (new_rtx))
999 struct df_insn_info *insn_info = DF_INSN_INFO_GET (def_insn);
1000 update_df (insn, loc, DF_INSN_INFO_USES (insn_info),
1001 type, DF_REF_IN_NOTE);
1002 update_df (insn, loc, DF_INSN_INFO_EQ_USES (insn_info),
1003 type, DF_REF_IN_NOTE);
1008 return ok;
1012 /* If USE is a paradoxical subreg, see if it can be replaced by a pseudo. */
1014 static bool
1015 forward_propagate_subreg (df_ref use, rtx def_insn, rtx def_set)
1017 rtx use_reg = DF_REF_REG (use);
1018 rtx use_insn, src;
1020 /* Only consider paradoxical subregs... */
1021 enum machine_mode use_mode = GET_MODE (use_reg);
1022 if (GET_CODE (use_reg) != SUBREG
1023 || !REG_P (SET_DEST (def_set))
1024 || GET_MODE_SIZE (use_mode)
1025 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (use_reg))))
1026 return false;
1028 /* If this is a paradoxical SUBREG, we have no idea what value the
1029 extra bits would have. However, if the operand is equivalent to
1030 a SUBREG whose operand is the same as our mode, and all the modes
1031 are within a word, we can just use the inner operand because
1032 these SUBREGs just say how to treat the register. */
1033 use_insn = DF_REF_INSN (use);
1034 src = SET_SRC (def_set);
1035 if (GET_CODE (src) == SUBREG
1036 && REG_P (SUBREG_REG (src))
1037 && GET_MODE (SUBREG_REG (src)) == use_mode
1038 && subreg_lowpart_p (src)
1039 && all_uses_available_at (def_insn, use_insn))
1040 return try_fwprop_subst (use, DF_REF_LOC (use), SUBREG_REG (src),
1041 def_insn, false);
1042 else
1043 return false;
1046 /* Try to replace USE with SRC (defined in DEF_INSN) in __asm. */
1048 static bool
1049 forward_propagate_asm (df_ref use, rtx def_insn, rtx def_set, rtx reg)
1051 rtx use_insn = DF_REF_INSN (use), src, use_pat, asm_operands, new_rtx, *loc;
1052 int speed_p, i;
1053 df_ref *use_vec;
1055 gcc_assert ((DF_REF_FLAGS (use) & DF_REF_IN_NOTE) == 0);
1057 src = SET_SRC (def_set);
1058 use_pat = PATTERN (use_insn);
1060 /* In __asm don't replace if src might need more registers than
1061 reg, as that could increase register pressure on the __asm. */
1062 use_vec = DF_INSN_USES (def_insn);
1063 if (use_vec[0] && use_vec[1])
1064 return false;
1066 speed_p = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
1067 asm_operands = NULL_RTX;
1068 switch (GET_CODE (use_pat))
1070 case ASM_OPERANDS:
1071 asm_operands = use_pat;
1072 break;
1073 case SET:
1074 if (MEM_P (SET_DEST (use_pat)))
1076 loc = &SET_DEST (use_pat);
1077 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p);
1078 if (new_rtx)
1079 validate_unshare_change (use_insn, loc, new_rtx, true);
1081 asm_operands = SET_SRC (use_pat);
1082 break;
1083 case PARALLEL:
1084 for (i = 0; i < XVECLEN (use_pat, 0); i++)
1085 if (GET_CODE (XVECEXP (use_pat, 0, i)) == SET)
1087 if (MEM_P (SET_DEST (XVECEXP (use_pat, 0, i))))
1089 loc = &SET_DEST (XVECEXP (use_pat, 0, i));
1090 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg,
1091 src, speed_p);
1092 if (new_rtx)
1093 validate_unshare_change (use_insn, loc, new_rtx, true);
1095 asm_operands = SET_SRC (XVECEXP (use_pat, 0, i));
1097 else if (GET_CODE (XVECEXP (use_pat, 0, i)) == ASM_OPERANDS)
1098 asm_operands = XVECEXP (use_pat, 0, i);
1099 break;
1100 default:
1101 gcc_unreachable ();
1104 gcc_assert (asm_operands && GET_CODE (asm_operands) == ASM_OPERANDS);
1105 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (asm_operands); i++)
1107 loc = &ASM_OPERANDS_INPUT (asm_operands, i);
1108 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p);
1109 if (new_rtx)
1110 validate_unshare_change (use_insn, loc, new_rtx, true);
1113 if (num_changes_pending () == 0 || !apply_change_group ())
1114 return false;
1116 num_changes++;
1117 return true;
1120 /* Try to replace USE with SRC (defined in DEF_INSN) and simplify the
1121 result. */
1123 static bool
1124 forward_propagate_and_simplify (df_ref use, rtx def_insn, rtx def_set)
1126 rtx use_insn = DF_REF_INSN (use);
1127 rtx use_set = single_set (use_insn);
1128 rtx src, reg, new_rtx, *loc;
1129 bool set_reg_equal;
1130 enum machine_mode mode;
1131 int asm_use = -1;
1133 if (INSN_CODE (use_insn) < 0)
1134 asm_use = asm_noperands (PATTERN (use_insn));
1136 if (!use_set && asm_use < 0)
1137 return false;
1139 /* Do not propagate into PC, CC0, etc. */
1140 if (use_set && GET_MODE (SET_DEST (use_set)) == VOIDmode)
1141 return false;
1143 /* If def and use are subreg, check if they match. */
1144 reg = DF_REF_REG (use);
1145 if (GET_CODE (reg) == SUBREG
1146 && GET_CODE (SET_DEST (def_set)) == SUBREG
1147 && (SUBREG_BYTE (SET_DEST (def_set)) != SUBREG_BYTE (reg)
1148 || GET_MODE (SET_DEST (def_set)) != GET_MODE (reg)))
1149 return false;
1151 /* Check if the def had a subreg, but the use has the whole reg. */
1152 if (REG_P (reg) && GET_CODE (SET_DEST (def_set)) == SUBREG)
1153 return false;
1155 /* Check if the use has a subreg, but the def had the whole reg. Unlike the
1156 previous case, the optimization is possible and often useful indeed. */
1157 if (GET_CODE (reg) == SUBREG && REG_P (SET_DEST (def_set)))
1158 reg = SUBREG_REG (reg);
1160 /* Check if the substitution is valid (last, because it's the most
1161 expensive check!). */
1162 src = SET_SRC (def_set);
1163 if (!CONSTANT_P (src) && !all_uses_available_at (def_insn, use_insn))
1164 return false;
1166 /* Check if the def is loading something from the constant pool; in this
1167 case we would undo optimization such as compress_float_constant.
1168 Still, we can set a REG_EQUAL note. */
1169 if (MEM_P (src) && MEM_READONLY_P (src))
1171 rtx x = avoid_constant_pool_reference (src);
1172 if (x != src && use_set)
1174 rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1175 rtx old_rtx = note ? XEXP (note, 0) : SET_SRC (use_set);
1176 rtx new_rtx = simplify_replace_rtx (old_rtx, src, x);
1177 if (old_rtx != new_rtx)
1178 set_unique_reg_note (use_insn, REG_EQUAL, copy_rtx (new_rtx));
1180 return false;
1183 if (asm_use >= 0)
1184 return forward_propagate_asm (use, def_insn, def_set, reg);
1186 /* Else try simplifying. */
1188 if (DF_REF_TYPE (use) == DF_REF_REG_MEM_STORE)
1190 loc = &SET_DEST (use_set);
1191 set_reg_equal = false;
1193 else
1195 rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1196 if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
1197 loc = &XEXP (note, 0);
1198 else
1199 loc = &SET_SRC (use_set);
1201 /* Do not replace an existing REG_EQUAL note if the insn is not
1202 recognized. Either we're already replacing in the note, or
1203 we'll separately try plugging the definition in the note and
1204 simplifying. */
1205 set_reg_equal = (note == NULL_RTX);
1208 if (GET_MODE (*loc) == VOIDmode)
1209 mode = GET_MODE (SET_DEST (use_set));
1210 else
1211 mode = GET_MODE (*loc);
1213 new_rtx = propagate_rtx (*loc, mode, reg, src,
1214 optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn)));
1216 if (!new_rtx)
1217 return false;
1219 return try_fwprop_subst (use, loc, new_rtx, def_insn, set_reg_equal);
1223 /* Given a use USE of an insn, if it has a single reaching
1224 definition, try to forward propagate it into that insn. */
1226 static void
1227 forward_propagate_into (df_ref use)
1229 df_ref def;
1230 rtx def_insn, def_set, use_insn;
1231 rtx parent;
1233 if (DF_REF_FLAGS (use) & DF_REF_READ_WRITE)
1234 return;
1235 if (DF_REF_IS_ARTIFICIAL (use))
1236 return;
1238 /* Only consider uses that have a single definition. */
1239 def = get_def_for_use (use);
1240 if (!def)
1241 return;
1242 if (DF_REF_FLAGS (def) & DF_REF_READ_WRITE)
1243 return;
1244 if (DF_REF_IS_ARTIFICIAL (def))
1245 return;
1247 /* Do not propagate loop invariant definitions inside the loop. */
1248 if (DF_REF_BB (def)->loop_father != DF_REF_BB (use)->loop_father)
1249 return;
1251 /* Check if the use is still present in the insn! */
1252 use_insn = DF_REF_INSN (use);
1253 if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
1254 parent = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1255 else
1256 parent = PATTERN (use_insn);
1258 if (!reg_mentioned_p (DF_REF_REG (use), parent))
1259 return;
1261 def_insn = DF_REF_INSN (def);
1262 if (multiple_sets (def_insn))
1263 return;
1264 def_set = single_set (def_insn);
1265 if (!def_set)
1266 return;
1268 /* Only try one kind of propagation. If two are possible, we'll
1269 do it on the following iterations. */
1270 if (!forward_propagate_and_simplify (use, def_insn, def_set))
1271 forward_propagate_subreg (use, def_insn, def_set);
1275 static void
1276 fwprop_init (void)
1278 num_changes = 0;
1279 calculate_dominance_info (CDI_DOMINATORS);
1281 /* We do not always want to propagate into loops, so we have to find
1282 loops and be careful about them. But we have to call flow_loops_find
1283 before df_analyze, because flow_loops_find may introduce new jump
1284 insns (sadly) if we are not working in cfglayout mode. */
1285 loop_optimizer_init (0);
1287 build_single_def_use_links ();
1288 df_set_flags (DF_DEFER_INSN_RESCAN);
1291 static void
1292 fwprop_done (void)
1294 loop_optimizer_finalize ();
1296 VEC_free (df_ref, heap, use_def_ref);
1297 free_dominance_info (CDI_DOMINATORS);
1298 cleanup_cfg (0);
1299 delete_trivially_dead_insns (get_insns (), max_reg_num ());
1301 if (dump_file)
1302 fprintf (dump_file,
1303 "\nNumber of successful forward propagations: %d\n\n",
1304 num_changes);
1305 df_remove_problem (df_chain);
1310 /* Main entry point. */
1312 static bool
1313 gate_fwprop (void)
1315 return optimize > 0 && flag_forward_propagate;
1318 static unsigned int
1319 fwprop (void)
1321 unsigned i;
1323 fwprop_init ();
1325 /* Go through all the uses. update_df will create new ones at the
1326 end, and we'll go through them as well.
1328 Do not forward propagate addresses into loops until after unrolling.
1329 CSE did so because it was able to fix its own mess, but we are not. */
1331 for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
1333 df_ref use = DF_USES_GET (i);
1334 if (use)
1335 if (DF_REF_TYPE (use) == DF_REF_REG_USE
1336 || DF_REF_BB (use)->loop_father == NULL
1337 /* The outer most loop is not really a loop. */
1338 || loop_outer (DF_REF_BB (use)->loop_father) == NULL)
1339 forward_propagate_into (use);
1342 fwprop_done ();
1343 return 0;
1346 struct rtl_opt_pass pass_rtl_fwprop =
1349 RTL_PASS,
1350 "fwprop1", /* name */
1351 gate_fwprop, /* gate */
1352 fwprop, /* execute */
1353 NULL, /* sub */
1354 NULL, /* next */
1355 0, /* static_pass_number */
1356 TV_FWPROP, /* tv_id */
1357 0, /* properties_required */
1358 0, /* properties_provided */
1359 0, /* properties_destroyed */
1360 0, /* todo_flags_start */
1361 TODO_df_finish | TODO_verify_rtl_sharing |
1362 TODO_dump_func /* todo_flags_finish */
1366 static unsigned int
1367 fwprop_addr (void)
1369 unsigned i;
1370 fwprop_init ();
1372 /* Go through all the uses. update_df will create new ones at the
1373 end, and we'll go through them as well. */
1374 for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
1376 df_ref use = DF_USES_GET (i);
1377 if (use)
1378 if (DF_REF_TYPE (use) != DF_REF_REG_USE
1379 && DF_REF_BB (use)->loop_father != NULL
1380 /* The outer most loop is not really a loop. */
1381 && loop_outer (DF_REF_BB (use)->loop_father) != NULL)
1382 forward_propagate_into (use);
1385 fwprop_done ();
1387 return 0;
1390 struct rtl_opt_pass pass_rtl_fwprop_addr =
1393 RTL_PASS,
1394 "fwprop2", /* name */
1395 gate_fwprop, /* gate */
1396 fwprop_addr, /* execute */
1397 NULL, /* sub */
1398 NULL, /* next */
1399 0, /* static_pass_number */
1400 TV_FWPROP, /* tv_id */
1401 0, /* properties_required */
1402 0, /* properties_provided */
1403 0, /* properties_destroyed */
1404 0, /* todo_flags_start */
1405 TODO_df_finish | TODO_verify_rtl_sharing |
1406 TODO_dump_func /* todo_flags_finish */