1 /* Implementation of the ERFC_SCALED intrinsic, to be included by erfc_scaled.c
2 Copyright (C) 2008-2014 Free Software Foundation, Inc.
4 This file is part of the GNU Fortran runtime library (libgfortran).
6 Libgfortran is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public
8 License as published by the Free Software Foundation; either
9 version 3 of the License, or (at your option) any later version.
11 Libgfortran is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR a PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 Under Section 7 of GPL version 3, you are granted additional
17 permissions described in the GCC Runtime Library Exception, version
18 3.1, as published by the Free Software Foundation.
20 You should have received a copy of the GNU General Public License and
21 a copy of the GCC Runtime Library Exception along with this program;
22 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 <http://www.gnu.org/licenses/>. */
25 /* This implementation of ERFC_SCALED is based on the netlib algorithm
26 available at http://www.netlib.org/specfun/erf */
28 #define TYPE KIND_SUFFIX(GFC_REAL_,KIND)
29 #define CONCAT(x,y) x ## y
30 #define KIND_SUFFIX(x,y) CONCAT(x,y)
34 # define EXP(x) expf(x)
35 # define TRUNC(x) truncf(x)
39 # define EXP(x) exp(x)
40 # define TRUNC(x) trunc(x)
45 # define EXP(x) expl(x)
48 # define TRUNC(x) truncl(x)
53 # error "What exactly is it that you want me to do?"
57 #if defined(EXP) && defined(TRUNC)
59 extern TYPE
KIND_SUFFIX(erfc_scaled_r
,KIND
) (TYPE
);
60 export_proto(KIND_SUFFIX(erfc_scaled_r
,KIND
));
63 KIND_SUFFIX(erfc_scaled_r
,KIND
) (TYPE x
)
65 /* The main computation evaluates near-minimax approximations
66 from "Rational Chebyshev approximations for the error function"
67 by W. J. Cody, Math. Comp., 1969, PP. 631-638. This
68 transportable program uses rational functions that theoretically
69 approximate erf(x) and erfc(x) to at least 18 significant
70 decimal digits. The accuracy achieved depends on the arithmetic
71 system, the compiler, the intrinsic functions, and proper
72 selection of the machine-dependent constants. */
75 TYPE del
, res
, xden
, xnum
, y
, ysq
;
78 static TYPE xneg
= -9.382, xsmall
= 5.96e-8,
79 xbig
= 9.194, xhuge
= 2.90e+3, xmax
= 4.79e+37;
81 static TYPE xneg
= -26.628, xsmall
= 1.11e-16,
82 xbig
= 26.543, xhuge
= 6.71e+7, xmax
= 2.53e+307;
85 #define SQRPI ((TYPE) 0.56418958354775628695L)
86 #define THRESH ((TYPE) 0.46875L)
88 static TYPE a
[5] = { 3.16112374387056560l, 113.864154151050156l,
89 377.485237685302021l, 3209.37758913846947l, 0.185777706184603153l };
91 static TYPE b
[4] = { 23.6012909523441209l, 244.024637934444173l,
92 1282.61652607737228l, 2844.23683343917062l };
94 static TYPE c
[9] = { 0.564188496988670089l, 8.88314979438837594l,
95 66.1191906371416295l, 298.635138197400131l, 881.952221241769090l,
96 1712.04761263407058l, 2051.07837782607147l, 1230.33935479799725l,
97 2.15311535474403846e-8l };
99 static TYPE d
[8] = { 15.7449261107098347l, 117.693950891312499l,
100 537.181101862009858l, 1621.38957456669019l, 3290.79923573345963l,
101 4362.61909014324716l, 3439.36767414372164l, 1230.33935480374942l };
103 static TYPE p
[6] = { 0.305326634961232344l, 0.360344899949804439l,
104 0.125781726111229246l, 0.0160837851487422766l,
105 0.000658749161529837803l, 0.0163153871373020978l };
107 static TYPE q
[5] = { 2.56852019228982242l, 1.87295284992346047l,
108 0.527905102951428412l, 0.0605183413124413191l,
109 0.00233520497626869185l };
111 y
= (x
> 0 ? x
: -x
);
119 for (i
= 0; i
<= 2; i
++)
121 xnum
= (xnum
+ a
[i
]) * ysq
;
122 xden
= (xden
+ b
[i
]) * ysq
;
124 res
= x
* (xnum
+ a
[3]) / (xden
+ b
[3]);
126 res
= EXP(ysq
) * res
;
133 for (i
= 0; i
<= 6; i
++)
135 xnum
= (xnum
+ c
[i
]) * y
;
136 xden
= (xden
+ d
[i
]) * y
;
138 res
= (xnum
+ c
[7]) / (xden
+ d
[7]);
153 ysq
= ((TYPE
) 1) / (y
* y
);
156 for (i
= 0; i
<= 3; i
++)
158 xnum
= (xnum
+ p
[i
]) * ysq
;
159 xden
= (xden
+ q
[i
]) * ysq
;
161 res
= ysq
*(xnum
+ p
[4]) / (xden
+ q
[4]);
162 res
= (SQRPI
- res
) / y
;
169 res
= __builtin_inf ();
172 ysq
= TRUNC (x
*((TYPE
) 16))/((TYPE
) 16);
173 del
= (x
-ysq
)*(x
+ysq
);
174 y
= EXP(ysq
*ysq
) * EXP(del
);