2009-08-05 Paul Thomas <pault@gcc.gnu.org>
[official-gcc.git] / gcc / function.c
blob2294b971547f631ea05f5507277ab5a5fb084748
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register. */
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "except.h"
44 #include "function.h"
45 #include "expr.h"
46 #include "optabs.h"
47 #include "libfuncs.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "output.h"
53 #include "basic-block.h"
54 #include "toplev.h"
55 #include "hashtab.h"
56 #include "ggc.h"
57 #include "tm_p.h"
58 #include "integrate.h"
59 #include "langhooks.h"
60 #include "target.h"
61 #include "cfglayout.h"
62 #include "gimple.h"
63 #include "tree-pass.h"
64 #include "predict.h"
65 #include "df.h"
66 #include "timevar.h"
67 #include "vecprim.h"
69 /* So we can assign to cfun in this file. */
70 #undef cfun
72 #ifndef STACK_ALIGNMENT_NEEDED
73 #define STACK_ALIGNMENT_NEEDED 1
74 #endif
76 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
78 /* Some systems use __main in a way incompatible with its use in gcc, in these
79 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
80 give the same symbol without quotes for an alternative entry point. You
81 must define both, or neither. */
82 #ifndef NAME__MAIN
83 #define NAME__MAIN "__main"
84 #endif
86 /* Round a value to the lowest integer less than it that is a multiple of
87 the required alignment. Avoid using division in case the value is
88 negative. Assume the alignment is a power of two. */
89 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
91 /* Similar, but round to the next highest integer that meets the
92 alignment. */
93 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
95 /* Nonzero if function being compiled doesn't contain any calls
96 (ignoring the prologue and epilogue). This is set prior to
97 local register allocation and is valid for the remaining
98 compiler passes. */
99 int current_function_is_leaf;
101 /* Nonzero if function being compiled doesn't modify the stack pointer
102 (ignoring the prologue and epilogue). This is only valid after
103 pass_stack_ptr_mod has run. */
104 int current_function_sp_is_unchanging;
106 /* Nonzero if the function being compiled is a leaf function which only
107 uses leaf registers. This is valid after reload (specifically after
108 sched2) and is useful only if the port defines LEAF_REGISTERS. */
109 int current_function_uses_only_leaf_regs;
111 /* Nonzero once virtual register instantiation has been done.
112 assign_stack_local uses frame_pointer_rtx when this is nonzero.
113 calls.c:emit_library_call_value_1 uses it to set up
114 post-instantiation libcalls. */
115 int virtuals_instantiated;
117 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
118 static GTY(()) int funcdef_no;
120 /* These variables hold pointers to functions to create and destroy
121 target specific, per-function data structures. */
122 struct machine_function * (*init_machine_status) (void);
124 /* The currently compiled function. */
125 struct function *cfun = 0;
127 /* These hashes record the prologue and epilogue insns. */
128 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
129 htab_t prologue_insn_hash;
130 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
131 htab_t epilogue_insn_hash;
133 /* Forward declarations. */
135 static struct temp_slot *find_temp_slot_from_address (rtx);
136 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
137 static void pad_below (struct args_size *, enum machine_mode, tree);
138 static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
139 static int all_blocks (tree, tree *);
140 static tree *get_block_vector (tree, int *);
141 extern tree debug_find_var_in_block_tree (tree, tree);
142 /* We always define `record_insns' even if it's not used so that we
143 can always export `prologue_epilogue_contains'. */
144 static void record_insns (rtx, rtx, htab_t *) ATTRIBUTE_UNUSED;
145 static bool contains (const_rtx, htab_t);
146 #ifdef HAVE_return
147 static void emit_return_into_block (basic_block);
148 #endif
149 static void prepare_function_start (void);
150 static void do_clobber_return_reg (rtx, void *);
151 static void do_use_return_reg (rtx, void *);
152 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
154 /* Stack of nested functions. */
155 /* Keep track of the cfun stack. */
157 typedef struct function *function_p;
159 DEF_VEC_P(function_p);
160 DEF_VEC_ALLOC_P(function_p,heap);
161 static VEC(function_p,heap) *function_context_stack;
163 /* Save the current context for compilation of a nested function.
164 This is called from language-specific code. */
166 void
167 push_function_context (void)
169 if (cfun == 0)
170 allocate_struct_function (NULL, false);
172 VEC_safe_push (function_p, heap, function_context_stack, cfun);
173 set_cfun (NULL);
176 /* Restore the last saved context, at the end of a nested function.
177 This function is called from language-specific code. */
179 void
180 pop_function_context (void)
182 struct function *p = VEC_pop (function_p, function_context_stack);
183 set_cfun (p);
184 current_function_decl = p->decl;
186 /* Reset variables that have known state during rtx generation. */
187 virtuals_instantiated = 0;
188 generating_concat_p = 1;
191 /* Clear out all parts of the state in F that can safely be discarded
192 after the function has been parsed, but not compiled, to let
193 garbage collection reclaim the memory. */
195 void
196 free_after_parsing (struct function *f)
198 f->language = 0;
201 /* Clear out all parts of the state in F that can safely be discarded
202 after the function has been compiled, to let garbage collection
203 reclaim the memory. */
205 void
206 free_after_compilation (struct function *f)
208 prologue_insn_hash = NULL;
209 epilogue_insn_hash = NULL;
211 if (crtl->emit.regno_pointer_align)
212 free (crtl->emit.regno_pointer_align);
214 memset (crtl, 0, sizeof (struct rtl_data));
215 f->eh = NULL;
216 f->machine = NULL;
217 f->cfg = NULL;
219 regno_reg_rtx = NULL;
220 insn_locators_free ();
223 /* Return size needed for stack frame based on slots so far allocated.
224 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
225 the caller may have to do that. */
227 HOST_WIDE_INT
228 get_frame_size (void)
230 if (FRAME_GROWS_DOWNWARD)
231 return -frame_offset;
232 else
233 return frame_offset;
236 /* Issue an error message and return TRUE if frame OFFSET overflows in
237 the signed target pointer arithmetics for function FUNC. Otherwise
238 return FALSE. */
240 bool
241 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
243 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
245 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
246 /* Leave room for the fixed part of the frame. */
247 - 64 * UNITS_PER_WORD)
249 error_at (DECL_SOURCE_LOCATION (func),
250 "total size of local objects too large");
251 return TRUE;
254 return FALSE;
257 /* Return stack slot alignment in bits for TYPE and MODE. */
259 static unsigned int
260 get_stack_local_alignment (tree type, enum machine_mode mode)
262 unsigned int alignment;
264 if (mode == BLKmode)
265 alignment = BIGGEST_ALIGNMENT;
266 else
267 alignment = GET_MODE_ALIGNMENT (mode);
269 /* Allow the frond-end to (possibly) increase the alignment of this
270 stack slot. */
271 if (! type)
272 type = lang_hooks.types.type_for_mode (mode, 0);
274 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
277 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
278 with machine mode MODE.
280 ALIGN controls the amount of alignment for the address of the slot:
281 0 means according to MODE,
282 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
283 -2 means use BITS_PER_UNIT,
284 positive specifies alignment boundary in bits.
286 If REDUCE_ALIGNMENT_OK is true, it is OK to reduce alignment.
288 We do not round to stack_boundary here. */
291 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size,
292 int align,
293 bool reduce_alignment_ok ATTRIBUTE_UNUSED)
295 rtx x, addr;
296 int bigend_correction = 0;
297 unsigned int alignment, alignment_in_bits;
298 int frame_off, frame_alignment, frame_phase;
300 if (align == 0)
302 alignment = get_stack_local_alignment (NULL, mode);
303 alignment /= BITS_PER_UNIT;
305 else if (align == -1)
307 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
308 size = CEIL_ROUND (size, alignment);
310 else if (align == -2)
311 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
312 else
313 alignment = align / BITS_PER_UNIT;
315 alignment_in_bits = alignment * BITS_PER_UNIT;
317 if (FRAME_GROWS_DOWNWARD)
318 frame_offset -= size;
320 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
321 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
323 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
324 alignment = alignment_in_bits / BITS_PER_UNIT;
327 if (SUPPORTS_STACK_ALIGNMENT)
329 if (crtl->stack_alignment_estimated < alignment_in_bits)
331 if (!crtl->stack_realign_processed)
332 crtl->stack_alignment_estimated = alignment_in_bits;
333 else
335 /* If stack is realigned and stack alignment value
336 hasn't been finalized, it is OK not to increase
337 stack_alignment_estimated. The bigger alignment
338 requirement is recorded in stack_alignment_needed
339 below. */
340 gcc_assert (!crtl->stack_realign_finalized);
341 if (!crtl->stack_realign_needed)
343 /* It is OK to reduce the alignment as long as the
344 requested size is 0 or the estimated stack
345 alignment >= mode alignment. */
346 gcc_assert (reduce_alignment_ok
347 || size == 0
348 || (crtl->stack_alignment_estimated
349 >= GET_MODE_ALIGNMENT (mode)));
350 alignment_in_bits = crtl->stack_alignment_estimated;
351 alignment = alignment_in_bits / BITS_PER_UNIT;
357 if (crtl->stack_alignment_needed < alignment_in_bits)
358 crtl->stack_alignment_needed = alignment_in_bits;
359 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
360 crtl->max_used_stack_slot_alignment = alignment_in_bits;
362 /* Calculate how many bytes the start of local variables is off from
363 stack alignment. */
364 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
365 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
366 frame_phase = frame_off ? frame_alignment - frame_off : 0;
368 /* Round the frame offset to the specified alignment. The default is
369 to always honor requests to align the stack but a port may choose to
370 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
371 if (STACK_ALIGNMENT_NEEDED
372 || mode != BLKmode
373 || size != 0)
375 /* We must be careful here, since FRAME_OFFSET might be negative and
376 division with a negative dividend isn't as well defined as we might
377 like. So we instead assume that ALIGNMENT is a power of two and
378 use logical operations which are unambiguous. */
379 if (FRAME_GROWS_DOWNWARD)
380 frame_offset
381 = (FLOOR_ROUND (frame_offset - frame_phase,
382 (unsigned HOST_WIDE_INT) alignment)
383 + frame_phase);
384 else
385 frame_offset
386 = (CEIL_ROUND (frame_offset - frame_phase,
387 (unsigned HOST_WIDE_INT) alignment)
388 + frame_phase);
391 /* On a big-endian machine, if we are allocating more space than we will use,
392 use the least significant bytes of those that are allocated. */
393 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
394 bigend_correction = size - GET_MODE_SIZE (mode);
396 /* If we have already instantiated virtual registers, return the actual
397 address relative to the frame pointer. */
398 if (virtuals_instantiated)
399 addr = plus_constant (frame_pointer_rtx,
400 trunc_int_for_mode
401 (frame_offset + bigend_correction
402 + STARTING_FRAME_OFFSET, Pmode));
403 else
404 addr = plus_constant (virtual_stack_vars_rtx,
405 trunc_int_for_mode
406 (frame_offset + bigend_correction,
407 Pmode));
409 if (!FRAME_GROWS_DOWNWARD)
410 frame_offset += size;
412 x = gen_rtx_MEM (mode, addr);
413 set_mem_align (x, alignment_in_bits);
414 MEM_NOTRAP_P (x) = 1;
416 stack_slot_list
417 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
419 if (frame_offset_overflow (frame_offset, current_function_decl))
420 frame_offset = 0;
422 return x;
425 /* Wrap up assign_stack_local_1 with last parameter as false. */
428 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
430 return assign_stack_local_1 (mode, size, align, false);
434 /* In order to evaluate some expressions, such as function calls returning
435 structures in memory, we need to temporarily allocate stack locations.
436 We record each allocated temporary in the following structure.
438 Associated with each temporary slot is a nesting level. When we pop up
439 one level, all temporaries associated with the previous level are freed.
440 Normally, all temporaries are freed after the execution of the statement
441 in which they were created. However, if we are inside a ({...}) grouping,
442 the result may be in a temporary and hence must be preserved. If the
443 result could be in a temporary, we preserve it if we can determine which
444 one it is in. If we cannot determine which temporary may contain the
445 result, all temporaries are preserved. A temporary is preserved by
446 pretending it was allocated at the previous nesting level.
448 Automatic variables are also assigned temporary slots, at the nesting
449 level where they are defined. They are marked a "kept" so that
450 free_temp_slots will not free them. */
452 struct GTY(()) temp_slot {
453 /* Points to next temporary slot. */
454 struct temp_slot *next;
455 /* Points to previous temporary slot. */
456 struct temp_slot *prev;
457 /* The rtx to used to reference the slot. */
458 rtx slot;
459 /* The size, in units, of the slot. */
460 HOST_WIDE_INT size;
461 /* The type of the object in the slot, or zero if it doesn't correspond
462 to a type. We use this to determine whether a slot can be reused.
463 It can be reused if objects of the type of the new slot will always
464 conflict with objects of the type of the old slot. */
465 tree type;
466 /* The alignment (in bits) of the slot. */
467 unsigned int align;
468 /* Nonzero if this temporary is currently in use. */
469 char in_use;
470 /* Nonzero if this temporary has its address taken. */
471 char addr_taken;
472 /* Nesting level at which this slot is being used. */
473 int level;
474 /* Nonzero if this should survive a call to free_temp_slots. */
475 int keep;
476 /* The offset of the slot from the frame_pointer, including extra space
477 for alignment. This info is for combine_temp_slots. */
478 HOST_WIDE_INT base_offset;
479 /* The size of the slot, including extra space for alignment. This
480 info is for combine_temp_slots. */
481 HOST_WIDE_INT full_size;
484 /* A table of addresses that represent a stack slot. The table is a mapping
485 from address RTXen to a temp slot. */
486 static GTY((param_is(struct temp_slot_address_entry))) htab_t temp_slot_address_table;
488 /* Entry for the above hash table. */
489 struct GTY(()) temp_slot_address_entry {
490 hashval_t hash;
491 rtx address;
492 struct temp_slot *temp_slot;
495 /* Removes temporary slot TEMP from LIST. */
497 static void
498 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
500 if (temp->next)
501 temp->next->prev = temp->prev;
502 if (temp->prev)
503 temp->prev->next = temp->next;
504 else
505 *list = temp->next;
507 temp->prev = temp->next = NULL;
510 /* Inserts temporary slot TEMP to LIST. */
512 static void
513 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
515 temp->next = *list;
516 if (*list)
517 (*list)->prev = temp;
518 temp->prev = NULL;
519 *list = temp;
522 /* Returns the list of used temp slots at LEVEL. */
524 static struct temp_slot **
525 temp_slots_at_level (int level)
527 if (level >= (int) VEC_length (temp_slot_p, used_temp_slots))
528 VEC_safe_grow_cleared (temp_slot_p, gc, used_temp_slots, level + 1);
530 return &(VEC_address (temp_slot_p, used_temp_slots)[level]);
533 /* Returns the maximal temporary slot level. */
535 static int
536 max_slot_level (void)
538 if (!used_temp_slots)
539 return -1;
541 return VEC_length (temp_slot_p, used_temp_slots) - 1;
544 /* Moves temporary slot TEMP to LEVEL. */
546 static void
547 move_slot_to_level (struct temp_slot *temp, int level)
549 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
550 insert_slot_to_list (temp, temp_slots_at_level (level));
551 temp->level = level;
554 /* Make temporary slot TEMP available. */
556 static void
557 make_slot_available (struct temp_slot *temp)
559 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
560 insert_slot_to_list (temp, &avail_temp_slots);
561 temp->in_use = 0;
562 temp->level = -1;
565 /* Compute the hash value for an address -> temp slot mapping.
566 The value is cached on the mapping entry. */
567 static hashval_t
568 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
570 int do_not_record = 0;
571 return hash_rtx (t->address, GET_MODE (t->address),
572 &do_not_record, NULL, false);
575 /* Return the hash value for an address -> temp slot mapping. */
576 static hashval_t
577 temp_slot_address_hash (const void *p)
579 const struct temp_slot_address_entry *t;
580 t = (const struct temp_slot_address_entry *) p;
581 return t->hash;
584 /* Compare two address -> temp slot mapping entries. */
585 static int
586 temp_slot_address_eq (const void *p1, const void *p2)
588 const struct temp_slot_address_entry *t1, *t2;
589 t1 = (const struct temp_slot_address_entry *) p1;
590 t2 = (const struct temp_slot_address_entry *) p2;
591 return exp_equiv_p (t1->address, t2->address, 0, true);
594 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
595 static void
596 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
598 void **slot;
599 struct temp_slot_address_entry *t = GGC_NEW (struct temp_slot_address_entry);
600 t->address = address;
601 t->temp_slot = temp_slot;
602 t->hash = temp_slot_address_compute_hash (t);
603 slot = htab_find_slot_with_hash (temp_slot_address_table, t, t->hash, INSERT);
604 *slot = t;
607 /* Remove an address -> temp slot mapping entry if the temp slot is
608 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
609 static int
610 remove_unused_temp_slot_addresses_1 (void **slot, void *data ATTRIBUTE_UNUSED)
612 const struct temp_slot_address_entry *t;
613 t = (const struct temp_slot_address_entry *) *slot;
614 if (! t->temp_slot->in_use)
615 *slot = NULL;
616 return 1;
619 /* Remove all mappings of addresses to unused temp slots. */
620 static void
621 remove_unused_temp_slot_addresses (void)
623 htab_traverse (temp_slot_address_table,
624 remove_unused_temp_slot_addresses_1,
625 NULL);
628 /* Find the temp slot corresponding to the object at address X. */
630 static struct temp_slot *
631 find_temp_slot_from_address (rtx x)
633 struct temp_slot *p;
634 struct temp_slot_address_entry tmp, *t;
636 /* First try the easy way:
637 See if X exists in the address -> temp slot mapping. */
638 tmp.address = x;
639 tmp.temp_slot = NULL;
640 tmp.hash = temp_slot_address_compute_hash (&tmp);
641 t = (struct temp_slot_address_entry *)
642 htab_find_with_hash (temp_slot_address_table, &tmp, tmp.hash);
643 if (t)
644 return t->temp_slot;
646 /* If we have a sum involving a register, see if it points to a temp
647 slot. */
648 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
649 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
650 return p;
651 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
652 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
653 return p;
655 /* Last resort: Address is a virtual stack var address. */
656 if (GET_CODE (x) == PLUS
657 && XEXP (x, 0) == virtual_stack_vars_rtx
658 && CONST_INT_P (XEXP (x, 1)))
660 int i;
661 for (i = max_slot_level (); i >= 0; i--)
662 for (p = *temp_slots_at_level (i); p; p = p->next)
664 if (INTVAL (XEXP (x, 1)) >= p->base_offset
665 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
666 return p;
670 return NULL;
673 /* Allocate a temporary stack slot and record it for possible later
674 reuse.
676 MODE is the machine mode to be given to the returned rtx.
678 SIZE is the size in units of the space required. We do no rounding here
679 since assign_stack_local will do any required rounding.
681 KEEP is 1 if this slot is to be retained after a call to
682 free_temp_slots. Automatic variables for a block are allocated
683 with this flag. KEEP values of 2 or 3 were needed respectively
684 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
685 or for SAVE_EXPRs, but they are now unused.
687 TYPE is the type that will be used for the stack slot. */
690 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
691 int keep, tree type)
693 unsigned int align;
694 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
695 rtx slot;
697 /* If SIZE is -1 it means that somebody tried to allocate a temporary
698 of a variable size. */
699 gcc_assert (size != -1);
701 /* These are now unused. */
702 gcc_assert (keep <= 1);
704 align = get_stack_local_alignment (type, mode);
706 /* Try to find an available, already-allocated temporary of the proper
707 mode which meets the size and alignment requirements. Choose the
708 smallest one with the closest alignment.
710 If assign_stack_temp is called outside of the tree->rtl expansion,
711 we cannot reuse the stack slots (that may still refer to
712 VIRTUAL_STACK_VARS_REGNUM). */
713 if (!virtuals_instantiated)
715 for (p = avail_temp_slots; p; p = p->next)
717 if (p->align >= align && p->size >= size
718 && GET_MODE (p->slot) == mode
719 && objects_must_conflict_p (p->type, type)
720 && (best_p == 0 || best_p->size > p->size
721 || (best_p->size == p->size && best_p->align > p->align)))
723 if (p->align == align && p->size == size)
725 selected = p;
726 cut_slot_from_list (selected, &avail_temp_slots);
727 best_p = 0;
728 break;
730 best_p = p;
735 /* Make our best, if any, the one to use. */
736 if (best_p)
738 selected = best_p;
739 cut_slot_from_list (selected, &avail_temp_slots);
741 /* If there are enough aligned bytes left over, make them into a new
742 temp_slot so that the extra bytes don't get wasted. Do this only
743 for BLKmode slots, so that we can be sure of the alignment. */
744 if (GET_MODE (best_p->slot) == BLKmode)
746 int alignment = best_p->align / BITS_PER_UNIT;
747 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
749 if (best_p->size - rounded_size >= alignment)
751 p = GGC_NEW (struct temp_slot);
752 p->in_use = p->addr_taken = 0;
753 p->size = best_p->size - rounded_size;
754 p->base_offset = best_p->base_offset + rounded_size;
755 p->full_size = best_p->full_size - rounded_size;
756 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
757 p->align = best_p->align;
758 p->type = best_p->type;
759 insert_slot_to_list (p, &avail_temp_slots);
761 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
762 stack_slot_list);
764 best_p->size = rounded_size;
765 best_p->full_size = rounded_size;
770 /* If we still didn't find one, make a new temporary. */
771 if (selected == 0)
773 HOST_WIDE_INT frame_offset_old = frame_offset;
775 p = GGC_NEW (struct temp_slot);
777 /* We are passing an explicit alignment request to assign_stack_local.
778 One side effect of that is assign_stack_local will not round SIZE
779 to ensure the frame offset remains suitably aligned.
781 So for requests which depended on the rounding of SIZE, we go ahead
782 and round it now. We also make sure ALIGNMENT is at least
783 BIGGEST_ALIGNMENT. */
784 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
785 p->slot = assign_stack_local (mode,
786 (mode == BLKmode
787 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
788 : size),
789 align);
791 p->align = align;
793 /* The following slot size computation is necessary because we don't
794 know the actual size of the temporary slot until assign_stack_local
795 has performed all the frame alignment and size rounding for the
796 requested temporary. Note that extra space added for alignment
797 can be either above or below this stack slot depending on which
798 way the frame grows. We include the extra space if and only if it
799 is above this slot. */
800 if (FRAME_GROWS_DOWNWARD)
801 p->size = frame_offset_old - frame_offset;
802 else
803 p->size = size;
805 /* Now define the fields used by combine_temp_slots. */
806 if (FRAME_GROWS_DOWNWARD)
808 p->base_offset = frame_offset;
809 p->full_size = frame_offset_old - frame_offset;
811 else
813 p->base_offset = frame_offset_old;
814 p->full_size = frame_offset - frame_offset_old;
817 selected = p;
820 p = selected;
821 p->in_use = 1;
822 p->addr_taken = 0;
823 p->type = type;
824 p->level = temp_slot_level;
825 p->keep = keep;
827 pp = temp_slots_at_level (p->level);
828 insert_slot_to_list (p, pp);
829 insert_temp_slot_address (XEXP (p->slot, 0), p);
831 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
832 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
833 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
835 /* If we know the alias set for the memory that will be used, use
836 it. If there's no TYPE, then we don't know anything about the
837 alias set for the memory. */
838 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
839 set_mem_align (slot, align);
841 /* If a type is specified, set the relevant flags. */
842 if (type != 0)
844 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
845 MEM_SET_IN_STRUCT_P (slot, (AGGREGATE_TYPE_P (type)
846 || TREE_CODE (type) == COMPLEX_TYPE));
848 MEM_NOTRAP_P (slot) = 1;
850 return slot;
853 /* Allocate a temporary stack slot and record it for possible later
854 reuse. First three arguments are same as in preceding function. */
857 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
859 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
862 /* Assign a temporary.
863 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
864 and so that should be used in error messages. In either case, we
865 allocate of the given type.
866 KEEP is as for assign_stack_temp.
867 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
868 it is 0 if a register is OK.
869 DONT_PROMOTE is 1 if we should not promote values in register
870 to wider modes. */
873 assign_temp (tree type_or_decl, int keep, int memory_required,
874 int dont_promote ATTRIBUTE_UNUSED)
876 tree type, decl;
877 enum machine_mode mode;
878 #ifdef PROMOTE_MODE
879 int unsignedp;
880 #endif
882 if (DECL_P (type_or_decl))
883 decl = type_or_decl, type = TREE_TYPE (decl);
884 else
885 decl = NULL, type = type_or_decl;
887 mode = TYPE_MODE (type);
888 #ifdef PROMOTE_MODE
889 unsignedp = TYPE_UNSIGNED (type);
890 #endif
892 if (mode == BLKmode || memory_required)
894 HOST_WIDE_INT size = int_size_in_bytes (type);
895 rtx tmp;
897 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
898 problems with allocating the stack space. */
899 if (size == 0)
900 size = 1;
902 /* Unfortunately, we don't yet know how to allocate variable-sized
903 temporaries. However, sometimes we can find a fixed upper limit on
904 the size, so try that instead. */
905 else if (size == -1)
906 size = max_int_size_in_bytes (type);
908 /* The size of the temporary may be too large to fit into an integer. */
909 /* ??? Not sure this should happen except for user silliness, so limit
910 this to things that aren't compiler-generated temporaries. The
911 rest of the time we'll die in assign_stack_temp_for_type. */
912 if (decl && size == -1
913 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
915 error ("size of variable %q+D is too large", decl);
916 size = 1;
919 tmp = assign_stack_temp_for_type (mode, size, keep, type);
920 return tmp;
923 #ifdef PROMOTE_MODE
924 if (! dont_promote)
925 mode = promote_mode (type, mode, &unsignedp);
926 #endif
928 return gen_reg_rtx (mode);
931 /* Combine temporary stack slots which are adjacent on the stack.
933 This allows for better use of already allocated stack space. This is only
934 done for BLKmode slots because we can be sure that we won't have alignment
935 problems in this case. */
937 static void
938 combine_temp_slots (void)
940 struct temp_slot *p, *q, *next, *next_q;
941 int num_slots;
943 /* We can't combine slots, because the information about which slot
944 is in which alias set will be lost. */
945 if (flag_strict_aliasing)
946 return;
948 /* If there are a lot of temp slots, don't do anything unless
949 high levels of optimization. */
950 if (! flag_expensive_optimizations)
951 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
952 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
953 return;
955 for (p = avail_temp_slots; p; p = next)
957 int delete_p = 0;
959 next = p->next;
961 if (GET_MODE (p->slot) != BLKmode)
962 continue;
964 for (q = p->next; q; q = next_q)
966 int delete_q = 0;
968 next_q = q->next;
970 if (GET_MODE (q->slot) != BLKmode)
971 continue;
973 if (p->base_offset + p->full_size == q->base_offset)
975 /* Q comes after P; combine Q into P. */
976 p->size += q->size;
977 p->full_size += q->full_size;
978 delete_q = 1;
980 else if (q->base_offset + q->full_size == p->base_offset)
982 /* P comes after Q; combine P into Q. */
983 q->size += p->size;
984 q->full_size += p->full_size;
985 delete_p = 1;
986 break;
988 if (delete_q)
989 cut_slot_from_list (q, &avail_temp_slots);
992 /* Either delete P or advance past it. */
993 if (delete_p)
994 cut_slot_from_list (p, &avail_temp_slots);
998 /* Indicate that NEW_RTX is an alternate way of referring to the temp
999 slot that previously was known by OLD_RTX. */
1001 void
1002 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1004 struct temp_slot *p;
1006 if (rtx_equal_p (old_rtx, new_rtx))
1007 return;
1009 p = find_temp_slot_from_address (old_rtx);
1011 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1012 NEW_RTX is a register, see if one operand of the PLUS is a
1013 temporary location. If so, NEW_RTX points into it. Otherwise,
1014 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1015 in common between them. If so, try a recursive call on those
1016 values. */
1017 if (p == 0)
1019 if (GET_CODE (old_rtx) != PLUS)
1020 return;
1022 if (REG_P (new_rtx))
1024 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1025 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1026 return;
1028 else if (GET_CODE (new_rtx) != PLUS)
1029 return;
1031 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1032 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1033 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1034 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1035 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1036 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1037 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1038 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1040 return;
1043 /* Otherwise add an alias for the temp's address. */
1044 insert_temp_slot_address (new_rtx, p);
1047 /* If X could be a reference to a temporary slot, mark the fact that its
1048 address was taken. */
1050 void
1051 mark_temp_addr_taken (rtx x)
1053 struct temp_slot *p;
1055 if (x == 0)
1056 return;
1058 /* If X is not in memory or is at a constant address, it cannot be in
1059 a temporary slot. */
1060 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1061 return;
1063 p = find_temp_slot_from_address (XEXP (x, 0));
1064 if (p != 0)
1065 p->addr_taken = 1;
1068 /* If X could be a reference to a temporary slot, mark that slot as
1069 belonging to the to one level higher than the current level. If X
1070 matched one of our slots, just mark that one. Otherwise, we can't
1071 easily predict which it is, so upgrade all of them. Kept slots
1072 need not be touched.
1074 This is called when an ({...}) construct occurs and a statement
1075 returns a value in memory. */
1077 void
1078 preserve_temp_slots (rtx x)
1080 struct temp_slot *p = 0, *next;
1082 /* If there is no result, we still might have some objects whose address
1083 were taken, so we need to make sure they stay around. */
1084 if (x == 0)
1086 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1088 next = p->next;
1090 if (p->addr_taken)
1091 move_slot_to_level (p, temp_slot_level - 1);
1094 return;
1097 /* If X is a register that is being used as a pointer, see if we have
1098 a temporary slot we know it points to. To be consistent with
1099 the code below, we really should preserve all non-kept slots
1100 if we can't find a match, but that seems to be much too costly. */
1101 if (REG_P (x) && REG_POINTER (x))
1102 p = find_temp_slot_from_address (x);
1104 /* If X is not in memory or is at a constant address, it cannot be in
1105 a temporary slot, but it can contain something whose address was
1106 taken. */
1107 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1109 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1111 next = p->next;
1113 if (p->addr_taken)
1114 move_slot_to_level (p, temp_slot_level - 1);
1117 return;
1120 /* First see if we can find a match. */
1121 if (p == 0)
1122 p = find_temp_slot_from_address (XEXP (x, 0));
1124 if (p != 0)
1126 /* Move everything at our level whose address was taken to our new
1127 level in case we used its address. */
1128 struct temp_slot *q;
1130 if (p->level == temp_slot_level)
1132 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1134 next = q->next;
1136 if (p != q && q->addr_taken)
1137 move_slot_to_level (q, temp_slot_level - 1);
1140 move_slot_to_level (p, temp_slot_level - 1);
1141 p->addr_taken = 0;
1143 return;
1146 /* Otherwise, preserve all non-kept slots at this level. */
1147 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1149 next = p->next;
1151 if (!p->keep)
1152 move_slot_to_level (p, temp_slot_level - 1);
1156 /* Free all temporaries used so far. This is normally called at the
1157 end of generating code for a statement. */
1159 void
1160 free_temp_slots (void)
1162 struct temp_slot *p, *next;
1164 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1166 next = p->next;
1168 if (!p->keep)
1169 make_slot_available (p);
1172 remove_unused_temp_slot_addresses ();
1173 combine_temp_slots ();
1176 /* Push deeper into the nesting level for stack temporaries. */
1178 void
1179 push_temp_slots (void)
1181 temp_slot_level++;
1184 /* Pop a temporary nesting level. All slots in use in the current level
1185 are freed. */
1187 void
1188 pop_temp_slots (void)
1190 struct temp_slot *p, *next;
1192 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1194 next = p->next;
1195 make_slot_available (p);
1198 remove_unused_temp_slot_addresses ();
1199 combine_temp_slots ();
1201 temp_slot_level--;
1204 /* Initialize temporary slots. */
1206 void
1207 init_temp_slots (void)
1209 /* We have not allocated any temporaries yet. */
1210 avail_temp_slots = 0;
1211 used_temp_slots = 0;
1212 temp_slot_level = 0;
1214 /* Set up the table to map addresses to temp slots. */
1215 if (! temp_slot_address_table)
1216 temp_slot_address_table = htab_create_ggc (32,
1217 temp_slot_address_hash,
1218 temp_slot_address_eq,
1219 NULL);
1220 else
1221 htab_empty (temp_slot_address_table);
1224 /* These routines are responsible for converting virtual register references
1225 to the actual hard register references once RTL generation is complete.
1227 The following four variables are used for communication between the
1228 routines. They contain the offsets of the virtual registers from their
1229 respective hard registers. */
1231 static int in_arg_offset;
1232 static int var_offset;
1233 static int dynamic_offset;
1234 static int out_arg_offset;
1235 static int cfa_offset;
1237 /* In most machines, the stack pointer register is equivalent to the bottom
1238 of the stack. */
1240 #ifndef STACK_POINTER_OFFSET
1241 #define STACK_POINTER_OFFSET 0
1242 #endif
1244 /* If not defined, pick an appropriate default for the offset of dynamically
1245 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1246 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1248 #ifndef STACK_DYNAMIC_OFFSET
1250 /* The bottom of the stack points to the actual arguments. If
1251 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1252 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1253 stack space for register parameters is not pushed by the caller, but
1254 rather part of the fixed stack areas and hence not included in
1255 `crtl->outgoing_args_size'. Nevertheless, we must allow
1256 for it when allocating stack dynamic objects. */
1258 #if defined(REG_PARM_STACK_SPACE)
1259 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1260 ((ACCUMULATE_OUTGOING_ARGS \
1261 ? (crtl->outgoing_args_size \
1262 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1263 : REG_PARM_STACK_SPACE (FNDECL))) \
1264 : 0) + (STACK_POINTER_OFFSET))
1265 #else
1266 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1267 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1268 + (STACK_POINTER_OFFSET))
1269 #endif
1270 #endif
1273 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1274 is a virtual register, return the equivalent hard register and set the
1275 offset indirectly through the pointer. Otherwise, return 0. */
1277 static rtx
1278 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1280 rtx new_rtx;
1281 HOST_WIDE_INT offset;
1283 if (x == virtual_incoming_args_rtx)
1285 if (stack_realign_drap)
1287 /* Replace virtual_incoming_args_rtx with internal arg
1288 pointer if DRAP is used to realign stack. */
1289 new_rtx = crtl->args.internal_arg_pointer;
1290 offset = 0;
1292 else
1293 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1295 else if (x == virtual_stack_vars_rtx)
1296 new_rtx = frame_pointer_rtx, offset = var_offset;
1297 else if (x == virtual_stack_dynamic_rtx)
1298 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1299 else if (x == virtual_outgoing_args_rtx)
1300 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1301 else if (x == virtual_cfa_rtx)
1303 #ifdef FRAME_POINTER_CFA_OFFSET
1304 new_rtx = frame_pointer_rtx;
1305 #else
1306 new_rtx = arg_pointer_rtx;
1307 #endif
1308 offset = cfa_offset;
1310 else
1311 return NULL_RTX;
1313 *poffset = offset;
1314 return new_rtx;
1317 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1318 Instantiate any virtual registers present inside of *LOC. The expression
1319 is simplified, as much as possible, but is not to be considered "valid"
1320 in any sense implied by the target. If any change is made, set CHANGED
1321 to true. */
1323 static int
1324 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1326 HOST_WIDE_INT offset;
1327 bool *changed = (bool *) data;
1328 rtx x, new_rtx;
1330 x = *loc;
1331 if (x == 0)
1332 return 0;
1334 switch (GET_CODE (x))
1336 case REG:
1337 new_rtx = instantiate_new_reg (x, &offset);
1338 if (new_rtx)
1340 *loc = plus_constant (new_rtx, offset);
1341 if (changed)
1342 *changed = true;
1344 return -1;
1346 case PLUS:
1347 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1348 if (new_rtx)
1350 new_rtx = plus_constant (new_rtx, offset);
1351 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new_rtx, XEXP (x, 1));
1352 if (changed)
1353 *changed = true;
1354 return -1;
1357 /* FIXME -- from old code */
1358 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1359 we can commute the PLUS and SUBREG because pointers into the
1360 frame are well-behaved. */
1361 break;
1363 default:
1364 break;
1367 return 0;
1370 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1371 matches the predicate for insn CODE operand OPERAND. */
1373 static int
1374 safe_insn_predicate (int code, int operand, rtx x)
1376 const struct insn_operand_data *op_data;
1378 if (code < 0)
1379 return true;
1381 op_data = &insn_data[code].operand[operand];
1382 if (op_data->predicate == NULL)
1383 return true;
1385 return op_data->predicate (x, op_data->mode);
1388 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1389 registers present inside of insn. The result will be a valid insn. */
1391 static void
1392 instantiate_virtual_regs_in_insn (rtx insn)
1394 HOST_WIDE_INT offset;
1395 int insn_code, i;
1396 bool any_change = false;
1397 rtx set, new_rtx, x, seq;
1399 /* There are some special cases to be handled first. */
1400 set = single_set (insn);
1401 if (set)
1403 /* We're allowed to assign to a virtual register. This is interpreted
1404 to mean that the underlying register gets assigned the inverse
1405 transformation. This is used, for example, in the handling of
1406 non-local gotos. */
1407 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1408 if (new_rtx)
1410 start_sequence ();
1412 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1413 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1414 GEN_INT (-offset));
1415 x = force_operand (x, new_rtx);
1416 if (x != new_rtx)
1417 emit_move_insn (new_rtx, x);
1419 seq = get_insns ();
1420 end_sequence ();
1422 emit_insn_before (seq, insn);
1423 delete_insn (insn);
1424 return;
1427 /* Handle a straight copy from a virtual register by generating a
1428 new add insn. The difference between this and falling through
1429 to the generic case is avoiding a new pseudo and eliminating a
1430 move insn in the initial rtl stream. */
1431 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1432 if (new_rtx && offset != 0
1433 && REG_P (SET_DEST (set))
1434 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1436 start_sequence ();
1438 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1439 new_rtx, GEN_INT (offset), SET_DEST (set),
1440 1, OPTAB_LIB_WIDEN);
1441 if (x != SET_DEST (set))
1442 emit_move_insn (SET_DEST (set), x);
1444 seq = get_insns ();
1445 end_sequence ();
1447 emit_insn_before (seq, insn);
1448 delete_insn (insn);
1449 return;
1452 extract_insn (insn);
1453 insn_code = INSN_CODE (insn);
1455 /* Handle a plus involving a virtual register by determining if the
1456 operands remain valid if they're modified in place. */
1457 if (GET_CODE (SET_SRC (set)) == PLUS
1458 && recog_data.n_operands >= 3
1459 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1460 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1461 && CONST_INT_P (recog_data.operand[2])
1462 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1464 offset += INTVAL (recog_data.operand[2]);
1466 /* If the sum is zero, then replace with a plain move. */
1467 if (offset == 0
1468 && REG_P (SET_DEST (set))
1469 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1471 start_sequence ();
1472 emit_move_insn (SET_DEST (set), new_rtx);
1473 seq = get_insns ();
1474 end_sequence ();
1476 emit_insn_before (seq, insn);
1477 delete_insn (insn);
1478 return;
1481 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1483 /* Using validate_change and apply_change_group here leaves
1484 recog_data in an invalid state. Since we know exactly what
1485 we want to check, do those two by hand. */
1486 if (safe_insn_predicate (insn_code, 1, new_rtx)
1487 && safe_insn_predicate (insn_code, 2, x))
1489 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1490 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1491 any_change = true;
1493 /* Fall through into the regular operand fixup loop in
1494 order to take care of operands other than 1 and 2. */
1498 else
1500 extract_insn (insn);
1501 insn_code = INSN_CODE (insn);
1504 /* In the general case, we expect virtual registers to appear only in
1505 operands, and then only as either bare registers or inside memories. */
1506 for (i = 0; i < recog_data.n_operands; ++i)
1508 x = recog_data.operand[i];
1509 switch (GET_CODE (x))
1511 case MEM:
1513 rtx addr = XEXP (x, 0);
1514 bool changed = false;
1516 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1517 if (!changed)
1518 continue;
1520 start_sequence ();
1521 x = replace_equiv_address (x, addr);
1522 /* It may happen that the address with the virtual reg
1523 was valid (e.g. based on the virtual stack reg, which might
1524 be acceptable to the predicates with all offsets), whereas
1525 the address now isn't anymore, for instance when the address
1526 is still offsetted, but the base reg isn't virtual-stack-reg
1527 anymore. Below we would do a force_reg on the whole operand,
1528 but this insn might actually only accept memory. Hence,
1529 before doing that last resort, try to reload the address into
1530 a register, so this operand stays a MEM. */
1531 if (!safe_insn_predicate (insn_code, i, x))
1533 addr = force_reg (GET_MODE (addr), addr);
1534 x = replace_equiv_address (x, addr);
1536 seq = get_insns ();
1537 end_sequence ();
1538 if (seq)
1539 emit_insn_before (seq, insn);
1541 break;
1543 case REG:
1544 new_rtx = instantiate_new_reg (x, &offset);
1545 if (new_rtx == NULL)
1546 continue;
1547 if (offset == 0)
1548 x = new_rtx;
1549 else
1551 start_sequence ();
1553 /* Careful, special mode predicates may have stuff in
1554 insn_data[insn_code].operand[i].mode that isn't useful
1555 to us for computing a new value. */
1556 /* ??? Recognize address_operand and/or "p" constraints
1557 to see if (plus new offset) is a valid before we put
1558 this through expand_simple_binop. */
1559 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1560 GEN_INT (offset), NULL_RTX,
1561 1, OPTAB_LIB_WIDEN);
1562 seq = get_insns ();
1563 end_sequence ();
1564 emit_insn_before (seq, insn);
1566 break;
1568 case SUBREG:
1569 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1570 if (new_rtx == NULL)
1571 continue;
1572 if (offset != 0)
1574 start_sequence ();
1575 new_rtx = expand_simple_binop (GET_MODE (new_rtx), PLUS, new_rtx,
1576 GEN_INT (offset), NULL_RTX,
1577 1, OPTAB_LIB_WIDEN);
1578 seq = get_insns ();
1579 end_sequence ();
1580 emit_insn_before (seq, insn);
1582 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1583 GET_MODE (new_rtx), SUBREG_BYTE (x));
1584 gcc_assert (x);
1585 break;
1587 default:
1588 continue;
1591 /* At this point, X contains the new value for the operand.
1592 Validate the new value vs the insn predicate. Note that
1593 asm insns will have insn_code -1 here. */
1594 if (!safe_insn_predicate (insn_code, i, x))
1596 start_sequence ();
1597 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1598 seq = get_insns ();
1599 end_sequence ();
1600 if (seq)
1601 emit_insn_before (seq, insn);
1604 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1605 any_change = true;
1608 if (any_change)
1610 /* Propagate operand changes into the duplicates. */
1611 for (i = 0; i < recog_data.n_dups; ++i)
1612 *recog_data.dup_loc[i]
1613 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1615 /* Force re-recognition of the instruction for validation. */
1616 INSN_CODE (insn) = -1;
1619 if (asm_noperands (PATTERN (insn)) >= 0)
1621 if (!check_asm_operands (PATTERN (insn)))
1623 error_for_asm (insn, "impossible constraint in %<asm%>");
1624 delete_insn (insn);
1627 else
1629 if (recog_memoized (insn) < 0)
1630 fatal_insn_not_found (insn);
1634 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1635 do any instantiation required. */
1637 void
1638 instantiate_decl_rtl (rtx x)
1640 rtx addr;
1642 if (x == 0)
1643 return;
1645 /* If this is a CONCAT, recurse for the pieces. */
1646 if (GET_CODE (x) == CONCAT)
1648 instantiate_decl_rtl (XEXP (x, 0));
1649 instantiate_decl_rtl (XEXP (x, 1));
1650 return;
1653 /* If this is not a MEM, no need to do anything. Similarly if the
1654 address is a constant or a register that is not a virtual register. */
1655 if (!MEM_P (x))
1656 return;
1658 addr = XEXP (x, 0);
1659 if (CONSTANT_P (addr)
1660 || (REG_P (addr)
1661 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1662 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1663 return;
1665 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1668 /* Helper for instantiate_decls called via walk_tree: Process all decls
1669 in the given DECL_VALUE_EXPR. */
1671 static tree
1672 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1674 tree t = *tp;
1675 if (! EXPR_P (t))
1677 *walk_subtrees = 0;
1678 if (DECL_P (t) && DECL_RTL_SET_P (t))
1679 instantiate_decl_rtl (DECL_RTL (t));
1681 return NULL;
1684 /* Subroutine of instantiate_decls: Process all decls in the given
1685 BLOCK node and all its subblocks. */
1687 static void
1688 instantiate_decls_1 (tree let)
1690 tree t;
1692 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
1694 if (DECL_RTL_SET_P (t))
1695 instantiate_decl_rtl (DECL_RTL (t));
1696 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1698 tree v = DECL_VALUE_EXPR (t);
1699 walk_tree (&v, instantiate_expr, NULL, NULL);
1703 /* Process all subblocks. */
1704 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1705 instantiate_decls_1 (t);
1708 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1709 all virtual registers in their DECL_RTL's. */
1711 static void
1712 instantiate_decls (tree fndecl)
1714 tree decl, t, next;
1716 /* Process all parameters of the function. */
1717 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1719 instantiate_decl_rtl (DECL_RTL (decl));
1720 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1721 if (DECL_HAS_VALUE_EXPR_P (decl))
1723 tree v = DECL_VALUE_EXPR (decl);
1724 walk_tree (&v, instantiate_expr, NULL, NULL);
1728 /* Now process all variables defined in the function or its subblocks. */
1729 instantiate_decls_1 (DECL_INITIAL (fndecl));
1731 t = cfun->local_decls;
1732 cfun->local_decls = NULL_TREE;
1733 for (; t; t = next)
1735 next = TREE_CHAIN (t);
1736 decl = TREE_VALUE (t);
1737 if (DECL_RTL_SET_P (decl))
1738 instantiate_decl_rtl (DECL_RTL (decl));
1739 ggc_free (t);
1743 /* Pass through the INSNS of function FNDECL and convert virtual register
1744 references to hard register references. */
1746 static unsigned int
1747 instantiate_virtual_regs (void)
1749 rtx insn;
1751 /* Compute the offsets to use for this function. */
1752 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1753 var_offset = STARTING_FRAME_OFFSET;
1754 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1755 out_arg_offset = STACK_POINTER_OFFSET;
1756 #ifdef FRAME_POINTER_CFA_OFFSET
1757 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1758 #else
1759 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1760 #endif
1762 /* Initialize recognition, indicating that volatile is OK. */
1763 init_recog ();
1765 /* Scan through all the insns, instantiating every virtual register still
1766 present. */
1767 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1768 if (INSN_P (insn))
1770 /* These patterns in the instruction stream can never be recognized.
1771 Fortunately, they shouldn't contain virtual registers either. */
1772 if (GET_CODE (PATTERN (insn)) == USE
1773 || GET_CODE (PATTERN (insn)) == CLOBBER
1774 || GET_CODE (PATTERN (insn)) == ADDR_VEC
1775 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
1776 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1777 continue;
1779 instantiate_virtual_regs_in_insn (insn);
1781 if (INSN_DELETED_P (insn))
1782 continue;
1784 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1786 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1787 if (CALL_P (insn))
1788 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1789 instantiate_virtual_regs_in_rtx, NULL);
1792 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1793 instantiate_decls (current_function_decl);
1795 targetm.instantiate_decls ();
1797 /* Indicate that, from now on, assign_stack_local should use
1798 frame_pointer_rtx. */
1799 virtuals_instantiated = 1;
1800 return 0;
1803 struct rtl_opt_pass pass_instantiate_virtual_regs =
1806 RTL_PASS,
1807 "vregs", /* name */
1808 NULL, /* gate */
1809 instantiate_virtual_regs, /* execute */
1810 NULL, /* sub */
1811 NULL, /* next */
1812 0, /* static_pass_number */
1813 TV_NONE, /* tv_id */
1814 0, /* properties_required */
1815 0, /* properties_provided */
1816 0, /* properties_destroyed */
1817 0, /* todo_flags_start */
1818 TODO_dump_func /* todo_flags_finish */
1823 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1824 This means a type for which function calls must pass an address to the
1825 function or get an address back from the function.
1826 EXP may be a type node or an expression (whose type is tested). */
1829 aggregate_value_p (const_tree exp, const_tree fntype)
1831 int i, regno, nregs;
1832 rtx reg;
1834 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1836 /* DECL node associated with FNTYPE when relevant, which we might need to
1837 check for by-invisible-reference returns, typically for CALL_EXPR input
1838 EXPressions. */
1839 const_tree fndecl = NULL_TREE;
1841 if (fntype)
1842 switch (TREE_CODE (fntype))
1844 case CALL_EXPR:
1845 fndecl = get_callee_fndecl (fntype);
1846 fntype = (fndecl
1847 ? TREE_TYPE (fndecl)
1848 : TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype))));
1849 break;
1850 case FUNCTION_DECL:
1851 fndecl = fntype;
1852 fntype = TREE_TYPE (fndecl);
1853 break;
1854 case FUNCTION_TYPE:
1855 case METHOD_TYPE:
1856 break;
1857 case IDENTIFIER_NODE:
1858 fntype = 0;
1859 break;
1860 default:
1861 /* We don't expect other rtl types here. */
1862 gcc_unreachable ();
1865 if (TREE_CODE (type) == VOID_TYPE)
1866 return 0;
1868 /* If the front end has decided that this needs to be passed by
1869 reference, do so. */
1870 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
1871 && DECL_BY_REFERENCE (exp))
1872 return 1;
1874 /* If the EXPression is a CALL_EXPR, honor DECL_BY_REFERENCE set on the
1875 called function RESULT_DECL, meaning the function returns in memory by
1876 invisible reference. This check lets front-ends not set TREE_ADDRESSABLE
1877 on the function type, which used to be the way to request such a return
1878 mechanism but might now be causing troubles at gimplification time if
1879 temporaries with the function type need to be created. */
1880 if (TREE_CODE (exp) == CALL_EXPR && fndecl && DECL_RESULT (fndecl)
1881 && DECL_BY_REFERENCE (DECL_RESULT (fndecl)))
1882 return 1;
1884 if (targetm.calls.return_in_memory (type, fntype))
1885 return 1;
1886 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
1887 and thus can't be returned in registers. */
1888 if (TREE_ADDRESSABLE (type))
1889 return 1;
1890 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
1891 return 1;
1892 /* Make sure we have suitable call-clobbered regs to return
1893 the value in; if not, we must return it in memory. */
1894 reg = hard_function_value (type, 0, fntype, 0);
1896 /* If we have something other than a REG (e.g. a PARALLEL), then assume
1897 it is OK. */
1898 if (!REG_P (reg))
1899 return 0;
1901 regno = REGNO (reg);
1902 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
1903 for (i = 0; i < nregs; i++)
1904 if (! call_used_regs[regno + i])
1905 return 1;
1906 return 0;
1909 /* Return true if we should assign DECL a pseudo register; false if it
1910 should live on the local stack. */
1912 bool
1913 use_register_for_decl (const_tree decl)
1915 if (!targetm.calls.allocate_stack_slots_for_args())
1916 return true;
1918 /* Honor volatile. */
1919 if (TREE_SIDE_EFFECTS (decl))
1920 return false;
1922 /* Honor addressability. */
1923 if (TREE_ADDRESSABLE (decl))
1924 return false;
1926 /* Only register-like things go in registers. */
1927 if (DECL_MODE (decl) == BLKmode)
1928 return false;
1930 /* If -ffloat-store specified, don't put explicit float variables
1931 into registers. */
1932 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
1933 propagates values across these stores, and it probably shouldn't. */
1934 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
1935 return false;
1937 /* If we're not interested in tracking debugging information for
1938 this decl, then we can certainly put it in a register. */
1939 if (DECL_IGNORED_P (decl))
1940 return true;
1942 if (optimize)
1943 return true;
1945 if (!DECL_REGISTER (decl))
1946 return false;
1948 switch (TREE_CODE (TREE_TYPE (decl)))
1950 case RECORD_TYPE:
1951 case UNION_TYPE:
1952 case QUAL_UNION_TYPE:
1953 /* When not optimizing, disregard register keyword for variables with
1954 types containing methods, otherwise the methods won't be callable
1955 from the debugger. */
1956 if (TYPE_METHODS (TREE_TYPE (decl)))
1957 return false;
1958 break;
1959 default:
1960 break;
1963 return true;
1966 /* Return true if TYPE should be passed by invisible reference. */
1968 bool
1969 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1970 tree type, bool named_arg)
1972 if (type)
1974 /* If this type contains non-trivial constructors, then it is
1975 forbidden for the middle-end to create any new copies. */
1976 if (TREE_ADDRESSABLE (type))
1977 return true;
1979 /* GCC post 3.4 passes *all* variable sized types by reference. */
1980 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1981 return true;
1984 return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
1987 /* Return true if TYPE, which is passed by reference, should be callee
1988 copied instead of caller copied. */
1990 bool
1991 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1992 tree type, bool named_arg)
1994 if (type && TREE_ADDRESSABLE (type))
1995 return false;
1996 return targetm.calls.callee_copies (ca, mode, type, named_arg);
1999 /* Structures to communicate between the subroutines of assign_parms.
2000 The first holds data persistent across all parameters, the second
2001 is cleared out for each parameter. */
2003 struct assign_parm_data_all
2005 CUMULATIVE_ARGS args_so_far;
2006 struct args_size stack_args_size;
2007 tree function_result_decl;
2008 tree orig_fnargs;
2009 rtx first_conversion_insn;
2010 rtx last_conversion_insn;
2011 HOST_WIDE_INT pretend_args_size;
2012 HOST_WIDE_INT extra_pretend_bytes;
2013 int reg_parm_stack_space;
2016 struct assign_parm_data_one
2018 tree nominal_type;
2019 tree passed_type;
2020 rtx entry_parm;
2021 rtx stack_parm;
2022 enum machine_mode nominal_mode;
2023 enum machine_mode passed_mode;
2024 enum machine_mode promoted_mode;
2025 struct locate_and_pad_arg_data locate;
2026 int partial;
2027 BOOL_BITFIELD named_arg : 1;
2028 BOOL_BITFIELD passed_pointer : 1;
2029 BOOL_BITFIELD on_stack : 1;
2030 BOOL_BITFIELD loaded_in_reg : 1;
2033 /* A subroutine of assign_parms. Initialize ALL. */
2035 static void
2036 assign_parms_initialize_all (struct assign_parm_data_all *all)
2038 tree fntype;
2040 memset (all, 0, sizeof (*all));
2042 fntype = TREE_TYPE (current_function_decl);
2044 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2045 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
2046 #else
2047 INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
2048 current_function_decl, -1);
2049 #endif
2051 #ifdef REG_PARM_STACK_SPACE
2052 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
2053 #endif
2056 /* If ARGS contains entries with complex types, split the entry into two
2057 entries of the component type. Return a new list of substitutions are
2058 needed, else the old list. */
2060 static tree
2061 split_complex_args (tree args)
2063 tree p;
2065 /* Before allocating memory, check for the common case of no complex. */
2066 for (p = args; p; p = TREE_CHAIN (p))
2068 tree type = TREE_TYPE (p);
2069 if (TREE_CODE (type) == COMPLEX_TYPE
2070 && targetm.calls.split_complex_arg (type))
2071 goto found;
2073 return args;
2075 found:
2076 args = copy_list (args);
2078 for (p = args; p; p = TREE_CHAIN (p))
2080 tree type = TREE_TYPE (p);
2081 if (TREE_CODE (type) == COMPLEX_TYPE
2082 && targetm.calls.split_complex_arg (type))
2084 tree decl;
2085 tree subtype = TREE_TYPE (type);
2086 bool addressable = TREE_ADDRESSABLE (p);
2088 /* Rewrite the PARM_DECL's type with its component. */
2089 TREE_TYPE (p) = subtype;
2090 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2091 DECL_MODE (p) = VOIDmode;
2092 DECL_SIZE (p) = NULL;
2093 DECL_SIZE_UNIT (p) = NULL;
2094 /* If this arg must go in memory, put it in a pseudo here.
2095 We can't allow it to go in memory as per normal parms,
2096 because the usual place might not have the imag part
2097 adjacent to the real part. */
2098 DECL_ARTIFICIAL (p) = addressable;
2099 DECL_IGNORED_P (p) = addressable;
2100 TREE_ADDRESSABLE (p) = 0;
2101 layout_decl (p, 0);
2103 /* Build a second synthetic decl. */
2104 decl = build_decl (EXPR_LOCATION (p),
2105 PARM_DECL, NULL_TREE, subtype);
2106 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2107 DECL_ARTIFICIAL (decl) = addressable;
2108 DECL_IGNORED_P (decl) = addressable;
2109 layout_decl (decl, 0);
2111 /* Splice it in; skip the new decl. */
2112 TREE_CHAIN (decl) = TREE_CHAIN (p);
2113 TREE_CHAIN (p) = decl;
2114 p = decl;
2118 return args;
2121 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2122 the hidden struct return argument, and (abi willing) complex args.
2123 Return the new parameter list. */
2125 static tree
2126 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2128 tree fndecl = current_function_decl;
2129 tree fntype = TREE_TYPE (fndecl);
2130 tree fnargs = DECL_ARGUMENTS (fndecl);
2132 /* If struct value address is treated as the first argument, make it so. */
2133 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2134 && ! cfun->returns_pcc_struct
2135 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2137 tree type = build_pointer_type (TREE_TYPE (fntype));
2138 tree decl;
2140 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2141 PARM_DECL, NULL_TREE, type);
2142 DECL_ARG_TYPE (decl) = type;
2143 DECL_ARTIFICIAL (decl) = 1;
2144 DECL_IGNORED_P (decl) = 1;
2146 TREE_CHAIN (decl) = fnargs;
2147 fnargs = decl;
2148 all->function_result_decl = decl;
2151 all->orig_fnargs = fnargs;
2153 /* If the target wants to split complex arguments into scalars, do so. */
2154 if (targetm.calls.split_complex_arg)
2155 fnargs = split_complex_args (fnargs);
2157 return fnargs;
2160 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2161 data for the parameter. Incorporate ABI specifics such as pass-by-
2162 reference and type promotion. */
2164 static void
2165 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2166 struct assign_parm_data_one *data)
2168 tree nominal_type, passed_type;
2169 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2170 int unsignedp;
2172 memset (data, 0, sizeof (*data));
2174 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2175 if (!cfun->stdarg)
2176 data->named_arg = 1; /* No variadic parms. */
2177 else if (TREE_CHAIN (parm))
2178 data->named_arg = 1; /* Not the last non-variadic parm. */
2179 else if (targetm.calls.strict_argument_naming (&all->args_so_far))
2180 data->named_arg = 1; /* Only variadic ones are unnamed. */
2181 else
2182 data->named_arg = 0; /* Treat as variadic. */
2184 nominal_type = TREE_TYPE (parm);
2185 passed_type = DECL_ARG_TYPE (parm);
2187 /* Look out for errors propagating this far. Also, if the parameter's
2188 type is void then its value doesn't matter. */
2189 if (TREE_TYPE (parm) == error_mark_node
2190 /* This can happen after weird syntax errors
2191 or if an enum type is defined among the parms. */
2192 || TREE_CODE (parm) != PARM_DECL
2193 || passed_type == NULL
2194 || VOID_TYPE_P (nominal_type))
2196 nominal_type = passed_type = void_type_node;
2197 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2198 goto egress;
2201 /* Find mode of arg as it is passed, and mode of arg as it should be
2202 during execution of this function. */
2203 passed_mode = TYPE_MODE (passed_type);
2204 nominal_mode = TYPE_MODE (nominal_type);
2206 /* If the parm is to be passed as a transparent union, use the type of
2207 the first field for the tests below. We have already verified that
2208 the modes are the same. */
2209 if (TREE_CODE (passed_type) == UNION_TYPE
2210 && TYPE_TRANSPARENT_UNION (passed_type))
2211 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
2213 /* See if this arg was passed by invisible reference. */
2214 if (pass_by_reference (&all->args_so_far, passed_mode,
2215 passed_type, data->named_arg))
2217 passed_type = nominal_type = build_pointer_type (passed_type);
2218 data->passed_pointer = true;
2219 passed_mode = nominal_mode = Pmode;
2222 /* Find mode as it is passed by the ABI. */
2223 unsignedp = TYPE_UNSIGNED (passed_type);
2224 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2225 TREE_TYPE (current_function_decl), 0);
2227 egress:
2228 data->nominal_type = nominal_type;
2229 data->passed_type = passed_type;
2230 data->nominal_mode = nominal_mode;
2231 data->passed_mode = passed_mode;
2232 data->promoted_mode = promoted_mode;
2235 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2237 static void
2238 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2239 struct assign_parm_data_one *data, bool no_rtl)
2241 int varargs_pretend_bytes = 0;
2243 targetm.calls.setup_incoming_varargs (&all->args_so_far,
2244 data->promoted_mode,
2245 data->passed_type,
2246 &varargs_pretend_bytes, no_rtl);
2248 /* If the back-end has requested extra stack space, record how much is
2249 needed. Do not change pretend_args_size otherwise since it may be
2250 nonzero from an earlier partial argument. */
2251 if (varargs_pretend_bytes > 0)
2252 all->pretend_args_size = varargs_pretend_bytes;
2255 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2256 the incoming location of the current parameter. */
2258 static void
2259 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2260 struct assign_parm_data_one *data)
2262 HOST_WIDE_INT pretend_bytes = 0;
2263 rtx entry_parm;
2264 bool in_regs;
2266 if (data->promoted_mode == VOIDmode)
2268 data->entry_parm = data->stack_parm = const0_rtx;
2269 return;
2272 #ifdef FUNCTION_INCOMING_ARG
2273 entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2274 data->passed_type, data->named_arg);
2275 #else
2276 entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2277 data->passed_type, data->named_arg);
2278 #endif
2280 if (entry_parm == 0)
2281 data->promoted_mode = data->passed_mode;
2283 /* Determine parm's home in the stack, in case it arrives in the stack
2284 or we should pretend it did. Compute the stack position and rtx where
2285 the argument arrives and its size.
2287 There is one complexity here: If this was a parameter that would
2288 have been passed in registers, but wasn't only because it is
2289 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2290 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2291 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2292 as it was the previous time. */
2293 in_regs = entry_parm != 0;
2294 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2295 in_regs = true;
2296 #endif
2297 if (!in_regs && !data->named_arg)
2299 if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
2301 rtx tem;
2302 #ifdef FUNCTION_INCOMING_ARG
2303 tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2304 data->passed_type, true);
2305 #else
2306 tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2307 data->passed_type, true);
2308 #endif
2309 in_regs = tem != NULL;
2313 /* If this parameter was passed both in registers and in the stack, use
2314 the copy on the stack. */
2315 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2316 data->passed_type))
2317 entry_parm = 0;
2319 if (entry_parm)
2321 int partial;
2323 partial = targetm.calls.arg_partial_bytes (&all->args_so_far,
2324 data->promoted_mode,
2325 data->passed_type,
2326 data->named_arg);
2327 data->partial = partial;
2329 /* The caller might already have allocated stack space for the
2330 register parameters. */
2331 if (partial != 0 && all->reg_parm_stack_space == 0)
2333 /* Part of this argument is passed in registers and part
2334 is passed on the stack. Ask the prologue code to extend
2335 the stack part so that we can recreate the full value.
2337 PRETEND_BYTES is the size of the registers we need to store.
2338 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2339 stack space that the prologue should allocate.
2341 Internally, gcc assumes that the argument pointer is aligned
2342 to STACK_BOUNDARY bits. This is used both for alignment
2343 optimizations (see init_emit) and to locate arguments that are
2344 aligned to more than PARM_BOUNDARY bits. We must preserve this
2345 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2346 a stack boundary. */
2348 /* We assume at most one partial arg, and it must be the first
2349 argument on the stack. */
2350 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2352 pretend_bytes = partial;
2353 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2355 /* We want to align relative to the actual stack pointer, so
2356 don't include this in the stack size until later. */
2357 all->extra_pretend_bytes = all->pretend_args_size;
2361 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2362 entry_parm ? data->partial : 0, current_function_decl,
2363 &all->stack_args_size, &data->locate);
2365 /* Update parm_stack_boundary if this parameter is passed in the
2366 stack. */
2367 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2368 crtl->parm_stack_boundary = data->locate.boundary;
2370 /* Adjust offsets to include the pretend args. */
2371 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2372 data->locate.slot_offset.constant += pretend_bytes;
2373 data->locate.offset.constant += pretend_bytes;
2375 data->entry_parm = entry_parm;
2378 /* A subroutine of assign_parms. If there is actually space on the stack
2379 for this parm, count it in stack_args_size and return true. */
2381 static bool
2382 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2383 struct assign_parm_data_one *data)
2385 /* Trivially true if we've no incoming register. */
2386 if (data->entry_parm == NULL)
2388 /* Also true if we're partially in registers and partially not,
2389 since we've arranged to drop the entire argument on the stack. */
2390 else if (data->partial != 0)
2392 /* Also true if the target says that it's passed in both registers
2393 and on the stack. */
2394 else if (GET_CODE (data->entry_parm) == PARALLEL
2395 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2397 /* Also true if the target says that there's stack allocated for
2398 all register parameters. */
2399 else if (all->reg_parm_stack_space > 0)
2401 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2402 else
2403 return false;
2405 all->stack_args_size.constant += data->locate.size.constant;
2406 if (data->locate.size.var)
2407 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2409 return true;
2412 /* A subroutine of assign_parms. Given that this parameter is allocated
2413 stack space by the ABI, find it. */
2415 static void
2416 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2418 rtx offset_rtx, stack_parm;
2419 unsigned int align, boundary;
2421 /* If we're passing this arg using a reg, make its stack home the
2422 aligned stack slot. */
2423 if (data->entry_parm)
2424 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2425 else
2426 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2428 stack_parm = crtl->args.internal_arg_pointer;
2429 if (offset_rtx != const0_rtx)
2430 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2431 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2433 set_mem_attributes (stack_parm, parm, 1);
2434 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2435 while promoted mode's size is needed. */
2436 if (data->promoted_mode != BLKmode
2437 && data->promoted_mode != DECL_MODE (parm))
2439 set_mem_size (stack_parm, GEN_INT (GET_MODE_SIZE (data->promoted_mode)));
2440 if (MEM_EXPR (stack_parm) && MEM_OFFSET (stack_parm))
2442 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2443 data->promoted_mode);
2444 if (offset)
2445 set_mem_offset (stack_parm,
2446 plus_constant (MEM_OFFSET (stack_parm), -offset));
2450 boundary = data->locate.boundary;
2451 align = BITS_PER_UNIT;
2453 /* If we're padding upward, we know that the alignment of the slot
2454 is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2455 intentionally forcing upward padding. Otherwise we have to come
2456 up with a guess at the alignment based on OFFSET_RTX. */
2457 if (data->locate.where_pad != downward || data->entry_parm)
2458 align = boundary;
2459 else if (CONST_INT_P (offset_rtx))
2461 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2462 align = align & -align;
2464 set_mem_align (stack_parm, align);
2466 if (data->entry_parm)
2467 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2469 data->stack_parm = stack_parm;
2472 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2473 always valid and contiguous. */
2475 static void
2476 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2478 rtx entry_parm = data->entry_parm;
2479 rtx stack_parm = data->stack_parm;
2481 /* If this parm was passed part in regs and part in memory, pretend it
2482 arrived entirely in memory by pushing the register-part onto the stack.
2483 In the special case of a DImode or DFmode that is split, we could put
2484 it together in a pseudoreg directly, but for now that's not worth
2485 bothering with. */
2486 if (data->partial != 0)
2488 /* Handle calls that pass values in multiple non-contiguous
2489 locations. The Irix 6 ABI has examples of this. */
2490 if (GET_CODE (entry_parm) == PARALLEL)
2491 emit_group_store (validize_mem (stack_parm), entry_parm,
2492 data->passed_type,
2493 int_size_in_bytes (data->passed_type));
2494 else
2496 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2497 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2498 data->partial / UNITS_PER_WORD);
2501 entry_parm = stack_parm;
2504 /* If we didn't decide this parm came in a register, by default it came
2505 on the stack. */
2506 else if (entry_parm == NULL)
2507 entry_parm = stack_parm;
2509 /* When an argument is passed in multiple locations, we can't make use
2510 of this information, but we can save some copying if the whole argument
2511 is passed in a single register. */
2512 else if (GET_CODE (entry_parm) == PARALLEL
2513 && data->nominal_mode != BLKmode
2514 && data->passed_mode != BLKmode)
2516 size_t i, len = XVECLEN (entry_parm, 0);
2518 for (i = 0; i < len; i++)
2519 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2520 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2521 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2522 == data->passed_mode)
2523 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2525 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2526 break;
2530 data->entry_parm = entry_parm;
2533 /* A subroutine of assign_parms. Reconstitute any values which were
2534 passed in multiple registers and would fit in a single register. */
2536 static void
2537 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2539 rtx entry_parm = data->entry_parm;
2541 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2542 This can be done with register operations rather than on the
2543 stack, even if we will store the reconstituted parameter on the
2544 stack later. */
2545 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2547 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2548 emit_group_store (parmreg, entry_parm, data->passed_type,
2549 GET_MODE_SIZE (GET_MODE (entry_parm)));
2550 entry_parm = parmreg;
2553 data->entry_parm = entry_parm;
2556 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2557 always valid and properly aligned. */
2559 static void
2560 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2562 rtx stack_parm = data->stack_parm;
2564 /* If we can't trust the parm stack slot to be aligned enough for its
2565 ultimate type, don't use that slot after entry. We'll make another
2566 stack slot, if we need one. */
2567 if (stack_parm
2568 && ((STRICT_ALIGNMENT
2569 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2570 || (data->nominal_type
2571 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2572 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2573 stack_parm = NULL;
2575 /* If parm was passed in memory, and we need to convert it on entry,
2576 don't store it back in that same slot. */
2577 else if (data->entry_parm == stack_parm
2578 && data->nominal_mode != BLKmode
2579 && data->nominal_mode != data->passed_mode)
2580 stack_parm = NULL;
2582 /* If stack protection is in effect for this function, don't leave any
2583 pointers in their passed stack slots. */
2584 else if (crtl->stack_protect_guard
2585 && (flag_stack_protect == 2
2586 || data->passed_pointer
2587 || POINTER_TYPE_P (data->nominal_type)))
2588 stack_parm = NULL;
2590 data->stack_parm = stack_parm;
2593 /* A subroutine of assign_parms. Return true if the current parameter
2594 should be stored as a BLKmode in the current frame. */
2596 static bool
2597 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2599 if (data->nominal_mode == BLKmode)
2600 return true;
2601 if (GET_MODE (data->entry_parm) == BLKmode)
2602 return true;
2604 #ifdef BLOCK_REG_PADDING
2605 /* Only assign_parm_setup_block knows how to deal with register arguments
2606 that are padded at the least significant end. */
2607 if (REG_P (data->entry_parm)
2608 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2609 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2610 == (BYTES_BIG_ENDIAN ? upward : downward)))
2611 return true;
2612 #endif
2614 return false;
2617 /* A subroutine of assign_parms. Arrange for the parameter to be
2618 present and valid in DATA->STACK_RTL. */
2620 static void
2621 assign_parm_setup_block (struct assign_parm_data_all *all,
2622 tree parm, struct assign_parm_data_one *data)
2624 rtx entry_parm = data->entry_parm;
2625 rtx stack_parm = data->stack_parm;
2626 HOST_WIDE_INT size;
2627 HOST_WIDE_INT size_stored;
2629 if (GET_CODE (entry_parm) == PARALLEL)
2630 entry_parm = emit_group_move_into_temps (entry_parm);
2632 size = int_size_in_bytes (data->passed_type);
2633 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2634 if (stack_parm == 0)
2636 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2637 stack_parm = assign_stack_local (BLKmode, size_stored,
2638 DECL_ALIGN (parm));
2639 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2640 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2641 set_mem_attributes (stack_parm, parm, 1);
2644 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2645 calls that pass values in multiple non-contiguous locations. */
2646 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2648 rtx mem;
2650 /* Note that we will be storing an integral number of words.
2651 So we have to be careful to ensure that we allocate an
2652 integral number of words. We do this above when we call
2653 assign_stack_local if space was not allocated in the argument
2654 list. If it was, this will not work if PARM_BOUNDARY is not
2655 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2656 if it becomes a problem. Exception is when BLKmode arrives
2657 with arguments not conforming to word_mode. */
2659 if (data->stack_parm == 0)
2661 else if (GET_CODE (entry_parm) == PARALLEL)
2663 else
2664 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2666 mem = validize_mem (stack_parm);
2668 /* Handle values in multiple non-contiguous locations. */
2669 if (GET_CODE (entry_parm) == PARALLEL)
2671 push_to_sequence2 (all->first_conversion_insn,
2672 all->last_conversion_insn);
2673 emit_group_store (mem, entry_parm, data->passed_type, size);
2674 all->first_conversion_insn = get_insns ();
2675 all->last_conversion_insn = get_last_insn ();
2676 end_sequence ();
2679 else if (size == 0)
2682 /* If SIZE is that of a mode no bigger than a word, just use
2683 that mode's store operation. */
2684 else if (size <= UNITS_PER_WORD)
2686 enum machine_mode mode
2687 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2689 if (mode != BLKmode
2690 #ifdef BLOCK_REG_PADDING
2691 && (size == UNITS_PER_WORD
2692 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2693 != (BYTES_BIG_ENDIAN ? upward : downward)))
2694 #endif
2697 rtx reg;
2699 /* We are really truncating a word_mode value containing
2700 SIZE bytes into a value of mode MODE. If such an
2701 operation requires no actual instructions, we can refer
2702 to the value directly in mode MODE, otherwise we must
2703 start with the register in word_mode and explicitly
2704 convert it. */
2705 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2706 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2707 else
2709 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2710 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2712 emit_move_insn (change_address (mem, mode, 0), reg);
2715 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2716 machine must be aligned to the left before storing
2717 to memory. Note that the previous test doesn't
2718 handle all cases (e.g. SIZE == 3). */
2719 else if (size != UNITS_PER_WORD
2720 #ifdef BLOCK_REG_PADDING
2721 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2722 == downward)
2723 #else
2724 && BYTES_BIG_ENDIAN
2725 #endif
2728 rtx tem, x;
2729 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2730 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2732 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
2733 build_int_cst (NULL_TREE, by),
2734 NULL_RTX, 1);
2735 tem = change_address (mem, word_mode, 0);
2736 emit_move_insn (tem, x);
2738 else
2739 move_block_from_reg (REGNO (entry_parm), mem,
2740 size_stored / UNITS_PER_WORD);
2742 else
2743 move_block_from_reg (REGNO (entry_parm), mem,
2744 size_stored / UNITS_PER_WORD);
2746 else if (data->stack_parm == 0)
2748 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2749 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2750 BLOCK_OP_NORMAL);
2751 all->first_conversion_insn = get_insns ();
2752 all->last_conversion_insn = get_last_insn ();
2753 end_sequence ();
2756 data->stack_parm = stack_parm;
2757 SET_DECL_RTL (parm, stack_parm);
2760 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2761 parameter. Get it there. Perform all ABI specified conversions. */
2763 static void
2764 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2765 struct assign_parm_data_one *data)
2767 rtx parmreg;
2768 enum machine_mode promoted_nominal_mode;
2769 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2770 bool did_conversion = false;
2772 /* Store the parm in a pseudoregister during the function, but we may
2773 need to do it in a wider mode. */
2775 /* This is not really promoting for a call. However we need to be
2776 consistent with assign_parm_find_data_types and expand_expr_real_1. */
2777 promoted_nominal_mode
2778 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
2779 TREE_TYPE (current_function_decl), 0);
2781 parmreg = gen_reg_rtx (promoted_nominal_mode);
2783 if (!DECL_ARTIFICIAL (parm))
2784 mark_user_reg (parmreg);
2786 /* If this was an item that we received a pointer to,
2787 set DECL_RTL appropriately. */
2788 if (data->passed_pointer)
2790 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2791 set_mem_attributes (x, parm, 1);
2792 SET_DECL_RTL (parm, x);
2794 else
2795 SET_DECL_RTL (parm, parmreg);
2797 assign_parm_remove_parallels (data);
2799 /* Copy the value into the register. */
2800 if (data->nominal_mode != data->passed_mode
2801 || promoted_nominal_mode != data->promoted_mode)
2803 int save_tree_used;
2805 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2806 mode, by the caller. We now have to convert it to
2807 NOMINAL_MODE, if different. However, PARMREG may be in
2808 a different mode than NOMINAL_MODE if it is being stored
2809 promoted.
2811 If ENTRY_PARM is a hard register, it might be in a register
2812 not valid for operating in its mode (e.g., an odd-numbered
2813 register for a DFmode). In that case, moves are the only
2814 thing valid, so we can't do a convert from there. This
2815 occurs when the calling sequence allow such misaligned
2816 usages.
2818 In addition, the conversion may involve a call, which could
2819 clobber parameters which haven't been copied to pseudo
2820 registers yet. Therefore, we must first copy the parm to
2821 a pseudo reg here, and save the conversion until after all
2822 parameters have been moved. */
2824 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2826 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2828 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2829 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
2831 if (GET_CODE (tempreg) == SUBREG
2832 && GET_MODE (tempreg) == data->nominal_mode
2833 && REG_P (SUBREG_REG (tempreg))
2834 && data->nominal_mode == data->passed_mode
2835 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
2836 && GET_MODE_SIZE (GET_MODE (tempreg))
2837 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
2839 /* The argument is already sign/zero extended, so note it
2840 into the subreg. */
2841 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
2842 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
2845 /* TREE_USED gets set erroneously during expand_assignment. */
2846 save_tree_used = TREE_USED (parm);
2847 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
2848 TREE_USED (parm) = save_tree_used;
2849 all->first_conversion_insn = get_insns ();
2850 all->last_conversion_insn = get_last_insn ();
2851 end_sequence ();
2853 did_conversion = true;
2855 else
2856 emit_move_insn (parmreg, validize_mem (data->entry_parm));
2858 /* If we were passed a pointer but the actual value can safely live
2859 in a register, put it in one. */
2860 if (data->passed_pointer
2861 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
2862 /* If by-reference argument was promoted, demote it. */
2863 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
2864 || use_register_for_decl (parm)))
2866 /* We can't use nominal_mode, because it will have been set to
2867 Pmode above. We must use the actual mode of the parm. */
2868 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
2869 mark_user_reg (parmreg);
2871 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
2873 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
2874 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
2876 push_to_sequence2 (all->first_conversion_insn,
2877 all->last_conversion_insn);
2878 emit_move_insn (tempreg, DECL_RTL (parm));
2879 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
2880 emit_move_insn (parmreg, tempreg);
2881 all->first_conversion_insn = get_insns ();
2882 all->last_conversion_insn = get_last_insn ();
2883 end_sequence ();
2885 did_conversion = true;
2887 else
2888 emit_move_insn (parmreg, DECL_RTL (parm));
2890 SET_DECL_RTL (parm, parmreg);
2892 /* STACK_PARM is the pointer, not the parm, and PARMREG is
2893 now the parm. */
2894 data->stack_parm = NULL;
2897 /* Mark the register as eliminable if we did no conversion and it was
2898 copied from memory at a fixed offset, and the arg pointer was not
2899 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
2900 offset formed an invalid address, such memory-equivalences as we
2901 make here would screw up life analysis for it. */
2902 if (data->nominal_mode == data->passed_mode
2903 && !did_conversion
2904 && data->stack_parm != 0
2905 && MEM_P (data->stack_parm)
2906 && data->locate.offset.var == 0
2907 && reg_mentioned_p (virtual_incoming_args_rtx,
2908 XEXP (data->stack_parm, 0)))
2910 rtx linsn = get_last_insn ();
2911 rtx sinsn, set;
2913 /* Mark complex types separately. */
2914 if (GET_CODE (parmreg) == CONCAT)
2916 enum machine_mode submode
2917 = GET_MODE_INNER (GET_MODE (parmreg));
2918 int regnor = REGNO (XEXP (parmreg, 0));
2919 int regnoi = REGNO (XEXP (parmreg, 1));
2920 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
2921 rtx stacki = adjust_address_nv (data->stack_parm, submode,
2922 GET_MODE_SIZE (submode));
2924 /* Scan backwards for the set of the real and
2925 imaginary parts. */
2926 for (sinsn = linsn; sinsn != 0;
2927 sinsn = prev_nonnote_insn (sinsn))
2929 set = single_set (sinsn);
2930 if (set == 0)
2931 continue;
2933 if (SET_DEST (set) == regno_reg_rtx [regnoi])
2934 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
2935 else if (SET_DEST (set) == regno_reg_rtx [regnor])
2936 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
2939 else if ((set = single_set (linsn)) != 0
2940 && SET_DEST (set) == parmreg)
2941 set_unique_reg_note (linsn, REG_EQUIV, data->stack_parm);
2944 /* For pointer data type, suggest pointer register. */
2945 if (POINTER_TYPE_P (TREE_TYPE (parm)))
2946 mark_reg_pointer (parmreg,
2947 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
2950 /* A subroutine of assign_parms. Allocate stack space to hold the current
2951 parameter. Get it there. Perform all ABI specified conversions. */
2953 static void
2954 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
2955 struct assign_parm_data_one *data)
2957 /* Value must be stored in the stack slot STACK_PARM during function
2958 execution. */
2959 bool to_conversion = false;
2961 assign_parm_remove_parallels (data);
2963 if (data->promoted_mode != data->nominal_mode)
2965 /* Conversion is required. */
2966 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2968 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2970 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2971 to_conversion = true;
2973 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
2974 TYPE_UNSIGNED (TREE_TYPE (parm)));
2976 if (data->stack_parm)
2978 int offset = subreg_lowpart_offset (data->nominal_mode,
2979 GET_MODE (data->stack_parm));
2980 /* ??? This may need a big-endian conversion on sparc64. */
2981 data->stack_parm
2982 = adjust_address (data->stack_parm, data->nominal_mode, 0);
2983 if (offset && MEM_OFFSET (data->stack_parm))
2984 set_mem_offset (data->stack_parm,
2985 plus_constant (MEM_OFFSET (data->stack_parm),
2986 offset));
2990 if (data->entry_parm != data->stack_parm)
2992 rtx src, dest;
2994 if (data->stack_parm == 0)
2996 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
2997 GET_MODE (data->entry_parm),
2998 TYPE_ALIGN (data->passed_type));
2999 data->stack_parm
3000 = assign_stack_local (GET_MODE (data->entry_parm),
3001 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3002 align);
3003 set_mem_attributes (data->stack_parm, parm, 1);
3006 dest = validize_mem (data->stack_parm);
3007 src = validize_mem (data->entry_parm);
3009 if (MEM_P (src))
3011 /* Use a block move to handle potentially misaligned entry_parm. */
3012 if (!to_conversion)
3013 push_to_sequence2 (all->first_conversion_insn,
3014 all->last_conversion_insn);
3015 to_conversion = true;
3017 emit_block_move (dest, src,
3018 GEN_INT (int_size_in_bytes (data->passed_type)),
3019 BLOCK_OP_NORMAL);
3021 else
3022 emit_move_insn (dest, src);
3025 if (to_conversion)
3027 all->first_conversion_insn = get_insns ();
3028 all->last_conversion_insn = get_last_insn ();
3029 end_sequence ();
3032 SET_DECL_RTL (parm, data->stack_parm);
3035 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3036 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3038 static void
3039 assign_parms_unsplit_complex (struct assign_parm_data_all *all, tree fnargs)
3041 tree parm;
3042 tree orig_fnargs = all->orig_fnargs;
3044 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
3046 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3047 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3049 rtx tmp, real, imag;
3050 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3052 real = DECL_RTL (fnargs);
3053 imag = DECL_RTL (TREE_CHAIN (fnargs));
3054 if (inner != GET_MODE (real))
3056 real = gen_lowpart_SUBREG (inner, real);
3057 imag = gen_lowpart_SUBREG (inner, imag);
3060 if (TREE_ADDRESSABLE (parm))
3062 rtx rmem, imem;
3063 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3064 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3065 DECL_MODE (parm),
3066 TYPE_ALIGN (TREE_TYPE (parm)));
3068 /* split_complex_arg put the real and imag parts in
3069 pseudos. Move them to memory. */
3070 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3071 set_mem_attributes (tmp, parm, 1);
3072 rmem = adjust_address_nv (tmp, inner, 0);
3073 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3074 push_to_sequence2 (all->first_conversion_insn,
3075 all->last_conversion_insn);
3076 emit_move_insn (rmem, real);
3077 emit_move_insn (imem, imag);
3078 all->first_conversion_insn = get_insns ();
3079 all->last_conversion_insn = get_last_insn ();
3080 end_sequence ();
3082 else
3083 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3084 SET_DECL_RTL (parm, tmp);
3086 real = DECL_INCOMING_RTL (fnargs);
3087 imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs));
3088 if (inner != GET_MODE (real))
3090 real = gen_lowpart_SUBREG (inner, real);
3091 imag = gen_lowpart_SUBREG (inner, imag);
3093 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3094 set_decl_incoming_rtl (parm, tmp, false);
3095 fnargs = TREE_CHAIN (fnargs);
3097 else
3099 SET_DECL_RTL (parm, DECL_RTL (fnargs));
3100 set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs), false);
3102 /* Set MEM_EXPR to the original decl, i.e. to PARM,
3103 instead of the copy of decl, i.e. FNARGS. */
3104 if (DECL_INCOMING_RTL (parm) && MEM_P (DECL_INCOMING_RTL (parm)))
3105 set_mem_expr (DECL_INCOMING_RTL (parm), parm);
3108 fnargs = TREE_CHAIN (fnargs);
3112 /* Assign RTL expressions to the function's parameters. This may involve
3113 copying them into registers and using those registers as the DECL_RTL. */
3115 static void
3116 assign_parms (tree fndecl)
3118 struct assign_parm_data_all all;
3119 tree fnargs, parm;
3121 crtl->args.internal_arg_pointer
3122 = targetm.calls.internal_arg_pointer ();
3124 assign_parms_initialize_all (&all);
3125 fnargs = assign_parms_augmented_arg_list (&all);
3127 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3129 struct assign_parm_data_one data;
3131 /* Extract the type of PARM; adjust it according to ABI. */
3132 assign_parm_find_data_types (&all, parm, &data);
3134 /* Early out for errors and void parameters. */
3135 if (data.passed_mode == VOIDmode)
3137 SET_DECL_RTL (parm, const0_rtx);
3138 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3139 continue;
3142 /* Estimate stack alignment from parameter alignment. */
3143 if (SUPPORTS_STACK_ALIGNMENT)
3145 unsigned int align = FUNCTION_ARG_BOUNDARY (data.promoted_mode,
3146 data.passed_type);
3147 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3148 align);
3149 if (TYPE_ALIGN (data.nominal_type) > align)
3150 align = MINIMUM_ALIGNMENT (data.nominal_type,
3151 TYPE_MODE (data.nominal_type),
3152 TYPE_ALIGN (data.nominal_type));
3153 if (crtl->stack_alignment_estimated < align)
3155 gcc_assert (!crtl->stack_realign_processed);
3156 crtl->stack_alignment_estimated = align;
3160 if (cfun->stdarg && !TREE_CHAIN (parm))
3161 assign_parms_setup_varargs (&all, &data, false);
3163 /* Find out where the parameter arrives in this function. */
3164 assign_parm_find_entry_rtl (&all, &data);
3166 /* Find out where stack space for this parameter might be. */
3167 if (assign_parm_is_stack_parm (&all, &data))
3169 assign_parm_find_stack_rtl (parm, &data);
3170 assign_parm_adjust_entry_rtl (&data);
3173 /* Record permanently how this parm was passed. */
3174 set_decl_incoming_rtl (parm, data.entry_parm, data.passed_pointer);
3176 /* Update info on where next arg arrives in registers. */
3177 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3178 data.passed_type, data.named_arg);
3180 assign_parm_adjust_stack_rtl (&data);
3182 if (assign_parm_setup_block_p (&data))
3183 assign_parm_setup_block (&all, parm, &data);
3184 else if (data.passed_pointer || use_register_for_decl (parm))
3185 assign_parm_setup_reg (&all, parm, &data);
3186 else
3187 assign_parm_setup_stack (&all, parm, &data);
3190 if (targetm.calls.split_complex_arg && fnargs != all.orig_fnargs)
3191 assign_parms_unsplit_complex (&all, fnargs);
3193 /* Output all parameter conversion instructions (possibly including calls)
3194 now that all parameters have been copied out of hard registers. */
3195 emit_insn (all.first_conversion_insn);
3197 /* Estimate reload stack alignment from scalar return mode. */
3198 if (SUPPORTS_STACK_ALIGNMENT)
3200 if (DECL_RESULT (fndecl))
3202 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3203 enum machine_mode mode = TYPE_MODE (type);
3205 if (mode != BLKmode
3206 && mode != VOIDmode
3207 && !AGGREGATE_TYPE_P (type))
3209 unsigned int align = GET_MODE_ALIGNMENT (mode);
3210 if (crtl->stack_alignment_estimated < align)
3212 gcc_assert (!crtl->stack_realign_processed);
3213 crtl->stack_alignment_estimated = align;
3219 /* If we are receiving a struct value address as the first argument, set up
3220 the RTL for the function result. As this might require code to convert
3221 the transmitted address to Pmode, we do this here to ensure that possible
3222 preliminary conversions of the address have been emitted already. */
3223 if (all.function_result_decl)
3225 tree result = DECL_RESULT (current_function_decl);
3226 rtx addr = DECL_RTL (all.function_result_decl);
3227 rtx x;
3229 if (DECL_BY_REFERENCE (result))
3230 x = addr;
3231 else
3233 addr = convert_memory_address (Pmode, addr);
3234 x = gen_rtx_MEM (DECL_MODE (result), addr);
3235 set_mem_attributes (x, result, 1);
3237 SET_DECL_RTL (result, x);
3240 /* We have aligned all the args, so add space for the pretend args. */
3241 crtl->args.pretend_args_size = all.pretend_args_size;
3242 all.stack_args_size.constant += all.extra_pretend_bytes;
3243 crtl->args.size = all.stack_args_size.constant;
3245 /* Adjust function incoming argument size for alignment and
3246 minimum length. */
3248 #ifdef REG_PARM_STACK_SPACE
3249 crtl->args.size = MAX (crtl->args.size,
3250 REG_PARM_STACK_SPACE (fndecl));
3251 #endif
3253 crtl->args.size = CEIL_ROUND (crtl->args.size,
3254 PARM_BOUNDARY / BITS_PER_UNIT);
3256 #ifdef ARGS_GROW_DOWNWARD
3257 crtl->args.arg_offset_rtx
3258 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3259 : expand_expr (size_diffop (all.stack_args_size.var,
3260 size_int (-all.stack_args_size.constant)),
3261 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3262 #else
3263 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3264 #endif
3266 /* See how many bytes, if any, of its args a function should try to pop
3267 on return. */
3269 crtl->args.pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
3270 crtl->args.size);
3272 /* For stdarg.h function, save info about
3273 regs and stack space used by the named args. */
3275 crtl->args.info = all.args_so_far;
3277 /* Set the rtx used for the function return value. Put this in its
3278 own variable so any optimizers that need this information don't have
3279 to include tree.h. Do this here so it gets done when an inlined
3280 function gets output. */
3282 crtl->return_rtx
3283 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3284 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3286 /* If scalar return value was computed in a pseudo-reg, or was a named
3287 return value that got dumped to the stack, copy that to the hard
3288 return register. */
3289 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3291 tree decl_result = DECL_RESULT (fndecl);
3292 rtx decl_rtl = DECL_RTL (decl_result);
3294 if (REG_P (decl_rtl)
3295 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3296 : DECL_REGISTER (decl_result))
3298 rtx real_decl_rtl;
3300 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3301 fndecl, true);
3302 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3303 /* The delay slot scheduler assumes that crtl->return_rtx
3304 holds the hard register containing the return value, not a
3305 temporary pseudo. */
3306 crtl->return_rtx = real_decl_rtl;
3311 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3312 For all seen types, gimplify their sizes. */
3314 static tree
3315 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3317 tree t = *tp;
3319 *walk_subtrees = 0;
3320 if (TYPE_P (t))
3322 if (POINTER_TYPE_P (t))
3323 *walk_subtrees = 1;
3324 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3325 && !TYPE_SIZES_GIMPLIFIED (t))
3327 gimplify_type_sizes (t, (gimple_seq *) data);
3328 *walk_subtrees = 1;
3332 return NULL;
3335 /* Gimplify the parameter list for current_function_decl. This involves
3336 evaluating SAVE_EXPRs of variable sized parameters and generating code
3337 to implement callee-copies reference parameters. Returns a sequence of
3338 statements to add to the beginning of the function. */
3340 gimple_seq
3341 gimplify_parameters (void)
3343 struct assign_parm_data_all all;
3344 tree fnargs, parm;
3345 gimple_seq stmts = NULL;
3347 assign_parms_initialize_all (&all);
3348 fnargs = assign_parms_augmented_arg_list (&all);
3350 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3352 struct assign_parm_data_one data;
3354 /* Extract the type of PARM; adjust it according to ABI. */
3355 assign_parm_find_data_types (&all, parm, &data);
3357 /* Early out for errors and void parameters. */
3358 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3359 continue;
3361 /* Update info on where next arg arrives in registers. */
3362 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3363 data.passed_type, data.named_arg);
3365 /* ??? Once upon a time variable_size stuffed parameter list
3366 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3367 turned out to be less than manageable in the gimple world.
3368 Now we have to hunt them down ourselves. */
3369 walk_tree_without_duplicates (&data.passed_type,
3370 gimplify_parm_type, &stmts);
3372 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3374 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3375 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3378 if (data.passed_pointer)
3380 tree type = TREE_TYPE (data.passed_type);
3381 if (reference_callee_copied (&all.args_so_far, TYPE_MODE (type),
3382 type, data.named_arg))
3384 tree local, t;
3386 /* For constant-sized objects, this is trivial; for
3387 variable-sized objects, we have to play games. */
3388 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3389 && !(flag_stack_check == GENERIC_STACK_CHECK
3390 && compare_tree_int (DECL_SIZE_UNIT (parm),
3391 STACK_CHECK_MAX_VAR_SIZE) > 0))
3393 local = create_tmp_var (type, get_name (parm));
3394 DECL_IGNORED_P (local) = 0;
3395 /* If PARM was addressable, move that flag over
3396 to the local copy, as its address will be taken,
3397 not the PARMs. */
3398 if (TREE_ADDRESSABLE (parm))
3400 TREE_ADDRESSABLE (parm) = 0;
3401 TREE_ADDRESSABLE (local) = 1;
3404 else
3406 tree ptr_type, addr;
3408 ptr_type = build_pointer_type (type);
3409 addr = create_tmp_var (ptr_type, get_name (parm));
3410 DECL_IGNORED_P (addr) = 0;
3411 local = build_fold_indirect_ref (addr);
3413 t = built_in_decls[BUILT_IN_ALLOCA];
3414 t = build_call_expr (t, 1, DECL_SIZE_UNIT (parm));
3415 t = fold_convert (ptr_type, t);
3416 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3417 gimplify_and_add (t, &stmts);
3420 gimplify_assign (local, parm, &stmts);
3422 SET_DECL_VALUE_EXPR (parm, local);
3423 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3428 return stmts;
3431 /* Compute the size and offset from the start of the stacked arguments for a
3432 parm passed in mode PASSED_MODE and with type TYPE.
3434 INITIAL_OFFSET_PTR points to the current offset into the stacked
3435 arguments.
3437 The starting offset and size for this parm are returned in
3438 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3439 nonzero, the offset is that of stack slot, which is returned in
3440 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3441 padding required from the initial offset ptr to the stack slot.
3443 IN_REGS is nonzero if the argument will be passed in registers. It will
3444 never be set if REG_PARM_STACK_SPACE is not defined.
3446 FNDECL is the function in which the argument was defined.
3448 There are two types of rounding that are done. The first, controlled by
3449 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3450 list to be aligned to the specific boundary (in bits). This rounding
3451 affects the initial and starting offsets, but not the argument size.
3453 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3454 optionally rounds the size of the parm to PARM_BOUNDARY. The
3455 initial offset is not affected by this rounding, while the size always
3456 is and the starting offset may be. */
3458 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3459 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3460 callers pass in the total size of args so far as
3461 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3463 void
3464 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3465 int partial, tree fndecl ATTRIBUTE_UNUSED,
3466 struct args_size *initial_offset_ptr,
3467 struct locate_and_pad_arg_data *locate)
3469 tree sizetree;
3470 enum direction where_pad;
3471 unsigned int boundary;
3472 int reg_parm_stack_space = 0;
3473 int part_size_in_regs;
3475 #ifdef REG_PARM_STACK_SPACE
3476 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3478 /* If we have found a stack parm before we reach the end of the
3479 area reserved for registers, skip that area. */
3480 if (! in_regs)
3482 if (reg_parm_stack_space > 0)
3484 if (initial_offset_ptr->var)
3486 initial_offset_ptr->var
3487 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3488 ssize_int (reg_parm_stack_space));
3489 initial_offset_ptr->constant = 0;
3491 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3492 initial_offset_ptr->constant = reg_parm_stack_space;
3495 #endif /* REG_PARM_STACK_SPACE */
3497 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3499 sizetree
3500 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3501 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3502 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
3503 locate->where_pad = where_pad;
3505 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
3506 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
3507 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
3509 locate->boundary = boundary;
3511 if (SUPPORTS_STACK_ALIGNMENT)
3513 /* stack_alignment_estimated can't change after stack has been
3514 realigned. */
3515 if (crtl->stack_alignment_estimated < boundary)
3517 if (!crtl->stack_realign_processed)
3518 crtl->stack_alignment_estimated = boundary;
3519 else
3521 /* If stack is realigned and stack alignment value
3522 hasn't been finalized, it is OK not to increase
3523 stack_alignment_estimated. The bigger alignment
3524 requirement is recorded in stack_alignment_needed
3525 below. */
3526 gcc_assert (!crtl->stack_realign_finalized
3527 && crtl->stack_realign_needed);
3532 /* Remember if the outgoing parameter requires extra alignment on the
3533 calling function side. */
3534 if (crtl->stack_alignment_needed < boundary)
3535 crtl->stack_alignment_needed = boundary;
3536 if (crtl->preferred_stack_boundary < boundary)
3537 crtl->preferred_stack_boundary = boundary;
3539 #ifdef ARGS_GROW_DOWNWARD
3540 locate->slot_offset.constant = -initial_offset_ptr->constant;
3541 if (initial_offset_ptr->var)
3542 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3543 initial_offset_ptr->var);
3546 tree s2 = sizetree;
3547 if (where_pad != none
3548 && (!host_integerp (sizetree, 1)
3549 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3550 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3551 SUB_PARM_SIZE (locate->slot_offset, s2);
3554 locate->slot_offset.constant += part_size_in_regs;
3556 if (!in_regs
3557 #ifdef REG_PARM_STACK_SPACE
3558 || REG_PARM_STACK_SPACE (fndecl) > 0
3559 #endif
3561 pad_to_arg_alignment (&locate->slot_offset, boundary,
3562 &locate->alignment_pad);
3564 locate->size.constant = (-initial_offset_ptr->constant
3565 - locate->slot_offset.constant);
3566 if (initial_offset_ptr->var)
3567 locate->size.var = size_binop (MINUS_EXPR,
3568 size_binop (MINUS_EXPR,
3569 ssize_int (0),
3570 initial_offset_ptr->var),
3571 locate->slot_offset.var);
3573 /* Pad_below needs the pre-rounded size to know how much to pad
3574 below. */
3575 locate->offset = locate->slot_offset;
3576 if (where_pad == downward)
3577 pad_below (&locate->offset, passed_mode, sizetree);
3579 #else /* !ARGS_GROW_DOWNWARD */
3580 if (!in_regs
3581 #ifdef REG_PARM_STACK_SPACE
3582 || REG_PARM_STACK_SPACE (fndecl) > 0
3583 #endif
3585 pad_to_arg_alignment (initial_offset_ptr, boundary,
3586 &locate->alignment_pad);
3587 locate->slot_offset = *initial_offset_ptr;
3589 #ifdef PUSH_ROUNDING
3590 if (passed_mode != BLKmode)
3591 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3592 #endif
3594 /* Pad_below needs the pre-rounded size to know how much to pad below
3595 so this must be done before rounding up. */
3596 locate->offset = locate->slot_offset;
3597 if (where_pad == downward)
3598 pad_below (&locate->offset, passed_mode, sizetree);
3600 if (where_pad != none
3601 && (!host_integerp (sizetree, 1)
3602 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3603 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3605 ADD_PARM_SIZE (locate->size, sizetree);
3607 locate->size.constant -= part_size_in_regs;
3608 #endif /* ARGS_GROW_DOWNWARD */
3610 #ifdef FUNCTION_ARG_OFFSET
3611 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
3612 #endif
3615 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3616 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3618 static void
3619 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3620 struct args_size *alignment_pad)
3622 tree save_var = NULL_TREE;
3623 HOST_WIDE_INT save_constant = 0;
3624 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3625 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3627 #ifdef SPARC_STACK_BOUNDARY_HACK
3628 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3629 the real alignment of %sp. However, when it does this, the
3630 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3631 if (SPARC_STACK_BOUNDARY_HACK)
3632 sp_offset = 0;
3633 #endif
3635 if (boundary > PARM_BOUNDARY)
3637 save_var = offset_ptr->var;
3638 save_constant = offset_ptr->constant;
3641 alignment_pad->var = NULL_TREE;
3642 alignment_pad->constant = 0;
3644 if (boundary > BITS_PER_UNIT)
3646 if (offset_ptr->var)
3648 tree sp_offset_tree = ssize_int (sp_offset);
3649 tree offset = size_binop (PLUS_EXPR,
3650 ARGS_SIZE_TREE (*offset_ptr),
3651 sp_offset_tree);
3652 #ifdef ARGS_GROW_DOWNWARD
3653 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3654 #else
3655 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3656 #endif
3658 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3659 /* ARGS_SIZE_TREE includes constant term. */
3660 offset_ptr->constant = 0;
3661 if (boundary > PARM_BOUNDARY)
3662 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3663 save_var);
3665 else
3667 offset_ptr->constant = -sp_offset +
3668 #ifdef ARGS_GROW_DOWNWARD
3669 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3670 #else
3671 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3672 #endif
3673 if (boundary > PARM_BOUNDARY)
3674 alignment_pad->constant = offset_ptr->constant - save_constant;
3679 static void
3680 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3682 if (passed_mode != BLKmode)
3684 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3685 offset_ptr->constant
3686 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3687 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3688 - GET_MODE_SIZE (passed_mode));
3690 else
3692 if (TREE_CODE (sizetree) != INTEGER_CST
3693 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3695 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3696 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3697 /* Add it in. */
3698 ADD_PARM_SIZE (*offset_ptr, s2);
3699 SUB_PARM_SIZE (*offset_ptr, sizetree);
3705 /* True if register REGNO was alive at a place where `setjmp' was
3706 called and was set more than once or is an argument. Such regs may
3707 be clobbered by `longjmp'. */
3709 static bool
3710 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
3712 /* There appear to be cases where some local vars never reach the
3713 backend but have bogus regnos. */
3714 if (regno >= max_reg_num ())
3715 return false;
3717 return ((REG_N_SETS (regno) > 1
3718 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR), regno))
3719 && REGNO_REG_SET_P (setjmp_crosses, regno));
3722 /* Walk the tree of blocks describing the binding levels within a
3723 function and warn about variables the might be killed by setjmp or
3724 vfork. This is done after calling flow_analysis before register
3725 allocation since that will clobber the pseudo-regs to hard
3726 regs. */
3728 static void
3729 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
3731 tree decl, sub;
3733 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3735 if (TREE_CODE (decl) == VAR_DECL
3736 && DECL_RTL_SET_P (decl)
3737 && REG_P (DECL_RTL (decl))
3738 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3739 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
3740 " %<longjmp%> or %<vfork%>", decl);
3743 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
3744 setjmp_vars_warning (setjmp_crosses, sub);
3747 /* Do the appropriate part of setjmp_vars_warning
3748 but for arguments instead of local variables. */
3750 static void
3751 setjmp_args_warning (bitmap setjmp_crosses)
3753 tree decl;
3754 for (decl = DECL_ARGUMENTS (current_function_decl);
3755 decl; decl = TREE_CHAIN (decl))
3756 if (DECL_RTL (decl) != 0
3757 && REG_P (DECL_RTL (decl))
3758 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3759 warning (OPT_Wclobbered,
3760 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
3761 decl);
3764 /* Generate warning messages for variables live across setjmp. */
3766 void
3767 generate_setjmp_warnings (void)
3769 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
3771 if (n_basic_blocks == NUM_FIXED_BLOCKS
3772 || bitmap_empty_p (setjmp_crosses))
3773 return;
3775 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
3776 setjmp_args_warning (setjmp_crosses);
3780 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
3781 and create duplicate blocks. */
3782 /* ??? Need an option to either create block fragments or to create
3783 abstract origin duplicates of a source block. It really depends
3784 on what optimization has been performed. */
3786 void
3787 reorder_blocks (void)
3789 tree block = DECL_INITIAL (current_function_decl);
3790 VEC(tree,heap) *block_stack;
3792 if (block == NULL_TREE)
3793 return;
3795 block_stack = VEC_alloc (tree, heap, 10);
3797 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
3798 clear_block_marks (block);
3800 /* Prune the old trees away, so that they don't get in the way. */
3801 BLOCK_SUBBLOCKS (block) = NULL_TREE;
3802 BLOCK_CHAIN (block) = NULL_TREE;
3804 /* Recreate the block tree from the note nesting. */
3805 reorder_blocks_1 (get_insns (), block, &block_stack);
3806 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
3808 VEC_free (tree, heap, block_stack);
3811 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
3813 void
3814 clear_block_marks (tree block)
3816 while (block)
3818 TREE_ASM_WRITTEN (block) = 0;
3819 clear_block_marks (BLOCK_SUBBLOCKS (block));
3820 block = BLOCK_CHAIN (block);
3824 static void
3825 reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack)
3827 rtx insn;
3829 for (insn = insns; insn; insn = NEXT_INSN (insn))
3831 if (NOTE_P (insn))
3833 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
3835 tree block = NOTE_BLOCK (insn);
3836 tree origin;
3838 origin = (BLOCK_FRAGMENT_ORIGIN (block)
3839 ? BLOCK_FRAGMENT_ORIGIN (block)
3840 : block);
3842 /* If we have seen this block before, that means it now
3843 spans multiple address regions. Create a new fragment. */
3844 if (TREE_ASM_WRITTEN (block))
3846 tree new_block = copy_node (block);
3848 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
3849 BLOCK_FRAGMENT_CHAIN (new_block)
3850 = BLOCK_FRAGMENT_CHAIN (origin);
3851 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
3853 NOTE_BLOCK (insn) = new_block;
3854 block = new_block;
3857 BLOCK_SUBBLOCKS (block) = 0;
3858 TREE_ASM_WRITTEN (block) = 1;
3859 /* When there's only one block for the entire function,
3860 current_block == block and we mustn't do this, it
3861 will cause infinite recursion. */
3862 if (block != current_block)
3864 if (block != origin)
3865 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block);
3867 BLOCK_SUPERCONTEXT (block) = current_block;
3868 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
3869 BLOCK_SUBBLOCKS (current_block) = block;
3870 current_block = origin;
3872 VEC_safe_push (tree, heap, *p_block_stack, block);
3874 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
3876 NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack);
3877 BLOCK_SUBBLOCKS (current_block)
3878 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
3879 current_block = BLOCK_SUPERCONTEXT (current_block);
3885 /* Reverse the order of elements in the chain T of blocks,
3886 and return the new head of the chain (old last element). */
3888 tree
3889 blocks_nreverse (tree t)
3891 tree prev = 0, decl, next;
3892 for (decl = t; decl; decl = next)
3894 next = BLOCK_CHAIN (decl);
3895 BLOCK_CHAIN (decl) = prev;
3896 prev = decl;
3898 return prev;
3901 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
3902 non-NULL, list them all into VECTOR, in a depth-first preorder
3903 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
3904 blocks. */
3906 static int
3907 all_blocks (tree block, tree *vector)
3909 int n_blocks = 0;
3911 while (block)
3913 TREE_ASM_WRITTEN (block) = 0;
3915 /* Record this block. */
3916 if (vector)
3917 vector[n_blocks] = block;
3919 ++n_blocks;
3921 /* Record the subblocks, and their subblocks... */
3922 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
3923 vector ? vector + n_blocks : 0);
3924 block = BLOCK_CHAIN (block);
3927 return n_blocks;
3930 /* Return a vector containing all the blocks rooted at BLOCK. The
3931 number of elements in the vector is stored in N_BLOCKS_P. The
3932 vector is dynamically allocated; it is the caller's responsibility
3933 to call `free' on the pointer returned. */
3935 static tree *
3936 get_block_vector (tree block, int *n_blocks_p)
3938 tree *block_vector;
3940 *n_blocks_p = all_blocks (block, NULL);
3941 block_vector = XNEWVEC (tree, *n_blocks_p);
3942 all_blocks (block, block_vector);
3944 return block_vector;
3947 static GTY(()) int next_block_index = 2;
3949 /* Set BLOCK_NUMBER for all the blocks in FN. */
3951 void
3952 number_blocks (tree fn)
3954 int i;
3955 int n_blocks;
3956 tree *block_vector;
3958 /* For SDB and XCOFF debugging output, we start numbering the blocks
3959 from 1 within each function, rather than keeping a running
3960 count. */
3961 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
3962 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
3963 next_block_index = 1;
3964 #endif
3966 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
3968 /* The top-level BLOCK isn't numbered at all. */
3969 for (i = 1; i < n_blocks; ++i)
3970 /* We number the blocks from two. */
3971 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
3973 free (block_vector);
3975 return;
3978 /* If VAR is present in a subblock of BLOCK, return the subblock. */
3980 tree
3981 debug_find_var_in_block_tree (tree var, tree block)
3983 tree t;
3985 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
3986 if (t == var)
3987 return block;
3989 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
3991 tree ret = debug_find_var_in_block_tree (var, t);
3992 if (ret)
3993 return ret;
3996 return NULL_TREE;
3999 /* Keep track of whether we're in a dummy function context. If we are,
4000 we don't want to invoke the set_current_function hook, because we'll
4001 get into trouble if the hook calls target_reinit () recursively or
4002 when the initial initialization is not yet complete. */
4004 static bool in_dummy_function;
4006 /* Invoke the target hook when setting cfun. Update the optimization options
4007 if the function uses different options than the default. */
4009 static void
4010 invoke_set_current_function_hook (tree fndecl)
4012 if (!in_dummy_function)
4014 tree opts = ((fndecl)
4015 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4016 : optimization_default_node);
4018 if (!opts)
4019 opts = optimization_default_node;
4021 /* Change optimization options if needed. */
4022 if (optimization_current_node != opts)
4024 optimization_current_node = opts;
4025 cl_optimization_restore (TREE_OPTIMIZATION (opts));
4028 targetm.set_current_function (fndecl);
4032 /* cfun should never be set directly; use this function. */
4034 void
4035 set_cfun (struct function *new_cfun)
4037 if (cfun != new_cfun)
4039 cfun = new_cfun;
4040 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4044 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4046 static VEC(function_p,heap) *cfun_stack;
4048 /* Push the current cfun onto the stack, and set cfun to new_cfun. */
4050 void
4051 push_cfun (struct function *new_cfun)
4053 VEC_safe_push (function_p, heap, cfun_stack, cfun);
4054 set_cfun (new_cfun);
4057 /* Pop cfun from the stack. */
4059 void
4060 pop_cfun (void)
4062 struct function *new_cfun = VEC_pop (function_p, cfun_stack);
4063 set_cfun (new_cfun);
4066 /* Return value of funcdef and increase it. */
4068 get_next_funcdef_no (void)
4070 return funcdef_no++;
4073 /* Allocate a function structure for FNDECL and set its contents
4074 to the defaults. Set cfun to the newly-allocated object.
4075 Some of the helper functions invoked during initialization assume
4076 that cfun has already been set. Therefore, assign the new object
4077 directly into cfun and invoke the back end hook explicitly at the
4078 very end, rather than initializing a temporary and calling set_cfun
4079 on it.
4081 ABSTRACT_P is true if this is a function that will never be seen by
4082 the middle-end. Such functions are front-end concepts (like C++
4083 function templates) that do not correspond directly to functions
4084 placed in object files. */
4086 void
4087 allocate_struct_function (tree fndecl, bool abstract_p)
4089 tree result;
4090 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4092 cfun = GGC_CNEW (struct function);
4094 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
4096 init_eh_for_function ();
4098 if (init_machine_status)
4099 cfun->machine = (*init_machine_status) ();
4101 #ifdef OVERRIDE_ABI_FORMAT
4102 OVERRIDE_ABI_FORMAT (fndecl);
4103 #endif
4105 invoke_set_current_function_hook (fndecl);
4107 if (fndecl != NULL_TREE)
4109 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4110 cfun->decl = fndecl;
4111 current_function_funcdef_no = get_next_funcdef_no ();
4113 result = DECL_RESULT (fndecl);
4114 if (!abstract_p && aggregate_value_p (result, fndecl))
4116 #ifdef PCC_STATIC_STRUCT_RETURN
4117 cfun->returns_pcc_struct = 1;
4118 #endif
4119 cfun->returns_struct = 1;
4122 cfun->stdarg
4123 = (fntype
4124 && TYPE_ARG_TYPES (fntype) != 0
4125 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
4126 != void_type_node));
4128 /* Assume all registers in stdarg functions need to be saved. */
4129 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4130 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4134 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4135 instead of just setting it. */
4137 void
4138 push_struct_function (tree fndecl)
4140 VEC_safe_push (function_p, heap, cfun_stack, cfun);
4141 allocate_struct_function (fndecl, false);
4144 /* Reset cfun, and other non-struct-function variables to defaults as
4145 appropriate for emitting rtl at the start of a function. */
4147 static void
4148 prepare_function_start (void)
4150 gcc_assert (!crtl->emit.x_last_insn);
4151 init_temp_slots ();
4152 init_emit ();
4153 init_varasm_status ();
4154 init_expr ();
4155 default_rtl_profile ();
4157 cse_not_expected = ! optimize;
4159 /* Caller save not needed yet. */
4160 caller_save_needed = 0;
4162 /* We haven't done register allocation yet. */
4163 reg_renumber = 0;
4165 /* Indicate that we have not instantiated virtual registers yet. */
4166 virtuals_instantiated = 0;
4168 /* Indicate that we want CONCATs now. */
4169 generating_concat_p = 1;
4171 /* Indicate we have no need of a frame pointer yet. */
4172 frame_pointer_needed = 0;
4175 /* Initialize the rtl expansion mechanism so that we can do simple things
4176 like generate sequences. This is used to provide a context during global
4177 initialization of some passes. You must call expand_dummy_function_end
4178 to exit this context. */
4180 void
4181 init_dummy_function_start (void)
4183 gcc_assert (!in_dummy_function);
4184 in_dummy_function = true;
4185 push_struct_function (NULL_TREE);
4186 prepare_function_start ();
4189 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4190 and initialize static variables for generating RTL for the statements
4191 of the function. */
4193 void
4194 init_function_start (tree subr)
4196 if (subr && DECL_STRUCT_FUNCTION (subr))
4197 set_cfun (DECL_STRUCT_FUNCTION (subr));
4198 else
4199 allocate_struct_function (subr, false);
4200 prepare_function_start ();
4202 /* Warn if this value is an aggregate type,
4203 regardless of which calling convention we are using for it. */
4204 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4205 warning (OPT_Waggregate_return, "function returns an aggregate");
4208 /* Make sure all values used by the optimization passes have sane defaults. */
4209 unsigned int
4210 init_function_for_compilation (void)
4212 reg_renumber = 0;
4213 return 0;
4216 struct rtl_opt_pass pass_init_function =
4219 RTL_PASS,
4220 NULL, /* name */
4221 NULL, /* gate */
4222 init_function_for_compilation, /* execute */
4223 NULL, /* sub */
4224 NULL, /* next */
4225 0, /* static_pass_number */
4226 TV_NONE, /* tv_id */
4227 0, /* properties_required */
4228 0, /* properties_provided */
4229 0, /* properties_destroyed */
4230 0, /* todo_flags_start */
4231 0 /* todo_flags_finish */
4236 void
4237 expand_main_function (void)
4239 #if (defined(INVOKE__main) \
4240 || (!defined(HAS_INIT_SECTION) \
4241 && !defined(INIT_SECTION_ASM_OP) \
4242 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
4243 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
4244 #endif
4247 /* Expand code to initialize the stack_protect_guard. This is invoked at
4248 the beginning of a function to be protected. */
4250 #ifndef HAVE_stack_protect_set
4251 # define HAVE_stack_protect_set 0
4252 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
4253 #endif
4255 void
4256 stack_protect_prologue (void)
4258 tree guard_decl = targetm.stack_protect_guard ();
4259 rtx x, y;
4261 /* Avoid expand_expr here, because we don't want guard_decl pulled
4262 into registers unless absolutely necessary. And we know that
4263 crtl->stack_protect_guard is a local stack slot, so this skips
4264 all the fluff. */
4265 x = validize_mem (DECL_RTL (crtl->stack_protect_guard));
4266 y = validize_mem (DECL_RTL (guard_decl));
4268 /* Allow the target to copy from Y to X without leaking Y into a
4269 register. */
4270 if (HAVE_stack_protect_set)
4272 rtx insn = gen_stack_protect_set (x, y);
4273 if (insn)
4275 emit_insn (insn);
4276 return;
4280 /* Otherwise do a straight move. */
4281 emit_move_insn (x, y);
4284 /* Expand code to verify the stack_protect_guard. This is invoked at
4285 the end of a function to be protected. */
4287 #ifndef HAVE_stack_protect_test
4288 # define HAVE_stack_protect_test 0
4289 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4290 #endif
4292 void
4293 stack_protect_epilogue (void)
4295 tree guard_decl = targetm.stack_protect_guard ();
4296 rtx label = gen_label_rtx ();
4297 rtx x, y, tmp;
4299 /* Avoid expand_expr here, because we don't want guard_decl pulled
4300 into registers unless absolutely necessary. And we know that
4301 crtl->stack_protect_guard is a local stack slot, so this skips
4302 all the fluff. */
4303 x = validize_mem (DECL_RTL (crtl->stack_protect_guard));
4304 y = validize_mem (DECL_RTL (guard_decl));
4306 /* Allow the target to compare Y with X without leaking either into
4307 a register. */
4308 switch (HAVE_stack_protect_test != 0)
4310 case 1:
4311 tmp = gen_stack_protect_test (x, y, label);
4312 if (tmp)
4314 emit_insn (tmp);
4315 break;
4317 /* FALLTHRU */
4319 default:
4320 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4321 break;
4324 /* The noreturn predictor has been moved to the tree level. The rtl-level
4325 predictors estimate this branch about 20%, which isn't enough to get
4326 things moved out of line. Since this is the only extant case of adding
4327 a noreturn function at the rtl level, it doesn't seem worth doing ought
4328 except adding the prediction by hand. */
4329 tmp = get_last_insn ();
4330 if (JUMP_P (tmp))
4331 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4333 expand_expr_stmt (targetm.stack_protect_fail ());
4334 emit_label (label);
4337 /* Start the RTL for a new function, and set variables used for
4338 emitting RTL.
4339 SUBR is the FUNCTION_DECL node.
4340 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4341 the function's parameters, which must be run at any return statement. */
4343 void
4344 expand_function_start (tree subr)
4346 /* Make sure volatile mem refs aren't considered
4347 valid operands of arithmetic insns. */
4348 init_recog_no_volatile ();
4350 crtl->profile
4351 = (profile_flag
4352 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4354 crtl->limit_stack
4355 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4357 /* Make the label for return statements to jump to. Do not special
4358 case machines with special return instructions -- they will be
4359 handled later during jump, ifcvt, or epilogue creation. */
4360 return_label = gen_label_rtx ();
4362 /* Initialize rtx used to return the value. */
4363 /* Do this before assign_parms so that we copy the struct value address
4364 before any library calls that assign parms might generate. */
4366 /* Decide whether to return the value in memory or in a register. */
4367 if (aggregate_value_p (DECL_RESULT (subr), subr))
4369 /* Returning something that won't go in a register. */
4370 rtx value_address = 0;
4372 #ifdef PCC_STATIC_STRUCT_RETURN
4373 if (cfun->returns_pcc_struct)
4375 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4376 value_address = assemble_static_space (size);
4378 else
4379 #endif
4381 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4382 /* Expect to be passed the address of a place to store the value.
4383 If it is passed as an argument, assign_parms will take care of
4384 it. */
4385 if (sv)
4387 value_address = gen_reg_rtx (Pmode);
4388 emit_move_insn (value_address, sv);
4391 if (value_address)
4393 rtx x = value_address;
4394 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4396 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4397 set_mem_attributes (x, DECL_RESULT (subr), 1);
4399 SET_DECL_RTL (DECL_RESULT (subr), x);
4402 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4403 /* If return mode is void, this decl rtl should not be used. */
4404 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4405 else
4407 /* Compute the return values into a pseudo reg, which we will copy
4408 into the true return register after the cleanups are done. */
4409 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4410 if (TYPE_MODE (return_type) != BLKmode
4411 && targetm.calls.return_in_msb (return_type))
4412 /* expand_function_end will insert the appropriate padding in
4413 this case. Use the return value's natural (unpadded) mode
4414 within the function proper. */
4415 SET_DECL_RTL (DECL_RESULT (subr),
4416 gen_reg_rtx (TYPE_MODE (return_type)));
4417 else
4419 /* In order to figure out what mode to use for the pseudo, we
4420 figure out what the mode of the eventual return register will
4421 actually be, and use that. */
4422 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4424 /* Structures that are returned in registers are not
4425 aggregate_value_p, so we may see a PARALLEL or a REG. */
4426 if (REG_P (hard_reg))
4427 SET_DECL_RTL (DECL_RESULT (subr),
4428 gen_reg_rtx (GET_MODE (hard_reg)));
4429 else
4431 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4432 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4436 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4437 result to the real return register(s). */
4438 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4441 /* Initialize rtx for parameters and local variables.
4442 In some cases this requires emitting insns. */
4443 assign_parms (subr);
4445 /* If function gets a static chain arg, store it. */
4446 if (cfun->static_chain_decl)
4448 tree parm = cfun->static_chain_decl;
4449 rtx local = gen_reg_rtx (Pmode);
4451 set_decl_incoming_rtl (parm, static_chain_incoming_rtx, false);
4452 SET_DECL_RTL (parm, local);
4453 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4455 emit_move_insn (local, static_chain_incoming_rtx);
4458 /* If the function receives a non-local goto, then store the
4459 bits we need to restore the frame pointer. */
4460 if (cfun->nonlocal_goto_save_area)
4462 tree t_save;
4463 rtx r_save;
4465 /* ??? We need to do this save early. Unfortunately here is
4466 before the frame variable gets declared. Help out... */
4467 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
4468 if (!DECL_RTL_SET_P (var))
4469 expand_decl (var);
4471 t_save = build4 (ARRAY_REF, ptr_type_node,
4472 cfun->nonlocal_goto_save_area,
4473 integer_zero_node, NULL_TREE, NULL_TREE);
4474 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4475 r_save = convert_memory_address (Pmode, r_save);
4477 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
4478 update_nonlocal_goto_save_area ();
4481 /* The following was moved from init_function_start.
4482 The move is supposed to make sdb output more accurate. */
4483 /* Indicate the beginning of the function body,
4484 as opposed to parm setup. */
4485 emit_note (NOTE_INSN_FUNCTION_BEG);
4487 gcc_assert (NOTE_P (get_last_insn ()));
4489 parm_birth_insn = get_last_insn ();
4491 if (crtl->profile)
4493 #ifdef PROFILE_HOOK
4494 PROFILE_HOOK (current_function_funcdef_no);
4495 #endif
4498 /* After the display initializations is where the stack checking
4499 probe should go. */
4500 if(flag_stack_check)
4501 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4503 /* Make sure there is a line number after the function entry setup code. */
4504 force_next_line_note ();
4507 /* Undo the effects of init_dummy_function_start. */
4508 void
4509 expand_dummy_function_end (void)
4511 gcc_assert (in_dummy_function);
4513 /* End any sequences that failed to be closed due to syntax errors. */
4514 while (in_sequence_p ())
4515 end_sequence ();
4517 /* Outside function body, can't compute type's actual size
4518 until next function's body starts. */
4520 free_after_parsing (cfun);
4521 free_after_compilation (cfun);
4522 pop_cfun ();
4523 in_dummy_function = false;
4526 /* Call DOIT for each hard register used as a return value from
4527 the current function. */
4529 void
4530 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4532 rtx outgoing = crtl->return_rtx;
4534 if (! outgoing)
4535 return;
4537 if (REG_P (outgoing))
4538 (*doit) (outgoing, arg);
4539 else if (GET_CODE (outgoing) == PARALLEL)
4541 int i;
4543 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4545 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4547 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4548 (*doit) (x, arg);
4553 static void
4554 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4556 emit_clobber (reg);
4559 void
4560 clobber_return_register (void)
4562 diddle_return_value (do_clobber_return_reg, NULL);
4564 /* In case we do use pseudo to return value, clobber it too. */
4565 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4567 tree decl_result = DECL_RESULT (current_function_decl);
4568 rtx decl_rtl = DECL_RTL (decl_result);
4569 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4571 do_clobber_return_reg (decl_rtl, NULL);
4576 static void
4577 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4579 emit_use (reg);
4582 static void
4583 use_return_register (void)
4585 diddle_return_value (do_use_return_reg, NULL);
4588 /* Possibly warn about unused parameters. */
4589 void
4590 do_warn_unused_parameter (tree fn)
4592 tree decl;
4594 for (decl = DECL_ARGUMENTS (fn);
4595 decl; decl = TREE_CHAIN (decl))
4596 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4597 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
4598 && !TREE_NO_WARNING (decl))
4599 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4602 static GTY(()) rtx initial_trampoline;
4604 /* Generate RTL for the end of the current function. */
4606 void
4607 expand_function_end (void)
4609 rtx clobber_after;
4611 /* If arg_pointer_save_area was referenced only from a nested
4612 function, we will not have initialized it yet. Do that now. */
4613 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
4614 get_arg_pointer_save_area ();
4616 /* If we are doing generic stack checking and this function makes calls,
4617 do a stack probe at the start of the function to ensure we have enough
4618 space for another stack frame. */
4619 if (flag_stack_check == GENERIC_STACK_CHECK)
4621 rtx insn, seq;
4623 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4624 if (CALL_P (insn))
4626 start_sequence ();
4627 probe_stack_range (STACK_OLD_CHECK_PROTECT,
4628 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
4629 seq = get_insns ();
4630 end_sequence ();
4631 emit_insn_before (seq, stack_check_probe_note);
4632 break;
4636 /* End any sequences that failed to be closed due to syntax errors. */
4637 while (in_sequence_p ())
4638 end_sequence ();
4640 clear_pending_stack_adjust ();
4641 do_pending_stack_adjust ();
4643 /* Output a linenumber for the end of the function.
4644 SDB depends on this. */
4645 force_next_line_note ();
4646 set_curr_insn_source_location (input_location);
4648 /* Before the return label (if any), clobber the return
4649 registers so that they are not propagated live to the rest of
4650 the function. This can only happen with functions that drop
4651 through; if there had been a return statement, there would
4652 have either been a return rtx, or a jump to the return label.
4654 We delay actual code generation after the current_function_value_rtx
4655 is computed. */
4656 clobber_after = get_last_insn ();
4658 /* Output the label for the actual return from the function. */
4659 emit_label (return_label);
4661 if (USING_SJLJ_EXCEPTIONS)
4663 /* Let except.c know where it should emit the call to unregister
4664 the function context for sjlj exceptions. */
4665 if (flag_exceptions)
4666 sjlj_emit_function_exit_after (get_last_insn ());
4668 else
4670 /* We want to ensure that instructions that may trap are not
4671 moved into the epilogue by scheduling, because we don't
4672 always emit unwind information for the epilogue. */
4673 if (flag_non_call_exceptions)
4674 emit_insn (gen_blockage ());
4677 /* If this is an implementation of throw, do what's necessary to
4678 communicate between __builtin_eh_return and the epilogue. */
4679 expand_eh_return ();
4681 /* If scalar return value was computed in a pseudo-reg, or was a named
4682 return value that got dumped to the stack, copy that to the hard
4683 return register. */
4684 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4686 tree decl_result = DECL_RESULT (current_function_decl);
4687 rtx decl_rtl = DECL_RTL (decl_result);
4689 if (REG_P (decl_rtl)
4690 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4691 : DECL_REGISTER (decl_result))
4693 rtx real_decl_rtl = crtl->return_rtx;
4695 /* This should be set in assign_parms. */
4696 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
4698 /* If this is a BLKmode structure being returned in registers,
4699 then use the mode computed in expand_return. Note that if
4700 decl_rtl is memory, then its mode may have been changed,
4701 but that crtl->return_rtx has not. */
4702 if (GET_MODE (real_decl_rtl) == BLKmode)
4703 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
4705 /* If a non-BLKmode return value should be padded at the least
4706 significant end of the register, shift it left by the appropriate
4707 amount. BLKmode results are handled using the group load/store
4708 machinery. */
4709 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
4710 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
4712 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
4713 REGNO (real_decl_rtl)),
4714 decl_rtl);
4715 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
4717 /* If a named return value dumped decl_return to memory, then
4718 we may need to re-do the PROMOTE_MODE signed/unsigned
4719 extension. */
4720 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
4722 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
4723 promote_function_mode (TREE_TYPE (decl_result),
4724 GET_MODE (decl_rtl), &unsignedp,
4725 TREE_TYPE (current_function_decl), 1);
4727 convert_move (real_decl_rtl, decl_rtl, unsignedp);
4729 else if (GET_CODE (real_decl_rtl) == PARALLEL)
4731 /* If expand_function_start has created a PARALLEL for decl_rtl,
4732 move the result to the real return registers. Otherwise, do
4733 a group load from decl_rtl for a named return. */
4734 if (GET_CODE (decl_rtl) == PARALLEL)
4735 emit_group_move (real_decl_rtl, decl_rtl);
4736 else
4737 emit_group_load (real_decl_rtl, decl_rtl,
4738 TREE_TYPE (decl_result),
4739 int_size_in_bytes (TREE_TYPE (decl_result)));
4741 /* In the case of complex integer modes smaller than a word, we'll
4742 need to generate some non-trivial bitfield insertions. Do that
4743 on a pseudo and not the hard register. */
4744 else if (GET_CODE (decl_rtl) == CONCAT
4745 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
4746 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
4748 int old_generating_concat_p;
4749 rtx tmp;
4751 old_generating_concat_p = generating_concat_p;
4752 generating_concat_p = 0;
4753 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
4754 generating_concat_p = old_generating_concat_p;
4756 emit_move_insn (tmp, decl_rtl);
4757 emit_move_insn (real_decl_rtl, tmp);
4759 else
4760 emit_move_insn (real_decl_rtl, decl_rtl);
4764 /* If returning a structure, arrange to return the address of the value
4765 in a place where debuggers expect to find it.
4767 If returning a structure PCC style,
4768 the caller also depends on this value.
4769 And cfun->returns_pcc_struct is not necessarily set. */
4770 if (cfun->returns_struct
4771 || cfun->returns_pcc_struct)
4773 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
4774 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
4775 rtx outgoing;
4777 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
4778 type = TREE_TYPE (type);
4779 else
4780 value_address = XEXP (value_address, 0);
4782 outgoing = targetm.calls.function_value (build_pointer_type (type),
4783 current_function_decl, true);
4785 /* Mark this as a function return value so integrate will delete the
4786 assignment and USE below when inlining this function. */
4787 REG_FUNCTION_VALUE_P (outgoing) = 1;
4789 /* The address may be ptr_mode and OUTGOING may be Pmode. */
4790 value_address = convert_memory_address (GET_MODE (outgoing),
4791 value_address);
4793 emit_move_insn (outgoing, value_address);
4795 /* Show return register used to hold result (in this case the address
4796 of the result. */
4797 crtl->return_rtx = outgoing;
4800 /* Emit the actual code to clobber return register. */
4802 rtx seq;
4804 start_sequence ();
4805 clobber_return_register ();
4806 seq = get_insns ();
4807 end_sequence ();
4809 emit_insn_after (seq, clobber_after);
4812 /* Output the label for the naked return from the function. */
4813 if (naked_return_label)
4814 emit_label (naked_return_label);
4816 /* @@@ This is a kludge. We want to ensure that instructions that
4817 may trap are not moved into the epilogue by scheduling, because
4818 we don't always emit unwind information for the epilogue. */
4819 if (! USING_SJLJ_EXCEPTIONS && flag_non_call_exceptions)
4820 emit_insn (gen_blockage ());
4822 /* If stack protection is enabled for this function, check the guard. */
4823 if (crtl->stack_protect_guard)
4824 stack_protect_epilogue ();
4826 /* If we had calls to alloca, and this machine needs
4827 an accurate stack pointer to exit the function,
4828 insert some code to save and restore the stack pointer. */
4829 if (! EXIT_IGNORE_STACK
4830 && cfun->calls_alloca)
4832 rtx tem = 0;
4834 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
4835 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
4838 /* ??? This should no longer be necessary since stupid is no longer with
4839 us, but there are some parts of the compiler (eg reload_combine, and
4840 sh mach_dep_reorg) that still try and compute their own lifetime info
4841 instead of using the general framework. */
4842 use_return_register ();
4846 get_arg_pointer_save_area (void)
4848 rtx ret = arg_pointer_save_area;
4850 if (! ret)
4852 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
4853 arg_pointer_save_area = ret;
4856 if (! crtl->arg_pointer_save_area_init)
4858 rtx seq;
4860 /* Save the arg pointer at the beginning of the function. The
4861 generated stack slot may not be a valid memory address, so we
4862 have to check it and fix it if necessary. */
4863 start_sequence ();
4864 emit_move_insn (validize_mem (ret),
4865 crtl->args.internal_arg_pointer);
4866 seq = get_insns ();
4867 end_sequence ();
4869 push_topmost_sequence ();
4870 emit_insn_after (seq, entry_of_function ());
4871 pop_topmost_sequence ();
4874 return ret;
4877 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
4878 for the first time. */
4880 static void
4881 record_insns (rtx insns, rtx end, htab_t *hashp)
4883 rtx tmp;
4884 htab_t hash = *hashp;
4886 if (hash == NULL)
4887 *hashp = hash
4888 = htab_create_ggc (17, htab_hash_pointer, htab_eq_pointer, NULL);
4890 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
4892 void **slot = htab_find_slot (hash, tmp, INSERT);
4893 gcc_assert (*slot == NULL);
4894 *slot = tmp;
4898 /* INSN has been duplicated as COPY, as part of duping a basic block.
4899 If INSN is an epilogue insn, then record COPY as epilogue as well. */
4901 void
4902 maybe_copy_epilogue_insn (rtx insn, rtx copy)
4904 void **slot;
4906 if (epilogue_insn_hash == NULL
4907 || htab_find (epilogue_insn_hash, insn) == NULL)
4908 return;
4910 slot = htab_find_slot (epilogue_insn_hash, copy, INSERT);
4911 gcc_assert (*slot == NULL);
4912 *slot = copy;
4915 /* Set the locator of the insn chain starting at INSN to LOC. */
4916 static void
4917 set_insn_locators (rtx insn, int loc)
4919 while (insn != NULL_RTX)
4921 if (INSN_P (insn))
4922 INSN_LOCATOR (insn) = loc;
4923 insn = NEXT_INSN (insn);
4927 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
4928 we can be running after reorg, SEQUENCE rtl is possible. */
4930 static bool
4931 contains (const_rtx insn, htab_t hash)
4933 if (hash == NULL)
4934 return false;
4936 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
4938 int i;
4939 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
4940 if (htab_find (hash, XVECEXP (PATTERN (insn), 0, i)))
4941 return true;
4942 return false;
4945 return htab_find (hash, insn) != NULL;
4949 prologue_epilogue_contains (const_rtx insn)
4951 if (contains (insn, prologue_insn_hash))
4952 return 1;
4953 if (contains (insn, epilogue_insn_hash))
4954 return 1;
4955 return 0;
4958 #ifdef HAVE_return
4959 /* Insert gen_return at the end of block BB. This also means updating
4960 block_for_insn appropriately. */
4962 static void
4963 emit_return_into_block (basic_block bb)
4965 emit_jump_insn_after (gen_return (), BB_END (bb));
4967 #endif /* HAVE_return */
4969 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
4970 this into place with notes indicating where the prologue ends and where
4971 the epilogue begins. Update the basic block information when possible. */
4973 static void
4974 thread_prologue_and_epilogue_insns (void)
4976 int inserted = 0;
4977 edge e;
4978 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
4979 rtx seq;
4980 #endif
4981 #if defined (HAVE_epilogue) || defined(HAVE_return)
4982 rtx epilogue_end = NULL_RTX;
4983 #endif
4984 edge_iterator ei;
4986 rtl_profile_for_bb (ENTRY_BLOCK_PTR);
4987 #ifdef HAVE_prologue
4988 if (HAVE_prologue)
4990 start_sequence ();
4991 seq = gen_prologue ();
4992 emit_insn (seq);
4994 /* Insert an explicit USE for the frame pointer
4995 if the profiling is on and the frame pointer is required. */
4996 if (crtl->profile && frame_pointer_needed)
4997 emit_use (hard_frame_pointer_rtx);
4999 /* Retain a map of the prologue insns. */
5000 record_insns (seq, NULL, &prologue_insn_hash);
5001 emit_note (NOTE_INSN_PROLOGUE_END);
5003 #ifndef PROFILE_BEFORE_PROLOGUE
5004 /* Ensure that instructions are not moved into the prologue when
5005 profiling is on. The call to the profiling routine can be
5006 emitted within the live range of a call-clobbered register. */
5007 if (crtl->profile)
5008 emit_insn (gen_blockage ());
5009 #endif
5011 seq = get_insns ();
5012 end_sequence ();
5013 set_insn_locators (seq, prologue_locator);
5015 /* Can't deal with multiple successors of the entry block
5016 at the moment. Function should always have at least one
5017 entry point. */
5018 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
5020 insert_insn_on_edge (seq, single_succ_edge (ENTRY_BLOCK_PTR));
5021 inserted = 1;
5023 #endif
5025 /* If the exit block has no non-fake predecessors, we don't need
5026 an epilogue. */
5027 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5028 if ((e->flags & EDGE_FAKE) == 0)
5029 break;
5030 if (e == NULL)
5031 goto epilogue_done;
5033 rtl_profile_for_bb (EXIT_BLOCK_PTR);
5034 #ifdef HAVE_return
5035 if (optimize && HAVE_return)
5037 /* If we're allowed to generate a simple return instruction,
5038 then by definition we don't need a full epilogue. Examine
5039 the block that falls through to EXIT. If it does not
5040 contain any code, examine its predecessors and try to
5041 emit (conditional) return instructions. */
5043 basic_block last;
5044 rtx label;
5046 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5047 if (e->flags & EDGE_FALLTHRU)
5048 break;
5049 if (e == NULL)
5050 goto epilogue_done;
5051 last = e->src;
5053 /* Verify that there are no active instructions in the last block. */
5054 label = BB_END (last);
5055 while (label && !LABEL_P (label))
5057 if (active_insn_p (label))
5058 break;
5059 label = PREV_INSN (label);
5062 if (BB_HEAD (last) == label && LABEL_P (label))
5064 edge_iterator ei2;
5066 for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); )
5068 basic_block bb = e->src;
5069 rtx jump;
5071 if (bb == ENTRY_BLOCK_PTR)
5073 ei_next (&ei2);
5074 continue;
5077 jump = BB_END (bb);
5078 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5080 ei_next (&ei2);
5081 continue;
5084 /* If we have an unconditional jump, we can replace that
5085 with a simple return instruction. */
5086 if (simplejump_p (jump))
5088 emit_return_into_block (bb);
5089 delete_insn (jump);
5092 /* If we have a conditional jump, we can try to replace
5093 that with a conditional return instruction. */
5094 else if (condjump_p (jump))
5096 if (! redirect_jump (jump, 0, 0))
5098 ei_next (&ei2);
5099 continue;
5102 /* If this block has only one successor, it both jumps
5103 and falls through to the fallthru block, so we can't
5104 delete the edge. */
5105 if (single_succ_p (bb))
5107 ei_next (&ei2);
5108 continue;
5111 else
5113 ei_next (&ei2);
5114 continue;
5117 /* Fix up the CFG for the successful change we just made. */
5118 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5121 /* Emit a return insn for the exit fallthru block. Whether
5122 this is still reachable will be determined later. */
5124 emit_barrier_after (BB_END (last));
5125 emit_return_into_block (last);
5126 epilogue_end = BB_END (last);
5127 single_succ_edge (last)->flags &= ~EDGE_FALLTHRU;
5128 goto epilogue_done;
5131 #endif
5133 /* A small fib -- epilogue is not yet completed, but we wish to re-use
5134 this marker for the splits of EH_RETURN patterns, and nothing else
5135 uses the flag in the meantime. */
5136 epilogue_completed = 1;
5138 #ifdef HAVE_eh_return
5139 /* Find non-fallthru edges that end with EH_RETURN instructions. On
5140 some targets, these get split to a special version of the epilogue
5141 code. In order to be able to properly annotate these with unwind
5142 info, try to split them now. If we get a valid split, drop an
5143 EPILOGUE_BEG note and mark the insns as epilogue insns. */
5144 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5146 rtx prev, last, trial;
5148 if (e->flags & EDGE_FALLTHRU)
5149 continue;
5150 last = BB_END (e->src);
5151 if (!eh_returnjump_p (last))
5152 continue;
5154 prev = PREV_INSN (last);
5155 trial = try_split (PATTERN (last), last, 1);
5156 if (trial == last)
5157 continue;
5159 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
5160 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
5162 #endif
5164 /* Find the edge that falls through to EXIT. Other edges may exist
5165 due to RETURN instructions, but those don't need epilogues.
5166 There really shouldn't be a mixture -- either all should have
5167 been converted or none, however... */
5169 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5170 if (e->flags & EDGE_FALLTHRU)
5171 break;
5172 if (e == NULL)
5173 goto epilogue_done;
5175 #ifdef HAVE_epilogue
5176 if (HAVE_epilogue)
5178 start_sequence ();
5179 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5180 seq = gen_epilogue ();
5181 emit_jump_insn (seq);
5183 /* Retain a map of the epilogue insns. */
5184 record_insns (seq, NULL, &epilogue_insn_hash);
5185 set_insn_locators (seq, epilogue_locator);
5187 seq = get_insns ();
5188 end_sequence ();
5190 insert_insn_on_edge (seq, e);
5191 inserted = 1;
5193 else
5194 #endif
5196 basic_block cur_bb;
5198 if (! next_active_insn (BB_END (e->src)))
5199 goto epilogue_done;
5200 /* We have a fall-through edge to the exit block, the source is not
5201 at the end of the function, and there will be an assembler epilogue
5202 at the end of the function.
5203 We can't use force_nonfallthru here, because that would try to
5204 use return. Inserting a jump 'by hand' is extremely messy, so
5205 we take advantage of cfg_layout_finalize using
5206 fixup_fallthru_exit_predecessor. */
5207 cfg_layout_initialize (0);
5208 FOR_EACH_BB (cur_bb)
5209 if (cur_bb->index >= NUM_FIXED_BLOCKS
5210 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
5211 cur_bb->aux = cur_bb->next_bb;
5212 cfg_layout_finalize ();
5214 epilogue_done:
5215 default_rtl_profile ();
5217 if (inserted)
5219 commit_edge_insertions ();
5221 /* The epilogue insns we inserted may cause the exit edge to no longer
5222 be fallthru. */
5223 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5225 if (((e->flags & EDGE_FALLTHRU) != 0)
5226 && returnjump_p (BB_END (e->src)))
5227 e->flags &= ~EDGE_FALLTHRU;
5231 #ifdef HAVE_sibcall_epilogue
5232 /* Emit sibling epilogues before any sibling call sites. */
5233 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
5235 basic_block bb = e->src;
5236 rtx insn = BB_END (bb);
5238 if (!CALL_P (insn)
5239 || ! SIBLING_CALL_P (insn))
5241 ei_next (&ei);
5242 continue;
5245 start_sequence ();
5246 emit_note (NOTE_INSN_EPILOGUE_BEG);
5247 emit_insn (gen_sibcall_epilogue ());
5248 seq = get_insns ();
5249 end_sequence ();
5251 /* Retain a map of the epilogue insns. Used in life analysis to
5252 avoid getting rid of sibcall epilogue insns. Do this before we
5253 actually emit the sequence. */
5254 record_insns (seq, NULL, &epilogue_insn_hash);
5255 set_insn_locators (seq, epilogue_locator);
5257 emit_insn_before (seq, insn);
5258 ei_next (&ei);
5260 #endif
5262 #ifdef HAVE_epilogue
5263 if (epilogue_end)
5265 rtx insn, next;
5267 /* Similarly, move any line notes that appear after the epilogue.
5268 There is no need, however, to be quite so anal about the existence
5269 of such a note. Also possibly move
5270 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5271 info generation. */
5272 for (insn = epilogue_end; insn; insn = next)
5274 next = NEXT_INSN (insn);
5275 if (NOTE_P (insn)
5276 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
5277 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5280 #endif
5282 /* Threading the prologue and epilogue changes the artificial refs
5283 in the entry and exit blocks. */
5284 epilogue_completed = 1;
5285 df_update_entry_exit_and_calls ();
5288 /* Reposition the prologue-end and epilogue-begin notes after
5289 instruction scheduling. */
5291 void
5292 reposition_prologue_and_epilogue_notes (void)
5294 #if defined (HAVE_prologue) || defined (HAVE_epilogue) \
5295 || defined (HAVE_sibcall_epilogue)
5296 /* Since the hash table is created on demand, the fact that it is
5297 non-null is a signal that it is non-empty. */
5298 if (prologue_insn_hash != NULL)
5300 size_t len = htab_elements (prologue_insn_hash);
5301 rtx insn, last = NULL, note = NULL;
5303 /* Scan from the beginning until we reach the last prologue insn. */
5304 /* ??? While we do have the CFG intact, there are two problems:
5305 (1) The prologue can contain loops (typically probing the stack),
5306 which means that the end of the prologue isn't in the first bb.
5307 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
5308 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5310 if (NOTE_P (insn))
5312 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
5313 note = insn;
5315 else if (contains (insn, prologue_insn_hash))
5317 last = insn;
5318 if (--len == 0)
5319 break;
5323 if (last)
5325 if (note == NULL)
5327 /* Scan forward looking for the PROLOGUE_END note. It should
5328 be right at the beginning of the block, possibly with other
5329 insn notes that got moved there. */
5330 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
5332 if (NOTE_P (note)
5333 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
5334 break;
5338 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5339 if (LABEL_P (last))
5340 last = NEXT_INSN (last);
5341 reorder_insns (note, note, last);
5345 if (epilogue_insn_hash != NULL)
5347 edge_iterator ei;
5348 edge e;
5350 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5352 rtx insn, first = NULL, note = NULL;
5353 basic_block bb = e->src;
5355 /* Scan from the beginning until we reach the first epilogue insn. */
5356 FOR_BB_INSNS (bb, insn)
5358 if (NOTE_P (insn))
5360 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
5362 note = insn;
5363 if (first != NULL)
5364 break;
5367 else if (first == NULL && contains (insn, epilogue_insn_hash))
5369 first = insn;
5370 if (note != NULL)
5371 break;
5375 if (note)
5377 /* If the function has a single basic block, and no real
5378 epilogue insns (e.g. sibcall with no cleanup), the
5379 epilogue note can get scheduled before the prologue
5380 note. If we have frame related prologue insns, having
5381 them scanned during the epilogue will result in a crash.
5382 In this case re-order the epilogue note to just before
5383 the last insn in the block. */
5384 if (first == NULL)
5385 first = BB_END (bb);
5387 if (PREV_INSN (first) != note)
5388 reorder_insns (note, note, PREV_INSN (first));
5392 #endif /* HAVE_prologue or HAVE_epilogue */
5395 /* Returns the name of the current function. */
5396 const char *
5397 current_function_name (void)
5399 return lang_hooks.decl_printable_name (cfun->decl, 2);
5403 static unsigned int
5404 rest_of_handle_check_leaf_regs (void)
5406 #ifdef LEAF_REGISTERS
5407 current_function_uses_only_leaf_regs
5408 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
5409 #endif
5410 return 0;
5413 /* Insert a TYPE into the used types hash table of CFUN. */
5414 static void
5415 used_types_insert_helper (tree type, struct function *func)
5417 if (type != NULL && func != NULL)
5419 void **slot;
5421 if (func->used_types_hash == NULL)
5422 func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
5423 htab_eq_pointer, NULL);
5424 slot = htab_find_slot (func->used_types_hash, type, INSERT);
5425 if (*slot == NULL)
5426 *slot = type;
5430 /* Given a type, insert it into the used hash table in cfun. */
5431 void
5432 used_types_insert (tree t)
5434 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
5435 t = TREE_TYPE (t);
5436 t = TYPE_MAIN_VARIANT (t);
5437 if (debug_info_level > DINFO_LEVEL_NONE)
5438 used_types_insert_helper (t, cfun);
5441 struct rtl_opt_pass pass_leaf_regs =
5444 RTL_PASS,
5445 NULL, /* name */
5446 NULL, /* gate */
5447 rest_of_handle_check_leaf_regs, /* execute */
5448 NULL, /* sub */
5449 NULL, /* next */
5450 0, /* static_pass_number */
5451 TV_NONE, /* tv_id */
5452 0, /* properties_required */
5453 0, /* properties_provided */
5454 0, /* properties_destroyed */
5455 0, /* todo_flags_start */
5456 0 /* todo_flags_finish */
5460 static unsigned int
5461 rest_of_handle_thread_prologue_and_epilogue (void)
5463 if (optimize)
5464 cleanup_cfg (CLEANUP_EXPENSIVE);
5465 /* On some machines, the prologue and epilogue code, or parts thereof,
5466 can be represented as RTL. Doing so lets us schedule insns between
5467 it and the rest of the code and also allows delayed branch
5468 scheduling to operate in the epilogue. */
5470 thread_prologue_and_epilogue_insns ();
5471 return 0;
5474 struct rtl_opt_pass pass_thread_prologue_and_epilogue =
5477 RTL_PASS,
5478 "pro_and_epilogue", /* name */
5479 NULL, /* gate */
5480 rest_of_handle_thread_prologue_and_epilogue, /* execute */
5481 NULL, /* sub */
5482 NULL, /* next */
5483 0, /* static_pass_number */
5484 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
5485 0, /* properties_required */
5486 0, /* properties_provided */
5487 0, /* properties_destroyed */
5488 TODO_verify_flow, /* todo_flags_start */
5489 TODO_dump_func |
5490 TODO_df_verify |
5491 TODO_df_finish | TODO_verify_rtl_sharing |
5492 TODO_ggc_collect /* todo_flags_finish */
5497 /* This mini-pass fixes fall-out from SSA in asm statements that have
5498 in-out constraints. Say you start with
5500 orig = inout;
5501 asm ("": "+mr" (inout));
5502 use (orig);
5504 which is transformed very early to use explicit output and match operands:
5506 orig = inout;
5507 asm ("": "=mr" (inout) : "0" (inout));
5508 use (orig);
5510 Or, after SSA and copyprop,
5512 asm ("": "=mr" (inout_2) : "0" (inout_1));
5513 use (inout_1);
5515 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
5516 they represent two separate values, so they will get different pseudo
5517 registers during expansion. Then, since the two operands need to match
5518 per the constraints, but use different pseudo registers, reload can
5519 only register a reload for these operands. But reloads can only be
5520 satisfied by hardregs, not by memory, so we need a register for this
5521 reload, just because we are presented with non-matching operands.
5522 So, even though we allow memory for this operand, no memory can be
5523 used for it, just because the two operands don't match. This can
5524 cause reload failures on register-starved targets.
5526 So it's a symptom of reload not being able to use memory for reloads
5527 or, alternatively it's also a symptom of both operands not coming into
5528 reload as matching (in which case the pseudo could go to memory just
5529 fine, as the alternative allows it, and no reload would be necessary).
5530 We fix the latter problem here, by transforming
5532 asm ("": "=mr" (inout_2) : "0" (inout_1));
5534 back to
5536 inout_2 = inout_1;
5537 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
5539 static void
5540 match_asm_constraints_1 (rtx insn, rtx *p_sets, int noutputs)
5542 int i;
5543 bool changed = false;
5544 rtx op = SET_SRC (p_sets[0]);
5545 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
5546 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
5547 bool *output_matched = XALLOCAVEC (bool, noutputs);
5549 memset (output_matched, 0, noutputs * sizeof (bool));
5550 for (i = 0; i < ninputs; i++)
5552 rtx input, output, insns;
5553 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
5554 char *end;
5555 int match, j;
5557 if (*constraint == '%')
5558 constraint++;
5560 match = strtoul (constraint, &end, 10);
5561 if (end == constraint)
5562 continue;
5564 gcc_assert (match < noutputs);
5565 output = SET_DEST (p_sets[match]);
5566 input = RTVEC_ELT (inputs, i);
5567 /* Only do the transformation for pseudos. */
5568 if (! REG_P (output)
5569 || rtx_equal_p (output, input)
5570 || (GET_MODE (input) != VOIDmode
5571 && GET_MODE (input) != GET_MODE (output)))
5572 continue;
5574 /* We can't do anything if the output is also used as input,
5575 as we're going to overwrite it. */
5576 for (j = 0; j < ninputs; j++)
5577 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
5578 break;
5579 if (j != ninputs)
5580 continue;
5582 /* Avoid changing the same input several times. For
5583 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
5584 only change in once (to out1), rather than changing it
5585 first to out1 and afterwards to out2. */
5586 if (i > 0)
5588 for (j = 0; j < noutputs; j++)
5589 if (output_matched[j] && input == SET_DEST (p_sets[j]))
5590 break;
5591 if (j != noutputs)
5592 continue;
5594 output_matched[match] = true;
5596 start_sequence ();
5597 emit_move_insn (output, input);
5598 insns = get_insns ();
5599 end_sequence ();
5600 emit_insn_before (insns, insn);
5602 /* Now replace all mentions of the input with output. We can't
5603 just replace the occurrence in inputs[i], as the register might
5604 also be used in some other input (or even in an address of an
5605 output), which would mean possibly increasing the number of
5606 inputs by one (namely 'output' in addition), which might pose
5607 a too complicated problem for reload to solve. E.g. this situation:
5609 asm ("" : "=r" (output), "=m" (input) : "0" (input))
5611 Here 'input' is used in two occurrences as input (once for the
5612 input operand, once for the address in the second output operand).
5613 If we would replace only the occurrence of the input operand (to
5614 make the matching) we would be left with this:
5616 output = input
5617 asm ("" : "=r" (output), "=m" (input) : "0" (output))
5619 Now we suddenly have two different input values (containing the same
5620 value, but different pseudos) where we formerly had only one.
5621 With more complicated asms this might lead to reload failures
5622 which wouldn't have happen without this pass. So, iterate over
5623 all operands and replace all occurrences of the register used. */
5624 for (j = 0; j < noutputs; j++)
5625 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
5626 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
5627 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
5628 input, output);
5629 for (j = 0; j < ninputs; j++)
5630 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
5631 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
5632 input, output);
5634 changed = true;
5637 if (changed)
5638 df_insn_rescan (insn);
5641 static unsigned
5642 rest_of_match_asm_constraints (void)
5644 basic_block bb;
5645 rtx insn, pat, *p_sets;
5646 int noutputs;
5648 if (!crtl->has_asm_statement)
5649 return 0;
5651 df_set_flags (DF_DEFER_INSN_RESCAN);
5652 FOR_EACH_BB (bb)
5654 FOR_BB_INSNS (bb, insn)
5656 if (!INSN_P (insn))
5657 continue;
5659 pat = PATTERN (insn);
5660 if (GET_CODE (pat) == PARALLEL)
5661 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
5662 else if (GET_CODE (pat) == SET)
5663 p_sets = &PATTERN (insn), noutputs = 1;
5664 else
5665 continue;
5667 if (GET_CODE (*p_sets) == SET
5668 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
5669 match_asm_constraints_1 (insn, p_sets, noutputs);
5673 return TODO_df_finish;
5676 struct rtl_opt_pass pass_match_asm_constraints =
5679 RTL_PASS,
5680 "asmcons", /* name */
5681 NULL, /* gate */
5682 rest_of_match_asm_constraints, /* execute */
5683 NULL, /* sub */
5684 NULL, /* next */
5685 0, /* static_pass_number */
5686 TV_NONE, /* tv_id */
5687 0, /* properties_required */
5688 0, /* properties_provided */
5689 0, /* properties_destroyed */
5690 0, /* todo_flags_start */
5691 TODO_dump_func /* todo_flags_finish */
5696 #include "gt-function.h"