* Makefile.in (reg-stack.o): Don't depend on gt-reg-stack.h.
[official-gcc.git] / gcc / combine.c
blob04a3b0492c7077591ec2766b73e907eb02903308
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
55 - reg_live_length is not updated
56 - reg_n_refs is not adjusted in the rare case when a register is
57 no longer required in a computation
58 - there are extremely rare cases (see distribute_notes) when a
59 REG_DEAD note is lost
60 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
61 removed because there is no way to know which register it was
62 linking
64 To simplify substitution, we combine only when the earlier insn(s)
65 consist of only a single assignment. To simplify updating afterward,
66 we never combine when a subroutine call appears in the middle.
68 Since we do not represent assignments to CC0 explicitly except when that
69 is all an insn does, there is no LOG_LINKS entry in an insn that uses
70 the condition code for the insn that set the condition code.
71 Fortunately, these two insns must be consecutive.
72 Therefore, every JUMP_INSN is taken to have an implicit logical link
73 to the preceding insn. This is not quite right, since non-jumps can
74 also use the condition code; but in practice such insns would not
75 combine anyway. */
77 #include "config.h"
78 #include "system.h"
79 #include "coretypes.h"
80 #include "tm.h"
81 #include "rtl.h"
82 #include "tree.h"
83 #include "tm_p.h"
84 #include "flags.h"
85 #include "regs.h"
86 #include "hard-reg-set.h"
87 #include "basic-block.h"
88 #include "insn-config.h"
89 #include "function.h"
90 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
91 #include "expr.h"
92 #include "insn-attr.h"
93 #include "recog.h"
94 #include "real.h"
95 #include "toplev.h"
96 #include "target.h"
97 #include "optabs.h"
98 #include "insn-codes.h"
99 #include "rtlhooks-def.h"
100 /* Include output.h for dump_file. */
101 #include "output.h"
102 #include "params.h"
103 #include "timevar.h"
104 #include "tree-pass.h"
106 /* Number of attempts to combine instructions in this function. */
108 static int combine_attempts;
110 /* Number of attempts that got as far as substitution in this function. */
112 static int combine_merges;
114 /* Number of instructions combined with added SETs in this function. */
116 static int combine_extras;
118 /* Number of instructions combined in this function. */
120 static int combine_successes;
122 /* Totals over entire compilation. */
124 static int total_attempts, total_merges, total_extras, total_successes;
127 /* Vector mapping INSN_UIDs to cuids.
128 The cuids are like uids but increase monotonically always.
129 Combine always uses cuids so that it can compare them.
130 But actually renumbering the uids, which we used to do,
131 proves to be a bad idea because it makes it hard to compare
132 the dumps produced by earlier passes with those from later passes. */
134 static int *uid_cuid;
135 static int max_uid_cuid;
137 /* Get the cuid of an insn. */
139 #define INSN_CUID(INSN) \
140 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
142 /* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
143 BITS_PER_WORD would invoke undefined behavior. Work around it. */
145 #define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
146 (((unsigned HOST_WIDE_INT) (val) << (BITS_PER_WORD - 1)) << 1)
148 /* Maximum register number, which is the size of the tables below. */
150 static unsigned int combine_max_regno;
152 struct reg_stat {
153 /* Record last point of death of (hard or pseudo) register n. */
154 rtx last_death;
156 /* Record last point of modification of (hard or pseudo) register n. */
157 rtx last_set;
159 /* The next group of fields allows the recording of the last value assigned
160 to (hard or pseudo) register n. We use this information to see if an
161 operation being processed is redundant given a prior operation performed
162 on the register. For example, an `and' with a constant is redundant if
163 all the zero bits are already known to be turned off.
165 We use an approach similar to that used by cse, but change it in the
166 following ways:
168 (1) We do not want to reinitialize at each label.
169 (2) It is useful, but not critical, to know the actual value assigned
170 to a register. Often just its form is helpful.
172 Therefore, we maintain the following fields:
174 last_set_value the last value assigned
175 last_set_label records the value of label_tick when the
176 register was assigned
177 last_set_table_tick records the value of label_tick when a
178 value using the register is assigned
179 last_set_invalid set to nonzero when it is not valid
180 to use the value of this register in some
181 register's value
183 To understand the usage of these tables, it is important to understand
184 the distinction between the value in last_set_value being valid and
185 the register being validly contained in some other expression in the
186 table.
188 (The next two parameters are out of date).
190 reg_stat[i].last_set_value is valid if it is nonzero, and either
191 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
193 Register I may validly appear in any expression returned for the value
194 of another register if reg_n_sets[i] is 1. It may also appear in the
195 value for register J if reg_stat[j].last_set_invalid is zero, or
196 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
198 If an expression is found in the table containing a register which may
199 not validly appear in an expression, the register is replaced by
200 something that won't match, (clobber (const_int 0)). */
202 /* Record last value assigned to (hard or pseudo) register n. */
204 rtx last_set_value;
206 /* Record the value of label_tick when an expression involving register n
207 is placed in last_set_value. */
209 int last_set_table_tick;
211 /* Record the value of label_tick when the value for register n is placed in
212 last_set_value. */
214 int last_set_label;
216 /* These fields are maintained in parallel with last_set_value and are
217 used to store the mode in which the register was last set, the bits
218 that were known to be zero when it was last set, and the number of
219 sign bits copies it was known to have when it was last set. */
221 unsigned HOST_WIDE_INT last_set_nonzero_bits;
222 char last_set_sign_bit_copies;
223 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
225 /* Set nonzero if references to register n in expressions should not be
226 used. last_set_invalid is set nonzero when this register is being
227 assigned to and last_set_table_tick == label_tick. */
229 char last_set_invalid;
231 /* Some registers that are set more than once and used in more than one
232 basic block are nevertheless always set in similar ways. For example,
233 a QImode register may be loaded from memory in two places on a machine
234 where byte loads zero extend.
236 We record in the following fields if a register has some leading bits
237 that are always equal to the sign bit, and what we know about the
238 nonzero bits of a register, specifically which bits are known to be
239 zero.
241 If an entry is zero, it means that we don't know anything special. */
243 unsigned char sign_bit_copies;
245 unsigned HOST_WIDE_INT nonzero_bits;
247 /* Record the value of the label_tick when the last truncation
248 happened. The field truncated_to_mode is only valid if
249 truncation_label == label_tick. */
251 int truncation_label;
253 /* Record the last truncation seen for this register. If truncation
254 is not a nop to this mode we might be able to save an explicit
255 truncation if we know that value already contains a truncated
256 value. */
258 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
261 static struct reg_stat *reg_stat;
263 /* Record the cuid of the last insn that invalidated memory
264 (anything that writes memory, and subroutine calls, but not pushes). */
266 static int mem_last_set;
268 /* Record the cuid of the last CALL_INSN
269 so we can tell whether a potential combination crosses any calls. */
271 static int last_call_cuid;
273 /* When `subst' is called, this is the insn that is being modified
274 (by combining in a previous insn). The PATTERN of this insn
275 is still the old pattern partially modified and it should not be
276 looked at, but this may be used to examine the successors of the insn
277 to judge whether a simplification is valid. */
279 static rtx subst_insn;
281 /* This is the lowest CUID that `subst' is currently dealing with.
282 get_last_value will not return a value if the register was set at or
283 after this CUID. If not for this mechanism, we could get confused if
284 I2 or I1 in try_combine were an insn that used the old value of a register
285 to obtain a new value. In that case, we might erroneously get the
286 new value of the register when we wanted the old one. */
288 static int subst_low_cuid;
290 /* This contains any hard registers that are used in newpat; reg_dead_at_p
291 must consider all these registers to be always live. */
293 static HARD_REG_SET newpat_used_regs;
295 /* This is an insn to which a LOG_LINKS entry has been added. If this
296 insn is the earlier than I2 or I3, combine should rescan starting at
297 that location. */
299 static rtx added_links_insn;
301 /* Basic block in which we are performing combines. */
302 static basic_block this_basic_block;
304 /* A bitmap indicating which blocks had registers go dead at entry.
305 After combine, we'll need to re-do global life analysis with
306 those blocks as starting points. */
307 static sbitmap refresh_blocks;
309 /* The following array records the insn_rtx_cost for every insn
310 in the instruction stream. */
312 static int *uid_insn_cost;
314 /* Length of the currently allocated uid_insn_cost array. */
316 static int last_insn_cost;
318 /* Incremented for each label. */
320 static int label_tick;
322 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
323 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
325 static enum machine_mode nonzero_bits_mode;
327 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
328 be safely used. It is zero while computing them and after combine has
329 completed. This former test prevents propagating values based on
330 previously set values, which can be incorrect if a variable is modified
331 in a loop. */
333 static int nonzero_sign_valid;
336 /* Record one modification to rtl structure
337 to be undone by storing old_contents into *where. */
339 struct undo
341 struct undo *next;
342 enum { UNDO_RTX, UNDO_INT, UNDO_MODE } kind;
343 union { rtx r; int i; enum machine_mode m; } old_contents;
344 union { rtx *r; int *i; } where;
347 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
348 num_undo says how many are currently recorded.
350 other_insn is nonzero if we have modified some other insn in the process
351 of working on subst_insn. It must be verified too. */
353 struct undobuf
355 struct undo *undos;
356 struct undo *frees;
357 rtx other_insn;
360 static struct undobuf undobuf;
362 /* Number of times the pseudo being substituted for
363 was found and replaced. */
365 static int n_occurrences;
367 static rtx reg_nonzero_bits_for_combine (rtx, enum machine_mode, rtx,
368 enum machine_mode,
369 unsigned HOST_WIDE_INT,
370 unsigned HOST_WIDE_INT *);
371 static rtx reg_num_sign_bit_copies_for_combine (rtx, enum machine_mode, rtx,
372 enum machine_mode,
373 unsigned int, unsigned int *);
374 static void do_SUBST (rtx *, rtx);
375 static void do_SUBST_INT (int *, int);
376 static void init_reg_last (void);
377 static void setup_incoming_promotions (void);
378 static void set_nonzero_bits_and_sign_copies (rtx, rtx, void *);
379 static int cant_combine_insn_p (rtx);
380 static int can_combine_p (rtx, rtx, rtx, rtx, rtx *, rtx *);
381 static int combinable_i3pat (rtx, rtx *, rtx, rtx, int, rtx *);
382 static int contains_muldiv (rtx);
383 static rtx try_combine (rtx, rtx, rtx, int *);
384 static void undo_all (void);
385 static void undo_commit (void);
386 static rtx *find_split_point (rtx *, rtx);
387 static rtx subst (rtx, rtx, rtx, int, int);
388 static rtx combine_simplify_rtx (rtx, enum machine_mode, int);
389 static rtx simplify_if_then_else (rtx);
390 static rtx simplify_set (rtx);
391 static rtx simplify_logical (rtx);
392 static rtx expand_compound_operation (rtx);
393 static rtx expand_field_assignment (rtx);
394 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
395 rtx, unsigned HOST_WIDE_INT, int, int, int);
396 static rtx extract_left_shift (rtx, int);
397 static rtx make_compound_operation (rtx, enum rtx_code);
398 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
399 unsigned HOST_WIDE_INT *);
400 static rtx canon_reg_for_combine (rtx, rtx);
401 static rtx force_to_mode (rtx, enum machine_mode,
402 unsigned HOST_WIDE_INT, int);
403 static rtx if_then_else_cond (rtx, rtx *, rtx *);
404 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
405 static int rtx_equal_for_field_assignment_p (rtx, rtx);
406 static rtx make_field_assignment (rtx);
407 static rtx apply_distributive_law (rtx);
408 static rtx distribute_and_simplify_rtx (rtx, int);
409 static rtx simplify_and_const_int_1 (enum machine_mode, rtx,
410 unsigned HOST_WIDE_INT);
411 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
412 unsigned HOST_WIDE_INT);
413 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
414 HOST_WIDE_INT, enum machine_mode, int *);
415 static rtx simplify_shift_const_1 (enum rtx_code, enum machine_mode, rtx, int);
416 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
417 int);
418 static int recog_for_combine (rtx *, rtx, rtx *);
419 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
420 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
421 static void update_table_tick (rtx);
422 static void record_value_for_reg (rtx, rtx, rtx);
423 static void check_conversions (rtx, rtx);
424 static void record_dead_and_set_regs_1 (rtx, rtx, void *);
425 static void record_dead_and_set_regs (rtx);
426 static int get_last_value_validate (rtx *, rtx, int, int);
427 static rtx get_last_value (rtx);
428 static int use_crosses_set_p (rtx, int);
429 static void reg_dead_at_p_1 (rtx, rtx, void *);
430 static int reg_dead_at_p (rtx, rtx);
431 static void move_deaths (rtx, rtx, int, rtx, rtx *);
432 static int reg_bitfield_target_p (rtx, rtx);
433 static void distribute_notes (rtx, rtx, rtx, rtx, rtx, rtx);
434 static void distribute_links (rtx);
435 static void mark_used_regs_combine (rtx);
436 static int insn_cuid (rtx);
437 static void record_promoted_value (rtx, rtx);
438 static int unmentioned_reg_p_1 (rtx *, void *);
439 static bool unmentioned_reg_p (rtx, rtx);
440 static void record_truncated_value (rtx);
441 static bool reg_truncated_to_mode (enum machine_mode, rtx);
442 static rtx gen_lowpart_or_truncate (enum machine_mode, rtx);
445 /* It is not safe to use ordinary gen_lowpart in combine.
446 See comments in gen_lowpart_for_combine. */
447 #undef RTL_HOOKS_GEN_LOWPART
448 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
450 /* Our implementation of gen_lowpart never emits a new pseudo. */
451 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
452 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
454 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
455 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
457 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
458 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
460 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
461 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
463 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
466 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
467 insn. The substitution can be undone by undo_all. If INTO is already
468 set to NEWVAL, do not record this change. Because computing NEWVAL might
469 also call SUBST, we have to compute it before we put anything into
470 the undo table. */
472 static void
473 do_SUBST (rtx *into, rtx newval)
475 struct undo *buf;
476 rtx oldval = *into;
478 if (oldval == newval)
479 return;
481 /* We'd like to catch as many invalid transformations here as
482 possible. Unfortunately, there are way too many mode changes
483 that are perfectly valid, so we'd waste too much effort for
484 little gain doing the checks here. Focus on catching invalid
485 transformations involving integer constants. */
486 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
487 && GET_CODE (newval) == CONST_INT)
489 /* Sanity check that we're replacing oldval with a CONST_INT
490 that is a valid sign-extension for the original mode. */
491 gcc_assert (INTVAL (newval)
492 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
494 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
495 CONST_INT is not valid, because after the replacement, the
496 original mode would be gone. Unfortunately, we can't tell
497 when do_SUBST is called to replace the operand thereof, so we
498 perform this test on oldval instead, checking whether an
499 invalid replacement took place before we got here. */
500 gcc_assert (!(GET_CODE (oldval) == SUBREG
501 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT));
502 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
503 && GET_CODE (XEXP (oldval, 0)) == CONST_INT));
506 if (undobuf.frees)
507 buf = undobuf.frees, undobuf.frees = buf->next;
508 else
509 buf = XNEW (struct undo);
511 buf->kind = UNDO_RTX;
512 buf->where.r = into;
513 buf->old_contents.r = oldval;
514 *into = newval;
516 buf->next = undobuf.undos, undobuf.undos = buf;
519 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
521 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
522 for the value of a HOST_WIDE_INT value (including CONST_INT) is
523 not safe. */
525 static void
526 do_SUBST_INT (int *into, int newval)
528 struct undo *buf;
529 int oldval = *into;
531 if (oldval == newval)
532 return;
534 if (undobuf.frees)
535 buf = undobuf.frees, undobuf.frees = buf->next;
536 else
537 buf = XNEW (struct undo);
539 buf->kind = UNDO_INT;
540 buf->where.i = into;
541 buf->old_contents.i = oldval;
542 *into = newval;
544 buf->next = undobuf.undos, undobuf.undos = buf;
547 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
549 /* Similar to SUBST, but just substitute the mode. This is used when
550 changing the mode of a pseudo-register, so that any other
551 references to the entry in the regno_reg_rtx array will change as
552 well. */
554 static void
555 do_SUBST_MODE (rtx *into, enum machine_mode newval)
557 struct undo *buf;
558 enum machine_mode oldval = GET_MODE (*into);
560 if (oldval == newval)
561 return;
563 if (undobuf.frees)
564 buf = undobuf.frees, undobuf.frees = buf->next;
565 else
566 buf = XNEW (struct undo);
568 buf->kind = UNDO_MODE;
569 buf->where.r = into;
570 buf->old_contents.m = oldval;
571 PUT_MODE (*into, newval);
573 buf->next = undobuf.undos, undobuf.undos = buf;
576 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE(&(INTO), (NEWVAL))
578 /* Subroutine of try_combine. Determine whether the combine replacement
579 patterns NEWPAT and NEWI2PAT are cheaper according to insn_rtx_cost
580 that the original instruction sequence I1, I2 and I3. Note that I1
581 and/or NEWI2PAT may be NULL_RTX. This function returns false, if the
582 costs of all instructions can be estimated, and the replacements are
583 more expensive than the original sequence. */
585 static bool
586 combine_validate_cost (rtx i1, rtx i2, rtx i3, rtx newpat, rtx newi2pat)
588 int i1_cost, i2_cost, i3_cost;
589 int new_i2_cost, new_i3_cost;
590 int old_cost, new_cost;
592 /* Lookup the original insn_rtx_costs. */
593 i2_cost = INSN_UID (i2) <= last_insn_cost
594 ? uid_insn_cost[INSN_UID (i2)] : 0;
595 i3_cost = INSN_UID (i3) <= last_insn_cost
596 ? uid_insn_cost[INSN_UID (i3)] : 0;
598 if (i1)
600 i1_cost = INSN_UID (i1) <= last_insn_cost
601 ? uid_insn_cost[INSN_UID (i1)] : 0;
602 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0)
603 ? i1_cost + i2_cost + i3_cost : 0;
605 else
607 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
608 i1_cost = 0;
611 /* Calculate the replacement insn_rtx_costs. */
612 new_i3_cost = insn_rtx_cost (newpat);
613 if (newi2pat)
615 new_i2_cost = insn_rtx_cost (newi2pat);
616 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
617 ? new_i2_cost + new_i3_cost : 0;
619 else
621 new_cost = new_i3_cost;
622 new_i2_cost = 0;
625 if (undobuf.other_insn)
627 int old_other_cost, new_other_cost;
629 old_other_cost = (INSN_UID (undobuf.other_insn) <= last_insn_cost
630 ? uid_insn_cost[INSN_UID (undobuf.other_insn)] : 0);
631 new_other_cost = insn_rtx_cost (PATTERN (undobuf.other_insn));
632 if (old_other_cost > 0 && new_other_cost > 0)
634 old_cost += old_other_cost;
635 new_cost += new_other_cost;
637 else
638 old_cost = 0;
641 /* Disallow this recombination if both new_cost and old_cost are
642 greater than zero, and new_cost is greater than old cost. */
643 if (old_cost > 0
644 && new_cost > old_cost)
646 if (dump_file)
648 if (i1)
650 fprintf (dump_file,
651 "rejecting combination of insns %d, %d and %d\n",
652 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
653 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
654 i1_cost, i2_cost, i3_cost, old_cost);
656 else
658 fprintf (dump_file,
659 "rejecting combination of insns %d and %d\n",
660 INSN_UID (i2), INSN_UID (i3));
661 fprintf (dump_file, "original costs %d + %d = %d\n",
662 i2_cost, i3_cost, old_cost);
665 if (newi2pat)
667 fprintf (dump_file, "replacement costs %d + %d = %d\n",
668 new_i2_cost, new_i3_cost, new_cost);
670 else
671 fprintf (dump_file, "replacement cost %d\n", new_cost);
674 return false;
677 /* Update the uid_insn_cost array with the replacement costs. */
678 uid_insn_cost[INSN_UID (i2)] = new_i2_cost;
679 uid_insn_cost[INSN_UID (i3)] = new_i3_cost;
680 if (i1)
681 uid_insn_cost[INSN_UID (i1)] = 0;
683 return true;
686 /* Main entry point for combiner. F is the first insn of the function.
687 NREGS is the first unused pseudo-reg number.
689 Return nonzero if the combiner has turned an indirect jump
690 instruction into a direct jump. */
691 static int
692 combine_instructions (rtx f, unsigned int nregs)
694 rtx insn, next;
695 #ifdef HAVE_cc0
696 rtx prev;
697 #endif
698 int i;
699 unsigned int j = 0;
700 rtx links, nextlinks;
701 sbitmap_iterator sbi;
703 int new_direct_jump_p = 0;
705 combine_attempts = 0;
706 combine_merges = 0;
707 combine_extras = 0;
708 combine_successes = 0;
710 combine_max_regno = nregs;
712 rtl_hooks = combine_rtl_hooks;
714 reg_stat = XCNEWVEC (struct reg_stat, nregs);
716 init_recog_no_volatile ();
718 /* Compute maximum uid value so uid_cuid can be allocated. */
720 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
721 if (INSN_UID (insn) > i)
722 i = INSN_UID (insn);
724 uid_cuid = XNEWVEC (int, i + 1);
725 max_uid_cuid = i;
727 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
729 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
730 problems when, for example, we have j <<= 1 in a loop. */
732 nonzero_sign_valid = 0;
734 /* Compute the mapping from uids to cuids.
735 Cuids are numbers assigned to insns, like uids,
736 except that cuids increase monotonically through the code.
738 Scan all SETs and see if we can deduce anything about what
739 bits are known to be zero for some registers and how many copies
740 of the sign bit are known to exist for those registers.
742 Also set any known values so that we can use it while searching
743 for what bits are known to be set. */
745 label_tick = 1;
747 setup_incoming_promotions ();
749 refresh_blocks = sbitmap_alloc (last_basic_block);
750 sbitmap_zero (refresh_blocks);
752 /* Allocate array of current insn_rtx_costs. */
753 uid_insn_cost = XCNEWVEC (int, max_uid_cuid + 1);
754 last_insn_cost = max_uid_cuid;
756 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
758 uid_cuid[INSN_UID (insn)] = ++i;
759 subst_low_cuid = i;
760 subst_insn = insn;
762 if (INSN_P (insn))
764 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
765 NULL);
766 record_dead_and_set_regs (insn);
768 #ifdef AUTO_INC_DEC
769 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
770 if (REG_NOTE_KIND (links) == REG_INC)
771 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
772 NULL);
773 #endif
775 /* Record the current insn_rtx_cost of this instruction. */
776 if (NONJUMP_INSN_P (insn))
777 uid_insn_cost[INSN_UID (insn)] = insn_rtx_cost (PATTERN (insn));
778 if (dump_file)
779 fprintf(dump_file, "insn_cost %d: %d\n",
780 INSN_UID (insn), uid_insn_cost[INSN_UID (insn)]);
783 if (LABEL_P (insn))
784 label_tick++;
787 nonzero_sign_valid = 1;
789 /* Now scan all the insns in forward order. */
791 label_tick = 1;
792 last_call_cuid = 0;
793 mem_last_set = 0;
794 init_reg_last ();
795 setup_incoming_promotions ();
797 FOR_EACH_BB (this_basic_block)
799 for (insn = BB_HEAD (this_basic_block);
800 insn != NEXT_INSN (BB_END (this_basic_block));
801 insn = next ? next : NEXT_INSN (insn))
803 next = 0;
805 if (LABEL_P (insn))
806 label_tick++;
808 else if (INSN_P (insn))
810 /* See if we know about function return values before this
811 insn based upon SUBREG flags. */
812 check_conversions (insn, PATTERN (insn));
814 /* Try this insn with each insn it links back to. */
816 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
817 if ((next = try_combine (insn, XEXP (links, 0),
818 NULL_RTX, &new_direct_jump_p)) != 0)
819 goto retry;
821 /* Try each sequence of three linked insns ending with this one. */
823 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
825 rtx link = XEXP (links, 0);
827 /* If the linked insn has been replaced by a note, then there
828 is no point in pursuing this chain any further. */
829 if (NOTE_P (link))
830 continue;
832 for (nextlinks = LOG_LINKS (link);
833 nextlinks;
834 nextlinks = XEXP (nextlinks, 1))
835 if ((next = try_combine (insn, link,
836 XEXP (nextlinks, 0),
837 &new_direct_jump_p)) != 0)
838 goto retry;
841 #ifdef HAVE_cc0
842 /* Try to combine a jump insn that uses CC0
843 with a preceding insn that sets CC0, and maybe with its
844 logical predecessor as well.
845 This is how we make decrement-and-branch insns.
846 We need this special code because data flow connections
847 via CC0 do not get entered in LOG_LINKS. */
849 if (JUMP_P (insn)
850 && (prev = prev_nonnote_insn (insn)) != 0
851 && NONJUMP_INSN_P (prev)
852 && sets_cc0_p (PATTERN (prev)))
854 if ((next = try_combine (insn, prev,
855 NULL_RTX, &new_direct_jump_p)) != 0)
856 goto retry;
858 for (nextlinks = LOG_LINKS (prev); nextlinks;
859 nextlinks = XEXP (nextlinks, 1))
860 if ((next = try_combine (insn, prev,
861 XEXP (nextlinks, 0),
862 &new_direct_jump_p)) != 0)
863 goto retry;
866 /* Do the same for an insn that explicitly references CC0. */
867 if (NONJUMP_INSN_P (insn)
868 && (prev = prev_nonnote_insn (insn)) != 0
869 && NONJUMP_INSN_P (prev)
870 && sets_cc0_p (PATTERN (prev))
871 && GET_CODE (PATTERN (insn)) == SET
872 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
874 if ((next = try_combine (insn, prev,
875 NULL_RTX, &new_direct_jump_p)) != 0)
876 goto retry;
878 for (nextlinks = LOG_LINKS (prev); nextlinks;
879 nextlinks = XEXP (nextlinks, 1))
880 if ((next = try_combine (insn, prev,
881 XEXP (nextlinks, 0),
882 &new_direct_jump_p)) != 0)
883 goto retry;
886 /* Finally, see if any of the insns that this insn links to
887 explicitly references CC0. If so, try this insn, that insn,
888 and its predecessor if it sets CC0. */
889 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
890 if (NONJUMP_INSN_P (XEXP (links, 0))
891 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
892 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
893 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
894 && NONJUMP_INSN_P (prev)
895 && sets_cc0_p (PATTERN (prev))
896 && (next = try_combine (insn, XEXP (links, 0),
897 prev, &new_direct_jump_p)) != 0)
898 goto retry;
899 #endif
901 /* Try combining an insn with two different insns whose results it
902 uses. */
903 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
904 for (nextlinks = XEXP (links, 1); nextlinks;
905 nextlinks = XEXP (nextlinks, 1))
906 if ((next = try_combine (insn, XEXP (links, 0),
907 XEXP (nextlinks, 0),
908 &new_direct_jump_p)) != 0)
909 goto retry;
911 /* Try this insn with each REG_EQUAL note it links back to. */
912 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
914 rtx set, note;
915 rtx temp = XEXP (links, 0);
916 if ((set = single_set (temp)) != 0
917 && (note = find_reg_equal_equiv_note (temp)) != 0
918 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
919 /* Avoid using a register that may already been marked
920 dead by an earlier instruction. */
921 && ! unmentioned_reg_p (note, SET_SRC (set))
922 && (GET_MODE (note) == VOIDmode
923 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
924 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
926 /* Temporarily replace the set's source with the
927 contents of the REG_EQUAL note. The insn will
928 be deleted or recognized by try_combine. */
929 rtx orig = SET_SRC (set);
930 SET_SRC (set) = note;
931 next = try_combine (insn, temp, NULL_RTX,
932 &new_direct_jump_p);
933 if (next)
934 goto retry;
935 SET_SRC (set) = orig;
939 if (!NOTE_P (insn))
940 record_dead_and_set_regs (insn);
942 retry:
947 clear_bb_flags ();
949 EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks, 0, j, sbi)
950 BASIC_BLOCK (j)->flags |= BB_DIRTY;
951 new_direct_jump_p |= purge_all_dead_edges ();
952 delete_noop_moves ();
954 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
955 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
956 | PROP_KILL_DEAD_CODE);
958 /* Clean up. */
959 sbitmap_free (refresh_blocks);
960 free (uid_insn_cost);
961 free (reg_stat);
962 free (uid_cuid);
965 struct undo *undo, *next;
966 for (undo = undobuf.frees; undo; undo = next)
968 next = undo->next;
969 free (undo);
971 undobuf.frees = 0;
974 total_attempts += combine_attempts;
975 total_merges += combine_merges;
976 total_extras += combine_extras;
977 total_successes += combine_successes;
979 nonzero_sign_valid = 0;
980 rtl_hooks = general_rtl_hooks;
982 /* Make recognizer allow volatile MEMs again. */
983 init_recog ();
985 return new_direct_jump_p;
988 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
990 static void
991 init_reg_last (void)
993 unsigned int i;
994 for (i = 0; i < combine_max_regno; i++)
995 memset (reg_stat + i, 0, offsetof (struct reg_stat, sign_bit_copies));
998 /* Set up any promoted values for incoming argument registers. */
1000 static void
1001 setup_incoming_promotions (void)
1003 unsigned int regno;
1004 rtx reg;
1005 enum machine_mode mode;
1006 int unsignedp;
1007 rtx first = get_insns ();
1009 if (targetm.calls.promote_function_args (TREE_TYPE (cfun->decl)))
1011 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
1012 /* Check whether this register can hold an incoming pointer
1013 argument. FUNCTION_ARG_REGNO_P tests outgoing register
1014 numbers, so translate if necessary due to register windows. */
1015 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
1016 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
1018 record_value_for_reg
1019 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
1020 : SIGN_EXTEND),
1021 GET_MODE (reg),
1022 gen_rtx_CLOBBER (mode, const0_rtx)));
1027 /* Called via note_stores. If X is a pseudo that is narrower than
1028 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1030 If we are setting only a portion of X and we can't figure out what
1031 portion, assume all bits will be used since we don't know what will
1032 be happening.
1034 Similarly, set how many bits of X are known to be copies of the sign bit
1035 at all locations in the function. This is the smallest number implied
1036 by any set of X. */
1038 static void
1039 set_nonzero_bits_and_sign_copies (rtx x, rtx set,
1040 void *data ATTRIBUTE_UNUSED)
1042 unsigned int num;
1044 if (REG_P (x)
1045 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1046 /* If this register is undefined at the start of the file, we can't
1047 say what its contents were. */
1048 && ! REGNO_REG_SET_P
1049 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start, REGNO (x))
1050 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
1052 if (set == 0 || GET_CODE (set) == CLOBBER)
1054 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1055 reg_stat[REGNO (x)].sign_bit_copies = 1;
1056 return;
1059 /* If this is a complex assignment, see if we can convert it into a
1060 simple assignment. */
1061 set = expand_field_assignment (set);
1063 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1064 set what we know about X. */
1066 if (SET_DEST (set) == x
1067 || (GET_CODE (SET_DEST (set)) == SUBREG
1068 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
1069 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
1070 && SUBREG_REG (SET_DEST (set)) == x))
1072 rtx src = SET_SRC (set);
1074 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1075 /* If X is narrower than a word and SRC is a non-negative
1076 constant that would appear negative in the mode of X,
1077 sign-extend it for use in reg_stat[].nonzero_bits because some
1078 machines (maybe most) will actually do the sign-extension
1079 and this is the conservative approach.
1081 ??? For 2.5, try to tighten up the MD files in this regard
1082 instead of this kludge. */
1084 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
1085 && GET_CODE (src) == CONST_INT
1086 && INTVAL (src) > 0
1087 && 0 != (INTVAL (src)
1088 & ((HOST_WIDE_INT) 1
1089 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
1090 src = GEN_INT (INTVAL (src)
1091 | ((HOST_WIDE_INT) (-1)
1092 << GET_MODE_BITSIZE (GET_MODE (x))));
1093 #endif
1095 /* Don't call nonzero_bits if it cannot change anything. */
1096 if (reg_stat[REGNO (x)].nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1097 reg_stat[REGNO (x)].nonzero_bits
1098 |= nonzero_bits (src, nonzero_bits_mode);
1099 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1100 if (reg_stat[REGNO (x)].sign_bit_copies == 0
1101 || reg_stat[REGNO (x)].sign_bit_copies > num)
1102 reg_stat[REGNO (x)].sign_bit_copies = num;
1104 else
1106 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1107 reg_stat[REGNO (x)].sign_bit_copies = 1;
1112 /* See if INSN can be combined into I3. PRED and SUCC are optionally
1113 insns that were previously combined into I3 or that will be combined
1114 into the merger of INSN and I3.
1116 Return 0 if the combination is not allowed for any reason.
1118 If the combination is allowed, *PDEST will be set to the single
1119 destination of INSN and *PSRC to the single source, and this function
1120 will return 1. */
1122 static int
1123 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED, rtx succ,
1124 rtx *pdest, rtx *psrc)
1126 int i;
1127 rtx set = 0, src, dest;
1128 rtx p;
1129 #ifdef AUTO_INC_DEC
1130 rtx link;
1131 #endif
1132 int all_adjacent = (succ ? (next_active_insn (insn) == succ
1133 && next_active_insn (succ) == i3)
1134 : next_active_insn (insn) == i3);
1136 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1137 or a PARALLEL consisting of such a SET and CLOBBERs.
1139 If INSN has CLOBBER parallel parts, ignore them for our processing.
1140 By definition, these happen during the execution of the insn. When it
1141 is merged with another insn, all bets are off. If they are, in fact,
1142 needed and aren't also supplied in I3, they may be added by
1143 recog_for_combine. Otherwise, it won't match.
1145 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1146 note.
1148 Get the source and destination of INSN. If more than one, can't
1149 combine. */
1151 if (GET_CODE (PATTERN (insn)) == SET)
1152 set = PATTERN (insn);
1153 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1154 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1156 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1158 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1159 rtx note;
1161 switch (GET_CODE (elt))
1163 /* This is important to combine floating point insns
1164 for the SH4 port. */
1165 case USE:
1166 /* Combining an isolated USE doesn't make sense.
1167 We depend here on combinable_i3pat to reject them. */
1168 /* The code below this loop only verifies that the inputs of
1169 the SET in INSN do not change. We call reg_set_between_p
1170 to verify that the REG in the USE does not change between
1171 I3 and INSN.
1172 If the USE in INSN was for a pseudo register, the matching
1173 insn pattern will likely match any register; combining this
1174 with any other USE would only be safe if we knew that the
1175 used registers have identical values, or if there was
1176 something to tell them apart, e.g. different modes. For
1177 now, we forgo such complicated tests and simply disallow
1178 combining of USES of pseudo registers with any other USE. */
1179 if (REG_P (XEXP (elt, 0))
1180 && GET_CODE (PATTERN (i3)) == PARALLEL)
1182 rtx i3pat = PATTERN (i3);
1183 int i = XVECLEN (i3pat, 0) - 1;
1184 unsigned int regno = REGNO (XEXP (elt, 0));
1188 rtx i3elt = XVECEXP (i3pat, 0, i);
1190 if (GET_CODE (i3elt) == USE
1191 && REG_P (XEXP (i3elt, 0))
1192 && (REGNO (XEXP (i3elt, 0)) == regno
1193 ? reg_set_between_p (XEXP (elt, 0),
1194 PREV_INSN (insn), i3)
1195 : regno >= FIRST_PSEUDO_REGISTER))
1196 return 0;
1198 while (--i >= 0);
1200 break;
1202 /* We can ignore CLOBBERs. */
1203 case CLOBBER:
1204 break;
1206 case SET:
1207 /* Ignore SETs whose result isn't used but not those that
1208 have side-effects. */
1209 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1210 && (!(note = find_reg_note (insn, REG_EH_REGION, NULL_RTX))
1211 || INTVAL (XEXP (note, 0)) <= 0)
1212 && ! side_effects_p (elt))
1213 break;
1215 /* If we have already found a SET, this is a second one and
1216 so we cannot combine with this insn. */
1217 if (set)
1218 return 0;
1220 set = elt;
1221 break;
1223 default:
1224 /* Anything else means we can't combine. */
1225 return 0;
1229 if (set == 0
1230 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1231 so don't do anything with it. */
1232 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1233 return 0;
1235 else
1236 return 0;
1238 if (set == 0)
1239 return 0;
1241 set = expand_field_assignment (set);
1242 src = SET_SRC (set), dest = SET_DEST (set);
1244 /* Don't eliminate a store in the stack pointer. */
1245 if (dest == stack_pointer_rtx
1246 /* Don't combine with an insn that sets a register to itself if it has
1247 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1248 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1249 /* Can't merge an ASM_OPERANDS. */
1250 || GET_CODE (src) == ASM_OPERANDS
1251 /* Can't merge a function call. */
1252 || GET_CODE (src) == CALL
1253 /* Don't eliminate a function call argument. */
1254 || (CALL_P (i3)
1255 && (find_reg_fusage (i3, USE, dest)
1256 || (REG_P (dest)
1257 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1258 && global_regs[REGNO (dest)])))
1259 /* Don't substitute into an incremented register. */
1260 || FIND_REG_INC_NOTE (i3, dest)
1261 || (succ && FIND_REG_INC_NOTE (succ, dest))
1262 /* Don't substitute into a non-local goto, this confuses CFG. */
1263 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1264 #if 0
1265 /* Don't combine the end of a libcall into anything. */
1266 /* ??? This gives worse code, and appears to be unnecessary, since no
1267 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1268 use REG_RETVAL notes for noconflict blocks, but other code here
1269 makes sure that those insns don't disappear. */
1270 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1271 #endif
1272 /* Make sure that DEST is not used after SUCC but before I3. */
1273 || (succ && ! all_adjacent
1274 && reg_used_between_p (dest, succ, i3))
1275 /* Make sure that the value that is to be substituted for the register
1276 does not use any registers whose values alter in between. However,
1277 If the insns are adjacent, a use can't cross a set even though we
1278 think it might (this can happen for a sequence of insns each setting
1279 the same destination; last_set of that register might point to
1280 a NOTE). If INSN has a REG_EQUIV note, the register is always
1281 equivalent to the memory so the substitution is valid even if there
1282 are intervening stores. Also, don't move a volatile asm or
1283 UNSPEC_VOLATILE across any other insns. */
1284 || (! all_adjacent
1285 && (((!MEM_P (src)
1286 || ! find_reg_note (insn, REG_EQUIV, src))
1287 && use_crosses_set_p (src, INSN_CUID (insn)))
1288 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1289 || GET_CODE (src) == UNSPEC_VOLATILE))
1290 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1291 better register allocation by not doing the combine. */
1292 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1293 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1294 /* Don't combine across a CALL_INSN, because that would possibly
1295 change whether the life span of some REGs crosses calls or not,
1296 and it is a pain to update that information.
1297 Exception: if source is a constant, moving it later can't hurt.
1298 Accept that special case, because it helps -fforce-addr a lot. */
1299 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1300 return 0;
1302 /* DEST must either be a REG or CC0. */
1303 if (REG_P (dest))
1305 /* If register alignment is being enforced for multi-word items in all
1306 cases except for parameters, it is possible to have a register copy
1307 insn referencing a hard register that is not allowed to contain the
1308 mode being copied and which would not be valid as an operand of most
1309 insns. Eliminate this problem by not combining with such an insn.
1311 Also, on some machines we don't want to extend the life of a hard
1312 register. */
1314 if (REG_P (src)
1315 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1316 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1317 /* Don't extend the life of a hard register unless it is
1318 user variable (if we have few registers) or it can't
1319 fit into the desired register (meaning something special
1320 is going on).
1321 Also avoid substituting a return register into I3, because
1322 reload can't handle a conflict with constraints of other
1323 inputs. */
1324 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1325 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1326 return 0;
1328 else if (GET_CODE (dest) != CC0)
1329 return 0;
1332 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1333 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1334 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1336 /* Don't substitute for a register intended as a clobberable
1337 operand. */
1338 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1339 if (rtx_equal_p (reg, dest))
1340 return 0;
1342 /* If the clobber represents an earlyclobber operand, we must not
1343 substitute an expression containing the clobbered register.
1344 As we do not analyze the constraint strings here, we have to
1345 make the conservative assumption. However, if the register is
1346 a fixed hard reg, the clobber cannot represent any operand;
1347 we leave it up to the machine description to either accept or
1348 reject use-and-clobber patterns. */
1349 if (!REG_P (reg)
1350 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1351 || !fixed_regs[REGNO (reg)])
1352 if (reg_overlap_mentioned_p (reg, src))
1353 return 0;
1356 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1357 or not), reject, unless nothing volatile comes between it and I3 */
1359 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1361 /* Make sure succ doesn't contain a volatile reference. */
1362 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1363 return 0;
1365 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1366 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1367 return 0;
1370 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1371 to be an explicit register variable, and was chosen for a reason. */
1373 if (GET_CODE (src) == ASM_OPERANDS
1374 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1375 return 0;
1377 /* If there are any volatile insns between INSN and I3, reject, because
1378 they might affect machine state. */
1380 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1381 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1382 return 0;
1384 /* If INSN contains an autoincrement or autodecrement, make sure that
1385 register is not used between there and I3, and not already used in
1386 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1387 Also insist that I3 not be a jump; if it were one
1388 and the incremented register were spilled, we would lose. */
1390 #ifdef AUTO_INC_DEC
1391 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1392 if (REG_NOTE_KIND (link) == REG_INC
1393 && (JUMP_P (i3)
1394 || reg_used_between_p (XEXP (link, 0), insn, i3)
1395 || (pred != NULL_RTX
1396 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1397 || (succ != NULL_RTX
1398 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1399 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1400 return 0;
1401 #endif
1403 #ifdef HAVE_cc0
1404 /* Don't combine an insn that follows a CC0-setting insn.
1405 An insn that uses CC0 must not be separated from the one that sets it.
1406 We do, however, allow I2 to follow a CC0-setting insn if that insn
1407 is passed as I1; in that case it will be deleted also.
1408 We also allow combining in this case if all the insns are adjacent
1409 because that would leave the two CC0 insns adjacent as well.
1410 It would be more logical to test whether CC0 occurs inside I1 or I2,
1411 but that would be much slower, and this ought to be equivalent. */
1413 p = prev_nonnote_insn (insn);
1414 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
1415 && ! all_adjacent)
1416 return 0;
1417 #endif
1419 /* If we get here, we have passed all the tests and the combination is
1420 to be allowed. */
1422 *pdest = dest;
1423 *psrc = src;
1425 return 1;
1428 /* LOC is the location within I3 that contains its pattern or the component
1429 of a PARALLEL of the pattern. We validate that it is valid for combining.
1431 One problem is if I3 modifies its output, as opposed to replacing it
1432 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1433 so would produce an insn that is not equivalent to the original insns.
1435 Consider:
1437 (set (reg:DI 101) (reg:DI 100))
1438 (set (subreg:SI (reg:DI 101) 0) <foo>)
1440 This is NOT equivalent to:
1442 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1443 (set (reg:DI 101) (reg:DI 100))])
1445 Not only does this modify 100 (in which case it might still be valid
1446 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1448 We can also run into a problem if I2 sets a register that I1
1449 uses and I1 gets directly substituted into I3 (not via I2). In that
1450 case, we would be getting the wrong value of I2DEST into I3, so we
1451 must reject the combination. This case occurs when I2 and I1 both
1452 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1453 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1454 of a SET must prevent combination from occurring.
1456 Before doing the above check, we first try to expand a field assignment
1457 into a set of logical operations.
1459 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1460 we place a register that is both set and used within I3. If more than one
1461 such register is detected, we fail.
1463 Return 1 if the combination is valid, zero otherwise. */
1465 static int
1466 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest,
1467 int i1_not_in_src, rtx *pi3dest_killed)
1469 rtx x = *loc;
1471 if (GET_CODE (x) == SET)
1473 rtx set = x ;
1474 rtx dest = SET_DEST (set);
1475 rtx src = SET_SRC (set);
1476 rtx inner_dest = dest;
1477 rtx subdest;
1479 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1480 || GET_CODE (inner_dest) == SUBREG
1481 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1482 inner_dest = XEXP (inner_dest, 0);
1484 /* Check for the case where I3 modifies its output, as discussed
1485 above. We don't want to prevent pseudos from being combined
1486 into the address of a MEM, so only prevent the combination if
1487 i1 or i2 set the same MEM. */
1488 if ((inner_dest != dest &&
1489 (!MEM_P (inner_dest)
1490 || rtx_equal_p (i2dest, inner_dest)
1491 || (i1dest && rtx_equal_p (i1dest, inner_dest)))
1492 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1493 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1495 /* This is the same test done in can_combine_p except we can't test
1496 all_adjacent; we don't have to, since this instruction will stay
1497 in place, thus we are not considering increasing the lifetime of
1498 INNER_DEST.
1500 Also, if this insn sets a function argument, combining it with
1501 something that might need a spill could clobber a previous
1502 function argument; the all_adjacent test in can_combine_p also
1503 checks this; here, we do a more specific test for this case. */
1505 || (REG_P (inner_dest)
1506 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1507 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1508 GET_MODE (inner_dest))))
1509 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1510 return 0;
1512 /* If DEST is used in I3, it is being killed in this insn, so
1513 record that for later. We have to consider paradoxical
1514 subregs here, since they kill the whole register, but we
1515 ignore partial subregs, STRICT_LOW_PART, etc.
1516 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1517 STACK_POINTER_REGNUM, since these are always considered to be
1518 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1519 subdest = dest;
1520 if (GET_CODE (subdest) == SUBREG
1521 && (GET_MODE_SIZE (GET_MODE (subdest))
1522 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
1523 subdest = SUBREG_REG (subdest);
1524 if (pi3dest_killed
1525 && REG_P (subdest)
1526 && reg_referenced_p (subdest, PATTERN (i3))
1527 && REGNO (subdest) != FRAME_POINTER_REGNUM
1528 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1529 && REGNO (subdest) != HARD_FRAME_POINTER_REGNUM
1530 #endif
1531 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1532 && (REGNO (subdest) != ARG_POINTER_REGNUM
1533 || ! fixed_regs [REGNO (subdest)])
1534 #endif
1535 && REGNO (subdest) != STACK_POINTER_REGNUM)
1537 if (*pi3dest_killed)
1538 return 0;
1540 *pi3dest_killed = subdest;
1544 else if (GET_CODE (x) == PARALLEL)
1546 int i;
1548 for (i = 0; i < XVECLEN (x, 0); i++)
1549 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1550 i1_not_in_src, pi3dest_killed))
1551 return 0;
1554 return 1;
1557 /* Return 1 if X is an arithmetic expression that contains a multiplication
1558 and division. We don't count multiplications by powers of two here. */
1560 static int
1561 contains_muldiv (rtx x)
1563 switch (GET_CODE (x))
1565 case MOD: case DIV: case UMOD: case UDIV:
1566 return 1;
1568 case MULT:
1569 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1570 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1571 default:
1572 if (BINARY_P (x))
1573 return contains_muldiv (XEXP (x, 0))
1574 || contains_muldiv (XEXP (x, 1));
1576 if (UNARY_P (x))
1577 return contains_muldiv (XEXP (x, 0));
1579 return 0;
1583 /* Determine whether INSN can be used in a combination. Return nonzero if
1584 not. This is used in try_combine to detect early some cases where we
1585 can't perform combinations. */
1587 static int
1588 cant_combine_insn_p (rtx insn)
1590 rtx set;
1591 rtx src, dest;
1593 /* If this isn't really an insn, we can't do anything.
1594 This can occur when flow deletes an insn that it has merged into an
1595 auto-increment address. */
1596 if (! INSN_P (insn))
1597 return 1;
1599 /* Never combine loads and stores involving hard regs that are likely
1600 to be spilled. The register allocator can usually handle such
1601 reg-reg moves by tying. If we allow the combiner to make
1602 substitutions of likely-spilled regs, reload might die.
1603 As an exception, we allow combinations involving fixed regs; these are
1604 not available to the register allocator so there's no risk involved. */
1606 set = single_set (insn);
1607 if (! set)
1608 return 0;
1609 src = SET_SRC (set);
1610 dest = SET_DEST (set);
1611 if (GET_CODE (src) == SUBREG)
1612 src = SUBREG_REG (src);
1613 if (GET_CODE (dest) == SUBREG)
1614 dest = SUBREG_REG (dest);
1615 if (REG_P (src) && REG_P (dest)
1616 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1617 && ! fixed_regs[REGNO (src)]
1618 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
1619 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1620 && ! fixed_regs[REGNO (dest)]
1621 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
1622 return 1;
1624 return 0;
1627 struct likely_spilled_retval_info
1629 unsigned regno, nregs;
1630 unsigned mask;
1633 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
1634 hard registers that are known to be written to / clobbered in full. */
1635 static void
1636 likely_spilled_retval_1 (rtx x, rtx set, void *data)
1638 struct likely_spilled_retval_info *info = data;
1639 unsigned regno, nregs;
1640 unsigned new_mask;
1642 if (!REG_P (XEXP (set, 0)))
1643 return;
1644 regno = REGNO (x);
1645 if (regno >= info->regno + info->nregs)
1646 return;
1647 nregs = hard_regno_nregs[regno][GET_MODE (x)];
1648 if (regno + nregs <= info->regno)
1649 return;
1650 new_mask = (2U << (nregs - 1)) - 1;
1651 if (regno < info->regno)
1652 new_mask >>= info->regno - regno;
1653 else
1654 new_mask <<= regno - info->regno;
1655 info->mask &= new_mask;
1658 /* Return nonzero iff part of the return value is live during INSN, and
1659 it is likely spilled. This can happen when more than one insn is needed
1660 to copy the return value, e.g. when we consider to combine into the
1661 second copy insn for a complex value. */
1663 static int
1664 likely_spilled_retval_p (rtx insn)
1666 rtx use = BB_END (this_basic_block);
1667 rtx reg, p;
1668 unsigned regno, nregs;
1669 /* We assume here that no machine mode needs more than
1670 32 hard registers when the value overlaps with a register
1671 for which FUNCTION_VALUE_REGNO_P is true. */
1672 unsigned mask;
1673 struct likely_spilled_retval_info info;
1675 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
1676 return 0;
1677 reg = XEXP (PATTERN (use), 0);
1678 if (!REG_P (reg) || !FUNCTION_VALUE_REGNO_P (REGNO (reg)))
1679 return 0;
1680 regno = REGNO (reg);
1681 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
1682 if (nregs == 1)
1683 return 0;
1684 mask = (2U << (nregs - 1)) - 1;
1686 /* Disregard parts of the return value that are set later. */
1687 info.regno = regno;
1688 info.nregs = nregs;
1689 info.mask = mask;
1690 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
1691 note_stores (PATTERN (insn), likely_spilled_retval_1, &info);
1692 mask = info.mask;
1694 /* Check if any of the (probably) live return value registers is
1695 likely spilled. */
1696 nregs --;
1699 if ((mask & 1 << nregs)
1700 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno + nregs)))
1701 return 1;
1702 } while (nregs--);
1703 return 0;
1706 /* Adjust INSN after we made a change to its destination.
1708 Changing the destination can invalidate notes that say something about
1709 the results of the insn and a LOG_LINK pointing to the insn. */
1711 static void
1712 adjust_for_new_dest (rtx insn)
1714 rtx *loc;
1716 /* For notes, be conservative and simply remove them. */
1717 loc = &REG_NOTES (insn);
1718 while (*loc)
1720 enum reg_note kind = REG_NOTE_KIND (*loc);
1721 if (kind == REG_EQUAL || kind == REG_EQUIV)
1722 *loc = XEXP (*loc, 1);
1723 else
1724 loc = &XEXP (*loc, 1);
1727 /* The new insn will have a destination that was previously the destination
1728 of an insn just above it. Call distribute_links to make a LOG_LINK from
1729 the next use of that destination. */
1730 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
1733 /* Return TRUE if combine can reuse reg X in mode MODE.
1734 ADDED_SETS is nonzero if the original set is still required. */
1735 static bool
1736 can_change_dest_mode (rtx x, int added_sets, enum machine_mode mode)
1738 unsigned int regno;
1740 if (!REG_P(x))
1741 return false;
1743 regno = REGNO (x);
1744 /* Allow hard registers if the new mode is legal, and occupies no more
1745 registers than the old mode. */
1746 if (regno < FIRST_PSEUDO_REGISTER)
1747 return (HARD_REGNO_MODE_OK (regno, mode)
1748 && (hard_regno_nregs[regno][GET_MODE (x)]
1749 >= hard_regno_nregs[regno][mode]));
1751 /* Or a pseudo that is only used once. */
1752 return (REG_N_SETS (regno) == 1 && !added_sets
1753 && !REG_USERVAR_P (x));
1757 /* Check whether X, the destination of a set, refers to part of
1758 the register specified by REG. */
1760 static bool
1761 reg_subword_p (rtx x, rtx reg)
1763 /* Check that reg is an integer mode register. */
1764 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
1765 return false;
1767 if (GET_CODE (x) == STRICT_LOW_PART
1768 || GET_CODE (x) == ZERO_EXTRACT)
1769 x = XEXP (x, 0);
1771 return GET_CODE (x) == SUBREG
1772 && SUBREG_REG (x) == reg
1773 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
1777 /* Try to combine the insns I1 and I2 into I3.
1778 Here I1 and I2 appear earlier than I3.
1779 I1 can be zero; then we combine just I2 into I3.
1781 If we are combining three insns and the resulting insn is not recognized,
1782 try splitting it into two insns. If that happens, I2 and I3 are retained
1783 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1784 are pseudo-deleted.
1786 Return 0 if the combination does not work. Then nothing is changed.
1787 If we did the combination, return the insn at which combine should
1788 resume scanning.
1790 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
1791 new direct jump instruction. */
1793 static rtx
1794 try_combine (rtx i3, rtx i2, rtx i1, int *new_direct_jump_p)
1796 /* New patterns for I3 and I2, respectively. */
1797 rtx newpat, newi2pat = 0;
1798 rtvec newpat_vec_with_clobbers = 0;
1799 int substed_i2 = 0, substed_i1 = 0;
1800 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1801 int added_sets_1, added_sets_2;
1802 /* Total number of SETs to put into I3. */
1803 int total_sets;
1804 /* Nonzero if I2's body now appears in I3. */
1805 int i2_is_used;
1806 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1807 int insn_code_number, i2_code_number = 0, other_code_number = 0;
1808 /* Contains I3 if the destination of I3 is used in its source, which means
1809 that the old life of I3 is being killed. If that usage is placed into
1810 I2 and not in I3, a REG_DEAD note must be made. */
1811 rtx i3dest_killed = 0;
1812 /* SET_DEST and SET_SRC of I2 and I1. */
1813 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1814 /* PATTERN (I2), or a copy of it in certain cases. */
1815 rtx i2pat;
1816 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1817 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1818 int i2dest_killed = 0, i1dest_killed = 0;
1819 int i1_feeds_i3 = 0;
1820 /* Notes that must be added to REG_NOTES in I3 and I2. */
1821 rtx new_i3_notes, new_i2_notes;
1822 /* Notes that we substituted I3 into I2 instead of the normal case. */
1823 int i3_subst_into_i2 = 0;
1824 /* Notes that I1, I2 or I3 is a MULT operation. */
1825 int have_mult = 0;
1826 int swap_i2i3 = 0;
1828 int maxreg;
1829 rtx temp;
1830 rtx link;
1831 int i;
1833 /* Exit early if one of the insns involved can't be used for
1834 combinations. */
1835 if (cant_combine_insn_p (i3)
1836 || cant_combine_insn_p (i2)
1837 || (i1 && cant_combine_insn_p (i1))
1838 || likely_spilled_retval_p (i3)
1839 /* We also can't do anything if I3 has a
1840 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1841 libcall. */
1842 #if 0
1843 /* ??? This gives worse code, and appears to be unnecessary, since no
1844 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1845 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1846 #endif
1848 return 0;
1850 combine_attempts++;
1851 undobuf.other_insn = 0;
1853 /* Reset the hard register usage information. */
1854 CLEAR_HARD_REG_SET (newpat_used_regs);
1856 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1857 code below, set I1 to be the earlier of the two insns. */
1858 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1859 temp = i1, i1 = i2, i2 = temp;
1861 added_links_insn = 0;
1863 /* First check for one important special-case that the code below will
1864 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1865 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1866 we may be able to replace that destination with the destination of I3.
1867 This occurs in the common code where we compute both a quotient and
1868 remainder into a structure, in which case we want to do the computation
1869 directly into the structure to avoid register-register copies.
1871 Note that this case handles both multiple sets in I2 and also
1872 cases where I2 has a number of CLOBBER or PARALLELs.
1874 We make very conservative checks below and only try to handle the
1875 most common cases of this. For example, we only handle the case
1876 where I2 and I3 are adjacent to avoid making difficult register
1877 usage tests. */
1879 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
1880 && REG_P (SET_SRC (PATTERN (i3)))
1881 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1882 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1883 && GET_CODE (PATTERN (i2)) == PARALLEL
1884 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1885 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1886 below would need to check what is inside (and reg_overlap_mentioned_p
1887 doesn't support those codes anyway). Don't allow those destinations;
1888 the resulting insn isn't likely to be recognized anyway. */
1889 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1890 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1891 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1892 SET_DEST (PATTERN (i3)))
1893 && next_real_insn (i2) == i3)
1895 rtx p2 = PATTERN (i2);
1897 /* Make sure that the destination of I3,
1898 which we are going to substitute into one output of I2,
1899 is not used within another output of I2. We must avoid making this:
1900 (parallel [(set (mem (reg 69)) ...)
1901 (set (reg 69) ...)])
1902 which is not well-defined as to order of actions.
1903 (Besides, reload can't handle output reloads for this.)
1905 The problem can also happen if the dest of I3 is a memory ref,
1906 if another dest in I2 is an indirect memory ref. */
1907 for (i = 0; i < XVECLEN (p2, 0); i++)
1908 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1909 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1910 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1911 SET_DEST (XVECEXP (p2, 0, i))))
1912 break;
1914 if (i == XVECLEN (p2, 0))
1915 for (i = 0; i < XVECLEN (p2, 0); i++)
1916 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1917 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1918 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1920 combine_merges++;
1922 subst_insn = i3;
1923 subst_low_cuid = INSN_CUID (i2);
1925 added_sets_2 = added_sets_1 = 0;
1926 i2dest = SET_SRC (PATTERN (i3));
1927 i2dest_killed = dead_or_set_p (i2, i2dest);
1929 /* Replace the dest in I2 with our dest and make the resulting
1930 insn the new pattern for I3. Then skip to where we
1931 validate the pattern. Everything was set up above. */
1932 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1933 SET_DEST (PATTERN (i3)));
1935 newpat = p2;
1936 i3_subst_into_i2 = 1;
1937 goto validate_replacement;
1941 /* If I2 is setting a pseudo to a constant and I3 is setting some
1942 sub-part of it to another constant, merge them by making a new
1943 constant. */
1944 if (i1 == 0
1945 && (temp = single_set (i2)) != 0
1946 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1947 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1948 && GET_CODE (PATTERN (i3)) == SET
1949 && (GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT
1950 || GET_CODE (SET_SRC (PATTERN (i3))) == CONST_DOUBLE)
1951 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp)))
1953 rtx dest = SET_DEST (PATTERN (i3));
1954 int offset = -1;
1955 int width = 0;
1957 if (GET_CODE (dest) == ZERO_EXTRACT)
1959 if (GET_CODE (XEXP (dest, 1)) == CONST_INT
1960 && GET_CODE (XEXP (dest, 2)) == CONST_INT)
1962 width = INTVAL (XEXP (dest, 1));
1963 offset = INTVAL (XEXP (dest, 2));
1964 dest = XEXP (dest, 0);
1965 if (BITS_BIG_ENDIAN)
1966 offset = GET_MODE_BITSIZE (GET_MODE (dest)) - width - offset;
1969 else
1971 if (GET_CODE (dest) == STRICT_LOW_PART)
1972 dest = XEXP (dest, 0);
1973 width = GET_MODE_BITSIZE (GET_MODE (dest));
1974 offset = 0;
1977 if (offset >= 0)
1979 /* If this is the low part, we're done. */
1980 if (subreg_lowpart_p (dest))
1982 /* Handle the case where inner is twice the size of outer. */
1983 else if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (temp)))
1984 == 2 * GET_MODE_BITSIZE (GET_MODE (dest)))
1985 offset += GET_MODE_BITSIZE (GET_MODE (dest));
1986 /* Otherwise give up for now. */
1987 else
1988 offset = -1;
1991 if (offset >= 0)
1993 HOST_WIDE_INT mhi, ohi, ihi;
1994 HOST_WIDE_INT mlo, olo, ilo;
1995 rtx inner = SET_SRC (PATTERN (i3));
1996 rtx outer = SET_SRC (temp);
1998 if (GET_CODE (outer) == CONST_INT)
2000 olo = INTVAL (outer);
2001 ohi = olo < 0 ? -1 : 0;
2003 else
2005 olo = CONST_DOUBLE_LOW (outer);
2006 ohi = CONST_DOUBLE_HIGH (outer);
2009 if (GET_CODE (inner) == CONST_INT)
2011 ilo = INTVAL (inner);
2012 ihi = ilo < 0 ? -1 : 0;
2014 else
2016 ilo = CONST_DOUBLE_LOW (inner);
2017 ihi = CONST_DOUBLE_HIGH (inner);
2020 if (width < HOST_BITS_PER_WIDE_INT)
2022 mlo = ((unsigned HOST_WIDE_INT) 1 << width) - 1;
2023 mhi = 0;
2025 else if (width < HOST_BITS_PER_WIDE_INT * 2)
2027 mhi = ((unsigned HOST_WIDE_INT) 1
2028 << (width - HOST_BITS_PER_WIDE_INT)) - 1;
2029 mlo = -1;
2031 else
2033 mlo = -1;
2034 mhi = -1;
2037 ilo &= mlo;
2038 ihi &= mhi;
2040 if (offset >= HOST_BITS_PER_WIDE_INT)
2042 mhi = mlo << (offset - HOST_BITS_PER_WIDE_INT);
2043 mlo = 0;
2044 ihi = ilo << (offset - HOST_BITS_PER_WIDE_INT);
2045 ilo = 0;
2047 else if (offset > 0)
2049 mhi = (mhi << offset) | ((unsigned HOST_WIDE_INT) mlo
2050 >> (HOST_BITS_PER_WIDE_INT - offset));
2051 mlo = mlo << offset;
2052 ihi = (ihi << offset) | ((unsigned HOST_WIDE_INT) ilo
2053 >> (HOST_BITS_PER_WIDE_INT - offset));
2054 ilo = ilo << offset;
2057 olo = (olo & ~mlo) | ilo;
2058 ohi = (ohi & ~mhi) | ihi;
2060 combine_merges++;
2061 subst_insn = i3;
2062 subst_low_cuid = INSN_CUID (i2);
2063 added_sets_2 = added_sets_1 = 0;
2064 i2dest = SET_DEST (temp);
2065 i2dest_killed = dead_or_set_p (i2, i2dest);
2067 SUBST (SET_SRC (temp),
2068 immed_double_const (olo, ohi, GET_MODE (SET_DEST (temp))));
2070 newpat = PATTERN (i2);
2071 goto validate_replacement;
2075 #ifndef HAVE_cc0
2076 /* If we have no I1 and I2 looks like:
2077 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2078 (set Y OP)])
2079 make up a dummy I1 that is
2080 (set Y OP)
2081 and change I2 to be
2082 (set (reg:CC X) (compare:CC Y (const_int 0)))
2084 (We can ignore any trailing CLOBBERs.)
2086 This undoes a previous combination and allows us to match a branch-and-
2087 decrement insn. */
2089 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
2090 && XVECLEN (PATTERN (i2), 0) >= 2
2091 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
2092 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2093 == MODE_CC)
2094 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2095 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2096 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
2097 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
2098 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2099 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
2101 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
2102 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
2103 break;
2105 if (i == 1)
2107 /* We make I1 with the same INSN_UID as I2. This gives it
2108 the same INSN_CUID for value tracking. Our fake I1 will
2109 never appear in the insn stream so giving it the same INSN_UID
2110 as I2 will not cause a problem. */
2112 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
2113 BLOCK_FOR_INSN (i2), INSN_LOCATOR (i2),
2114 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
2115 NULL_RTX);
2117 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2118 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2119 SET_DEST (PATTERN (i1)));
2122 #endif
2124 /* Verify that I2 and I1 are valid for combining. */
2125 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
2126 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
2128 undo_all ();
2129 return 0;
2132 /* Record whether I2DEST is used in I2SRC and similarly for the other
2133 cases. Knowing this will help in register status updating below. */
2134 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2135 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2136 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2137 i2dest_killed = dead_or_set_p (i2, i2dest);
2138 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2140 /* See if I1 directly feeds into I3. It does if I1DEST is not used
2141 in I2SRC. */
2142 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
2144 /* Ensure that I3's pattern can be the destination of combines. */
2145 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
2146 i1 && i2dest_in_i1src && i1_feeds_i3,
2147 &i3dest_killed))
2149 undo_all ();
2150 return 0;
2153 /* See if any of the insns is a MULT operation. Unless one is, we will
2154 reject a combination that is, since it must be slower. Be conservative
2155 here. */
2156 if (GET_CODE (i2src) == MULT
2157 || (i1 != 0 && GET_CODE (i1src) == MULT)
2158 || (GET_CODE (PATTERN (i3)) == SET
2159 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
2160 have_mult = 1;
2162 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2163 We used to do this EXCEPT in one case: I3 has a post-inc in an
2164 output operand. However, that exception can give rise to insns like
2165 mov r3,(r3)+
2166 which is a famous insn on the PDP-11 where the value of r3 used as the
2167 source was model-dependent. Avoid this sort of thing. */
2169 #if 0
2170 if (!(GET_CODE (PATTERN (i3)) == SET
2171 && REG_P (SET_SRC (PATTERN (i3)))
2172 && MEM_P (SET_DEST (PATTERN (i3)))
2173 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
2174 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
2175 /* It's not the exception. */
2176 #endif
2177 #ifdef AUTO_INC_DEC
2178 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
2179 if (REG_NOTE_KIND (link) == REG_INC
2180 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
2181 || (i1 != 0
2182 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
2184 undo_all ();
2185 return 0;
2187 #endif
2189 /* See if the SETs in I1 or I2 need to be kept around in the merged
2190 instruction: whenever the value set there is still needed past I3.
2191 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
2193 For the SET in I1, we have two cases: If I1 and I2 independently
2194 feed into I3, the set in I1 needs to be kept around if I1DEST dies
2195 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
2196 in I1 needs to be kept around unless I1DEST dies or is set in either
2197 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
2198 I1DEST. If so, we know I1 feeds into I2. */
2200 added_sets_2 = ! dead_or_set_p (i3, i2dest);
2202 added_sets_1
2203 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
2204 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
2206 /* If the set in I2 needs to be kept around, we must make a copy of
2207 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
2208 PATTERN (I2), we are only substituting for the original I1DEST, not into
2209 an already-substituted copy. This also prevents making self-referential
2210 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
2211 I2DEST. */
2213 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
2214 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
2215 : PATTERN (i2));
2217 if (added_sets_2)
2218 i2pat = copy_rtx (i2pat);
2220 combine_merges++;
2222 /* Substitute in the latest insn for the regs set by the earlier ones. */
2224 maxreg = max_reg_num ();
2226 subst_insn = i3;
2228 #ifndef HAVE_cc0
2229 /* Many machines that don't use CC0 have insns that can both perform an
2230 arithmetic operation and set the condition code. These operations will
2231 be represented as a PARALLEL with the first element of the vector
2232 being a COMPARE of an arithmetic operation with the constant zero.
2233 The second element of the vector will set some pseudo to the result
2234 of the same arithmetic operation. If we simplify the COMPARE, we won't
2235 match such a pattern and so will generate an extra insn. Here we test
2236 for this case, where both the comparison and the operation result are
2237 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
2238 I2SRC. Later we will make the PARALLEL that contains I2. */
2240 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
2241 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
2242 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
2243 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
2245 #ifdef SELECT_CC_MODE
2246 rtx *cc_use;
2247 enum machine_mode compare_mode;
2248 #endif
2250 newpat = PATTERN (i3);
2251 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
2253 i2_is_used = 1;
2255 #ifdef SELECT_CC_MODE
2256 /* See if a COMPARE with the operand we substituted in should be done
2257 with the mode that is currently being used. If not, do the same
2258 processing we do in `subst' for a SET; namely, if the destination
2259 is used only once, try to replace it with a register of the proper
2260 mode and also replace the COMPARE. */
2261 if (undobuf.other_insn == 0
2262 && (cc_use = find_single_use (SET_DEST (newpat), i3,
2263 &undobuf.other_insn))
2264 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
2265 i2src, const0_rtx))
2266 != GET_MODE (SET_DEST (newpat))))
2268 if (can_change_dest_mode(SET_DEST (newpat), added_sets_2,
2269 compare_mode))
2271 unsigned int regno = REGNO (SET_DEST (newpat));
2272 rtx new_dest;
2274 if (regno < FIRST_PSEUDO_REGISTER)
2275 new_dest = gen_rtx_REG (compare_mode, regno);
2276 else
2278 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
2279 new_dest = regno_reg_rtx[regno];
2282 SUBST (SET_DEST (newpat), new_dest);
2283 SUBST (XEXP (*cc_use, 0), new_dest);
2284 SUBST (SET_SRC (newpat),
2285 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
2287 else
2288 undobuf.other_insn = 0;
2290 #endif
2292 else
2293 #endif
2295 /* It is possible that the source of I2 or I1 may be performing
2296 an unneeded operation, such as a ZERO_EXTEND of something
2297 that is known to have the high part zero. Handle that case
2298 by letting subst look at the innermost one of them.
2300 Another way to do this would be to have a function that tries
2301 to simplify a single insn instead of merging two or more
2302 insns. We don't do this because of the potential of infinite
2303 loops and because of the potential extra memory required.
2304 However, doing it the way we are is a bit of a kludge and
2305 doesn't catch all cases.
2307 But only do this if -fexpensive-optimizations since it slows
2308 things down and doesn't usually win.
2310 This is not done in the COMPARE case above because the
2311 unmodified I2PAT is used in the PARALLEL and so a pattern
2312 with a modified I2SRC would not match. */
2314 if (flag_expensive_optimizations)
2316 /* Pass pc_rtx so no substitutions are done, just
2317 simplifications. */
2318 if (i1)
2320 subst_low_cuid = INSN_CUID (i1);
2321 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
2323 else
2325 subst_low_cuid = INSN_CUID (i2);
2326 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
2330 n_occurrences = 0; /* `subst' counts here */
2332 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
2333 need to make a unique copy of I2SRC each time we substitute it
2334 to avoid self-referential rtl. */
2336 subst_low_cuid = INSN_CUID (i2);
2337 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
2338 ! i1_feeds_i3 && i1dest_in_i1src);
2339 substed_i2 = 1;
2341 /* Record whether i2's body now appears within i3's body. */
2342 i2_is_used = n_occurrences;
2345 /* If we already got a failure, don't try to do more. Otherwise,
2346 try to substitute in I1 if we have it. */
2348 if (i1 && GET_CODE (newpat) != CLOBBER)
2350 /* Before we can do this substitution, we must redo the test done
2351 above (see detailed comments there) that ensures that I1DEST
2352 isn't mentioned in any SETs in NEWPAT that are field assignments. */
2354 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
2355 0, (rtx*) 0))
2357 undo_all ();
2358 return 0;
2361 n_occurrences = 0;
2362 subst_low_cuid = INSN_CUID (i1);
2363 newpat = subst (newpat, i1dest, i1src, 0, 0);
2364 substed_i1 = 1;
2367 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2368 to count all the ways that I2SRC and I1SRC can be used. */
2369 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
2370 && i2_is_used + added_sets_2 > 1)
2371 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2372 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2373 > 1))
2374 /* Fail if we tried to make a new register. */
2375 || max_reg_num () != maxreg
2376 /* Fail if we couldn't do something and have a CLOBBER. */
2377 || GET_CODE (newpat) == CLOBBER
2378 /* Fail if this new pattern is a MULT and we didn't have one before
2379 at the outer level. */
2380 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2381 && ! have_mult))
2383 undo_all ();
2384 return 0;
2387 /* If the actions of the earlier insns must be kept
2388 in addition to substituting them into the latest one,
2389 we must make a new PARALLEL for the latest insn
2390 to hold additional the SETs. */
2392 if (added_sets_1 || added_sets_2)
2394 combine_extras++;
2396 if (GET_CODE (newpat) == PARALLEL)
2398 rtvec old = XVEC (newpat, 0);
2399 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2400 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2401 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2402 sizeof (old->elem[0]) * old->num_elem);
2404 else
2406 rtx old = newpat;
2407 total_sets = 1 + added_sets_1 + added_sets_2;
2408 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2409 XVECEXP (newpat, 0, 0) = old;
2412 if (added_sets_1)
2413 XVECEXP (newpat, 0, --total_sets)
2414 = (GET_CODE (PATTERN (i1)) == PARALLEL
2415 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
2417 if (added_sets_2)
2419 /* If there is no I1, use I2's body as is. We used to also not do
2420 the subst call below if I2 was substituted into I3,
2421 but that could lose a simplification. */
2422 if (i1 == 0)
2423 XVECEXP (newpat, 0, --total_sets) = i2pat;
2424 else
2425 /* See comment where i2pat is assigned. */
2426 XVECEXP (newpat, 0, --total_sets)
2427 = subst (i2pat, i1dest, i1src, 0, 0);
2431 /* We come here when we are replacing a destination in I2 with the
2432 destination of I3. */
2433 validate_replacement:
2435 /* Note which hard regs this insn has as inputs. */
2436 mark_used_regs_combine (newpat);
2438 /* If recog_for_combine fails, it strips existing clobbers. If we'll
2439 consider splitting this pattern, we might need these clobbers. */
2440 if (i1 && GET_CODE (newpat) == PARALLEL
2441 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
2443 int len = XVECLEN (newpat, 0);
2445 newpat_vec_with_clobbers = rtvec_alloc (len);
2446 for (i = 0; i < len; i++)
2447 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
2450 /* Is the result of combination a valid instruction? */
2451 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2453 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2454 the second SET's destination is a register that is unused and isn't
2455 marked as an instruction that might trap in an EH region. In that case,
2456 we just need the first SET. This can occur when simplifying a divmod
2457 insn. We *must* test for this case here because the code below that
2458 splits two independent SETs doesn't handle this case correctly when it
2459 updates the register status.
2461 It's pointless doing this if we originally had two sets, one from
2462 i3, and one from i2. Combining then splitting the parallel results
2463 in the original i2 again plus an invalid insn (which we delete).
2464 The net effect is only to move instructions around, which makes
2465 debug info less accurate.
2467 Also check the case where the first SET's destination is unused.
2468 That would not cause incorrect code, but does cause an unneeded
2469 insn to remain. */
2471 if (insn_code_number < 0
2472 && !(added_sets_2 && i1 == 0)
2473 && GET_CODE (newpat) == PARALLEL
2474 && XVECLEN (newpat, 0) == 2
2475 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2476 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2477 && asm_noperands (newpat) < 0)
2479 rtx set0 = XVECEXP (newpat, 0, 0);
2480 rtx set1 = XVECEXP (newpat, 0, 1);
2481 rtx note;
2483 if (((REG_P (SET_DEST (set1))
2484 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
2485 || (GET_CODE (SET_DEST (set1)) == SUBREG
2486 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
2487 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2488 || INTVAL (XEXP (note, 0)) <= 0)
2489 && ! side_effects_p (SET_SRC (set1)))
2491 newpat = set0;
2492 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2495 else if (((REG_P (SET_DEST (set0))
2496 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
2497 || (GET_CODE (SET_DEST (set0)) == SUBREG
2498 && find_reg_note (i3, REG_UNUSED,
2499 SUBREG_REG (SET_DEST (set0)))))
2500 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2501 || INTVAL (XEXP (note, 0)) <= 0)
2502 && ! side_effects_p (SET_SRC (set0)))
2504 newpat = set1;
2505 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2507 if (insn_code_number >= 0)
2509 /* If we will be able to accept this, we have made a
2510 change to the destination of I3. This requires us to
2511 do a few adjustments. */
2513 PATTERN (i3) = newpat;
2514 adjust_for_new_dest (i3);
2519 /* If we were combining three insns and the result is a simple SET
2520 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2521 insns. There are two ways to do this. It can be split using a
2522 machine-specific method (like when you have an addition of a large
2523 constant) or by combine in the function find_split_point. */
2525 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2526 && asm_noperands (newpat) < 0)
2528 rtx m_split, *split;
2530 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2531 use I2DEST as a scratch register will help. In the latter case,
2532 convert I2DEST to the mode of the source of NEWPAT if we can. */
2534 m_split = split_insns (newpat, i3);
2536 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2537 inputs of NEWPAT. */
2539 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2540 possible to try that as a scratch reg. This would require adding
2541 more code to make it work though. */
2543 if (m_split == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
2545 enum machine_mode new_mode = GET_MODE (SET_DEST (newpat));
2547 /* First try to split using the original register as a
2548 scratch register. */
2549 m_split = split_insns (gen_rtx_PARALLEL
2550 (VOIDmode,
2551 gen_rtvec (2, newpat,
2552 gen_rtx_CLOBBER (VOIDmode,
2553 i2dest))),
2554 i3);
2556 /* If that didn't work, try changing the mode of I2DEST if
2557 we can. */
2558 if (m_split == 0
2559 && new_mode != GET_MODE (i2dest)
2560 && new_mode != VOIDmode
2561 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
2563 enum machine_mode old_mode = GET_MODE (i2dest);
2564 rtx ni2dest;
2566 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
2567 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
2568 else
2570 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
2571 ni2dest = regno_reg_rtx[REGNO (i2dest)];
2574 m_split = split_insns (gen_rtx_PARALLEL
2575 (VOIDmode,
2576 gen_rtvec (2, newpat,
2577 gen_rtx_CLOBBER (VOIDmode,
2578 ni2dest))),
2579 i3);
2581 if (m_split == 0
2582 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2584 struct undo *buf;
2586 PUT_MODE (regno_reg_rtx[REGNO (i2dest)], old_mode);
2587 buf = undobuf.undos;
2588 undobuf.undos = buf->next;
2589 buf->next = undobuf.frees;
2590 undobuf.frees = buf;
2595 /* If recog_for_combine has discarded clobbers, try to use them
2596 again for the split. */
2597 if (m_split == 0 && newpat_vec_with_clobbers)
2598 m_split
2599 = split_insns (gen_rtx_PARALLEL (VOIDmode,
2600 newpat_vec_with_clobbers), i3);
2602 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
2604 m_split = PATTERN (m_split);
2605 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2606 if (insn_code_number >= 0)
2607 newpat = m_split;
2609 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
2610 && (next_real_insn (i2) == i3
2611 || ! use_crosses_set_p (PATTERN (m_split), INSN_CUID (i2))))
2613 rtx i2set, i3set;
2614 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
2615 newi2pat = PATTERN (m_split);
2617 i3set = single_set (NEXT_INSN (m_split));
2618 i2set = single_set (m_split);
2620 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2622 /* If I2 or I3 has multiple SETs, we won't know how to track
2623 register status, so don't use these insns. If I2's destination
2624 is used between I2 and I3, we also can't use these insns. */
2626 if (i2_code_number >= 0 && i2set && i3set
2627 && (next_real_insn (i2) == i3
2628 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2629 insn_code_number = recog_for_combine (&newi3pat, i3,
2630 &new_i3_notes);
2631 if (insn_code_number >= 0)
2632 newpat = newi3pat;
2634 /* It is possible that both insns now set the destination of I3.
2635 If so, we must show an extra use of it. */
2637 if (insn_code_number >= 0)
2639 rtx new_i3_dest = SET_DEST (i3set);
2640 rtx new_i2_dest = SET_DEST (i2set);
2642 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2643 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2644 || GET_CODE (new_i3_dest) == SUBREG)
2645 new_i3_dest = XEXP (new_i3_dest, 0);
2647 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2648 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2649 || GET_CODE (new_i2_dest) == SUBREG)
2650 new_i2_dest = XEXP (new_i2_dest, 0);
2652 if (REG_P (new_i3_dest)
2653 && REG_P (new_i2_dest)
2654 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2655 REG_N_SETS (REGNO (new_i2_dest))++;
2659 /* If we can split it and use I2DEST, go ahead and see if that
2660 helps things be recognized. Verify that none of the registers
2661 are set between I2 and I3. */
2662 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2663 #ifdef HAVE_cc0
2664 && REG_P (i2dest)
2665 #endif
2666 /* We need I2DEST in the proper mode. If it is a hard register
2667 or the only use of a pseudo, we can change its mode.
2668 Make sure we don't change a hard register to have a mode that
2669 isn't valid for it, or change the number of registers. */
2670 && (GET_MODE (*split) == GET_MODE (i2dest)
2671 || GET_MODE (*split) == VOIDmode
2672 || can_change_dest_mode (i2dest, added_sets_2,
2673 GET_MODE (*split)))
2674 && (next_real_insn (i2) == i3
2675 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2676 /* We can't overwrite I2DEST if its value is still used by
2677 NEWPAT. */
2678 && ! reg_referenced_p (i2dest, newpat))
2680 rtx newdest = i2dest;
2681 enum rtx_code split_code = GET_CODE (*split);
2682 enum machine_mode split_mode = GET_MODE (*split);
2683 bool subst_done = false;
2684 newi2pat = NULL_RTX;
2686 /* Get NEWDEST as a register in the proper mode. We have already
2687 validated that we can do this. */
2688 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2690 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
2691 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2692 else
2694 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
2695 newdest = regno_reg_rtx[REGNO (i2dest)];
2699 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2700 an ASHIFT. This can occur if it was inside a PLUS and hence
2701 appeared to be a memory address. This is a kludge. */
2702 if (split_code == MULT
2703 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2704 && INTVAL (XEXP (*split, 1)) > 0
2705 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2707 SUBST (*split, gen_rtx_ASHIFT (split_mode,
2708 XEXP (*split, 0), GEN_INT (i)));
2709 /* Update split_code because we may not have a multiply
2710 anymore. */
2711 split_code = GET_CODE (*split);
2714 #ifdef INSN_SCHEDULING
2715 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2716 be written as a ZERO_EXTEND. */
2717 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
2719 #ifdef LOAD_EXTEND_OP
2720 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
2721 what it really is. */
2722 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
2723 == SIGN_EXTEND)
2724 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
2725 SUBREG_REG (*split)));
2726 else
2727 #endif
2728 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2729 SUBREG_REG (*split)));
2731 #endif
2733 /* Attempt to split binary operators using arithmetic identities. */
2734 if (BINARY_P (SET_SRC (newpat))
2735 && split_mode == GET_MODE (SET_SRC (newpat))
2736 && ! side_effects_p (SET_SRC (newpat)))
2738 rtx setsrc = SET_SRC (newpat);
2739 enum machine_mode mode = GET_MODE (setsrc);
2740 enum rtx_code code = GET_CODE (setsrc);
2741 rtx src_op0 = XEXP (setsrc, 0);
2742 rtx src_op1 = XEXP (setsrc, 1);
2744 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
2745 if (rtx_equal_p (src_op0, src_op1))
2747 newi2pat = gen_rtx_SET (VOIDmode, newdest, src_op0);
2748 SUBST (XEXP (setsrc, 0), newdest);
2749 SUBST (XEXP (setsrc, 1), newdest);
2750 subst_done = true;
2752 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
2753 else if ((code == PLUS || code == MULT)
2754 && GET_CODE (src_op0) == code
2755 && GET_CODE (XEXP (src_op0, 0)) == code
2756 && (INTEGRAL_MODE_P (mode)
2757 || (FLOAT_MODE_P (mode)
2758 && flag_unsafe_math_optimizations)))
2760 rtx p = XEXP (XEXP (src_op0, 0), 0);
2761 rtx q = XEXP (XEXP (src_op0, 0), 1);
2762 rtx r = XEXP (src_op0, 1);
2763 rtx s = src_op1;
2765 /* Split both "((X op Y) op X) op Y" and
2766 "((X op Y) op Y) op X" as "T op T" where T is
2767 "X op Y". */
2768 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
2769 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
2771 newi2pat = gen_rtx_SET (VOIDmode, newdest,
2772 XEXP (src_op0, 0));
2773 SUBST (XEXP (setsrc, 0), newdest);
2774 SUBST (XEXP (setsrc, 1), newdest);
2775 subst_done = true;
2777 /* Split "((X op X) op Y) op Y)" as "T op T" where
2778 T is "X op Y". */
2779 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
2781 rtx tmp = simplify_gen_binary (code, mode, p, r);
2782 newi2pat = gen_rtx_SET (VOIDmode, newdest, tmp);
2783 SUBST (XEXP (setsrc, 0), newdest);
2784 SUBST (XEXP (setsrc, 1), newdest);
2785 subst_done = true;
2790 if (!subst_done)
2792 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2793 SUBST (*split, newdest);
2796 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2798 /* recog_for_combine might have added CLOBBERs to newi2pat.
2799 Make sure NEWPAT does not depend on the clobbered regs. */
2800 if (GET_CODE (newi2pat) == PARALLEL)
2801 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
2802 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
2804 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
2805 if (reg_overlap_mentioned_p (reg, newpat))
2807 undo_all ();
2808 return 0;
2812 /* If the split point was a MULT and we didn't have one before,
2813 don't use one now. */
2814 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2815 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2819 /* Check for a case where we loaded from memory in a narrow mode and
2820 then sign extended it, but we need both registers. In that case,
2821 we have a PARALLEL with both loads from the same memory location.
2822 We can split this into a load from memory followed by a register-register
2823 copy. This saves at least one insn, more if register allocation can
2824 eliminate the copy.
2826 We cannot do this if the destination of the first assignment is a
2827 condition code register or cc0. We eliminate this case by making sure
2828 the SET_DEST and SET_SRC have the same mode.
2830 We cannot do this if the destination of the second assignment is
2831 a register that we have already assumed is zero-extended. Similarly
2832 for a SUBREG of such a register. */
2834 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2835 && GET_CODE (newpat) == PARALLEL
2836 && XVECLEN (newpat, 0) == 2
2837 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2838 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2839 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
2840 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
2841 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2842 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2843 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2844 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2845 INSN_CUID (i2))
2846 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2847 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2848 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2849 (REG_P (temp)
2850 && reg_stat[REGNO (temp)].nonzero_bits != 0
2851 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2852 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2853 && (reg_stat[REGNO (temp)].nonzero_bits
2854 != GET_MODE_MASK (word_mode))))
2855 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2856 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2857 (REG_P (temp)
2858 && reg_stat[REGNO (temp)].nonzero_bits != 0
2859 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2860 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2861 && (reg_stat[REGNO (temp)].nonzero_bits
2862 != GET_MODE_MASK (word_mode)))))
2863 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2864 SET_SRC (XVECEXP (newpat, 0, 1)))
2865 && ! find_reg_note (i3, REG_UNUSED,
2866 SET_DEST (XVECEXP (newpat, 0, 0))))
2868 rtx ni2dest;
2870 newi2pat = XVECEXP (newpat, 0, 0);
2871 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2872 newpat = XVECEXP (newpat, 0, 1);
2873 SUBST (SET_SRC (newpat),
2874 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
2875 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2877 if (i2_code_number >= 0)
2878 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2880 if (insn_code_number >= 0)
2881 swap_i2i3 = 1;
2884 /* Similarly, check for a case where we have a PARALLEL of two independent
2885 SETs but we started with three insns. In this case, we can do the sets
2886 as two separate insns. This case occurs when some SET allows two
2887 other insns to combine, but the destination of that SET is still live. */
2889 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2890 && GET_CODE (newpat) == PARALLEL
2891 && XVECLEN (newpat, 0) == 2
2892 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2893 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2894 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2895 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2896 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2897 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2898 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2899 INSN_CUID (i2))
2900 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2901 XVECEXP (newpat, 0, 0))
2902 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2903 XVECEXP (newpat, 0, 1))
2904 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2905 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
2907 /* Normally, it doesn't matter which of the two is done first,
2908 but it does if one references cc0. In that case, it has to
2909 be first. */
2910 #ifdef HAVE_cc0
2911 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2913 newi2pat = XVECEXP (newpat, 0, 0);
2914 newpat = XVECEXP (newpat, 0, 1);
2916 else
2917 #endif
2919 newi2pat = XVECEXP (newpat, 0, 1);
2920 newpat = XVECEXP (newpat, 0, 0);
2923 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2925 if (i2_code_number >= 0)
2926 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2929 /* If it still isn't recognized, fail and change things back the way they
2930 were. */
2931 if ((insn_code_number < 0
2932 /* Is the result a reasonable ASM_OPERANDS? */
2933 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2935 undo_all ();
2936 return 0;
2939 /* If we had to change another insn, make sure it is valid also. */
2940 if (undobuf.other_insn)
2942 rtx other_pat = PATTERN (undobuf.other_insn);
2943 rtx new_other_notes;
2944 rtx note, next;
2946 CLEAR_HARD_REG_SET (newpat_used_regs);
2948 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2949 &new_other_notes);
2951 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2953 undo_all ();
2954 return 0;
2957 PATTERN (undobuf.other_insn) = other_pat;
2959 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2960 are still valid. Then add any non-duplicate notes added by
2961 recog_for_combine. */
2962 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2964 next = XEXP (note, 1);
2966 if (REG_NOTE_KIND (note) == REG_UNUSED
2967 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2969 if (REG_P (XEXP (note, 0)))
2970 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2972 remove_note (undobuf.other_insn, note);
2976 for (note = new_other_notes; note; note = XEXP (note, 1))
2977 if (REG_P (XEXP (note, 0)))
2978 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2980 distribute_notes (new_other_notes, undobuf.other_insn,
2981 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
2983 #ifdef HAVE_cc0
2984 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
2985 they are adjacent to each other or not. */
2987 rtx p = prev_nonnote_insn (i3);
2988 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
2989 && sets_cc0_p (newi2pat))
2991 undo_all ();
2992 return 0;
2995 #endif
2997 /* Only allow this combination if insn_rtx_costs reports that the
2998 replacement instructions are cheaper than the originals. */
2999 if (!combine_validate_cost (i1, i2, i3, newpat, newi2pat))
3001 undo_all ();
3002 return 0;
3005 /* We now know that we can do this combination. Merge the insns and
3006 update the status of registers and LOG_LINKS. */
3008 if (swap_i2i3)
3010 rtx insn;
3011 rtx link;
3012 rtx ni2dest;
3014 /* I3 now uses what used to be its destination and which is now
3015 I2's destination. This requires us to do a few adjustments. */
3016 PATTERN (i3) = newpat;
3017 adjust_for_new_dest (i3);
3019 /* We need a LOG_LINK from I3 to I2. But we used to have one,
3020 so we still will.
3022 However, some later insn might be using I2's dest and have
3023 a LOG_LINK pointing at I3. We must remove this link.
3024 The simplest way to remove the link is to point it at I1,
3025 which we know will be a NOTE. */
3027 /* newi2pat is usually a SET here; however, recog_for_combine might
3028 have added some clobbers. */
3029 if (GET_CODE (newi2pat) == PARALLEL)
3030 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
3031 else
3032 ni2dest = SET_DEST (newi2pat);
3034 for (insn = NEXT_INSN (i3);
3035 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3036 || insn != BB_HEAD (this_basic_block->next_bb));
3037 insn = NEXT_INSN (insn))
3039 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
3041 for (link = LOG_LINKS (insn); link;
3042 link = XEXP (link, 1))
3043 if (XEXP (link, 0) == i3)
3044 XEXP (link, 0) = i1;
3046 break;
3052 rtx i3notes, i2notes, i1notes = 0;
3053 rtx i3links, i2links, i1links = 0;
3054 rtx midnotes = 0;
3055 unsigned int regno;
3056 /* Compute which registers we expect to eliminate. newi2pat may be setting
3057 either i3dest or i2dest, so we must check it. Also, i1dest may be the
3058 same as i3dest, in which case newi2pat may be setting i1dest. */
3059 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
3060 || i2dest_in_i2src || i2dest_in_i1src
3061 || !i2dest_killed
3062 ? 0 : i2dest);
3063 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src
3064 || (newi2pat && reg_set_p (i1dest, newi2pat))
3065 || !i1dest_killed
3066 ? 0 : i1dest);
3068 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
3069 clear them. */
3070 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
3071 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
3072 if (i1)
3073 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
3075 /* Ensure that we do not have something that should not be shared but
3076 occurs multiple times in the new insns. Check this by first
3077 resetting all the `used' flags and then copying anything is shared. */
3079 reset_used_flags (i3notes);
3080 reset_used_flags (i2notes);
3081 reset_used_flags (i1notes);
3082 reset_used_flags (newpat);
3083 reset_used_flags (newi2pat);
3084 if (undobuf.other_insn)
3085 reset_used_flags (PATTERN (undobuf.other_insn));
3087 i3notes = copy_rtx_if_shared (i3notes);
3088 i2notes = copy_rtx_if_shared (i2notes);
3089 i1notes = copy_rtx_if_shared (i1notes);
3090 newpat = copy_rtx_if_shared (newpat);
3091 newi2pat = copy_rtx_if_shared (newi2pat);
3092 if (undobuf.other_insn)
3093 reset_used_flags (PATTERN (undobuf.other_insn));
3095 INSN_CODE (i3) = insn_code_number;
3096 PATTERN (i3) = newpat;
3098 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
3100 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
3102 reset_used_flags (call_usage);
3103 call_usage = copy_rtx (call_usage);
3105 if (substed_i2)
3106 replace_rtx (call_usage, i2dest, i2src);
3108 if (substed_i1)
3109 replace_rtx (call_usage, i1dest, i1src);
3111 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
3114 if (undobuf.other_insn)
3115 INSN_CODE (undobuf.other_insn) = other_code_number;
3117 /* We had one special case above where I2 had more than one set and
3118 we replaced a destination of one of those sets with the destination
3119 of I3. In that case, we have to update LOG_LINKS of insns later
3120 in this basic block. Note that this (expensive) case is rare.
3122 Also, in this case, we must pretend that all REG_NOTEs for I2
3123 actually came from I3, so that REG_UNUSED notes from I2 will be
3124 properly handled. */
3126 if (i3_subst_into_i2)
3128 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
3129 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
3130 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
3131 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
3132 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
3133 && ! find_reg_note (i2, REG_UNUSED,
3134 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
3135 for (temp = NEXT_INSN (i2);
3136 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3137 || BB_HEAD (this_basic_block) != temp);
3138 temp = NEXT_INSN (temp))
3139 if (temp != i3 && INSN_P (temp))
3140 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
3141 if (XEXP (link, 0) == i2)
3142 XEXP (link, 0) = i3;
3144 if (i3notes)
3146 rtx link = i3notes;
3147 while (XEXP (link, 1))
3148 link = XEXP (link, 1);
3149 XEXP (link, 1) = i2notes;
3151 else
3152 i3notes = i2notes;
3153 i2notes = 0;
3156 LOG_LINKS (i3) = 0;
3157 REG_NOTES (i3) = 0;
3158 LOG_LINKS (i2) = 0;
3159 REG_NOTES (i2) = 0;
3161 if (newi2pat)
3163 INSN_CODE (i2) = i2_code_number;
3164 PATTERN (i2) = newi2pat;
3166 else
3167 SET_INSN_DELETED (i2);
3169 if (i1)
3171 LOG_LINKS (i1) = 0;
3172 REG_NOTES (i1) = 0;
3173 SET_INSN_DELETED (i1);
3176 /* Get death notes for everything that is now used in either I3 or
3177 I2 and used to die in a previous insn. If we built two new
3178 patterns, move from I1 to I2 then I2 to I3 so that we get the
3179 proper movement on registers that I2 modifies. */
3181 if (newi2pat)
3183 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
3184 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
3186 else
3187 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
3188 i3, &midnotes);
3190 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
3191 if (i3notes)
3192 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
3193 elim_i2, elim_i1);
3194 if (i2notes)
3195 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
3196 elim_i2, elim_i1);
3197 if (i1notes)
3198 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
3199 elim_i2, elim_i1);
3200 if (midnotes)
3201 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3202 elim_i2, elim_i1);
3204 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
3205 know these are REG_UNUSED and want them to go to the desired insn,
3206 so we always pass it as i3. We have not counted the notes in
3207 reg_n_deaths yet, so we need to do so now. */
3209 if (newi2pat && new_i2_notes)
3211 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
3212 if (REG_P (XEXP (temp, 0)))
3213 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
3215 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3218 if (new_i3_notes)
3220 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
3221 if (REG_P (XEXP (temp, 0)))
3222 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
3224 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
3227 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
3228 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
3229 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
3230 in that case, it might delete I2. Similarly for I2 and I1.
3231 Show an additional death due to the REG_DEAD note we make here. If
3232 we discard it in distribute_notes, we will decrement it again. */
3234 if (i3dest_killed)
3236 if (REG_P (i3dest_killed))
3237 REG_N_DEATHS (REGNO (i3dest_killed))++;
3239 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
3240 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
3241 NULL_RTX),
3242 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1);
3243 else
3244 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
3245 NULL_RTX),
3246 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3247 elim_i2, elim_i1);
3250 if (i2dest_in_i2src)
3252 if (REG_P (i2dest))
3253 REG_N_DEATHS (REGNO (i2dest))++;
3255 if (newi2pat && reg_set_p (i2dest, newi2pat))
3256 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
3257 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3258 else
3259 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
3260 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3261 NULL_RTX, NULL_RTX);
3264 if (i1dest_in_i1src)
3266 if (REG_P (i1dest))
3267 REG_N_DEATHS (REGNO (i1dest))++;
3269 if (newi2pat && reg_set_p (i1dest, newi2pat))
3270 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
3271 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3272 else
3273 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
3274 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3275 NULL_RTX, NULL_RTX);
3278 distribute_links (i3links);
3279 distribute_links (i2links);
3280 distribute_links (i1links);
3282 if (REG_P (i2dest))
3284 rtx link;
3285 rtx i2_insn = 0, i2_val = 0, set;
3287 /* The insn that used to set this register doesn't exist, and
3288 this life of the register may not exist either. See if one of
3289 I3's links points to an insn that sets I2DEST. If it does,
3290 that is now the last known value for I2DEST. If we don't update
3291 this and I2 set the register to a value that depended on its old
3292 contents, we will get confused. If this insn is used, thing
3293 will be set correctly in combine_instructions. */
3295 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3296 if ((set = single_set (XEXP (link, 0))) != 0
3297 && rtx_equal_p (i2dest, SET_DEST (set)))
3298 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
3300 record_value_for_reg (i2dest, i2_insn, i2_val);
3302 /* If the reg formerly set in I2 died only once and that was in I3,
3303 zero its use count so it won't make `reload' do any work. */
3304 if (! added_sets_2
3305 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
3306 && ! i2dest_in_i2src)
3308 regno = REGNO (i2dest);
3309 REG_N_SETS (regno)--;
3313 if (i1 && REG_P (i1dest))
3315 rtx link;
3316 rtx i1_insn = 0, i1_val = 0, set;
3318 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3319 if ((set = single_set (XEXP (link, 0))) != 0
3320 && rtx_equal_p (i1dest, SET_DEST (set)))
3321 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
3323 record_value_for_reg (i1dest, i1_insn, i1_val);
3325 regno = REGNO (i1dest);
3326 if (! added_sets_1 && ! i1dest_in_i1src)
3327 REG_N_SETS (regno)--;
3330 /* Update reg_stat[].nonzero_bits et al for any changes that may have
3331 been made to this insn. The order of
3332 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
3333 can affect nonzero_bits of newpat */
3334 if (newi2pat)
3335 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
3336 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
3338 /* Set new_direct_jump_p if a new return or simple jump instruction
3339 has been created.
3341 If I3 is now an unconditional jump, ensure that it has a
3342 BARRIER following it since it may have initially been a
3343 conditional jump. It may also be the last nonnote insn. */
3345 if (returnjump_p (i3) || any_uncondjump_p (i3))
3347 *new_direct_jump_p = 1;
3348 mark_jump_label (PATTERN (i3), i3, 0);
3350 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
3351 || !BARRIER_P (temp))
3352 emit_barrier_after (i3);
3355 if (undobuf.other_insn != NULL_RTX
3356 && (returnjump_p (undobuf.other_insn)
3357 || any_uncondjump_p (undobuf.other_insn)))
3359 *new_direct_jump_p = 1;
3361 if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
3362 || !BARRIER_P (temp))
3363 emit_barrier_after (undobuf.other_insn);
3366 /* An NOOP jump does not need barrier, but it does need cleaning up
3367 of CFG. */
3368 if (GET_CODE (newpat) == SET
3369 && SET_SRC (newpat) == pc_rtx
3370 && SET_DEST (newpat) == pc_rtx)
3371 *new_direct_jump_p = 1;
3374 combine_successes++;
3375 undo_commit ();
3377 if (added_links_insn
3378 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
3379 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
3380 return added_links_insn;
3381 else
3382 return newi2pat ? i2 : i3;
3385 /* Undo all the modifications recorded in undobuf. */
3387 static void
3388 undo_all (void)
3390 struct undo *undo, *next;
3392 for (undo = undobuf.undos; undo; undo = next)
3394 next = undo->next;
3395 switch (undo->kind)
3397 case UNDO_RTX:
3398 *undo->where.r = undo->old_contents.r;
3399 break;
3400 case UNDO_INT:
3401 *undo->where.i = undo->old_contents.i;
3402 break;
3403 case UNDO_MODE:
3404 PUT_MODE (*undo->where.r, undo->old_contents.m);
3405 break;
3406 default:
3407 gcc_unreachable ();
3410 undo->next = undobuf.frees;
3411 undobuf.frees = undo;
3414 undobuf.undos = 0;
3417 /* We've committed to accepting the changes we made. Move all
3418 of the undos to the free list. */
3420 static void
3421 undo_commit (void)
3423 struct undo *undo, *next;
3425 for (undo = undobuf.undos; undo; undo = next)
3427 next = undo->next;
3428 undo->next = undobuf.frees;
3429 undobuf.frees = undo;
3431 undobuf.undos = 0;
3435 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
3436 where we have an arithmetic expression and return that point. LOC will
3437 be inside INSN.
3439 try_combine will call this function to see if an insn can be split into
3440 two insns. */
3442 static rtx *
3443 find_split_point (rtx *loc, rtx insn)
3445 rtx x = *loc;
3446 enum rtx_code code = GET_CODE (x);
3447 rtx *split;
3448 unsigned HOST_WIDE_INT len = 0;
3449 HOST_WIDE_INT pos = 0;
3450 int unsignedp = 0;
3451 rtx inner = NULL_RTX;
3453 /* First special-case some codes. */
3454 switch (code)
3456 case SUBREG:
3457 #ifdef INSN_SCHEDULING
3458 /* If we are making a paradoxical SUBREG invalid, it becomes a split
3459 point. */
3460 if (MEM_P (SUBREG_REG (x)))
3461 return loc;
3462 #endif
3463 return find_split_point (&SUBREG_REG (x), insn);
3465 case MEM:
3466 #ifdef HAVE_lo_sum
3467 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
3468 using LO_SUM and HIGH. */
3469 if (GET_CODE (XEXP (x, 0)) == CONST
3470 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3472 SUBST (XEXP (x, 0),
3473 gen_rtx_LO_SUM (Pmode,
3474 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
3475 XEXP (x, 0)));
3476 return &XEXP (XEXP (x, 0), 0);
3478 #endif
3480 /* If we have a PLUS whose second operand is a constant and the
3481 address is not valid, perhaps will can split it up using
3482 the machine-specific way to split large constants. We use
3483 the first pseudo-reg (one of the virtual regs) as a placeholder;
3484 it will not remain in the result. */
3485 if (GET_CODE (XEXP (x, 0)) == PLUS
3486 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3487 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
3489 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3490 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
3491 subst_insn);
3493 /* This should have produced two insns, each of which sets our
3494 placeholder. If the source of the second is a valid address,
3495 we can make put both sources together and make a split point
3496 in the middle. */
3498 if (seq
3499 && NEXT_INSN (seq) != NULL_RTX
3500 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
3501 && NONJUMP_INSN_P (seq)
3502 && GET_CODE (PATTERN (seq)) == SET
3503 && SET_DEST (PATTERN (seq)) == reg
3504 && ! reg_mentioned_p (reg,
3505 SET_SRC (PATTERN (seq)))
3506 && NONJUMP_INSN_P (NEXT_INSN (seq))
3507 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
3508 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
3509 && memory_address_p (GET_MODE (x),
3510 SET_SRC (PATTERN (NEXT_INSN (seq)))))
3512 rtx src1 = SET_SRC (PATTERN (seq));
3513 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
3515 /* Replace the placeholder in SRC2 with SRC1. If we can
3516 find where in SRC2 it was placed, that can become our
3517 split point and we can replace this address with SRC2.
3518 Just try two obvious places. */
3520 src2 = replace_rtx (src2, reg, src1);
3521 split = 0;
3522 if (XEXP (src2, 0) == src1)
3523 split = &XEXP (src2, 0);
3524 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
3525 && XEXP (XEXP (src2, 0), 0) == src1)
3526 split = &XEXP (XEXP (src2, 0), 0);
3528 if (split)
3530 SUBST (XEXP (x, 0), src2);
3531 return split;
3535 /* If that didn't work, perhaps the first operand is complex and
3536 needs to be computed separately, so make a split point there.
3537 This will occur on machines that just support REG + CONST
3538 and have a constant moved through some previous computation. */
3540 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
3541 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3542 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
3543 return &XEXP (XEXP (x, 0), 0);
3545 break;
3547 case SET:
3548 #ifdef HAVE_cc0
3549 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
3550 ZERO_EXTRACT, the most likely reason why this doesn't match is that
3551 we need to put the operand into a register. So split at that
3552 point. */
3554 if (SET_DEST (x) == cc0_rtx
3555 && GET_CODE (SET_SRC (x)) != COMPARE
3556 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
3557 && !OBJECT_P (SET_SRC (x))
3558 && ! (GET_CODE (SET_SRC (x)) == SUBREG
3559 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
3560 return &SET_SRC (x);
3561 #endif
3563 /* See if we can split SET_SRC as it stands. */
3564 split = find_split_point (&SET_SRC (x), insn);
3565 if (split && split != &SET_SRC (x))
3566 return split;
3568 /* See if we can split SET_DEST as it stands. */
3569 split = find_split_point (&SET_DEST (x), insn);
3570 if (split && split != &SET_DEST (x))
3571 return split;
3573 /* See if this is a bitfield assignment with everything constant. If
3574 so, this is an IOR of an AND, so split it into that. */
3575 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
3576 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
3577 <= HOST_BITS_PER_WIDE_INT)
3578 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
3579 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
3580 && GET_CODE (SET_SRC (x)) == CONST_INT
3581 && ((INTVAL (XEXP (SET_DEST (x), 1))
3582 + INTVAL (XEXP (SET_DEST (x), 2)))
3583 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
3584 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
3586 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
3587 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
3588 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
3589 rtx dest = XEXP (SET_DEST (x), 0);
3590 enum machine_mode mode = GET_MODE (dest);
3591 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
3592 rtx or_mask;
3594 if (BITS_BIG_ENDIAN)
3595 pos = GET_MODE_BITSIZE (mode) - len - pos;
3597 or_mask = gen_int_mode (src << pos, mode);
3598 if (src == mask)
3599 SUBST (SET_SRC (x),
3600 simplify_gen_binary (IOR, mode, dest, or_mask));
3601 else
3603 rtx negmask = gen_int_mode (~(mask << pos), mode);
3604 SUBST (SET_SRC (x),
3605 simplify_gen_binary (IOR, mode,
3606 simplify_gen_binary (AND, mode,
3607 dest, negmask),
3608 or_mask));
3611 SUBST (SET_DEST (x), dest);
3613 split = find_split_point (&SET_SRC (x), insn);
3614 if (split && split != &SET_SRC (x))
3615 return split;
3618 /* Otherwise, see if this is an operation that we can split into two.
3619 If so, try to split that. */
3620 code = GET_CODE (SET_SRC (x));
3622 switch (code)
3624 case AND:
3625 /* If we are AND'ing with a large constant that is only a single
3626 bit and the result is only being used in a context where we
3627 need to know if it is zero or nonzero, replace it with a bit
3628 extraction. This will avoid the large constant, which might
3629 have taken more than one insn to make. If the constant were
3630 not a valid argument to the AND but took only one insn to make,
3631 this is no worse, but if it took more than one insn, it will
3632 be better. */
3634 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3635 && REG_P (XEXP (SET_SRC (x), 0))
3636 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3637 && REG_P (SET_DEST (x))
3638 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
3639 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3640 && XEXP (*split, 0) == SET_DEST (x)
3641 && XEXP (*split, 1) == const0_rtx)
3643 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3644 XEXP (SET_SRC (x), 0),
3645 pos, NULL_RTX, 1, 1, 0, 0);
3646 if (extraction != 0)
3648 SUBST (SET_SRC (x), extraction);
3649 return find_split_point (loc, insn);
3652 break;
3654 case NE:
3655 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3656 is known to be on, this can be converted into a NEG of a shift. */
3657 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3658 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3659 && 1 <= (pos = exact_log2
3660 (nonzero_bits (XEXP (SET_SRC (x), 0),
3661 GET_MODE (XEXP (SET_SRC (x), 0))))))
3663 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3665 SUBST (SET_SRC (x),
3666 gen_rtx_NEG (mode,
3667 gen_rtx_LSHIFTRT (mode,
3668 XEXP (SET_SRC (x), 0),
3669 GEN_INT (pos))));
3671 split = find_split_point (&SET_SRC (x), insn);
3672 if (split && split != &SET_SRC (x))
3673 return split;
3675 break;
3677 case SIGN_EXTEND:
3678 inner = XEXP (SET_SRC (x), 0);
3680 /* We can't optimize if either mode is a partial integer
3681 mode as we don't know how many bits are significant
3682 in those modes. */
3683 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3684 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3685 break;
3687 pos = 0;
3688 len = GET_MODE_BITSIZE (GET_MODE (inner));
3689 unsignedp = 0;
3690 break;
3692 case SIGN_EXTRACT:
3693 case ZERO_EXTRACT:
3694 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3695 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3697 inner = XEXP (SET_SRC (x), 0);
3698 len = INTVAL (XEXP (SET_SRC (x), 1));
3699 pos = INTVAL (XEXP (SET_SRC (x), 2));
3701 if (BITS_BIG_ENDIAN)
3702 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3703 unsignedp = (code == ZERO_EXTRACT);
3705 break;
3707 default:
3708 break;
3711 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3713 enum machine_mode mode = GET_MODE (SET_SRC (x));
3715 /* For unsigned, we have a choice of a shift followed by an
3716 AND or two shifts. Use two shifts for field sizes where the
3717 constant might be too large. We assume here that we can
3718 always at least get 8-bit constants in an AND insn, which is
3719 true for every current RISC. */
3721 if (unsignedp && len <= 8)
3723 SUBST (SET_SRC (x),
3724 gen_rtx_AND (mode,
3725 gen_rtx_LSHIFTRT
3726 (mode, gen_lowpart (mode, inner),
3727 GEN_INT (pos)),
3728 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3730 split = find_split_point (&SET_SRC (x), insn);
3731 if (split && split != &SET_SRC (x))
3732 return split;
3734 else
3736 SUBST (SET_SRC (x),
3737 gen_rtx_fmt_ee
3738 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3739 gen_rtx_ASHIFT (mode,
3740 gen_lowpart (mode, inner),
3741 GEN_INT (GET_MODE_BITSIZE (mode)
3742 - len - pos)),
3743 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3745 split = find_split_point (&SET_SRC (x), insn);
3746 if (split && split != &SET_SRC (x))
3747 return split;
3751 /* See if this is a simple operation with a constant as the second
3752 operand. It might be that this constant is out of range and hence
3753 could be used as a split point. */
3754 if (BINARY_P (SET_SRC (x))
3755 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3756 && (OBJECT_P (XEXP (SET_SRC (x), 0))
3757 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3758 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
3759 return &XEXP (SET_SRC (x), 1);
3761 /* Finally, see if this is a simple operation with its first operand
3762 not in a register. The operation might require this operand in a
3763 register, so return it as a split point. We can always do this
3764 because if the first operand were another operation, we would have
3765 already found it as a split point. */
3766 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
3767 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3768 return &XEXP (SET_SRC (x), 0);
3770 return 0;
3772 case AND:
3773 case IOR:
3774 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3775 it is better to write this as (not (ior A B)) so we can split it.
3776 Similarly for IOR. */
3777 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3779 SUBST (*loc,
3780 gen_rtx_NOT (GET_MODE (x),
3781 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3782 GET_MODE (x),
3783 XEXP (XEXP (x, 0), 0),
3784 XEXP (XEXP (x, 1), 0))));
3785 return find_split_point (loc, insn);
3788 /* Many RISC machines have a large set of logical insns. If the
3789 second operand is a NOT, put it first so we will try to split the
3790 other operand first. */
3791 if (GET_CODE (XEXP (x, 1)) == NOT)
3793 rtx tem = XEXP (x, 0);
3794 SUBST (XEXP (x, 0), XEXP (x, 1));
3795 SUBST (XEXP (x, 1), tem);
3797 break;
3799 default:
3800 break;
3803 /* Otherwise, select our actions depending on our rtx class. */
3804 switch (GET_RTX_CLASS (code))
3806 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3807 case RTX_TERNARY:
3808 split = find_split_point (&XEXP (x, 2), insn);
3809 if (split)
3810 return split;
3811 /* ... fall through ... */
3812 case RTX_BIN_ARITH:
3813 case RTX_COMM_ARITH:
3814 case RTX_COMPARE:
3815 case RTX_COMM_COMPARE:
3816 split = find_split_point (&XEXP (x, 1), insn);
3817 if (split)
3818 return split;
3819 /* ... fall through ... */
3820 case RTX_UNARY:
3821 /* Some machines have (and (shift ...) ...) insns. If X is not
3822 an AND, but XEXP (X, 0) is, use it as our split point. */
3823 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3824 return &XEXP (x, 0);
3826 split = find_split_point (&XEXP (x, 0), insn);
3827 if (split)
3828 return split;
3829 return loc;
3831 default:
3832 /* Otherwise, we don't have a split point. */
3833 return 0;
3837 /* Throughout X, replace FROM with TO, and return the result.
3838 The result is TO if X is FROM;
3839 otherwise the result is X, but its contents may have been modified.
3840 If they were modified, a record was made in undobuf so that
3841 undo_all will (among other things) return X to its original state.
3843 If the number of changes necessary is too much to record to undo,
3844 the excess changes are not made, so the result is invalid.
3845 The changes already made can still be undone.
3846 undobuf.num_undo is incremented for such changes, so by testing that
3847 the caller can tell whether the result is valid.
3849 `n_occurrences' is incremented each time FROM is replaced.
3851 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
3853 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
3854 by copying if `n_occurrences' is nonzero. */
3856 static rtx
3857 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
3859 enum rtx_code code = GET_CODE (x);
3860 enum machine_mode op0_mode = VOIDmode;
3861 const char *fmt;
3862 int len, i;
3863 rtx new;
3865 /* Two expressions are equal if they are identical copies of a shared
3866 RTX or if they are both registers with the same register number
3867 and mode. */
3869 #define COMBINE_RTX_EQUAL_P(X,Y) \
3870 ((X) == (Y) \
3871 || (REG_P (X) && REG_P (Y) \
3872 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3874 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3876 n_occurrences++;
3877 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3880 /* If X and FROM are the same register but different modes, they will
3881 not have been seen as equal above. However, flow.c will make a
3882 LOG_LINKS entry for that case. If we do nothing, we will try to
3883 rerecognize our original insn and, when it succeeds, we will
3884 delete the feeding insn, which is incorrect.
3886 So force this insn not to match in this (rare) case. */
3887 if (! in_dest && code == REG && REG_P (from)
3888 && REGNO (x) == REGNO (from))
3889 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3891 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3892 of which may contain things that can be combined. */
3893 if (code != MEM && code != LO_SUM && OBJECT_P (x))
3894 return x;
3896 /* It is possible to have a subexpression appear twice in the insn.
3897 Suppose that FROM is a register that appears within TO.
3898 Then, after that subexpression has been scanned once by `subst',
3899 the second time it is scanned, TO may be found. If we were
3900 to scan TO here, we would find FROM within it and create a
3901 self-referent rtl structure which is completely wrong. */
3902 if (COMBINE_RTX_EQUAL_P (x, to))
3903 return to;
3905 /* Parallel asm_operands need special attention because all of the
3906 inputs are shared across the arms. Furthermore, unsharing the
3907 rtl results in recognition failures. Failure to handle this case
3908 specially can result in circular rtl.
3910 Solve this by doing a normal pass across the first entry of the
3911 parallel, and only processing the SET_DESTs of the subsequent
3912 entries. Ug. */
3914 if (code == PARALLEL
3915 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3916 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3918 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3920 /* If this substitution failed, this whole thing fails. */
3921 if (GET_CODE (new) == CLOBBER
3922 && XEXP (new, 0) == const0_rtx)
3923 return new;
3925 SUBST (XVECEXP (x, 0, 0), new);
3927 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3929 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3931 if (!REG_P (dest)
3932 && GET_CODE (dest) != CC0
3933 && GET_CODE (dest) != PC)
3935 new = subst (dest, from, to, 0, unique_copy);
3937 /* If this substitution failed, this whole thing fails. */
3938 if (GET_CODE (new) == CLOBBER
3939 && XEXP (new, 0) == const0_rtx)
3940 return new;
3942 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3946 else
3948 len = GET_RTX_LENGTH (code);
3949 fmt = GET_RTX_FORMAT (code);
3951 /* We don't need to process a SET_DEST that is a register, CC0,
3952 or PC, so set up to skip this common case. All other cases
3953 where we want to suppress replacing something inside a
3954 SET_SRC are handled via the IN_DEST operand. */
3955 if (code == SET
3956 && (REG_P (SET_DEST (x))
3957 || GET_CODE (SET_DEST (x)) == CC0
3958 || GET_CODE (SET_DEST (x)) == PC))
3959 fmt = "ie";
3961 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3962 constant. */
3963 if (fmt[0] == 'e')
3964 op0_mode = GET_MODE (XEXP (x, 0));
3966 for (i = 0; i < len; i++)
3968 if (fmt[i] == 'E')
3970 int j;
3971 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3973 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3975 new = (unique_copy && n_occurrences
3976 ? copy_rtx (to) : to);
3977 n_occurrences++;
3979 else
3981 new = subst (XVECEXP (x, i, j), from, to, 0,
3982 unique_copy);
3984 /* If this substitution failed, this whole thing
3985 fails. */
3986 if (GET_CODE (new) == CLOBBER
3987 && XEXP (new, 0) == const0_rtx)
3988 return new;
3991 SUBST (XVECEXP (x, i, j), new);
3994 else if (fmt[i] == 'e')
3996 /* If this is a register being set, ignore it. */
3997 new = XEXP (x, i);
3998 if (in_dest
3999 && i == 0
4000 && (((code == SUBREG || code == ZERO_EXTRACT)
4001 && REG_P (new))
4002 || code == STRICT_LOW_PART))
4005 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
4007 /* In general, don't install a subreg involving two
4008 modes not tieable. It can worsen register
4009 allocation, and can even make invalid reload
4010 insns, since the reg inside may need to be copied
4011 from in the outside mode, and that may be invalid
4012 if it is an fp reg copied in integer mode.
4014 We allow two exceptions to this: It is valid if
4015 it is inside another SUBREG and the mode of that
4016 SUBREG and the mode of the inside of TO is
4017 tieable and it is valid if X is a SET that copies
4018 FROM to CC0. */
4020 if (GET_CODE (to) == SUBREG
4021 && ! MODES_TIEABLE_P (GET_MODE (to),
4022 GET_MODE (SUBREG_REG (to)))
4023 && ! (code == SUBREG
4024 && MODES_TIEABLE_P (GET_MODE (x),
4025 GET_MODE (SUBREG_REG (to))))
4026 #ifdef HAVE_cc0
4027 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
4028 #endif
4030 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
4032 #ifdef CANNOT_CHANGE_MODE_CLASS
4033 if (code == SUBREG
4034 && REG_P (to)
4035 && REGNO (to) < FIRST_PSEUDO_REGISTER
4036 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
4037 GET_MODE (to),
4038 GET_MODE (x)))
4039 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
4040 #endif
4042 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
4043 n_occurrences++;
4045 else
4046 /* If we are in a SET_DEST, suppress most cases unless we
4047 have gone inside a MEM, in which case we want to
4048 simplify the address. We assume here that things that
4049 are actually part of the destination have their inner
4050 parts in the first expression. This is true for SUBREG,
4051 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
4052 things aside from REG and MEM that should appear in a
4053 SET_DEST. */
4054 new = subst (XEXP (x, i), from, to,
4055 (((in_dest
4056 && (code == SUBREG || code == STRICT_LOW_PART
4057 || code == ZERO_EXTRACT))
4058 || code == SET)
4059 && i == 0), unique_copy);
4061 /* If we found that we will have to reject this combination,
4062 indicate that by returning the CLOBBER ourselves, rather than
4063 an expression containing it. This will speed things up as
4064 well as prevent accidents where two CLOBBERs are considered
4065 to be equal, thus producing an incorrect simplification. */
4067 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
4068 return new;
4070 if (GET_CODE (x) == SUBREG
4071 && (GET_CODE (new) == CONST_INT
4072 || GET_CODE (new) == CONST_DOUBLE))
4074 enum machine_mode mode = GET_MODE (x);
4076 x = simplify_subreg (GET_MODE (x), new,
4077 GET_MODE (SUBREG_REG (x)),
4078 SUBREG_BYTE (x));
4079 if (! x)
4080 x = gen_rtx_CLOBBER (mode, const0_rtx);
4082 else if (GET_CODE (new) == CONST_INT
4083 && GET_CODE (x) == ZERO_EXTEND)
4085 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
4086 new, GET_MODE (XEXP (x, 0)));
4087 gcc_assert (x);
4089 else
4090 SUBST (XEXP (x, i), new);
4095 /* Try to simplify X. If the simplification changed the code, it is likely
4096 that further simplification will help, so loop, but limit the number
4097 of repetitions that will be performed. */
4099 for (i = 0; i < 4; i++)
4101 /* If X is sufficiently simple, don't bother trying to do anything
4102 with it. */
4103 if (code != CONST_INT && code != REG && code != CLOBBER)
4104 x = combine_simplify_rtx (x, op0_mode, in_dest);
4106 if (GET_CODE (x) == code)
4107 break;
4109 code = GET_CODE (x);
4111 /* We no longer know the original mode of operand 0 since we
4112 have changed the form of X) */
4113 op0_mode = VOIDmode;
4116 return x;
4119 /* Simplify X, a piece of RTL. We just operate on the expression at the
4120 outer level; call `subst' to simplify recursively. Return the new
4121 expression.
4123 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
4124 if we are inside a SET_DEST. */
4126 static rtx
4127 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest)
4129 enum rtx_code code = GET_CODE (x);
4130 enum machine_mode mode = GET_MODE (x);
4131 rtx temp;
4132 int i;
4134 /* If this is a commutative operation, put a constant last and a complex
4135 expression first. We don't need to do this for comparisons here. */
4136 if (COMMUTATIVE_ARITH_P (x)
4137 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
4139 temp = XEXP (x, 0);
4140 SUBST (XEXP (x, 0), XEXP (x, 1));
4141 SUBST (XEXP (x, 1), temp);
4144 /* If this is a simple operation applied to an IF_THEN_ELSE, try
4145 applying it to the arms of the IF_THEN_ELSE. This often simplifies
4146 things. Check for cases where both arms are testing the same
4147 condition.
4149 Don't do anything if all operands are very simple. */
4151 if ((BINARY_P (x)
4152 && ((!OBJECT_P (XEXP (x, 0))
4153 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4154 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
4155 || (!OBJECT_P (XEXP (x, 1))
4156 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
4157 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
4158 || (UNARY_P (x)
4159 && (!OBJECT_P (XEXP (x, 0))
4160 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4161 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
4163 rtx cond, true_rtx, false_rtx;
4165 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
4166 if (cond != 0
4167 /* If everything is a comparison, what we have is highly unlikely
4168 to be simpler, so don't use it. */
4169 && ! (COMPARISON_P (x)
4170 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
4172 rtx cop1 = const0_rtx;
4173 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
4175 if (cond_code == NE && COMPARISON_P (cond))
4176 return x;
4178 /* Simplify the alternative arms; this may collapse the true and
4179 false arms to store-flag values. Be careful to use copy_rtx
4180 here since true_rtx or false_rtx might share RTL with x as a
4181 result of the if_then_else_cond call above. */
4182 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
4183 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
4185 /* If true_rtx and false_rtx are not general_operands, an if_then_else
4186 is unlikely to be simpler. */
4187 if (general_operand (true_rtx, VOIDmode)
4188 && general_operand (false_rtx, VOIDmode))
4190 enum rtx_code reversed;
4192 /* Restarting if we generate a store-flag expression will cause
4193 us to loop. Just drop through in this case. */
4195 /* If the result values are STORE_FLAG_VALUE and zero, we can
4196 just make the comparison operation. */
4197 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
4198 x = simplify_gen_relational (cond_code, mode, VOIDmode,
4199 cond, cop1);
4200 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
4201 && ((reversed = reversed_comparison_code_parts
4202 (cond_code, cond, cop1, NULL))
4203 != UNKNOWN))
4204 x = simplify_gen_relational (reversed, mode, VOIDmode,
4205 cond, cop1);
4207 /* Likewise, we can make the negate of a comparison operation
4208 if the result values are - STORE_FLAG_VALUE and zero. */
4209 else if (GET_CODE (true_rtx) == CONST_INT
4210 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
4211 && false_rtx == const0_rtx)
4212 x = simplify_gen_unary (NEG, mode,
4213 simplify_gen_relational (cond_code,
4214 mode, VOIDmode,
4215 cond, cop1),
4216 mode);
4217 else if (GET_CODE (false_rtx) == CONST_INT
4218 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
4219 && true_rtx == const0_rtx
4220 && ((reversed = reversed_comparison_code_parts
4221 (cond_code, cond, cop1, NULL))
4222 != UNKNOWN))
4223 x = simplify_gen_unary (NEG, mode,
4224 simplify_gen_relational (reversed,
4225 mode, VOIDmode,
4226 cond, cop1),
4227 mode);
4228 else
4229 return gen_rtx_IF_THEN_ELSE (mode,
4230 simplify_gen_relational (cond_code,
4231 mode,
4232 VOIDmode,
4233 cond,
4234 cop1),
4235 true_rtx, false_rtx);
4237 code = GET_CODE (x);
4238 op0_mode = VOIDmode;
4243 /* Try to fold this expression in case we have constants that weren't
4244 present before. */
4245 temp = 0;
4246 switch (GET_RTX_CLASS (code))
4248 case RTX_UNARY:
4249 if (op0_mode == VOIDmode)
4250 op0_mode = GET_MODE (XEXP (x, 0));
4251 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
4252 break;
4253 case RTX_COMPARE:
4254 case RTX_COMM_COMPARE:
4256 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
4257 if (cmp_mode == VOIDmode)
4259 cmp_mode = GET_MODE (XEXP (x, 1));
4260 if (cmp_mode == VOIDmode)
4261 cmp_mode = op0_mode;
4263 temp = simplify_relational_operation (code, mode, cmp_mode,
4264 XEXP (x, 0), XEXP (x, 1));
4266 break;
4267 case RTX_COMM_ARITH:
4268 case RTX_BIN_ARITH:
4269 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
4270 break;
4271 case RTX_BITFIELD_OPS:
4272 case RTX_TERNARY:
4273 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
4274 XEXP (x, 1), XEXP (x, 2));
4275 break;
4276 default:
4277 break;
4280 if (temp)
4282 x = temp;
4283 code = GET_CODE (temp);
4284 op0_mode = VOIDmode;
4285 mode = GET_MODE (temp);
4288 /* First see if we can apply the inverse distributive law. */
4289 if (code == PLUS || code == MINUS
4290 || code == AND || code == IOR || code == XOR)
4292 x = apply_distributive_law (x);
4293 code = GET_CODE (x);
4294 op0_mode = VOIDmode;
4297 /* If CODE is an associative operation not otherwise handled, see if we
4298 can associate some operands. This can win if they are constants or
4299 if they are logically related (i.e. (a & b) & a). */
4300 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
4301 || code == AND || code == IOR || code == XOR
4302 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
4303 && ((INTEGRAL_MODE_P (mode) && code != DIV)
4304 || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
4306 if (GET_CODE (XEXP (x, 0)) == code)
4308 rtx other = XEXP (XEXP (x, 0), 0);
4309 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
4310 rtx inner_op1 = XEXP (x, 1);
4311 rtx inner;
4313 /* Make sure we pass the constant operand if any as the second
4314 one if this is a commutative operation. */
4315 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
4317 rtx tem = inner_op0;
4318 inner_op0 = inner_op1;
4319 inner_op1 = tem;
4321 inner = simplify_binary_operation (code == MINUS ? PLUS
4322 : code == DIV ? MULT
4323 : code,
4324 mode, inner_op0, inner_op1);
4326 /* For commutative operations, try the other pair if that one
4327 didn't simplify. */
4328 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
4330 other = XEXP (XEXP (x, 0), 1);
4331 inner = simplify_binary_operation (code, mode,
4332 XEXP (XEXP (x, 0), 0),
4333 XEXP (x, 1));
4336 if (inner)
4337 return simplify_gen_binary (code, mode, other, inner);
4341 /* A little bit of algebraic simplification here. */
4342 switch (code)
4344 case MEM:
4345 /* Ensure that our address has any ASHIFTs converted to MULT in case
4346 address-recognizing predicates are called later. */
4347 temp = make_compound_operation (XEXP (x, 0), MEM);
4348 SUBST (XEXP (x, 0), temp);
4349 break;
4351 case SUBREG:
4352 if (op0_mode == VOIDmode)
4353 op0_mode = GET_MODE (SUBREG_REG (x));
4355 /* See if this can be moved to simplify_subreg. */
4356 if (CONSTANT_P (SUBREG_REG (x))
4357 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
4358 /* Don't call gen_lowpart if the inner mode
4359 is VOIDmode and we cannot simplify it, as SUBREG without
4360 inner mode is invalid. */
4361 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
4362 || gen_lowpart_common (mode, SUBREG_REG (x))))
4363 return gen_lowpart (mode, SUBREG_REG (x));
4365 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
4366 break;
4368 rtx temp;
4369 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
4370 SUBREG_BYTE (x));
4371 if (temp)
4372 return temp;
4375 /* Don't change the mode of the MEM if that would change the meaning
4376 of the address. */
4377 if (MEM_P (SUBREG_REG (x))
4378 && (MEM_VOLATILE_P (SUBREG_REG (x))
4379 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
4380 return gen_rtx_CLOBBER (mode, const0_rtx);
4382 /* Note that we cannot do any narrowing for non-constants since
4383 we might have been counting on using the fact that some bits were
4384 zero. We now do this in the SET. */
4386 break;
4388 case NEG:
4389 temp = expand_compound_operation (XEXP (x, 0));
4391 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4392 replaced by (lshiftrt X C). This will convert
4393 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4395 if (GET_CODE (temp) == ASHIFTRT
4396 && GET_CODE (XEXP (temp, 1)) == CONST_INT
4397 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4398 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
4399 INTVAL (XEXP (temp, 1)));
4401 /* If X has only a single bit that might be nonzero, say, bit I, convert
4402 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4403 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4404 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4405 or a SUBREG of one since we'd be making the expression more
4406 complex if it was just a register. */
4408 if (!REG_P (temp)
4409 && ! (GET_CODE (temp) == SUBREG
4410 && REG_P (SUBREG_REG (temp)))
4411 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4413 rtx temp1 = simplify_shift_const
4414 (NULL_RTX, ASHIFTRT, mode,
4415 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4416 GET_MODE_BITSIZE (mode) - 1 - i),
4417 GET_MODE_BITSIZE (mode) - 1 - i);
4419 /* If all we did was surround TEMP with the two shifts, we
4420 haven't improved anything, so don't use it. Otherwise,
4421 we are better off with TEMP1. */
4422 if (GET_CODE (temp1) != ASHIFTRT
4423 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4424 || XEXP (XEXP (temp1, 0), 0) != temp)
4425 return temp1;
4427 break;
4429 case TRUNCATE:
4430 /* We can't handle truncation to a partial integer mode here
4431 because we don't know the real bitsize of the partial
4432 integer mode. */
4433 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4434 break;
4436 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4437 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4438 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
4439 SUBST (XEXP (x, 0),
4440 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4441 GET_MODE_MASK (mode), 0));
4443 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
4444 whose value is a comparison can be replaced with a subreg if
4445 STORE_FLAG_VALUE permits. */
4446 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4447 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4448 && (temp = get_last_value (XEXP (x, 0)))
4449 && COMPARISON_P (temp))
4450 return gen_lowpart (mode, XEXP (x, 0));
4451 break;
4453 #ifdef HAVE_cc0
4454 case COMPARE:
4455 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4456 using cc0, in which case we want to leave it as a COMPARE
4457 so we can distinguish it from a register-register-copy. */
4458 if (XEXP (x, 1) == const0_rtx)
4459 return XEXP (x, 0);
4461 /* x - 0 is the same as x unless x's mode has signed zeros and
4462 allows rounding towards -infinity. Under those conditions,
4463 0 - 0 is -0. */
4464 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4465 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4466 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4467 return XEXP (x, 0);
4468 break;
4469 #endif
4471 case CONST:
4472 /* (const (const X)) can become (const X). Do it this way rather than
4473 returning the inner CONST since CONST can be shared with a
4474 REG_EQUAL note. */
4475 if (GET_CODE (XEXP (x, 0)) == CONST)
4476 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4477 break;
4479 #ifdef HAVE_lo_sum
4480 case LO_SUM:
4481 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4482 can add in an offset. find_split_point will split this address up
4483 again if it doesn't match. */
4484 if (GET_CODE (XEXP (x, 0)) == HIGH
4485 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4486 return XEXP (x, 1);
4487 break;
4488 #endif
4490 case PLUS:
4491 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4492 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4493 bit-field and can be replaced by either a sign_extend or a
4494 sign_extract. The `and' may be a zero_extend and the two
4495 <c>, -<c> constants may be reversed. */
4496 if (GET_CODE (XEXP (x, 0)) == XOR
4497 && GET_CODE (XEXP (x, 1)) == CONST_INT
4498 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4499 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4500 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4501 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4502 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4503 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4504 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4505 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4506 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4507 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4508 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4509 == (unsigned int) i + 1))))
4510 return simplify_shift_const
4511 (NULL_RTX, ASHIFTRT, mode,
4512 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4513 XEXP (XEXP (XEXP (x, 0), 0), 0),
4514 GET_MODE_BITSIZE (mode) - (i + 1)),
4515 GET_MODE_BITSIZE (mode) - (i + 1));
4517 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4518 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4519 the bitsize of the mode - 1. This allows simplification of
4520 "a = (b & 8) == 0;" */
4521 if (XEXP (x, 1) == constm1_rtx
4522 && !REG_P (XEXP (x, 0))
4523 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4524 && REG_P (SUBREG_REG (XEXP (x, 0))))
4525 && nonzero_bits (XEXP (x, 0), mode) == 1)
4526 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4527 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4528 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4529 GET_MODE_BITSIZE (mode) - 1),
4530 GET_MODE_BITSIZE (mode) - 1);
4532 /* If we are adding two things that have no bits in common, convert
4533 the addition into an IOR. This will often be further simplified,
4534 for example in cases like ((a & 1) + (a & 2)), which can
4535 become a & 3. */
4537 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4538 && (nonzero_bits (XEXP (x, 0), mode)
4539 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4541 /* Try to simplify the expression further. */
4542 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4543 temp = combine_simplify_rtx (tor, mode, in_dest);
4545 /* If we could, great. If not, do not go ahead with the IOR
4546 replacement, since PLUS appears in many special purpose
4547 address arithmetic instructions. */
4548 if (GET_CODE (temp) != CLOBBER && temp != tor)
4549 return temp;
4551 break;
4553 case MINUS:
4554 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4555 (and <foo> (const_int pow2-1)) */
4556 if (GET_CODE (XEXP (x, 1)) == AND
4557 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4558 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4559 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4560 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4561 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4562 break;
4564 case MULT:
4565 /* If we have (mult (plus A B) C), apply the distributive law and then
4566 the inverse distributive law to see if things simplify. This
4567 occurs mostly in addresses, often when unrolling loops. */
4569 if (GET_CODE (XEXP (x, 0)) == PLUS)
4571 rtx result = distribute_and_simplify_rtx (x, 0);
4572 if (result)
4573 return result;
4576 /* Try simplify a*(b/c) as (a*b)/c. */
4577 if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4578 && GET_CODE (XEXP (x, 0)) == DIV)
4580 rtx tem = simplify_binary_operation (MULT, mode,
4581 XEXP (XEXP (x, 0), 0),
4582 XEXP (x, 1));
4583 if (tem)
4584 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4586 break;
4588 case UDIV:
4589 /* If this is a divide by a power of two, treat it as a shift if
4590 its first operand is a shift. */
4591 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4592 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4593 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4594 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4595 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4596 || GET_CODE (XEXP (x, 0)) == ROTATE
4597 || GET_CODE (XEXP (x, 0)) == ROTATERT))
4598 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4599 break;
4601 case EQ: case NE:
4602 case GT: case GTU: case GE: case GEU:
4603 case LT: case LTU: case LE: case LEU:
4604 case UNEQ: case LTGT:
4605 case UNGT: case UNGE:
4606 case UNLT: case UNLE:
4607 case UNORDERED: case ORDERED:
4608 /* If the first operand is a condition code, we can't do anything
4609 with it. */
4610 if (GET_CODE (XEXP (x, 0)) == COMPARE
4611 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4612 && ! CC0_P (XEXP (x, 0))))
4614 rtx op0 = XEXP (x, 0);
4615 rtx op1 = XEXP (x, 1);
4616 enum rtx_code new_code;
4618 if (GET_CODE (op0) == COMPARE)
4619 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4621 /* Simplify our comparison, if possible. */
4622 new_code = simplify_comparison (code, &op0, &op1);
4624 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4625 if only the low-order bit is possibly nonzero in X (such as when
4626 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4627 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4628 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4629 (plus X 1).
4631 Remove any ZERO_EXTRACT we made when thinking this was a
4632 comparison. It may now be simpler to use, e.g., an AND. If a
4633 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4634 the call to make_compound_operation in the SET case. */
4636 if (STORE_FLAG_VALUE == 1
4637 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4638 && op1 == const0_rtx
4639 && mode == GET_MODE (op0)
4640 && nonzero_bits (op0, mode) == 1)
4641 return gen_lowpart (mode,
4642 expand_compound_operation (op0));
4644 else if (STORE_FLAG_VALUE == 1
4645 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4646 && op1 == const0_rtx
4647 && mode == GET_MODE (op0)
4648 && (num_sign_bit_copies (op0, mode)
4649 == GET_MODE_BITSIZE (mode)))
4651 op0 = expand_compound_operation (op0);
4652 return simplify_gen_unary (NEG, mode,
4653 gen_lowpart (mode, op0),
4654 mode);
4657 else if (STORE_FLAG_VALUE == 1
4658 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4659 && op1 == const0_rtx
4660 && mode == GET_MODE (op0)
4661 && nonzero_bits (op0, mode) == 1)
4663 op0 = expand_compound_operation (op0);
4664 return simplify_gen_binary (XOR, mode,
4665 gen_lowpart (mode, op0),
4666 const1_rtx);
4669 else if (STORE_FLAG_VALUE == 1
4670 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4671 && op1 == const0_rtx
4672 && mode == GET_MODE (op0)
4673 && (num_sign_bit_copies (op0, mode)
4674 == GET_MODE_BITSIZE (mode)))
4676 op0 = expand_compound_operation (op0);
4677 return plus_constant (gen_lowpart (mode, op0), 1);
4680 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4681 those above. */
4682 if (STORE_FLAG_VALUE == -1
4683 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4684 && op1 == const0_rtx
4685 && (num_sign_bit_copies (op0, mode)
4686 == GET_MODE_BITSIZE (mode)))
4687 return gen_lowpart (mode,
4688 expand_compound_operation (op0));
4690 else if (STORE_FLAG_VALUE == -1
4691 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4692 && op1 == const0_rtx
4693 && mode == GET_MODE (op0)
4694 && nonzero_bits (op0, mode) == 1)
4696 op0 = expand_compound_operation (op0);
4697 return simplify_gen_unary (NEG, mode,
4698 gen_lowpart (mode, op0),
4699 mode);
4702 else if (STORE_FLAG_VALUE == -1
4703 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4704 && op1 == const0_rtx
4705 && mode == GET_MODE (op0)
4706 && (num_sign_bit_copies (op0, mode)
4707 == GET_MODE_BITSIZE (mode)))
4709 op0 = expand_compound_operation (op0);
4710 return simplify_gen_unary (NOT, mode,
4711 gen_lowpart (mode, op0),
4712 mode);
4715 /* If X is 0/1, (eq X 0) is X-1. */
4716 else if (STORE_FLAG_VALUE == -1
4717 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4718 && op1 == const0_rtx
4719 && mode == GET_MODE (op0)
4720 && nonzero_bits (op0, mode) == 1)
4722 op0 = expand_compound_operation (op0);
4723 return plus_constant (gen_lowpart (mode, op0), -1);
4726 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4727 one bit that might be nonzero, we can convert (ne x 0) to
4728 (ashift x c) where C puts the bit in the sign bit. Remove any
4729 AND with STORE_FLAG_VALUE when we are done, since we are only
4730 going to test the sign bit. */
4731 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4732 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4733 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4734 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
4735 && op1 == const0_rtx
4736 && mode == GET_MODE (op0)
4737 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4739 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4740 expand_compound_operation (op0),
4741 GET_MODE_BITSIZE (mode) - 1 - i);
4742 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4743 return XEXP (x, 0);
4744 else
4745 return x;
4748 /* If the code changed, return a whole new comparison. */
4749 if (new_code != code)
4750 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
4752 /* Otherwise, keep this operation, but maybe change its operands.
4753 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4754 SUBST (XEXP (x, 0), op0);
4755 SUBST (XEXP (x, 1), op1);
4757 break;
4759 case IF_THEN_ELSE:
4760 return simplify_if_then_else (x);
4762 case ZERO_EXTRACT:
4763 case SIGN_EXTRACT:
4764 case ZERO_EXTEND:
4765 case SIGN_EXTEND:
4766 /* If we are processing SET_DEST, we are done. */
4767 if (in_dest)
4768 return x;
4770 return expand_compound_operation (x);
4772 case SET:
4773 return simplify_set (x);
4775 case AND:
4776 case IOR:
4777 return simplify_logical (x);
4779 case ASHIFT:
4780 case LSHIFTRT:
4781 case ASHIFTRT:
4782 case ROTATE:
4783 case ROTATERT:
4784 /* If this is a shift by a constant amount, simplify it. */
4785 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4786 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4787 INTVAL (XEXP (x, 1)));
4789 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
4790 SUBST (XEXP (x, 1),
4791 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
4792 ((HOST_WIDE_INT) 1
4793 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4794 - 1,
4795 0));
4796 break;
4798 default:
4799 break;
4802 return x;
4805 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4807 static rtx
4808 simplify_if_then_else (rtx x)
4810 enum machine_mode mode = GET_MODE (x);
4811 rtx cond = XEXP (x, 0);
4812 rtx true_rtx = XEXP (x, 1);
4813 rtx false_rtx = XEXP (x, 2);
4814 enum rtx_code true_code = GET_CODE (cond);
4815 int comparison_p = COMPARISON_P (cond);
4816 rtx temp;
4817 int i;
4818 enum rtx_code false_code;
4819 rtx reversed;
4821 /* Simplify storing of the truth value. */
4822 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
4823 return simplify_gen_relational (true_code, mode, VOIDmode,
4824 XEXP (cond, 0), XEXP (cond, 1));
4826 /* Also when the truth value has to be reversed. */
4827 if (comparison_p
4828 && true_rtx == const0_rtx && false_rtx == const_true_rtx
4829 && (reversed = reversed_comparison (cond, mode)))
4830 return reversed;
4832 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4833 in it is being compared against certain values. Get the true and false
4834 comparisons and see if that says anything about the value of each arm. */
4836 if (comparison_p
4837 && ((false_code = reversed_comparison_code (cond, NULL))
4838 != UNKNOWN)
4839 && REG_P (XEXP (cond, 0)))
4841 HOST_WIDE_INT nzb;
4842 rtx from = XEXP (cond, 0);
4843 rtx true_val = XEXP (cond, 1);
4844 rtx false_val = true_val;
4845 int swapped = 0;
4847 /* If FALSE_CODE is EQ, swap the codes and arms. */
4849 if (false_code == EQ)
4851 swapped = 1, true_code = EQ, false_code = NE;
4852 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4855 /* If we are comparing against zero and the expression being tested has
4856 only a single bit that might be nonzero, that is its value when it is
4857 not equal to zero. Similarly if it is known to be -1 or 0. */
4859 if (true_code == EQ && true_val == const0_rtx
4860 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4861 false_code = EQ, false_val = GEN_INT (nzb);
4862 else if (true_code == EQ && true_val == const0_rtx
4863 && (num_sign_bit_copies (from, GET_MODE (from))
4864 == GET_MODE_BITSIZE (GET_MODE (from))))
4865 false_code = EQ, false_val = constm1_rtx;
4867 /* Now simplify an arm if we know the value of the register in the
4868 branch and it is used in the arm. Be careful due to the potential
4869 of locally-shared RTL. */
4871 if (reg_mentioned_p (from, true_rtx))
4872 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4873 from, true_val),
4874 pc_rtx, pc_rtx, 0, 0);
4875 if (reg_mentioned_p (from, false_rtx))
4876 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
4877 from, false_val),
4878 pc_rtx, pc_rtx, 0, 0);
4880 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4881 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
4883 true_rtx = XEXP (x, 1);
4884 false_rtx = XEXP (x, 2);
4885 true_code = GET_CODE (cond);
4888 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4889 reversed, do so to avoid needing two sets of patterns for
4890 subtract-and-branch insns. Similarly if we have a constant in the true
4891 arm, the false arm is the same as the first operand of the comparison, or
4892 the false arm is more complicated than the true arm. */
4894 if (comparison_p
4895 && reversed_comparison_code (cond, NULL) != UNKNOWN
4896 && (true_rtx == pc_rtx
4897 || (CONSTANT_P (true_rtx)
4898 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
4899 || true_rtx == const0_rtx
4900 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
4901 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
4902 && !OBJECT_P (false_rtx))
4903 || reg_mentioned_p (true_rtx, false_rtx)
4904 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
4906 true_code = reversed_comparison_code (cond, NULL);
4907 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
4908 SUBST (XEXP (x, 1), false_rtx);
4909 SUBST (XEXP (x, 2), true_rtx);
4911 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4912 cond = XEXP (x, 0);
4914 /* It is possible that the conditional has been simplified out. */
4915 true_code = GET_CODE (cond);
4916 comparison_p = COMPARISON_P (cond);
4919 /* If the two arms are identical, we don't need the comparison. */
4921 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
4922 return true_rtx;
4924 /* Convert a == b ? b : a to "a". */
4925 if (true_code == EQ && ! side_effects_p (cond)
4926 && !HONOR_NANS (mode)
4927 && rtx_equal_p (XEXP (cond, 0), false_rtx)
4928 && rtx_equal_p (XEXP (cond, 1), true_rtx))
4929 return false_rtx;
4930 else if (true_code == NE && ! side_effects_p (cond)
4931 && !HONOR_NANS (mode)
4932 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4933 && rtx_equal_p (XEXP (cond, 1), false_rtx))
4934 return true_rtx;
4936 /* Look for cases where we have (abs x) or (neg (abs X)). */
4938 if (GET_MODE_CLASS (mode) == MODE_INT
4939 && GET_CODE (false_rtx) == NEG
4940 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
4941 && comparison_p
4942 && rtx_equal_p (true_rtx, XEXP (cond, 0))
4943 && ! side_effects_p (true_rtx))
4944 switch (true_code)
4946 case GT:
4947 case GE:
4948 return simplify_gen_unary (ABS, mode, true_rtx, mode);
4949 case LT:
4950 case LE:
4951 return
4952 simplify_gen_unary (NEG, mode,
4953 simplify_gen_unary (ABS, mode, true_rtx, mode),
4954 mode);
4955 default:
4956 break;
4959 /* Look for MIN or MAX. */
4961 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4962 && comparison_p
4963 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4964 && rtx_equal_p (XEXP (cond, 1), false_rtx)
4965 && ! side_effects_p (cond))
4966 switch (true_code)
4968 case GE:
4969 case GT:
4970 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
4971 case LE:
4972 case LT:
4973 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
4974 case GEU:
4975 case GTU:
4976 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
4977 case LEU:
4978 case LTU:
4979 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
4980 default:
4981 break;
4984 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4985 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4986 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4987 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4988 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4989 neither 1 or -1, but it isn't worth checking for. */
4991 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
4992 && comparison_p
4993 && GET_MODE_CLASS (mode) == MODE_INT
4994 && ! side_effects_p (x))
4996 rtx t = make_compound_operation (true_rtx, SET);
4997 rtx f = make_compound_operation (false_rtx, SET);
4998 rtx cond_op0 = XEXP (cond, 0);
4999 rtx cond_op1 = XEXP (cond, 1);
5000 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
5001 enum machine_mode m = mode;
5002 rtx z = 0, c1 = NULL_RTX;
5004 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
5005 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
5006 || GET_CODE (t) == ASHIFT
5007 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
5008 && rtx_equal_p (XEXP (t, 0), f))
5009 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
5011 /* If an identity-zero op is commutative, check whether there
5012 would be a match if we swapped the operands. */
5013 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
5014 || GET_CODE (t) == XOR)
5015 && rtx_equal_p (XEXP (t, 1), f))
5016 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
5017 else if (GET_CODE (t) == SIGN_EXTEND
5018 && (GET_CODE (XEXP (t, 0)) == PLUS
5019 || GET_CODE (XEXP (t, 0)) == MINUS
5020 || GET_CODE (XEXP (t, 0)) == IOR
5021 || GET_CODE (XEXP (t, 0)) == XOR
5022 || GET_CODE (XEXP (t, 0)) == ASHIFT
5023 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5024 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5025 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5026 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5027 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5028 && (num_sign_bit_copies (f, GET_MODE (f))
5029 > (unsigned int)
5030 (GET_MODE_BITSIZE (mode)
5031 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
5033 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5034 extend_op = SIGN_EXTEND;
5035 m = GET_MODE (XEXP (t, 0));
5037 else if (GET_CODE (t) == SIGN_EXTEND
5038 && (GET_CODE (XEXP (t, 0)) == PLUS
5039 || GET_CODE (XEXP (t, 0)) == IOR
5040 || GET_CODE (XEXP (t, 0)) == XOR)
5041 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5042 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5043 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5044 && (num_sign_bit_copies (f, GET_MODE (f))
5045 > (unsigned int)
5046 (GET_MODE_BITSIZE (mode)
5047 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
5049 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5050 extend_op = SIGN_EXTEND;
5051 m = GET_MODE (XEXP (t, 0));
5053 else if (GET_CODE (t) == ZERO_EXTEND
5054 && (GET_CODE (XEXP (t, 0)) == PLUS
5055 || GET_CODE (XEXP (t, 0)) == MINUS
5056 || GET_CODE (XEXP (t, 0)) == IOR
5057 || GET_CODE (XEXP (t, 0)) == XOR
5058 || GET_CODE (XEXP (t, 0)) == ASHIFT
5059 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5060 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5061 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5062 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5063 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5064 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5065 && ((nonzero_bits (f, GET_MODE (f))
5066 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
5067 == 0))
5069 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5070 extend_op = ZERO_EXTEND;
5071 m = GET_MODE (XEXP (t, 0));
5073 else if (GET_CODE (t) == ZERO_EXTEND
5074 && (GET_CODE (XEXP (t, 0)) == PLUS
5075 || GET_CODE (XEXP (t, 0)) == IOR
5076 || GET_CODE (XEXP (t, 0)) == XOR)
5077 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5078 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5079 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5080 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5081 && ((nonzero_bits (f, GET_MODE (f))
5082 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
5083 == 0))
5085 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5086 extend_op = ZERO_EXTEND;
5087 m = GET_MODE (XEXP (t, 0));
5090 if (z)
5092 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
5093 cond_op0, cond_op1),
5094 pc_rtx, pc_rtx, 0, 0);
5095 temp = simplify_gen_binary (MULT, m, temp,
5096 simplify_gen_binary (MULT, m, c1,
5097 const_true_rtx));
5098 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
5099 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
5101 if (extend_op != UNKNOWN)
5102 temp = simplify_gen_unary (extend_op, mode, temp, m);
5104 return temp;
5108 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
5109 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
5110 negation of a single bit, we can convert this operation to a shift. We
5111 can actually do this more generally, but it doesn't seem worth it. */
5113 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5114 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5115 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
5116 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
5117 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
5118 == GET_MODE_BITSIZE (mode))
5119 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
5120 return
5121 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5122 gen_lowpart (mode, XEXP (cond, 0)), i);
5124 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
5125 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5126 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5127 && GET_MODE (XEXP (cond, 0)) == mode
5128 && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
5129 == nonzero_bits (XEXP (cond, 0), mode)
5130 && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
5131 return XEXP (cond, 0);
5133 return x;
5136 /* Simplify X, a SET expression. Return the new expression. */
5138 static rtx
5139 simplify_set (rtx x)
5141 rtx src = SET_SRC (x);
5142 rtx dest = SET_DEST (x);
5143 enum machine_mode mode
5144 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
5145 rtx other_insn;
5146 rtx *cc_use;
5148 /* (set (pc) (return)) gets written as (return). */
5149 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
5150 return src;
5152 /* Now that we know for sure which bits of SRC we are using, see if we can
5153 simplify the expression for the object knowing that we only need the
5154 low-order bits. */
5156 if (GET_MODE_CLASS (mode) == MODE_INT
5157 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5159 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, 0);
5160 SUBST (SET_SRC (x), src);
5163 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5164 the comparison result and try to simplify it unless we already have used
5165 undobuf.other_insn. */
5166 if ((GET_MODE_CLASS (mode) == MODE_CC
5167 || GET_CODE (src) == COMPARE
5168 || CC0_P (dest))
5169 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5170 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5171 && COMPARISON_P (*cc_use)
5172 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5174 enum rtx_code old_code = GET_CODE (*cc_use);
5175 enum rtx_code new_code;
5176 rtx op0, op1, tmp;
5177 int other_changed = 0;
5178 enum machine_mode compare_mode = GET_MODE (dest);
5180 if (GET_CODE (src) == COMPARE)
5181 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5182 else
5183 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
5185 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
5186 op0, op1);
5187 if (!tmp)
5188 new_code = old_code;
5189 else if (!CONSTANT_P (tmp))
5191 new_code = GET_CODE (tmp);
5192 op0 = XEXP (tmp, 0);
5193 op1 = XEXP (tmp, 1);
5195 else
5197 rtx pat = PATTERN (other_insn);
5198 undobuf.other_insn = other_insn;
5199 SUBST (*cc_use, tmp);
5201 /* Attempt to simplify CC user. */
5202 if (GET_CODE (pat) == SET)
5204 rtx new = simplify_rtx (SET_SRC (pat));
5205 if (new != NULL_RTX)
5206 SUBST (SET_SRC (pat), new);
5209 /* Convert X into a no-op move. */
5210 SUBST (SET_DEST (x), pc_rtx);
5211 SUBST (SET_SRC (x), pc_rtx);
5212 return x;
5215 /* Simplify our comparison, if possible. */
5216 new_code = simplify_comparison (new_code, &op0, &op1);
5218 #ifdef SELECT_CC_MODE
5219 /* If this machine has CC modes other than CCmode, check to see if we
5220 need to use a different CC mode here. */
5221 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5222 compare_mode = GET_MODE (op0);
5223 else
5224 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5226 #ifndef HAVE_cc0
5227 /* If the mode changed, we have to change SET_DEST, the mode in the
5228 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5229 a hard register, just build new versions with the proper mode. If it
5230 is a pseudo, we lose unless it is only time we set the pseudo, in
5231 which case we can safely change its mode. */
5232 if (compare_mode != GET_MODE (dest))
5234 if (can_change_dest_mode (dest, 0, compare_mode))
5236 unsigned int regno = REGNO (dest);
5237 rtx new_dest;
5239 if (regno < FIRST_PSEUDO_REGISTER)
5240 new_dest = gen_rtx_REG (compare_mode, regno);
5241 else
5243 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
5244 new_dest = regno_reg_rtx[regno];
5247 SUBST (SET_DEST (x), new_dest);
5248 SUBST (XEXP (*cc_use, 0), new_dest);
5249 other_changed = 1;
5251 dest = new_dest;
5254 #endif /* cc0 */
5255 #endif /* SELECT_CC_MODE */
5257 /* If the code changed, we have to build a new comparison in
5258 undobuf.other_insn. */
5259 if (new_code != old_code)
5261 int other_changed_previously = other_changed;
5262 unsigned HOST_WIDE_INT mask;
5264 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5265 dest, const0_rtx));
5266 other_changed = 1;
5268 /* If the only change we made was to change an EQ into an NE or
5269 vice versa, OP0 has only one bit that might be nonzero, and OP1
5270 is zero, check if changing the user of the condition code will
5271 produce a valid insn. If it won't, we can keep the original code
5272 in that insn by surrounding our operation with an XOR. */
5274 if (((old_code == NE && new_code == EQ)
5275 || (old_code == EQ && new_code == NE))
5276 && ! other_changed_previously && op1 == const0_rtx
5277 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5278 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5280 rtx pat = PATTERN (other_insn), note = 0;
5282 if ((recog_for_combine (&pat, other_insn, &note) < 0
5283 && ! check_asm_operands (pat)))
5285 PUT_CODE (*cc_use, old_code);
5286 other_changed = 0;
5288 op0 = simplify_gen_binary (XOR, GET_MODE (op0),
5289 op0, GEN_INT (mask));
5294 if (other_changed)
5295 undobuf.other_insn = other_insn;
5297 #ifdef HAVE_cc0
5298 /* If we are now comparing against zero, change our source if
5299 needed. If we do not use cc0, we always have a COMPARE. */
5300 if (op1 == const0_rtx && dest == cc0_rtx)
5302 SUBST (SET_SRC (x), op0);
5303 src = op0;
5305 else
5306 #endif
5308 /* Otherwise, if we didn't previously have a COMPARE in the
5309 correct mode, we need one. */
5310 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5312 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5313 src = SET_SRC (x);
5315 else if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
5317 SUBST(SET_SRC (x), op0);
5318 src = SET_SRC (x);
5320 else
5322 /* Otherwise, update the COMPARE if needed. */
5323 SUBST (XEXP (src, 0), op0);
5324 SUBST (XEXP (src, 1), op1);
5327 else
5329 /* Get SET_SRC in a form where we have placed back any
5330 compound expressions. Then do the checks below. */
5331 src = make_compound_operation (src, SET);
5332 SUBST (SET_SRC (x), src);
5335 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5336 and X being a REG or (subreg (reg)), we may be able to convert this to
5337 (set (subreg:m2 x) (op)).
5339 We can always do this if M1 is narrower than M2 because that means that
5340 we only care about the low bits of the result.
5342 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5343 perform a narrower operation than requested since the high-order bits will
5344 be undefined. On machine where it is defined, this transformation is safe
5345 as long as M1 and M2 have the same number of words. */
5347 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5348 && !OBJECT_P (SUBREG_REG (src))
5349 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5350 / UNITS_PER_WORD)
5351 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5352 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5353 #ifndef WORD_REGISTER_OPERATIONS
5354 && (GET_MODE_SIZE (GET_MODE (src))
5355 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5356 #endif
5357 #ifdef CANNOT_CHANGE_MODE_CLASS
5358 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
5359 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
5360 GET_MODE (SUBREG_REG (src)),
5361 GET_MODE (src)))
5362 #endif
5363 && (REG_P (dest)
5364 || (GET_CODE (dest) == SUBREG
5365 && REG_P (SUBREG_REG (dest)))))
5367 SUBST (SET_DEST (x),
5368 gen_lowpart (GET_MODE (SUBREG_REG (src)),
5369 dest));
5370 SUBST (SET_SRC (x), SUBREG_REG (src));
5372 src = SET_SRC (x), dest = SET_DEST (x);
5375 #ifdef HAVE_cc0
5376 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5377 in SRC. */
5378 if (dest == cc0_rtx
5379 && GET_CODE (src) == SUBREG
5380 && subreg_lowpart_p (src)
5381 && (GET_MODE_BITSIZE (GET_MODE (src))
5382 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5384 rtx inner = SUBREG_REG (src);
5385 enum machine_mode inner_mode = GET_MODE (inner);
5387 /* Here we make sure that we don't have a sign bit on. */
5388 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5389 && (nonzero_bits (inner, inner_mode)
5390 < ((unsigned HOST_WIDE_INT) 1
5391 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
5393 SUBST (SET_SRC (x), inner);
5394 src = SET_SRC (x);
5397 #endif
5399 #ifdef LOAD_EXTEND_OP
5400 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5401 would require a paradoxical subreg. Replace the subreg with a
5402 zero_extend to avoid the reload that would otherwise be required. */
5404 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5405 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
5406 && SUBREG_BYTE (src) == 0
5407 && (GET_MODE_SIZE (GET_MODE (src))
5408 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5409 && MEM_P (SUBREG_REG (src)))
5411 SUBST (SET_SRC (x),
5412 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5413 GET_MODE (src), SUBREG_REG (src)));
5415 src = SET_SRC (x);
5417 #endif
5419 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5420 are comparing an item known to be 0 or -1 against 0, use a logical
5421 operation instead. Check for one of the arms being an IOR of the other
5422 arm with some value. We compute three terms to be IOR'ed together. In
5423 practice, at most two will be nonzero. Then we do the IOR's. */
5425 if (GET_CODE (dest) != PC
5426 && GET_CODE (src) == IF_THEN_ELSE
5427 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5428 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5429 && XEXP (XEXP (src, 0), 1) == const0_rtx
5430 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5431 #ifdef HAVE_conditional_move
5432 && ! can_conditionally_move_p (GET_MODE (src))
5433 #endif
5434 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5435 GET_MODE (XEXP (XEXP (src, 0), 0)))
5436 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5437 && ! side_effects_p (src))
5439 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5440 ? XEXP (src, 1) : XEXP (src, 2));
5441 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5442 ? XEXP (src, 2) : XEXP (src, 1));
5443 rtx term1 = const0_rtx, term2, term3;
5445 if (GET_CODE (true_rtx) == IOR
5446 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5447 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
5448 else if (GET_CODE (true_rtx) == IOR
5449 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5450 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
5451 else if (GET_CODE (false_rtx) == IOR
5452 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5453 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
5454 else if (GET_CODE (false_rtx) == IOR
5455 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5456 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
5458 term2 = simplify_gen_binary (AND, GET_MODE (src),
5459 XEXP (XEXP (src, 0), 0), true_rtx);
5460 term3 = simplify_gen_binary (AND, GET_MODE (src),
5461 simplify_gen_unary (NOT, GET_MODE (src),
5462 XEXP (XEXP (src, 0), 0),
5463 GET_MODE (src)),
5464 false_rtx);
5466 SUBST (SET_SRC (x),
5467 simplify_gen_binary (IOR, GET_MODE (src),
5468 simplify_gen_binary (IOR, GET_MODE (src),
5469 term1, term2),
5470 term3));
5472 src = SET_SRC (x);
5475 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5476 whole thing fail. */
5477 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5478 return src;
5479 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5480 return dest;
5481 else
5482 /* Convert this into a field assignment operation, if possible. */
5483 return make_field_assignment (x);
5486 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5487 result. */
5489 static rtx
5490 simplify_logical (rtx x)
5492 enum machine_mode mode = GET_MODE (x);
5493 rtx op0 = XEXP (x, 0);
5494 rtx op1 = XEXP (x, 1);
5496 switch (GET_CODE (x))
5498 case AND:
5499 /* We can call simplify_and_const_int only if we don't lose
5500 any (sign) bits when converting INTVAL (op1) to
5501 "unsigned HOST_WIDE_INT". */
5502 if (GET_CODE (op1) == CONST_INT
5503 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5504 || INTVAL (op1) > 0))
5506 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5507 if (GET_CODE (x) != AND)
5508 return x;
5510 op0 = XEXP (x, 0);
5511 op1 = XEXP (x, 1);
5514 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
5515 apply the distributive law and then the inverse distributive
5516 law to see if things simplify. */
5517 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5519 rtx result = distribute_and_simplify_rtx (x, 0);
5520 if (result)
5521 return result;
5523 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5525 rtx result = distribute_and_simplify_rtx (x, 1);
5526 if (result)
5527 return result;
5529 break;
5531 case IOR:
5532 /* If we have (ior (and A B) C), apply the distributive law and then
5533 the inverse distributive law to see if things simplify. */
5535 if (GET_CODE (op0) == AND)
5537 rtx result = distribute_and_simplify_rtx (x, 0);
5538 if (result)
5539 return result;
5542 if (GET_CODE (op1) == AND)
5544 rtx result = distribute_and_simplify_rtx (x, 1);
5545 if (result)
5546 return result;
5548 break;
5550 default:
5551 gcc_unreachable ();
5554 return x;
5557 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5558 operations" because they can be replaced with two more basic operations.
5559 ZERO_EXTEND is also considered "compound" because it can be replaced with
5560 an AND operation, which is simpler, though only one operation.
5562 The function expand_compound_operation is called with an rtx expression
5563 and will convert it to the appropriate shifts and AND operations,
5564 simplifying at each stage.
5566 The function make_compound_operation is called to convert an expression
5567 consisting of shifts and ANDs into the equivalent compound expression.
5568 It is the inverse of this function, loosely speaking. */
5570 static rtx
5571 expand_compound_operation (rtx x)
5573 unsigned HOST_WIDE_INT pos = 0, len;
5574 int unsignedp = 0;
5575 unsigned int modewidth;
5576 rtx tem;
5578 switch (GET_CODE (x))
5580 case ZERO_EXTEND:
5581 unsignedp = 1;
5582 case SIGN_EXTEND:
5583 /* We can't necessarily use a const_int for a multiword mode;
5584 it depends on implicitly extending the value.
5585 Since we don't know the right way to extend it,
5586 we can't tell whether the implicit way is right.
5588 Even for a mode that is no wider than a const_int,
5589 we can't win, because we need to sign extend one of its bits through
5590 the rest of it, and we don't know which bit. */
5591 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5592 return x;
5594 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5595 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5596 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5597 reloaded. If not for that, MEM's would very rarely be safe.
5599 Reject MODEs bigger than a word, because we might not be able
5600 to reference a two-register group starting with an arbitrary register
5601 (and currently gen_lowpart might crash for a SUBREG). */
5603 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5604 return x;
5606 /* Reject MODEs that aren't scalar integers because turning vector
5607 or complex modes into shifts causes problems. */
5609 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5610 return x;
5612 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5613 /* If the inner object has VOIDmode (the only way this can happen
5614 is if it is an ASM_OPERANDS), we can't do anything since we don't
5615 know how much masking to do. */
5616 if (len == 0)
5617 return x;
5619 break;
5621 case ZERO_EXTRACT:
5622 unsignedp = 1;
5624 /* ... fall through ... */
5626 case SIGN_EXTRACT:
5627 /* If the operand is a CLOBBER, just return it. */
5628 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5629 return XEXP (x, 0);
5631 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5632 || GET_CODE (XEXP (x, 2)) != CONST_INT
5633 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5634 return x;
5636 /* Reject MODEs that aren't scalar integers because turning vector
5637 or complex modes into shifts causes problems. */
5639 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5640 return x;
5642 len = INTVAL (XEXP (x, 1));
5643 pos = INTVAL (XEXP (x, 2));
5645 /* This should stay within the object being extracted, fail otherwise. */
5646 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5647 return x;
5649 if (BITS_BIG_ENDIAN)
5650 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5652 break;
5654 default:
5655 return x;
5657 /* Convert sign extension to zero extension, if we know that the high
5658 bit is not set, as this is easier to optimize. It will be converted
5659 back to cheaper alternative in make_extraction. */
5660 if (GET_CODE (x) == SIGN_EXTEND
5661 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5662 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5663 & ~(((unsigned HOST_WIDE_INT)
5664 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5665 >> 1))
5666 == 0)))
5668 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5669 rtx temp2 = expand_compound_operation (temp);
5671 /* Make sure this is a profitable operation. */
5672 if (rtx_cost (x, SET) > rtx_cost (temp2, SET))
5673 return temp2;
5674 else if (rtx_cost (x, SET) > rtx_cost (temp, SET))
5675 return temp;
5676 else
5677 return x;
5680 /* We can optimize some special cases of ZERO_EXTEND. */
5681 if (GET_CODE (x) == ZERO_EXTEND)
5683 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5684 know that the last value didn't have any inappropriate bits
5685 set. */
5686 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5687 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5688 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5689 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5690 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5691 return XEXP (XEXP (x, 0), 0);
5693 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5694 if (GET_CODE (XEXP (x, 0)) == SUBREG
5695 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5696 && subreg_lowpart_p (XEXP (x, 0))
5697 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5698 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5699 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5700 return SUBREG_REG (XEXP (x, 0));
5702 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5703 is a comparison and STORE_FLAG_VALUE permits. This is like
5704 the first case, but it works even when GET_MODE (x) is larger
5705 than HOST_WIDE_INT. */
5706 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5707 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5708 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
5709 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5710 <= HOST_BITS_PER_WIDE_INT)
5711 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5712 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5713 return XEXP (XEXP (x, 0), 0);
5715 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5716 if (GET_CODE (XEXP (x, 0)) == SUBREG
5717 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5718 && subreg_lowpart_p (XEXP (x, 0))
5719 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
5720 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5721 <= HOST_BITS_PER_WIDE_INT)
5722 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5723 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5724 return SUBREG_REG (XEXP (x, 0));
5728 /* If we reach here, we want to return a pair of shifts. The inner
5729 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5730 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5731 logical depending on the value of UNSIGNEDP.
5733 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5734 converted into an AND of a shift.
5736 We must check for the case where the left shift would have a negative
5737 count. This can happen in a case like (x >> 31) & 255 on machines
5738 that can't shift by a constant. On those machines, we would first
5739 combine the shift with the AND to produce a variable-position
5740 extraction. Then the constant of 31 would be substituted in to produce
5741 a such a position. */
5743 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5744 if (modewidth + len >= pos)
5745 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5746 GET_MODE (x),
5747 simplify_shift_const (NULL_RTX, ASHIFT,
5748 GET_MODE (x),
5749 XEXP (x, 0),
5750 modewidth - pos - len),
5751 modewidth - len);
5753 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5754 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5755 simplify_shift_const (NULL_RTX, LSHIFTRT,
5756 GET_MODE (x),
5757 XEXP (x, 0), pos),
5758 ((HOST_WIDE_INT) 1 << len) - 1);
5759 else
5760 /* Any other cases we can't handle. */
5761 return x;
5763 /* If we couldn't do this for some reason, return the original
5764 expression. */
5765 if (GET_CODE (tem) == CLOBBER)
5766 return x;
5768 return tem;
5771 /* X is a SET which contains an assignment of one object into
5772 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5773 or certain SUBREGS). If possible, convert it into a series of
5774 logical operations.
5776 We half-heartedly support variable positions, but do not at all
5777 support variable lengths. */
5779 static rtx
5780 expand_field_assignment (rtx x)
5782 rtx inner;
5783 rtx pos; /* Always counts from low bit. */
5784 int len;
5785 rtx mask, cleared, masked;
5786 enum machine_mode compute_mode;
5788 /* Loop until we find something we can't simplify. */
5789 while (1)
5791 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5792 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5794 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5795 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
5796 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
5798 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5799 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5801 inner = XEXP (SET_DEST (x), 0);
5802 len = INTVAL (XEXP (SET_DEST (x), 1));
5803 pos = XEXP (SET_DEST (x), 2);
5805 /* A constant position should stay within the width of INNER. */
5806 if (GET_CODE (pos) == CONST_INT
5807 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
5808 break;
5810 if (BITS_BIG_ENDIAN)
5812 if (GET_CODE (pos) == CONST_INT)
5813 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5814 - INTVAL (pos));
5815 else if (GET_CODE (pos) == MINUS
5816 && GET_CODE (XEXP (pos, 1)) == CONST_INT
5817 && (INTVAL (XEXP (pos, 1))
5818 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
5819 /* If position is ADJUST - X, new position is X. */
5820 pos = XEXP (pos, 0);
5821 else
5822 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
5823 GEN_INT (GET_MODE_BITSIZE (
5824 GET_MODE (inner))
5825 - len),
5826 pos);
5830 /* A SUBREG between two modes that occupy the same numbers of words
5831 can be done by moving the SUBREG to the source. */
5832 else if (GET_CODE (SET_DEST (x)) == SUBREG
5833 /* We need SUBREGs to compute nonzero_bits properly. */
5834 && nonzero_sign_valid
5835 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
5836 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
5837 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
5838 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
5840 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
5841 gen_lowpart
5842 (GET_MODE (SUBREG_REG (SET_DEST (x))),
5843 SET_SRC (x)));
5844 continue;
5846 else
5847 break;
5849 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5850 inner = SUBREG_REG (inner);
5852 compute_mode = GET_MODE (inner);
5854 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
5855 if (! SCALAR_INT_MODE_P (compute_mode))
5857 enum machine_mode imode;
5859 /* Don't do anything for vector or complex integral types. */
5860 if (! FLOAT_MODE_P (compute_mode))
5861 break;
5863 /* Try to find an integral mode to pun with. */
5864 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
5865 if (imode == BLKmode)
5866 break;
5868 compute_mode = imode;
5869 inner = gen_lowpart (imode, inner);
5872 /* Compute a mask of LEN bits, if we can do this on the host machine. */
5873 if (len >= HOST_BITS_PER_WIDE_INT)
5874 break;
5876 /* Now compute the equivalent expression. Make a copy of INNER
5877 for the SET_DEST in case it is a MEM into which we will substitute;
5878 we don't want shared RTL in that case. */
5879 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
5880 cleared = simplify_gen_binary (AND, compute_mode,
5881 simplify_gen_unary (NOT, compute_mode,
5882 simplify_gen_binary (ASHIFT,
5883 compute_mode,
5884 mask, pos),
5885 compute_mode),
5886 inner);
5887 masked = simplify_gen_binary (ASHIFT, compute_mode,
5888 simplify_gen_binary (
5889 AND, compute_mode,
5890 gen_lowpart (compute_mode, SET_SRC (x)),
5891 mask),
5892 pos);
5894 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
5895 simplify_gen_binary (IOR, compute_mode,
5896 cleared, masked));
5899 return x;
5902 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
5903 it is an RTX that represents a variable starting position; otherwise,
5904 POS is the (constant) starting bit position (counted from the LSB).
5906 UNSIGNEDP is nonzero for an unsigned reference and zero for a
5907 signed reference.
5909 IN_DEST is nonzero if this is a reference in the destination of a
5910 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
5911 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
5912 be used.
5914 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
5915 ZERO_EXTRACT should be built even for bits starting at bit 0.
5917 MODE is the desired mode of the result (if IN_DEST == 0).
5919 The result is an RTX for the extraction or NULL_RTX if the target
5920 can't handle it. */
5922 static rtx
5923 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
5924 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
5925 int in_dest, int in_compare)
5927 /* This mode describes the size of the storage area
5928 to fetch the overall value from. Within that, we
5929 ignore the POS lowest bits, etc. */
5930 enum machine_mode is_mode = GET_MODE (inner);
5931 enum machine_mode inner_mode;
5932 enum machine_mode wanted_inner_mode;
5933 enum machine_mode wanted_inner_reg_mode = word_mode;
5934 enum machine_mode pos_mode = word_mode;
5935 enum machine_mode extraction_mode = word_mode;
5936 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
5937 rtx new = 0;
5938 rtx orig_pos_rtx = pos_rtx;
5939 HOST_WIDE_INT orig_pos;
5941 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5943 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
5944 consider just the QI as the memory to extract from.
5945 The subreg adds or removes high bits; its mode is
5946 irrelevant to the meaning of this extraction,
5947 since POS and LEN count from the lsb. */
5948 if (MEM_P (SUBREG_REG (inner)))
5949 is_mode = GET_MODE (SUBREG_REG (inner));
5950 inner = SUBREG_REG (inner);
5952 else if (GET_CODE (inner) == ASHIFT
5953 && GET_CODE (XEXP (inner, 1)) == CONST_INT
5954 && pos_rtx == 0 && pos == 0
5955 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
5957 /* We're extracting the least significant bits of an rtx
5958 (ashift X (const_int C)), where LEN > C. Extract the
5959 least significant (LEN - C) bits of X, giving an rtx
5960 whose mode is MODE, then shift it left C times. */
5961 new = make_extraction (mode, XEXP (inner, 0),
5962 0, 0, len - INTVAL (XEXP (inner, 1)),
5963 unsignedp, in_dest, in_compare);
5964 if (new != 0)
5965 return gen_rtx_ASHIFT (mode, new, XEXP (inner, 1));
5968 inner_mode = GET_MODE (inner);
5970 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
5971 pos = INTVAL (pos_rtx), pos_rtx = 0;
5973 /* See if this can be done without an extraction. We never can if the
5974 width of the field is not the same as that of some integer mode. For
5975 registers, we can only avoid the extraction if the position is at the
5976 low-order bit and this is either not in the destination or we have the
5977 appropriate STRICT_LOW_PART operation available.
5979 For MEM, we can avoid an extract if the field starts on an appropriate
5980 boundary and we can change the mode of the memory reference. */
5982 if (tmode != BLKmode
5983 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
5984 && !MEM_P (inner)
5985 && (inner_mode == tmode
5986 || !REG_P (inner)
5987 || TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
5988 GET_MODE_BITSIZE (inner_mode))
5989 || reg_truncated_to_mode (tmode, inner))
5990 && (! in_dest
5991 || (REG_P (inner)
5992 && have_insn_for (STRICT_LOW_PART, tmode))))
5993 || (MEM_P (inner) && pos_rtx == 0
5994 && (pos
5995 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
5996 : BITS_PER_UNIT)) == 0
5997 /* We can't do this if we are widening INNER_MODE (it
5998 may not be aligned, for one thing). */
5999 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6000 && (inner_mode == tmode
6001 || (! mode_dependent_address_p (XEXP (inner, 0))
6002 && ! MEM_VOLATILE_P (inner))))))
6004 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6005 field. If the original and current mode are the same, we need not
6006 adjust the offset. Otherwise, we do if bytes big endian.
6008 If INNER is not a MEM, get a piece consisting of just the field
6009 of interest (in this case POS % BITS_PER_WORD must be 0). */
6011 if (MEM_P (inner))
6013 HOST_WIDE_INT offset;
6015 /* POS counts from lsb, but make OFFSET count in memory order. */
6016 if (BYTES_BIG_ENDIAN)
6017 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6018 else
6019 offset = pos / BITS_PER_UNIT;
6021 new = adjust_address_nv (inner, tmode, offset);
6023 else if (REG_P (inner))
6025 if (tmode != inner_mode)
6027 /* We can't call gen_lowpart in a DEST since we
6028 always want a SUBREG (see below) and it would sometimes
6029 return a new hard register. */
6030 if (pos || in_dest)
6032 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6034 if (WORDS_BIG_ENDIAN
6035 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6036 final_word = ((GET_MODE_SIZE (inner_mode)
6037 - GET_MODE_SIZE (tmode))
6038 / UNITS_PER_WORD) - final_word;
6040 final_word *= UNITS_PER_WORD;
6041 if (BYTES_BIG_ENDIAN &&
6042 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6043 final_word += (GET_MODE_SIZE (inner_mode)
6044 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6046 /* Avoid creating invalid subregs, for example when
6047 simplifying (x>>32)&255. */
6048 if (!validate_subreg (tmode, inner_mode, inner, final_word))
6049 return NULL_RTX;
6051 new = gen_rtx_SUBREG (tmode, inner, final_word);
6053 else
6054 new = gen_lowpart (tmode, inner);
6056 else
6057 new = inner;
6059 else
6060 new = force_to_mode (inner, tmode,
6061 len >= HOST_BITS_PER_WIDE_INT
6062 ? ~(unsigned HOST_WIDE_INT) 0
6063 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6066 /* If this extraction is going into the destination of a SET,
6067 make a STRICT_LOW_PART unless we made a MEM. */
6069 if (in_dest)
6070 return (MEM_P (new) ? new
6071 : (GET_CODE (new) != SUBREG
6072 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6073 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
6075 if (mode == tmode)
6076 return new;
6078 if (GET_CODE (new) == CONST_INT)
6079 return gen_int_mode (INTVAL (new), mode);
6081 /* If we know that no extraneous bits are set, and that the high
6082 bit is not set, convert the extraction to the cheaper of
6083 sign and zero extension, that are equivalent in these cases. */
6084 if (flag_expensive_optimizations
6085 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6086 && ((nonzero_bits (new, tmode)
6087 & ~(((unsigned HOST_WIDE_INT)
6088 GET_MODE_MASK (tmode))
6089 >> 1))
6090 == 0)))
6092 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6093 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6095 /* Prefer ZERO_EXTENSION, since it gives more information to
6096 backends. */
6097 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
6098 return temp;
6099 return temp1;
6102 /* Otherwise, sign- or zero-extend unless we already are in the
6103 proper mode. */
6105 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6106 mode, new));
6109 /* Unless this is a COMPARE or we have a funny memory reference,
6110 don't do anything with zero-extending field extracts starting at
6111 the low-order bit since they are simple AND operations. */
6112 if (pos_rtx == 0 && pos == 0 && ! in_dest
6113 && ! in_compare && unsignedp)
6114 return 0;
6116 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
6117 if the position is not a constant and the length is not 1. In all
6118 other cases, we would only be going outside our object in cases when
6119 an original shift would have been undefined. */
6120 if (MEM_P (inner)
6121 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6122 || (pos_rtx != 0 && len != 1)))
6123 return 0;
6125 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6126 and the mode for the result. */
6127 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6129 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6130 pos_mode = mode_for_extraction (EP_insv, 2);
6131 extraction_mode = mode_for_extraction (EP_insv, 3);
6134 if (! in_dest && unsignedp
6135 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6137 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6138 pos_mode = mode_for_extraction (EP_extzv, 3);
6139 extraction_mode = mode_for_extraction (EP_extzv, 0);
6142 if (! in_dest && ! unsignedp
6143 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6145 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6146 pos_mode = mode_for_extraction (EP_extv, 3);
6147 extraction_mode = mode_for_extraction (EP_extv, 0);
6150 /* Never narrow an object, since that might not be safe. */
6152 if (mode != VOIDmode
6153 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6154 extraction_mode = mode;
6156 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6157 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6158 pos_mode = GET_MODE (pos_rtx);
6160 /* If this is not from memory, the desired mode is the preferred mode
6161 for an extraction pattern's first input operand, or word_mode if there
6162 is none. */
6163 if (!MEM_P (inner))
6164 wanted_inner_mode = wanted_inner_reg_mode;
6165 else
6167 /* Be careful not to go beyond the extracted object and maintain the
6168 natural alignment of the memory. */
6169 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
6170 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
6171 > GET_MODE_BITSIZE (wanted_inner_mode))
6173 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
6174 gcc_assert (wanted_inner_mode != VOIDmode);
6177 /* If we have to change the mode of memory and cannot, the desired mode
6178 is EXTRACTION_MODE. */
6179 if (inner_mode != wanted_inner_mode
6180 && (mode_dependent_address_p (XEXP (inner, 0))
6181 || MEM_VOLATILE_P (inner)
6182 || pos_rtx))
6183 wanted_inner_mode = extraction_mode;
6186 orig_pos = pos;
6188 if (BITS_BIG_ENDIAN)
6190 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6191 BITS_BIG_ENDIAN style. If position is constant, compute new
6192 position. Otherwise, build subtraction.
6193 Note that POS is relative to the mode of the original argument.
6194 If it's a MEM we need to recompute POS relative to that.
6195 However, if we're extracting from (or inserting into) a register,
6196 we want to recompute POS relative to wanted_inner_mode. */
6197 int width = (MEM_P (inner)
6198 ? GET_MODE_BITSIZE (is_mode)
6199 : GET_MODE_BITSIZE (wanted_inner_mode));
6201 if (pos_rtx == 0)
6202 pos = width - len - pos;
6203 else
6204 pos_rtx
6205 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6206 /* POS may be less than 0 now, but we check for that below.
6207 Note that it can only be less than 0 if !MEM_P (inner). */
6210 /* If INNER has a wider mode, and this is a constant extraction, try to
6211 make it smaller and adjust the byte to point to the byte containing
6212 the value. */
6213 if (wanted_inner_mode != VOIDmode
6214 && inner_mode != wanted_inner_mode
6215 && ! pos_rtx
6216 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6217 && MEM_P (inner)
6218 && ! mode_dependent_address_p (XEXP (inner, 0))
6219 && ! MEM_VOLATILE_P (inner))
6221 int offset = 0;
6223 /* The computations below will be correct if the machine is big
6224 endian in both bits and bytes or little endian in bits and bytes.
6225 If it is mixed, we must adjust. */
6227 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6228 adjust OFFSET to compensate. */
6229 if (BYTES_BIG_ENDIAN
6230 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6231 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6233 /* We can now move to the desired byte. */
6234 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
6235 * GET_MODE_SIZE (wanted_inner_mode);
6236 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6238 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6239 && is_mode != wanted_inner_mode)
6240 offset = (GET_MODE_SIZE (is_mode)
6241 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6243 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6246 /* If INNER is not memory, we can always get it into the proper mode. If we
6247 are changing its mode, POS must be a constant and smaller than the size
6248 of the new mode. */
6249 else if (!MEM_P (inner))
6251 if (GET_MODE (inner) != wanted_inner_mode
6252 && (pos_rtx != 0
6253 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6254 return 0;
6256 if (orig_pos < 0)
6257 return 0;
6259 inner = force_to_mode (inner, wanted_inner_mode,
6260 pos_rtx
6261 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6262 ? ~(unsigned HOST_WIDE_INT) 0
6263 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6264 << orig_pos),
6268 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6269 have to zero extend. Otherwise, we can just use a SUBREG. */
6270 if (pos_rtx != 0
6271 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6273 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6275 /* If we know that no extraneous bits are set, and that the high
6276 bit is not set, convert extraction to cheaper one - either
6277 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6278 cases. */
6279 if (flag_expensive_optimizations
6280 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6281 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6282 & ~(((unsigned HOST_WIDE_INT)
6283 GET_MODE_MASK (GET_MODE (pos_rtx)))
6284 >> 1))
6285 == 0)))
6287 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6289 /* Prefer ZERO_EXTENSION, since it gives more information to
6290 backends. */
6291 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6292 temp = temp1;
6294 pos_rtx = temp;
6296 else if (pos_rtx != 0
6297 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6298 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
6300 /* Make POS_RTX unless we already have it and it is correct. If we don't
6301 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6302 be a CONST_INT. */
6303 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6304 pos_rtx = orig_pos_rtx;
6306 else if (pos_rtx == 0)
6307 pos_rtx = GEN_INT (pos);
6309 /* Make the required operation. See if we can use existing rtx. */
6310 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6311 extraction_mode, inner, GEN_INT (len), pos_rtx);
6312 if (! in_dest)
6313 new = gen_lowpart (mode, new);
6315 return new;
6318 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6319 with any other operations in X. Return X without that shift if so. */
6321 static rtx
6322 extract_left_shift (rtx x, int count)
6324 enum rtx_code code = GET_CODE (x);
6325 enum machine_mode mode = GET_MODE (x);
6326 rtx tem;
6328 switch (code)
6330 case ASHIFT:
6331 /* This is the shift itself. If it is wide enough, we will return
6332 either the value being shifted if the shift count is equal to
6333 COUNT or a shift for the difference. */
6334 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6335 && INTVAL (XEXP (x, 1)) >= count)
6336 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6337 INTVAL (XEXP (x, 1)) - count);
6338 break;
6340 case NEG: case NOT:
6341 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6342 return simplify_gen_unary (code, mode, tem, mode);
6344 break;
6346 case PLUS: case IOR: case XOR: case AND:
6347 /* If we can safely shift this constant and we find the inner shift,
6348 make a new operation. */
6349 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6350 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6351 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6352 return simplify_gen_binary (code, mode, tem,
6353 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6355 break;
6357 default:
6358 break;
6361 return 0;
6364 /* Look at the expression rooted at X. Look for expressions
6365 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6366 Form these expressions.
6368 Return the new rtx, usually just X.
6370 Also, for machines like the VAX that don't have logical shift insns,
6371 try to convert logical to arithmetic shift operations in cases where
6372 they are equivalent. This undoes the canonicalizations to logical
6373 shifts done elsewhere.
6375 We try, as much as possible, to re-use rtl expressions to save memory.
6377 IN_CODE says what kind of expression we are processing. Normally, it is
6378 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6379 being kludges), it is MEM. When processing the arguments of a comparison
6380 or a COMPARE against zero, it is COMPARE. */
6382 static rtx
6383 make_compound_operation (rtx x, enum rtx_code in_code)
6385 enum rtx_code code = GET_CODE (x);
6386 enum machine_mode mode = GET_MODE (x);
6387 int mode_width = GET_MODE_BITSIZE (mode);
6388 rtx rhs, lhs;
6389 enum rtx_code next_code;
6390 int i;
6391 rtx new = 0;
6392 rtx tem;
6393 const char *fmt;
6395 /* Select the code to be used in recursive calls. Once we are inside an
6396 address, we stay there. If we have a comparison, set to COMPARE,
6397 but once inside, go back to our default of SET. */
6399 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6400 : ((code == COMPARE || COMPARISON_P (x))
6401 && XEXP (x, 1) == const0_rtx) ? COMPARE
6402 : in_code == COMPARE ? SET : in_code);
6404 /* Process depending on the code of this operation. If NEW is set
6405 nonzero, it will be returned. */
6407 switch (code)
6409 case ASHIFT:
6410 /* Convert shifts by constants into multiplications if inside
6411 an address. */
6412 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6413 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6414 && INTVAL (XEXP (x, 1)) >= 0)
6416 new = make_compound_operation (XEXP (x, 0), next_code);
6417 new = gen_rtx_MULT (mode, new,
6418 GEN_INT ((HOST_WIDE_INT) 1
6419 << INTVAL (XEXP (x, 1))));
6421 break;
6423 case AND:
6424 /* If the second operand is not a constant, we can't do anything
6425 with it. */
6426 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6427 break;
6429 /* If the constant is a power of two minus one and the first operand
6430 is a logical right shift, make an extraction. */
6431 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6432 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6434 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6435 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6436 0, in_code == COMPARE);
6439 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6440 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6441 && subreg_lowpart_p (XEXP (x, 0))
6442 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6443 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6445 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6446 next_code);
6447 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6448 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6449 0, in_code == COMPARE);
6451 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6452 else if ((GET_CODE (XEXP (x, 0)) == XOR
6453 || GET_CODE (XEXP (x, 0)) == IOR)
6454 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6455 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6456 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6458 /* Apply the distributive law, and then try to make extractions. */
6459 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6460 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6461 XEXP (x, 1)),
6462 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6463 XEXP (x, 1)));
6464 new = make_compound_operation (new, in_code);
6467 /* If we are have (and (rotate X C) M) and C is larger than the number
6468 of bits in M, this is an extraction. */
6470 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6471 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6472 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6473 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6475 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6476 new = make_extraction (mode, new,
6477 (GET_MODE_BITSIZE (mode)
6478 - INTVAL (XEXP (XEXP (x, 0), 1))),
6479 NULL_RTX, i, 1, 0, in_code == COMPARE);
6482 /* On machines without logical shifts, if the operand of the AND is
6483 a logical shift and our mask turns off all the propagated sign
6484 bits, we can replace the logical shift with an arithmetic shift. */
6485 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6486 && !have_insn_for (LSHIFTRT, mode)
6487 && have_insn_for (ASHIFTRT, mode)
6488 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6489 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6490 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6491 && mode_width <= HOST_BITS_PER_WIDE_INT)
6493 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6495 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6496 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6497 SUBST (XEXP (x, 0),
6498 gen_rtx_ASHIFTRT (mode,
6499 make_compound_operation
6500 (XEXP (XEXP (x, 0), 0), next_code),
6501 XEXP (XEXP (x, 0), 1)));
6504 /* If the constant is one less than a power of two, this might be
6505 representable by an extraction even if no shift is present.
6506 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6507 we are in a COMPARE. */
6508 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6509 new = make_extraction (mode,
6510 make_compound_operation (XEXP (x, 0),
6511 next_code),
6512 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6514 /* If we are in a comparison and this is an AND with a power of two,
6515 convert this into the appropriate bit extract. */
6516 else if (in_code == COMPARE
6517 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6518 new = make_extraction (mode,
6519 make_compound_operation (XEXP (x, 0),
6520 next_code),
6521 i, NULL_RTX, 1, 1, 0, 1);
6523 break;
6525 case LSHIFTRT:
6526 /* If the sign bit is known to be zero, replace this with an
6527 arithmetic shift. */
6528 if (have_insn_for (ASHIFTRT, mode)
6529 && ! have_insn_for (LSHIFTRT, mode)
6530 && mode_width <= HOST_BITS_PER_WIDE_INT
6531 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6533 new = gen_rtx_ASHIFTRT (mode,
6534 make_compound_operation (XEXP (x, 0),
6535 next_code),
6536 XEXP (x, 1));
6537 break;
6540 /* ... fall through ... */
6542 case ASHIFTRT:
6543 lhs = XEXP (x, 0);
6544 rhs = XEXP (x, 1);
6546 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6547 this is a SIGN_EXTRACT. */
6548 if (GET_CODE (rhs) == CONST_INT
6549 && GET_CODE (lhs) == ASHIFT
6550 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6551 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6553 new = make_compound_operation (XEXP (lhs, 0), next_code);
6554 new = make_extraction (mode, new,
6555 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6556 NULL_RTX, mode_width - INTVAL (rhs),
6557 code == LSHIFTRT, 0, in_code == COMPARE);
6558 break;
6561 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6562 If so, try to merge the shifts into a SIGN_EXTEND. We could
6563 also do this for some cases of SIGN_EXTRACT, but it doesn't
6564 seem worth the effort; the case checked for occurs on Alpha. */
6566 if (!OBJECT_P (lhs)
6567 && ! (GET_CODE (lhs) == SUBREG
6568 && (OBJECT_P (SUBREG_REG (lhs))))
6569 && GET_CODE (rhs) == CONST_INT
6570 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6571 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6572 new = make_extraction (mode, make_compound_operation (new, next_code),
6573 0, NULL_RTX, mode_width - INTVAL (rhs),
6574 code == LSHIFTRT, 0, in_code == COMPARE);
6576 break;
6578 case SUBREG:
6579 /* Call ourselves recursively on the inner expression. If we are
6580 narrowing the object and it has a different RTL code from
6581 what it originally did, do this SUBREG as a force_to_mode. */
6583 tem = make_compound_operation (SUBREG_REG (x), in_code);
6586 rtx simplified;
6587 simplified = simplify_subreg (GET_MODE (x), tem, GET_MODE (tem),
6588 SUBREG_BYTE (x));
6590 if (simplified)
6591 tem = simplified;
6593 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6594 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6595 && subreg_lowpart_p (x))
6597 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6600 /* If we have something other than a SUBREG, we might have
6601 done an expansion, so rerun ourselves. */
6602 if (GET_CODE (newer) != SUBREG)
6603 newer = make_compound_operation (newer, in_code);
6605 return newer;
6608 if (simplified)
6609 return tem;
6611 break;
6613 default:
6614 break;
6617 if (new)
6619 x = gen_lowpart (mode, new);
6620 code = GET_CODE (x);
6623 /* Now recursively process each operand of this operation. */
6624 fmt = GET_RTX_FORMAT (code);
6625 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6626 if (fmt[i] == 'e')
6628 new = make_compound_operation (XEXP (x, i), next_code);
6629 SUBST (XEXP (x, i), new);
6632 /* If this is a commutative operation, the changes to the operands
6633 may have made it noncanonical. */
6634 if (COMMUTATIVE_ARITH_P (x)
6635 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
6637 tem = XEXP (x, 0);
6638 SUBST (XEXP (x, 0), XEXP (x, 1));
6639 SUBST (XEXP (x, 1), tem);
6642 return x;
6645 /* Given M see if it is a value that would select a field of bits
6646 within an item, but not the entire word. Return -1 if not.
6647 Otherwise, return the starting position of the field, where 0 is the
6648 low-order bit.
6650 *PLEN is set to the length of the field. */
6652 static int
6653 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
6655 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6656 int pos = exact_log2 (m & -m);
6657 int len = 0;
6659 if (pos >= 0)
6660 /* Now shift off the low-order zero bits and see if we have a
6661 power of two minus 1. */
6662 len = exact_log2 ((m >> pos) + 1);
6664 if (len <= 0)
6665 pos = -1;
6667 *plen = len;
6668 return pos;
6671 /* If X refers to a register that equals REG in value, replace these
6672 references with REG. */
6673 static rtx
6674 canon_reg_for_combine (rtx x, rtx reg)
6676 rtx op0, op1, op2;
6677 const char *fmt;
6678 int i;
6679 bool copied;
6681 enum rtx_code code = GET_CODE (x);
6682 switch (GET_RTX_CLASS (code))
6684 case RTX_UNARY:
6685 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
6686 if (op0 != XEXP (x, 0))
6687 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
6688 GET_MODE (reg));
6689 break;
6691 case RTX_BIN_ARITH:
6692 case RTX_COMM_ARITH:
6693 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
6694 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
6695 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
6696 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
6697 break;
6699 case RTX_COMPARE:
6700 case RTX_COMM_COMPARE:
6701 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
6702 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
6703 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
6704 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
6705 GET_MODE (op0), op0, op1);
6706 break;
6708 case RTX_TERNARY:
6709 case RTX_BITFIELD_OPS:
6710 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
6711 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
6712 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
6713 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
6714 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
6715 GET_MODE (op0), op0, op1, op2);
6717 case RTX_OBJ:
6718 if (REG_P (x))
6720 if (rtx_equal_p (get_last_value (reg), x)
6721 || rtx_equal_p (reg, get_last_value (x)))
6722 return reg;
6723 else
6724 break;
6727 /* fall through */
6729 default:
6730 fmt = GET_RTX_FORMAT (code);
6731 copied = false;
6732 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6733 if (fmt[i] == 'e')
6735 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
6736 if (op != XEXP (x, i))
6738 if (!copied)
6740 copied = true;
6741 x = copy_rtx (x);
6743 XEXP (x, i) = op;
6746 else if (fmt[i] == 'E')
6748 int j;
6749 for (j = 0; j < XVECLEN (x, i); j++)
6751 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
6752 if (op != XVECEXP (x, i, j))
6754 if (!copied)
6756 copied = true;
6757 x = copy_rtx (x);
6759 XVECEXP (x, i, j) = op;
6764 break;
6767 return x;
6770 /* Return X converted to MODE. If the value is already truncated to
6771 MODE we can just return a subreg even though in the general case we
6772 would need an explicit truncation. */
6774 static rtx
6775 gen_lowpart_or_truncate (enum machine_mode mode, rtx x)
6777 if (GET_MODE_SIZE (GET_MODE (x)) <= GET_MODE_SIZE (mode)
6778 || TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
6779 GET_MODE_BITSIZE (GET_MODE (x)))
6780 || (REG_P (x) && reg_truncated_to_mode (mode, x)))
6781 return gen_lowpart (mode, x);
6782 else
6783 return simplify_gen_unary (TRUNCATE, mode, x, GET_MODE (x));
6786 /* See if X can be simplified knowing that we will only refer to it in
6787 MODE and will only refer to those bits that are nonzero in MASK.
6788 If other bits are being computed or if masking operations are done
6789 that select a superset of the bits in MASK, they can sometimes be
6790 ignored.
6792 Return a possibly simplified expression, but always convert X to
6793 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6795 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6796 are all off in X. This is used when X will be complemented, by either
6797 NOT, NEG, or XOR. */
6799 static rtx
6800 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
6801 int just_select)
6803 enum rtx_code code = GET_CODE (x);
6804 int next_select = just_select || code == XOR || code == NOT || code == NEG;
6805 enum machine_mode op_mode;
6806 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6807 rtx op0, op1, temp;
6809 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6810 code below will do the wrong thing since the mode of such an
6811 expression is VOIDmode.
6813 Also do nothing if X is a CLOBBER; this can happen if X was
6814 the return value from a call to gen_lowpart. */
6815 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6816 return x;
6818 /* We want to perform the operation is its present mode unless we know
6819 that the operation is valid in MODE, in which case we do the operation
6820 in MODE. */
6821 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6822 && have_insn_for (code, mode))
6823 ? mode : GET_MODE (x));
6825 /* It is not valid to do a right-shift in a narrower mode
6826 than the one it came in with. */
6827 if ((code == LSHIFTRT || code == ASHIFTRT)
6828 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6829 op_mode = GET_MODE (x);
6831 /* Truncate MASK to fit OP_MODE. */
6832 if (op_mode)
6833 mask &= GET_MODE_MASK (op_mode);
6835 /* When we have an arithmetic operation, or a shift whose count we
6836 do not know, we need to assume that all bits up to the highest-order
6837 bit in MASK will be needed. This is how we form such a mask. */
6838 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
6839 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
6840 else
6841 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
6842 - 1);
6844 /* Determine what bits of X are guaranteed to be (non)zero. */
6845 nonzero = nonzero_bits (x, mode);
6847 /* If none of the bits in X are needed, return a zero. */
6848 if (! just_select && (nonzero & mask) == 0)
6849 x = const0_rtx;
6851 /* If X is a CONST_INT, return a new one. Do this here since the
6852 test below will fail. */
6853 if (GET_CODE (x) == CONST_INT)
6855 if (SCALAR_INT_MODE_P (mode))
6856 return gen_int_mode (INTVAL (x) & mask, mode);
6857 else
6859 x = GEN_INT (INTVAL (x) & mask);
6860 return gen_lowpart_common (mode, x);
6864 /* If X is narrower than MODE and we want all the bits in X's mode, just
6865 get X in the proper mode. */
6866 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6867 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
6868 return gen_lowpart (mode, x);
6870 switch (code)
6872 case CLOBBER:
6873 /* If X is a (clobber (const_int)), return it since we know we are
6874 generating something that won't match. */
6875 return x;
6877 case SIGN_EXTEND:
6878 case ZERO_EXTEND:
6879 case ZERO_EXTRACT:
6880 case SIGN_EXTRACT:
6881 x = expand_compound_operation (x);
6882 if (GET_CODE (x) != code)
6883 return force_to_mode (x, mode, mask, next_select);
6884 break;
6886 case SUBREG:
6887 if (subreg_lowpart_p (x)
6888 /* We can ignore the effect of this SUBREG if it narrows the mode or
6889 if the constant masks to zero all the bits the mode doesn't
6890 have. */
6891 && ((GET_MODE_SIZE (GET_MODE (x))
6892 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6893 || (0 == (mask
6894 & GET_MODE_MASK (GET_MODE (x))
6895 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
6896 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
6897 break;
6899 case AND:
6900 /* If this is an AND with a constant, convert it into an AND
6901 whose constant is the AND of that constant with MASK. If it
6902 remains an AND of MASK, delete it since it is redundant. */
6904 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6906 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
6907 mask & INTVAL (XEXP (x, 1)));
6909 /* If X is still an AND, see if it is an AND with a mask that
6910 is just some low-order bits. If so, and it is MASK, we don't
6911 need it. */
6913 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6914 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
6915 == mask))
6916 x = XEXP (x, 0);
6918 /* If it remains an AND, try making another AND with the bits
6919 in the mode mask that aren't in MASK turned on. If the
6920 constant in the AND is wide enough, this might make a
6921 cheaper constant. */
6923 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6924 && GET_MODE_MASK (GET_MODE (x)) != mask
6925 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
6927 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
6928 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
6929 int width = GET_MODE_BITSIZE (GET_MODE (x));
6930 rtx y;
6932 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
6933 number, sign extend it. */
6934 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6935 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6936 cval |= (HOST_WIDE_INT) -1 << width;
6938 y = simplify_gen_binary (AND, GET_MODE (x),
6939 XEXP (x, 0), GEN_INT (cval));
6940 if (rtx_cost (y, SET) < rtx_cost (x, SET))
6941 x = y;
6944 break;
6947 goto binop;
6949 case PLUS:
6950 /* In (and (plus FOO C1) M), if M is a mask that just turns off
6951 low-order bits (as in an alignment operation) and FOO is already
6952 aligned to that boundary, mask C1 to that boundary as well.
6953 This may eliminate that PLUS and, later, the AND. */
6956 unsigned int width = GET_MODE_BITSIZE (mode);
6957 unsigned HOST_WIDE_INT smask = mask;
6959 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
6960 number, sign extend it. */
6962 if (width < HOST_BITS_PER_WIDE_INT
6963 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6964 smask |= (HOST_WIDE_INT) -1 << width;
6966 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6967 && exact_log2 (- smask) >= 0
6968 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
6969 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
6970 return force_to_mode (plus_constant (XEXP (x, 0),
6971 (INTVAL (XEXP (x, 1)) & smask)),
6972 mode, smask, next_select);
6975 /* ... fall through ... */
6977 case MULT:
6978 /* For PLUS, MINUS and MULT, we need any bits less significant than the
6979 most significant bit in MASK since carries from those bits will
6980 affect the bits we are interested in. */
6981 mask = fuller_mask;
6982 goto binop;
6984 case MINUS:
6985 /* If X is (minus C Y) where C's least set bit is larger than any bit
6986 in the mask, then we may replace with (neg Y). */
6987 if (GET_CODE (XEXP (x, 0)) == CONST_INT
6988 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
6989 & -INTVAL (XEXP (x, 0))))
6990 > mask))
6992 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
6993 GET_MODE (x));
6994 return force_to_mode (x, mode, mask, next_select);
6997 /* Similarly, if C contains every bit in the fuller_mask, then we may
6998 replace with (not Y). */
6999 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7000 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
7001 == INTVAL (XEXP (x, 0))))
7003 x = simplify_gen_unary (NOT, GET_MODE (x),
7004 XEXP (x, 1), GET_MODE (x));
7005 return force_to_mode (x, mode, mask, next_select);
7008 mask = fuller_mask;
7009 goto binop;
7011 case IOR:
7012 case XOR:
7013 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
7014 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
7015 operation which may be a bitfield extraction. Ensure that the
7016 constant we form is not wider than the mode of X. */
7018 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7019 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7020 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7021 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7022 && GET_CODE (XEXP (x, 1)) == CONST_INT
7023 && ((INTVAL (XEXP (XEXP (x, 0), 1))
7024 + floor_log2 (INTVAL (XEXP (x, 1))))
7025 < GET_MODE_BITSIZE (GET_MODE (x)))
7026 && (INTVAL (XEXP (x, 1))
7027 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
7029 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
7030 << INTVAL (XEXP (XEXP (x, 0), 1)));
7031 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
7032 XEXP (XEXP (x, 0), 0), temp);
7033 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
7034 XEXP (XEXP (x, 0), 1));
7035 return force_to_mode (x, mode, mask, next_select);
7038 binop:
7039 /* For most binary operations, just propagate into the operation and
7040 change the mode if we have an operation of that mode. */
7042 op0 = gen_lowpart_or_truncate (op_mode,
7043 force_to_mode (XEXP (x, 0), mode, mask,
7044 next_select));
7045 op1 = gen_lowpart_or_truncate (op_mode,
7046 force_to_mode (XEXP (x, 1), mode, mask,
7047 next_select));
7049 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7050 x = simplify_gen_binary (code, op_mode, op0, op1);
7051 break;
7053 case ASHIFT:
7054 /* For left shifts, do the same, but just for the first operand.
7055 However, we cannot do anything with shifts where we cannot
7056 guarantee that the counts are smaller than the size of the mode
7057 because such a count will have a different meaning in a
7058 wider mode. */
7060 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
7061 && INTVAL (XEXP (x, 1)) >= 0
7062 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7063 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7064 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
7065 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
7066 break;
7068 /* If the shift count is a constant and we can do arithmetic in
7069 the mode of the shift, refine which bits we need. Otherwise, use the
7070 conservative form of the mask. */
7071 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7072 && INTVAL (XEXP (x, 1)) >= 0
7073 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7074 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7075 mask >>= INTVAL (XEXP (x, 1));
7076 else
7077 mask = fuller_mask;
7079 op0 = gen_lowpart_or_truncate (op_mode,
7080 force_to_mode (XEXP (x, 0), op_mode,
7081 mask, next_select));
7083 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7084 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
7085 break;
7087 case LSHIFTRT:
7088 /* Here we can only do something if the shift count is a constant,
7089 this shift constant is valid for the host, and we can do arithmetic
7090 in OP_MODE. */
7092 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7093 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7094 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7096 rtx inner = XEXP (x, 0);
7097 unsigned HOST_WIDE_INT inner_mask;
7099 /* Select the mask of the bits we need for the shift operand. */
7100 inner_mask = mask << INTVAL (XEXP (x, 1));
7102 /* We can only change the mode of the shift if we can do arithmetic
7103 in the mode of the shift and INNER_MASK is no wider than the
7104 width of X's mode. */
7105 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
7106 op_mode = GET_MODE (x);
7108 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
7110 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7111 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7114 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7115 shift and AND produces only copies of the sign bit (C2 is one less
7116 than a power of two), we can do this with just a shift. */
7118 if (GET_CODE (x) == LSHIFTRT
7119 && GET_CODE (XEXP (x, 1)) == CONST_INT
7120 /* The shift puts one of the sign bit copies in the least significant
7121 bit. */
7122 && ((INTVAL (XEXP (x, 1))
7123 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7124 >= GET_MODE_BITSIZE (GET_MODE (x)))
7125 && exact_log2 (mask + 1) >= 0
7126 /* Number of bits left after the shift must be more than the mask
7127 needs. */
7128 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7129 <= GET_MODE_BITSIZE (GET_MODE (x)))
7130 /* Must be more sign bit copies than the mask needs. */
7131 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7132 >= exact_log2 (mask + 1)))
7133 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7134 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7135 - exact_log2 (mask + 1)));
7137 goto shiftrt;
7139 case ASHIFTRT:
7140 /* If we are just looking for the sign bit, we don't need this shift at
7141 all, even if it has a variable count. */
7142 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7143 && (mask == ((unsigned HOST_WIDE_INT) 1
7144 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7145 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
7147 /* If this is a shift by a constant, get a mask that contains those bits
7148 that are not copies of the sign bit. We then have two cases: If
7149 MASK only includes those bits, this can be a logical shift, which may
7150 allow simplifications. If MASK is a single-bit field not within
7151 those bits, we are requesting a copy of the sign bit and hence can
7152 shift the sign bit to the appropriate location. */
7154 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7155 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7157 int i;
7159 /* If the considered data is wider than HOST_WIDE_INT, we can't
7160 represent a mask for all its bits in a single scalar.
7161 But we only care about the lower bits, so calculate these. */
7163 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7165 nonzero = ~(HOST_WIDE_INT) 0;
7167 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7168 is the number of bits a full-width mask would have set.
7169 We need only shift if these are fewer than nonzero can
7170 hold. If not, we must keep all bits set in nonzero. */
7172 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7173 < HOST_BITS_PER_WIDE_INT)
7174 nonzero >>= INTVAL (XEXP (x, 1))
7175 + HOST_BITS_PER_WIDE_INT
7176 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7178 else
7180 nonzero = GET_MODE_MASK (GET_MODE (x));
7181 nonzero >>= INTVAL (XEXP (x, 1));
7184 if ((mask & ~nonzero) == 0)
7186 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
7187 XEXP (x, 0), INTVAL (XEXP (x, 1)));
7188 if (GET_CODE (x) != ASHIFTRT)
7189 return force_to_mode (x, mode, mask, next_select);
7192 else if ((i = exact_log2 (mask)) >= 0)
7194 x = simplify_shift_const
7195 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7196 GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7198 if (GET_CODE (x) != ASHIFTRT)
7199 return force_to_mode (x, mode, mask, next_select);
7203 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7204 even if the shift count isn't a constant. */
7205 if (mask == 1)
7206 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7207 XEXP (x, 0), XEXP (x, 1));
7209 shiftrt:
7211 /* If this is a zero- or sign-extension operation that just affects bits
7212 we don't care about, remove it. Be sure the call above returned
7213 something that is still a shift. */
7215 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7216 && GET_CODE (XEXP (x, 1)) == CONST_INT
7217 && INTVAL (XEXP (x, 1)) >= 0
7218 && (INTVAL (XEXP (x, 1))
7219 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7220 && GET_CODE (XEXP (x, 0)) == ASHIFT
7221 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
7222 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7223 next_select);
7225 break;
7227 case ROTATE:
7228 case ROTATERT:
7229 /* If the shift count is constant and we can do computations
7230 in the mode of X, compute where the bits we care about are.
7231 Otherwise, we can't do anything. Don't change the mode of
7232 the shift or propagate MODE into the shift, though. */
7233 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7234 && INTVAL (XEXP (x, 1)) >= 0)
7236 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7237 GET_MODE (x), GEN_INT (mask),
7238 XEXP (x, 1));
7239 if (temp && GET_CODE (temp) == CONST_INT)
7240 SUBST (XEXP (x, 0),
7241 force_to_mode (XEXP (x, 0), GET_MODE (x),
7242 INTVAL (temp), next_select));
7244 break;
7246 case NEG:
7247 /* If we just want the low-order bit, the NEG isn't needed since it
7248 won't change the low-order bit. */
7249 if (mask == 1)
7250 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
7252 /* We need any bits less significant than the most significant bit in
7253 MASK since carries from those bits will affect the bits we are
7254 interested in. */
7255 mask = fuller_mask;
7256 goto unop;
7258 case NOT:
7259 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7260 same as the XOR case above. Ensure that the constant we form is not
7261 wider than the mode of X. */
7263 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7264 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7265 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7266 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7267 < GET_MODE_BITSIZE (GET_MODE (x)))
7268 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7270 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
7271 GET_MODE (x));
7272 temp = simplify_gen_binary (XOR, GET_MODE (x),
7273 XEXP (XEXP (x, 0), 0), temp);
7274 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7275 temp, XEXP (XEXP (x, 0), 1));
7277 return force_to_mode (x, mode, mask, next_select);
7280 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7281 use the full mask inside the NOT. */
7282 mask = fuller_mask;
7284 unop:
7285 op0 = gen_lowpart_or_truncate (op_mode,
7286 force_to_mode (XEXP (x, 0), mode, mask,
7287 next_select));
7288 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7289 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7290 break;
7292 case NE:
7293 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7294 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7295 which is equal to STORE_FLAG_VALUE. */
7296 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7297 && GET_MODE (XEXP (x, 0)) == mode
7298 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7299 && (nonzero_bits (XEXP (x, 0), mode)
7300 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
7301 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
7303 break;
7305 case IF_THEN_ELSE:
7306 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7307 written in a narrower mode. We play it safe and do not do so. */
7309 SUBST (XEXP (x, 1),
7310 gen_lowpart_or_truncate (GET_MODE (x),
7311 force_to_mode (XEXP (x, 1), mode,
7312 mask, next_select)));
7313 SUBST (XEXP (x, 2),
7314 gen_lowpart_or_truncate (GET_MODE (x),
7315 force_to_mode (XEXP (x, 2), mode,
7316 mask, next_select)));
7317 break;
7319 default:
7320 break;
7323 /* Ensure we return a value of the proper mode. */
7324 return gen_lowpart_or_truncate (mode, x);
7327 /* Return nonzero if X is an expression that has one of two values depending on
7328 whether some other value is zero or nonzero. In that case, we return the
7329 value that is being tested, *PTRUE is set to the value if the rtx being
7330 returned has a nonzero value, and *PFALSE is set to the other alternative.
7332 If we return zero, we set *PTRUE and *PFALSE to X. */
7334 static rtx
7335 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
7337 enum machine_mode mode = GET_MODE (x);
7338 enum rtx_code code = GET_CODE (x);
7339 rtx cond0, cond1, true0, true1, false0, false1;
7340 unsigned HOST_WIDE_INT nz;
7342 /* If we are comparing a value against zero, we are done. */
7343 if ((code == NE || code == EQ)
7344 && XEXP (x, 1) == const0_rtx)
7346 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7347 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7348 return XEXP (x, 0);
7351 /* If this is a unary operation whose operand has one of two values, apply
7352 our opcode to compute those values. */
7353 else if (UNARY_P (x)
7354 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7356 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7357 *pfalse = simplify_gen_unary (code, mode, false0,
7358 GET_MODE (XEXP (x, 0)));
7359 return cond0;
7362 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7363 make can't possibly match and would suppress other optimizations. */
7364 else if (code == COMPARE)
7367 /* If this is a binary operation, see if either side has only one of two
7368 values. If either one does or if both do and they are conditional on
7369 the same value, compute the new true and false values. */
7370 else if (BINARY_P (x))
7372 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7373 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7375 if ((cond0 != 0 || cond1 != 0)
7376 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7378 /* If if_then_else_cond returned zero, then true/false are the
7379 same rtl. We must copy one of them to prevent invalid rtl
7380 sharing. */
7381 if (cond0 == 0)
7382 true0 = copy_rtx (true0);
7383 else if (cond1 == 0)
7384 true1 = copy_rtx (true1);
7386 if (COMPARISON_P (x))
7388 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
7389 true0, true1);
7390 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
7391 false0, false1);
7393 else
7395 *ptrue = simplify_gen_binary (code, mode, true0, true1);
7396 *pfalse = simplify_gen_binary (code, mode, false0, false1);
7399 return cond0 ? cond0 : cond1;
7402 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7403 operands is zero when the other is nonzero, and vice-versa,
7404 and STORE_FLAG_VALUE is 1 or -1. */
7406 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7407 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7408 || code == UMAX)
7409 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7411 rtx op0 = XEXP (XEXP (x, 0), 1);
7412 rtx op1 = XEXP (XEXP (x, 1), 1);
7414 cond0 = XEXP (XEXP (x, 0), 0);
7415 cond1 = XEXP (XEXP (x, 1), 0);
7417 if (COMPARISON_P (cond0)
7418 && COMPARISON_P (cond1)
7419 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7420 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7421 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7422 || ((swap_condition (GET_CODE (cond0))
7423 == reversed_comparison_code (cond1, NULL))
7424 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7425 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7426 && ! side_effects_p (x))
7428 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
7429 *pfalse = simplify_gen_binary (MULT, mode,
7430 (code == MINUS
7431 ? simplify_gen_unary (NEG, mode,
7432 op1, mode)
7433 : op1),
7434 const_true_rtx);
7435 return cond0;
7439 /* Similarly for MULT, AND and UMIN, except that for these the result
7440 is always zero. */
7441 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7442 && (code == MULT || code == AND || code == UMIN)
7443 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7445 cond0 = XEXP (XEXP (x, 0), 0);
7446 cond1 = XEXP (XEXP (x, 1), 0);
7448 if (COMPARISON_P (cond0)
7449 && COMPARISON_P (cond1)
7450 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7451 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7452 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7453 || ((swap_condition (GET_CODE (cond0))
7454 == reversed_comparison_code (cond1, NULL))
7455 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7456 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7457 && ! side_effects_p (x))
7459 *ptrue = *pfalse = const0_rtx;
7460 return cond0;
7465 else if (code == IF_THEN_ELSE)
7467 /* If we have IF_THEN_ELSE already, extract the condition and
7468 canonicalize it if it is NE or EQ. */
7469 cond0 = XEXP (x, 0);
7470 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7471 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7472 return XEXP (cond0, 0);
7473 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7475 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7476 return XEXP (cond0, 0);
7478 else
7479 return cond0;
7482 /* If X is a SUBREG, we can narrow both the true and false values
7483 if the inner expression, if there is a condition. */
7484 else if (code == SUBREG
7485 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7486 &true0, &false0)))
7488 true0 = simplify_gen_subreg (mode, true0,
7489 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7490 false0 = simplify_gen_subreg (mode, false0,
7491 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7492 if (true0 && false0)
7494 *ptrue = true0;
7495 *pfalse = false0;
7496 return cond0;
7500 /* If X is a constant, this isn't special and will cause confusions
7501 if we treat it as such. Likewise if it is equivalent to a constant. */
7502 else if (CONSTANT_P (x)
7503 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7506 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7507 will be least confusing to the rest of the compiler. */
7508 else if (mode == BImode)
7510 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7511 return x;
7514 /* If X is known to be either 0 or -1, those are the true and
7515 false values when testing X. */
7516 else if (x == constm1_rtx || x == const0_rtx
7517 || (mode != VOIDmode
7518 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7520 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7521 return x;
7524 /* Likewise for 0 or a single bit. */
7525 else if (SCALAR_INT_MODE_P (mode)
7526 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7527 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7529 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
7530 return x;
7533 /* Otherwise fail; show no condition with true and false values the same. */
7534 *ptrue = *pfalse = x;
7535 return 0;
7538 /* Return the value of expression X given the fact that condition COND
7539 is known to be true when applied to REG as its first operand and VAL
7540 as its second. X is known to not be shared and so can be modified in
7541 place.
7543 We only handle the simplest cases, and specifically those cases that
7544 arise with IF_THEN_ELSE expressions. */
7546 static rtx
7547 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
7549 enum rtx_code code = GET_CODE (x);
7550 rtx temp;
7551 const char *fmt;
7552 int i, j;
7554 if (side_effects_p (x))
7555 return x;
7557 /* If either operand of the condition is a floating point value,
7558 then we have to avoid collapsing an EQ comparison. */
7559 if (cond == EQ
7560 && rtx_equal_p (x, reg)
7561 && ! FLOAT_MODE_P (GET_MODE (x))
7562 && ! FLOAT_MODE_P (GET_MODE (val)))
7563 return val;
7565 if (cond == UNEQ && rtx_equal_p (x, reg))
7566 return val;
7568 /* If X is (abs REG) and we know something about REG's relationship
7569 with zero, we may be able to simplify this. */
7571 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7572 switch (cond)
7574 case GE: case GT: case EQ:
7575 return XEXP (x, 0);
7576 case LT: case LE:
7577 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7578 XEXP (x, 0),
7579 GET_MODE (XEXP (x, 0)));
7580 default:
7581 break;
7584 /* The only other cases we handle are MIN, MAX, and comparisons if the
7585 operands are the same as REG and VAL. */
7587 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
7589 if (rtx_equal_p (XEXP (x, 0), val))
7590 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7592 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7594 if (COMPARISON_P (x))
7596 if (comparison_dominates_p (cond, code))
7597 return const_true_rtx;
7599 code = reversed_comparison_code (x, NULL);
7600 if (code != UNKNOWN
7601 && comparison_dominates_p (cond, code))
7602 return const0_rtx;
7603 else
7604 return x;
7606 else if (code == SMAX || code == SMIN
7607 || code == UMIN || code == UMAX)
7609 int unsignedp = (code == UMIN || code == UMAX);
7611 /* Do not reverse the condition when it is NE or EQ.
7612 This is because we cannot conclude anything about
7613 the value of 'SMAX (x, y)' when x is not equal to y,
7614 but we can when x equals y. */
7615 if ((code == SMAX || code == UMAX)
7616 && ! (cond == EQ || cond == NE))
7617 cond = reverse_condition (cond);
7619 switch (cond)
7621 case GE: case GT:
7622 return unsignedp ? x : XEXP (x, 1);
7623 case LE: case LT:
7624 return unsignedp ? x : XEXP (x, 0);
7625 case GEU: case GTU:
7626 return unsignedp ? XEXP (x, 1) : x;
7627 case LEU: case LTU:
7628 return unsignedp ? XEXP (x, 0) : x;
7629 default:
7630 break;
7635 else if (code == SUBREG)
7637 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
7638 rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
7640 if (SUBREG_REG (x) != r)
7642 /* We must simplify subreg here, before we lose track of the
7643 original inner_mode. */
7644 new = simplify_subreg (GET_MODE (x), r,
7645 inner_mode, SUBREG_BYTE (x));
7646 if (new)
7647 return new;
7648 else
7649 SUBST (SUBREG_REG (x), r);
7652 return x;
7654 /* We don't have to handle SIGN_EXTEND here, because even in the
7655 case of replacing something with a modeless CONST_INT, a
7656 CONST_INT is already (supposed to be) a valid sign extension for
7657 its narrower mode, which implies it's already properly
7658 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
7659 story is different. */
7660 else if (code == ZERO_EXTEND)
7662 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
7663 rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
7665 if (XEXP (x, 0) != r)
7667 /* We must simplify the zero_extend here, before we lose
7668 track of the original inner_mode. */
7669 new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
7670 r, inner_mode);
7671 if (new)
7672 return new;
7673 else
7674 SUBST (XEXP (x, 0), r);
7677 return x;
7680 fmt = GET_RTX_FORMAT (code);
7681 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7683 if (fmt[i] == 'e')
7684 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7685 else if (fmt[i] == 'E')
7686 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7687 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7688 cond, reg, val));
7691 return x;
7694 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7695 assignment as a field assignment. */
7697 static int
7698 rtx_equal_for_field_assignment_p (rtx x, rtx y)
7700 if (x == y || rtx_equal_p (x, y))
7701 return 1;
7703 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7704 return 0;
7706 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7707 Note that all SUBREGs of MEM are paradoxical; otherwise they
7708 would have been rewritten. */
7709 if (MEM_P (x) && GET_CODE (y) == SUBREG
7710 && MEM_P (SUBREG_REG (y))
7711 && rtx_equal_p (SUBREG_REG (y),
7712 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
7713 return 1;
7715 if (MEM_P (y) && GET_CODE (x) == SUBREG
7716 && MEM_P (SUBREG_REG (x))
7717 && rtx_equal_p (SUBREG_REG (x),
7718 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
7719 return 1;
7721 /* We used to see if get_last_value of X and Y were the same but that's
7722 not correct. In one direction, we'll cause the assignment to have
7723 the wrong destination and in the case, we'll import a register into this
7724 insn that might have already have been dead. So fail if none of the
7725 above cases are true. */
7726 return 0;
7729 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7730 Return that assignment if so.
7732 We only handle the most common cases. */
7734 static rtx
7735 make_field_assignment (rtx x)
7737 rtx dest = SET_DEST (x);
7738 rtx src = SET_SRC (x);
7739 rtx assign;
7740 rtx rhs, lhs;
7741 HOST_WIDE_INT c1;
7742 HOST_WIDE_INT pos;
7743 unsigned HOST_WIDE_INT len;
7744 rtx other;
7745 enum machine_mode mode;
7747 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7748 a clear of a one-bit field. We will have changed it to
7749 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7750 for a SUBREG. */
7752 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7753 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7754 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7755 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7757 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7758 1, 1, 1, 0);
7759 if (assign != 0)
7760 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7761 return x;
7764 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7765 && subreg_lowpart_p (XEXP (src, 0))
7766 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7767 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7768 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7769 && GET_CODE (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == CONST_INT
7770 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7771 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7773 assign = make_extraction (VOIDmode, dest, 0,
7774 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7775 1, 1, 1, 0);
7776 if (assign != 0)
7777 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7778 return x;
7781 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7782 one-bit field. */
7783 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7784 && XEXP (XEXP (src, 0), 0) == const1_rtx
7785 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7787 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7788 1, 1, 1, 0);
7789 if (assign != 0)
7790 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7791 return x;
7794 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
7795 SRC is an AND with all bits of that field set, then we can discard
7796 the AND. */
7797 if (GET_CODE (dest) == ZERO_EXTRACT
7798 && GET_CODE (XEXP (dest, 1)) == CONST_INT
7799 && GET_CODE (src) == AND
7800 && GET_CODE (XEXP (src, 1)) == CONST_INT)
7802 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
7803 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
7804 unsigned HOST_WIDE_INT ze_mask;
7806 if (width >= HOST_BITS_PER_WIDE_INT)
7807 ze_mask = -1;
7808 else
7809 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
7811 /* Complete overlap. We can remove the source AND. */
7812 if ((and_mask & ze_mask) == ze_mask)
7813 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
7815 /* Partial overlap. We can reduce the source AND. */
7816 if ((and_mask & ze_mask) != and_mask)
7818 mode = GET_MODE (src);
7819 src = gen_rtx_AND (mode, XEXP (src, 0),
7820 gen_int_mode (and_mask & ze_mask, mode));
7821 return gen_rtx_SET (VOIDmode, dest, src);
7825 /* The other case we handle is assignments into a constant-position
7826 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7827 a mask that has all one bits except for a group of zero bits and
7828 OTHER is known to have zeros where C1 has ones, this is such an
7829 assignment. Compute the position and length from C1. Shift OTHER
7830 to the appropriate position, force it to the required mode, and
7831 make the extraction. Check for the AND in both operands. */
7833 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7834 return x;
7836 rhs = expand_compound_operation (XEXP (src, 0));
7837 lhs = expand_compound_operation (XEXP (src, 1));
7839 if (GET_CODE (rhs) == AND
7840 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7841 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7842 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7843 else if (GET_CODE (lhs) == AND
7844 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7845 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7846 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7847 else
7848 return x;
7850 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7851 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7852 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7853 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7854 return x;
7856 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7857 if (assign == 0)
7858 return x;
7860 /* The mode to use for the source is the mode of the assignment, or of
7861 what is inside a possible STRICT_LOW_PART. */
7862 mode = (GET_CODE (assign) == STRICT_LOW_PART
7863 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
7865 /* Shift OTHER right POS places and make it the source, restricting it
7866 to the proper length and mode. */
7868 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
7869 GET_MODE (src),
7870 other, pos),
7871 dest);
7872 src = force_to_mode (src, mode,
7873 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
7874 ? ~(unsigned HOST_WIDE_INT) 0
7875 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7878 /* If SRC is masked by an AND that does not make a difference in
7879 the value being stored, strip it. */
7880 if (GET_CODE (assign) == ZERO_EXTRACT
7881 && GET_CODE (XEXP (assign, 1)) == CONST_INT
7882 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
7883 && GET_CODE (src) == AND
7884 && GET_CODE (XEXP (src, 1)) == CONST_INT
7885 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
7886 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
7887 src = XEXP (src, 0);
7889 return gen_rtx_SET (VOIDmode, assign, src);
7892 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7893 if so. */
7895 static rtx
7896 apply_distributive_law (rtx x)
7898 enum rtx_code code = GET_CODE (x);
7899 enum rtx_code inner_code;
7900 rtx lhs, rhs, other;
7901 rtx tem;
7903 /* Distributivity is not true for floating point as it can change the
7904 value. So we don't do it unless -funsafe-math-optimizations. */
7905 if (FLOAT_MODE_P (GET_MODE (x))
7906 && ! flag_unsafe_math_optimizations)
7907 return x;
7909 /* The outer operation can only be one of the following: */
7910 if (code != IOR && code != AND && code != XOR
7911 && code != PLUS && code != MINUS)
7912 return x;
7914 lhs = XEXP (x, 0);
7915 rhs = XEXP (x, 1);
7917 /* If either operand is a primitive we can't do anything, so get out
7918 fast. */
7919 if (OBJECT_P (lhs) || OBJECT_P (rhs))
7920 return x;
7922 lhs = expand_compound_operation (lhs);
7923 rhs = expand_compound_operation (rhs);
7924 inner_code = GET_CODE (lhs);
7925 if (inner_code != GET_CODE (rhs))
7926 return x;
7928 /* See if the inner and outer operations distribute. */
7929 switch (inner_code)
7931 case LSHIFTRT:
7932 case ASHIFTRT:
7933 case AND:
7934 case IOR:
7935 /* These all distribute except over PLUS. */
7936 if (code == PLUS || code == MINUS)
7937 return x;
7938 break;
7940 case MULT:
7941 if (code != PLUS && code != MINUS)
7942 return x;
7943 break;
7945 case ASHIFT:
7946 /* This is also a multiply, so it distributes over everything. */
7947 break;
7949 case SUBREG:
7950 /* Non-paradoxical SUBREGs distributes over all operations,
7951 provided the inner modes and byte offsets are the same, this
7952 is an extraction of a low-order part, we don't convert an fp
7953 operation to int or vice versa, this is not a vector mode,
7954 and we would not be converting a single-word operation into a
7955 multi-word operation. The latter test is not required, but
7956 it prevents generating unneeded multi-word operations. Some
7957 of the previous tests are redundant given the latter test,
7958 but are retained because they are required for correctness.
7960 We produce the result slightly differently in this case. */
7962 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
7963 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
7964 || ! subreg_lowpart_p (lhs)
7965 || (GET_MODE_CLASS (GET_MODE (lhs))
7966 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
7967 || (GET_MODE_SIZE (GET_MODE (lhs))
7968 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
7969 || VECTOR_MODE_P (GET_MODE (lhs))
7970 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD
7971 /* Result might need to be truncated. Don't change mode if
7972 explicit truncation is needed. */
7973 || !TRULY_NOOP_TRUNCATION
7974 (GET_MODE_BITSIZE (GET_MODE (x)),
7975 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (lhs)))))
7976 return x;
7978 tem = simplify_gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
7979 SUBREG_REG (lhs), SUBREG_REG (rhs));
7980 return gen_lowpart (GET_MODE (x), tem);
7982 default:
7983 return x;
7986 /* Set LHS and RHS to the inner operands (A and B in the example
7987 above) and set OTHER to the common operand (C in the example).
7988 There is only one way to do this unless the inner operation is
7989 commutative. */
7990 if (COMMUTATIVE_ARITH_P (lhs)
7991 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
7992 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
7993 else if (COMMUTATIVE_ARITH_P (lhs)
7994 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
7995 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
7996 else if (COMMUTATIVE_ARITH_P (lhs)
7997 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
7998 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
7999 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
8000 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
8001 else
8002 return x;
8004 /* Form the new inner operation, seeing if it simplifies first. */
8005 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
8007 /* There is one exception to the general way of distributing:
8008 (a | c) ^ (b | c) -> (a ^ b) & ~c */
8009 if (code == XOR && inner_code == IOR)
8011 inner_code = AND;
8012 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
8015 /* We may be able to continuing distributing the result, so call
8016 ourselves recursively on the inner operation before forming the
8017 outer operation, which we return. */
8018 return simplify_gen_binary (inner_code, GET_MODE (x),
8019 apply_distributive_law (tem), other);
8022 /* See if X is of the form (* (+ A B) C), and if so convert to
8023 (+ (* A C) (* B C)) and try to simplify.
8025 Most of the time, this results in no change. However, if some of
8026 the operands are the same or inverses of each other, simplifications
8027 will result.
8029 For example, (and (ior A B) (not B)) can occur as the result of
8030 expanding a bit field assignment. When we apply the distributive
8031 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
8032 which then simplifies to (and (A (not B))).
8034 Note that no checks happen on the validity of applying the inverse
8035 distributive law. This is pointless since we can do it in the
8036 few places where this routine is called.
8038 N is the index of the term that is decomposed (the arithmetic operation,
8039 i.e. (+ A B) in the first example above). !N is the index of the term that
8040 is distributed, i.e. of C in the first example above. */
8041 static rtx
8042 distribute_and_simplify_rtx (rtx x, int n)
8044 enum machine_mode mode;
8045 enum rtx_code outer_code, inner_code;
8046 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
8048 decomposed = XEXP (x, n);
8049 if (!ARITHMETIC_P (decomposed))
8050 return NULL_RTX;
8052 mode = GET_MODE (x);
8053 outer_code = GET_CODE (x);
8054 distributed = XEXP (x, !n);
8056 inner_code = GET_CODE (decomposed);
8057 inner_op0 = XEXP (decomposed, 0);
8058 inner_op1 = XEXP (decomposed, 1);
8060 /* Special case (and (xor B C) (not A)), which is equivalent to
8061 (xor (ior A B) (ior A C)) */
8062 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
8064 distributed = XEXP (distributed, 0);
8065 outer_code = IOR;
8068 if (n == 0)
8070 /* Distribute the second term. */
8071 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
8072 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
8074 else
8076 /* Distribute the first term. */
8077 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
8078 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
8081 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
8082 new_op0, new_op1));
8083 if (GET_CODE (tmp) != outer_code
8084 && rtx_cost (tmp, SET) < rtx_cost (x, SET))
8085 return tmp;
8087 return NULL_RTX;
8090 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
8091 in MODE. Return an equivalent form, if different from (and VAROP
8092 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
8094 static rtx
8095 simplify_and_const_int_1 (enum machine_mode mode, rtx varop,
8096 unsigned HOST_WIDE_INT constop)
8098 unsigned HOST_WIDE_INT nonzero;
8099 unsigned HOST_WIDE_INT orig_constop;
8100 rtx orig_varop;
8101 int i;
8103 orig_varop = varop;
8104 orig_constop = constop;
8105 if (GET_CODE (varop) == CLOBBER)
8106 return NULL_RTX;
8108 /* Simplify VAROP knowing that we will be only looking at some of the
8109 bits in it.
8111 Note by passing in CONSTOP, we guarantee that the bits not set in
8112 CONSTOP are not significant and will never be examined. We must
8113 ensure that is the case by explicitly masking out those bits
8114 before returning. */
8115 varop = force_to_mode (varop, mode, constop, 0);
8117 /* If VAROP is a CLOBBER, we will fail so return it. */
8118 if (GET_CODE (varop) == CLOBBER)
8119 return varop;
8121 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
8122 to VAROP and return the new constant. */
8123 if (GET_CODE (varop) == CONST_INT)
8124 return gen_int_mode (INTVAL (varop) & constop, mode);
8126 /* See what bits may be nonzero in VAROP. Unlike the general case of
8127 a call to nonzero_bits, here we don't care about bits outside
8128 MODE. */
8130 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
8132 /* Turn off all bits in the constant that are known to already be zero.
8133 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
8134 which is tested below. */
8136 constop &= nonzero;
8138 /* If we don't have any bits left, return zero. */
8139 if (constop == 0)
8140 return const0_rtx;
8142 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
8143 a power of two, we can replace this with an ASHIFT. */
8144 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
8145 && (i = exact_log2 (constop)) >= 0)
8146 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
8148 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
8149 or XOR, then try to apply the distributive law. This may eliminate
8150 operations if either branch can be simplified because of the AND.
8151 It may also make some cases more complex, but those cases probably
8152 won't match a pattern either with or without this. */
8154 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
8155 return
8156 gen_lowpart
8157 (mode,
8158 apply_distributive_law
8159 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
8160 simplify_and_const_int (NULL_RTX,
8161 GET_MODE (varop),
8162 XEXP (varop, 0),
8163 constop),
8164 simplify_and_const_int (NULL_RTX,
8165 GET_MODE (varop),
8166 XEXP (varop, 1),
8167 constop))));
8169 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
8170 the AND and see if one of the operands simplifies to zero. If so, we
8171 may eliminate it. */
8173 if (GET_CODE (varop) == PLUS
8174 && exact_log2 (constop + 1) >= 0)
8176 rtx o0, o1;
8178 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8179 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8180 if (o0 == const0_rtx)
8181 return o1;
8182 if (o1 == const0_rtx)
8183 return o0;
8186 /* Make a SUBREG if necessary. If we can't make it, fail. */
8187 varop = gen_lowpart (mode, varop);
8188 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
8189 return NULL_RTX;
8191 /* If we are only masking insignificant bits, return VAROP. */
8192 if (constop == nonzero)
8193 return varop;
8195 if (varop == orig_varop && constop == orig_constop)
8196 return NULL_RTX;
8198 /* Otherwise, return an AND. */
8199 constop = trunc_int_for_mode (constop, mode);
8200 return simplify_gen_binary (AND, mode, varop, GEN_INT (constop));
8204 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
8205 in MODE.
8207 Return an equivalent form, if different from X. Otherwise, return X. If
8208 X is zero, we are to always construct the equivalent form. */
8210 static rtx
8211 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
8212 unsigned HOST_WIDE_INT constop)
8214 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
8215 if (tem)
8216 return tem;
8218 if (!x)
8219 x = simplify_gen_binary (AND, GET_MODE (varop), varop, GEN_INT (constop));
8220 if (GET_MODE (x) != mode)
8221 x = gen_lowpart (mode, x);
8222 return x;
8225 /* Given a REG, X, compute which bits in X can be nonzero.
8226 We don't care about bits outside of those defined in MODE.
8228 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8229 a shift, AND, or zero_extract, we can do better. */
8231 static rtx
8232 reg_nonzero_bits_for_combine (rtx x, enum machine_mode mode,
8233 rtx known_x ATTRIBUTE_UNUSED,
8234 enum machine_mode known_mode ATTRIBUTE_UNUSED,
8235 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
8236 unsigned HOST_WIDE_INT *nonzero)
8238 rtx tem;
8240 /* If X is a register whose nonzero bits value is current, use it.
8241 Otherwise, if X is a register whose value we can find, use that
8242 value. Otherwise, use the previously-computed global nonzero bits
8243 for this register. */
8245 if (reg_stat[REGNO (x)].last_set_value != 0
8246 && (reg_stat[REGNO (x)].last_set_mode == mode
8247 || (GET_MODE_CLASS (reg_stat[REGNO (x)].last_set_mode) == MODE_INT
8248 && GET_MODE_CLASS (mode) == MODE_INT))
8249 && (reg_stat[REGNO (x)].last_set_label == label_tick
8250 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8251 && REG_N_SETS (REGNO (x)) == 1
8252 && ! REGNO_REG_SET_P
8253 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
8254 REGNO (x))))
8255 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8257 *nonzero &= reg_stat[REGNO (x)].last_set_nonzero_bits;
8258 return NULL;
8261 tem = get_last_value (x);
8263 if (tem)
8265 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8266 /* If X is narrower than MODE and TEM is a non-negative
8267 constant that would appear negative in the mode of X,
8268 sign-extend it for use in reg_nonzero_bits because some
8269 machines (maybe most) will actually do the sign-extension
8270 and this is the conservative approach.
8272 ??? For 2.5, try to tighten up the MD files in this regard
8273 instead of this kludge. */
8275 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode)
8276 && GET_CODE (tem) == CONST_INT
8277 && INTVAL (tem) > 0
8278 && 0 != (INTVAL (tem)
8279 & ((HOST_WIDE_INT) 1
8280 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8281 tem = GEN_INT (INTVAL (tem)
8282 | ((HOST_WIDE_INT) (-1)
8283 << GET_MODE_BITSIZE (GET_MODE (x))));
8284 #endif
8285 return tem;
8287 else if (nonzero_sign_valid && reg_stat[REGNO (x)].nonzero_bits)
8289 unsigned HOST_WIDE_INT mask = reg_stat[REGNO (x)].nonzero_bits;
8291 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode))
8292 /* We don't know anything about the upper bits. */
8293 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8294 *nonzero &= mask;
8297 return NULL;
8300 /* Return the number of bits at the high-order end of X that are known to
8301 be equal to the sign bit. X will be used in mode MODE; if MODE is
8302 VOIDmode, X will be used in its own mode. The returned value will always
8303 be between 1 and the number of bits in MODE. */
8305 static rtx
8306 reg_num_sign_bit_copies_for_combine (rtx x, enum machine_mode mode,
8307 rtx known_x ATTRIBUTE_UNUSED,
8308 enum machine_mode known_mode
8309 ATTRIBUTE_UNUSED,
8310 unsigned int known_ret ATTRIBUTE_UNUSED,
8311 unsigned int *result)
8313 rtx tem;
8315 if (reg_stat[REGNO (x)].last_set_value != 0
8316 && reg_stat[REGNO (x)].last_set_mode == mode
8317 && (reg_stat[REGNO (x)].last_set_label == label_tick
8318 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8319 && REG_N_SETS (REGNO (x)) == 1
8320 && ! REGNO_REG_SET_P
8321 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
8322 REGNO (x))))
8323 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8325 *result = reg_stat[REGNO (x)].last_set_sign_bit_copies;
8326 return NULL;
8329 tem = get_last_value (x);
8330 if (tem != 0)
8331 return tem;
8333 if (nonzero_sign_valid && reg_stat[REGNO (x)].sign_bit_copies != 0
8334 && GET_MODE_BITSIZE (GET_MODE (x)) == GET_MODE_BITSIZE (mode))
8335 *result = reg_stat[REGNO (x)].sign_bit_copies;
8337 return NULL;
8340 /* Return the number of "extended" bits there are in X, when interpreted
8341 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8342 unsigned quantities, this is the number of high-order zero bits.
8343 For signed quantities, this is the number of copies of the sign bit
8344 minus 1. In both case, this function returns the number of "spare"
8345 bits. For example, if two quantities for which this function returns
8346 at least 1 are added, the addition is known not to overflow.
8348 This function will always return 0 unless called during combine, which
8349 implies that it must be called from a define_split. */
8351 unsigned int
8352 extended_count (rtx x, enum machine_mode mode, int unsignedp)
8354 if (nonzero_sign_valid == 0)
8355 return 0;
8357 return (unsignedp
8358 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8359 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
8360 - floor_log2 (nonzero_bits (x, mode)))
8361 : 0)
8362 : num_sign_bit_copies (x, mode) - 1);
8365 /* This function is called from `simplify_shift_const' to merge two
8366 outer operations. Specifically, we have already found that we need
8367 to perform operation *POP0 with constant *PCONST0 at the outermost
8368 position. We would now like to also perform OP1 with constant CONST1
8369 (with *POP0 being done last).
8371 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8372 the resulting operation. *PCOMP_P is set to 1 if we would need to
8373 complement the innermost operand, otherwise it is unchanged.
8375 MODE is the mode in which the operation will be done. No bits outside
8376 the width of this mode matter. It is assumed that the width of this mode
8377 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8379 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
8380 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8381 result is simply *PCONST0.
8383 If the resulting operation cannot be expressed as one operation, we
8384 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8386 static int
8387 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
8389 enum rtx_code op0 = *pop0;
8390 HOST_WIDE_INT const0 = *pconst0;
8392 const0 &= GET_MODE_MASK (mode);
8393 const1 &= GET_MODE_MASK (mode);
8395 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8396 if (op0 == AND)
8397 const1 &= const0;
8399 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
8400 if OP0 is SET. */
8402 if (op1 == UNKNOWN || op0 == SET)
8403 return 1;
8405 else if (op0 == UNKNOWN)
8406 op0 = op1, const0 = const1;
8408 else if (op0 == op1)
8410 switch (op0)
8412 case AND:
8413 const0 &= const1;
8414 break;
8415 case IOR:
8416 const0 |= const1;
8417 break;
8418 case XOR:
8419 const0 ^= const1;
8420 break;
8421 case PLUS:
8422 const0 += const1;
8423 break;
8424 case NEG:
8425 op0 = UNKNOWN;
8426 break;
8427 default:
8428 break;
8432 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8433 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8434 return 0;
8436 /* If the two constants aren't the same, we can't do anything. The
8437 remaining six cases can all be done. */
8438 else if (const0 != const1)
8439 return 0;
8441 else
8442 switch (op0)
8444 case IOR:
8445 if (op1 == AND)
8446 /* (a & b) | b == b */
8447 op0 = SET;
8448 else /* op1 == XOR */
8449 /* (a ^ b) | b == a | b */
8451 break;
8453 case XOR:
8454 if (op1 == AND)
8455 /* (a & b) ^ b == (~a) & b */
8456 op0 = AND, *pcomp_p = 1;
8457 else /* op1 == IOR */
8458 /* (a | b) ^ b == a & ~b */
8459 op0 = AND, const0 = ~const0;
8460 break;
8462 case AND:
8463 if (op1 == IOR)
8464 /* (a | b) & b == b */
8465 op0 = SET;
8466 else /* op1 == XOR */
8467 /* (a ^ b) & b) == (~a) & b */
8468 *pcomp_p = 1;
8469 break;
8470 default:
8471 break;
8474 /* Check for NO-OP cases. */
8475 const0 &= GET_MODE_MASK (mode);
8476 if (const0 == 0
8477 && (op0 == IOR || op0 == XOR || op0 == PLUS))
8478 op0 = UNKNOWN;
8479 else if (const0 == 0 && op0 == AND)
8480 op0 = SET;
8481 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8482 && op0 == AND)
8483 op0 = UNKNOWN;
8485 /* ??? Slightly redundant with the above mask, but not entirely.
8486 Moving this above means we'd have to sign-extend the mode mask
8487 for the final test. */
8488 const0 = trunc_int_for_mode (const0, mode);
8490 *pop0 = op0;
8491 *pconst0 = const0;
8493 return 1;
8496 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8497 The result of the shift is RESULT_MODE. Return NULL_RTX if we cannot
8498 simplify it. Otherwise, return a simplified value.
8500 The shift is normally computed in the widest mode we find in VAROP, as
8501 long as it isn't a different number of words than RESULT_MODE. Exceptions
8502 are ASHIFTRT and ROTATE, which are always done in their original mode. */
8504 static rtx
8505 simplify_shift_const_1 (enum rtx_code code, enum machine_mode result_mode,
8506 rtx varop, int orig_count)
8508 enum rtx_code orig_code = code;
8509 rtx orig_varop = varop;
8510 int count;
8511 enum machine_mode mode = result_mode;
8512 enum machine_mode shift_mode, tmode;
8513 unsigned int mode_words
8514 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8515 /* We form (outer_op (code varop count) (outer_const)). */
8516 enum rtx_code outer_op = UNKNOWN;
8517 HOST_WIDE_INT outer_const = 0;
8518 int complement_p = 0;
8519 rtx new, x;
8521 /* Make sure and truncate the "natural" shift on the way in. We don't
8522 want to do this inside the loop as it makes it more difficult to
8523 combine shifts. */
8524 if (SHIFT_COUNT_TRUNCATED)
8525 orig_count &= GET_MODE_BITSIZE (mode) - 1;
8527 /* If we were given an invalid count, don't do anything except exactly
8528 what was requested. */
8530 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
8531 return NULL_RTX;
8533 count = orig_count;
8535 /* Unless one of the branches of the `if' in this loop does a `continue',
8536 we will `break' the loop after the `if'. */
8538 while (count != 0)
8540 /* If we have an operand of (clobber (const_int 0)), fail. */
8541 if (GET_CODE (varop) == CLOBBER)
8542 return NULL_RTX;
8544 /* If we discovered we had to complement VAROP, leave. Making a NOT
8545 here would cause an infinite loop. */
8546 if (complement_p)
8547 break;
8549 /* Convert ROTATERT to ROTATE. */
8550 if (code == ROTATERT)
8552 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
8553 code = ROTATE;
8554 if (VECTOR_MODE_P (result_mode))
8555 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
8556 else
8557 count = bitsize - count;
8560 /* We need to determine what mode we will do the shift in. If the
8561 shift is a right shift or a ROTATE, we must always do it in the mode
8562 it was originally done in. Otherwise, we can do it in MODE, the
8563 widest mode encountered. */
8564 shift_mode
8565 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
8566 ? result_mode : mode);
8568 /* Handle cases where the count is greater than the size of the mode
8569 minus 1. For ASHIFT, use the size minus one as the count (this can
8570 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
8571 take the count modulo the size. For other shifts, the result is
8572 zero.
8574 Since these shifts are being produced by the compiler by combining
8575 multiple operations, each of which are defined, we know what the
8576 result is supposed to be. */
8578 if (count > (GET_MODE_BITSIZE (shift_mode) - 1))
8580 if (code == ASHIFTRT)
8581 count = GET_MODE_BITSIZE (shift_mode) - 1;
8582 else if (code == ROTATE || code == ROTATERT)
8583 count %= GET_MODE_BITSIZE (shift_mode);
8584 else
8586 /* We can't simply return zero because there may be an
8587 outer op. */
8588 varop = const0_rtx;
8589 count = 0;
8590 break;
8594 /* An arithmetic right shift of a quantity known to be -1 or 0
8595 is a no-op. */
8596 if (code == ASHIFTRT
8597 && (num_sign_bit_copies (varop, shift_mode)
8598 == GET_MODE_BITSIZE (shift_mode)))
8600 count = 0;
8601 break;
8604 /* If we are doing an arithmetic right shift and discarding all but
8605 the sign bit copies, this is equivalent to doing a shift by the
8606 bitsize minus one. Convert it into that shift because it will often
8607 allow other simplifications. */
8609 if (code == ASHIFTRT
8610 && (count + num_sign_bit_copies (varop, shift_mode)
8611 >= GET_MODE_BITSIZE (shift_mode)))
8612 count = GET_MODE_BITSIZE (shift_mode) - 1;
8614 /* We simplify the tests below and elsewhere by converting
8615 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
8616 `make_compound_operation' will convert it to an ASHIFTRT for
8617 those machines (such as VAX) that don't have an LSHIFTRT. */
8618 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8619 && code == ASHIFTRT
8620 && ((nonzero_bits (varop, shift_mode)
8621 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
8622 == 0))
8623 code = LSHIFTRT;
8625 if (code == LSHIFTRT
8626 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8627 && !(nonzero_bits (varop, shift_mode) >> count))
8628 varop = const0_rtx;
8629 if (code == ASHIFT
8630 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8631 && !((nonzero_bits (varop, shift_mode) << count)
8632 & GET_MODE_MASK (shift_mode)))
8633 varop = const0_rtx;
8635 switch (GET_CODE (varop))
8637 case SIGN_EXTEND:
8638 case ZERO_EXTEND:
8639 case SIGN_EXTRACT:
8640 case ZERO_EXTRACT:
8641 new = expand_compound_operation (varop);
8642 if (new != varop)
8644 varop = new;
8645 continue;
8647 break;
8649 case MEM:
8650 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
8651 minus the width of a smaller mode, we can do this with a
8652 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
8653 if ((code == ASHIFTRT || code == LSHIFTRT)
8654 && ! mode_dependent_address_p (XEXP (varop, 0))
8655 && ! MEM_VOLATILE_P (varop)
8656 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8657 MODE_INT, 1)) != BLKmode)
8659 new = adjust_address_nv (varop, tmode,
8660 BYTES_BIG_ENDIAN ? 0
8661 : count / BITS_PER_UNIT);
8663 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8664 : ZERO_EXTEND, mode, new);
8665 count = 0;
8666 continue;
8668 break;
8670 case SUBREG:
8671 /* If VAROP is a SUBREG, strip it as long as the inner operand has
8672 the same number of words as what we've seen so far. Then store
8673 the widest mode in MODE. */
8674 if (subreg_lowpart_p (varop)
8675 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8676 > GET_MODE_SIZE (GET_MODE (varop)))
8677 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8678 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
8679 == mode_words)
8681 varop = SUBREG_REG (varop);
8682 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
8683 mode = GET_MODE (varop);
8684 continue;
8686 break;
8688 case MULT:
8689 /* Some machines use MULT instead of ASHIFT because MULT
8690 is cheaper. But it is still better on those machines to
8691 merge two shifts into one. */
8692 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8693 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8695 varop
8696 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
8697 XEXP (varop, 0),
8698 GEN_INT (exact_log2 (
8699 INTVAL (XEXP (varop, 1)))));
8700 continue;
8702 break;
8704 case UDIV:
8705 /* Similar, for when divides are cheaper. */
8706 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8707 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8709 varop
8710 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
8711 XEXP (varop, 0),
8712 GEN_INT (exact_log2 (
8713 INTVAL (XEXP (varop, 1)))));
8714 continue;
8716 break;
8718 case ASHIFTRT:
8719 /* If we are extracting just the sign bit of an arithmetic
8720 right shift, that shift is not needed. However, the sign
8721 bit of a wider mode may be different from what would be
8722 interpreted as the sign bit in a narrower mode, so, if
8723 the result is narrower, don't discard the shift. */
8724 if (code == LSHIFTRT
8725 && count == (GET_MODE_BITSIZE (result_mode) - 1)
8726 && (GET_MODE_BITSIZE (result_mode)
8727 >= GET_MODE_BITSIZE (GET_MODE (varop))))
8729 varop = XEXP (varop, 0);
8730 continue;
8733 /* ... fall through ... */
8735 case LSHIFTRT:
8736 case ASHIFT:
8737 case ROTATE:
8738 /* Here we have two nested shifts. The result is usually the
8739 AND of a new shift with a mask. We compute the result below. */
8740 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8741 && INTVAL (XEXP (varop, 1)) >= 0
8742 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
8743 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8744 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8745 && !VECTOR_MODE_P (result_mode))
8747 enum rtx_code first_code = GET_CODE (varop);
8748 unsigned int first_count = INTVAL (XEXP (varop, 1));
8749 unsigned HOST_WIDE_INT mask;
8750 rtx mask_rtx;
8752 /* We have one common special case. We can't do any merging if
8753 the inner code is an ASHIFTRT of a smaller mode. However, if
8754 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
8755 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
8756 we can convert it to
8757 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
8758 This simplifies certain SIGN_EXTEND operations. */
8759 if (code == ASHIFT && first_code == ASHIFTRT
8760 && count == (GET_MODE_BITSIZE (result_mode)
8761 - GET_MODE_BITSIZE (GET_MODE (varop))))
8763 /* C3 has the low-order C1 bits zero. */
8765 mask = (GET_MODE_MASK (mode)
8766 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
8768 varop = simplify_and_const_int (NULL_RTX, result_mode,
8769 XEXP (varop, 0), mask);
8770 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
8771 varop, count);
8772 count = first_count;
8773 code = ASHIFTRT;
8774 continue;
8777 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
8778 than C1 high-order bits equal to the sign bit, we can convert
8779 this to either an ASHIFT or an ASHIFTRT depending on the
8780 two counts.
8782 We cannot do this if VAROP's mode is not SHIFT_MODE. */
8784 if (code == ASHIFTRT && first_code == ASHIFT
8785 && GET_MODE (varop) == shift_mode
8786 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
8787 > first_count))
8789 varop = XEXP (varop, 0);
8790 count -= first_count;
8791 if (count < 0)
8793 count = -count;
8794 code = ASHIFT;
8797 continue;
8800 /* There are some cases we can't do. If CODE is ASHIFTRT,
8801 we can only do this if FIRST_CODE is also ASHIFTRT.
8803 We can't do the case when CODE is ROTATE and FIRST_CODE is
8804 ASHIFTRT.
8806 If the mode of this shift is not the mode of the outer shift,
8807 we can't do this if either shift is a right shift or ROTATE.
8809 Finally, we can't do any of these if the mode is too wide
8810 unless the codes are the same.
8812 Handle the case where the shift codes are the same
8813 first. */
8815 if (code == first_code)
8817 if (GET_MODE (varop) != result_mode
8818 && (code == ASHIFTRT || code == LSHIFTRT
8819 || code == ROTATE))
8820 break;
8822 count += first_count;
8823 varop = XEXP (varop, 0);
8824 continue;
8827 if (code == ASHIFTRT
8828 || (code == ROTATE && first_code == ASHIFTRT)
8829 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
8830 || (GET_MODE (varop) != result_mode
8831 && (first_code == ASHIFTRT || first_code == LSHIFTRT
8832 || first_code == ROTATE
8833 || code == ROTATE)))
8834 break;
8836 /* To compute the mask to apply after the shift, shift the
8837 nonzero bits of the inner shift the same way the
8838 outer shift will. */
8840 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
8842 mask_rtx
8843 = simplify_const_binary_operation (code, result_mode, mask_rtx,
8844 GEN_INT (count));
8846 /* Give up if we can't compute an outer operation to use. */
8847 if (mask_rtx == 0
8848 || GET_CODE (mask_rtx) != CONST_INT
8849 || ! merge_outer_ops (&outer_op, &outer_const, AND,
8850 INTVAL (mask_rtx),
8851 result_mode, &complement_p))
8852 break;
8854 /* If the shifts are in the same direction, we add the
8855 counts. Otherwise, we subtract them. */
8856 if ((code == ASHIFTRT || code == LSHIFTRT)
8857 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
8858 count += first_count;
8859 else
8860 count -= first_count;
8862 /* If COUNT is positive, the new shift is usually CODE,
8863 except for the two exceptions below, in which case it is
8864 FIRST_CODE. If the count is negative, FIRST_CODE should
8865 always be used */
8866 if (count > 0
8867 && ((first_code == ROTATE && code == ASHIFT)
8868 || (first_code == ASHIFTRT && code == LSHIFTRT)))
8869 code = first_code;
8870 else if (count < 0)
8871 code = first_code, count = -count;
8873 varop = XEXP (varop, 0);
8874 continue;
8877 /* If we have (A << B << C) for any shift, we can convert this to
8878 (A << C << B). This wins if A is a constant. Only try this if
8879 B is not a constant. */
8881 else if (GET_CODE (varop) == code
8882 && GET_CODE (XEXP (varop, 0)) == CONST_INT
8883 && GET_CODE (XEXP (varop, 1)) != CONST_INT)
8885 rtx new = simplify_const_binary_operation (code, mode,
8886 XEXP (varop, 0),
8887 GEN_INT (count));
8888 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
8889 count = 0;
8890 continue;
8892 break;
8894 case NOT:
8895 /* Make this fit the case below. */
8896 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
8897 GEN_INT (GET_MODE_MASK (mode)));
8898 continue;
8900 case IOR:
8901 case AND:
8902 case XOR:
8903 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
8904 with C the size of VAROP - 1 and the shift is logical if
8905 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
8906 we have an (le X 0) operation. If we have an arithmetic shift
8907 and STORE_FLAG_VALUE is 1 or we have a logical shift with
8908 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
8910 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
8911 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
8912 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8913 && (code == LSHIFTRT || code == ASHIFTRT)
8914 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
8915 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
8917 count = 0;
8918 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
8919 const0_rtx);
8921 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
8922 varop = gen_rtx_NEG (GET_MODE (varop), varop);
8924 continue;
8927 /* If we have (shift (logical)), move the logical to the outside
8928 to allow it to possibly combine with another logical and the
8929 shift to combine with another shift. This also canonicalizes to
8930 what a ZERO_EXTRACT looks like. Also, some machines have
8931 (and (shift)) insns. */
8933 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8934 /* We can't do this if we have (ashiftrt (xor)) and the
8935 constant has its sign bit set in shift_mode. */
8936 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
8937 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
8938 shift_mode))
8939 && (new = simplify_const_binary_operation (code, result_mode,
8940 XEXP (varop, 1),
8941 GEN_INT (count))) != 0
8942 && GET_CODE (new) == CONST_INT
8943 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
8944 INTVAL (new), result_mode, &complement_p))
8946 varop = XEXP (varop, 0);
8947 continue;
8950 /* If we can't do that, try to simplify the shift in each arm of the
8951 logical expression, make a new logical expression, and apply
8952 the inverse distributive law. This also can't be done
8953 for some (ashiftrt (xor)). */
8954 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8955 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
8956 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
8957 shift_mode)))
8959 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
8960 XEXP (varop, 0), count);
8961 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
8962 XEXP (varop, 1), count);
8964 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
8965 lhs, rhs);
8966 varop = apply_distributive_law (varop);
8968 count = 0;
8969 continue;
8971 break;
8973 case EQ:
8974 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
8975 says that the sign bit can be tested, FOO has mode MODE, C is
8976 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
8977 that may be nonzero. */
8978 if (code == LSHIFTRT
8979 && XEXP (varop, 1) == const0_rtx
8980 && GET_MODE (XEXP (varop, 0)) == result_mode
8981 && count == (GET_MODE_BITSIZE (result_mode) - 1)
8982 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8983 && STORE_FLAG_VALUE == -1
8984 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
8985 && merge_outer_ops (&outer_op, &outer_const, XOR,
8986 (HOST_WIDE_INT) 1, result_mode,
8987 &complement_p))
8989 varop = XEXP (varop, 0);
8990 count = 0;
8991 continue;
8993 break;
8995 case NEG:
8996 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
8997 than the number of bits in the mode is equivalent to A. */
8998 if (code == LSHIFTRT
8999 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9000 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9002 varop = XEXP (varop, 0);
9003 count = 0;
9004 continue;
9007 /* NEG commutes with ASHIFT since it is multiplication. Move the
9008 NEG outside to allow shifts to combine. */
9009 if (code == ASHIFT
9010 && merge_outer_ops (&outer_op, &outer_const, NEG,
9011 (HOST_WIDE_INT) 0, result_mode,
9012 &complement_p))
9014 varop = XEXP (varop, 0);
9015 continue;
9017 break;
9019 case PLUS:
9020 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9021 is one less than the number of bits in the mode is
9022 equivalent to (xor A 1). */
9023 if (code == LSHIFTRT
9024 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9025 && XEXP (varop, 1) == constm1_rtx
9026 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9027 && merge_outer_ops (&outer_op, &outer_const, XOR,
9028 (HOST_WIDE_INT) 1, result_mode,
9029 &complement_p))
9031 count = 0;
9032 varop = XEXP (varop, 0);
9033 continue;
9036 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9037 that might be nonzero in BAR are those being shifted out and those
9038 bits are known zero in FOO, we can replace the PLUS with FOO.
9039 Similarly in the other operand order. This code occurs when
9040 we are computing the size of a variable-size array. */
9042 if ((code == ASHIFTRT || code == LSHIFTRT)
9043 && count < HOST_BITS_PER_WIDE_INT
9044 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9045 && (nonzero_bits (XEXP (varop, 1), result_mode)
9046 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9048 varop = XEXP (varop, 0);
9049 continue;
9051 else if ((code == ASHIFTRT || code == LSHIFTRT)
9052 && count < HOST_BITS_PER_WIDE_INT
9053 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9054 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9055 >> count)
9056 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9057 & nonzero_bits (XEXP (varop, 1),
9058 result_mode)))
9060 varop = XEXP (varop, 1);
9061 continue;
9064 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9065 if (code == ASHIFT
9066 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9067 && (new = simplify_const_binary_operation (ASHIFT, result_mode,
9068 XEXP (varop, 1),
9069 GEN_INT (count))) != 0
9070 && GET_CODE (new) == CONST_INT
9071 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9072 INTVAL (new), result_mode, &complement_p))
9074 varop = XEXP (varop, 0);
9075 continue;
9078 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
9079 signbit', and attempt to change the PLUS to an XOR and move it to
9080 the outer operation as is done above in the AND/IOR/XOR case
9081 leg for shift(logical). See details in logical handling above
9082 for reasoning in doing so. */
9083 if (code == LSHIFTRT
9084 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9085 && mode_signbit_p (result_mode, XEXP (varop, 1))
9086 && (new = simplify_const_binary_operation (code, result_mode,
9087 XEXP (varop, 1),
9088 GEN_INT (count))) != 0
9089 && GET_CODE (new) == CONST_INT
9090 && merge_outer_ops (&outer_op, &outer_const, XOR,
9091 INTVAL (new), result_mode, &complement_p))
9093 varop = XEXP (varop, 0);
9094 continue;
9097 break;
9099 case MINUS:
9100 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9101 with C the size of VAROP - 1 and the shift is logical if
9102 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9103 we have a (gt X 0) operation. If the shift is arithmetic with
9104 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9105 we have a (neg (gt X 0)) operation. */
9107 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9108 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9109 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9110 && (code == LSHIFTRT || code == ASHIFTRT)
9111 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9112 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
9113 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9115 count = 0;
9116 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9117 const0_rtx);
9119 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9120 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9122 continue;
9124 break;
9126 case TRUNCATE:
9127 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9128 if the truncate does not affect the value. */
9129 if (code == LSHIFTRT
9130 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9131 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9132 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9133 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9134 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9136 rtx varop_inner = XEXP (varop, 0);
9138 varop_inner
9139 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9140 XEXP (varop_inner, 0),
9141 GEN_INT
9142 (count + INTVAL (XEXP (varop_inner, 1))));
9143 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9144 count = 0;
9145 continue;
9147 break;
9149 default:
9150 break;
9153 break;
9156 /* We need to determine what mode to do the shift in. If the shift is
9157 a right shift or ROTATE, we must always do it in the mode it was
9158 originally done in. Otherwise, we can do it in MODE, the widest mode
9159 encountered. The code we care about is that of the shift that will
9160 actually be done, not the shift that was originally requested. */
9161 shift_mode
9162 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9163 ? result_mode : mode);
9165 /* We have now finished analyzing the shift. The result should be
9166 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9167 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
9168 to the result of the shift. OUTER_CONST is the relevant constant,
9169 but we must turn off all bits turned off in the shift. */
9171 if (outer_op == UNKNOWN
9172 && orig_code == code && orig_count == count
9173 && varop == orig_varop
9174 && shift_mode == GET_MODE (varop))
9175 return NULL_RTX;
9177 /* Make a SUBREG if necessary. If we can't make it, fail. */
9178 varop = gen_lowpart (shift_mode, varop);
9179 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9180 return NULL_RTX;
9182 /* If we have an outer operation and we just made a shift, it is
9183 possible that we could have simplified the shift were it not
9184 for the outer operation. So try to do the simplification
9185 recursively. */
9187 if (outer_op != UNKNOWN)
9188 x = simplify_shift_const_1 (code, shift_mode, varop, count);
9189 else
9190 x = NULL_RTX;
9192 if (x == NULL_RTX)
9193 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
9195 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9196 turn off all the bits that the shift would have turned off. */
9197 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9198 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9199 GET_MODE_MASK (result_mode) >> orig_count);
9201 /* Do the remainder of the processing in RESULT_MODE. */
9202 x = gen_lowpart_or_truncate (result_mode, x);
9204 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9205 operation. */
9206 if (complement_p)
9207 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
9209 if (outer_op != UNKNOWN)
9211 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9212 outer_const = trunc_int_for_mode (outer_const, result_mode);
9214 if (outer_op == AND)
9215 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9216 else if (outer_op == SET)
9217 /* This means that we have determined that the result is
9218 equivalent to a constant. This should be rare. */
9219 x = GEN_INT (outer_const);
9220 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
9221 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9222 else
9223 x = simplify_gen_binary (outer_op, result_mode, x,
9224 GEN_INT (outer_const));
9227 return x;
9230 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
9231 The result of the shift is RESULT_MODE. If we cannot simplify it,
9232 return X or, if it is NULL, synthesize the expression with
9233 simplify_gen_binary. Otherwise, return a simplified value.
9235 The shift is normally computed in the widest mode we find in VAROP, as
9236 long as it isn't a different number of words than RESULT_MODE. Exceptions
9237 are ASHIFTRT and ROTATE, which are always done in their original mode. */
9239 static rtx
9240 simplify_shift_const (rtx x, enum rtx_code code, enum machine_mode result_mode,
9241 rtx varop, int count)
9243 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
9244 if (tem)
9245 return tem;
9247 if (!x)
9248 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
9249 if (GET_MODE (x) != result_mode)
9250 x = gen_lowpart (result_mode, x);
9251 return x;
9255 /* Like recog, but we receive the address of a pointer to a new pattern.
9256 We try to match the rtx that the pointer points to.
9257 If that fails, we may try to modify or replace the pattern,
9258 storing the replacement into the same pointer object.
9260 Modifications include deletion or addition of CLOBBERs.
9262 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9263 the CLOBBERs are placed.
9265 The value is the final insn code from the pattern ultimately matched,
9266 or -1. */
9268 static int
9269 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
9271 rtx pat = *pnewpat;
9272 int insn_code_number;
9273 int num_clobbers_to_add = 0;
9274 int i;
9275 rtx notes = 0;
9276 rtx old_notes, old_pat;
9278 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9279 we use to indicate that something didn't match. If we find such a
9280 thing, force rejection. */
9281 if (GET_CODE (pat) == PARALLEL)
9282 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9283 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9284 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9285 return -1;
9287 old_pat = PATTERN (insn);
9288 old_notes = REG_NOTES (insn);
9289 PATTERN (insn) = pat;
9290 REG_NOTES (insn) = 0;
9292 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9294 /* If it isn't, there is the possibility that we previously had an insn
9295 that clobbered some register as a side effect, but the combined
9296 insn doesn't need to do that. So try once more without the clobbers
9297 unless this represents an ASM insn. */
9299 if (insn_code_number < 0 && ! check_asm_operands (pat)
9300 && GET_CODE (pat) == PARALLEL)
9302 int pos;
9304 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9305 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9307 if (i != pos)
9308 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9309 pos++;
9312 SUBST_INT (XVECLEN (pat, 0), pos);
9314 if (pos == 1)
9315 pat = XVECEXP (pat, 0, 0);
9317 PATTERN (insn) = pat;
9318 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9320 PATTERN (insn) = old_pat;
9321 REG_NOTES (insn) = old_notes;
9323 /* Recognize all noop sets, these will be killed by followup pass. */
9324 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9325 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9327 /* If we had any clobbers to add, make a new pattern than contains
9328 them. Then check to make sure that all of them are dead. */
9329 if (num_clobbers_to_add)
9331 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9332 rtvec_alloc (GET_CODE (pat) == PARALLEL
9333 ? (XVECLEN (pat, 0)
9334 + num_clobbers_to_add)
9335 : num_clobbers_to_add + 1));
9337 if (GET_CODE (pat) == PARALLEL)
9338 for (i = 0; i < XVECLEN (pat, 0); i++)
9339 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9340 else
9341 XVECEXP (newpat, 0, 0) = pat;
9343 add_clobbers (newpat, insn_code_number);
9345 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9346 i < XVECLEN (newpat, 0); i++)
9348 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
9349 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9350 return -1;
9351 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9352 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9354 pat = newpat;
9357 *pnewpat = pat;
9358 *pnotes = notes;
9360 return insn_code_number;
9363 /* Like gen_lowpart_general but for use by combine. In combine it
9364 is not possible to create any new pseudoregs. However, it is
9365 safe to create invalid memory addresses, because combine will
9366 try to recognize them and all they will do is make the combine
9367 attempt fail.
9369 If for some reason this cannot do its job, an rtx
9370 (clobber (const_int 0)) is returned.
9371 An insn containing that will not be recognized. */
9373 static rtx
9374 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
9376 enum machine_mode imode = GET_MODE (x);
9377 unsigned int osize = GET_MODE_SIZE (omode);
9378 unsigned int isize = GET_MODE_SIZE (imode);
9379 rtx result;
9381 if (omode == imode)
9382 return x;
9384 /* Return identity if this is a CONST or symbolic reference. */
9385 if (omode == Pmode
9386 && (GET_CODE (x) == CONST
9387 || GET_CODE (x) == SYMBOL_REF
9388 || GET_CODE (x) == LABEL_REF))
9389 return x;
9391 /* We can only support MODE being wider than a word if X is a
9392 constant integer or has a mode the same size. */
9393 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
9394 && ! ((imode == VOIDmode
9395 && (GET_CODE (x) == CONST_INT
9396 || GET_CODE (x) == CONST_DOUBLE))
9397 || isize == osize))
9398 goto fail;
9400 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9401 won't know what to do. So we will strip off the SUBREG here and
9402 process normally. */
9403 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
9405 x = SUBREG_REG (x);
9407 /* For use in case we fall down into the address adjustments
9408 further below, we need to adjust the known mode and size of
9409 x; imode and isize, since we just adjusted x. */
9410 imode = GET_MODE (x);
9412 if (imode == omode)
9413 return x;
9415 isize = GET_MODE_SIZE (imode);
9418 result = gen_lowpart_common (omode, x);
9420 #ifdef CANNOT_CHANGE_MODE_CLASS
9421 if (result != 0 && GET_CODE (result) == SUBREG)
9422 record_subregs_of_mode (result);
9423 #endif
9425 if (result)
9426 return result;
9428 if (MEM_P (x))
9430 int offset = 0;
9432 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9433 address. */
9434 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9435 goto fail;
9437 /* If we want to refer to something bigger than the original memref,
9438 generate a paradoxical subreg instead. That will force a reload
9439 of the original memref X. */
9440 if (isize < osize)
9441 return gen_rtx_SUBREG (omode, x, 0);
9443 if (WORDS_BIG_ENDIAN)
9444 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
9446 /* Adjust the address so that the address-after-the-data is
9447 unchanged. */
9448 if (BYTES_BIG_ENDIAN)
9449 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
9451 return adjust_address_nv (x, omode, offset);
9454 /* If X is a comparison operator, rewrite it in a new mode. This
9455 probably won't match, but may allow further simplifications. */
9456 else if (COMPARISON_P (x))
9457 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
9459 /* If we couldn't simplify X any other way, just enclose it in a
9460 SUBREG. Normally, this SUBREG won't match, but some patterns may
9461 include an explicit SUBREG or we may simplify it further in combine. */
9462 else
9464 int offset = 0;
9465 rtx res;
9467 offset = subreg_lowpart_offset (omode, imode);
9468 if (imode == VOIDmode)
9470 imode = int_mode_for_mode (omode);
9471 x = gen_lowpart_common (imode, x);
9472 if (x == NULL)
9473 goto fail;
9475 res = simplify_gen_subreg (omode, x, imode, offset);
9476 if (res)
9477 return res;
9480 fail:
9481 return gen_rtx_CLOBBER (imode, const0_rtx);
9484 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
9485 comparison code that will be tested.
9487 The result is a possibly different comparison code to use. *POP0 and
9488 *POP1 may be updated.
9490 It is possible that we might detect that a comparison is either always
9491 true or always false. However, we do not perform general constant
9492 folding in combine, so this knowledge isn't useful. Such tautologies
9493 should have been detected earlier. Hence we ignore all such cases. */
9495 static enum rtx_code
9496 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
9498 rtx op0 = *pop0;
9499 rtx op1 = *pop1;
9500 rtx tem, tem1;
9501 int i;
9502 enum machine_mode mode, tmode;
9504 /* Try a few ways of applying the same transformation to both operands. */
9505 while (1)
9507 #ifndef WORD_REGISTER_OPERATIONS
9508 /* The test below this one won't handle SIGN_EXTENDs on these machines,
9509 so check specially. */
9510 if (code != GTU && code != GEU && code != LTU && code != LEU
9511 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
9512 && GET_CODE (XEXP (op0, 0)) == ASHIFT
9513 && GET_CODE (XEXP (op1, 0)) == ASHIFT
9514 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
9515 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
9516 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
9517 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
9518 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9519 && XEXP (op0, 1) == XEXP (op1, 1)
9520 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
9521 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
9522 && (INTVAL (XEXP (op0, 1))
9523 == (GET_MODE_BITSIZE (GET_MODE (op0))
9524 - (GET_MODE_BITSIZE
9525 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
9527 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
9528 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
9530 #endif
9532 /* If both operands are the same constant shift, see if we can ignore the
9533 shift. We can if the shift is a rotate or if the bits shifted out of
9534 this shift are known to be zero for both inputs and if the type of
9535 comparison is compatible with the shift. */
9536 if (GET_CODE (op0) == GET_CODE (op1)
9537 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
9538 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
9539 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
9540 && (code != GT && code != LT && code != GE && code != LE))
9541 || (GET_CODE (op0) == ASHIFTRT
9542 && (code != GTU && code != LTU
9543 && code != GEU && code != LEU)))
9544 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9545 && INTVAL (XEXP (op0, 1)) >= 0
9546 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
9547 && XEXP (op0, 1) == XEXP (op1, 1))
9549 enum machine_mode mode = GET_MODE (op0);
9550 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9551 int shift_count = INTVAL (XEXP (op0, 1));
9553 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
9554 mask &= (mask >> shift_count) << shift_count;
9555 else if (GET_CODE (op0) == ASHIFT)
9556 mask = (mask & (mask << shift_count)) >> shift_count;
9558 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
9559 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
9560 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
9561 else
9562 break;
9565 /* If both operands are AND's of a paradoxical SUBREG by constant, the
9566 SUBREGs are of the same mode, and, in both cases, the AND would
9567 be redundant if the comparison was done in the narrower mode,
9568 do the comparison in the narrower mode (e.g., we are AND'ing with 1
9569 and the operand's possibly nonzero bits are 0xffffff01; in that case
9570 if we only care about QImode, we don't need the AND). This case
9571 occurs if the output mode of an scc insn is not SImode and
9572 STORE_FLAG_VALUE == 1 (e.g., the 386).
9574 Similarly, check for a case where the AND's are ZERO_EXTEND
9575 operations from some narrower mode even though a SUBREG is not
9576 present. */
9578 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
9579 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9580 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
9582 rtx inner_op0 = XEXP (op0, 0);
9583 rtx inner_op1 = XEXP (op1, 0);
9584 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
9585 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
9586 int changed = 0;
9588 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
9589 && (GET_MODE_SIZE (GET_MODE (inner_op0))
9590 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
9591 && (GET_MODE (SUBREG_REG (inner_op0))
9592 == GET_MODE (SUBREG_REG (inner_op1)))
9593 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
9594 <= HOST_BITS_PER_WIDE_INT)
9595 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
9596 GET_MODE (SUBREG_REG (inner_op0)))))
9597 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
9598 GET_MODE (SUBREG_REG (inner_op1))))))
9600 op0 = SUBREG_REG (inner_op0);
9601 op1 = SUBREG_REG (inner_op1);
9603 /* The resulting comparison is always unsigned since we masked
9604 off the original sign bit. */
9605 code = unsigned_condition (code);
9607 changed = 1;
9610 else if (c0 == c1)
9611 for (tmode = GET_CLASS_NARROWEST_MODE
9612 (GET_MODE_CLASS (GET_MODE (op0)));
9613 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
9614 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
9616 op0 = gen_lowpart (tmode, inner_op0);
9617 op1 = gen_lowpart (tmode, inner_op1);
9618 code = unsigned_condition (code);
9619 changed = 1;
9620 break;
9623 if (! changed)
9624 break;
9627 /* If both operands are NOT, we can strip off the outer operation
9628 and adjust the comparison code for swapped operands; similarly for
9629 NEG, except that this must be an equality comparison. */
9630 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
9631 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
9632 && (code == EQ || code == NE)))
9633 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
9635 else
9636 break;
9639 /* If the first operand is a constant, swap the operands and adjust the
9640 comparison code appropriately, but don't do this if the second operand
9641 is already a constant integer. */
9642 if (swap_commutative_operands_p (op0, op1))
9644 tem = op0, op0 = op1, op1 = tem;
9645 code = swap_condition (code);
9648 /* We now enter a loop during which we will try to simplify the comparison.
9649 For the most part, we only are concerned with comparisons with zero,
9650 but some things may really be comparisons with zero but not start
9651 out looking that way. */
9653 while (GET_CODE (op1) == CONST_INT)
9655 enum machine_mode mode = GET_MODE (op0);
9656 unsigned int mode_width = GET_MODE_BITSIZE (mode);
9657 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9658 int equality_comparison_p;
9659 int sign_bit_comparison_p;
9660 int unsigned_comparison_p;
9661 HOST_WIDE_INT const_op;
9663 /* We only want to handle integral modes. This catches VOIDmode,
9664 CCmode, and the floating-point modes. An exception is that we
9665 can handle VOIDmode if OP0 is a COMPARE or a comparison
9666 operation. */
9668 if (GET_MODE_CLASS (mode) != MODE_INT
9669 && ! (mode == VOIDmode
9670 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
9671 break;
9673 /* Get the constant we are comparing against and turn off all bits
9674 not on in our mode. */
9675 const_op = INTVAL (op1);
9676 if (mode != VOIDmode)
9677 const_op = trunc_int_for_mode (const_op, mode);
9678 op1 = GEN_INT (const_op);
9680 /* If we are comparing against a constant power of two and the value
9681 being compared can only have that single bit nonzero (e.g., it was
9682 `and'ed with that bit), we can replace this with a comparison
9683 with zero. */
9684 if (const_op
9685 && (code == EQ || code == NE || code == GE || code == GEU
9686 || code == LT || code == LTU)
9687 && mode_width <= HOST_BITS_PER_WIDE_INT
9688 && exact_log2 (const_op) >= 0
9689 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
9691 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
9692 op1 = const0_rtx, const_op = 0;
9695 /* Similarly, if we are comparing a value known to be either -1 or
9696 0 with -1, change it to the opposite comparison against zero. */
9698 if (const_op == -1
9699 && (code == EQ || code == NE || code == GT || code == LE
9700 || code == GEU || code == LTU)
9701 && num_sign_bit_copies (op0, mode) == mode_width)
9703 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
9704 op1 = const0_rtx, const_op = 0;
9707 /* Do some canonicalizations based on the comparison code. We prefer
9708 comparisons against zero and then prefer equality comparisons.
9709 If we can reduce the size of a constant, we will do that too. */
9711 switch (code)
9713 case LT:
9714 /* < C is equivalent to <= (C - 1) */
9715 if (const_op > 0)
9717 const_op -= 1;
9718 op1 = GEN_INT (const_op);
9719 code = LE;
9720 /* ... fall through to LE case below. */
9722 else
9723 break;
9725 case LE:
9726 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
9727 if (const_op < 0)
9729 const_op += 1;
9730 op1 = GEN_INT (const_op);
9731 code = LT;
9734 /* If we are doing a <= 0 comparison on a value known to have
9735 a zero sign bit, we can replace this with == 0. */
9736 else if (const_op == 0
9737 && mode_width <= HOST_BITS_PER_WIDE_INT
9738 && (nonzero_bits (op0, mode)
9739 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9740 code = EQ;
9741 break;
9743 case GE:
9744 /* >= C is equivalent to > (C - 1). */
9745 if (const_op > 0)
9747 const_op -= 1;
9748 op1 = GEN_INT (const_op);
9749 code = GT;
9750 /* ... fall through to GT below. */
9752 else
9753 break;
9755 case GT:
9756 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
9757 if (const_op < 0)
9759 const_op += 1;
9760 op1 = GEN_INT (const_op);
9761 code = GE;
9764 /* If we are doing a > 0 comparison on a value known to have
9765 a zero sign bit, we can replace this with != 0. */
9766 else if (const_op == 0
9767 && mode_width <= HOST_BITS_PER_WIDE_INT
9768 && (nonzero_bits (op0, mode)
9769 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9770 code = NE;
9771 break;
9773 case LTU:
9774 /* < C is equivalent to <= (C - 1). */
9775 if (const_op > 0)
9777 const_op -= 1;
9778 op1 = GEN_INT (const_op);
9779 code = LEU;
9780 /* ... fall through ... */
9783 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
9784 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9785 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9787 const_op = 0, op1 = const0_rtx;
9788 code = GE;
9789 break;
9791 else
9792 break;
9794 case LEU:
9795 /* unsigned <= 0 is equivalent to == 0 */
9796 if (const_op == 0)
9797 code = EQ;
9799 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
9800 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9801 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9803 const_op = 0, op1 = const0_rtx;
9804 code = GE;
9806 break;
9808 case GEU:
9809 /* >= C is equivalent to > (C - 1). */
9810 if (const_op > 1)
9812 const_op -= 1;
9813 op1 = GEN_INT (const_op);
9814 code = GTU;
9815 /* ... fall through ... */
9818 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
9819 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9820 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9822 const_op = 0, op1 = const0_rtx;
9823 code = LT;
9824 break;
9826 else
9827 break;
9829 case GTU:
9830 /* unsigned > 0 is equivalent to != 0 */
9831 if (const_op == 0)
9832 code = NE;
9834 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
9835 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9836 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9838 const_op = 0, op1 = const0_rtx;
9839 code = LT;
9841 break;
9843 default:
9844 break;
9847 /* Compute some predicates to simplify code below. */
9849 equality_comparison_p = (code == EQ || code == NE);
9850 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
9851 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
9852 || code == GEU);
9854 /* If this is a sign bit comparison and we can do arithmetic in
9855 MODE, say that we will only be needing the sign bit of OP0. */
9856 if (sign_bit_comparison_p
9857 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9858 op0 = force_to_mode (op0, mode,
9859 ((HOST_WIDE_INT) 1
9860 << (GET_MODE_BITSIZE (mode) - 1)),
9863 /* Now try cases based on the opcode of OP0. If none of the cases
9864 does a "continue", we exit this loop immediately after the
9865 switch. */
9867 switch (GET_CODE (op0))
9869 case ZERO_EXTRACT:
9870 /* If we are extracting a single bit from a variable position in
9871 a constant that has only a single bit set and are comparing it
9872 with zero, we can convert this into an equality comparison
9873 between the position and the location of the single bit. */
9874 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
9875 have already reduced the shift count modulo the word size. */
9876 if (!SHIFT_COUNT_TRUNCATED
9877 && GET_CODE (XEXP (op0, 0)) == CONST_INT
9878 && XEXP (op0, 1) == const1_rtx
9879 && equality_comparison_p && const_op == 0
9880 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
9882 if (BITS_BIG_ENDIAN)
9884 enum machine_mode new_mode
9885 = mode_for_extraction (EP_extzv, 1);
9886 if (new_mode == MAX_MACHINE_MODE)
9887 i = BITS_PER_WORD - 1 - i;
9888 else
9890 mode = new_mode;
9891 i = (GET_MODE_BITSIZE (mode) - 1 - i);
9895 op0 = XEXP (op0, 2);
9896 op1 = GEN_INT (i);
9897 const_op = i;
9899 /* Result is nonzero iff shift count is equal to I. */
9900 code = reverse_condition (code);
9901 continue;
9904 /* ... fall through ... */
9906 case SIGN_EXTRACT:
9907 tem = expand_compound_operation (op0);
9908 if (tem != op0)
9910 op0 = tem;
9911 continue;
9913 break;
9915 case NOT:
9916 /* If testing for equality, we can take the NOT of the constant. */
9917 if (equality_comparison_p
9918 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
9920 op0 = XEXP (op0, 0);
9921 op1 = tem;
9922 continue;
9925 /* If just looking at the sign bit, reverse the sense of the
9926 comparison. */
9927 if (sign_bit_comparison_p)
9929 op0 = XEXP (op0, 0);
9930 code = (code == GE ? LT : GE);
9931 continue;
9933 break;
9935 case NEG:
9936 /* If testing for equality, we can take the NEG of the constant. */
9937 if (equality_comparison_p
9938 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
9940 op0 = XEXP (op0, 0);
9941 op1 = tem;
9942 continue;
9945 /* The remaining cases only apply to comparisons with zero. */
9946 if (const_op != 0)
9947 break;
9949 /* When X is ABS or is known positive,
9950 (neg X) is < 0 if and only if X != 0. */
9952 if (sign_bit_comparison_p
9953 && (GET_CODE (XEXP (op0, 0)) == ABS
9954 || (mode_width <= HOST_BITS_PER_WIDE_INT
9955 && (nonzero_bits (XEXP (op0, 0), mode)
9956 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
9958 op0 = XEXP (op0, 0);
9959 code = (code == LT ? NE : EQ);
9960 continue;
9963 /* If we have NEG of something whose two high-order bits are the
9964 same, we know that "(-a) < 0" is equivalent to "a > 0". */
9965 if (num_sign_bit_copies (op0, mode) >= 2)
9967 op0 = XEXP (op0, 0);
9968 code = swap_condition (code);
9969 continue;
9971 break;
9973 case ROTATE:
9974 /* If we are testing equality and our count is a constant, we
9975 can perform the inverse operation on our RHS. */
9976 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
9977 && (tem = simplify_binary_operation (ROTATERT, mode,
9978 op1, XEXP (op0, 1))) != 0)
9980 op0 = XEXP (op0, 0);
9981 op1 = tem;
9982 continue;
9985 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
9986 a particular bit. Convert it to an AND of a constant of that
9987 bit. This will be converted into a ZERO_EXTRACT. */
9988 if (const_op == 0 && sign_bit_comparison_p
9989 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9990 && mode_width <= HOST_BITS_PER_WIDE_INT)
9992 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
9993 ((HOST_WIDE_INT) 1
9994 << (mode_width - 1
9995 - INTVAL (XEXP (op0, 1)))));
9996 code = (code == LT ? NE : EQ);
9997 continue;
10000 /* Fall through. */
10002 case ABS:
10003 /* ABS is ignorable inside an equality comparison with zero. */
10004 if (const_op == 0 && equality_comparison_p)
10006 op0 = XEXP (op0, 0);
10007 continue;
10009 break;
10011 case SIGN_EXTEND:
10012 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
10013 (compare FOO CONST) if CONST fits in FOO's mode and we
10014 are either testing inequality or have an unsigned
10015 comparison with ZERO_EXTEND or a signed comparison with
10016 SIGN_EXTEND. But don't do it if we don't have a compare
10017 insn of the given mode, since we'd have to revert it
10018 later on, and then we wouldn't know whether to sign- or
10019 zero-extend. */
10020 mode = GET_MODE (XEXP (op0, 0));
10021 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10022 && ! unsigned_comparison_p
10023 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10024 && ((unsigned HOST_WIDE_INT) const_op
10025 < (((unsigned HOST_WIDE_INT) 1
10026 << (GET_MODE_BITSIZE (mode) - 1))))
10027 && cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
10029 op0 = XEXP (op0, 0);
10030 continue;
10032 break;
10034 case SUBREG:
10035 /* Check for the case where we are comparing A - C1 with C2, that is
10037 (subreg:MODE (plus (A) (-C1))) op (C2)
10039 with C1 a constant, and try to lift the SUBREG, i.e. to do the
10040 comparison in the wider mode. One of the following two conditions
10041 must be true in order for this to be valid:
10043 1. The mode extension results in the same bit pattern being added
10044 on both sides and the comparison is equality or unsigned. As
10045 C2 has been truncated to fit in MODE, the pattern can only be
10046 all 0s or all 1s.
10048 2. The mode extension results in the sign bit being copied on
10049 each side.
10051 The difficulty here is that we have predicates for A but not for
10052 (A - C1) so we need to check that C1 is within proper bounds so
10053 as to perturbate A as little as possible. */
10055 if (mode_width <= HOST_BITS_PER_WIDE_INT
10056 && subreg_lowpart_p (op0)
10057 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) > mode_width
10058 && GET_CODE (SUBREG_REG (op0)) == PLUS
10059 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT)
10061 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
10062 rtx a = XEXP (SUBREG_REG (op0), 0);
10063 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
10065 if ((c1 > 0
10066 && (unsigned HOST_WIDE_INT) c1
10067 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
10068 && (equality_comparison_p || unsigned_comparison_p)
10069 /* (A - C1) zero-extends if it is positive and sign-extends
10070 if it is negative, C2 both zero- and sign-extends. */
10071 && ((0 == (nonzero_bits (a, inner_mode)
10072 & ~GET_MODE_MASK (mode))
10073 && const_op >= 0)
10074 /* (A - C1) sign-extends if it is positive and 1-extends
10075 if it is negative, C2 both sign- and 1-extends. */
10076 || (num_sign_bit_copies (a, inner_mode)
10077 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10078 - mode_width)
10079 && const_op < 0)))
10080 || ((unsigned HOST_WIDE_INT) c1
10081 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
10082 /* (A - C1) always sign-extends, like C2. */
10083 && num_sign_bit_copies (a, inner_mode)
10084 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10085 - (mode_width - 1))))
10087 op0 = SUBREG_REG (op0);
10088 continue;
10092 /* If the inner mode is narrower and we are extracting the low part,
10093 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10094 if (subreg_lowpart_p (op0)
10095 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10096 /* Fall through */ ;
10097 else
10098 break;
10100 /* ... fall through ... */
10102 case ZERO_EXTEND:
10103 mode = GET_MODE (XEXP (op0, 0));
10104 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10105 && (unsigned_comparison_p || equality_comparison_p)
10106 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10107 && ((unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode))
10108 && cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
10110 op0 = XEXP (op0, 0);
10111 continue;
10113 break;
10115 case PLUS:
10116 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10117 this for equality comparisons due to pathological cases involving
10118 overflows. */
10119 if (equality_comparison_p
10120 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10121 op1, XEXP (op0, 1))))
10123 op0 = XEXP (op0, 0);
10124 op1 = tem;
10125 continue;
10128 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10129 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10130 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10132 op0 = XEXP (XEXP (op0, 0), 0);
10133 code = (code == LT ? EQ : NE);
10134 continue;
10136 break;
10138 case MINUS:
10139 /* We used to optimize signed comparisons against zero, but that
10140 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10141 arrive here as equality comparisons, or (GEU, LTU) are
10142 optimized away. No need to special-case them. */
10144 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10145 (eq B (minus A C)), whichever simplifies. We can only do
10146 this for equality comparisons due to pathological cases involving
10147 overflows. */
10148 if (equality_comparison_p
10149 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10150 XEXP (op0, 1), op1)))
10152 op0 = XEXP (op0, 0);
10153 op1 = tem;
10154 continue;
10157 if (equality_comparison_p
10158 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10159 XEXP (op0, 0), op1)))
10161 op0 = XEXP (op0, 1);
10162 op1 = tem;
10163 continue;
10166 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10167 of bits in X minus 1, is one iff X > 0. */
10168 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10169 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10170 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10171 == mode_width - 1
10172 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10174 op0 = XEXP (op0, 1);
10175 code = (code == GE ? LE : GT);
10176 continue;
10178 break;
10180 case XOR:
10181 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10182 if C is zero or B is a constant. */
10183 if (equality_comparison_p
10184 && 0 != (tem = simplify_binary_operation (XOR, mode,
10185 XEXP (op0, 1), op1)))
10187 op0 = XEXP (op0, 0);
10188 op1 = tem;
10189 continue;
10191 break;
10193 case EQ: case NE:
10194 case UNEQ: case LTGT:
10195 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10196 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10197 case UNORDERED: case ORDERED:
10198 /* We can't do anything if OP0 is a condition code value, rather
10199 than an actual data value. */
10200 if (const_op != 0
10201 || CC0_P (XEXP (op0, 0))
10202 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10203 break;
10205 /* Get the two operands being compared. */
10206 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10207 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10208 else
10209 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10211 /* Check for the cases where we simply want the result of the
10212 earlier test or the opposite of that result. */
10213 if (code == NE || code == EQ
10214 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10215 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10216 && (STORE_FLAG_VALUE
10217 & (((HOST_WIDE_INT) 1
10218 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10219 && (code == LT || code == GE)))
10221 enum rtx_code new_code;
10222 if (code == LT || code == NE)
10223 new_code = GET_CODE (op0);
10224 else
10225 new_code = reversed_comparison_code (op0, NULL);
10227 if (new_code != UNKNOWN)
10229 code = new_code;
10230 op0 = tem;
10231 op1 = tem1;
10232 continue;
10235 break;
10237 case IOR:
10238 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
10239 iff X <= 0. */
10240 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10241 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10242 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10244 op0 = XEXP (op0, 1);
10245 code = (code == GE ? GT : LE);
10246 continue;
10248 break;
10250 case AND:
10251 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10252 will be converted to a ZERO_EXTRACT later. */
10253 if (const_op == 0 && equality_comparison_p
10254 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10255 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10257 op0 = simplify_and_const_int
10258 (NULL_RTX, mode, gen_rtx_LSHIFTRT (mode,
10259 XEXP (op0, 1),
10260 XEXP (XEXP (op0, 0), 1)),
10261 (HOST_WIDE_INT) 1);
10262 continue;
10265 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10266 zero and X is a comparison and C1 and C2 describe only bits set
10267 in STORE_FLAG_VALUE, we can compare with X. */
10268 if (const_op == 0 && equality_comparison_p
10269 && mode_width <= HOST_BITS_PER_WIDE_INT
10270 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10271 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10272 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10273 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10274 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10276 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10277 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10278 if ((~STORE_FLAG_VALUE & mask) == 0
10279 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
10280 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10281 && COMPARISON_P (tem))))
10283 op0 = XEXP (XEXP (op0, 0), 0);
10284 continue;
10288 /* If we are doing an equality comparison of an AND of a bit equal
10289 to the sign bit, replace this with a LT or GE comparison of
10290 the underlying value. */
10291 if (equality_comparison_p
10292 && const_op == 0
10293 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10294 && mode_width <= HOST_BITS_PER_WIDE_INT
10295 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10296 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10298 op0 = XEXP (op0, 0);
10299 code = (code == EQ ? GE : LT);
10300 continue;
10303 /* If this AND operation is really a ZERO_EXTEND from a narrower
10304 mode, the constant fits within that mode, and this is either an
10305 equality or unsigned comparison, try to do this comparison in
10306 the narrower mode.
10308 Note that in:
10310 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
10311 -> (ne:DI (reg:SI 4) (const_int 0))
10313 unless TRULY_NOOP_TRUNCATION allows it or the register is
10314 known to hold a value of the required mode the
10315 transformation is invalid. */
10316 if ((equality_comparison_p || unsigned_comparison_p)
10317 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10318 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10319 & GET_MODE_MASK (mode))
10320 + 1)) >= 0
10321 && const_op >> i == 0
10322 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode
10323 && (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
10324 GET_MODE_BITSIZE (GET_MODE (op0)))
10325 || (REG_P (XEXP (op0, 0))
10326 && reg_truncated_to_mode (tmode, XEXP (op0, 0)))))
10328 op0 = gen_lowpart (tmode, XEXP (op0, 0));
10329 continue;
10332 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
10333 fits in both M1 and M2 and the SUBREG is either paradoxical
10334 or represents the low part, permute the SUBREG and the AND
10335 and try again. */
10336 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
10338 unsigned HOST_WIDE_INT c1;
10339 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
10340 /* Require an integral mode, to avoid creating something like
10341 (AND:SF ...). */
10342 if (SCALAR_INT_MODE_P (tmode)
10343 /* It is unsafe to commute the AND into the SUBREG if the
10344 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
10345 not defined. As originally written the upper bits
10346 have a defined value due to the AND operation.
10347 However, if we commute the AND inside the SUBREG then
10348 they no longer have defined values and the meaning of
10349 the code has been changed. */
10350 && (0
10351 #ifdef WORD_REGISTER_OPERATIONS
10352 || (mode_width > GET_MODE_BITSIZE (tmode)
10353 && mode_width <= BITS_PER_WORD)
10354 #endif
10355 || (mode_width <= GET_MODE_BITSIZE (tmode)
10356 && subreg_lowpart_p (XEXP (op0, 0))))
10357 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10358 && mode_width <= HOST_BITS_PER_WIDE_INT
10359 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
10360 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
10361 && (c1 & ~GET_MODE_MASK (tmode)) == 0
10362 && c1 != mask
10363 && c1 != GET_MODE_MASK (tmode))
10365 op0 = simplify_gen_binary (AND, tmode,
10366 SUBREG_REG (XEXP (op0, 0)),
10367 gen_int_mode (c1, tmode));
10368 op0 = gen_lowpart (mode, op0);
10369 continue;
10373 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
10374 if (const_op == 0 && equality_comparison_p
10375 && XEXP (op0, 1) == const1_rtx
10376 && GET_CODE (XEXP (op0, 0)) == NOT)
10378 op0 = simplify_and_const_int
10379 (NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
10380 code = (code == NE ? EQ : NE);
10381 continue;
10384 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10385 (eq (and (lshiftrt X) 1) 0).
10386 Also handle the case where (not X) is expressed using xor. */
10387 if (const_op == 0 && equality_comparison_p
10388 && XEXP (op0, 1) == const1_rtx
10389 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
10391 rtx shift_op = XEXP (XEXP (op0, 0), 0);
10392 rtx shift_count = XEXP (XEXP (op0, 0), 1);
10394 if (GET_CODE (shift_op) == NOT
10395 || (GET_CODE (shift_op) == XOR
10396 && GET_CODE (XEXP (shift_op, 1)) == CONST_INT
10397 && GET_CODE (shift_count) == CONST_INT
10398 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10399 && (INTVAL (XEXP (shift_op, 1))
10400 == (HOST_WIDE_INT) 1 << INTVAL (shift_count))))
10402 op0 = simplify_and_const_int
10403 (NULL_RTX, mode,
10404 gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count),
10405 (HOST_WIDE_INT) 1);
10406 code = (code == NE ? EQ : NE);
10407 continue;
10410 break;
10412 case ASHIFT:
10413 /* If we have (compare (ashift FOO N) (const_int C)) and
10414 the high order N bits of FOO (N+1 if an inequality comparison)
10415 are known to be zero, we can do this by comparing FOO with C
10416 shifted right N bits so long as the low-order N bits of C are
10417 zero. */
10418 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10419 && INTVAL (XEXP (op0, 1)) >= 0
10420 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10421 < HOST_BITS_PER_WIDE_INT)
10422 && ((const_op
10423 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10424 && mode_width <= HOST_BITS_PER_WIDE_INT
10425 && (nonzero_bits (XEXP (op0, 0), mode)
10426 & ~(mask >> (INTVAL (XEXP (op0, 1))
10427 + ! equality_comparison_p))) == 0)
10429 /* We must perform a logical shift, not an arithmetic one,
10430 as we want the top N bits of C to be zero. */
10431 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10433 temp >>= INTVAL (XEXP (op0, 1));
10434 op1 = gen_int_mode (temp, mode);
10435 op0 = XEXP (op0, 0);
10436 continue;
10439 /* If we are doing a sign bit comparison, it means we are testing
10440 a particular bit. Convert it to the appropriate AND. */
10441 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10442 && mode_width <= HOST_BITS_PER_WIDE_INT)
10444 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10445 ((HOST_WIDE_INT) 1
10446 << (mode_width - 1
10447 - INTVAL (XEXP (op0, 1)))));
10448 code = (code == LT ? NE : EQ);
10449 continue;
10452 /* If this an equality comparison with zero and we are shifting
10453 the low bit to the sign bit, we can convert this to an AND of the
10454 low-order bit. */
10455 if (const_op == 0 && equality_comparison_p
10456 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10457 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10458 == mode_width - 1)
10460 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10461 (HOST_WIDE_INT) 1);
10462 continue;
10464 break;
10466 case ASHIFTRT:
10467 /* If this is an equality comparison with zero, we can do this
10468 as a logical shift, which might be much simpler. */
10469 if (equality_comparison_p && const_op == 0
10470 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10472 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10473 XEXP (op0, 0),
10474 INTVAL (XEXP (op0, 1)));
10475 continue;
10478 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10479 do the comparison in a narrower mode. */
10480 if (! unsigned_comparison_p
10481 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10482 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10483 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10484 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10485 MODE_INT, 1)) != BLKmode
10486 && (((unsigned HOST_WIDE_INT) const_op
10487 + (GET_MODE_MASK (tmode) >> 1) + 1)
10488 <= GET_MODE_MASK (tmode)))
10490 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
10491 continue;
10494 /* Likewise if OP0 is a PLUS of a sign extension with a
10495 constant, which is usually represented with the PLUS
10496 between the shifts. */
10497 if (! unsigned_comparison_p
10498 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10499 && GET_CODE (XEXP (op0, 0)) == PLUS
10500 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10501 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
10502 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
10503 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10504 MODE_INT, 1)) != BLKmode
10505 && (((unsigned HOST_WIDE_INT) const_op
10506 + (GET_MODE_MASK (tmode) >> 1) + 1)
10507 <= GET_MODE_MASK (tmode)))
10509 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
10510 rtx add_const = XEXP (XEXP (op0, 0), 1);
10511 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
10512 add_const, XEXP (op0, 1));
10514 op0 = simplify_gen_binary (PLUS, tmode,
10515 gen_lowpart (tmode, inner),
10516 new_const);
10517 continue;
10520 /* ... fall through ... */
10521 case LSHIFTRT:
10522 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
10523 the low order N bits of FOO are known to be zero, we can do this
10524 by comparing FOO with C shifted left N bits so long as no
10525 overflow occurs. */
10526 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10527 && INTVAL (XEXP (op0, 1)) >= 0
10528 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10529 && mode_width <= HOST_BITS_PER_WIDE_INT
10530 && (nonzero_bits (XEXP (op0, 0), mode)
10531 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
10532 && (((unsigned HOST_WIDE_INT) const_op
10533 + (GET_CODE (op0) != LSHIFTRT
10534 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
10535 + 1)
10536 : 0))
10537 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
10539 /* If the shift was logical, then we must make the condition
10540 unsigned. */
10541 if (GET_CODE (op0) == LSHIFTRT)
10542 code = unsigned_condition (code);
10544 const_op <<= INTVAL (XEXP (op0, 1));
10545 op1 = GEN_INT (const_op);
10546 op0 = XEXP (op0, 0);
10547 continue;
10550 /* If we are using this shift to extract just the sign bit, we
10551 can replace this with an LT or GE comparison. */
10552 if (const_op == 0
10553 && (equality_comparison_p || sign_bit_comparison_p)
10554 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10555 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10556 == mode_width - 1)
10558 op0 = XEXP (op0, 0);
10559 code = (code == NE || code == GT ? LT : GE);
10560 continue;
10562 break;
10564 default:
10565 break;
10568 break;
10571 /* Now make any compound operations involved in this comparison. Then,
10572 check for an outmost SUBREG on OP0 that is not doing anything or is
10573 paradoxical. The latter transformation must only be performed when
10574 it is known that the "extra" bits will be the same in op0 and op1 or
10575 that they don't matter. There are three cases to consider:
10577 1. SUBREG_REG (op0) is a register. In this case the bits are don't
10578 care bits and we can assume they have any convenient value. So
10579 making the transformation is safe.
10581 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
10582 In this case the upper bits of op0 are undefined. We should not make
10583 the simplification in that case as we do not know the contents of
10584 those bits.
10586 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
10587 UNKNOWN. In that case we know those bits are zeros or ones. We must
10588 also be sure that they are the same as the upper bits of op1.
10590 We can never remove a SUBREG for a non-equality comparison because
10591 the sign bit is in a different place in the underlying object. */
10593 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
10594 op1 = make_compound_operation (op1, SET);
10596 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
10597 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10598 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
10599 && (code == NE || code == EQ))
10601 if (GET_MODE_SIZE (GET_MODE (op0))
10602 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
10604 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
10605 implemented. */
10606 if (REG_P (SUBREG_REG (op0)))
10608 op0 = SUBREG_REG (op0);
10609 op1 = gen_lowpart (GET_MODE (op0), op1);
10612 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10613 <= HOST_BITS_PER_WIDE_INT)
10614 && (nonzero_bits (SUBREG_REG (op0),
10615 GET_MODE (SUBREG_REG (op0)))
10616 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10618 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
10620 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
10621 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10622 op0 = SUBREG_REG (op0), op1 = tem;
10626 /* We now do the opposite procedure: Some machines don't have compare
10627 insns in all modes. If OP0's mode is an integer mode smaller than a
10628 word and we can't do a compare in that mode, see if there is a larger
10629 mode for which we can do the compare. There are a number of cases in
10630 which we can use the wider mode. */
10632 mode = GET_MODE (op0);
10633 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10634 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
10635 && ! have_insn_for (COMPARE, mode))
10636 for (tmode = GET_MODE_WIDER_MODE (mode);
10637 (tmode != VOIDmode
10638 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
10639 tmode = GET_MODE_WIDER_MODE (tmode))
10640 if (have_insn_for (COMPARE, tmode))
10642 int zero_extended;
10644 /* If the only nonzero bits in OP0 and OP1 are those in the
10645 narrower mode and this is an equality or unsigned comparison,
10646 we can use the wider mode. Similarly for sign-extended
10647 values, in which case it is true for all comparisons. */
10648 zero_extended = ((code == EQ || code == NE
10649 || code == GEU || code == GTU
10650 || code == LEU || code == LTU)
10651 && (nonzero_bits (op0, tmode)
10652 & ~GET_MODE_MASK (mode)) == 0
10653 && ((GET_CODE (op1) == CONST_INT
10654 || (nonzero_bits (op1, tmode)
10655 & ~GET_MODE_MASK (mode)) == 0)));
10657 if (zero_extended
10658 || ((num_sign_bit_copies (op0, tmode)
10659 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10660 - GET_MODE_BITSIZE (mode)))
10661 && (num_sign_bit_copies (op1, tmode)
10662 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10663 - GET_MODE_BITSIZE (mode)))))
10665 /* If OP0 is an AND and we don't have an AND in MODE either,
10666 make a new AND in the proper mode. */
10667 if (GET_CODE (op0) == AND
10668 && !have_insn_for (AND, mode))
10669 op0 = simplify_gen_binary (AND, tmode,
10670 gen_lowpart (tmode,
10671 XEXP (op0, 0)),
10672 gen_lowpart (tmode,
10673 XEXP (op0, 1)));
10675 op0 = gen_lowpart (tmode, op0);
10676 if (zero_extended && GET_CODE (op1) == CONST_INT)
10677 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
10678 op1 = gen_lowpart (tmode, op1);
10679 break;
10682 /* If this is a test for negative, we can make an explicit
10683 test of the sign bit. */
10685 if (op1 == const0_rtx && (code == LT || code == GE)
10686 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10688 op0 = simplify_gen_binary (AND, tmode,
10689 gen_lowpart (tmode, op0),
10690 GEN_INT ((HOST_WIDE_INT) 1
10691 << (GET_MODE_BITSIZE (mode)
10692 - 1)));
10693 code = (code == LT) ? NE : EQ;
10694 break;
10698 #ifdef CANONICALIZE_COMPARISON
10699 /* If this machine only supports a subset of valid comparisons, see if we
10700 can convert an unsupported one into a supported one. */
10701 CANONICALIZE_COMPARISON (code, op0, op1);
10702 #endif
10704 *pop0 = op0;
10705 *pop1 = op1;
10707 return code;
10710 /* Utility function for record_value_for_reg. Count number of
10711 rtxs in X. */
10712 static int
10713 count_rtxs (rtx x)
10715 enum rtx_code code = GET_CODE (x);
10716 const char *fmt;
10717 int i, ret = 1;
10719 if (GET_RTX_CLASS (code) == '2'
10720 || GET_RTX_CLASS (code) == 'c')
10722 rtx x0 = XEXP (x, 0);
10723 rtx x1 = XEXP (x, 1);
10725 if (x0 == x1)
10726 return 1 + 2 * count_rtxs (x0);
10728 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
10729 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
10730 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
10731 return 2 + 2 * count_rtxs (x0)
10732 + count_rtxs (x == XEXP (x1, 0)
10733 ? XEXP (x1, 1) : XEXP (x1, 0));
10735 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
10736 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
10737 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
10738 return 2 + 2 * count_rtxs (x1)
10739 + count_rtxs (x == XEXP (x0, 0)
10740 ? XEXP (x0, 1) : XEXP (x0, 0));
10743 fmt = GET_RTX_FORMAT (code);
10744 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10745 if (fmt[i] == 'e')
10746 ret += count_rtxs (XEXP (x, i));
10748 return ret;
10751 /* Utility function for following routine. Called when X is part of a value
10752 being stored into last_set_value. Sets last_set_table_tick
10753 for each register mentioned. Similar to mention_regs in cse.c */
10755 static void
10756 update_table_tick (rtx x)
10758 enum rtx_code code = GET_CODE (x);
10759 const char *fmt = GET_RTX_FORMAT (code);
10760 int i;
10762 if (code == REG)
10764 unsigned int regno = REGNO (x);
10765 unsigned int endregno
10766 = regno + (regno < FIRST_PSEUDO_REGISTER
10767 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
10768 unsigned int r;
10770 for (r = regno; r < endregno; r++)
10771 reg_stat[r].last_set_table_tick = label_tick;
10773 return;
10776 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10777 /* Note that we can't have an "E" in values stored; see
10778 get_last_value_validate. */
10779 if (fmt[i] == 'e')
10781 /* Check for identical subexpressions. If x contains
10782 identical subexpression we only have to traverse one of
10783 them. */
10784 if (i == 0 && ARITHMETIC_P (x))
10786 /* Note that at this point x1 has already been
10787 processed. */
10788 rtx x0 = XEXP (x, 0);
10789 rtx x1 = XEXP (x, 1);
10791 /* If x0 and x1 are identical then there is no need to
10792 process x0. */
10793 if (x0 == x1)
10794 break;
10796 /* If x0 is identical to a subexpression of x1 then while
10797 processing x1, x0 has already been processed. Thus we
10798 are done with x. */
10799 if (ARITHMETIC_P (x1)
10800 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
10801 break;
10803 /* If x1 is identical to a subexpression of x0 then we
10804 still have to process the rest of x0. */
10805 if (ARITHMETIC_P (x0)
10806 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
10808 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
10809 break;
10813 update_table_tick (XEXP (x, i));
10817 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
10818 are saying that the register is clobbered and we no longer know its
10819 value. If INSN is zero, don't update reg_stat[].last_set; this is
10820 only permitted with VALUE also zero and is used to invalidate the
10821 register. */
10823 static void
10824 record_value_for_reg (rtx reg, rtx insn, rtx value)
10826 unsigned int regno = REGNO (reg);
10827 unsigned int endregno
10828 = regno + (regno < FIRST_PSEUDO_REGISTER
10829 ? hard_regno_nregs[regno][GET_MODE (reg)] : 1);
10830 unsigned int i;
10832 /* If VALUE contains REG and we have a previous value for REG, substitute
10833 the previous value. */
10834 if (value && insn && reg_overlap_mentioned_p (reg, value))
10836 rtx tem;
10838 /* Set things up so get_last_value is allowed to see anything set up to
10839 our insn. */
10840 subst_low_cuid = INSN_CUID (insn);
10841 tem = get_last_value (reg);
10843 /* If TEM is simply a binary operation with two CLOBBERs as operands,
10844 it isn't going to be useful and will take a lot of time to process,
10845 so just use the CLOBBER. */
10847 if (tem)
10849 if (ARITHMETIC_P (tem)
10850 && GET_CODE (XEXP (tem, 0)) == CLOBBER
10851 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
10852 tem = XEXP (tem, 0);
10853 else if (count_occurrences (value, reg, 1) >= 2)
10855 /* If there are two or more occurrences of REG in VALUE,
10856 prevent the value from growing too much. */
10857 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
10858 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
10861 value = replace_rtx (copy_rtx (value), reg, tem);
10865 /* For each register modified, show we don't know its value, that
10866 we don't know about its bitwise content, that its value has been
10867 updated, and that we don't know the location of the death of the
10868 register. */
10869 for (i = regno; i < endregno; i++)
10871 if (insn)
10872 reg_stat[i].last_set = insn;
10874 reg_stat[i].last_set_value = 0;
10875 reg_stat[i].last_set_mode = 0;
10876 reg_stat[i].last_set_nonzero_bits = 0;
10877 reg_stat[i].last_set_sign_bit_copies = 0;
10878 reg_stat[i].last_death = 0;
10879 reg_stat[i].truncated_to_mode = 0;
10882 /* Mark registers that are being referenced in this value. */
10883 if (value)
10884 update_table_tick (value);
10886 /* Now update the status of each register being set.
10887 If someone is using this register in this block, set this register
10888 to invalid since we will get confused between the two lives in this
10889 basic block. This makes using this register always invalid. In cse, we
10890 scan the table to invalidate all entries using this register, but this
10891 is too much work for us. */
10893 for (i = regno; i < endregno; i++)
10895 reg_stat[i].last_set_label = label_tick;
10896 if (!insn || (value && reg_stat[i].last_set_table_tick == label_tick))
10897 reg_stat[i].last_set_invalid = 1;
10898 else
10899 reg_stat[i].last_set_invalid = 0;
10902 /* The value being assigned might refer to X (like in "x++;"). In that
10903 case, we must replace it with (clobber (const_int 0)) to prevent
10904 infinite loops. */
10905 if (value && ! get_last_value_validate (&value, insn,
10906 reg_stat[regno].last_set_label, 0))
10908 value = copy_rtx (value);
10909 if (! get_last_value_validate (&value, insn,
10910 reg_stat[regno].last_set_label, 1))
10911 value = 0;
10914 /* For the main register being modified, update the value, the mode, the
10915 nonzero bits, and the number of sign bit copies. */
10917 reg_stat[regno].last_set_value = value;
10919 if (value)
10921 enum machine_mode mode = GET_MODE (reg);
10922 subst_low_cuid = INSN_CUID (insn);
10923 reg_stat[regno].last_set_mode = mode;
10924 if (GET_MODE_CLASS (mode) == MODE_INT
10925 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10926 mode = nonzero_bits_mode;
10927 reg_stat[regno].last_set_nonzero_bits = nonzero_bits (value, mode);
10928 reg_stat[regno].last_set_sign_bit_copies
10929 = num_sign_bit_copies (value, GET_MODE (reg));
10933 /* Called via note_stores from record_dead_and_set_regs to handle one
10934 SET or CLOBBER in an insn. DATA is the instruction in which the
10935 set is occurring. */
10937 static void
10938 record_dead_and_set_regs_1 (rtx dest, rtx setter, void *data)
10940 rtx record_dead_insn = (rtx) data;
10942 if (GET_CODE (dest) == SUBREG)
10943 dest = SUBREG_REG (dest);
10945 if (!record_dead_insn)
10947 if (REG_P (dest))
10948 record_value_for_reg (dest, NULL_RTX, NULL_RTX);
10949 return;
10952 if (REG_P (dest))
10954 /* If we are setting the whole register, we know its value. Otherwise
10955 show that we don't know the value. We can handle SUBREG in
10956 some cases. */
10957 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
10958 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
10959 else if (GET_CODE (setter) == SET
10960 && GET_CODE (SET_DEST (setter)) == SUBREG
10961 && SUBREG_REG (SET_DEST (setter)) == dest
10962 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
10963 && subreg_lowpart_p (SET_DEST (setter)))
10964 record_value_for_reg (dest, record_dead_insn,
10965 gen_lowpart (GET_MODE (dest),
10966 SET_SRC (setter)));
10967 else
10968 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
10970 else if (MEM_P (dest)
10971 /* Ignore pushes, they clobber nothing. */
10972 && ! push_operand (dest, GET_MODE (dest)))
10973 mem_last_set = INSN_CUID (record_dead_insn);
10976 /* Update the records of when each REG was most recently set or killed
10977 for the things done by INSN. This is the last thing done in processing
10978 INSN in the combiner loop.
10980 We update reg_stat[], in particular fields last_set, last_set_value,
10981 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
10982 last_death, and also the similar information mem_last_set (which insn
10983 most recently modified memory) and last_call_cuid (which insn was the
10984 most recent subroutine call). */
10986 static void
10987 record_dead_and_set_regs (rtx insn)
10989 rtx link;
10990 unsigned int i;
10992 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
10994 if (REG_NOTE_KIND (link) == REG_DEAD
10995 && REG_P (XEXP (link, 0)))
10997 unsigned int regno = REGNO (XEXP (link, 0));
10998 unsigned int endregno
10999 = regno + (regno < FIRST_PSEUDO_REGISTER
11000 ? hard_regno_nregs[regno][GET_MODE (XEXP (link, 0))]
11001 : 1);
11003 for (i = regno; i < endregno; i++)
11004 reg_stat[i].last_death = insn;
11006 else if (REG_NOTE_KIND (link) == REG_INC)
11007 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11010 if (CALL_P (insn))
11012 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11013 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11015 reg_stat[i].last_set_value = 0;
11016 reg_stat[i].last_set_mode = 0;
11017 reg_stat[i].last_set_nonzero_bits = 0;
11018 reg_stat[i].last_set_sign_bit_copies = 0;
11019 reg_stat[i].last_death = 0;
11020 reg_stat[i].truncated_to_mode = 0;
11023 last_call_cuid = mem_last_set = INSN_CUID (insn);
11025 /* We can't combine into a call pattern. Remember, though, that
11026 the return value register is set at this CUID. We could
11027 still replace a register with the return value from the
11028 wrong subroutine call! */
11029 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
11031 else
11032 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11035 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11036 register present in the SUBREG, so for each such SUBREG go back and
11037 adjust nonzero and sign bit information of the registers that are
11038 known to have some zero/sign bits set.
11040 This is needed because when combine blows the SUBREGs away, the
11041 information on zero/sign bits is lost and further combines can be
11042 missed because of that. */
11044 static void
11045 record_promoted_value (rtx insn, rtx subreg)
11047 rtx links, set;
11048 unsigned int regno = REGNO (SUBREG_REG (subreg));
11049 enum machine_mode mode = GET_MODE (subreg);
11051 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11052 return;
11054 for (links = LOG_LINKS (insn); links;)
11056 insn = XEXP (links, 0);
11057 set = single_set (insn);
11059 if (! set || !REG_P (SET_DEST (set))
11060 || REGNO (SET_DEST (set)) != regno
11061 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11063 links = XEXP (links, 1);
11064 continue;
11067 if (reg_stat[regno].last_set == insn)
11069 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11070 reg_stat[regno].last_set_nonzero_bits &= GET_MODE_MASK (mode);
11073 if (REG_P (SET_SRC (set)))
11075 regno = REGNO (SET_SRC (set));
11076 links = LOG_LINKS (insn);
11078 else
11079 break;
11083 /* Check if X, a register, is known to contain a value already
11084 truncated to MODE. In this case we can use a subreg to refer to
11085 the truncated value even though in the generic case we would need
11086 an explicit truncation. */
11088 static bool
11089 reg_truncated_to_mode (enum machine_mode mode, rtx x)
11091 enum machine_mode truncated = reg_stat[REGNO (x)].truncated_to_mode;
11093 if (truncated == 0 || reg_stat[REGNO (x)].truncation_label != label_tick)
11094 return false;
11095 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
11096 return true;
11097 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
11098 GET_MODE_BITSIZE (truncated)))
11099 return true;
11100 return false;
11103 /* X is a REG or a SUBREG. If X is some sort of a truncation record
11104 it. For non-TRULY_NOOP_TRUNCATION targets we might be able to turn
11105 a truncate into a subreg using this information. */
11107 static void
11108 record_truncated_value (rtx x)
11110 enum machine_mode truncated_mode;
11112 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
11114 enum machine_mode original_mode = GET_MODE (SUBREG_REG (x));
11115 truncated_mode = GET_MODE (x);
11117 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
11118 return;
11120 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (truncated_mode),
11121 GET_MODE_BITSIZE (original_mode)))
11122 return;
11124 x = SUBREG_REG (x);
11126 /* ??? For hard-regs we now record everything. We might be able to
11127 optimize this using last_set_mode. */
11128 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
11129 truncated_mode = GET_MODE (x);
11130 else
11131 return;
11133 if (reg_stat[REGNO (x)].truncated_to_mode == 0
11134 || reg_stat[REGNO (x)].truncation_label < label_tick
11135 || (GET_MODE_SIZE (truncated_mode)
11136 < GET_MODE_SIZE (reg_stat[REGNO (x)].truncated_to_mode)))
11138 reg_stat[REGNO (x)].truncated_to_mode = truncated_mode;
11139 reg_stat[REGNO (x)].truncation_label = label_tick;
11143 /* Scan X for promoted SUBREGs and truncated REGs. For each one
11144 found, note what it implies to the registers used in it. */
11146 static void
11147 check_conversions (rtx insn, rtx x)
11149 if (GET_CODE (x) == SUBREG || REG_P (x))
11151 if (GET_CODE (x) == SUBREG
11152 && SUBREG_PROMOTED_VAR_P (x)
11153 && REG_P (SUBREG_REG (x)))
11154 record_promoted_value (insn, x);
11156 record_truncated_value (x);
11158 else
11160 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11161 int i, j;
11163 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11164 switch (format[i])
11166 case 'e':
11167 check_conversions (insn, XEXP (x, i));
11168 break;
11169 case 'V':
11170 case 'E':
11171 if (XVEC (x, i) != 0)
11172 for (j = 0; j < XVECLEN (x, i); j++)
11173 check_conversions (insn, XVECEXP (x, i, j));
11174 break;
11179 /* Utility routine for the following function. Verify that all the registers
11180 mentioned in *LOC are valid when *LOC was part of a value set when
11181 label_tick == TICK. Return 0 if some are not.
11183 If REPLACE is nonzero, replace the invalid reference with
11184 (clobber (const_int 0)) and return 1. This replacement is useful because
11185 we often can get useful information about the form of a value (e.g., if
11186 it was produced by a shift that always produces -1 or 0) even though
11187 we don't know exactly what registers it was produced from. */
11189 static int
11190 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
11192 rtx x = *loc;
11193 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11194 int len = GET_RTX_LENGTH (GET_CODE (x));
11195 int i;
11197 if (REG_P (x))
11199 unsigned int regno = REGNO (x);
11200 unsigned int endregno
11201 = regno + (regno < FIRST_PSEUDO_REGISTER
11202 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11203 unsigned int j;
11205 for (j = regno; j < endregno; j++)
11206 if (reg_stat[j].last_set_invalid
11207 /* If this is a pseudo-register that was only set once and not
11208 live at the beginning of the function, it is always valid. */
11209 || (! (regno >= FIRST_PSEUDO_REGISTER
11210 && REG_N_SETS (regno) == 1
11211 && (! REGNO_REG_SET_P
11212 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
11213 regno)))
11214 && reg_stat[j].last_set_label > tick))
11216 if (replace)
11217 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11218 return replace;
11221 return 1;
11223 /* If this is a memory reference, make sure that there were
11224 no stores after it that might have clobbered the value. We don't
11225 have alias info, so we assume any store invalidates it. */
11226 else if (MEM_P (x) && !MEM_READONLY_P (x)
11227 && INSN_CUID (insn) <= mem_last_set)
11229 if (replace)
11230 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11231 return replace;
11234 for (i = 0; i < len; i++)
11236 if (fmt[i] == 'e')
11238 /* Check for identical subexpressions. If x contains
11239 identical subexpression we only have to traverse one of
11240 them. */
11241 if (i == 1 && ARITHMETIC_P (x))
11243 /* Note that at this point x0 has already been checked
11244 and found valid. */
11245 rtx x0 = XEXP (x, 0);
11246 rtx x1 = XEXP (x, 1);
11248 /* If x0 and x1 are identical then x is also valid. */
11249 if (x0 == x1)
11250 return 1;
11252 /* If x1 is identical to a subexpression of x0 then
11253 while checking x0, x1 has already been checked. Thus
11254 it is valid and so as x. */
11255 if (ARITHMETIC_P (x0)
11256 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11257 return 1;
11259 /* If x0 is identical to a subexpression of x1 then x is
11260 valid iff the rest of x1 is valid. */
11261 if (ARITHMETIC_P (x1)
11262 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11263 return
11264 get_last_value_validate (&XEXP (x1,
11265 x0 == XEXP (x1, 0) ? 1 : 0),
11266 insn, tick, replace);
11269 if (get_last_value_validate (&XEXP (x, i), insn, tick,
11270 replace) == 0)
11271 return 0;
11273 /* Don't bother with these. They shouldn't occur anyway. */
11274 else if (fmt[i] == 'E')
11275 return 0;
11278 /* If we haven't found a reason for it to be invalid, it is valid. */
11279 return 1;
11282 /* Get the last value assigned to X, if known. Some registers
11283 in the value may be replaced with (clobber (const_int 0)) if their value
11284 is known longer known reliably. */
11286 static rtx
11287 get_last_value (rtx x)
11289 unsigned int regno;
11290 rtx value;
11292 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11293 then convert it to the desired mode. If this is a paradoxical SUBREG,
11294 we cannot predict what values the "extra" bits might have. */
11295 if (GET_CODE (x) == SUBREG
11296 && subreg_lowpart_p (x)
11297 && (GET_MODE_SIZE (GET_MODE (x))
11298 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11299 && (value = get_last_value (SUBREG_REG (x))) != 0)
11300 return gen_lowpart (GET_MODE (x), value);
11302 if (!REG_P (x))
11303 return 0;
11305 regno = REGNO (x);
11306 value = reg_stat[regno].last_set_value;
11308 /* If we don't have a value, or if it isn't for this basic block and
11309 it's either a hard register, set more than once, or it's a live
11310 at the beginning of the function, return 0.
11312 Because if it's not live at the beginning of the function then the reg
11313 is always set before being used (is never used without being set).
11314 And, if it's set only once, and it's always set before use, then all
11315 uses must have the same last value, even if it's not from this basic
11316 block. */
11318 if (value == 0
11319 || (reg_stat[regno].last_set_label != label_tick
11320 && (regno < FIRST_PSEUDO_REGISTER
11321 || REG_N_SETS (regno) != 1
11322 || (REGNO_REG_SET_P
11323 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
11324 regno)))))
11325 return 0;
11327 /* If the value was set in a later insn than the ones we are processing,
11328 we can't use it even if the register was only set once. */
11329 if (INSN_CUID (reg_stat[regno].last_set) >= subst_low_cuid)
11330 return 0;
11332 /* If the value has all its registers valid, return it. */
11333 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11334 reg_stat[regno].last_set_label, 0))
11335 return value;
11337 /* Otherwise, make a copy and replace any invalid register with
11338 (clobber (const_int 0)). If that fails for some reason, return 0. */
11340 value = copy_rtx (value);
11341 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11342 reg_stat[regno].last_set_label, 1))
11343 return value;
11345 return 0;
11348 /* Return nonzero if expression X refers to a REG or to memory
11349 that is set in an instruction more recent than FROM_CUID. */
11351 static int
11352 use_crosses_set_p (rtx x, int from_cuid)
11354 const char *fmt;
11355 int i;
11356 enum rtx_code code = GET_CODE (x);
11358 if (code == REG)
11360 unsigned int regno = REGNO (x);
11361 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11362 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11364 #ifdef PUSH_ROUNDING
11365 /* Don't allow uses of the stack pointer to be moved,
11366 because we don't know whether the move crosses a push insn. */
11367 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11368 return 1;
11369 #endif
11370 for (; regno < endreg; regno++)
11371 if (reg_stat[regno].last_set
11372 && INSN_CUID (reg_stat[regno].last_set) > from_cuid)
11373 return 1;
11374 return 0;
11377 if (code == MEM && mem_last_set > from_cuid)
11378 return 1;
11380 fmt = GET_RTX_FORMAT (code);
11382 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11384 if (fmt[i] == 'E')
11386 int j;
11387 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11388 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11389 return 1;
11391 else if (fmt[i] == 'e'
11392 && use_crosses_set_p (XEXP (x, i), from_cuid))
11393 return 1;
11395 return 0;
11398 /* Define three variables used for communication between the following
11399 routines. */
11401 static unsigned int reg_dead_regno, reg_dead_endregno;
11402 static int reg_dead_flag;
11404 /* Function called via note_stores from reg_dead_at_p.
11406 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11407 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11409 static void
11410 reg_dead_at_p_1 (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
11412 unsigned int regno, endregno;
11414 if (!REG_P (dest))
11415 return;
11417 regno = REGNO (dest);
11418 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
11419 ? hard_regno_nregs[regno][GET_MODE (dest)] : 1);
11421 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11422 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11425 /* Return nonzero if REG is known to be dead at INSN.
11427 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11428 referencing REG, it is dead. If we hit a SET referencing REG, it is
11429 live. Otherwise, see if it is live or dead at the start of the basic
11430 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11431 must be assumed to be always live. */
11433 static int
11434 reg_dead_at_p (rtx reg, rtx insn)
11436 basic_block block;
11437 unsigned int i;
11439 /* Set variables for reg_dead_at_p_1. */
11440 reg_dead_regno = REGNO (reg);
11441 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11442 ? hard_regno_nregs[reg_dead_regno]
11443 [GET_MODE (reg)]
11444 : 1);
11446 reg_dead_flag = 0;
11448 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
11449 we allow the machine description to decide whether use-and-clobber
11450 patterns are OK. */
11451 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11453 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11454 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
11455 return 0;
11458 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11459 beginning of function. */
11460 for (; insn && !LABEL_P (insn) && !BARRIER_P (insn);
11461 insn = prev_nonnote_insn (insn))
11463 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11464 if (reg_dead_flag)
11465 return reg_dead_flag == 1 ? 1 : 0;
11467 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11468 return 1;
11471 /* Get the basic block that we were in. */
11472 if (insn == 0)
11473 block = ENTRY_BLOCK_PTR->next_bb;
11474 else
11476 FOR_EACH_BB (block)
11477 if (insn == BB_HEAD (block))
11478 break;
11480 if (block == EXIT_BLOCK_PTR)
11481 return 0;
11484 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11485 if (REGNO_REG_SET_P (block->il.rtl->global_live_at_start, i))
11486 return 0;
11488 return 1;
11491 /* Note hard registers in X that are used. This code is similar to
11492 that in flow.c, but much simpler since we don't care about pseudos. */
11494 static void
11495 mark_used_regs_combine (rtx x)
11497 RTX_CODE code = GET_CODE (x);
11498 unsigned int regno;
11499 int i;
11501 switch (code)
11503 case LABEL_REF:
11504 case SYMBOL_REF:
11505 case CONST_INT:
11506 case CONST:
11507 case CONST_DOUBLE:
11508 case CONST_VECTOR:
11509 case PC:
11510 case ADDR_VEC:
11511 case ADDR_DIFF_VEC:
11512 case ASM_INPUT:
11513 #ifdef HAVE_cc0
11514 /* CC0 must die in the insn after it is set, so we don't need to take
11515 special note of it here. */
11516 case CC0:
11517 #endif
11518 return;
11520 case CLOBBER:
11521 /* If we are clobbering a MEM, mark any hard registers inside the
11522 address as used. */
11523 if (MEM_P (XEXP (x, 0)))
11524 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
11525 return;
11527 case REG:
11528 regno = REGNO (x);
11529 /* A hard reg in a wide mode may really be multiple registers.
11530 If so, mark all of them just like the first. */
11531 if (regno < FIRST_PSEUDO_REGISTER)
11533 unsigned int endregno, r;
11535 /* None of this applies to the stack, frame or arg pointers. */
11536 if (regno == STACK_POINTER_REGNUM
11537 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11538 || regno == HARD_FRAME_POINTER_REGNUM
11539 #endif
11540 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11541 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
11542 #endif
11543 || regno == FRAME_POINTER_REGNUM)
11544 return;
11546 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11547 for (r = regno; r < endregno; r++)
11548 SET_HARD_REG_BIT (newpat_used_regs, r);
11550 return;
11552 case SET:
11554 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11555 the address. */
11556 rtx testreg = SET_DEST (x);
11558 while (GET_CODE (testreg) == SUBREG
11559 || GET_CODE (testreg) == ZERO_EXTRACT
11560 || GET_CODE (testreg) == STRICT_LOW_PART)
11561 testreg = XEXP (testreg, 0);
11563 if (MEM_P (testreg))
11564 mark_used_regs_combine (XEXP (testreg, 0));
11566 mark_used_regs_combine (SET_SRC (x));
11568 return;
11570 default:
11571 break;
11574 /* Recursively scan the operands of this expression. */
11577 const char *fmt = GET_RTX_FORMAT (code);
11579 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11581 if (fmt[i] == 'e')
11582 mark_used_regs_combine (XEXP (x, i));
11583 else if (fmt[i] == 'E')
11585 int j;
11587 for (j = 0; j < XVECLEN (x, i); j++)
11588 mark_used_regs_combine (XVECEXP (x, i, j));
11594 /* Remove register number REGNO from the dead registers list of INSN.
11596 Return the note used to record the death, if there was one. */
11599 remove_death (unsigned int regno, rtx insn)
11601 rtx note = find_regno_note (insn, REG_DEAD, regno);
11603 if (note)
11605 REG_N_DEATHS (regno)--;
11606 remove_note (insn, note);
11609 return note;
11612 /* For each register (hardware or pseudo) used within expression X, if its
11613 death is in an instruction with cuid between FROM_CUID (inclusive) and
11614 TO_INSN (exclusive), put a REG_DEAD note for that register in the
11615 list headed by PNOTES.
11617 That said, don't move registers killed by maybe_kill_insn.
11619 This is done when X is being merged by combination into TO_INSN. These
11620 notes will then be distributed as needed. */
11622 static void
11623 move_deaths (rtx x, rtx maybe_kill_insn, int from_cuid, rtx to_insn,
11624 rtx *pnotes)
11626 const char *fmt;
11627 int len, i;
11628 enum rtx_code code = GET_CODE (x);
11630 if (code == REG)
11632 unsigned int regno = REGNO (x);
11633 rtx where_dead = reg_stat[regno].last_death;
11634 rtx before_dead, after_dead;
11636 /* Don't move the register if it gets killed in between from and to. */
11637 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
11638 && ! reg_referenced_p (x, maybe_kill_insn))
11639 return;
11641 /* WHERE_DEAD could be a USE insn made by combine, so first we
11642 make sure that we have insns with valid INSN_CUID values. */
11643 before_dead = where_dead;
11644 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
11645 before_dead = PREV_INSN (before_dead);
11647 after_dead = where_dead;
11648 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
11649 after_dead = NEXT_INSN (after_dead);
11651 if (before_dead && after_dead
11652 && INSN_CUID (before_dead) >= from_cuid
11653 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
11654 || (where_dead != after_dead
11655 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
11657 rtx note = remove_death (regno, where_dead);
11659 /* It is possible for the call above to return 0. This can occur
11660 when last_death points to I2 or I1 that we combined with.
11661 In that case make a new note.
11663 We must also check for the case where X is a hard register
11664 and NOTE is a death note for a range of hard registers
11665 including X. In that case, we must put REG_DEAD notes for
11666 the remaining registers in place of NOTE. */
11668 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
11669 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11670 > GET_MODE_SIZE (GET_MODE (x))))
11672 unsigned int deadregno = REGNO (XEXP (note, 0));
11673 unsigned int deadend
11674 = (deadregno + hard_regno_nregs[deadregno]
11675 [GET_MODE (XEXP (note, 0))]);
11676 unsigned int ourend
11677 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11678 unsigned int i;
11680 for (i = deadregno; i < deadend; i++)
11681 if (i < regno || i >= ourend)
11682 REG_NOTES (where_dead)
11683 = gen_rtx_EXPR_LIST (REG_DEAD,
11684 regno_reg_rtx[i],
11685 REG_NOTES (where_dead));
11688 /* If we didn't find any note, or if we found a REG_DEAD note that
11689 covers only part of the given reg, and we have a multi-reg hard
11690 register, then to be safe we must check for REG_DEAD notes
11691 for each register other than the first. They could have
11692 their own REG_DEAD notes lying around. */
11693 else if ((note == 0
11694 || (note != 0
11695 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11696 < GET_MODE_SIZE (GET_MODE (x)))))
11697 && regno < FIRST_PSEUDO_REGISTER
11698 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
11700 unsigned int ourend
11701 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11702 unsigned int i, offset;
11703 rtx oldnotes = 0;
11705 if (note)
11706 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
11707 else
11708 offset = 1;
11710 for (i = regno + offset; i < ourend; i++)
11711 move_deaths (regno_reg_rtx[i],
11712 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
11715 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
11717 XEXP (note, 1) = *pnotes;
11718 *pnotes = note;
11720 else
11721 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
11723 REG_N_DEATHS (regno)++;
11726 return;
11729 else if (GET_CODE (x) == SET)
11731 rtx dest = SET_DEST (x);
11733 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
11735 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
11736 that accesses one word of a multi-word item, some
11737 piece of everything register in the expression is used by
11738 this insn, so remove any old death. */
11739 /* ??? So why do we test for equality of the sizes? */
11741 if (GET_CODE (dest) == ZERO_EXTRACT
11742 || GET_CODE (dest) == STRICT_LOW_PART
11743 || (GET_CODE (dest) == SUBREG
11744 && (((GET_MODE_SIZE (GET_MODE (dest))
11745 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
11746 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
11747 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
11749 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
11750 return;
11753 /* If this is some other SUBREG, we know it replaces the entire
11754 value, so use that as the destination. */
11755 if (GET_CODE (dest) == SUBREG)
11756 dest = SUBREG_REG (dest);
11758 /* If this is a MEM, adjust deaths of anything used in the address.
11759 For a REG (the only other possibility), the entire value is
11760 being replaced so the old value is not used in this insn. */
11762 if (MEM_P (dest))
11763 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
11764 to_insn, pnotes);
11765 return;
11768 else if (GET_CODE (x) == CLOBBER)
11769 return;
11771 len = GET_RTX_LENGTH (code);
11772 fmt = GET_RTX_FORMAT (code);
11774 for (i = 0; i < len; i++)
11776 if (fmt[i] == 'E')
11778 int j;
11779 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11780 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
11781 to_insn, pnotes);
11783 else if (fmt[i] == 'e')
11784 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
11788 /* Return 1 if X is the target of a bit-field assignment in BODY, the
11789 pattern of an insn. X must be a REG. */
11791 static int
11792 reg_bitfield_target_p (rtx x, rtx body)
11794 int i;
11796 if (GET_CODE (body) == SET)
11798 rtx dest = SET_DEST (body);
11799 rtx target;
11800 unsigned int regno, tregno, endregno, endtregno;
11802 if (GET_CODE (dest) == ZERO_EXTRACT)
11803 target = XEXP (dest, 0);
11804 else if (GET_CODE (dest) == STRICT_LOW_PART)
11805 target = SUBREG_REG (XEXP (dest, 0));
11806 else
11807 return 0;
11809 if (GET_CODE (target) == SUBREG)
11810 target = SUBREG_REG (target);
11812 if (!REG_P (target))
11813 return 0;
11815 tregno = REGNO (target), regno = REGNO (x);
11816 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
11817 return target == x;
11819 endtregno = tregno + hard_regno_nregs[tregno][GET_MODE (target)];
11820 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11822 return endregno > tregno && regno < endtregno;
11825 else if (GET_CODE (body) == PARALLEL)
11826 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
11827 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
11828 return 1;
11830 return 0;
11833 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
11834 as appropriate. I3 and I2 are the insns resulting from the combination
11835 insns including FROM (I2 may be zero).
11837 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
11838 not need REG_DEAD notes because they are being substituted for. This
11839 saves searching in the most common cases.
11841 Each note in the list is either ignored or placed on some insns, depending
11842 on the type of note. */
11844 static void
11845 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2, rtx elim_i2,
11846 rtx elim_i1)
11848 rtx note, next_note;
11849 rtx tem;
11851 for (note = notes; note; note = next_note)
11853 rtx place = 0, place2 = 0;
11855 next_note = XEXP (note, 1);
11856 switch (REG_NOTE_KIND (note))
11858 case REG_BR_PROB:
11859 case REG_BR_PRED:
11860 /* Doesn't matter much where we put this, as long as it's somewhere.
11861 It is preferable to keep these notes on branches, which is most
11862 likely to be i3. */
11863 place = i3;
11864 break;
11866 case REG_VALUE_PROFILE:
11867 /* Just get rid of this note, as it is unused later anyway. */
11868 break;
11870 case REG_NON_LOCAL_GOTO:
11871 if (JUMP_P (i3))
11872 place = i3;
11873 else
11875 gcc_assert (i2 && JUMP_P (i2));
11876 place = i2;
11878 break;
11880 case REG_EH_REGION:
11881 /* These notes must remain with the call or trapping instruction. */
11882 if (CALL_P (i3))
11883 place = i3;
11884 else if (i2 && CALL_P (i2))
11885 place = i2;
11886 else
11888 gcc_assert (flag_non_call_exceptions);
11889 if (may_trap_p (i3))
11890 place = i3;
11891 else if (i2 && may_trap_p (i2))
11892 place = i2;
11893 /* ??? Otherwise assume we've combined things such that we
11894 can now prove that the instructions can't trap. Drop the
11895 note in this case. */
11897 break;
11899 case REG_NORETURN:
11900 case REG_SETJMP:
11901 /* These notes must remain with the call. It should not be
11902 possible for both I2 and I3 to be a call. */
11903 if (CALL_P (i3))
11904 place = i3;
11905 else
11907 gcc_assert (i2 && CALL_P (i2));
11908 place = i2;
11910 break;
11912 case REG_UNUSED:
11913 /* Any clobbers for i3 may still exist, and so we must process
11914 REG_UNUSED notes from that insn.
11916 Any clobbers from i2 or i1 can only exist if they were added by
11917 recog_for_combine. In that case, recog_for_combine created the
11918 necessary REG_UNUSED notes. Trying to keep any original
11919 REG_UNUSED notes from these insns can cause incorrect output
11920 if it is for the same register as the original i3 dest.
11921 In that case, we will notice that the register is set in i3,
11922 and then add a REG_UNUSED note for the destination of i3, which
11923 is wrong. However, it is possible to have REG_UNUSED notes from
11924 i2 or i1 for register which were both used and clobbered, so
11925 we keep notes from i2 or i1 if they will turn into REG_DEAD
11926 notes. */
11928 /* If this register is set or clobbered in I3, put the note there
11929 unless there is one already. */
11930 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
11932 if (from_insn != i3)
11933 break;
11935 if (! (REG_P (XEXP (note, 0))
11936 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
11937 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
11938 place = i3;
11940 /* Otherwise, if this register is used by I3, then this register
11941 now dies here, so we must put a REG_DEAD note here unless there
11942 is one already. */
11943 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
11944 && ! (REG_P (XEXP (note, 0))
11945 ? find_regno_note (i3, REG_DEAD,
11946 REGNO (XEXP (note, 0)))
11947 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
11949 PUT_REG_NOTE_KIND (note, REG_DEAD);
11950 place = i3;
11952 break;
11954 case REG_EQUAL:
11955 case REG_EQUIV:
11956 case REG_NOALIAS:
11957 /* These notes say something about results of an insn. We can
11958 only support them if they used to be on I3 in which case they
11959 remain on I3. Otherwise they are ignored.
11961 If the note refers to an expression that is not a constant, we
11962 must also ignore the note since we cannot tell whether the
11963 equivalence is still true. It might be possible to do
11964 slightly better than this (we only have a problem if I2DEST
11965 or I1DEST is present in the expression), but it doesn't
11966 seem worth the trouble. */
11968 if (from_insn == i3
11969 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
11970 place = i3;
11971 break;
11973 case REG_INC:
11974 case REG_NO_CONFLICT:
11975 /* These notes say something about how a register is used. They must
11976 be present on any use of the register in I2 or I3. */
11977 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
11978 place = i3;
11980 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
11982 if (place)
11983 place2 = i2;
11984 else
11985 place = i2;
11987 break;
11989 case REG_LABEL:
11990 /* This can show up in several ways -- either directly in the
11991 pattern, or hidden off in the constant pool with (or without?)
11992 a REG_EQUAL note. */
11993 /* ??? Ignore the without-reg_equal-note problem for now. */
11994 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
11995 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
11996 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
11997 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
11998 place = i3;
12000 if (i2
12001 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12002 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12003 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12004 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12006 if (place)
12007 place2 = i2;
12008 else
12009 place = i2;
12012 /* Don't attach REG_LABEL note to a JUMP_INSN. Add
12013 a JUMP_LABEL instead or decrement LABEL_NUSES. */
12014 if (place && JUMP_P (place))
12016 rtx label = JUMP_LABEL (place);
12018 if (!label)
12019 JUMP_LABEL (place) = XEXP (note, 0);
12020 else
12022 gcc_assert (label == XEXP (note, 0));
12023 if (LABEL_P (label))
12024 LABEL_NUSES (label)--;
12026 place = 0;
12028 if (place2 && JUMP_P (place2))
12030 rtx label = JUMP_LABEL (place2);
12032 if (!label)
12033 JUMP_LABEL (place2) = XEXP (note, 0);
12034 else
12036 gcc_assert (label == XEXP (note, 0));
12037 if (LABEL_P (label))
12038 LABEL_NUSES (label)--;
12040 place2 = 0;
12042 break;
12044 case REG_NONNEG:
12045 /* This note says something about the value of a register prior
12046 to the execution of an insn. It is too much trouble to see
12047 if the note is still correct in all situations. It is better
12048 to simply delete it. */
12049 break;
12051 case REG_RETVAL:
12052 /* If the insn previously containing this note still exists,
12053 put it back where it was. Otherwise move it to the previous
12054 insn. Adjust the corresponding REG_LIBCALL note. */
12055 if (!NOTE_P (from_insn))
12056 place = from_insn;
12057 else
12059 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
12060 place = prev_real_insn (from_insn);
12061 if (tem && place)
12062 XEXP (tem, 0) = place;
12063 /* If we're deleting the last remaining instruction of a
12064 libcall sequence, don't add the notes. */
12065 else if (XEXP (note, 0) == from_insn)
12066 tem = place = 0;
12067 /* Don't add the dangling REG_RETVAL note. */
12068 else if (! tem)
12069 place = 0;
12071 break;
12073 case REG_LIBCALL:
12074 /* This is handled similarly to REG_RETVAL. */
12075 if (!NOTE_P (from_insn))
12076 place = from_insn;
12077 else
12079 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
12080 place = next_real_insn (from_insn);
12081 if (tem && place)
12082 XEXP (tem, 0) = place;
12083 /* If we're deleting the last remaining instruction of a
12084 libcall sequence, don't add the notes. */
12085 else if (XEXP (note, 0) == from_insn)
12086 tem = place = 0;
12087 /* Don't add the dangling REG_LIBCALL note. */
12088 else if (! tem)
12089 place = 0;
12091 break;
12093 case REG_DEAD:
12094 /* If the register is used as an input in I3, it dies there.
12095 Similarly for I2, if it is nonzero and adjacent to I3.
12097 If the register is not used as an input in either I3 or I2
12098 and it is not one of the registers we were supposed to eliminate,
12099 there are two possibilities. We might have a non-adjacent I2
12100 or we might have somehow eliminated an additional register
12101 from a computation. For example, we might have had A & B where
12102 we discover that B will always be zero. In this case we will
12103 eliminate the reference to A.
12105 In both cases, we must search to see if we can find a previous
12106 use of A and put the death note there. */
12108 if (from_insn
12109 && CALL_P (from_insn)
12110 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12111 place = from_insn;
12112 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12113 place = i3;
12114 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12115 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12116 place = i2;
12118 if (place == 0
12119 && (rtx_equal_p (XEXP (note, 0), elim_i2)
12120 || rtx_equal_p (XEXP (note, 0), elim_i1)))
12121 break;
12123 if (place == 0)
12125 basic_block bb = this_basic_block;
12127 /* You might think you could search back from FROM_INSN
12128 rather than from I3, but combine tries to split invalid
12129 combined instructions. This can result in the old I2
12130 or I1 moving later in the insn sequence. */
12131 for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
12133 if (! INSN_P (tem))
12135 if (tem == BB_HEAD (bb))
12136 break;
12137 continue;
12140 /* If the register is being set at TEM, see if that is all
12141 TEM is doing. If so, delete TEM. Otherwise, make this
12142 into a REG_UNUSED note instead. Don't delete sets to
12143 global register vars. */
12144 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
12145 || !global_regs[REGNO (XEXP (note, 0))])
12146 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
12148 rtx set = single_set (tem);
12149 rtx inner_dest = 0;
12150 #ifdef HAVE_cc0
12151 rtx cc0_setter = NULL_RTX;
12152 #endif
12154 if (set != 0)
12155 for (inner_dest = SET_DEST (set);
12156 (GET_CODE (inner_dest) == STRICT_LOW_PART
12157 || GET_CODE (inner_dest) == SUBREG
12158 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12159 inner_dest = XEXP (inner_dest, 0))
12162 /* Verify that it was the set, and not a clobber that
12163 modified the register.
12165 CC0 targets must be careful to maintain setter/user
12166 pairs. If we cannot delete the setter due to side
12167 effects, mark the user with an UNUSED note instead
12168 of deleting it. */
12170 if (set != 0 && ! side_effects_p (SET_SRC (set))
12171 && rtx_equal_p (XEXP (note, 0), inner_dest)
12172 #ifdef HAVE_cc0
12173 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12174 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12175 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12176 #endif
12179 /* Move the notes and links of TEM elsewhere.
12180 This might delete other dead insns recursively.
12181 First set the pattern to something that won't use
12182 any register. */
12183 rtx old_notes = REG_NOTES (tem);
12185 PATTERN (tem) = pc_rtx;
12186 REG_NOTES (tem) = NULL;
12188 distribute_notes (old_notes, tem, tem, NULL_RTX,
12189 NULL_RTX, NULL_RTX);
12190 distribute_links (LOG_LINKS (tem));
12192 SET_INSN_DELETED (tem);
12194 #ifdef HAVE_cc0
12195 /* Delete the setter too. */
12196 if (cc0_setter)
12198 PATTERN (cc0_setter) = pc_rtx;
12199 old_notes = REG_NOTES (cc0_setter);
12200 REG_NOTES (cc0_setter) = NULL;
12202 distribute_notes (old_notes, cc0_setter,
12203 cc0_setter, NULL_RTX,
12204 NULL_RTX, NULL_RTX);
12205 distribute_links (LOG_LINKS (cc0_setter));
12207 SET_INSN_DELETED (cc0_setter);
12209 #endif
12211 else
12213 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12215 /* If there isn't already a REG_UNUSED note, put one
12216 here. Do not place a REG_DEAD note, even if
12217 the register is also used here; that would not
12218 match the algorithm used in lifetime analysis
12219 and can cause the consistency check in the
12220 scheduler to fail. */
12221 if (! find_regno_note (tem, REG_UNUSED,
12222 REGNO (XEXP (note, 0))))
12223 place = tem;
12224 break;
12227 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12228 || (CALL_P (tem)
12229 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12231 /* This may not be the correct place for the death
12232 note if FROM_INSN is before TEM, and the reg is
12233 set between FROM_INSN and TEM. The reg might
12234 die two or more times. An existing death note
12235 means we are looking at the wrong live range. */
12236 if (from_insn
12237 && INSN_CUID (from_insn) < INSN_CUID (tem)
12238 && find_regno_note (tem, REG_DEAD,
12239 REGNO (XEXP (note, 0))))
12241 tem = from_insn;
12242 if (tem == BB_HEAD (bb))
12243 break;
12244 continue;
12247 place = tem;
12249 /* If we are doing a 3->2 combination, and we have a
12250 register which formerly died in i3 and was not used
12251 by i2, which now no longer dies in i3 and is used in
12252 i2 but does not die in i2, and place is between i2
12253 and i3, then we may need to move a link from place to
12254 i2. */
12255 if (i2 && INSN_UID (place) <= max_uid_cuid
12256 && INSN_CUID (place) > INSN_CUID (i2)
12257 && from_insn
12258 && INSN_CUID (from_insn) > INSN_CUID (i2)
12259 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12261 rtx links = LOG_LINKS (place);
12262 LOG_LINKS (place) = 0;
12263 distribute_links (links);
12265 break;
12268 if (tem == BB_HEAD (bb))
12269 break;
12272 /* We haven't found an insn for the death note and it
12273 is still a REG_DEAD note, but we have hit the beginning
12274 of the block. If the existing life info says the reg
12275 was dead, there's nothing left to do. Otherwise, we'll
12276 need to do a global life update after combine. */
12277 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12278 && REGNO_REG_SET_P (bb->il.rtl->global_live_at_start,
12279 REGNO (XEXP (note, 0))))
12280 SET_BIT (refresh_blocks, this_basic_block->index);
12283 /* If the register is set or already dead at PLACE, we needn't do
12284 anything with this note if it is still a REG_DEAD note.
12285 We check here if it is set at all, not if is it totally replaced,
12286 which is what `dead_or_set_p' checks, so also check for it being
12287 set partially. */
12289 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12291 unsigned int regno = REGNO (XEXP (note, 0));
12293 /* Similarly, if the instruction on which we want to place
12294 the note is a noop, we'll need do a global live update
12295 after we remove them in delete_noop_moves. */
12296 if (noop_move_p (place))
12297 SET_BIT (refresh_blocks, this_basic_block->index);
12299 if (dead_or_set_p (place, XEXP (note, 0))
12300 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12302 /* Unless the register previously died in PLACE, clear
12303 last_death. [I no longer understand why this is
12304 being done.] */
12305 if (reg_stat[regno].last_death != place)
12306 reg_stat[regno].last_death = 0;
12307 place = 0;
12309 else
12310 reg_stat[regno].last_death = place;
12312 /* If this is a death note for a hard reg that is occupying
12313 multiple registers, ensure that we are still using all
12314 parts of the object. If we find a piece of the object
12315 that is unused, we must arrange for an appropriate REG_DEAD
12316 note to be added for it. However, we can't just emit a USE
12317 and tag the note to it, since the register might actually
12318 be dead; so we recourse, and the recursive call then finds
12319 the previous insn that used this register. */
12321 if (place && regno < FIRST_PSEUDO_REGISTER
12322 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
12324 unsigned int endregno
12325 = regno + hard_regno_nregs[regno]
12326 [GET_MODE (XEXP (note, 0))];
12327 int all_used = 1;
12328 unsigned int i;
12330 for (i = regno; i < endregno; i++)
12331 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12332 && ! find_regno_fusage (place, USE, i))
12333 || dead_or_set_regno_p (place, i))
12334 all_used = 0;
12336 if (! all_used)
12338 /* Put only REG_DEAD notes for pieces that are
12339 not already dead or set. */
12341 for (i = regno; i < endregno;
12342 i += hard_regno_nregs[i][reg_raw_mode[i]])
12344 rtx piece = regno_reg_rtx[i];
12345 basic_block bb = this_basic_block;
12347 if (! dead_or_set_p (place, piece)
12348 && ! reg_bitfield_target_p (piece,
12349 PATTERN (place)))
12351 rtx new_note
12352 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12354 distribute_notes (new_note, place, place,
12355 NULL_RTX, NULL_RTX, NULL_RTX);
12357 else if (! refers_to_regno_p (i, i + 1,
12358 PATTERN (place), 0)
12359 && ! find_regno_fusage (place, USE, i))
12360 for (tem = PREV_INSN (place); ;
12361 tem = PREV_INSN (tem))
12363 if (! INSN_P (tem))
12365 if (tem == BB_HEAD (bb))
12367 SET_BIT (refresh_blocks,
12368 this_basic_block->index);
12369 break;
12371 continue;
12373 if (dead_or_set_p (tem, piece)
12374 || reg_bitfield_target_p (piece,
12375 PATTERN (tem)))
12377 REG_NOTES (tem)
12378 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12379 REG_NOTES (tem));
12380 break;
12386 place = 0;
12390 break;
12392 default:
12393 /* Any other notes should not be present at this point in the
12394 compilation. */
12395 gcc_unreachable ();
12398 if (place)
12400 XEXP (note, 1) = REG_NOTES (place);
12401 REG_NOTES (place) = note;
12403 else if ((REG_NOTE_KIND (note) == REG_DEAD
12404 || REG_NOTE_KIND (note) == REG_UNUSED)
12405 && REG_P (XEXP (note, 0)))
12406 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12408 if (place2)
12410 if ((REG_NOTE_KIND (note) == REG_DEAD
12411 || REG_NOTE_KIND (note) == REG_UNUSED)
12412 && REG_P (XEXP (note, 0)))
12413 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12415 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12416 REG_NOTE_KIND (note),
12417 XEXP (note, 0),
12418 REG_NOTES (place2));
12423 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12424 I3, I2, and I1 to new locations. This is also called to add a link
12425 pointing at I3 when I3's destination is changed. */
12427 static void
12428 distribute_links (rtx links)
12430 rtx link, next_link;
12432 for (link = links; link; link = next_link)
12434 rtx place = 0;
12435 rtx insn;
12436 rtx set, reg;
12438 next_link = XEXP (link, 1);
12440 /* If the insn that this link points to is a NOTE or isn't a single
12441 set, ignore it. In the latter case, it isn't clear what we
12442 can do other than ignore the link, since we can't tell which
12443 register it was for. Such links wouldn't be used by combine
12444 anyway.
12446 It is not possible for the destination of the target of the link to
12447 have been changed by combine. The only potential of this is if we
12448 replace I3, I2, and I1 by I3 and I2. But in that case the
12449 destination of I2 also remains unchanged. */
12451 if (NOTE_P (XEXP (link, 0))
12452 || (set = single_set (XEXP (link, 0))) == 0)
12453 continue;
12455 reg = SET_DEST (set);
12456 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12457 || GET_CODE (reg) == STRICT_LOW_PART)
12458 reg = XEXP (reg, 0);
12460 /* A LOG_LINK is defined as being placed on the first insn that uses
12461 a register and points to the insn that sets the register. Start
12462 searching at the next insn after the target of the link and stop
12463 when we reach a set of the register or the end of the basic block.
12465 Note that this correctly handles the link that used to point from
12466 I3 to I2. Also note that not much searching is typically done here
12467 since most links don't point very far away. */
12469 for (insn = NEXT_INSN (XEXP (link, 0));
12470 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
12471 || BB_HEAD (this_basic_block->next_bb) != insn));
12472 insn = NEXT_INSN (insn))
12473 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12475 if (reg_referenced_p (reg, PATTERN (insn)))
12476 place = insn;
12477 break;
12479 else if (CALL_P (insn)
12480 && find_reg_fusage (insn, USE, reg))
12482 place = insn;
12483 break;
12485 else if (INSN_P (insn) && reg_set_p (reg, insn))
12486 break;
12488 /* If we found a place to put the link, place it there unless there
12489 is already a link to the same insn as LINK at that point. */
12491 if (place)
12493 rtx link2;
12495 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12496 if (XEXP (link2, 0) == XEXP (link, 0))
12497 break;
12499 if (link2 == 0)
12501 XEXP (link, 1) = LOG_LINKS (place);
12502 LOG_LINKS (place) = link;
12504 /* Set added_links_insn to the earliest insn we added a
12505 link to. */
12506 if (added_links_insn == 0
12507 || INSN_CUID (added_links_insn) > INSN_CUID (place))
12508 added_links_insn = place;
12514 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
12515 Check whether the expression pointer to by LOC is a register or
12516 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
12517 Otherwise return zero. */
12519 static int
12520 unmentioned_reg_p_1 (rtx *loc, void *expr)
12522 rtx x = *loc;
12524 if (x != NULL_RTX
12525 && (REG_P (x) || MEM_P (x))
12526 && ! reg_mentioned_p (x, (rtx) expr))
12527 return 1;
12528 return 0;
12531 /* Check for any register or memory mentioned in EQUIV that is not
12532 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
12533 of EXPR where some registers may have been replaced by constants. */
12535 static bool
12536 unmentioned_reg_p (rtx equiv, rtx expr)
12538 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
12541 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
12543 static int
12544 insn_cuid (rtx insn)
12546 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
12547 && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE)
12548 insn = NEXT_INSN (insn);
12550 gcc_assert (INSN_UID (insn) <= max_uid_cuid);
12552 return INSN_CUID (insn);
12555 void
12556 dump_combine_stats (FILE *file)
12558 fprintf
12559 (file,
12560 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12561 combine_attempts, combine_merges, combine_extras, combine_successes);
12564 void
12565 dump_combine_total_stats (FILE *file)
12567 fprintf
12568 (file,
12569 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12570 total_attempts, total_merges, total_extras, total_successes);
12574 static bool
12575 gate_handle_combine (void)
12577 return (optimize > 0);
12580 /* Try combining insns through substitution. */
12581 static unsigned int
12582 rest_of_handle_combine (void)
12584 int rebuild_jump_labels_after_combine
12585 = combine_instructions (get_insns (), max_reg_num ());
12587 /* Combining insns may have turned an indirect jump into a
12588 direct jump. Rebuild the JUMP_LABEL fields of jumping
12589 instructions. */
12590 if (rebuild_jump_labels_after_combine)
12592 timevar_push (TV_JUMP);
12593 rebuild_jump_labels (get_insns ());
12594 timevar_pop (TV_JUMP);
12596 delete_dead_jumptables ();
12597 cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_UPDATE_LIFE);
12599 return 0;
12602 struct tree_opt_pass pass_combine =
12604 "combine", /* name */
12605 gate_handle_combine, /* gate */
12606 rest_of_handle_combine, /* execute */
12607 NULL, /* sub */
12608 NULL, /* next */
12609 0, /* static_pass_number */
12610 TV_COMBINE, /* tv_id */
12611 0, /* properties_required */
12612 0, /* properties_provided */
12613 0, /* properties_destroyed */
12614 0, /* todo_flags_start */
12615 TODO_dump_func |
12616 TODO_ggc_collect, /* todo_flags_finish */
12617 'c' /* letter */