2009-01-19 Iain Sandoe <iain.sandoe@sandoe-acoustics.co.uk>
[official-gcc.git] / gcc / regrename.c
blob2da42c38ecb5dc0f0cddac6790f31061278c881f
1 /* Register renaming for the GNU compiler.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "tm_p.h"
27 #include "insn-config.h"
28 #include "regs.h"
29 #include "addresses.h"
30 #include "hard-reg-set.h"
31 #include "basic-block.h"
32 #include "reload.h"
33 #include "output.h"
34 #include "function.h"
35 #include "recog.h"
36 #include "flags.h"
37 #include "toplev.h"
38 #include "obstack.h"
39 #include "timevar.h"
40 #include "tree-pass.h"
41 #include "df.h"
43 struct du_chain
45 struct du_chain *next_chain;
46 struct du_chain *next_use;
48 rtx insn;
49 rtx *loc;
50 ENUM_BITFIELD(reg_class) cl : 16;
51 unsigned int need_caller_save_reg:1;
52 unsigned int earlyclobber:1;
55 enum scan_actions
57 terminate_all_read,
58 terminate_overlapping_read,
59 terminate_write,
60 terminate_dead,
61 mark_read,
62 mark_write,
63 /* mark_access is for marking the destination regs in
64 REG_FRAME_RELATED_EXPR notes (as if they were read) so that the
65 note is updated properly. */
66 mark_access
69 static const char * const scan_actions_name[] =
71 "terminate_all_read",
72 "terminate_overlapping_read",
73 "terminate_write",
74 "terminate_dead",
75 "mark_read",
76 "mark_write",
77 "mark_access"
80 static struct obstack rename_obstack;
82 static void do_replace (struct du_chain *, int);
83 static void scan_rtx_reg (rtx, rtx *, enum reg_class,
84 enum scan_actions, enum op_type, int);
85 static void scan_rtx_address (rtx, rtx *, enum reg_class,
86 enum scan_actions, enum machine_mode);
87 static void scan_rtx (rtx, rtx *, enum reg_class, enum scan_actions,
88 enum op_type, int);
89 static struct du_chain *build_def_use (basic_block);
90 static void dump_def_use_chain (struct du_chain *);
91 static void note_sets (rtx, const_rtx, void *);
92 static void clear_dead_regs (HARD_REG_SET *, enum reg_note, rtx);
93 static void merge_overlapping_regs (basic_block, HARD_REG_SET *,
94 struct du_chain *);
96 /* Called through note_stores. Find sets of registers, and
97 record them in *DATA (which is actually a HARD_REG_SET *). */
99 static void
100 note_sets (rtx x, const_rtx set ATTRIBUTE_UNUSED, void *data)
102 HARD_REG_SET *pset = (HARD_REG_SET *) data;
104 if (GET_CODE (x) == SUBREG)
105 x = SUBREG_REG (x);
106 if (!REG_P (x))
107 return;
108 /* There must not be pseudos at this point. */
109 gcc_assert (HARD_REGISTER_P (x));
110 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
113 /* Clear all registers from *PSET for which a note of kind KIND can be found
114 in the list NOTES. */
116 static void
117 clear_dead_regs (HARD_REG_SET *pset, enum reg_note kind, rtx notes)
119 rtx note;
120 for (note = notes; note; note = XEXP (note, 1))
121 if (REG_NOTE_KIND (note) == kind && REG_P (XEXP (note, 0)))
123 rtx reg = XEXP (note, 0);
124 /* There must not be pseudos at this point. */
125 gcc_assert (HARD_REGISTER_P (reg));
126 remove_from_hard_reg_set (pset, GET_MODE (reg), REGNO (reg));
130 /* For a def-use chain CHAIN in basic block B, find which registers overlap
131 its lifetime and set the corresponding bits in *PSET. */
133 static void
134 merge_overlapping_regs (basic_block b, HARD_REG_SET *pset,
135 struct du_chain *chain)
137 struct du_chain *t = chain;
138 rtx insn;
139 HARD_REG_SET live;
140 df_ref *def_rec;
142 REG_SET_TO_HARD_REG_SET (live, df_get_live_in (b));
143 for (def_rec = df_get_artificial_defs (b->index); *def_rec; def_rec++)
145 df_ref def = *def_rec;
146 if (DF_REF_FLAGS (def) & DF_REF_AT_TOP)
147 SET_HARD_REG_BIT (live, DF_REF_REGNO (def));
149 insn = BB_HEAD (b);
150 while (t)
152 /* Search forward until the next reference to the register to be
153 renamed. */
154 while (insn != t->insn)
156 if (INSN_P (insn))
158 clear_dead_regs (&live, REG_DEAD, REG_NOTES (insn));
159 note_stores (PATTERN (insn), note_sets, (void *) &live);
160 /* Only record currently live regs if we are inside the
161 reg's live range. */
162 if (t != chain)
163 IOR_HARD_REG_SET (*pset, live);
164 clear_dead_regs (&live, REG_UNUSED, REG_NOTES (insn));
166 insn = NEXT_INSN (insn);
169 IOR_HARD_REG_SET (*pset, live);
171 /* For the last reference, also merge in all registers set in the
172 same insn.
173 @@@ We only have take earlyclobbered sets into account. */
174 if (! t->next_use)
175 note_stores (PATTERN (insn), note_sets, (void *) pset);
177 t = t->next_use;
181 /* Perform register renaming on the current function. */
183 static void
184 regrename_optimize (void)
186 int tick[FIRST_PSEUDO_REGISTER];
187 int this_tick = 0;
188 basic_block bb;
189 char *first_obj;
191 df_set_flags (DF_LR_RUN_DCE);
192 df_note_add_problem ();
193 df_analyze ();
194 df_set_flags (DF_DEFER_INSN_RESCAN);
196 memset (tick, 0, sizeof tick);
198 gcc_obstack_init (&rename_obstack);
199 first_obj = XOBNEWVAR (&rename_obstack, char, 0);
201 FOR_EACH_BB (bb)
203 struct du_chain *all_chains = 0;
204 HARD_REG_SET unavailable;
205 HARD_REG_SET regs_seen;
207 CLEAR_HARD_REG_SET (unavailable);
209 if (dump_file)
210 fprintf (dump_file, "\nBasic block %d:\n", bb->index);
212 all_chains = build_def_use (bb);
214 if (dump_file)
215 dump_def_use_chain (all_chains);
217 CLEAR_HARD_REG_SET (unavailable);
218 /* Don't clobber traceback for noreturn functions. */
219 if (frame_pointer_needed)
221 add_to_hard_reg_set (&unavailable, Pmode, FRAME_POINTER_REGNUM);
222 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
223 add_to_hard_reg_set (&unavailable, Pmode, HARD_FRAME_POINTER_REGNUM);
224 #endif
227 CLEAR_HARD_REG_SET (regs_seen);
228 while (all_chains)
230 int new_reg, best_new_reg;
231 int n_uses;
232 struct du_chain *this_du = all_chains;
233 struct du_chain *tmp, *last;
234 HARD_REG_SET this_unavailable;
235 int reg = REGNO (*this_du->loc);
236 int i;
238 all_chains = this_du->next_chain;
240 best_new_reg = reg;
242 #if 0 /* This just disables optimization opportunities. */
243 /* Only rename once we've seen the reg more than once. */
244 if (! TEST_HARD_REG_BIT (regs_seen, reg))
246 SET_HARD_REG_BIT (regs_seen, reg);
247 continue;
249 #endif
251 if (fixed_regs[reg] || global_regs[reg]
252 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
253 || (frame_pointer_needed && reg == HARD_FRAME_POINTER_REGNUM)
254 #else
255 || (frame_pointer_needed && reg == FRAME_POINTER_REGNUM)
256 #endif
258 continue;
260 COPY_HARD_REG_SET (this_unavailable, unavailable);
262 /* Find last entry on chain (which has the need_caller_save bit),
263 count number of uses, and narrow the set of registers we can
264 use for renaming. */
265 n_uses = 0;
266 for (last = this_du; last->next_use; last = last->next_use)
268 n_uses++;
269 IOR_COMPL_HARD_REG_SET (this_unavailable,
270 reg_class_contents[last->cl]);
272 if (n_uses < 1)
273 continue;
275 IOR_COMPL_HARD_REG_SET (this_unavailable,
276 reg_class_contents[last->cl]);
278 if (this_du->need_caller_save_reg)
279 IOR_HARD_REG_SET (this_unavailable, call_used_reg_set);
281 merge_overlapping_regs (bb, &this_unavailable, this_du);
283 /* Now potential_regs is a reasonable approximation, let's
284 have a closer look at each register still in there. */
285 for (new_reg = 0; new_reg < FIRST_PSEUDO_REGISTER; new_reg++)
287 int nregs = hard_regno_nregs[new_reg][GET_MODE (*this_du->loc)];
289 for (i = nregs - 1; i >= 0; --i)
290 if (TEST_HARD_REG_BIT (this_unavailable, new_reg + i)
291 || fixed_regs[new_reg + i]
292 || global_regs[new_reg + i]
293 /* Can't use regs which aren't saved by the prologue. */
294 || (! df_regs_ever_live_p (new_reg + i)
295 && ! call_used_regs[new_reg + i])
296 #ifdef LEAF_REGISTERS
297 /* We can't use a non-leaf register if we're in a
298 leaf function. */
299 || (current_function_is_leaf
300 && !LEAF_REGISTERS[new_reg + i])
301 #endif
302 #ifdef HARD_REGNO_RENAME_OK
303 || ! HARD_REGNO_RENAME_OK (reg + i, new_reg + i)
304 #endif
306 break;
307 if (i >= 0)
308 continue;
310 /* See whether it accepts all modes that occur in
311 definition and uses. */
312 for (tmp = this_du; tmp; tmp = tmp->next_use)
313 if (! HARD_REGNO_MODE_OK (new_reg, GET_MODE (*tmp->loc))
314 || (tmp->need_caller_save_reg
315 && ! (HARD_REGNO_CALL_PART_CLOBBERED
316 (reg, GET_MODE (*tmp->loc)))
317 && (HARD_REGNO_CALL_PART_CLOBBERED
318 (new_reg, GET_MODE (*tmp->loc)))))
319 break;
320 if (! tmp)
322 if (tick[best_new_reg] > tick[new_reg])
323 best_new_reg = new_reg;
327 if (dump_file)
329 fprintf (dump_file, "Register %s in insn %d",
330 reg_names[reg], INSN_UID (last->insn));
331 if (last->need_caller_save_reg)
332 fprintf (dump_file, " crosses a call");
335 if (best_new_reg == reg)
337 tick[reg] = ++this_tick;
338 if (dump_file)
339 fprintf (dump_file, "; no available better choice\n");
340 continue;
343 if (dump_file)
344 fprintf (dump_file, ", renamed as %s\n", reg_names[best_new_reg]);
346 do_replace (this_du, best_new_reg);
347 tick[best_new_reg] = ++this_tick;
348 df_set_regs_ever_live (best_new_reg, true);
351 obstack_free (&rename_obstack, first_obj);
354 obstack_free (&rename_obstack, NULL);
356 if (dump_file)
357 fputc ('\n', dump_file);
360 static void
361 do_replace (struct du_chain *chain, int reg)
363 while (chain)
365 unsigned int regno = ORIGINAL_REGNO (*chain->loc);
366 struct reg_attrs * attr = REG_ATTRS (*chain->loc);
367 int reg_ptr = REG_POINTER (*chain->loc);
369 *chain->loc = gen_raw_REG (GET_MODE (*chain->loc), reg);
370 if (regno >= FIRST_PSEUDO_REGISTER)
371 ORIGINAL_REGNO (*chain->loc) = regno;
372 REG_ATTRS (*chain->loc) = attr;
373 REG_POINTER (*chain->loc) = reg_ptr;
374 df_insn_rescan (chain->insn);
375 chain = chain->next_use;
380 static struct du_chain *open_chains;
381 static struct du_chain *closed_chains;
383 static void
384 scan_rtx_reg (rtx insn, rtx *loc, enum reg_class cl,
385 enum scan_actions action, enum op_type type, int earlyclobber)
387 struct du_chain **p;
388 rtx x = *loc;
389 enum machine_mode mode = GET_MODE (x);
390 int this_regno = REGNO (x);
391 int this_nregs = hard_regno_nregs[this_regno][mode];
393 if (action == mark_write)
395 if (type == OP_OUT)
397 struct du_chain *this_du = XOBNEW (&rename_obstack, struct du_chain);
398 this_du->next_use = 0;
399 this_du->next_chain = open_chains;
400 this_du->loc = loc;
401 this_du->insn = insn;
402 this_du->cl = cl;
403 this_du->need_caller_save_reg = 0;
404 this_du->earlyclobber = earlyclobber;
405 open_chains = this_du;
407 return;
410 if ((type == OP_OUT) != (action == terminate_write || action == mark_access))
411 return;
413 for (p = &open_chains; *p;)
415 struct du_chain *this_du = *p;
417 /* Check if the chain has been terminated if it has then skip to
418 the next chain.
420 This can happen when we've already appended the location to
421 the chain in Step 3, but are trying to hide in-out operands
422 from terminate_write in Step 5. */
424 if (*this_du->loc == cc0_rtx)
425 p = &this_du->next_chain;
426 else
428 int regno = REGNO (*this_du->loc);
429 int nregs = hard_regno_nregs[regno][GET_MODE (*this_du->loc)];
430 int exact_match = (regno == this_regno && nregs == this_nregs);
432 if (regno + nregs <= this_regno
433 || this_regno + this_nregs <= regno)
435 p = &this_du->next_chain;
436 continue;
439 if (action == mark_read || action == mark_access)
441 gcc_assert (exact_match);
443 /* ??? Class NO_REGS can happen if the md file makes use of
444 EXTRA_CONSTRAINTS to match registers. Which is arguably
445 wrong, but there we are. Since we know not what this may
446 be replaced with, terminate the chain. */
447 if (cl != NO_REGS)
449 this_du = XOBNEW (&rename_obstack, struct du_chain);
450 this_du->next_use = 0;
451 this_du->next_chain = (*p)->next_chain;
452 this_du->loc = loc;
453 this_du->insn = insn;
454 this_du->cl = cl;
455 this_du->need_caller_save_reg = 0;
456 while (*p)
457 p = &(*p)->next_use;
458 *p = this_du;
459 return;
463 if (action != terminate_overlapping_read || ! exact_match)
465 struct du_chain *next = this_du->next_chain;
467 /* Whether the terminated chain can be used for renaming
468 depends on the action and this being an exact match.
469 In either case, we remove this element from open_chains. */
471 if ((action == terminate_dead || action == terminate_write)
472 && exact_match)
474 this_du->next_chain = closed_chains;
475 closed_chains = this_du;
476 if (dump_file)
477 fprintf (dump_file,
478 "Closing chain %s at insn %d (%s)\n",
479 reg_names[REGNO (*this_du->loc)], INSN_UID (insn),
480 scan_actions_name[(int) action]);
482 else
484 if (dump_file)
485 fprintf (dump_file,
486 "Discarding chain %s at insn %d (%s)\n",
487 reg_names[REGNO (*this_du->loc)], INSN_UID (insn),
488 scan_actions_name[(int) action]);
490 *p = next;
492 else
493 p = &this_du->next_chain;
498 /* Adapted from find_reloads_address_1. CL is INDEX_REG_CLASS or
499 BASE_REG_CLASS depending on how the register is being considered. */
501 static void
502 scan_rtx_address (rtx insn, rtx *loc, enum reg_class cl,
503 enum scan_actions action, enum machine_mode mode)
505 rtx x = *loc;
506 RTX_CODE code = GET_CODE (x);
507 const char *fmt;
508 int i, j;
510 if (action == mark_write || action == mark_access)
511 return;
513 switch (code)
515 case PLUS:
517 rtx orig_op0 = XEXP (x, 0);
518 rtx orig_op1 = XEXP (x, 1);
519 RTX_CODE code0 = GET_CODE (orig_op0);
520 RTX_CODE code1 = GET_CODE (orig_op1);
521 rtx op0 = orig_op0;
522 rtx op1 = orig_op1;
523 rtx *locI = NULL;
524 rtx *locB = NULL;
525 enum rtx_code index_code = SCRATCH;
527 if (GET_CODE (op0) == SUBREG)
529 op0 = SUBREG_REG (op0);
530 code0 = GET_CODE (op0);
533 if (GET_CODE (op1) == SUBREG)
535 op1 = SUBREG_REG (op1);
536 code1 = GET_CODE (op1);
539 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
540 || code0 == ZERO_EXTEND || code1 == MEM)
542 locI = &XEXP (x, 0);
543 locB = &XEXP (x, 1);
544 index_code = GET_CODE (*locI);
546 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
547 || code1 == ZERO_EXTEND || code0 == MEM)
549 locI = &XEXP (x, 1);
550 locB = &XEXP (x, 0);
551 index_code = GET_CODE (*locI);
553 else if (code0 == CONST_INT || code0 == CONST
554 || code0 == SYMBOL_REF || code0 == LABEL_REF)
556 locB = &XEXP (x, 1);
557 index_code = GET_CODE (XEXP (x, 0));
559 else if (code1 == CONST_INT || code1 == CONST
560 || code1 == SYMBOL_REF || code1 == LABEL_REF)
562 locB = &XEXP (x, 0);
563 index_code = GET_CODE (XEXP (x, 1));
565 else if (code0 == REG && code1 == REG)
567 int index_op;
568 unsigned regno0 = REGNO (op0), regno1 = REGNO (op1);
570 if (REGNO_OK_FOR_INDEX_P (regno1)
571 && regno_ok_for_base_p (regno0, mode, PLUS, REG))
572 index_op = 1;
573 else if (REGNO_OK_FOR_INDEX_P (regno0)
574 && regno_ok_for_base_p (regno1, mode, PLUS, REG))
575 index_op = 0;
576 else if (regno_ok_for_base_p (regno0, mode, PLUS, REG)
577 || REGNO_OK_FOR_INDEX_P (regno1))
578 index_op = 1;
579 else if (regno_ok_for_base_p (regno1, mode, PLUS, REG))
580 index_op = 0;
581 else
582 index_op = 1;
584 locI = &XEXP (x, index_op);
585 locB = &XEXP (x, !index_op);
586 index_code = GET_CODE (*locI);
588 else if (code0 == REG)
590 locI = &XEXP (x, 0);
591 locB = &XEXP (x, 1);
592 index_code = GET_CODE (*locI);
594 else if (code1 == REG)
596 locI = &XEXP (x, 1);
597 locB = &XEXP (x, 0);
598 index_code = GET_CODE (*locI);
601 if (locI)
602 scan_rtx_address (insn, locI, INDEX_REG_CLASS, action, mode);
603 if (locB)
604 scan_rtx_address (insn, locB, base_reg_class (mode, PLUS, index_code),
605 action, mode);
607 return;
610 case POST_INC:
611 case POST_DEC:
612 case POST_MODIFY:
613 case PRE_INC:
614 case PRE_DEC:
615 case PRE_MODIFY:
616 #ifndef AUTO_INC_DEC
617 /* If the target doesn't claim to handle autoinc, this must be
618 something special, like a stack push. Kill this chain. */
619 action = terminate_all_read;
620 #endif
621 break;
623 case MEM:
624 scan_rtx_address (insn, &XEXP (x, 0),
625 base_reg_class (GET_MODE (x), MEM, SCRATCH), action,
626 GET_MODE (x));
627 return;
629 case REG:
630 scan_rtx_reg (insn, loc, cl, action, OP_IN, 0);
631 return;
633 default:
634 break;
637 fmt = GET_RTX_FORMAT (code);
638 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
640 if (fmt[i] == 'e')
641 scan_rtx_address (insn, &XEXP (x, i), cl, action, mode);
642 else if (fmt[i] == 'E')
643 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
644 scan_rtx_address (insn, &XVECEXP (x, i, j), cl, action, mode);
648 static void
649 scan_rtx (rtx insn, rtx *loc, enum reg_class cl,
650 enum scan_actions action, enum op_type type, int earlyclobber)
652 const char *fmt;
653 rtx x = *loc;
654 enum rtx_code code = GET_CODE (x);
655 int i, j;
657 code = GET_CODE (x);
658 switch (code)
660 case CONST:
661 case CONST_INT:
662 case CONST_DOUBLE:
663 case CONST_FIXED:
664 case CONST_VECTOR:
665 case SYMBOL_REF:
666 case LABEL_REF:
667 case CC0:
668 case PC:
669 return;
671 case REG:
672 scan_rtx_reg (insn, loc, cl, action, type, earlyclobber);
673 return;
675 case MEM:
676 scan_rtx_address (insn, &XEXP (x, 0),
677 base_reg_class (GET_MODE (x), MEM, SCRATCH), action,
678 GET_MODE (x));
679 return;
681 case SET:
682 scan_rtx (insn, &SET_SRC (x), cl, action, OP_IN, 0);
683 scan_rtx (insn, &SET_DEST (x), cl, action,
684 GET_CODE (PATTERN (insn)) == COND_EXEC ? OP_INOUT : OP_OUT, 0);
685 return;
687 case STRICT_LOW_PART:
688 scan_rtx (insn, &XEXP (x, 0), cl, action, OP_INOUT, earlyclobber);
689 return;
691 case ZERO_EXTRACT:
692 case SIGN_EXTRACT:
693 scan_rtx (insn, &XEXP (x, 0), cl, action,
694 type == OP_IN ? OP_IN : OP_INOUT, earlyclobber);
695 scan_rtx (insn, &XEXP (x, 1), cl, action, OP_IN, 0);
696 scan_rtx (insn, &XEXP (x, 2), cl, action, OP_IN, 0);
697 return;
699 case POST_INC:
700 case PRE_INC:
701 case POST_DEC:
702 case PRE_DEC:
703 case POST_MODIFY:
704 case PRE_MODIFY:
705 /* Should only happen inside MEM. */
706 gcc_unreachable ();
708 case CLOBBER:
709 scan_rtx (insn, &SET_DEST (x), cl, action,
710 GET_CODE (PATTERN (insn)) == COND_EXEC ? OP_INOUT : OP_OUT, 0);
711 return;
713 case EXPR_LIST:
714 scan_rtx (insn, &XEXP (x, 0), cl, action, type, 0);
715 if (XEXP (x, 1))
716 scan_rtx (insn, &XEXP (x, 1), cl, action, type, 0);
717 return;
719 default:
720 break;
723 fmt = GET_RTX_FORMAT (code);
724 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
726 if (fmt[i] == 'e')
727 scan_rtx (insn, &XEXP (x, i), cl, action, type, 0);
728 else if (fmt[i] == 'E')
729 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
730 scan_rtx (insn, &XVECEXP (x, i, j), cl, action, type, 0);
734 /* Build def/use chain. */
736 static struct du_chain *
737 build_def_use (basic_block bb)
739 rtx insn;
741 open_chains = closed_chains = NULL;
743 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
745 if (INSN_P (insn))
747 int n_ops;
748 rtx note;
749 rtx old_operands[MAX_RECOG_OPERANDS];
750 rtx old_dups[MAX_DUP_OPERANDS];
751 int i, icode;
752 int alt;
753 int predicated;
755 /* Process the insn, determining its effect on the def-use
756 chains. We perform the following steps with the register
757 references in the insn:
758 (1) Any read that overlaps an open chain, but doesn't exactly
759 match, causes that chain to be closed. We can't deal
760 with overlaps yet.
761 (2) Any read outside an operand causes any chain it overlaps
762 with to be closed, since we can't replace it.
763 (3) Any read inside an operand is added if there's already
764 an open chain for it.
765 (4) For any REG_DEAD note we find, close open chains that
766 overlap it.
767 (5) For any write we find, close open chains that overlap it.
768 (6) For any write we find in an operand, make a new chain.
769 (7) For any REG_UNUSED, close any chains we just opened. */
771 icode = recog_memoized (insn);
772 extract_insn (insn);
773 if (! constrain_operands (1))
774 fatal_insn_not_found (insn);
775 preprocess_constraints ();
776 alt = which_alternative;
777 n_ops = recog_data.n_operands;
779 /* Simplify the code below by rewriting things to reflect
780 matching constraints. Also promote OP_OUT to OP_INOUT
781 in predicated instructions. */
783 predicated = GET_CODE (PATTERN (insn)) == COND_EXEC;
784 for (i = 0; i < n_ops; ++i)
786 int matches = recog_op_alt[i][alt].matches;
787 if (matches >= 0)
788 recog_op_alt[i][alt].cl = recog_op_alt[matches][alt].cl;
789 if (matches >= 0 || recog_op_alt[i][alt].matched >= 0
790 || (predicated && recog_data.operand_type[i] == OP_OUT))
791 recog_data.operand_type[i] = OP_INOUT;
794 /* Step 1: Close chains for which we have overlapping reads. */
795 for (i = 0; i < n_ops; i++)
796 scan_rtx (insn, recog_data.operand_loc[i],
797 NO_REGS, terminate_overlapping_read,
798 recog_data.operand_type[i], 0);
800 /* Step 2: Close chains for which we have reads outside operands.
801 We do this by munging all operands into CC0, and closing
802 everything remaining. */
804 for (i = 0; i < n_ops; i++)
806 old_operands[i] = recog_data.operand[i];
807 /* Don't squash match_operator or match_parallel here, since
808 we don't know that all of the contained registers are
809 reachable by proper operands. */
810 if (recog_data.constraints[i][0] == '\0')
811 continue;
812 *recog_data.operand_loc[i] = cc0_rtx;
814 for (i = 0; i < recog_data.n_dups; i++)
816 old_dups[i] = *recog_data.dup_loc[i];
817 *recog_data.dup_loc[i] = cc0_rtx;
820 scan_rtx (insn, &PATTERN (insn), NO_REGS, terminate_all_read,
821 OP_IN, 0);
823 for (i = 0; i < recog_data.n_dups; i++)
824 *recog_data.dup_loc[i] = old_dups[i];
825 for (i = 0; i < n_ops; i++)
826 *recog_data.operand_loc[i] = old_operands[i];
827 if (recog_data.n_dups)
828 df_insn_rescan (insn);
830 /* Step 2B: Can't rename function call argument registers. */
831 if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
832 scan_rtx (insn, &CALL_INSN_FUNCTION_USAGE (insn),
833 NO_REGS, terminate_all_read, OP_IN, 0);
835 /* Step 2C: Can't rename asm operands that were originally
836 hard registers. */
837 if (asm_noperands (PATTERN (insn)) > 0)
838 for (i = 0; i < n_ops; i++)
840 rtx *loc = recog_data.operand_loc[i];
841 rtx op = *loc;
843 if (REG_P (op)
844 && REGNO (op) == ORIGINAL_REGNO (op)
845 && (recog_data.operand_type[i] == OP_IN
846 || recog_data.operand_type[i] == OP_INOUT))
847 scan_rtx (insn, loc, NO_REGS, terminate_all_read, OP_IN, 0);
850 /* Step 3: Append to chains for reads inside operands. */
851 for (i = 0; i < n_ops + recog_data.n_dups; i++)
853 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
854 rtx *loc = (i < n_ops
855 ? recog_data.operand_loc[opn]
856 : recog_data.dup_loc[i - n_ops]);
857 enum reg_class cl = recog_op_alt[opn][alt].cl;
858 enum op_type type = recog_data.operand_type[opn];
860 /* Don't scan match_operand here, since we've no reg class
861 information to pass down. Any operands that we could
862 substitute in will be represented elsewhere. */
863 if (recog_data.constraints[opn][0] == '\0')
864 continue;
866 if (recog_op_alt[opn][alt].is_address)
867 scan_rtx_address (insn, loc, cl, mark_read, VOIDmode);
868 else
869 scan_rtx (insn, loc, cl, mark_read, type, 0);
872 /* Step 3B: Record updates for regs in REG_INC notes, and
873 source regs in REG_FRAME_RELATED_EXPR notes. */
874 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
875 if (REG_NOTE_KIND (note) == REG_INC
876 || REG_NOTE_KIND (note) == REG_FRAME_RELATED_EXPR)
877 scan_rtx (insn, &XEXP (note, 0), ALL_REGS, mark_read,
878 OP_INOUT, 0);
880 /* Step 4: Close chains for registers that die here. */
881 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
882 if (REG_NOTE_KIND (note) == REG_DEAD)
883 scan_rtx (insn, &XEXP (note, 0), NO_REGS, terminate_dead,
884 OP_IN, 0);
886 /* Step 4B: If this is a call, any chain live at this point
887 requires a caller-saved reg. */
888 if (CALL_P (insn))
890 struct du_chain *p;
891 for (p = open_chains; p; p = p->next_chain)
892 p->need_caller_save_reg = 1;
895 /* Step 5: Close open chains that overlap writes. Similar to
896 step 2, we hide in-out operands, since we do not want to
897 close these chains. */
899 for (i = 0; i < n_ops; i++)
901 old_operands[i] = recog_data.operand[i];
902 if (recog_data.operand_type[i] == OP_INOUT)
903 *recog_data.operand_loc[i] = cc0_rtx;
905 for (i = 0; i < recog_data.n_dups; i++)
907 int opn = recog_data.dup_num[i];
908 old_dups[i] = *recog_data.dup_loc[i];
909 if (recog_data.operand_type[opn] == OP_INOUT)
910 *recog_data.dup_loc[i] = cc0_rtx;
913 scan_rtx (insn, &PATTERN (insn), NO_REGS, terminate_write, OP_IN, 0);
915 for (i = 0; i < recog_data.n_dups; i++)
916 *recog_data.dup_loc[i] = old_dups[i];
917 for (i = 0; i < n_ops; i++)
918 *recog_data.operand_loc[i] = old_operands[i];
920 /* Step 6: Begin new chains for writes inside operands. */
921 /* ??? Many targets have output constraints on the SET_DEST
922 of a call insn, which is stupid, since these are certainly
923 ABI defined hard registers. Don't change calls at all.
924 Similarly take special care for asm statement that originally
925 referenced hard registers. */
926 if (asm_noperands (PATTERN (insn)) > 0)
928 for (i = 0; i < n_ops; i++)
929 if (recog_data.operand_type[i] == OP_OUT)
931 rtx *loc = recog_data.operand_loc[i];
932 rtx op = *loc;
933 enum reg_class cl = recog_op_alt[i][alt].cl;
935 if (REG_P (op)
936 && REGNO (op) == ORIGINAL_REGNO (op))
937 continue;
939 scan_rtx (insn, loc, cl, mark_write, OP_OUT,
940 recog_op_alt[i][alt].earlyclobber);
943 else if (!CALL_P (insn))
944 for (i = 0; i < n_ops + recog_data.n_dups; i++)
946 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
947 rtx *loc = (i < n_ops
948 ? recog_data.operand_loc[opn]
949 : recog_data.dup_loc[i - n_ops]);
950 enum reg_class cl = recog_op_alt[opn][alt].cl;
952 if (recog_data.operand_type[opn] == OP_OUT)
953 scan_rtx (insn, loc, cl, mark_write, OP_OUT,
954 recog_op_alt[opn][alt].earlyclobber);
957 /* Step 6B: Record destination regs in REG_FRAME_RELATED_EXPR
958 notes for update. */
959 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
960 if (REG_NOTE_KIND (note) == REG_FRAME_RELATED_EXPR)
961 scan_rtx (insn, &XEXP (note, 0), ALL_REGS, mark_access,
962 OP_INOUT, 0);
964 /* Step 7: Close chains for registers that were never
965 really used here. */
966 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
967 if (REG_NOTE_KIND (note) == REG_UNUSED)
968 scan_rtx (insn, &XEXP (note, 0), NO_REGS, terminate_dead,
969 OP_IN, 0);
971 if (insn == BB_END (bb))
972 break;
975 /* Since we close every chain when we find a REG_DEAD note, anything that
976 is still open lives past the basic block, so it can't be renamed. */
977 return closed_chains;
980 /* Dump all def/use chains in CHAINS to DUMP_FILE. They are
981 printed in reverse order as that's how we build them. */
983 static void
984 dump_def_use_chain (struct du_chain *chains)
986 while (chains)
988 struct du_chain *this_du = chains;
989 int r = REGNO (*this_du->loc);
990 int nregs = hard_regno_nregs[r][GET_MODE (*this_du->loc)];
991 fprintf (dump_file, "Register %s (%d):", reg_names[r], nregs);
992 while (this_du)
994 fprintf (dump_file, " %d [%s]", INSN_UID (this_du->insn),
995 reg_class_names[this_du->cl]);
996 this_du = this_du->next_use;
998 fprintf (dump_file, "\n");
999 chains = chains->next_chain;
1003 /* The following code does forward propagation of hard register copies.
1004 The object is to eliminate as many dependencies as possible, so that
1005 we have the most scheduling freedom. As a side effect, we also clean
1006 up some silly register allocation decisions made by reload. This
1007 code may be obsoleted by a new register allocator. */
1009 /* For each register, we have a list of registers that contain the same
1010 value. The OLDEST_REGNO field points to the head of the list, and
1011 the NEXT_REGNO field runs through the list. The MODE field indicates
1012 what mode the data is known to be in; this field is VOIDmode when the
1013 register is not known to contain valid data. */
1015 struct value_data_entry
1017 enum machine_mode mode;
1018 unsigned int oldest_regno;
1019 unsigned int next_regno;
1022 struct value_data
1024 struct value_data_entry e[FIRST_PSEUDO_REGISTER];
1025 unsigned int max_value_regs;
1028 static void kill_value_one_regno (unsigned, struct value_data *);
1029 static void kill_value_regno (unsigned, unsigned, struct value_data *);
1030 static void kill_value (rtx, struct value_data *);
1031 static void set_value_regno (unsigned, enum machine_mode, struct value_data *);
1032 static void init_value_data (struct value_data *);
1033 static void kill_clobbered_value (rtx, const_rtx, void *);
1034 static void kill_set_value (rtx, const_rtx, void *);
1035 static int kill_autoinc_value (rtx *, void *);
1036 static void copy_value (rtx, rtx, struct value_data *);
1037 static bool mode_change_ok (enum machine_mode, enum machine_mode,
1038 unsigned int);
1039 static rtx maybe_mode_change (enum machine_mode, enum machine_mode,
1040 enum machine_mode, unsigned int, unsigned int);
1041 static rtx find_oldest_value_reg (enum reg_class, rtx, struct value_data *);
1042 static bool replace_oldest_value_reg (rtx *, enum reg_class, rtx,
1043 struct value_data *);
1044 static bool replace_oldest_value_addr (rtx *, enum reg_class,
1045 enum machine_mode, rtx,
1046 struct value_data *);
1047 static bool replace_oldest_value_mem (rtx, rtx, struct value_data *);
1048 static bool copyprop_hardreg_forward_1 (basic_block, struct value_data *);
1049 extern void debug_value_data (struct value_data *);
1050 #ifdef ENABLE_CHECKING
1051 static void validate_value_data (struct value_data *);
1052 #endif
1054 /* Kill register REGNO. This involves removing it from any value
1055 lists, and resetting the value mode to VOIDmode. This is only a
1056 helper function; it does not handle any hard registers overlapping
1057 with REGNO. */
1059 static void
1060 kill_value_one_regno (unsigned int regno, struct value_data *vd)
1062 unsigned int i, next;
1064 if (vd->e[regno].oldest_regno != regno)
1066 for (i = vd->e[regno].oldest_regno;
1067 vd->e[i].next_regno != regno;
1068 i = vd->e[i].next_regno)
1069 continue;
1070 vd->e[i].next_regno = vd->e[regno].next_regno;
1072 else if ((next = vd->e[regno].next_regno) != INVALID_REGNUM)
1074 for (i = next; i != INVALID_REGNUM; i = vd->e[i].next_regno)
1075 vd->e[i].oldest_regno = next;
1078 vd->e[regno].mode = VOIDmode;
1079 vd->e[regno].oldest_regno = regno;
1080 vd->e[regno].next_regno = INVALID_REGNUM;
1082 #ifdef ENABLE_CHECKING
1083 validate_value_data (vd);
1084 #endif
1087 /* Kill the value in register REGNO for NREGS, and any other registers
1088 whose values overlap. */
1090 static void
1091 kill_value_regno (unsigned int regno, unsigned int nregs,
1092 struct value_data *vd)
1094 unsigned int j;
1096 /* Kill the value we're told to kill. */
1097 for (j = 0; j < nregs; ++j)
1098 kill_value_one_regno (regno + j, vd);
1100 /* Kill everything that overlapped what we're told to kill. */
1101 if (regno < vd->max_value_regs)
1102 j = 0;
1103 else
1104 j = regno - vd->max_value_regs;
1105 for (; j < regno; ++j)
1107 unsigned int i, n;
1108 if (vd->e[j].mode == VOIDmode)
1109 continue;
1110 n = hard_regno_nregs[j][vd->e[j].mode];
1111 if (j + n > regno)
1112 for (i = 0; i < n; ++i)
1113 kill_value_one_regno (j + i, vd);
1117 /* Kill X. This is a convenience function wrapping kill_value_regno
1118 so that we mind the mode the register is in. */
1120 static void
1121 kill_value (rtx x, struct value_data *vd)
1123 rtx orig_rtx = x;
1125 if (GET_CODE (x) == SUBREG)
1127 x = simplify_subreg (GET_MODE (x), SUBREG_REG (x),
1128 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
1129 if (x == NULL_RTX)
1130 x = SUBREG_REG (orig_rtx);
1132 if (REG_P (x))
1134 unsigned int regno = REGNO (x);
1135 unsigned int n = hard_regno_nregs[regno][GET_MODE (x)];
1137 kill_value_regno (regno, n, vd);
1141 /* Remember that REGNO is valid in MODE. */
1143 static void
1144 set_value_regno (unsigned int regno, enum machine_mode mode,
1145 struct value_data *vd)
1147 unsigned int nregs;
1149 vd->e[regno].mode = mode;
1151 nregs = hard_regno_nregs[regno][mode];
1152 if (nregs > vd->max_value_regs)
1153 vd->max_value_regs = nregs;
1156 /* Initialize VD such that there are no known relationships between regs. */
1158 static void
1159 init_value_data (struct value_data *vd)
1161 int i;
1162 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1164 vd->e[i].mode = VOIDmode;
1165 vd->e[i].oldest_regno = i;
1166 vd->e[i].next_regno = INVALID_REGNUM;
1168 vd->max_value_regs = 0;
1171 /* Called through note_stores. If X is clobbered, kill its value. */
1173 static void
1174 kill_clobbered_value (rtx x, const_rtx set, void *data)
1176 struct value_data *const vd = (struct value_data *) data;
1177 if (GET_CODE (set) == CLOBBER)
1178 kill_value (x, vd);
1181 /* Called through note_stores. If X is set, not clobbered, kill its
1182 current value and install it as the root of its own value list. */
1184 static void
1185 kill_set_value (rtx x, const_rtx set, void *data)
1187 struct value_data *const vd = (struct value_data *) data;
1188 if (GET_CODE (set) != CLOBBER)
1190 kill_value (x, vd);
1191 if (REG_P (x))
1192 set_value_regno (REGNO (x), GET_MODE (x), vd);
1196 /* Called through for_each_rtx. Kill any register used as the base of an
1197 auto-increment expression, and install that register as the root of its
1198 own value list. */
1200 static int
1201 kill_autoinc_value (rtx *px, void *data)
1203 rtx x = *px;
1204 struct value_data *const vd = (struct value_data *) data;
1206 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
1208 x = XEXP (x, 0);
1209 kill_value (x, vd);
1210 set_value_regno (REGNO (x), Pmode, vd);
1211 return -1;
1214 return 0;
1217 /* Assert that SRC has been copied to DEST. Adjust the data structures
1218 to reflect that SRC contains an older copy of the shared value. */
1220 static void
1221 copy_value (rtx dest, rtx src, struct value_data *vd)
1223 unsigned int dr = REGNO (dest);
1224 unsigned int sr = REGNO (src);
1225 unsigned int dn, sn;
1226 unsigned int i;
1228 /* ??? At present, it's possible to see noop sets. It'd be nice if
1229 this were cleaned up beforehand... */
1230 if (sr == dr)
1231 return;
1233 /* Do not propagate copies to the stack pointer, as that can leave
1234 memory accesses with no scheduling dependency on the stack update. */
1235 if (dr == STACK_POINTER_REGNUM)
1236 return;
1238 /* Likewise with the frame pointer, if we're using one. */
1239 if (frame_pointer_needed && dr == HARD_FRAME_POINTER_REGNUM)
1240 return;
1242 /* Do not propagate copies to fixed or global registers, patterns
1243 can be relying to see particular fixed register or users can
1244 expect the chosen global register in asm. */
1245 if (fixed_regs[dr] || global_regs[dr])
1246 return;
1248 /* If SRC and DEST overlap, don't record anything. */
1249 dn = hard_regno_nregs[dr][GET_MODE (dest)];
1250 sn = hard_regno_nregs[sr][GET_MODE (dest)];
1251 if ((dr > sr && dr < sr + sn)
1252 || (sr > dr && sr < dr + dn))
1253 return;
1255 /* If SRC had no assigned mode (i.e. we didn't know it was live)
1256 assign it now and assume the value came from an input argument
1257 or somesuch. */
1258 if (vd->e[sr].mode == VOIDmode)
1259 set_value_regno (sr, vd->e[dr].mode, vd);
1261 /* If we are narrowing the input to a smaller number of hard regs,
1262 and it is in big endian, we are really extracting a high part.
1263 Since we generally associate a low part of a value with the value itself,
1264 we must not do the same for the high part.
1265 Note we can still get low parts for the same mode combination through
1266 a two-step copy involving differently sized hard regs.
1267 Assume hard regs fr* are 32 bits bits each, while r* are 64 bits each:
1268 (set (reg:DI r0) (reg:DI fr0))
1269 (set (reg:SI fr2) (reg:SI r0))
1270 loads the low part of (reg:DI fr0) - i.e. fr1 - into fr2, while:
1271 (set (reg:SI fr2) (reg:SI fr0))
1272 loads the high part of (reg:DI fr0) into fr2.
1274 We can't properly represent the latter case in our tables, so don't
1275 record anything then. */
1276 else if (sn < (unsigned int) hard_regno_nregs[sr][vd->e[sr].mode]
1277 && (GET_MODE_SIZE (vd->e[sr].mode) > UNITS_PER_WORD
1278 ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN))
1279 return;
1281 /* If SRC had been assigned a mode narrower than the copy, we can't
1282 link DEST into the chain, because not all of the pieces of the
1283 copy came from oldest_regno. */
1284 else if (sn > (unsigned int) hard_regno_nregs[sr][vd->e[sr].mode])
1285 return;
1287 /* Link DR at the end of the value chain used by SR. */
1289 vd->e[dr].oldest_regno = vd->e[sr].oldest_regno;
1291 for (i = sr; vd->e[i].next_regno != INVALID_REGNUM; i = vd->e[i].next_regno)
1292 continue;
1293 vd->e[i].next_regno = dr;
1295 #ifdef ENABLE_CHECKING
1296 validate_value_data (vd);
1297 #endif
1300 /* Return true if a mode change from ORIG to NEW is allowed for REGNO. */
1302 static bool
1303 mode_change_ok (enum machine_mode orig_mode, enum machine_mode new_mode,
1304 unsigned int regno ATTRIBUTE_UNUSED)
1306 if (GET_MODE_SIZE (orig_mode) < GET_MODE_SIZE (new_mode))
1307 return false;
1309 #ifdef CANNOT_CHANGE_MODE_CLASS
1310 return !REG_CANNOT_CHANGE_MODE_P (regno, orig_mode, new_mode);
1311 #endif
1313 return true;
1316 /* Register REGNO was originally set in ORIG_MODE. It - or a copy of it -
1317 was copied in COPY_MODE to COPY_REGNO, and then COPY_REGNO was accessed
1318 in NEW_MODE.
1319 Return a NEW_MODE rtx for REGNO if that's OK, otherwise return NULL_RTX. */
1321 static rtx
1322 maybe_mode_change (enum machine_mode orig_mode, enum machine_mode copy_mode,
1323 enum machine_mode new_mode, unsigned int regno,
1324 unsigned int copy_regno ATTRIBUTE_UNUSED)
1326 if (GET_MODE_SIZE (copy_mode) < GET_MODE_SIZE (orig_mode)
1327 && GET_MODE_SIZE (copy_mode) < GET_MODE_SIZE (new_mode))
1328 return NULL_RTX;
1330 if (orig_mode == new_mode)
1331 return gen_rtx_raw_REG (new_mode, regno);
1332 else if (mode_change_ok (orig_mode, new_mode, regno))
1334 int copy_nregs = hard_regno_nregs[copy_regno][copy_mode];
1335 int use_nregs = hard_regno_nregs[copy_regno][new_mode];
1336 int copy_offset
1337 = GET_MODE_SIZE (copy_mode) / copy_nregs * (copy_nregs - use_nregs);
1338 int offset
1339 = GET_MODE_SIZE (orig_mode) - GET_MODE_SIZE (new_mode) - copy_offset;
1340 int byteoffset = offset % UNITS_PER_WORD;
1341 int wordoffset = offset - byteoffset;
1343 offset = ((WORDS_BIG_ENDIAN ? wordoffset : 0)
1344 + (BYTES_BIG_ENDIAN ? byteoffset : 0));
1345 return gen_rtx_raw_REG (new_mode,
1346 regno + subreg_regno_offset (regno, orig_mode,
1347 offset,
1348 new_mode));
1350 return NULL_RTX;
1353 /* Find the oldest copy of the value contained in REGNO that is in
1354 register class CL and has mode MODE. If found, return an rtx
1355 of that oldest register, otherwise return NULL. */
1357 static rtx
1358 find_oldest_value_reg (enum reg_class cl, rtx reg, struct value_data *vd)
1360 unsigned int regno = REGNO (reg);
1361 enum machine_mode mode = GET_MODE (reg);
1362 unsigned int i;
1364 /* If we are accessing REG in some mode other that what we set it in,
1365 make sure that the replacement is valid. In particular, consider
1366 (set (reg:DI r11) (...))
1367 (set (reg:SI r9) (reg:SI r11))
1368 (set (reg:SI r10) (...))
1369 (set (...) (reg:DI r9))
1370 Replacing r9 with r11 is invalid. */
1371 if (mode != vd->e[regno].mode)
1373 if (hard_regno_nregs[regno][mode]
1374 > hard_regno_nregs[regno][vd->e[regno].mode])
1375 return NULL_RTX;
1378 for (i = vd->e[regno].oldest_regno; i != regno; i = vd->e[i].next_regno)
1380 enum machine_mode oldmode = vd->e[i].mode;
1381 rtx new_rtx;
1383 if (!in_hard_reg_set_p (reg_class_contents[cl], mode, i))
1384 return NULL_RTX;
1386 new_rtx = maybe_mode_change (oldmode, vd->e[regno].mode, mode, i, regno);
1387 if (new_rtx)
1389 ORIGINAL_REGNO (new_rtx) = ORIGINAL_REGNO (reg);
1390 REG_ATTRS (new_rtx) = REG_ATTRS (reg);
1391 REG_POINTER (new_rtx) = REG_POINTER (reg);
1392 return new_rtx;
1396 return NULL_RTX;
1399 /* If possible, replace the register at *LOC with the oldest register
1400 in register class CL. Return true if successfully replaced. */
1402 static bool
1403 replace_oldest_value_reg (rtx *loc, enum reg_class cl, rtx insn,
1404 struct value_data *vd)
1406 rtx new_rtx = find_oldest_value_reg (cl, *loc, vd);
1407 if (new_rtx)
1409 if (dump_file)
1410 fprintf (dump_file, "insn %u: replaced reg %u with %u\n",
1411 INSN_UID (insn), REGNO (*loc), REGNO (new_rtx));
1413 validate_change (insn, loc, new_rtx, 1);
1414 return true;
1416 return false;
1419 /* Similar to replace_oldest_value_reg, but *LOC contains an address.
1420 Adapted from find_reloads_address_1. CL is INDEX_REG_CLASS or
1421 BASE_REG_CLASS depending on how the register is being considered. */
1423 static bool
1424 replace_oldest_value_addr (rtx *loc, enum reg_class cl,
1425 enum machine_mode mode, rtx insn,
1426 struct value_data *vd)
1428 rtx x = *loc;
1429 RTX_CODE code = GET_CODE (x);
1430 const char *fmt;
1431 int i, j;
1432 bool changed = false;
1434 switch (code)
1436 case PLUS:
1438 rtx orig_op0 = XEXP (x, 0);
1439 rtx orig_op1 = XEXP (x, 1);
1440 RTX_CODE code0 = GET_CODE (orig_op0);
1441 RTX_CODE code1 = GET_CODE (orig_op1);
1442 rtx op0 = orig_op0;
1443 rtx op1 = orig_op1;
1444 rtx *locI = NULL;
1445 rtx *locB = NULL;
1446 enum rtx_code index_code = SCRATCH;
1448 if (GET_CODE (op0) == SUBREG)
1450 op0 = SUBREG_REG (op0);
1451 code0 = GET_CODE (op0);
1454 if (GET_CODE (op1) == SUBREG)
1456 op1 = SUBREG_REG (op1);
1457 code1 = GET_CODE (op1);
1460 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
1461 || code0 == ZERO_EXTEND || code1 == MEM)
1463 locI = &XEXP (x, 0);
1464 locB = &XEXP (x, 1);
1465 index_code = GET_CODE (*locI);
1467 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
1468 || code1 == ZERO_EXTEND || code0 == MEM)
1470 locI = &XEXP (x, 1);
1471 locB = &XEXP (x, 0);
1472 index_code = GET_CODE (*locI);
1474 else if (code0 == CONST_INT || code0 == CONST
1475 || code0 == SYMBOL_REF || code0 == LABEL_REF)
1477 locB = &XEXP (x, 1);
1478 index_code = GET_CODE (XEXP (x, 0));
1480 else if (code1 == CONST_INT || code1 == CONST
1481 || code1 == SYMBOL_REF || code1 == LABEL_REF)
1483 locB = &XEXP (x, 0);
1484 index_code = GET_CODE (XEXP (x, 1));
1486 else if (code0 == REG && code1 == REG)
1488 int index_op;
1489 unsigned regno0 = REGNO (op0), regno1 = REGNO (op1);
1491 if (REGNO_OK_FOR_INDEX_P (regno1)
1492 && regno_ok_for_base_p (regno0, mode, PLUS, REG))
1493 index_op = 1;
1494 else if (REGNO_OK_FOR_INDEX_P (regno0)
1495 && regno_ok_for_base_p (regno1, mode, PLUS, REG))
1496 index_op = 0;
1497 else if (regno_ok_for_base_p (regno0, mode, PLUS, REG)
1498 || REGNO_OK_FOR_INDEX_P (regno1))
1499 index_op = 1;
1500 else if (regno_ok_for_base_p (regno1, mode, PLUS, REG))
1501 index_op = 0;
1502 else
1503 index_op = 1;
1505 locI = &XEXP (x, index_op);
1506 locB = &XEXP (x, !index_op);
1507 index_code = GET_CODE (*locI);
1509 else if (code0 == REG)
1511 locI = &XEXP (x, 0);
1512 locB = &XEXP (x, 1);
1513 index_code = GET_CODE (*locI);
1515 else if (code1 == REG)
1517 locI = &XEXP (x, 1);
1518 locB = &XEXP (x, 0);
1519 index_code = GET_CODE (*locI);
1522 if (locI)
1523 changed |= replace_oldest_value_addr (locI, INDEX_REG_CLASS, mode,
1524 insn, vd);
1525 if (locB)
1526 changed |= replace_oldest_value_addr (locB,
1527 base_reg_class (mode, PLUS,
1528 index_code),
1529 mode, insn, vd);
1530 return changed;
1533 case POST_INC:
1534 case POST_DEC:
1535 case POST_MODIFY:
1536 case PRE_INC:
1537 case PRE_DEC:
1538 case PRE_MODIFY:
1539 return false;
1541 case MEM:
1542 return replace_oldest_value_mem (x, insn, vd);
1544 case REG:
1545 return replace_oldest_value_reg (loc, cl, insn, vd);
1547 default:
1548 break;
1551 fmt = GET_RTX_FORMAT (code);
1552 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1554 if (fmt[i] == 'e')
1555 changed |= replace_oldest_value_addr (&XEXP (x, i), cl, mode,
1556 insn, vd);
1557 else if (fmt[i] == 'E')
1558 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1559 changed |= replace_oldest_value_addr (&XVECEXP (x, i, j), cl,
1560 mode, insn, vd);
1563 return changed;
1566 /* Similar to replace_oldest_value_reg, but X contains a memory. */
1568 static bool
1569 replace_oldest_value_mem (rtx x, rtx insn, struct value_data *vd)
1571 return replace_oldest_value_addr (&XEXP (x, 0),
1572 base_reg_class (GET_MODE (x), MEM,
1573 SCRATCH),
1574 GET_MODE (x), insn, vd);
1577 /* Perform the forward copy propagation on basic block BB. */
1579 static bool
1580 copyprop_hardreg_forward_1 (basic_block bb, struct value_data *vd)
1582 bool changed = false;
1583 rtx insn;
1585 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
1587 int n_ops, i, alt, predicated;
1588 bool is_asm, any_replacements;
1589 rtx set;
1590 bool replaced[MAX_RECOG_OPERANDS];
1592 if (! INSN_P (insn))
1594 if (insn == BB_END (bb))
1595 break;
1596 else
1597 continue;
1600 set = single_set (insn);
1601 extract_insn (insn);
1602 if (! constrain_operands (1))
1603 fatal_insn_not_found (insn);
1604 preprocess_constraints ();
1605 alt = which_alternative;
1606 n_ops = recog_data.n_operands;
1607 is_asm = asm_noperands (PATTERN (insn)) >= 0;
1609 /* Simplify the code below by rewriting things to reflect
1610 matching constraints. Also promote OP_OUT to OP_INOUT
1611 in predicated instructions. */
1613 predicated = GET_CODE (PATTERN (insn)) == COND_EXEC;
1614 for (i = 0; i < n_ops; ++i)
1616 int matches = recog_op_alt[i][alt].matches;
1617 if (matches >= 0)
1618 recog_op_alt[i][alt].cl = recog_op_alt[matches][alt].cl;
1619 if (matches >= 0 || recog_op_alt[i][alt].matched >= 0
1620 || (predicated && recog_data.operand_type[i] == OP_OUT))
1621 recog_data.operand_type[i] = OP_INOUT;
1624 /* For each earlyclobber operand, zap the value data. */
1625 for (i = 0; i < n_ops; i++)
1626 if (recog_op_alt[i][alt].earlyclobber)
1627 kill_value (recog_data.operand[i], vd);
1629 /* Within asms, a clobber cannot overlap inputs or outputs.
1630 I wouldn't think this were true for regular insns, but
1631 scan_rtx treats them like that... */
1632 note_stores (PATTERN (insn), kill_clobbered_value, vd);
1634 /* Kill all auto-incremented values. */
1635 /* ??? REG_INC is useless, since stack pushes aren't done that way. */
1636 for_each_rtx (&PATTERN (insn), kill_autoinc_value, vd);
1638 /* Kill all early-clobbered operands. */
1639 for (i = 0; i < n_ops; i++)
1640 if (recog_op_alt[i][alt].earlyclobber)
1641 kill_value (recog_data.operand[i], vd);
1643 /* Special-case plain move instructions, since we may well
1644 be able to do the move from a different register class. */
1645 if (set && REG_P (SET_SRC (set)))
1647 rtx src = SET_SRC (set);
1648 unsigned int regno = REGNO (src);
1649 enum machine_mode mode = GET_MODE (src);
1650 unsigned int i;
1651 rtx new_rtx;
1653 /* If we are accessing SRC in some mode other that what we
1654 set it in, make sure that the replacement is valid. */
1655 if (mode != vd->e[regno].mode)
1657 if (hard_regno_nregs[regno][mode]
1658 > hard_regno_nregs[regno][vd->e[regno].mode])
1659 goto no_move_special_case;
1662 /* If the destination is also a register, try to find a source
1663 register in the same class. */
1664 if (REG_P (SET_DEST (set)))
1666 new_rtx = find_oldest_value_reg (REGNO_REG_CLASS (regno), src, vd);
1667 if (new_rtx && validate_change (insn, &SET_SRC (set), new_rtx, 0))
1669 if (dump_file)
1670 fprintf (dump_file,
1671 "insn %u: replaced reg %u with %u\n",
1672 INSN_UID (insn), regno, REGNO (new_rtx));
1673 changed = true;
1674 goto did_replacement;
1678 /* Otherwise, try all valid registers and see if its valid. */
1679 for (i = vd->e[regno].oldest_regno; i != regno;
1680 i = vd->e[i].next_regno)
1682 new_rtx = maybe_mode_change (vd->e[i].mode, vd->e[regno].mode,
1683 mode, i, regno);
1684 if (new_rtx != NULL_RTX)
1686 if (validate_change (insn, &SET_SRC (set), new_rtx, 0))
1688 ORIGINAL_REGNO (new_rtx) = ORIGINAL_REGNO (src);
1689 REG_ATTRS (new_rtx) = REG_ATTRS (src);
1690 REG_POINTER (new_rtx) = REG_POINTER (src);
1691 if (dump_file)
1692 fprintf (dump_file,
1693 "insn %u: replaced reg %u with %u\n",
1694 INSN_UID (insn), regno, REGNO (new_rtx));
1695 changed = true;
1696 goto did_replacement;
1701 no_move_special_case:
1703 any_replacements = false;
1705 /* For each input operand, replace a hard register with the
1706 eldest live copy that's in an appropriate register class. */
1707 for (i = 0; i < n_ops; i++)
1709 replaced[i] = false;
1711 /* Don't scan match_operand here, since we've no reg class
1712 information to pass down. Any operands that we could
1713 substitute in will be represented elsewhere. */
1714 if (recog_data.constraints[i][0] == '\0')
1715 continue;
1717 /* Don't replace in asms intentionally referencing hard regs. */
1718 if (is_asm && REG_P (recog_data.operand[i])
1719 && (REGNO (recog_data.operand[i])
1720 == ORIGINAL_REGNO (recog_data.operand[i])))
1721 continue;
1723 if (recog_data.operand_type[i] == OP_IN)
1725 if (recog_op_alt[i][alt].is_address)
1726 replaced[i]
1727 = replace_oldest_value_addr (recog_data.operand_loc[i],
1728 recog_op_alt[i][alt].cl,
1729 VOIDmode, insn, vd);
1730 else if (REG_P (recog_data.operand[i]))
1731 replaced[i]
1732 = replace_oldest_value_reg (recog_data.operand_loc[i],
1733 recog_op_alt[i][alt].cl,
1734 insn, vd);
1735 else if (MEM_P (recog_data.operand[i]))
1736 replaced[i] = replace_oldest_value_mem (recog_data.operand[i],
1737 insn, vd);
1739 else if (MEM_P (recog_data.operand[i]))
1740 replaced[i] = replace_oldest_value_mem (recog_data.operand[i],
1741 insn, vd);
1743 /* If we performed any replacement, update match_dups. */
1744 if (replaced[i])
1746 int j;
1747 rtx new_rtx;
1749 new_rtx = *recog_data.operand_loc[i];
1750 recog_data.operand[i] = new_rtx;
1751 for (j = 0; j < recog_data.n_dups; j++)
1752 if (recog_data.dup_num[j] == i)
1753 validate_unshare_change (insn, recog_data.dup_loc[j], new_rtx, 1);
1755 any_replacements = true;
1759 if (any_replacements)
1761 if (! apply_change_group ())
1763 for (i = 0; i < n_ops; i++)
1764 if (replaced[i])
1766 rtx old = *recog_data.operand_loc[i];
1767 recog_data.operand[i] = old;
1770 if (dump_file)
1771 fprintf (dump_file,
1772 "insn %u: reg replacements not verified\n",
1773 INSN_UID (insn));
1775 else
1776 changed = true;
1779 did_replacement:
1780 /* Clobber call-clobbered registers. */
1781 if (CALL_P (insn))
1782 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1783 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1784 kill_value_regno (i, 1, vd);
1786 /* Notice stores. */
1787 note_stores (PATTERN (insn), kill_set_value, vd);
1789 /* Notice copies. */
1790 if (set && REG_P (SET_DEST (set)) && REG_P (SET_SRC (set)))
1791 copy_value (SET_DEST (set), SET_SRC (set), vd);
1793 if (insn == BB_END (bb))
1794 break;
1797 return changed;
1800 /* Main entry point for the forward copy propagation optimization. */
1802 static void
1803 copyprop_hardreg_forward (void)
1805 struct value_data *all_vd;
1806 basic_block bb;
1807 sbitmap visited;
1809 all_vd = XNEWVEC (struct value_data, last_basic_block);
1811 visited = sbitmap_alloc (last_basic_block);
1812 sbitmap_zero (visited);
1814 FOR_EACH_BB (bb)
1816 SET_BIT (visited, bb->index);
1818 /* If a block has a single predecessor, that we've already
1819 processed, begin with the value data that was live at
1820 the end of the predecessor block. */
1821 /* ??? Ought to use more intelligent queuing of blocks. */
1822 if (single_pred_p (bb)
1823 && TEST_BIT (visited, single_pred (bb)->index)
1824 && ! (single_pred_edge (bb)->flags & (EDGE_ABNORMAL_CALL | EDGE_EH)))
1825 all_vd[bb->index] = all_vd[single_pred (bb)->index];
1826 else
1827 init_value_data (all_vd + bb->index);
1829 copyprop_hardreg_forward_1 (bb, all_vd + bb->index);
1832 sbitmap_free (visited);
1833 free (all_vd);
1836 /* Dump the value chain data to stderr. */
1838 void
1839 debug_value_data (struct value_data *vd)
1841 HARD_REG_SET set;
1842 unsigned int i, j;
1844 CLEAR_HARD_REG_SET (set);
1846 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1847 if (vd->e[i].oldest_regno == i)
1849 if (vd->e[i].mode == VOIDmode)
1851 if (vd->e[i].next_regno != INVALID_REGNUM)
1852 fprintf (stderr, "[%u] Bad next_regno for empty chain (%u)\n",
1853 i, vd->e[i].next_regno);
1854 continue;
1857 SET_HARD_REG_BIT (set, i);
1858 fprintf (stderr, "[%u %s] ", i, GET_MODE_NAME (vd->e[i].mode));
1860 for (j = vd->e[i].next_regno;
1861 j != INVALID_REGNUM;
1862 j = vd->e[j].next_regno)
1864 if (TEST_HARD_REG_BIT (set, j))
1866 fprintf (stderr, "[%u] Loop in regno chain\n", j);
1867 return;
1870 if (vd->e[j].oldest_regno != i)
1872 fprintf (stderr, "[%u] Bad oldest_regno (%u)\n",
1873 j, vd->e[j].oldest_regno);
1874 return;
1876 SET_HARD_REG_BIT (set, j);
1877 fprintf (stderr, "[%u %s] ", j, GET_MODE_NAME (vd->e[j].mode));
1879 fputc ('\n', stderr);
1882 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1883 if (! TEST_HARD_REG_BIT (set, i)
1884 && (vd->e[i].mode != VOIDmode
1885 || vd->e[i].oldest_regno != i
1886 || vd->e[i].next_regno != INVALID_REGNUM))
1887 fprintf (stderr, "[%u] Non-empty reg in chain (%s %u %i)\n",
1888 i, GET_MODE_NAME (vd->e[i].mode), vd->e[i].oldest_regno,
1889 vd->e[i].next_regno);
1892 #ifdef ENABLE_CHECKING
1893 static void
1894 validate_value_data (struct value_data *vd)
1896 HARD_REG_SET set;
1897 unsigned int i, j;
1899 CLEAR_HARD_REG_SET (set);
1901 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1902 if (vd->e[i].oldest_regno == i)
1904 if (vd->e[i].mode == VOIDmode)
1906 if (vd->e[i].next_regno != INVALID_REGNUM)
1907 internal_error ("validate_value_data: [%u] Bad next_regno for empty chain (%u)",
1908 i, vd->e[i].next_regno);
1909 continue;
1912 SET_HARD_REG_BIT (set, i);
1914 for (j = vd->e[i].next_regno;
1915 j != INVALID_REGNUM;
1916 j = vd->e[j].next_regno)
1918 if (TEST_HARD_REG_BIT (set, j))
1919 internal_error ("validate_value_data: Loop in regno chain (%u)",
1921 if (vd->e[j].oldest_regno != i)
1922 internal_error ("validate_value_data: [%u] Bad oldest_regno (%u)",
1923 j, vd->e[j].oldest_regno);
1925 SET_HARD_REG_BIT (set, j);
1929 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1930 if (! TEST_HARD_REG_BIT (set, i)
1931 && (vd->e[i].mode != VOIDmode
1932 || vd->e[i].oldest_regno != i
1933 || vd->e[i].next_regno != INVALID_REGNUM))
1934 internal_error ("validate_value_data: [%u] Non-empty reg in chain (%s %u %i)",
1935 i, GET_MODE_NAME (vd->e[i].mode), vd->e[i].oldest_regno,
1936 vd->e[i].next_regno);
1938 #endif
1940 static bool
1941 gate_handle_regrename (void)
1943 return (optimize > 0 && (flag_rename_registers));
1947 /* Run the regrename and cprop passes. */
1948 static unsigned int
1949 rest_of_handle_regrename (void)
1951 regrename_optimize ();
1952 return 0;
1955 struct rtl_opt_pass pass_regrename =
1958 RTL_PASS,
1959 "rnreg", /* name */
1960 gate_handle_regrename, /* gate */
1961 rest_of_handle_regrename, /* execute */
1962 NULL, /* sub */
1963 NULL, /* next */
1964 0, /* static_pass_number */
1965 TV_RENAME_REGISTERS, /* tv_id */
1966 0, /* properties_required */
1967 0, /* properties_provided */
1968 0, /* properties_destroyed */
1969 0, /* todo_flags_start */
1970 TODO_df_finish | TODO_verify_rtl_sharing |
1971 TODO_dump_func /* todo_flags_finish */
1975 static bool
1976 gate_handle_cprop (void)
1978 return (optimize > 0 && (flag_cprop_registers));
1982 /* Run the regrename and cprop passes. */
1983 static unsigned int
1984 rest_of_handle_cprop (void)
1986 copyprop_hardreg_forward ();
1987 return 0;
1990 struct rtl_opt_pass pass_cprop_hardreg =
1993 RTL_PASS,
1994 "cprop_hardreg", /* name */
1995 gate_handle_cprop, /* gate */
1996 rest_of_handle_cprop, /* execute */
1997 NULL, /* sub */
1998 NULL, /* next */
1999 0, /* static_pass_number */
2000 TV_RENAME_REGISTERS, /* tv_id */
2001 0, /* properties_required */
2002 0, /* properties_provided */
2003 0, /* properties_destroyed */
2004 0, /* todo_flags_start */
2005 TODO_dump_func | TODO_verify_rtl_sharing /* todo_flags_finish */