1 /* Generic SSA value propagation engine.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
30 #include "basic-block.h"
34 #include "diagnostic.h"
36 #include "tree-dump.h"
37 #include "tree-flow.h"
38 #include "tree-pass.h"
39 #include "tree-ssa-propagate.h"
40 #include "langhooks.h"
43 #include "value-prof.h"
46 /* This file implements a generic value propagation engine based on
47 the same propagation used by the SSA-CCP algorithm [1].
49 Propagation is performed by simulating the execution of every
50 statement that produces the value being propagated. Simulation
53 1- Initially, all edges of the CFG are marked not executable and
54 the CFG worklist is seeded with all the statements in the entry
55 basic block (block 0).
57 2- Every statement S is simulated with a call to the call-back
58 function SSA_PROP_VISIT_STMT. This evaluation may produce 3
61 SSA_PROP_NOT_INTERESTING: Statement S produces nothing of
62 interest and does not affect any of the work lists.
64 SSA_PROP_VARYING: The value produced by S cannot be determined
65 at compile time. Further simulation of S is not required.
66 If S is a conditional jump, all the outgoing edges for the
67 block are considered executable and added to the work
70 SSA_PROP_INTERESTING: S produces a value that can be computed
71 at compile time. Its result can be propagated into the
72 statements that feed from S. Furthermore, if S is a
73 conditional jump, only the edge known to be taken is added
74 to the work list. Edges that are known not to execute are
77 3- PHI nodes are simulated with a call to SSA_PROP_VISIT_PHI. The
78 return value from SSA_PROP_VISIT_PHI has the same semantics as
81 4- Three work lists are kept. Statements are only added to these
82 lists if they produce one of SSA_PROP_INTERESTING or
85 CFG_BLOCKS contains the list of blocks to be simulated.
86 Blocks are added to this list if their incoming edges are
89 VARYING_SSA_EDGES contains the list of statements that feed
90 from statements that produce an SSA_PROP_VARYING result.
91 These are simulated first to speed up processing.
93 INTERESTING_SSA_EDGES contains the list of statements that
94 feed from statements that produce an SSA_PROP_INTERESTING
97 5- Simulation terminates when all three work lists are drained.
99 Before calling ssa_propagate, it is important to clear
100 prop_simulate_again_p for all the statements in the program that
101 should be simulated. This initialization allows an implementation
102 to specify which statements should never be simulated.
104 It is also important to compute def-use information before calling
109 [1] Constant propagation with conditional branches,
110 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
112 [2] Building an Optimizing Compiler,
113 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
115 [3] Advanced Compiler Design and Implementation,
116 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
118 /* Function pointers used to parameterize the propagation engine. */
119 static ssa_prop_visit_stmt_fn ssa_prop_visit_stmt
;
120 static ssa_prop_visit_phi_fn ssa_prop_visit_phi
;
122 /* Keep track of statements that have been added to one of the SSA
123 edges worklists. This flag is used to avoid visiting statements
124 unnecessarily when draining an SSA edge worklist. If while
125 simulating a basic block, we find a statement with
126 STMT_IN_SSA_EDGE_WORKLIST set, we clear it to prevent SSA edge
127 processing from visiting it again.
129 NOTE: users of the propagation engine are not allowed to use
130 the GF_PLF_1 flag. */
131 #define STMT_IN_SSA_EDGE_WORKLIST GF_PLF_1
133 /* A bitmap to keep track of executable blocks in the CFG. */
134 static sbitmap executable_blocks
;
136 /* Array of control flow edges on the worklist. */
137 static VEC(basic_block
,heap
) *cfg_blocks
;
139 static unsigned int cfg_blocks_num
= 0;
140 static int cfg_blocks_tail
;
141 static int cfg_blocks_head
;
143 static sbitmap bb_in_list
;
145 /* Worklist of SSA edges which will need reexamination as their
146 definition has changed. SSA edges are def-use edges in the SSA
147 web. For each D-U edge, we store the target statement or PHI node
149 static GTY(()) VEC(gimple
,gc
) *interesting_ssa_edges
;
151 /* Identical to INTERESTING_SSA_EDGES. For performance reasons, the
152 list of SSA edges is split into two. One contains all SSA edges
153 who need to be reexamined because their lattice value changed to
154 varying (this worklist), and the other contains all other SSA edges
155 to be reexamined (INTERESTING_SSA_EDGES).
157 Since most values in the program are VARYING, the ideal situation
158 is to move them to that lattice value as quickly as possible.
159 Thus, it doesn't make sense to process any other type of lattice
160 value until all VARYING values are propagated fully, which is one
161 thing using the VARYING worklist achieves. In addition, if we
162 don't use a separate worklist for VARYING edges, we end up with
163 situations where lattice values move from
164 UNDEFINED->INTERESTING->VARYING instead of UNDEFINED->VARYING. */
165 static GTY(()) VEC(gimple
,gc
) *varying_ssa_edges
;
168 /* Return true if the block worklist empty. */
171 cfg_blocks_empty_p (void)
173 return (cfg_blocks_num
== 0);
177 /* Add a basic block to the worklist. The block must not be already
178 in the worklist, and it must not be the ENTRY or EXIT block. */
181 cfg_blocks_add (basic_block bb
)
185 gcc_assert (bb
!= ENTRY_BLOCK_PTR
&& bb
!= EXIT_BLOCK_PTR
);
186 gcc_assert (!TEST_BIT (bb_in_list
, bb
->index
));
188 if (cfg_blocks_empty_p ())
190 cfg_blocks_tail
= cfg_blocks_head
= 0;
196 if (cfg_blocks_num
> VEC_length (basic_block
, cfg_blocks
))
198 /* We have to grow the array now. Adjust to queue to occupy
199 the full space of the original array. We do not need to
200 initialize the newly allocated portion of the array
201 because we keep track of CFG_BLOCKS_HEAD and
203 cfg_blocks_tail
= VEC_length (basic_block
, cfg_blocks
);
205 VEC_safe_grow (basic_block
, heap
, cfg_blocks
, 2 * cfg_blocks_tail
);
207 /* Minor optimization: we prefer to see blocks with more
208 predecessors later, because there is more of a chance that
209 the incoming edges will be executable. */
210 else if (EDGE_COUNT (bb
->preds
)
211 >= EDGE_COUNT (VEC_index (basic_block
, cfg_blocks
,
212 cfg_blocks_head
)->preds
))
213 cfg_blocks_tail
= ((cfg_blocks_tail
+ 1)
214 % VEC_length (basic_block
, cfg_blocks
));
217 if (cfg_blocks_head
== 0)
218 cfg_blocks_head
= VEC_length (basic_block
, cfg_blocks
);
224 VEC_replace (basic_block
, cfg_blocks
,
225 head
? cfg_blocks_head
: cfg_blocks_tail
,
227 SET_BIT (bb_in_list
, bb
->index
);
231 /* Remove a block from the worklist. */
234 cfg_blocks_get (void)
238 bb
= VEC_index (basic_block
, cfg_blocks
, cfg_blocks_head
);
240 gcc_assert (!cfg_blocks_empty_p ());
243 cfg_blocks_head
= ((cfg_blocks_head
+ 1)
244 % VEC_length (basic_block
, cfg_blocks
));
246 RESET_BIT (bb_in_list
, bb
->index
);
252 /* We have just defined a new value for VAR. If IS_VARYING is true,
253 add all immediate uses of VAR to VARYING_SSA_EDGES, otherwise add
254 them to INTERESTING_SSA_EDGES. */
257 add_ssa_edge (tree var
, bool is_varying
)
259 imm_use_iterator iter
;
262 FOR_EACH_IMM_USE_FAST (use_p
, iter
, var
)
264 gimple use_stmt
= USE_STMT (use_p
);
266 if (prop_simulate_again_p (use_stmt
)
267 && !gimple_plf (use_stmt
, STMT_IN_SSA_EDGE_WORKLIST
))
269 gimple_set_plf (use_stmt
, STMT_IN_SSA_EDGE_WORKLIST
, true);
271 VEC_safe_push (gimple
, gc
, varying_ssa_edges
, use_stmt
);
273 VEC_safe_push (gimple
, gc
, interesting_ssa_edges
, use_stmt
);
279 /* Add edge E to the control flow worklist. */
282 add_control_edge (edge e
)
284 basic_block bb
= e
->dest
;
285 if (bb
== EXIT_BLOCK_PTR
)
288 /* If the edge had already been executed, skip it. */
289 if (e
->flags
& EDGE_EXECUTABLE
)
292 e
->flags
|= EDGE_EXECUTABLE
;
294 /* If the block is already in the list, we're done. */
295 if (TEST_BIT (bb_in_list
, bb
->index
))
300 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
301 fprintf (dump_file
, "Adding Destination of edge (%d -> %d) to worklist\n\n",
302 e
->src
->index
, e
->dest
->index
);
306 /* Simulate the execution of STMT and update the work lists accordingly. */
309 simulate_stmt (gimple stmt
)
311 enum ssa_prop_result val
= SSA_PROP_NOT_INTERESTING
;
312 edge taken_edge
= NULL
;
313 tree output_name
= NULL_TREE
;
315 /* Don't bother visiting statements that are already
316 considered varying by the propagator. */
317 if (!prop_simulate_again_p (stmt
))
320 if (gimple_code (stmt
) == GIMPLE_PHI
)
322 val
= ssa_prop_visit_phi (stmt
);
323 output_name
= gimple_phi_result (stmt
);
326 val
= ssa_prop_visit_stmt (stmt
, &taken_edge
, &output_name
);
328 if (val
== SSA_PROP_VARYING
)
330 prop_set_simulate_again (stmt
, false);
332 /* If the statement produced a new varying value, add the SSA
333 edges coming out of OUTPUT_NAME. */
335 add_ssa_edge (output_name
, true);
337 /* If STMT transfers control out of its basic block, add
338 all outgoing edges to the work list. */
339 if (stmt_ends_bb_p (stmt
))
343 basic_block bb
= gimple_bb (stmt
);
344 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
345 add_control_edge (e
);
348 else if (val
== SSA_PROP_INTERESTING
)
350 /* If the statement produced new value, add the SSA edges coming
351 out of OUTPUT_NAME. */
353 add_ssa_edge (output_name
, false);
355 /* If we know which edge is going to be taken out of this block,
356 add it to the CFG work list. */
358 add_control_edge (taken_edge
);
362 /* Process an SSA edge worklist. WORKLIST is the SSA edge worklist to
363 drain. This pops statements off the given WORKLIST and processes
364 them until there are no more statements on WORKLIST.
365 We take a pointer to WORKLIST because it may be reallocated when an
366 SSA edge is added to it in simulate_stmt. */
369 process_ssa_edge_worklist (VEC(gimple
,gc
) **worklist
)
371 /* Drain the entire worklist. */
372 while (VEC_length (gimple
, *worklist
) > 0)
376 /* Pull the statement to simulate off the worklist. */
377 gimple stmt
= VEC_pop (gimple
, *worklist
);
379 /* If this statement was already visited by simulate_block, then
380 we don't need to visit it again here. */
381 if (!gimple_plf (stmt
, STMT_IN_SSA_EDGE_WORKLIST
))
384 /* STMT is no longer in a worklist. */
385 gimple_set_plf (stmt
, STMT_IN_SSA_EDGE_WORKLIST
, false);
387 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
389 fprintf (dump_file
, "\nSimulating statement (from ssa_edges): ");
390 print_gimple_stmt (dump_file
, stmt
, 0, dump_flags
);
393 bb
= gimple_bb (stmt
);
395 /* PHI nodes are always visited, regardless of whether or not
396 the destination block is executable. Otherwise, visit the
397 statement only if its block is marked executable. */
398 if (gimple_code (stmt
) == GIMPLE_PHI
399 || TEST_BIT (executable_blocks
, bb
->index
))
400 simulate_stmt (stmt
);
405 /* Simulate the execution of BLOCK. Evaluate the statement associated
406 with each variable reference inside the block. */
409 simulate_block (basic_block block
)
411 gimple_stmt_iterator gsi
;
413 /* There is nothing to do for the exit block. */
414 if (block
== EXIT_BLOCK_PTR
)
417 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
418 fprintf (dump_file
, "\nSimulating block %d\n", block
->index
);
420 /* Always simulate PHI nodes, even if we have simulated this block
422 for (gsi
= gsi_start_phis (block
); !gsi_end_p (gsi
); gsi_next (&gsi
))
423 simulate_stmt (gsi_stmt (gsi
));
425 /* If this is the first time we've simulated this block, then we
426 must simulate each of its statements. */
427 if (!TEST_BIT (executable_blocks
, block
->index
))
429 gimple_stmt_iterator j
;
430 unsigned int normal_edge_count
;
434 /* Note that we have simulated this block. */
435 SET_BIT (executable_blocks
, block
->index
);
437 for (j
= gsi_start_bb (block
); !gsi_end_p (j
); gsi_next (&j
))
439 gimple stmt
= gsi_stmt (j
);
441 /* If this statement is already in the worklist then
442 "cancel" it. The reevaluation implied by the worklist
443 entry will produce the same value we generate here and
444 thus reevaluating it again from the worklist is
446 if (gimple_plf (stmt
, STMT_IN_SSA_EDGE_WORKLIST
))
447 gimple_set_plf (stmt
, STMT_IN_SSA_EDGE_WORKLIST
, false);
449 simulate_stmt (stmt
);
452 /* We can not predict when abnormal and EH edges will be executed, so
453 once a block is considered executable, we consider any
454 outgoing abnormal edges as executable.
456 TODO: This is not exactly true. Simplifying statement might
457 prove it non-throwing and also computed goto can be handled
458 when destination is known.
460 At the same time, if this block has only one successor that is
461 reached by non-abnormal edges, then add that successor to the
463 normal_edge_count
= 0;
465 FOR_EACH_EDGE (e
, ei
, block
->succs
)
467 if (e
->flags
& (EDGE_ABNORMAL
| EDGE_EH
))
468 add_control_edge (e
);
476 if (normal_edge_count
== 1)
477 add_control_edge (normal_edge
);
482 /* Initialize local data structures and work lists. */
491 /* Worklists of SSA edges. */
492 interesting_ssa_edges
= VEC_alloc (gimple
, gc
, 20);
493 varying_ssa_edges
= VEC_alloc (gimple
, gc
, 20);
495 executable_blocks
= sbitmap_alloc (last_basic_block
);
496 sbitmap_zero (executable_blocks
);
498 bb_in_list
= sbitmap_alloc (last_basic_block
);
499 sbitmap_zero (bb_in_list
);
501 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
502 dump_immediate_uses (dump_file
);
504 cfg_blocks
= VEC_alloc (basic_block
, heap
, 20);
505 VEC_safe_grow (basic_block
, heap
, cfg_blocks
, 20);
507 /* Initially assume that every edge in the CFG is not executable.
508 (including the edges coming out of ENTRY_BLOCK_PTR). */
511 gimple_stmt_iterator si
;
513 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
514 gimple_set_plf (gsi_stmt (si
), STMT_IN_SSA_EDGE_WORKLIST
, false);
516 for (si
= gsi_start_phis (bb
); !gsi_end_p (si
); gsi_next (&si
))
517 gimple_set_plf (gsi_stmt (si
), STMT_IN_SSA_EDGE_WORKLIST
, false);
519 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
520 e
->flags
&= ~EDGE_EXECUTABLE
;
523 /* Seed the algorithm by adding the successors of the entry block to the
525 FOR_EACH_EDGE (e
, ei
, ENTRY_BLOCK_PTR
->succs
)
526 add_control_edge (e
);
530 /* Free allocated storage. */
535 VEC_free (gimple
, gc
, interesting_ssa_edges
);
536 VEC_free (gimple
, gc
, varying_ssa_edges
);
537 VEC_free (basic_block
, heap
, cfg_blocks
);
539 sbitmap_free (bb_in_list
);
540 sbitmap_free (executable_blocks
);
544 /* Return true if EXPR is an acceptable right-hand-side for a
545 GIMPLE assignment. We validate the entire tree, not just
546 the root node, thus catching expressions that embed complex
547 operands that are not permitted in GIMPLE. This function
548 is needed because the folding routines in fold-const.c
549 may return such expressions in some cases, e.g., an array
550 access with an embedded index addition. It may make more
551 sense to have folding routines that are sensitive to the
552 constraints on GIMPLE operands, rather than abandoning any
553 any attempt to fold if the usual folding turns out to be too
557 valid_gimple_rhs_p (tree expr
)
559 enum tree_code code
= TREE_CODE (expr
);
561 switch (TREE_CODE_CLASS (code
))
563 case tcc_declaration
:
564 if (!is_gimple_variable (expr
))
569 /* All constants are ok. */
574 if (!is_gimple_val (TREE_OPERAND (expr
, 0))
575 || !is_gimple_val (TREE_OPERAND (expr
, 1)))
580 if (!is_gimple_val (TREE_OPERAND (expr
, 0)))
590 if (is_gimple_min_invariant (expr
))
592 t
= TREE_OPERAND (expr
, 0);
593 while (handled_component_p (t
))
595 /* ??? More checks needed, see the GIMPLE verifier. */
596 if ((TREE_CODE (t
) == ARRAY_REF
597 || TREE_CODE (t
) == ARRAY_RANGE_REF
)
598 && !is_gimple_val (TREE_OPERAND (t
, 1)))
600 t
= TREE_OPERAND (t
, 0);
602 if (!is_gimple_id (t
))
608 if (!is_gimple_val (TREE_OPERAND (expr
, 0)))
615 if (!is_gimple_val (TREE_OPERAND (expr
, 0))
616 || !is_gimple_val (TREE_OPERAND (expr
, 1)))
628 case tcc_exceptional
:
629 if (code
!= SSA_NAME
)
641 /* Return true if EXPR is a CALL_EXPR suitable for representation
642 as a single GIMPLE_CALL statement. If the arguments require
643 further gimplification, return false. */
646 valid_gimple_call_p (tree expr
)
650 if (TREE_CODE (expr
) != CALL_EXPR
)
653 nargs
= call_expr_nargs (expr
);
654 for (i
= 0; i
< nargs
; i
++)
655 if (! is_gimple_operand (CALL_EXPR_ARG (expr
, i
)))
662 /* Make SSA names defined by OLD_STMT point to NEW_STMT
663 as their defining statement. */
666 move_ssa_defining_stmt_for_defs (gimple new_stmt
, gimple old_stmt
)
671 if (gimple_in_ssa_p (cfun
))
673 /* Make defined SSA_NAMEs point to the new
674 statement as their definition. */
675 FOR_EACH_SSA_TREE_OPERAND (var
, old_stmt
, iter
, SSA_OP_ALL_DEFS
)
677 if (TREE_CODE (var
) == SSA_NAME
)
678 SSA_NAME_DEF_STMT (var
) = new_stmt
;
684 /* Update a GIMPLE_CALL statement at iterator *SI_P to reflect the
685 value of EXPR, which is expected to be the result of folding the
686 call. This can only be done if EXPR is a CALL_EXPR with valid
687 GIMPLE operands as arguments, or if it is a suitable RHS expression
688 for a GIMPLE_ASSIGN. More complex expressions will require
689 gimplification, which will introduce addtional statements. In this
690 event, no update is performed, and the function returns false.
691 Note that we cannot mutate a GIMPLE_CALL in-place, so we always
692 replace the statement at *SI_P with an entirely new statement.
693 The new statement need not be a call, e.g., if the original call
694 folded to a constant. */
697 update_call_from_tree (gimple_stmt_iterator
*si_p
, tree expr
)
701 gimple stmt
= gsi_stmt (*si_p
);
703 gcc_assert (is_gimple_call (stmt
));
705 lhs
= gimple_call_lhs (stmt
);
707 if (valid_gimple_call_p (expr
))
709 /* The call has simplified to another call. */
710 tree fn
= CALL_EXPR_FN (expr
);
712 unsigned nargs
= call_expr_nargs (expr
);
713 VEC(tree
, heap
) *args
= NULL
;
718 args
= VEC_alloc (tree
, heap
, nargs
);
719 VEC_safe_grow (tree
, heap
, args
, nargs
);
721 for (i
= 0; i
< nargs
; i
++)
722 VEC_replace (tree
, args
, i
, CALL_EXPR_ARG (expr
, i
));
725 new_stmt
= gimple_build_call_vec (fn
, args
);
726 gimple_call_set_lhs (new_stmt
, lhs
);
727 move_ssa_defining_stmt_for_defs (new_stmt
, stmt
);
728 gimple_set_vuse (new_stmt
, gimple_vuse (stmt
));
729 gimple_set_vdef (new_stmt
, gimple_vdef (stmt
));
730 gimple_set_location (new_stmt
, gimple_location (stmt
));
731 gsi_replace (si_p
, new_stmt
, false);
732 VEC_free (tree
, heap
, args
);
736 else if (valid_gimple_rhs_p (expr
))
740 /* The call has simplified to an expression
741 that cannot be represented as a GIMPLE_CALL. */
744 /* A value is expected.
745 Introduce a new GIMPLE_ASSIGN statement. */
746 STRIP_USELESS_TYPE_CONVERSION (expr
);
747 new_stmt
= gimple_build_assign (lhs
, expr
);
748 move_ssa_defining_stmt_for_defs (new_stmt
, stmt
);
749 gimple_set_vuse (new_stmt
, gimple_vuse (stmt
));
750 gimple_set_vdef (new_stmt
, gimple_vdef (stmt
));
752 else if (!TREE_SIDE_EFFECTS (expr
))
754 /* No value is expected, and EXPR has no effect.
755 Replace it with an empty statement. */
756 new_stmt
= gimple_build_nop ();
757 unlink_stmt_vdef (stmt
);
762 /* No value is expected, but EXPR has an effect,
763 e.g., it could be a reference to a volatile
764 variable. Create an assignment statement
765 with a dummy (unused) lhs variable. */
766 STRIP_USELESS_TYPE_CONVERSION (expr
);
767 lhs
= create_tmp_var (TREE_TYPE (expr
), NULL
);
768 new_stmt
= gimple_build_assign (lhs
, expr
);
769 add_referenced_var (lhs
);
770 lhs
= make_ssa_name (lhs
, new_stmt
);
771 gimple_assign_set_lhs (new_stmt
, lhs
);
772 gimple_set_vuse (new_stmt
, gimple_vuse (stmt
));
773 gimple_set_vdef (new_stmt
, gimple_vdef (stmt
));
774 move_ssa_defining_stmt_for_defs (new_stmt
, stmt
);
776 gimple_set_location (new_stmt
, gimple_location (stmt
));
777 gsi_replace (si_p
, new_stmt
, false);
781 /* The call simplified to an expression that is
782 not a valid GIMPLE RHS. */
787 /* Entry point to the propagation engine.
789 VISIT_STMT is called for every statement visited.
790 VISIT_PHI is called for every PHI node visited. */
793 ssa_propagate (ssa_prop_visit_stmt_fn visit_stmt
,
794 ssa_prop_visit_phi_fn visit_phi
)
796 ssa_prop_visit_stmt
= visit_stmt
;
797 ssa_prop_visit_phi
= visit_phi
;
801 /* Iterate until the worklists are empty. */
802 while (!cfg_blocks_empty_p ()
803 || VEC_length (gimple
, interesting_ssa_edges
) > 0
804 || VEC_length (gimple
, varying_ssa_edges
) > 0)
806 if (!cfg_blocks_empty_p ())
808 /* Pull the next block to simulate off the worklist. */
809 basic_block dest_block
= cfg_blocks_get ();
810 simulate_block (dest_block
);
813 /* In order to move things to varying as quickly as
814 possible,process the VARYING_SSA_EDGES worklist first. */
815 process_ssa_edge_worklist (&varying_ssa_edges
);
817 /* Now process the INTERESTING_SSA_EDGES worklist. */
818 process_ssa_edge_worklist (&interesting_ssa_edges
);
825 /* Return true if STMT is of the form 'mem_ref = RHS', where 'mem_ref'
826 is a non-volatile pointer dereference, a structure reference or a
827 reference to a single _DECL. Ignore volatile memory references
828 because they are not interesting for the optimizers. */
831 stmt_makes_single_store (gimple stmt
)
835 if (gimple_code (stmt
) != GIMPLE_ASSIGN
836 && gimple_code (stmt
) != GIMPLE_CALL
)
839 if (!gimple_vdef (stmt
))
842 lhs
= gimple_get_lhs (stmt
);
844 /* A call statement may have a null LHS. */
848 return (!TREE_THIS_VOLATILE (lhs
)
850 || REFERENCE_CLASS_P (lhs
)));
854 /* Propagation statistics. */
859 long num_stmts_folded
;
863 static struct prop_stats_d prop_stats
;
865 /* Replace USE references in statement STMT with the values stored in
866 PROP_VALUE. Return true if at least one reference was replaced. */
869 replace_uses_in (gimple stmt
, prop_value_t
*prop_value
)
871 bool replaced
= false;
875 FOR_EACH_SSA_USE_OPERAND (use
, stmt
, iter
, SSA_OP_USE
)
877 tree tuse
= USE_FROM_PTR (use
);
878 tree val
= prop_value
[SSA_NAME_VERSION (tuse
)].value
;
880 if (val
== tuse
|| val
== NULL_TREE
)
883 if (gimple_code (stmt
) == GIMPLE_ASM
884 && !may_propagate_copy_into_asm (tuse
))
887 if (!may_propagate_copy (tuse
, val
))
890 if (TREE_CODE (val
) != SSA_NAME
)
891 prop_stats
.num_const_prop
++;
893 prop_stats
.num_copy_prop
++;
895 propagate_value (use
, val
);
904 /* Replace propagated values into all the arguments for PHI using the
905 values from PROP_VALUE. */
908 replace_phi_args_in (gimple phi
, prop_value_t
*prop_value
)
911 bool replaced
= false;
913 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
915 fprintf (dump_file
, "Folding PHI node: ");
916 print_gimple_stmt (dump_file
, phi
, 0, TDF_SLIM
);
919 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
921 tree arg
= gimple_phi_arg_def (phi
, i
);
923 if (TREE_CODE (arg
) == SSA_NAME
)
925 tree val
= prop_value
[SSA_NAME_VERSION (arg
)].value
;
927 if (val
&& val
!= arg
&& may_propagate_copy (arg
, val
))
929 if (TREE_CODE (val
) != SSA_NAME
)
930 prop_stats
.num_const_prop
++;
932 prop_stats
.num_copy_prop
++;
934 propagate_value (PHI_ARG_DEF_PTR (phi
, i
), val
);
937 /* If we propagated a copy and this argument flows
938 through an abnormal edge, update the replacement
940 if (TREE_CODE (val
) == SSA_NAME
941 && gimple_phi_arg_edge (phi
, i
)->flags
& EDGE_ABNORMAL
)
942 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val
) = 1;
947 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
950 fprintf (dump_file
, "No folding possible\n");
953 fprintf (dump_file
, "Folded into: ");
954 print_gimple_stmt (dump_file
, phi
, 0, TDF_SLIM
);
955 fprintf (dump_file
, "\n");
961 /* Perform final substitution and folding of propagated values.
963 PROP_VALUE[I] contains the single value that should be substituted
964 at every use of SSA name N_I. If PROP_VALUE is NULL, no values are
967 If FOLD_FN is non-NULL the function will be invoked on all statements
968 before propagating values for pass specific simplification.
970 Return TRUE when something changed. */
973 substitute_and_fold (prop_value_t
*prop_value
, ssa_prop_fold_stmt_fn fold_fn
)
976 bool something_changed
= false;
978 if (prop_value
== NULL
&& !fold_fn
)
981 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
982 fprintf (dump_file
, "\nSubstituting values and folding statements\n\n");
984 memset (&prop_stats
, 0, sizeof (prop_stats
));
986 /* Substitute values in every statement of every basic block. */
989 gimple_stmt_iterator i
;
991 /* Propagate known values into PHI nodes. */
993 for (i
= gsi_start_phis (bb
); !gsi_end_p (i
); gsi_next (&i
))
994 replace_phi_args_in (gsi_stmt (i
), prop_value
);
996 /* Propagate known values into stmts. Do a backward walk to expose
997 more trivially deletable stmts. */
998 for (i
= gsi_last_bb (bb
); !gsi_end_p (i
);)
1001 gimple stmt
= gsi_stmt (i
);
1003 enum gimple_code code
= gimple_code (stmt
);
1004 gimple_stmt_iterator oldi
;
1009 /* Ignore ASSERT_EXPRs. They are used by VRP to generate
1010 range information for names and they are discarded
1013 if (code
== GIMPLE_ASSIGN
1014 && TREE_CODE (gimple_assign_rhs1 (stmt
)) == ASSERT_EXPR
)
1017 /* No point propagating into a stmt whose result is not used,
1018 but instead we might be able to remove a trivially dead stmt. */
1019 if (gimple_get_lhs (stmt
)
1020 && TREE_CODE (gimple_get_lhs (stmt
)) == SSA_NAME
1021 && has_zero_uses (gimple_get_lhs (stmt
))
1022 && !stmt_could_throw_p (stmt
)
1023 && !gimple_has_side_effects (stmt
))
1025 gimple_stmt_iterator i2
;
1027 if (dump_file
&& dump_flags
& TDF_DETAILS
)
1029 fprintf (dump_file
, "Removing dead stmt ");
1030 print_gimple_stmt (dump_file
, stmt
, 0, 0);
1031 fprintf (dump_file
, "\n");
1033 prop_stats
.num_dce
++;
1034 i2
= gsi_for_stmt (stmt
);
1035 gsi_remove (&i2
, true);
1036 release_defs (stmt
);
1040 /* Replace the statement with its folded version and mark it
1042 did_replace
= false;
1043 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1045 fprintf (dump_file
, "Folding statement: ");
1046 print_gimple_stmt (dump_file
, stmt
, 0, TDF_SLIM
);
1051 /* Some statements may be simplified using propagator
1052 specific information. Do this before propagating
1053 into the stmt to not disturb pass specific information. */
1055 && (*fold_fn
)(&oldi
))
1058 prop_stats
.num_stmts_folded
++;
1061 /* Only replace real uses if we couldn't fold the
1062 statement using value range information. */
1065 did_replace
|= replace_uses_in (stmt
, prop_value
);
1067 /* If we made a replacement, fold the statement. */
1074 stmt
= gsi_stmt (oldi
);
1076 /* If we cleaned up EH information from the statement,
1078 if (maybe_clean_or_replace_eh_stmt (old_stmt
, stmt
))
1079 gimple_purge_dead_eh_edges (bb
);
1081 if (is_gimple_assign (stmt
)
1082 && (get_gimple_rhs_class (gimple_assign_rhs_code (stmt
))
1083 == GIMPLE_SINGLE_RHS
))
1085 tree rhs
= gimple_assign_rhs1 (stmt
);
1087 if (TREE_CODE (rhs
) == ADDR_EXPR
)
1088 recompute_tree_invariant_for_addr_expr (rhs
);
1091 /* Determine what needs to be done to update the SSA form. */
1093 if (!is_gimple_debug (stmt
))
1094 something_changed
= true;
1097 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1101 fprintf (dump_file
, "Folded into: ");
1102 print_gimple_stmt (dump_file
, stmt
, 0, TDF_SLIM
);
1103 fprintf (dump_file
, "\n");
1106 fprintf (dump_file
, "Not folded\n");
1111 statistics_counter_event (cfun
, "Constants propagated",
1112 prop_stats
.num_const_prop
);
1113 statistics_counter_event (cfun
, "Copies propagated",
1114 prop_stats
.num_copy_prop
);
1115 statistics_counter_event (cfun
, "Statements folded",
1116 prop_stats
.num_stmts_folded
);
1117 statistics_counter_event (cfun
, "Statements deleted",
1118 prop_stats
.num_dce
);
1119 return something_changed
;
1122 #include "gt-tree-ssa-propagate.h"