2009-01-19 Iain Sandoe <iain.sandoe@sandoe-acoustics.co.uk>
[official-gcc.git] / gcc / modulo-sched.c
blob7134bfc0d00c5fe658769b0cdacfc9a4b6df7b4c
1 /* Swing Modulo Scheduling implementation.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008
3 Free Software Foundation, Inc.
4 Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "hard-reg-set.h"
31 #include "regs.h"
32 #include "function.h"
33 #include "flags.h"
34 #include "insn-config.h"
35 #include "insn-attr.h"
36 #include "except.h"
37 #include "toplev.h"
38 #include "recog.h"
39 #include "sched-int.h"
40 #include "target.h"
41 #include "cfglayout.h"
42 #include "cfgloop.h"
43 #include "cfghooks.h"
44 #include "expr.h"
45 #include "params.h"
46 #include "gcov-io.h"
47 #include "ddg.h"
48 #include "timevar.h"
49 #include "tree-pass.h"
50 #include "dbgcnt.h"
52 #ifdef INSN_SCHEDULING
54 /* This file contains the implementation of the Swing Modulo Scheduler,
55 described in the following references:
56 [1] J. Llosa, A. Gonzalez, E. Ayguade, M. Valero., and J. Eckhardt.
57 Lifetime--sensitive modulo scheduling in a production environment.
58 IEEE Trans. on Comps., 50(3), March 2001
59 [2] J. Llosa, A. Gonzalez, E. Ayguade, and M. Valero.
60 Swing Modulo Scheduling: A Lifetime Sensitive Approach.
61 PACT '96 , pages 80-87, October 1996 (Boston - Massachusetts - USA).
63 The basic structure is:
64 1. Build a data-dependence graph (DDG) for each loop.
65 2. Use the DDG to order the insns of a loop (not in topological order
66 necessarily, but rather) trying to place each insn after all its
67 predecessors _or_ after all its successors.
68 3. Compute MII: a lower bound on the number of cycles to schedule the loop.
69 4. Use the ordering to perform list-scheduling of the loop:
70 1. Set II = MII. We will try to schedule the loop within II cycles.
71 2. Try to schedule the insns one by one according to the ordering.
72 For each insn compute an interval of cycles by considering already-
73 scheduled preds and succs (and associated latencies); try to place
74 the insn in the cycles of this window checking for potential
75 resource conflicts (using the DFA interface).
76 Note: this is different from the cycle-scheduling of schedule_insns;
77 here the insns are not scheduled monotonically top-down (nor bottom-
78 up).
79 3. If failed in scheduling all insns - bump II++ and try again, unless
80 II reaches an upper bound MaxII, in which case report failure.
81 5. If we succeeded in scheduling the loop within II cycles, we now
82 generate prolog and epilog, decrease the counter of the loop, and
83 perform modulo variable expansion for live ranges that span more than
84 II cycles (i.e. use register copies to prevent a def from overwriting
85 itself before reaching the use).
87 SMS works with countable loops (1) whose control part can be easily
88 decoupled from the rest of the loop and (2) whose loop count can
89 be easily adjusted. This is because we peel a constant number of
90 iterations into a prologue and epilogue for which we want to avoid
91 emitting the control part, and a kernel which is to iterate that
92 constant number of iterations less than the original loop. So the
93 control part should be a set of insns clearly identified and having
94 its own iv, not otherwise used in the loop (at-least for now), which
95 initializes a register before the loop to the number of iterations.
96 Currently SMS relies on the do-loop pattern to recognize such loops,
97 where (1) the control part comprises of all insns defining and/or
98 using a certain 'count' register and (2) the loop count can be
99 adjusted by modifying this register prior to the loop.
100 TODO: Rely on cfgloop analysis instead. */
102 /* This page defines partial-schedule structures and functions for
103 modulo scheduling. */
105 typedef struct partial_schedule *partial_schedule_ptr;
106 typedef struct ps_insn *ps_insn_ptr;
108 /* The minimum (absolute) cycle that a node of ps was scheduled in. */
109 #define PS_MIN_CYCLE(ps) (((partial_schedule_ptr)(ps))->min_cycle)
111 /* The maximum (absolute) cycle that a node of ps was scheduled in. */
112 #define PS_MAX_CYCLE(ps) (((partial_schedule_ptr)(ps))->max_cycle)
114 /* Perform signed modulo, always returning a non-negative value. */
115 #define SMODULO(x,y) ((x) % (y) < 0 ? ((x) % (y) + (y)) : (x) % (y))
117 /* The number of different iterations the nodes in ps span, assuming
118 the stage boundaries are placed efficiently. */
119 #define PS_STAGE_COUNT(ps) ((PS_MAX_CYCLE (ps) - PS_MIN_CYCLE (ps) \
120 + 1 + (ps)->ii - 1) / (ps)->ii)
122 /* A single instruction in the partial schedule. */
123 struct ps_insn
125 /* The corresponding DDG_NODE. */
126 ddg_node_ptr node;
128 /* The (absolute) cycle in which the PS instruction is scheduled.
129 Same as SCHED_TIME (node). */
130 int cycle;
132 /* The next/prev PS_INSN in the same row. */
133 ps_insn_ptr next_in_row,
134 prev_in_row;
136 /* The number of nodes in the same row that come after this node. */
137 int row_rest_count;
140 /* Holds the partial schedule as an array of II rows. Each entry of the
141 array points to a linked list of PS_INSNs, which represents the
142 instructions that are scheduled for that row. */
143 struct partial_schedule
145 int ii; /* Number of rows in the partial schedule. */
146 int history; /* Threshold for conflict checking using DFA. */
148 /* rows[i] points to linked list of insns scheduled in row i (0<=i<ii). */
149 ps_insn_ptr *rows;
151 /* The earliest absolute cycle of an insn in the partial schedule. */
152 int min_cycle;
154 /* The latest absolute cycle of an insn in the partial schedule. */
155 int max_cycle;
157 ddg_ptr g; /* The DDG of the insns in the partial schedule. */
160 /* We use this to record all the register replacements we do in
161 the kernel so we can undo SMS if it is not profitable. */
162 struct undo_replace_buff_elem
164 rtx insn;
165 rtx orig_reg;
166 rtx new_reg;
167 struct undo_replace_buff_elem *next;
172 static partial_schedule_ptr create_partial_schedule (int ii, ddg_ptr, int history);
173 static void free_partial_schedule (partial_schedule_ptr);
174 static void reset_partial_schedule (partial_schedule_ptr, int new_ii);
175 void print_partial_schedule (partial_schedule_ptr, FILE *);
176 static void verify_partial_schedule (partial_schedule_ptr, sbitmap);
177 static ps_insn_ptr ps_add_node_check_conflicts (partial_schedule_ptr,
178 ddg_node_ptr node, int cycle,
179 sbitmap must_precede,
180 sbitmap must_follow);
181 static void rotate_partial_schedule (partial_schedule_ptr, int);
182 void set_row_column_for_ps (partial_schedule_ptr);
183 static void ps_insert_empty_row (partial_schedule_ptr, int, sbitmap);
184 static int compute_split_row (sbitmap, int, int, int, ddg_node_ptr);
187 /* This page defines constants and structures for the modulo scheduling
188 driver. */
190 static int sms_order_nodes (ddg_ptr, int, int *, int *);
191 static void set_node_sched_params (ddg_ptr);
192 static partial_schedule_ptr sms_schedule_by_order (ddg_ptr, int, int, int *);
193 static void permute_partial_schedule (partial_schedule_ptr, rtx);
194 static void generate_prolog_epilog (partial_schedule_ptr, struct loop *,
195 rtx, rtx);
196 static void duplicate_insns_of_cycles (partial_schedule_ptr,
197 int, int, int, rtx);
199 #define SCHED_ASAP(x) (((node_sched_params_ptr)(x)->aux.info)->asap)
200 #define SCHED_TIME(x) (((node_sched_params_ptr)(x)->aux.info)->time)
201 #define SCHED_FIRST_REG_MOVE(x) \
202 (((node_sched_params_ptr)(x)->aux.info)->first_reg_move)
203 #define SCHED_NREG_MOVES(x) \
204 (((node_sched_params_ptr)(x)->aux.info)->nreg_moves)
205 #define SCHED_ROW(x) (((node_sched_params_ptr)(x)->aux.info)->row)
206 #define SCHED_STAGE(x) (((node_sched_params_ptr)(x)->aux.info)->stage)
207 #define SCHED_COLUMN(x) (((node_sched_params_ptr)(x)->aux.info)->column)
209 /* The scheduling parameters held for each node. */
210 typedef struct node_sched_params
212 int asap; /* A lower-bound on the absolute scheduling cycle. */
213 int time; /* The absolute scheduling cycle (time >= asap). */
215 /* The following field (first_reg_move) is a pointer to the first
216 register-move instruction added to handle the modulo-variable-expansion
217 of the register defined by this node. This register-move copies the
218 original register defined by the node. */
219 rtx first_reg_move;
221 /* The number of register-move instructions added, immediately preceding
222 first_reg_move. */
223 int nreg_moves;
225 int row; /* Holds time % ii. */
226 int stage; /* Holds time / ii. */
228 /* The column of a node inside the ps. If nodes u, v are on the same row,
229 u will precede v if column (u) < column (v). */
230 int column;
231 } *node_sched_params_ptr;
234 /* The following three functions are copied from the current scheduler
235 code in order to use sched_analyze() for computing the dependencies.
236 They are used when initializing the sched_info structure. */
237 static const char *
238 sms_print_insn (const_rtx insn, int aligned ATTRIBUTE_UNUSED)
240 static char tmp[80];
242 sprintf (tmp, "i%4d", INSN_UID (insn));
243 return tmp;
246 static void
247 compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED,
248 regset cond_exec ATTRIBUTE_UNUSED,
249 regset used ATTRIBUTE_UNUSED,
250 regset set ATTRIBUTE_UNUSED)
254 static struct common_sched_info_def sms_common_sched_info;
256 static struct sched_deps_info_def sms_sched_deps_info =
258 compute_jump_reg_dependencies,
259 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
260 NULL,
261 0, 0, 0
264 static struct haifa_sched_info sms_sched_info =
266 NULL,
267 NULL,
268 NULL,
269 NULL,
270 NULL,
271 sms_print_insn,
272 NULL,
273 NULL, NULL,
274 NULL, NULL,
275 0, 0,
277 NULL, NULL, NULL,
281 /* Given HEAD and TAIL which are the first and last insns in a loop;
282 return the register which controls the loop. Return zero if it has
283 more than one occurrence in the loop besides the control part or the
284 do-loop pattern is not of the form we expect. */
285 static rtx
286 doloop_register_get (rtx head ATTRIBUTE_UNUSED, rtx tail ATTRIBUTE_UNUSED)
288 #ifdef HAVE_doloop_end
289 rtx reg, condition, insn, first_insn_not_to_check;
291 if (!JUMP_P (tail))
292 return NULL_RTX;
294 /* TODO: Free SMS's dependence on doloop_condition_get. */
295 condition = doloop_condition_get (tail);
296 if (! condition)
297 return NULL_RTX;
299 if (REG_P (XEXP (condition, 0)))
300 reg = XEXP (condition, 0);
301 else if (GET_CODE (XEXP (condition, 0)) == PLUS
302 && REG_P (XEXP (XEXP (condition, 0), 0)))
303 reg = XEXP (XEXP (condition, 0), 0);
304 else
305 gcc_unreachable ();
307 /* Check that the COUNT_REG has no other occurrences in the loop
308 until the decrement. We assume the control part consists of
309 either a single (parallel) branch-on-count or a (non-parallel)
310 branch immediately preceded by a single (decrement) insn. */
311 first_insn_not_to_check = (GET_CODE (PATTERN (tail)) == PARALLEL ? tail
312 : PREV_INSN (tail));
314 for (insn = head; insn != first_insn_not_to_check; insn = NEXT_INSN (insn))
315 if (reg_mentioned_p (reg, insn))
317 if (dump_file)
319 fprintf (dump_file, "SMS count_reg found ");
320 print_rtl_single (dump_file, reg);
321 fprintf (dump_file, " outside control in insn:\n");
322 print_rtl_single (dump_file, insn);
325 return NULL_RTX;
328 return reg;
329 #else
330 return NULL_RTX;
331 #endif
334 /* Check if COUNT_REG is set to a constant in the PRE_HEADER block, so
335 that the number of iterations is a compile-time constant. If so,
336 return the rtx that sets COUNT_REG to a constant, and set COUNT to
337 this constant. Otherwise return 0. */
338 static rtx
339 const_iteration_count (rtx count_reg, basic_block pre_header,
340 HOST_WIDEST_INT * count)
342 rtx insn;
343 rtx head, tail;
345 if (! pre_header)
346 return NULL_RTX;
348 get_ebb_head_tail (pre_header, pre_header, &head, &tail);
350 for (insn = tail; insn != PREV_INSN (head); insn = PREV_INSN (insn))
351 if (INSN_P (insn) && single_set (insn) &&
352 rtx_equal_p (count_reg, SET_DEST (single_set (insn))))
354 rtx pat = single_set (insn);
356 if (GET_CODE (SET_SRC (pat)) == CONST_INT)
358 *count = INTVAL (SET_SRC (pat));
359 return insn;
362 return NULL_RTX;
365 return NULL_RTX;
368 /* A very simple resource-based lower bound on the initiation interval.
369 ??? Improve the accuracy of this bound by considering the
370 utilization of various units. */
371 static int
372 res_MII (ddg_ptr g)
374 if (targetm.sched.sms_res_mii)
375 return targetm.sched.sms_res_mii (g);
377 return (g->num_nodes / issue_rate);
381 /* Points to the array that contains the sched data for each node. */
382 static node_sched_params_ptr node_sched_params;
384 /* Allocate sched_params for each node and initialize it. Assumes that
385 the aux field of each node contain the asap bound (computed earlier),
386 and copies it into the sched_params field. */
387 static void
388 set_node_sched_params (ddg_ptr g)
390 int i;
392 /* Allocate for each node in the DDG a place to hold the "sched_data". */
393 /* Initialize ASAP/ALAP/HIGHT to zero. */
394 node_sched_params = (node_sched_params_ptr)
395 xcalloc (g->num_nodes,
396 sizeof (struct node_sched_params));
398 /* Set the pointer of the general data of the node to point to the
399 appropriate sched_params structure. */
400 for (i = 0; i < g->num_nodes; i++)
402 /* Watch out for aliasing problems? */
403 node_sched_params[i].asap = g->nodes[i].aux.count;
404 g->nodes[i].aux.info = &node_sched_params[i];
408 static void
409 print_node_sched_params (FILE *file, int num_nodes, ddg_ptr g)
411 int i;
413 if (! file)
414 return;
415 for (i = 0; i < num_nodes; i++)
417 node_sched_params_ptr nsp = &node_sched_params[i];
418 rtx reg_move = nsp->first_reg_move;
419 int j;
421 fprintf (file, "Node = %d; INSN = %d\n", i,
422 (INSN_UID (g->nodes[i].insn)));
423 fprintf (file, " asap = %d:\n", nsp->asap);
424 fprintf (file, " time = %d:\n", nsp->time);
425 fprintf (file, " nreg_moves = %d:\n", nsp->nreg_moves);
426 for (j = 0; j < nsp->nreg_moves; j++)
428 fprintf (file, " reg_move = ");
429 print_rtl_single (file, reg_move);
430 reg_move = PREV_INSN (reg_move);
436 Breaking intra-loop register anti-dependences:
437 Each intra-loop register anti-dependence implies a cross-iteration true
438 dependence of distance 1. Therefore, we can remove such false dependencies
439 and figure out if the partial schedule broke them by checking if (for a
440 true-dependence of distance 1): SCHED_TIME (def) < SCHED_TIME (use) and
441 if so generate a register move. The number of such moves is equal to:
442 SCHED_TIME (use) - SCHED_TIME (def) { 0 broken
443 nreg_moves = ----------------------------------- + 1 - { dependence.
444 ii { 1 if not.
446 static struct undo_replace_buff_elem *
447 generate_reg_moves (partial_schedule_ptr ps, bool rescan)
449 ddg_ptr g = ps->g;
450 int ii = ps->ii;
451 int i;
452 struct undo_replace_buff_elem *reg_move_replaces = NULL;
454 for (i = 0; i < g->num_nodes; i++)
456 ddg_node_ptr u = &g->nodes[i];
457 ddg_edge_ptr e;
458 int nreg_moves = 0, i_reg_move;
459 sbitmap *uses_of_defs;
460 rtx last_reg_move;
461 rtx prev_reg, old_reg;
463 /* Compute the number of reg_moves needed for u, by looking at life
464 ranges started at u (excluding self-loops). */
465 for (e = u->out; e; e = e->next_out)
466 if (e->type == TRUE_DEP && e->dest != e->src)
468 int nreg_moves4e = (SCHED_TIME (e->dest) - SCHED_TIME (e->src)) / ii;
470 if (e->distance == 1)
471 nreg_moves4e = (SCHED_TIME (e->dest) - SCHED_TIME (e->src) + ii) / ii;
473 /* If dest precedes src in the schedule of the kernel, then dest
474 will read before src writes and we can save one reg_copy. */
475 if (SCHED_ROW (e->dest) == SCHED_ROW (e->src)
476 && SCHED_COLUMN (e->dest) < SCHED_COLUMN (e->src))
477 nreg_moves4e--;
479 nreg_moves = MAX (nreg_moves, nreg_moves4e);
482 if (nreg_moves == 0)
483 continue;
485 /* Every use of the register defined by node may require a different
486 copy of this register, depending on the time the use is scheduled.
487 Set a bitmap vector, telling which nodes use each copy of this
488 register. */
489 uses_of_defs = sbitmap_vector_alloc (nreg_moves, g->num_nodes);
490 sbitmap_vector_zero (uses_of_defs, nreg_moves);
491 for (e = u->out; e; e = e->next_out)
492 if (e->type == TRUE_DEP && e->dest != e->src)
494 int dest_copy = (SCHED_TIME (e->dest) - SCHED_TIME (e->src)) / ii;
496 if (e->distance == 1)
497 dest_copy = (SCHED_TIME (e->dest) - SCHED_TIME (e->src) + ii) / ii;
499 if (SCHED_ROW (e->dest) == SCHED_ROW (e->src)
500 && SCHED_COLUMN (e->dest) < SCHED_COLUMN (e->src))
501 dest_copy--;
503 if (dest_copy)
504 SET_BIT (uses_of_defs[dest_copy - 1], e->dest->cuid);
507 /* Now generate the reg_moves, attaching relevant uses to them. */
508 SCHED_NREG_MOVES (u) = nreg_moves;
509 old_reg = prev_reg = copy_rtx (SET_DEST (single_set (u->insn)));
510 /* Insert the reg-moves right before the notes which precede
511 the insn they relates to. */
512 last_reg_move = u->first_note;
514 for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
516 unsigned int i_use = 0;
517 rtx new_reg = gen_reg_rtx (GET_MODE (prev_reg));
518 rtx reg_move = gen_move_insn (new_reg, prev_reg);
519 sbitmap_iterator sbi;
521 add_insn_before (reg_move, last_reg_move, NULL);
522 last_reg_move = reg_move;
524 if (!SCHED_FIRST_REG_MOVE (u))
525 SCHED_FIRST_REG_MOVE (u) = reg_move;
527 EXECUTE_IF_SET_IN_SBITMAP (uses_of_defs[i_reg_move], 0, i_use, sbi)
529 struct undo_replace_buff_elem *rep;
531 rep = (struct undo_replace_buff_elem *)
532 xcalloc (1, sizeof (struct undo_replace_buff_elem));
533 rep->insn = g->nodes[i_use].insn;
534 rep->orig_reg = old_reg;
535 rep->new_reg = new_reg;
537 if (! reg_move_replaces)
538 reg_move_replaces = rep;
539 else
541 rep->next = reg_move_replaces;
542 reg_move_replaces = rep;
545 replace_rtx (g->nodes[i_use].insn, old_reg, new_reg);
546 if (rescan)
547 df_insn_rescan (g->nodes[i_use].insn);
550 prev_reg = new_reg;
552 sbitmap_vector_free (uses_of_defs);
554 return reg_move_replaces;
557 /* Free memory allocated for the undo buffer. */
558 static void
559 free_undo_replace_buff (struct undo_replace_buff_elem *reg_move_replaces)
562 while (reg_move_replaces)
564 struct undo_replace_buff_elem *rep = reg_move_replaces;
566 reg_move_replaces = reg_move_replaces->next;
567 free (rep);
571 /* Bump the SCHED_TIMEs of all nodes to start from zero. Set the values
572 of SCHED_ROW and SCHED_STAGE. */
573 static void
574 normalize_sched_times (partial_schedule_ptr ps)
576 int row;
577 int amount = PS_MIN_CYCLE (ps);
578 int ii = ps->ii;
579 ps_insn_ptr crr_insn;
581 for (row = 0; row < ii; row++)
582 for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
584 ddg_node_ptr u = crr_insn->node;
585 int normalized_time = SCHED_TIME (u) - amount;
587 if (dump_file)
588 fprintf (dump_file, "crr_insn->node=%d, crr_insn->cycle=%d,\
589 min_cycle=%d\n", crr_insn->node->cuid, SCHED_TIME
590 (u), ps->min_cycle);
591 gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
592 gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
593 SCHED_TIME (u) = normalized_time;
594 SCHED_ROW (u) = normalized_time % ii;
595 SCHED_STAGE (u) = normalized_time / ii;
599 /* Set SCHED_COLUMN of each node according to its position in PS. */
600 static void
601 set_columns_for_ps (partial_schedule_ptr ps)
603 int row;
605 for (row = 0; row < ps->ii; row++)
607 ps_insn_ptr cur_insn = ps->rows[row];
608 int column = 0;
610 for (; cur_insn; cur_insn = cur_insn->next_in_row)
611 SCHED_COLUMN (cur_insn->node) = column++;
615 /* Permute the insns according to their order in PS, from row 0 to
616 row ii-1, and position them right before LAST. This schedules
617 the insns of the loop kernel. */
618 static void
619 permute_partial_schedule (partial_schedule_ptr ps, rtx last)
621 int ii = ps->ii;
622 int row;
623 ps_insn_ptr ps_ij;
625 for (row = 0; row < ii ; row++)
626 for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
627 if (PREV_INSN (last) != ps_ij->node->insn)
628 reorder_insns_nobb (ps_ij->node->first_note, ps_ij->node->insn,
629 PREV_INSN (last));
632 static void
633 duplicate_insns_of_cycles (partial_schedule_ptr ps, int from_stage,
634 int to_stage, int for_prolog, rtx count_reg)
636 int row;
637 ps_insn_ptr ps_ij;
639 for (row = 0; row < ps->ii; row++)
640 for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
642 ddg_node_ptr u_node = ps_ij->node;
643 int j, i_reg_moves;
644 rtx reg_move = NULL_RTX;
646 /* Do not duplicate any insn which refers to count_reg as it
647 belongs to the control part.
648 TODO: This should be done by analyzing the control part of
649 the loop. */
650 if (reg_mentioned_p (count_reg, u_node->insn))
651 continue;
653 if (for_prolog)
655 /* SCHED_STAGE (u_node) >= from_stage == 0. Generate increasing
656 number of reg_moves starting with the second occurrence of
657 u_node, which is generated if its SCHED_STAGE <= to_stage. */
658 i_reg_moves = to_stage - SCHED_STAGE (u_node) + 1;
659 i_reg_moves = MAX (i_reg_moves, 0);
660 i_reg_moves = MIN (i_reg_moves, SCHED_NREG_MOVES (u_node));
662 /* The reg_moves start from the *first* reg_move backwards. */
663 if (i_reg_moves)
665 reg_move = SCHED_FIRST_REG_MOVE (u_node);
666 for (j = 1; j < i_reg_moves; j++)
667 reg_move = PREV_INSN (reg_move);
670 else /* It's for the epilog. */
672 /* SCHED_STAGE (u_node) <= to_stage. Generate all reg_moves,
673 starting to decrease one stage after u_node no longer occurs;
674 that is, generate all reg_moves until
675 SCHED_STAGE (u_node) == from_stage - 1. */
676 i_reg_moves = SCHED_NREG_MOVES (u_node)
677 - (from_stage - SCHED_STAGE (u_node) - 1);
678 i_reg_moves = MAX (i_reg_moves, 0);
679 i_reg_moves = MIN (i_reg_moves, SCHED_NREG_MOVES (u_node));
681 /* The reg_moves start from the *last* reg_move forwards. */
682 if (i_reg_moves)
684 reg_move = SCHED_FIRST_REG_MOVE (u_node);
685 for (j = 1; j < SCHED_NREG_MOVES (u_node); j++)
686 reg_move = PREV_INSN (reg_move);
690 for (j = 0; j < i_reg_moves; j++, reg_move = NEXT_INSN (reg_move))
691 emit_insn (copy_rtx (PATTERN (reg_move)));
692 if (SCHED_STAGE (u_node) >= from_stage
693 && SCHED_STAGE (u_node) <= to_stage)
694 duplicate_insn_chain (u_node->first_note, u_node->insn);
699 /* Generate the instructions (including reg_moves) for prolog & epilog. */
700 static void
701 generate_prolog_epilog (partial_schedule_ptr ps, struct loop *loop,
702 rtx count_reg, rtx count_init)
704 int i;
705 int last_stage = PS_STAGE_COUNT (ps) - 1;
706 edge e;
708 /* Generate the prolog, inserting its insns on the loop-entry edge. */
709 start_sequence ();
711 if (!count_init)
713 /* Generate instructions at the beginning of the prolog to
714 adjust the loop count by STAGE_COUNT. If loop count is constant
715 (count_init), this constant is adjusted by STAGE_COUNT in
716 generate_prolog_epilog function. */
717 rtx sub_reg = NULL_RTX;
719 sub_reg = expand_simple_binop (GET_MODE (count_reg), MINUS,
720 count_reg, GEN_INT (last_stage),
721 count_reg, 1, OPTAB_DIRECT);
722 gcc_assert (REG_P (sub_reg));
723 if (REGNO (sub_reg) != REGNO (count_reg))
724 emit_move_insn (count_reg, sub_reg);
727 for (i = 0; i < last_stage; i++)
728 duplicate_insns_of_cycles (ps, 0, i, 1, count_reg);
730 /* Put the prolog on the entry edge. */
731 e = loop_preheader_edge (loop);
732 split_edge_and_insert (e, get_insns ());
734 end_sequence ();
736 /* Generate the epilog, inserting its insns on the loop-exit edge. */
737 start_sequence ();
739 for (i = 0; i < last_stage; i++)
740 duplicate_insns_of_cycles (ps, i + 1, last_stage, 0, count_reg);
742 /* Put the epilogue on the exit edge. */
743 gcc_assert (single_exit (loop));
744 e = single_exit (loop);
745 split_edge_and_insert (e, get_insns ());
746 end_sequence ();
749 /* Return true if all the BBs of the loop are empty except the
750 loop header. */
751 static bool
752 loop_single_full_bb_p (struct loop *loop)
754 unsigned i;
755 basic_block *bbs = get_loop_body (loop);
757 for (i = 0; i < loop->num_nodes ; i++)
759 rtx head, tail;
760 bool empty_bb = true;
762 if (bbs[i] == loop->header)
763 continue;
765 /* Make sure that basic blocks other than the header
766 have only notes labels or jumps. */
767 get_ebb_head_tail (bbs[i], bbs[i], &head, &tail);
768 for (; head != NEXT_INSN (tail); head = NEXT_INSN (head))
770 if (NOTE_P (head) || LABEL_P (head)
771 || (INSN_P (head) && JUMP_P (head)))
772 continue;
773 empty_bb = false;
774 break;
777 if (! empty_bb)
779 free (bbs);
780 return false;
783 free (bbs);
784 return true;
787 /* A simple loop from SMS point of view; it is a loop that is composed of
788 either a single basic block or two BBs - a header and a latch. */
789 #define SIMPLE_SMS_LOOP_P(loop) ((loop->num_nodes < 3 ) \
790 && (EDGE_COUNT (loop->latch->preds) == 1) \
791 && (EDGE_COUNT (loop->latch->succs) == 1))
793 /* Return true if the loop is in its canonical form and false if not.
794 i.e. SIMPLE_SMS_LOOP_P and have one preheader block, and single exit. */
795 static bool
796 loop_canon_p (struct loop *loop)
799 if (loop->inner || !loop_outer (loop))
801 if (dump_file)
802 fprintf (dump_file, "SMS loop inner or !loop_outer\n");
803 return false;
806 if (!single_exit (loop))
808 if (dump_file)
810 rtx insn = BB_END (loop->header);
812 fprintf (dump_file, "SMS loop many exits ");
813 fprintf (dump_file, " %s %d (file, line)\n",
814 insn_file (insn), insn_line (insn));
816 return false;
819 if (! SIMPLE_SMS_LOOP_P (loop) && ! loop_single_full_bb_p (loop))
821 if (dump_file)
823 rtx insn = BB_END (loop->header);
825 fprintf (dump_file, "SMS loop many BBs. ");
826 fprintf (dump_file, " %s %d (file, line)\n",
827 insn_file (insn), insn_line (insn));
829 return false;
832 return true;
835 /* If there are more than one entry for the loop,
836 make it one by splitting the first entry edge and
837 redirecting the others to the new BB. */
838 static void
839 canon_loop (struct loop *loop)
841 edge e;
842 edge_iterator i;
844 /* Avoid annoying special cases of edges going to exit
845 block. */
846 FOR_EACH_EDGE (e, i, EXIT_BLOCK_PTR->preds)
847 if ((e->flags & EDGE_FALLTHRU) && (EDGE_COUNT (e->src->succs) > 1))
848 split_edge (e);
850 if (loop->latch == loop->header
851 || EDGE_COUNT (loop->latch->succs) > 1)
853 FOR_EACH_EDGE (e, i, loop->header->preds)
854 if (e->src == loop->latch)
855 break;
856 split_edge (e);
860 /* Setup infos. */
861 static void
862 setup_sched_infos (void)
864 memcpy (&sms_common_sched_info, &haifa_common_sched_info,
865 sizeof (sms_common_sched_info));
866 sms_common_sched_info.sched_pass_id = SCHED_SMS_PASS;
867 common_sched_info = &sms_common_sched_info;
869 sched_deps_info = &sms_sched_deps_info;
870 current_sched_info = &sms_sched_info;
873 /* Probability in % that the sms-ed loop rolls enough so that optimized
874 version may be entered. Just a guess. */
875 #define PROB_SMS_ENOUGH_ITERATIONS 80
877 /* Used to calculate the upper bound of ii. */
878 #define MAXII_FACTOR 2
880 /* Main entry point, perform SMS scheduling on the loops of the function
881 that consist of single basic blocks. */
882 static void
883 sms_schedule (void)
885 rtx insn;
886 ddg_ptr *g_arr, g;
887 int * node_order;
888 int maxii, max_asap;
889 loop_iterator li;
890 partial_schedule_ptr ps;
891 basic_block bb = NULL;
892 struct loop *loop;
893 basic_block condition_bb = NULL;
894 edge latch_edge;
895 gcov_type trip_count = 0;
897 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
898 | LOOPS_HAVE_RECORDED_EXITS);
899 if (number_of_loops () <= 1)
901 loop_optimizer_finalize ();
902 return; /* There are no loops to schedule. */
905 /* Initialize issue_rate. */
906 if (targetm.sched.issue_rate)
908 int temp = reload_completed;
910 reload_completed = 1;
911 issue_rate = targetm.sched.issue_rate ();
912 reload_completed = temp;
914 else
915 issue_rate = 1;
917 /* Initialize the scheduler. */
918 setup_sched_infos ();
919 haifa_sched_init ();
921 /* Allocate memory to hold the DDG array one entry for each loop.
922 We use loop->num as index into this array. */
923 g_arr = XCNEWVEC (ddg_ptr, number_of_loops ());
925 if (dump_file)
927 fprintf (dump_file, "\n\nSMS analysis phase\n");
928 fprintf (dump_file, "===================\n\n");
931 /* Build DDGs for all the relevant loops and hold them in G_ARR
932 indexed by the loop index. */
933 FOR_EACH_LOOP (li, loop, 0)
935 rtx head, tail;
936 rtx count_reg;
938 /* For debugging. */
939 if (dbg_cnt (sms_sched_loop) == false)
941 if (dump_file)
942 fprintf (dump_file, "SMS reached max limit... \n");
944 break;
947 if (dump_file)
949 rtx insn = BB_END (loop->header);
951 fprintf (dump_file, "SMS loop num: %d, file: %s, line: %d\n",
952 loop->num, insn_file (insn), insn_line (insn));
956 if (! loop_canon_p (loop))
957 continue;
959 if (! loop_single_full_bb_p (loop))
961 if (dump_file)
962 fprintf (dump_file, "SMS not loop_single_full_bb_p\n");
963 continue;
966 bb = loop->header;
968 get_ebb_head_tail (bb, bb, &head, &tail);
969 latch_edge = loop_latch_edge (loop);
970 gcc_assert (single_exit (loop));
971 if (single_exit (loop)->count)
972 trip_count = latch_edge->count / single_exit (loop)->count;
974 /* Perform SMS only on loops that their average count is above threshold. */
976 if ( latch_edge->count
977 && (latch_edge->count < single_exit (loop)->count * SMS_LOOP_AVERAGE_COUNT_THRESHOLD))
979 if (dump_file)
981 fprintf (dump_file, " %s %d (file, line)\n",
982 insn_file (tail), insn_line (tail));
983 fprintf (dump_file, "SMS single-bb-loop\n");
984 if (profile_info && flag_branch_probabilities)
986 fprintf (dump_file, "SMS loop-count ");
987 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
988 (HOST_WIDEST_INT) bb->count);
989 fprintf (dump_file, "\n");
990 fprintf (dump_file, "SMS trip-count ");
991 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
992 (HOST_WIDEST_INT) trip_count);
993 fprintf (dump_file, "\n");
994 fprintf (dump_file, "SMS profile-sum-max ");
995 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
996 (HOST_WIDEST_INT) profile_info->sum_max);
997 fprintf (dump_file, "\n");
1000 continue;
1003 /* Make sure this is a doloop. */
1004 if ( !(count_reg = doloop_register_get (head, tail)))
1006 if (dump_file)
1007 fprintf (dump_file, "SMS doloop_register_get failed\n");
1008 continue;
1011 /* Don't handle BBs with calls or barriers, or !single_set insns,
1012 or auto-increment insns (to avoid creating invalid reg-moves
1013 for the auto-increment insns).
1014 ??? Should handle auto-increment insns.
1015 ??? Should handle insns defining subregs. */
1016 for (insn = head; insn != NEXT_INSN (tail); insn = NEXT_INSN (insn))
1018 rtx set;
1020 if (CALL_P (insn)
1021 || BARRIER_P (insn)
1022 || (INSN_P (insn) && !JUMP_P (insn)
1023 && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE)
1024 || (FIND_REG_INC_NOTE (insn, NULL_RTX) != 0)
1025 || (INSN_P (insn) && (set = single_set (insn))
1026 && GET_CODE (SET_DEST (set)) == SUBREG))
1027 break;
1030 if (insn != NEXT_INSN (tail))
1032 if (dump_file)
1034 if (CALL_P (insn))
1035 fprintf (dump_file, "SMS loop-with-call\n");
1036 else if (BARRIER_P (insn))
1037 fprintf (dump_file, "SMS loop-with-barrier\n");
1038 else if (FIND_REG_INC_NOTE (insn, NULL_RTX) != 0)
1039 fprintf (dump_file, "SMS reg inc\n");
1040 else if ((INSN_P (insn) && !JUMP_P (insn)
1041 && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE))
1042 fprintf (dump_file, "SMS loop-with-not-single-set\n");
1043 else
1044 fprintf (dump_file, "SMS loop with subreg in lhs\n");
1045 print_rtl_single (dump_file, insn);
1048 continue;
1051 if (! (g = create_ddg (bb, 0)))
1053 if (dump_file)
1054 fprintf (dump_file, "SMS create_ddg failed\n");
1055 continue;
1058 g_arr[loop->num] = g;
1059 if (dump_file)
1060 fprintf (dump_file, "...OK\n");
1063 if (dump_file)
1065 fprintf (dump_file, "\nSMS transformation phase\n");
1066 fprintf (dump_file, "=========================\n\n");
1069 /* We don't want to perform SMS on new loops - created by versioning. */
1070 FOR_EACH_LOOP (li, loop, 0)
1072 rtx head, tail;
1073 rtx count_reg, count_init;
1074 int mii, rec_mii;
1075 unsigned stage_count = 0;
1076 HOST_WIDEST_INT loop_count = 0;
1078 if (! (g = g_arr[loop->num]))
1079 continue;
1081 if (dump_file)
1083 rtx insn = BB_END (loop->header);
1085 fprintf (dump_file, "SMS loop num: %d, file: %s, line: %d\n",
1086 loop->num, insn_file (insn), insn_line (insn));
1088 print_ddg (dump_file, g);
1091 get_ebb_head_tail (loop->header, loop->header, &head, &tail);
1093 latch_edge = loop_latch_edge (loop);
1094 gcc_assert (single_exit (loop));
1095 if (single_exit (loop)->count)
1096 trip_count = latch_edge->count / single_exit (loop)->count;
1098 if (dump_file)
1100 fprintf (dump_file, " %s %d (file, line)\n",
1101 insn_file (tail), insn_line (tail));
1102 fprintf (dump_file, "SMS single-bb-loop\n");
1103 if (profile_info && flag_branch_probabilities)
1105 fprintf (dump_file, "SMS loop-count ");
1106 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1107 (HOST_WIDEST_INT) bb->count);
1108 fprintf (dump_file, "\n");
1109 fprintf (dump_file, "SMS profile-sum-max ");
1110 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1111 (HOST_WIDEST_INT) profile_info->sum_max);
1112 fprintf (dump_file, "\n");
1114 fprintf (dump_file, "SMS doloop\n");
1115 fprintf (dump_file, "SMS built-ddg %d\n", g->num_nodes);
1116 fprintf (dump_file, "SMS num-loads %d\n", g->num_loads);
1117 fprintf (dump_file, "SMS num-stores %d\n", g->num_stores);
1121 /* In case of th loop have doloop register it gets special
1122 handling. */
1123 count_init = NULL_RTX;
1124 if ((count_reg = doloop_register_get (head, tail)))
1126 basic_block pre_header;
1128 pre_header = loop_preheader_edge (loop)->src;
1129 count_init = const_iteration_count (count_reg, pre_header,
1130 &loop_count);
1132 gcc_assert (count_reg);
1134 if (dump_file && count_init)
1136 fprintf (dump_file, "SMS const-doloop ");
1137 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1138 loop_count);
1139 fprintf (dump_file, "\n");
1142 node_order = XNEWVEC (int, g->num_nodes);
1144 mii = 1; /* Need to pass some estimate of mii. */
1145 rec_mii = sms_order_nodes (g, mii, node_order, &max_asap);
1146 mii = MAX (res_MII (g), rec_mii);
1147 maxii = MAX (max_asap, MAXII_FACTOR * mii);
1149 if (dump_file)
1150 fprintf (dump_file, "SMS iis %d %d %d (rec_mii, mii, maxii)\n",
1151 rec_mii, mii, maxii);
1153 /* After sms_order_nodes and before sms_schedule_by_order, to copy over
1154 ASAP. */
1155 set_node_sched_params (g);
1157 ps = sms_schedule_by_order (g, mii, maxii, node_order);
1159 if (ps)
1160 stage_count = PS_STAGE_COUNT (ps);
1162 /* Stage count of 1 means that there is no interleaving between
1163 iterations, let the scheduling passes do the job. */
1164 if (stage_count < 1
1165 || (count_init && (loop_count <= stage_count))
1166 || (flag_branch_probabilities && (trip_count <= stage_count)))
1168 if (dump_file)
1170 fprintf (dump_file, "SMS failed... \n");
1171 fprintf (dump_file, "SMS sched-failed (stage-count=%d, loop-count=", stage_count);
1172 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, loop_count);
1173 fprintf (dump_file, ", trip-count=");
1174 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, trip_count);
1175 fprintf (dump_file, ")\n");
1177 continue;
1179 else
1181 struct undo_replace_buff_elem *reg_move_replaces;
1183 if (dump_file)
1185 fprintf (dump_file,
1186 "SMS succeeded %d %d (with ii, sc)\n", ps->ii,
1187 stage_count);
1188 print_partial_schedule (ps, dump_file);
1189 fprintf (dump_file,
1190 "SMS Branch (%d) will later be scheduled at cycle %d.\n",
1191 g->closing_branch->cuid, PS_MIN_CYCLE (ps) - 1);
1194 /* Set the stage boundaries. If the DDG is built with closing_branch_deps,
1195 the closing_branch was scheduled and should appear in the last (ii-1)
1196 row. Otherwise, we are free to schedule the branch, and we let nodes
1197 that were scheduled at the first PS_MIN_CYCLE cycle appear in the first
1198 row; this should reduce stage_count to minimum.
1199 TODO: Revisit the issue of scheduling the insns of the
1200 control part relative to the branch when the control part
1201 has more than one insn. */
1202 normalize_sched_times (ps);
1203 rotate_partial_schedule (ps, PS_MIN_CYCLE (ps));
1204 set_columns_for_ps (ps);
1206 canon_loop (loop);
1208 /* case the BCT count is not known , Do loop-versioning */
1209 if (count_reg && ! count_init)
1211 rtx comp_rtx = gen_rtx_fmt_ee (GT, VOIDmode, count_reg,
1212 GEN_INT(stage_count));
1213 unsigned prob = (PROB_SMS_ENOUGH_ITERATIONS
1214 * REG_BR_PROB_BASE) / 100;
1216 loop_version (loop, comp_rtx, &condition_bb,
1217 prob, prob, REG_BR_PROB_BASE - prob,
1218 true);
1221 /* Set new iteration count of loop kernel. */
1222 if (count_reg && count_init)
1223 SET_SRC (single_set (count_init)) = GEN_INT (loop_count
1224 - stage_count + 1);
1226 /* Now apply the scheduled kernel to the RTL of the loop. */
1227 permute_partial_schedule (ps, g->closing_branch->first_note);
1229 /* Mark this loop as software pipelined so the later
1230 scheduling passes doesn't touch it. */
1231 if (! flag_resched_modulo_sched)
1232 g->bb->flags |= BB_DISABLE_SCHEDULE;
1233 /* The life-info is not valid any more. */
1234 df_set_bb_dirty (g->bb);
1236 reg_move_replaces = generate_reg_moves (ps, true);
1237 if (dump_file)
1238 print_node_sched_params (dump_file, g->num_nodes, g);
1239 /* Generate prolog and epilog. */
1240 generate_prolog_epilog (ps, loop, count_reg, count_init);
1242 free_undo_replace_buff (reg_move_replaces);
1245 free_partial_schedule (ps);
1246 free (node_sched_params);
1247 free (node_order);
1248 free_ddg (g);
1251 free (g_arr);
1253 /* Release scheduler data, needed until now because of DFA. */
1254 haifa_sched_finish ();
1255 loop_optimizer_finalize ();
1258 /* The SMS scheduling algorithm itself
1259 -----------------------------------
1260 Input: 'O' an ordered list of insns of a loop.
1261 Output: A scheduling of the loop - kernel, prolog, and epilogue.
1263 'Q' is the empty Set
1264 'PS' is the partial schedule; it holds the currently scheduled nodes with
1265 their cycle/slot.
1266 'PSP' previously scheduled predecessors.
1267 'PSS' previously scheduled successors.
1268 't(u)' the cycle where u is scheduled.
1269 'l(u)' is the latency of u.
1270 'd(v,u)' is the dependence distance from v to u.
1271 'ASAP(u)' the earliest time at which u could be scheduled as computed in
1272 the node ordering phase.
1273 'check_hardware_resources_conflicts(u, PS, c)'
1274 run a trace around cycle/slot through DFA model
1275 to check resource conflicts involving instruction u
1276 at cycle c given the partial schedule PS.
1277 'add_to_partial_schedule_at_time(u, PS, c)'
1278 Add the node/instruction u to the partial schedule
1279 PS at time c.
1280 'calculate_register_pressure(PS)'
1281 Given a schedule of instructions, calculate the register
1282 pressure it implies. One implementation could be the
1283 maximum number of overlapping live ranges.
1284 'maxRP' The maximum allowed register pressure, it is usually derived from the number
1285 registers available in the hardware.
1287 1. II = MII.
1288 2. PS = empty list
1289 3. for each node u in O in pre-computed order
1290 4. if (PSP(u) != Q && PSS(u) == Q) then
1291 5. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1292 6. start = Early_start; end = Early_start + II - 1; step = 1
1293 11. else if (PSP(u) == Q && PSS(u) != Q) then
1294 12. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1295 13. start = Late_start; end = Late_start - II + 1; step = -1
1296 14. else if (PSP(u) != Q && PSS(u) != Q) then
1297 15. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1298 16. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1299 17. start = Early_start;
1300 18. end = min(Early_start + II - 1 , Late_start);
1301 19. step = 1
1302 20. else "if (PSP(u) == Q && PSS(u) == Q)"
1303 21. start = ASAP(u); end = start + II - 1; step = 1
1304 22. endif
1306 23. success = false
1307 24. for (c = start ; c != end ; c += step)
1308 25. if check_hardware_resources_conflicts(u, PS, c) then
1309 26. add_to_partial_schedule_at_time(u, PS, c)
1310 27. success = true
1311 28. break
1312 29. endif
1313 30. endfor
1314 31. if (success == false) then
1315 32. II = II + 1
1316 33. if (II > maxII) then
1317 34. finish - failed to schedule
1318 35. endif
1319 36. goto 2.
1320 37. endif
1321 38. endfor
1322 39. if (calculate_register_pressure(PS) > maxRP) then
1323 40. goto 32.
1324 41. endif
1325 42. compute epilogue & prologue
1326 43. finish - succeeded to schedule
1329 /* A limit on the number of cycles that resource conflicts can span. ??? Should
1330 be provided by DFA, and be dependent on the type of insn scheduled. Currently
1331 set to 0 to save compile time. */
1332 #define DFA_HISTORY SMS_DFA_HISTORY
1334 /* A threshold for the number of repeated unsuccessful attempts to insert
1335 an empty row, before we flush the partial schedule and start over. */
1336 #define MAX_SPLIT_NUM 10
1337 /* Given the partial schedule PS, this function calculates and returns the
1338 cycles in which we can schedule the node with the given index I.
1339 NOTE: Here we do the backtracking in SMS, in some special cases. We have
1340 noticed that there are several cases in which we fail to SMS the loop
1341 because the sched window of a node is empty due to tight data-deps. In
1342 such cases we want to unschedule some of the predecessors/successors
1343 until we get non-empty scheduling window. It returns -1 if the
1344 scheduling window is empty and zero otherwise. */
1346 static int
1347 get_sched_window (partial_schedule_ptr ps, int *nodes_order, int i,
1348 sbitmap sched_nodes, int ii, int *start_p, int *step_p, int *end_p)
1350 int start, step, end;
1351 ddg_edge_ptr e;
1352 int u = nodes_order [i];
1353 ddg_node_ptr u_node = &ps->g->nodes[u];
1354 sbitmap psp = sbitmap_alloc (ps->g->num_nodes);
1355 sbitmap pss = sbitmap_alloc (ps->g->num_nodes);
1356 sbitmap u_node_preds = NODE_PREDECESSORS (u_node);
1357 sbitmap u_node_succs = NODE_SUCCESSORS (u_node);
1358 int psp_not_empty;
1359 int pss_not_empty;
1361 /* 1. compute sched window for u (start, end, step). */
1362 sbitmap_zero (psp);
1363 sbitmap_zero (pss);
1364 psp_not_empty = sbitmap_a_and_b_cg (psp, u_node_preds, sched_nodes);
1365 pss_not_empty = sbitmap_a_and_b_cg (pss, u_node_succs, sched_nodes);
1367 if (psp_not_empty && !pss_not_empty)
1369 int early_start = INT_MIN;
1371 end = INT_MAX;
1372 for (e = u_node->in; e != 0; e = e->next_in)
1374 ddg_node_ptr v_node = e->src;
1376 if (dump_file)
1378 fprintf (dump_file, "\nProcessing edge: ");
1379 print_ddg_edge (dump_file, e);
1380 fprintf (dump_file,
1381 "\nScheduling %d (%d) in psp_not_empty,"
1382 " checking p %d (%d): ", u_node->cuid,
1383 INSN_UID (u_node->insn), v_node->cuid, INSN_UID
1384 (v_node->insn));
1387 if (TEST_BIT (sched_nodes, v_node->cuid))
1389 int p_st = SCHED_TIME (v_node);
1391 early_start =
1392 MAX (early_start, p_st + e->latency - (e->distance * ii));
1394 if (dump_file)
1395 fprintf (dump_file,
1396 "pred st = %d; early_start = %d; latency: %d",
1397 p_st, early_start, e->latency);
1399 if (e->data_type == MEM_DEP)
1400 end = MIN (end, SCHED_TIME (v_node) + ii - 1);
1402 else if (dump_file)
1403 fprintf (dump_file, "the node is not scheduled\n");
1405 start = early_start;
1406 end = MIN (end, early_start + ii);
1407 /* Schedule the node close to it's predecessors. */
1408 step = 1;
1410 if (dump_file)
1411 fprintf (dump_file,
1412 "\nScheduling %d (%d) in a window (%d..%d) with step %d\n",
1413 u_node->cuid, INSN_UID (u_node->insn), start, end, step);
1416 else if (!psp_not_empty && pss_not_empty)
1418 int late_start = INT_MAX;
1420 end = INT_MIN;
1421 for (e = u_node->out; e != 0; e = e->next_out)
1423 ddg_node_ptr v_node = e->dest;
1425 if (dump_file)
1427 fprintf (dump_file, "\nProcessing edge:");
1428 print_ddg_edge (dump_file, e);
1429 fprintf (dump_file,
1430 "\nScheduling %d (%d) in pss_not_empty,"
1431 " checking s %d (%d): ", u_node->cuid,
1432 INSN_UID (u_node->insn), v_node->cuid, INSN_UID
1433 (v_node->insn));
1436 if (TEST_BIT (sched_nodes, v_node->cuid))
1438 int s_st = SCHED_TIME (v_node);
1440 late_start = MIN (late_start,
1441 s_st - e->latency + (e->distance * ii));
1443 if (dump_file)
1444 fprintf (dump_file,
1445 "succ st = %d; late_start = %d; latency = %d",
1446 s_st, late_start, e->latency);
1448 if (e->data_type == MEM_DEP)
1449 end = MAX (end, SCHED_TIME (v_node) - ii + 1);
1450 if (dump_file)
1451 fprintf (dump_file, "end = %d\n", end);
1454 else if (dump_file)
1455 fprintf (dump_file, "the node is not scheduled\n");
1458 start = late_start;
1459 end = MAX (end, late_start - ii);
1460 /* Schedule the node close to it's successors. */
1461 step = -1;
1463 if (dump_file)
1464 fprintf (dump_file,
1465 "\nScheduling %d (%d) in a window (%d..%d) with step %d\n",
1466 u_node->cuid, INSN_UID (u_node->insn), start, end, step);
1470 else if (psp_not_empty && pss_not_empty)
1472 int early_start = INT_MIN;
1473 int late_start = INT_MAX;
1474 int count_preds = 0;
1475 int count_succs = 0;
1477 start = INT_MIN;
1478 end = INT_MAX;
1479 for (e = u_node->in; e != 0; e = e->next_in)
1481 ddg_node_ptr v_node = e->src;
1483 if (dump_file)
1485 fprintf (dump_file, "\nProcessing edge:");
1486 print_ddg_edge (dump_file, e);
1487 fprintf (dump_file,
1488 "\nScheduling %d (%d) in psp_pss_not_empty,"
1489 " checking p %d (%d): ", u_node->cuid, INSN_UID
1490 (u_node->insn), v_node->cuid, INSN_UID
1491 (v_node->insn));
1494 if (TEST_BIT (sched_nodes, v_node->cuid))
1496 int p_st = SCHED_TIME (v_node);
1498 early_start = MAX (early_start,
1499 p_st + e->latency
1500 - (e->distance * ii));
1502 if (dump_file)
1503 fprintf (dump_file,
1504 "pred st = %d; early_start = %d; latency = %d",
1505 p_st, early_start, e->latency);
1507 if (e->type == TRUE_DEP && e->data_type == REG_DEP)
1508 count_preds++;
1510 if (e->data_type == MEM_DEP)
1511 end = MIN (end, SCHED_TIME (v_node) + ii - 1);
1513 else if (dump_file)
1514 fprintf (dump_file, "the node is not scheduled\n");
1517 for (e = u_node->out; e != 0; e = e->next_out)
1519 ddg_node_ptr v_node = e->dest;
1521 if (dump_file)
1523 fprintf (dump_file, "\nProcessing edge:");
1524 print_ddg_edge (dump_file, e);
1525 fprintf (dump_file,
1526 "\nScheduling %d (%d) in psp_pss_not_empty,"
1527 " checking s %d (%d): ", u_node->cuid, INSN_UID
1528 (u_node->insn), v_node->cuid, INSN_UID
1529 (v_node->insn));
1532 if (TEST_BIT (sched_nodes, v_node->cuid))
1534 int s_st = SCHED_TIME (v_node);
1536 late_start = MIN (late_start,
1537 s_st - e->latency
1538 + (e->distance * ii));
1540 if (dump_file)
1541 fprintf (dump_file,
1542 "succ st = %d; late_start = %d; latency = %d",
1543 s_st, late_start, e->latency);
1545 if (e->type == TRUE_DEP && e->data_type == REG_DEP)
1546 count_succs++;
1548 if (e->data_type == MEM_DEP)
1549 start = MAX (start, SCHED_TIME (v_node) - ii + 1);
1551 else if (dump_file)
1552 fprintf (dump_file, "the node is not scheduled\n");
1555 start = MAX (start, early_start);
1556 end = MIN (end, MIN (early_start + ii, late_start + 1));
1557 step = 1;
1558 /* If there are more successors than predecessors schedule the
1559 node close to it's successors. */
1560 if (count_succs >= count_preds)
1562 int old_start = start;
1564 start = end - 1;
1565 end = old_start - 1;
1566 step = -1;
1569 else /* psp is empty && pss is empty. */
1571 start = SCHED_ASAP (u_node);
1572 end = start + ii;
1573 step = 1;
1576 *start_p = start;
1577 *step_p = step;
1578 *end_p = end;
1579 sbitmap_free (psp);
1580 sbitmap_free (pss);
1582 if ((start >= end && step == 1) || (start <= end && step == -1))
1584 if (dump_file)
1585 fprintf (dump_file, "\nEmpty window: start=%d, end=%d, step=%d\n",
1586 start, end, step);
1587 return -1;
1590 return 0;
1593 /* Calculate MUST_PRECEDE/MUST_FOLLOW bitmaps of U_NODE; which is the
1594 node currently been scheduled. At the end of the calculation
1595 MUST_PRECEDE/MUST_FOLLOW contains all predecessors/successors of
1596 U_NODE which are (1) already scheduled in the first/last row of
1597 U_NODE's scheduling window, (2) whose dependence inequality with U
1598 becomes an equality when U is scheduled in this same row, and (3)
1599 whose dependence latency is zero.
1601 The first and last rows are calculated using the following parameters:
1602 START/END rows - The cycles that begins/ends the traversal on the window;
1603 searching for an empty cycle to schedule U_NODE.
1604 STEP - The direction in which we traverse the window.
1605 II - The initiation interval. */
1607 static void
1608 calculate_must_precede_follow (ddg_node_ptr u_node, int start, int end,
1609 int step, int ii, sbitmap sched_nodes,
1610 sbitmap must_precede, sbitmap must_follow)
1612 ddg_edge_ptr e;
1613 int first_cycle_in_window, last_cycle_in_window;
1615 gcc_assert (must_precede && must_follow);
1617 /* Consider the following scheduling window:
1618 {first_cycle_in_window, first_cycle_in_window+1, ...,
1619 last_cycle_in_window}. If step is 1 then the following will be
1620 the order we traverse the window: {start=first_cycle_in_window,
1621 first_cycle_in_window+1, ..., end=last_cycle_in_window+1},
1622 or {start=last_cycle_in_window, last_cycle_in_window-1, ...,
1623 end=first_cycle_in_window-1} if step is -1. */
1624 first_cycle_in_window = (step == 1) ? start : end - step;
1625 last_cycle_in_window = (step == 1) ? end - step : start;
1627 sbitmap_zero (must_precede);
1628 sbitmap_zero (must_follow);
1630 if (dump_file)
1631 fprintf (dump_file, "\nmust_precede: ");
1633 /* Instead of checking if:
1634 (SMODULO (SCHED_TIME (e->src), ii) == first_row_in_window)
1635 && ((SCHED_TIME (e->src) + e->latency - (e->distance * ii)) ==
1636 first_cycle_in_window)
1637 && e->latency == 0
1638 we use the fact that latency is non-negative:
1639 SCHED_TIME (e->src) - (e->distance * ii) <=
1640 SCHED_TIME (e->src) + e->latency - (e->distance * ii)) <=
1641 first_cycle_in_window
1642 and check only if
1643 SCHED_TIME (e->src) - (e->distance * ii) == first_cycle_in_window */
1644 for (e = u_node->in; e != 0; e = e->next_in)
1645 if (TEST_BIT (sched_nodes, e->src->cuid)
1646 && ((SCHED_TIME (e->src) - (e->distance * ii)) ==
1647 first_cycle_in_window))
1649 if (dump_file)
1650 fprintf (dump_file, "%d ", e->src->cuid);
1652 SET_BIT (must_precede, e->src->cuid);
1655 if (dump_file)
1656 fprintf (dump_file, "\nmust_follow: ");
1658 /* Instead of checking if:
1659 (SMODULO (SCHED_TIME (e->dest), ii) == last_row_in_window)
1660 && ((SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) ==
1661 last_cycle_in_window)
1662 && e->latency == 0
1663 we use the fact that latency is non-negative:
1664 SCHED_TIME (e->dest) + (e->distance * ii) >=
1665 SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) >=
1666 last_cycle_in_window
1667 and check only if
1668 SCHED_TIME (e->dest) + (e->distance * ii) == last_cycle_in_window */
1669 for (e = u_node->out; e != 0; e = e->next_out)
1670 if (TEST_BIT (sched_nodes, e->dest->cuid)
1671 && ((SCHED_TIME (e->dest) + (e->distance * ii)) ==
1672 last_cycle_in_window))
1674 if (dump_file)
1675 fprintf (dump_file, "%d ", e->dest->cuid);
1677 SET_BIT (must_follow, e->dest->cuid);
1680 if (dump_file)
1681 fprintf (dump_file, "\n");
1684 /* Return 1 if U_NODE can be scheduled in CYCLE. Use the following
1685 parameters to decide if that's possible:
1686 PS - The partial schedule.
1687 U - The serial number of U_NODE.
1688 NUM_SPLITS - The number of row splits made so far.
1689 MUST_PRECEDE - The nodes that must precede U_NODE. (only valid at
1690 the first row of the scheduling window)
1691 MUST_FOLLOW - The nodes that must follow U_NODE. (only valid at the
1692 last row of the scheduling window) */
1694 static bool
1695 try_scheduling_node_in_cycle (partial_schedule_ptr ps, ddg_node_ptr u_node,
1696 int u, int cycle, sbitmap sched_nodes,
1697 int *num_splits, sbitmap must_precede,
1698 sbitmap must_follow)
1700 ps_insn_ptr psi;
1701 bool success = 0;
1703 verify_partial_schedule (ps, sched_nodes);
1704 psi = ps_add_node_check_conflicts (ps, u_node, cycle,
1705 must_precede, must_follow);
1706 if (psi)
1708 SCHED_TIME (u_node) = cycle;
1709 SET_BIT (sched_nodes, u);
1710 success = 1;
1711 *num_splits = 0;
1712 if (dump_file)
1713 fprintf (dump_file, "Scheduled w/o split in %d\n", cycle);
1717 return success;
1720 /* This function implements the scheduling algorithm for SMS according to the
1721 above algorithm. */
1722 static partial_schedule_ptr
1723 sms_schedule_by_order (ddg_ptr g, int mii, int maxii, int *nodes_order)
1725 int ii = mii;
1726 int i, c, success, num_splits = 0;
1727 int flush_and_start_over = true;
1728 int num_nodes = g->num_nodes;
1729 int start, end, step; /* Place together into one struct? */
1730 sbitmap sched_nodes = sbitmap_alloc (num_nodes);
1731 sbitmap must_precede = sbitmap_alloc (num_nodes);
1732 sbitmap must_follow = sbitmap_alloc (num_nodes);
1733 sbitmap tobe_scheduled = sbitmap_alloc (num_nodes);
1735 partial_schedule_ptr ps = create_partial_schedule (ii, g, DFA_HISTORY);
1737 sbitmap_ones (tobe_scheduled);
1738 sbitmap_zero (sched_nodes);
1740 while (flush_and_start_over && (ii < maxii))
1743 if (dump_file)
1744 fprintf (dump_file, "Starting with ii=%d\n", ii);
1745 flush_and_start_over = false;
1746 sbitmap_zero (sched_nodes);
1748 for (i = 0; i < num_nodes; i++)
1750 int u = nodes_order[i];
1751 ddg_node_ptr u_node = &ps->g->nodes[u];
1752 rtx insn = u_node->insn;
1754 if (!INSN_P (insn))
1756 RESET_BIT (tobe_scheduled, u);
1757 continue;
1760 if (JUMP_P (insn)) /* Closing branch handled later. */
1762 RESET_BIT (tobe_scheduled, u);
1763 continue;
1766 if (TEST_BIT (sched_nodes, u))
1767 continue;
1769 /* Try to get non-empty scheduling window. */
1770 success = 0;
1771 if (get_sched_window (ps, nodes_order, i, sched_nodes, ii, &start,
1772 &step, &end) == 0)
1774 if (dump_file)
1775 fprintf (dump_file, "\nTrying to schedule node %d \
1776 INSN = %d in (%d .. %d) step %d\n", u, (INSN_UID
1777 (g->nodes[u].insn)), start, end, step);
1779 gcc_assert ((step > 0 && start < end)
1780 || (step < 0 && start > end));
1782 calculate_must_precede_follow (u_node, start, end, step, ii,
1783 sched_nodes, must_precede,
1784 must_follow);
1786 for (c = start; c != end; c += step)
1788 sbitmap tmp_precede = NULL;
1789 sbitmap tmp_follow = NULL;
1791 if (c == start)
1793 if (step == 1)
1794 tmp_precede = must_precede;
1795 else /* step == -1. */
1796 tmp_follow = must_follow;
1798 if (c == end - step)
1800 if (step == 1)
1801 tmp_follow = must_follow;
1802 else /* step == -1. */
1803 tmp_precede = must_precede;
1806 success =
1807 try_scheduling_node_in_cycle (ps, u_node, u, c,
1808 sched_nodes,
1809 &num_splits, tmp_precede,
1810 tmp_follow);
1811 if (success)
1812 break;
1815 verify_partial_schedule (ps, sched_nodes);
1817 if (!success)
1819 int split_row;
1821 if (ii++ == maxii)
1822 break;
1824 if (num_splits >= MAX_SPLIT_NUM)
1826 num_splits = 0;
1827 flush_and_start_over = true;
1828 verify_partial_schedule (ps, sched_nodes);
1829 reset_partial_schedule (ps, ii);
1830 verify_partial_schedule (ps, sched_nodes);
1831 break;
1834 num_splits++;
1835 if (step == 1)
1836 split_row = compute_split_row (sched_nodes, start, end,
1837 ps->ii, u_node);
1838 else
1839 split_row = compute_split_row (sched_nodes, end, start,
1840 ps->ii, u_node);
1842 ps_insert_empty_row (ps, split_row, sched_nodes);
1843 i--; /* Go back and retry node i. */
1845 if (dump_file)
1846 fprintf (dump_file, "num_splits=%d\n", num_splits);
1849 /* ??? If (success), check register pressure estimates. */
1850 } /* Continue with next node. */
1851 } /* While flush_and_start_over. */
1852 if (ii >= maxii)
1854 free_partial_schedule (ps);
1855 ps = NULL;
1857 else
1858 gcc_assert (sbitmap_equal (tobe_scheduled, sched_nodes));
1860 sbitmap_free (sched_nodes);
1861 sbitmap_free (must_precede);
1862 sbitmap_free (must_follow);
1863 sbitmap_free (tobe_scheduled);
1865 return ps;
1868 /* This function inserts a new empty row into PS at the position
1869 according to SPLITROW, keeping all already scheduled instructions
1870 intact and updating their SCHED_TIME and cycle accordingly. */
1871 static void
1872 ps_insert_empty_row (partial_schedule_ptr ps, int split_row,
1873 sbitmap sched_nodes)
1875 ps_insn_ptr crr_insn;
1876 ps_insn_ptr *rows_new;
1877 int ii = ps->ii;
1878 int new_ii = ii + 1;
1879 int row;
1881 verify_partial_schedule (ps, sched_nodes);
1883 /* We normalize sched_time and rotate ps to have only non-negative sched
1884 times, for simplicity of updating cycles after inserting new row. */
1885 split_row -= ps->min_cycle;
1886 split_row = SMODULO (split_row, ii);
1887 if (dump_file)
1888 fprintf (dump_file, "split_row=%d\n", split_row);
1890 normalize_sched_times (ps);
1891 rotate_partial_schedule (ps, ps->min_cycle);
1893 rows_new = (ps_insn_ptr *) xcalloc (new_ii, sizeof (ps_insn_ptr));
1894 for (row = 0; row < split_row; row++)
1896 rows_new[row] = ps->rows[row];
1897 ps->rows[row] = NULL;
1898 for (crr_insn = rows_new[row];
1899 crr_insn; crr_insn = crr_insn->next_in_row)
1901 ddg_node_ptr u = crr_insn->node;
1902 int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii);
1904 SCHED_TIME (u) = new_time;
1905 crr_insn->cycle = new_time;
1906 SCHED_ROW (u) = new_time % new_ii;
1907 SCHED_STAGE (u) = new_time / new_ii;
1912 rows_new[split_row] = NULL;
1914 for (row = split_row; row < ii; row++)
1916 rows_new[row + 1] = ps->rows[row];
1917 ps->rows[row] = NULL;
1918 for (crr_insn = rows_new[row + 1];
1919 crr_insn; crr_insn = crr_insn->next_in_row)
1921 ddg_node_ptr u = crr_insn->node;
1922 int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii) + 1;
1924 SCHED_TIME (u) = new_time;
1925 crr_insn->cycle = new_time;
1926 SCHED_ROW (u) = new_time % new_ii;
1927 SCHED_STAGE (u) = new_time / new_ii;
1931 /* Updating ps. */
1932 ps->min_cycle = ps->min_cycle + ps->min_cycle / ii
1933 + (SMODULO (ps->min_cycle, ii) >= split_row ? 1 : 0);
1934 ps->max_cycle = ps->max_cycle + ps->max_cycle / ii
1935 + (SMODULO (ps->max_cycle, ii) >= split_row ? 1 : 0);
1936 free (ps->rows);
1937 ps->rows = rows_new;
1938 ps->ii = new_ii;
1939 gcc_assert (ps->min_cycle >= 0);
1941 verify_partial_schedule (ps, sched_nodes);
1943 if (dump_file)
1944 fprintf (dump_file, "min_cycle=%d, max_cycle=%d\n", ps->min_cycle,
1945 ps->max_cycle);
1948 /* Given U_NODE which is the node that failed to be scheduled; LOW and
1949 UP which are the boundaries of it's scheduling window; compute using
1950 SCHED_NODES and II a row in the partial schedule that can be split
1951 which will separate a critical predecessor from a critical successor
1952 thereby expanding the window, and return it. */
1953 static int
1954 compute_split_row (sbitmap sched_nodes, int low, int up, int ii,
1955 ddg_node_ptr u_node)
1957 ddg_edge_ptr e;
1958 int lower = INT_MIN, upper = INT_MAX;
1959 ddg_node_ptr crit_pred = NULL;
1960 ddg_node_ptr crit_succ = NULL;
1961 int crit_cycle;
1963 for (e = u_node->in; e != 0; e = e->next_in)
1965 ddg_node_ptr v_node = e->src;
1967 if (TEST_BIT (sched_nodes, v_node->cuid)
1968 && (low == SCHED_TIME (v_node) + e->latency - (e->distance * ii)))
1969 if (SCHED_TIME (v_node) > lower)
1971 crit_pred = v_node;
1972 lower = SCHED_TIME (v_node);
1976 if (crit_pred != NULL)
1978 crit_cycle = SCHED_TIME (crit_pred) + 1;
1979 return SMODULO (crit_cycle, ii);
1982 for (e = u_node->out; e != 0; e = e->next_out)
1984 ddg_node_ptr v_node = e->dest;
1985 if (TEST_BIT (sched_nodes, v_node->cuid)
1986 && (up == SCHED_TIME (v_node) - e->latency + (e->distance * ii)))
1987 if (SCHED_TIME (v_node) < upper)
1989 crit_succ = v_node;
1990 upper = SCHED_TIME (v_node);
1994 if (crit_succ != NULL)
1996 crit_cycle = SCHED_TIME (crit_succ);
1997 return SMODULO (crit_cycle, ii);
2000 if (dump_file)
2001 fprintf (dump_file, "Both crit_pred and crit_succ are NULL\n");
2003 return SMODULO ((low + up + 1) / 2, ii);
2006 static void
2007 verify_partial_schedule (partial_schedule_ptr ps, sbitmap sched_nodes)
2009 int row;
2010 ps_insn_ptr crr_insn;
2012 for (row = 0; row < ps->ii; row++)
2013 for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
2015 ddg_node_ptr u = crr_insn->node;
2017 gcc_assert (TEST_BIT (sched_nodes, u->cuid));
2018 /* ??? Test also that all nodes of sched_nodes are in ps, perhaps by
2019 popcount (sched_nodes) == number of insns in ps. */
2020 gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
2021 gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
2026 /* This page implements the algorithm for ordering the nodes of a DDG
2027 for modulo scheduling, activated through the
2028 "int sms_order_nodes (ddg_ptr, int mii, int * result)" API. */
2030 #define ORDER_PARAMS(x) ((struct node_order_params *) (x)->aux.info)
2031 #define ASAP(x) (ORDER_PARAMS ((x))->asap)
2032 #define ALAP(x) (ORDER_PARAMS ((x))->alap)
2033 #define HEIGHT(x) (ORDER_PARAMS ((x))->height)
2034 #define MOB(x) (ALAP ((x)) - ASAP ((x)))
2035 #define DEPTH(x) (ASAP ((x)))
2037 typedef struct node_order_params * nopa;
2039 static void order_nodes_of_sccs (ddg_all_sccs_ptr, int * result);
2040 static int order_nodes_in_scc (ddg_ptr, sbitmap, sbitmap, int*, int);
2041 static nopa calculate_order_params (ddg_ptr, int, int *);
2042 static int find_max_asap (ddg_ptr, sbitmap);
2043 static int find_max_hv_min_mob (ddg_ptr, sbitmap);
2044 static int find_max_dv_min_mob (ddg_ptr, sbitmap);
2046 enum sms_direction {BOTTOMUP, TOPDOWN};
2048 struct node_order_params
2050 int asap;
2051 int alap;
2052 int height;
2055 /* Check if NODE_ORDER contains a permutation of 0 .. NUM_NODES-1. */
2056 static void
2057 check_nodes_order (int *node_order, int num_nodes)
2059 int i;
2060 sbitmap tmp = sbitmap_alloc (num_nodes);
2062 sbitmap_zero (tmp);
2064 if (dump_file)
2065 fprintf (dump_file, "SMS final nodes order: \n");
2067 for (i = 0; i < num_nodes; i++)
2069 int u = node_order[i];
2071 if (dump_file)
2072 fprintf (dump_file, "%d ", u);
2073 gcc_assert (u < num_nodes && u >= 0 && !TEST_BIT (tmp, u));
2075 SET_BIT (tmp, u);
2078 if (dump_file)
2079 fprintf (dump_file, "\n");
2081 sbitmap_free (tmp);
2084 /* Order the nodes of G for scheduling and pass the result in
2085 NODE_ORDER. Also set aux.count of each node to ASAP.
2086 Put maximal ASAP to PMAX_ASAP. Return the recMII for the given DDG. */
2087 static int
2088 sms_order_nodes (ddg_ptr g, int mii, int * node_order, int *pmax_asap)
2090 int i;
2091 int rec_mii = 0;
2092 ddg_all_sccs_ptr sccs = create_ddg_all_sccs (g);
2094 nopa nops = calculate_order_params (g, mii, pmax_asap);
2096 if (dump_file)
2097 print_sccs (dump_file, sccs, g);
2099 order_nodes_of_sccs (sccs, node_order);
2101 if (sccs->num_sccs > 0)
2102 /* First SCC has the largest recurrence_length. */
2103 rec_mii = sccs->sccs[0]->recurrence_length;
2105 /* Save ASAP before destroying node_order_params. */
2106 for (i = 0; i < g->num_nodes; i++)
2108 ddg_node_ptr v = &g->nodes[i];
2109 v->aux.count = ASAP (v);
2112 free (nops);
2113 free_ddg_all_sccs (sccs);
2114 check_nodes_order (node_order, g->num_nodes);
2116 return rec_mii;
2119 static void
2120 order_nodes_of_sccs (ddg_all_sccs_ptr all_sccs, int * node_order)
2122 int i, pos = 0;
2123 ddg_ptr g = all_sccs->ddg;
2124 int num_nodes = g->num_nodes;
2125 sbitmap prev_sccs = sbitmap_alloc (num_nodes);
2126 sbitmap on_path = sbitmap_alloc (num_nodes);
2127 sbitmap tmp = sbitmap_alloc (num_nodes);
2128 sbitmap ones = sbitmap_alloc (num_nodes);
2130 sbitmap_zero (prev_sccs);
2131 sbitmap_ones (ones);
2133 /* Perform the node ordering starting from the SCC with the highest recMII.
2134 For each SCC order the nodes according to their ASAP/ALAP/HEIGHT etc. */
2135 for (i = 0; i < all_sccs->num_sccs; i++)
2137 ddg_scc_ptr scc = all_sccs->sccs[i];
2139 /* Add nodes on paths from previous SCCs to the current SCC. */
2140 find_nodes_on_paths (on_path, g, prev_sccs, scc->nodes);
2141 sbitmap_a_or_b (tmp, scc->nodes, on_path);
2143 /* Add nodes on paths from the current SCC to previous SCCs. */
2144 find_nodes_on_paths (on_path, g, scc->nodes, prev_sccs);
2145 sbitmap_a_or_b (tmp, tmp, on_path);
2147 /* Remove nodes of previous SCCs from current extended SCC. */
2148 sbitmap_difference (tmp, tmp, prev_sccs);
2150 pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
2151 /* Above call to order_nodes_in_scc updated prev_sccs |= tmp. */
2154 /* Handle the remaining nodes that do not belong to any scc. Each call
2155 to order_nodes_in_scc handles a single connected component. */
2156 while (pos < g->num_nodes)
2158 sbitmap_difference (tmp, ones, prev_sccs);
2159 pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
2161 sbitmap_free (prev_sccs);
2162 sbitmap_free (on_path);
2163 sbitmap_free (tmp);
2164 sbitmap_free (ones);
2167 /* MII is needed if we consider backarcs (that do not close recursive cycles). */
2168 static struct node_order_params *
2169 calculate_order_params (ddg_ptr g, int mii ATTRIBUTE_UNUSED, int *pmax_asap)
2171 int u;
2172 int max_asap;
2173 int num_nodes = g->num_nodes;
2174 ddg_edge_ptr e;
2175 /* Allocate a place to hold ordering params for each node in the DDG. */
2176 nopa node_order_params_arr;
2178 /* Initialize of ASAP/ALAP/HEIGHT to zero. */
2179 node_order_params_arr = (nopa) xcalloc (num_nodes,
2180 sizeof (struct node_order_params));
2182 /* Set the aux pointer of each node to point to its order_params structure. */
2183 for (u = 0; u < num_nodes; u++)
2184 g->nodes[u].aux.info = &node_order_params_arr[u];
2186 /* Disregarding a backarc from each recursive cycle to obtain a DAG,
2187 calculate ASAP, ALAP, mobility, distance, and height for each node
2188 in the dependence (direct acyclic) graph. */
2190 /* We assume that the nodes in the array are in topological order. */
2192 max_asap = 0;
2193 for (u = 0; u < num_nodes; u++)
2195 ddg_node_ptr u_node = &g->nodes[u];
2197 ASAP (u_node) = 0;
2198 for (e = u_node->in; e; e = e->next_in)
2199 if (e->distance == 0)
2200 ASAP (u_node) = MAX (ASAP (u_node),
2201 ASAP (e->src) + e->latency);
2202 max_asap = MAX (max_asap, ASAP (u_node));
2205 for (u = num_nodes - 1; u > -1; u--)
2207 ddg_node_ptr u_node = &g->nodes[u];
2209 ALAP (u_node) = max_asap;
2210 HEIGHT (u_node) = 0;
2211 for (e = u_node->out; e; e = e->next_out)
2212 if (e->distance == 0)
2214 ALAP (u_node) = MIN (ALAP (u_node),
2215 ALAP (e->dest) - e->latency);
2216 HEIGHT (u_node) = MAX (HEIGHT (u_node),
2217 HEIGHT (e->dest) + e->latency);
2220 if (dump_file)
2222 fprintf (dump_file, "\nOrder params\n");
2223 for (u = 0; u < num_nodes; u++)
2225 ddg_node_ptr u_node = &g->nodes[u];
2227 fprintf (dump_file, "node %d, ASAP: %d, ALAP: %d, HEIGHT: %d\n", u,
2228 ASAP (u_node), ALAP (u_node), HEIGHT (u_node));
2232 *pmax_asap = max_asap;
2233 return node_order_params_arr;
2236 static int
2237 find_max_asap (ddg_ptr g, sbitmap nodes)
2239 unsigned int u = 0;
2240 int max_asap = -1;
2241 int result = -1;
2242 sbitmap_iterator sbi;
2244 EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, sbi)
2246 ddg_node_ptr u_node = &g->nodes[u];
2248 if (max_asap < ASAP (u_node))
2250 max_asap = ASAP (u_node);
2251 result = u;
2254 return result;
2257 static int
2258 find_max_hv_min_mob (ddg_ptr g, sbitmap nodes)
2260 unsigned int u = 0;
2261 int max_hv = -1;
2262 int min_mob = INT_MAX;
2263 int result = -1;
2264 sbitmap_iterator sbi;
2266 EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, sbi)
2268 ddg_node_ptr u_node = &g->nodes[u];
2270 if (max_hv < HEIGHT (u_node))
2272 max_hv = HEIGHT (u_node);
2273 min_mob = MOB (u_node);
2274 result = u;
2276 else if ((max_hv == HEIGHT (u_node))
2277 && (min_mob > MOB (u_node)))
2279 min_mob = MOB (u_node);
2280 result = u;
2283 return result;
2286 static int
2287 find_max_dv_min_mob (ddg_ptr g, sbitmap nodes)
2289 unsigned int u = 0;
2290 int max_dv = -1;
2291 int min_mob = INT_MAX;
2292 int result = -1;
2293 sbitmap_iterator sbi;
2295 EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, sbi)
2297 ddg_node_ptr u_node = &g->nodes[u];
2299 if (max_dv < DEPTH (u_node))
2301 max_dv = DEPTH (u_node);
2302 min_mob = MOB (u_node);
2303 result = u;
2305 else if ((max_dv == DEPTH (u_node))
2306 && (min_mob > MOB (u_node)))
2308 min_mob = MOB (u_node);
2309 result = u;
2312 return result;
2315 /* Places the nodes of SCC into the NODE_ORDER array starting
2316 at position POS, according to the SMS ordering algorithm.
2317 NODES_ORDERED (in&out parameter) holds the bitset of all nodes in
2318 the NODE_ORDER array, starting from position zero. */
2319 static int
2320 order_nodes_in_scc (ddg_ptr g, sbitmap nodes_ordered, sbitmap scc,
2321 int * node_order, int pos)
2323 enum sms_direction dir;
2324 int num_nodes = g->num_nodes;
2325 sbitmap workset = sbitmap_alloc (num_nodes);
2326 sbitmap tmp = sbitmap_alloc (num_nodes);
2327 sbitmap zero_bitmap = sbitmap_alloc (num_nodes);
2328 sbitmap predecessors = sbitmap_alloc (num_nodes);
2329 sbitmap successors = sbitmap_alloc (num_nodes);
2331 sbitmap_zero (predecessors);
2332 find_predecessors (predecessors, g, nodes_ordered);
2334 sbitmap_zero (successors);
2335 find_successors (successors, g, nodes_ordered);
2337 sbitmap_zero (tmp);
2338 if (sbitmap_a_and_b_cg (tmp, predecessors, scc))
2340 sbitmap_copy (workset, tmp);
2341 dir = BOTTOMUP;
2343 else if (sbitmap_a_and_b_cg (tmp, successors, scc))
2345 sbitmap_copy (workset, tmp);
2346 dir = TOPDOWN;
2348 else
2350 int u;
2352 sbitmap_zero (workset);
2353 if ((u = find_max_asap (g, scc)) >= 0)
2354 SET_BIT (workset, u);
2355 dir = BOTTOMUP;
2358 sbitmap_zero (zero_bitmap);
2359 while (!sbitmap_equal (workset, zero_bitmap))
2361 int v;
2362 ddg_node_ptr v_node;
2363 sbitmap v_node_preds;
2364 sbitmap v_node_succs;
2366 if (dir == TOPDOWN)
2368 while (!sbitmap_equal (workset, zero_bitmap))
2370 v = find_max_hv_min_mob (g, workset);
2371 v_node = &g->nodes[v];
2372 node_order[pos++] = v;
2373 v_node_succs = NODE_SUCCESSORS (v_node);
2374 sbitmap_a_and_b (tmp, v_node_succs, scc);
2376 /* Don't consider the already ordered successors again. */
2377 sbitmap_difference (tmp, tmp, nodes_ordered);
2378 sbitmap_a_or_b (workset, workset, tmp);
2379 RESET_BIT (workset, v);
2380 SET_BIT (nodes_ordered, v);
2382 dir = BOTTOMUP;
2383 sbitmap_zero (predecessors);
2384 find_predecessors (predecessors, g, nodes_ordered);
2385 sbitmap_a_and_b (workset, predecessors, scc);
2387 else
2389 while (!sbitmap_equal (workset, zero_bitmap))
2391 v = find_max_dv_min_mob (g, workset);
2392 v_node = &g->nodes[v];
2393 node_order[pos++] = v;
2394 v_node_preds = NODE_PREDECESSORS (v_node);
2395 sbitmap_a_and_b (tmp, v_node_preds, scc);
2397 /* Don't consider the already ordered predecessors again. */
2398 sbitmap_difference (tmp, tmp, nodes_ordered);
2399 sbitmap_a_or_b (workset, workset, tmp);
2400 RESET_BIT (workset, v);
2401 SET_BIT (nodes_ordered, v);
2403 dir = TOPDOWN;
2404 sbitmap_zero (successors);
2405 find_successors (successors, g, nodes_ordered);
2406 sbitmap_a_and_b (workset, successors, scc);
2409 sbitmap_free (tmp);
2410 sbitmap_free (workset);
2411 sbitmap_free (zero_bitmap);
2412 sbitmap_free (predecessors);
2413 sbitmap_free (successors);
2414 return pos;
2418 /* This page contains functions for manipulating partial-schedules during
2419 modulo scheduling. */
2421 /* Create a partial schedule and allocate a memory to hold II rows. */
2423 static partial_schedule_ptr
2424 create_partial_schedule (int ii, ddg_ptr g, int history)
2426 partial_schedule_ptr ps = XNEW (struct partial_schedule);
2427 ps->rows = (ps_insn_ptr *) xcalloc (ii, sizeof (ps_insn_ptr));
2428 ps->ii = ii;
2429 ps->history = history;
2430 ps->min_cycle = INT_MAX;
2431 ps->max_cycle = INT_MIN;
2432 ps->g = g;
2434 return ps;
2437 /* Free the PS_INSNs in rows array of the given partial schedule.
2438 ??? Consider caching the PS_INSN's. */
2439 static void
2440 free_ps_insns (partial_schedule_ptr ps)
2442 int i;
2444 for (i = 0; i < ps->ii; i++)
2446 while (ps->rows[i])
2448 ps_insn_ptr ps_insn = ps->rows[i]->next_in_row;
2450 free (ps->rows[i]);
2451 ps->rows[i] = ps_insn;
2453 ps->rows[i] = NULL;
2457 /* Free all the memory allocated to the partial schedule. */
2459 static void
2460 free_partial_schedule (partial_schedule_ptr ps)
2462 if (!ps)
2463 return;
2464 free_ps_insns (ps);
2465 free (ps->rows);
2466 free (ps);
2469 /* Clear the rows array with its PS_INSNs, and create a new one with
2470 NEW_II rows. */
2472 static void
2473 reset_partial_schedule (partial_schedule_ptr ps, int new_ii)
2475 if (!ps)
2476 return;
2477 free_ps_insns (ps);
2478 if (new_ii == ps->ii)
2479 return;
2480 ps->rows = (ps_insn_ptr *) xrealloc (ps->rows, new_ii
2481 * sizeof (ps_insn_ptr));
2482 memset (ps->rows, 0, new_ii * sizeof (ps_insn_ptr));
2483 ps->ii = new_ii;
2484 ps->min_cycle = INT_MAX;
2485 ps->max_cycle = INT_MIN;
2488 /* Prints the partial schedule as an ii rows array, for each rows
2489 print the ids of the insns in it. */
2490 void
2491 print_partial_schedule (partial_schedule_ptr ps, FILE *dump)
2493 int i;
2495 for (i = 0; i < ps->ii; i++)
2497 ps_insn_ptr ps_i = ps->rows[i];
2499 fprintf (dump, "\n[ROW %d ]: ", i);
2500 while (ps_i)
2502 fprintf (dump, "%d, ",
2503 INSN_UID (ps_i->node->insn));
2504 ps_i = ps_i->next_in_row;
2509 /* Creates an object of PS_INSN and initializes it to the given parameters. */
2510 static ps_insn_ptr
2511 create_ps_insn (ddg_node_ptr node, int rest_count, int cycle)
2513 ps_insn_ptr ps_i = XNEW (struct ps_insn);
2515 ps_i->node = node;
2516 ps_i->next_in_row = NULL;
2517 ps_i->prev_in_row = NULL;
2518 ps_i->row_rest_count = rest_count;
2519 ps_i->cycle = cycle;
2521 return ps_i;
2525 /* Removes the given PS_INSN from the partial schedule. Returns false if the
2526 node is not found in the partial schedule, else returns true. */
2527 static bool
2528 remove_node_from_ps (partial_schedule_ptr ps, ps_insn_ptr ps_i)
2530 int row;
2532 if (!ps || !ps_i)
2533 return false;
2535 row = SMODULO (ps_i->cycle, ps->ii);
2536 if (! ps_i->prev_in_row)
2538 if (ps_i != ps->rows[row])
2539 return false;
2541 ps->rows[row] = ps_i->next_in_row;
2542 if (ps->rows[row])
2543 ps->rows[row]->prev_in_row = NULL;
2545 else
2547 ps_i->prev_in_row->next_in_row = ps_i->next_in_row;
2548 if (ps_i->next_in_row)
2549 ps_i->next_in_row->prev_in_row = ps_i->prev_in_row;
2551 free (ps_i);
2552 return true;
2555 /* Unlike what literature describes for modulo scheduling (which focuses
2556 on VLIW machines) the order of the instructions inside a cycle is
2557 important. Given the bitmaps MUST_FOLLOW and MUST_PRECEDE we know
2558 where the current instruction should go relative to the already
2559 scheduled instructions in the given cycle. Go over these
2560 instructions and find the first possible column to put it in. */
2561 static bool
2562 ps_insn_find_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
2563 sbitmap must_precede, sbitmap must_follow)
2565 ps_insn_ptr next_ps_i;
2566 ps_insn_ptr first_must_follow = NULL;
2567 ps_insn_ptr last_must_precede = NULL;
2568 int row;
2570 if (! ps_i)
2571 return false;
2573 row = SMODULO (ps_i->cycle, ps->ii);
2575 /* Find the first must follow and the last must precede
2576 and insert the node immediately after the must precede
2577 but make sure that it there is no must follow after it. */
2578 for (next_ps_i = ps->rows[row];
2579 next_ps_i;
2580 next_ps_i = next_ps_i->next_in_row)
2582 if (must_follow && TEST_BIT (must_follow, next_ps_i->node->cuid)
2583 && ! first_must_follow)
2584 first_must_follow = next_ps_i;
2585 if (must_precede && TEST_BIT (must_precede, next_ps_i->node->cuid))
2587 /* If we have already met a node that must follow, then
2588 there is no possible column. */
2589 if (first_must_follow)
2590 return false;
2591 else
2592 last_must_precede = next_ps_i;
2596 /* Now insert the node after INSERT_AFTER_PSI. */
2598 if (! last_must_precede)
2600 ps_i->next_in_row = ps->rows[row];
2601 ps_i->prev_in_row = NULL;
2602 if (ps_i->next_in_row)
2603 ps_i->next_in_row->prev_in_row = ps_i;
2604 ps->rows[row] = ps_i;
2606 else
2608 ps_i->next_in_row = last_must_precede->next_in_row;
2609 last_must_precede->next_in_row = ps_i;
2610 ps_i->prev_in_row = last_must_precede;
2611 if (ps_i->next_in_row)
2612 ps_i->next_in_row->prev_in_row = ps_i;
2615 return true;
2618 /* Advances the PS_INSN one column in its current row; returns false
2619 in failure and true in success. Bit N is set in MUST_FOLLOW if
2620 the node with cuid N must be come after the node pointed to by
2621 PS_I when scheduled in the same cycle. */
2622 static int
2623 ps_insn_advance_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
2624 sbitmap must_follow)
2626 ps_insn_ptr prev, next;
2627 int row;
2628 ddg_node_ptr next_node;
2630 if (!ps || !ps_i)
2631 return false;
2633 row = SMODULO (ps_i->cycle, ps->ii);
2635 if (! ps_i->next_in_row)
2636 return false;
2638 next_node = ps_i->next_in_row->node;
2640 /* Check if next_in_row is dependent on ps_i, both having same sched
2641 times (typically ANTI_DEP). If so, ps_i cannot skip over it. */
2642 if (must_follow && TEST_BIT (must_follow, next_node->cuid))
2643 return false;
2645 /* Advance PS_I over its next_in_row in the doubly linked list. */
2646 prev = ps_i->prev_in_row;
2647 next = ps_i->next_in_row;
2649 if (ps_i == ps->rows[row])
2650 ps->rows[row] = next;
2652 ps_i->next_in_row = next->next_in_row;
2654 if (next->next_in_row)
2655 next->next_in_row->prev_in_row = ps_i;
2657 next->next_in_row = ps_i;
2658 ps_i->prev_in_row = next;
2660 next->prev_in_row = prev;
2661 if (prev)
2662 prev->next_in_row = next;
2664 return true;
2667 /* Inserts a DDG_NODE to the given partial schedule at the given cycle.
2668 Returns 0 if this is not possible and a PS_INSN otherwise. Bit N is
2669 set in MUST_PRECEDE/MUST_FOLLOW if the node with cuid N must be come
2670 before/after (respectively) the node pointed to by PS_I when scheduled
2671 in the same cycle. */
2672 static ps_insn_ptr
2673 add_node_to_ps (partial_schedule_ptr ps, ddg_node_ptr node, int cycle,
2674 sbitmap must_precede, sbitmap must_follow)
2676 ps_insn_ptr ps_i;
2677 int rest_count = 1;
2678 int row = SMODULO (cycle, ps->ii);
2680 if (ps->rows[row]
2681 && ps->rows[row]->row_rest_count >= issue_rate)
2682 return NULL;
2684 if (ps->rows[row])
2685 rest_count += ps->rows[row]->row_rest_count;
2687 ps_i = create_ps_insn (node, rest_count, cycle);
2689 /* Finds and inserts PS_I according to MUST_FOLLOW and
2690 MUST_PRECEDE. */
2691 if (! ps_insn_find_column (ps, ps_i, must_precede, must_follow))
2693 free (ps_i);
2694 return NULL;
2697 return ps_i;
2700 /* Advance time one cycle. Assumes DFA is being used. */
2701 static void
2702 advance_one_cycle (void)
2704 if (targetm.sched.dfa_pre_cycle_insn)
2705 state_transition (curr_state,
2706 targetm.sched.dfa_pre_cycle_insn ());
2708 state_transition (curr_state, NULL);
2710 if (targetm.sched.dfa_post_cycle_insn)
2711 state_transition (curr_state,
2712 targetm.sched.dfa_post_cycle_insn ());
2717 /* Checks if PS has resource conflicts according to DFA, starting from
2718 FROM cycle to TO cycle; returns true if there are conflicts and false
2719 if there are no conflicts. Assumes DFA is being used. */
2720 static int
2721 ps_has_conflicts (partial_schedule_ptr ps, int from, int to)
2723 int cycle;
2725 state_reset (curr_state);
2727 for (cycle = from; cycle <= to; cycle++)
2729 ps_insn_ptr crr_insn;
2730 /* Holds the remaining issue slots in the current row. */
2731 int can_issue_more = issue_rate;
2733 /* Walk through the DFA for the current row. */
2734 for (crr_insn = ps->rows[SMODULO (cycle, ps->ii)];
2735 crr_insn;
2736 crr_insn = crr_insn->next_in_row)
2738 rtx insn = crr_insn->node->insn;
2740 if (!INSN_P (insn))
2741 continue;
2743 /* Check if there is room for the current insn. */
2744 if (!can_issue_more || state_dead_lock_p (curr_state))
2745 return true;
2747 /* Update the DFA state and return with failure if the DFA found
2748 resource conflicts. */
2749 if (state_transition (curr_state, insn) >= 0)
2750 return true;
2752 if (targetm.sched.variable_issue)
2753 can_issue_more =
2754 targetm.sched.variable_issue (sched_dump, sched_verbose,
2755 insn, can_issue_more);
2756 /* A naked CLOBBER or USE generates no instruction, so don't
2757 let them consume issue slots. */
2758 else if (GET_CODE (PATTERN (insn)) != USE
2759 && GET_CODE (PATTERN (insn)) != CLOBBER)
2760 can_issue_more--;
2763 /* Advance the DFA to the next cycle. */
2764 advance_one_cycle ();
2766 return false;
2769 /* Checks if the given node causes resource conflicts when added to PS at
2770 cycle C. If not the node is added to PS and returned; otherwise zero
2771 is returned. Bit N is set in MUST_PRECEDE/MUST_FOLLOW if the node with
2772 cuid N must be come before/after (respectively) the node pointed to by
2773 PS_I when scheduled in the same cycle. */
2774 ps_insn_ptr
2775 ps_add_node_check_conflicts (partial_schedule_ptr ps, ddg_node_ptr n,
2776 int c, sbitmap must_precede,
2777 sbitmap must_follow)
2779 int has_conflicts = 0;
2780 ps_insn_ptr ps_i;
2782 /* First add the node to the PS, if this succeeds check for
2783 conflicts, trying different issue slots in the same row. */
2784 if (! (ps_i = add_node_to_ps (ps, n, c, must_precede, must_follow)))
2785 return NULL; /* Failed to insert the node at the given cycle. */
2787 has_conflicts = ps_has_conflicts (ps, c, c)
2788 || (ps->history > 0
2789 && ps_has_conflicts (ps,
2790 c - ps->history,
2791 c + ps->history));
2793 /* Try different issue slots to find one that the given node can be
2794 scheduled in without conflicts. */
2795 while (has_conflicts)
2797 if (! ps_insn_advance_column (ps, ps_i, must_follow))
2798 break;
2799 has_conflicts = ps_has_conflicts (ps, c, c)
2800 || (ps->history > 0
2801 && ps_has_conflicts (ps,
2802 c - ps->history,
2803 c + ps->history));
2806 if (has_conflicts)
2808 remove_node_from_ps (ps, ps_i);
2809 return NULL;
2812 ps->min_cycle = MIN (ps->min_cycle, c);
2813 ps->max_cycle = MAX (ps->max_cycle, c);
2814 return ps_i;
2817 /* Rotate the rows of PS such that insns scheduled at time
2818 START_CYCLE will appear in row 0. Updates max/min_cycles. */
2819 void
2820 rotate_partial_schedule (partial_schedule_ptr ps, int start_cycle)
2822 int i, row, backward_rotates;
2823 int last_row = ps->ii - 1;
2825 if (start_cycle == 0)
2826 return;
2828 backward_rotates = SMODULO (start_cycle, ps->ii);
2830 /* Revisit later and optimize this into a single loop. */
2831 for (i = 0; i < backward_rotates; i++)
2833 ps_insn_ptr first_row = ps->rows[0];
2835 for (row = 0; row < last_row; row++)
2836 ps->rows[row] = ps->rows[row+1];
2838 ps->rows[last_row] = first_row;
2841 ps->max_cycle -= start_cycle;
2842 ps->min_cycle -= start_cycle;
2845 #endif /* INSN_SCHEDULING */
2847 static bool
2848 gate_handle_sms (void)
2850 return (optimize > 0 && flag_modulo_sched);
2854 /* Run instruction scheduler. */
2855 /* Perform SMS module scheduling. */
2856 static unsigned int
2857 rest_of_handle_sms (void)
2859 #ifdef INSN_SCHEDULING
2860 basic_block bb;
2862 /* Collect loop information to be used in SMS. */
2863 cfg_layout_initialize (0);
2864 sms_schedule ();
2866 /* Update the life information, because we add pseudos. */
2867 max_regno = max_reg_num ();
2869 /* Finalize layout changes. */
2870 FOR_EACH_BB (bb)
2871 if (bb->next_bb != EXIT_BLOCK_PTR)
2872 bb->aux = bb->next_bb;
2873 free_dominance_info (CDI_DOMINATORS);
2874 cfg_layout_finalize ();
2875 #endif /* INSN_SCHEDULING */
2876 return 0;
2879 struct rtl_opt_pass pass_sms =
2882 RTL_PASS,
2883 "sms", /* name */
2884 gate_handle_sms, /* gate */
2885 rest_of_handle_sms, /* execute */
2886 NULL, /* sub */
2887 NULL, /* next */
2888 0, /* static_pass_number */
2889 TV_SMS, /* tv_id */
2890 0, /* properties_required */
2891 0, /* properties_provided */
2892 0, /* properties_destroyed */
2893 TODO_dump_func, /* todo_flags_start */
2894 TODO_df_finish | TODO_verify_rtl_sharing |
2895 TODO_dump_func |
2896 TODO_ggc_collect /* todo_flags_finish */