Dead
[official-gcc.git] / gomp-20050608-branch / gcc / tree-ssa-propagate.c
blobdcdc6add4dd2b07925ed531b373df8f6c203e4e6
1 /* Generic SSA value propagation engine.
2 Copyright (C) 2004, 2005, 2006 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 2, or (at your option) any
10 later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "ggc.h"
31 #include "basic-block.h"
32 #include "output.h"
33 #include "expr.h"
34 #include "function.h"
35 #include "diagnostic.h"
36 #include "timevar.h"
37 #include "tree-dump.h"
38 #include "tree-flow.h"
39 #include "tree-pass.h"
40 #include "tree-ssa-propagate.h"
41 #include "langhooks.h"
42 #include "varray.h"
43 #include "vec.h"
45 /* This file implements a generic value propagation engine based on
46 the same propagation used by the SSA-CCP algorithm [1].
48 Propagation is performed by simulating the execution of every
49 statement that produces the value being propagated. Simulation
50 proceeds as follows:
52 1- Initially, all edges of the CFG are marked not executable and
53 the CFG worklist is seeded with all the statements in the entry
54 basic block (block 0).
56 2- Every statement S is simulated with a call to the call-back
57 function SSA_PROP_VISIT_STMT. This evaluation may produce 3
58 results:
60 SSA_PROP_NOT_INTERESTING: Statement S produces nothing of
61 interest and does not affect any of the work lists.
63 SSA_PROP_VARYING: The value produced by S cannot be determined
64 at compile time. Further simulation of S is not required.
65 If S is a conditional jump, all the outgoing edges for the
66 block are considered executable and added to the work
67 list.
69 SSA_PROP_INTERESTING: S produces a value that can be computed
70 at compile time. Its result can be propagated into the
71 statements that feed from S. Furthermore, if S is a
72 conditional jump, only the edge known to be taken is added
73 to the work list. Edges that are known not to execute are
74 never simulated.
76 3- PHI nodes are simulated with a call to SSA_PROP_VISIT_PHI. The
77 return value from SSA_PROP_VISIT_PHI has the same semantics as
78 described in #2.
80 4- Three work lists are kept. Statements are only added to these
81 lists if they produce one of SSA_PROP_INTERESTING or
82 SSA_PROP_VARYING.
84 CFG_BLOCKS contains the list of blocks to be simulated.
85 Blocks are added to this list if their incoming edges are
86 found executable.
88 VARYING_SSA_EDGES contains the list of statements that feed
89 from statements that produce an SSA_PROP_VARYING result.
90 These are simulated first to speed up processing.
92 INTERESTING_SSA_EDGES contains the list of statements that
93 feed from statements that produce an SSA_PROP_INTERESTING
94 result.
96 5- Simulation terminates when all three work lists are drained.
98 Before calling ssa_propagate, it is important to clear
99 DONT_SIMULATE_AGAIN for all the statements in the program that
100 should be simulated. This initialization allows an implementation
101 to specify which statements should never be simulated.
103 It is also important to compute def-use information before calling
104 ssa_propagate.
106 References:
108 [1] Constant propagation with conditional branches,
109 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
111 [2] Building an Optimizing Compiler,
112 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
114 [3] Advanced Compiler Design and Implementation,
115 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
117 /* Function pointers used to parameterize the propagation engine. */
118 static ssa_prop_visit_stmt_fn ssa_prop_visit_stmt;
119 static ssa_prop_visit_phi_fn ssa_prop_visit_phi;
121 /* Use the TREE_DEPRECATED bitflag to mark statements that have been
122 added to one of the SSA edges worklists. This flag is used to
123 avoid visiting statements unnecessarily when draining an SSA edge
124 worklist. If while simulating a basic block, we find a statement with
125 STMT_IN_SSA_EDGE_WORKLIST set, we clear it to prevent SSA edge
126 processing from visiting it again. */
127 #define STMT_IN_SSA_EDGE_WORKLIST(T) TREE_DEPRECATED (T)
129 /* A bitmap to keep track of executable blocks in the CFG. */
130 static sbitmap executable_blocks;
132 /* Array of control flow edges on the worklist. */
133 static VEC(basic_block,heap) *cfg_blocks;
135 static unsigned int cfg_blocks_num = 0;
136 static int cfg_blocks_tail;
137 static int cfg_blocks_head;
139 static sbitmap bb_in_list;
141 /* Worklist of SSA edges which will need reexamination as their
142 definition has changed. SSA edges are def-use edges in the SSA
143 web. For each D-U edge, we store the target statement or PHI node
144 U. */
145 static GTY(()) VEC(tree,gc) *interesting_ssa_edges;
147 /* Identical to INTERESTING_SSA_EDGES. For performance reasons, the
148 list of SSA edges is split into two. One contains all SSA edges
149 who need to be reexamined because their lattice value changed to
150 varying (this worklist), and the other contains all other SSA edges
151 to be reexamined (INTERESTING_SSA_EDGES).
153 Since most values in the program are VARYING, the ideal situation
154 is to move them to that lattice value as quickly as possible.
155 Thus, it doesn't make sense to process any other type of lattice
156 value until all VARYING values are propagated fully, which is one
157 thing using the VARYING worklist achieves. In addition, if we
158 don't use a separate worklist for VARYING edges, we end up with
159 situations where lattice values move from
160 UNDEFINED->INTERESTING->VARYING instead of UNDEFINED->VARYING. */
161 static GTY(()) VEC(tree,gc) *varying_ssa_edges;
164 /* Return true if the block worklist empty. */
166 static inline bool
167 cfg_blocks_empty_p (void)
169 return (cfg_blocks_num == 0);
173 /* Add a basic block to the worklist. The block must not be already
174 in the worklist, and it must not be the ENTRY or EXIT block. */
176 static void
177 cfg_blocks_add (basic_block bb)
179 gcc_assert (bb != ENTRY_BLOCK_PTR && bb != EXIT_BLOCK_PTR);
180 gcc_assert (!TEST_BIT (bb_in_list, bb->index));
182 if (cfg_blocks_empty_p ())
184 cfg_blocks_tail = cfg_blocks_head = 0;
185 cfg_blocks_num = 1;
187 else
189 cfg_blocks_num++;
190 if (cfg_blocks_num > VEC_length (basic_block, cfg_blocks))
192 /* We have to grow the array now. Adjust to queue to occupy
193 the full space of the original array. We do not need to
194 initialize the newly allocated portion of the array
195 because we keep track of CFG_BLOCKS_HEAD and
196 CFG_BLOCKS_HEAD. */
197 cfg_blocks_tail = VEC_length (basic_block, cfg_blocks);
198 cfg_blocks_head = 0;
199 VEC_safe_grow (basic_block, heap, cfg_blocks, 2 * cfg_blocks_tail);
201 else
202 cfg_blocks_tail = ((cfg_blocks_tail + 1)
203 % VEC_length (basic_block, cfg_blocks));
206 VEC_replace (basic_block, cfg_blocks, cfg_blocks_tail, bb);
207 SET_BIT (bb_in_list, bb->index);
211 /* Remove a block from the worklist. */
213 static basic_block
214 cfg_blocks_get (void)
216 basic_block bb;
218 bb = VEC_index (basic_block, cfg_blocks, cfg_blocks_head);
220 gcc_assert (!cfg_blocks_empty_p ());
221 gcc_assert (bb);
223 cfg_blocks_head = ((cfg_blocks_head + 1)
224 % VEC_length (basic_block, cfg_blocks));
225 --cfg_blocks_num;
226 RESET_BIT (bb_in_list, bb->index);
228 return bb;
232 /* We have just defined a new value for VAR. If IS_VARYING is true,
233 add all immediate uses of VAR to VARYING_SSA_EDGES, otherwise add
234 them to INTERESTING_SSA_EDGES. */
236 static void
237 add_ssa_edge (tree var, bool is_varying)
239 imm_use_iterator iter;
240 use_operand_p use_p;
242 FOR_EACH_IMM_USE_FAST (use_p, iter, var)
244 tree use_stmt = USE_STMT (use_p);
246 if (!DONT_SIMULATE_AGAIN (use_stmt)
247 && !STMT_IN_SSA_EDGE_WORKLIST (use_stmt))
249 STMT_IN_SSA_EDGE_WORKLIST (use_stmt) = 1;
250 if (is_varying)
251 VEC_safe_push (tree, gc, varying_ssa_edges, use_stmt);
252 else
253 VEC_safe_push (tree, gc, interesting_ssa_edges, use_stmt);
259 /* Add edge E to the control flow worklist. */
261 static void
262 add_control_edge (edge e)
264 basic_block bb = e->dest;
265 if (bb == EXIT_BLOCK_PTR)
266 return;
268 /* If the edge had already been executed, skip it. */
269 if (e->flags & EDGE_EXECUTABLE)
270 return;
272 e->flags |= EDGE_EXECUTABLE;
274 /* If the block is already in the list, we're done. */
275 if (TEST_BIT (bb_in_list, bb->index))
276 return;
278 cfg_blocks_add (bb);
280 if (dump_file && (dump_flags & TDF_DETAILS))
281 fprintf (dump_file, "Adding Destination of edge (%d -> %d) to worklist\n\n",
282 e->src->index, e->dest->index);
286 /* Simulate the execution of STMT and update the work lists accordingly. */
288 static void
289 simulate_stmt (tree stmt)
291 enum ssa_prop_result val = SSA_PROP_NOT_INTERESTING;
292 edge taken_edge = NULL;
293 tree output_name = NULL_TREE;
295 /* Don't bother visiting statements that are already
296 considered varying by the propagator. */
297 if (DONT_SIMULATE_AGAIN (stmt))
298 return;
300 if (TREE_CODE (stmt) == PHI_NODE)
302 val = ssa_prop_visit_phi (stmt);
303 output_name = PHI_RESULT (stmt);
305 else
306 val = ssa_prop_visit_stmt (stmt, &taken_edge, &output_name);
308 if (val == SSA_PROP_VARYING)
310 DONT_SIMULATE_AGAIN (stmt) = 1;
312 /* If the statement produced a new varying value, add the SSA
313 edges coming out of OUTPUT_NAME. */
314 if (output_name)
315 add_ssa_edge (output_name, true);
317 /* If STMT transfers control out of its basic block, add
318 all outgoing edges to the work list. */
319 if (stmt_ends_bb_p (stmt))
321 edge e;
322 edge_iterator ei;
323 basic_block bb = bb_for_stmt (stmt);
324 FOR_EACH_EDGE (e, ei, bb->succs)
325 add_control_edge (e);
328 else if (val == SSA_PROP_INTERESTING)
330 /* If the statement produced new value, add the SSA edges coming
331 out of OUTPUT_NAME. */
332 if (output_name)
333 add_ssa_edge (output_name, false);
335 /* If we know which edge is going to be taken out of this block,
336 add it to the CFG work list. */
337 if (taken_edge)
338 add_control_edge (taken_edge);
342 /* Process an SSA edge worklist. WORKLIST is the SSA edge worklist to
343 drain. This pops statements off the given WORKLIST and processes
344 them until there are no more statements on WORKLIST.
345 We take a pointer to WORKLIST because it may be reallocated when an
346 SSA edge is added to it in simulate_stmt. */
348 static void
349 process_ssa_edge_worklist (VEC(tree,gc) **worklist)
351 /* Drain the entire worklist. */
352 while (VEC_length (tree, *worklist) > 0)
354 basic_block bb;
356 /* Pull the statement to simulate off the worklist. */
357 tree stmt = VEC_pop (tree, *worklist);
359 /* If this statement was already visited by simulate_block, then
360 we don't need to visit it again here. */
361 if (!STMT_IN_SSA_EDGE_WORKLIST (stmt))
362 continue;
364 /* STMT is no longer in a worklist. */
365 STMT_IN_SSA_EDGE_WORKLIST (stmt) = 0;
367 if (dump_file && (dump_flags & TDF_DETAILS))
369 fprintf (dump_file, "\nSimulating statement (from ssa_edges): ");
370 print_generic_stmt (dump_file, stmt, dump_flags);
373 bb = bb_for_stmt (stmt);
375 /* PHI nodes are always visited, regardless of whether or not
376 the destination block is executable. Otherwise, visit the
377 statement only if its block is marked executable. */
378 if (TREE_CODE (stmt) == PHI_NODE
379 || TEST_BIT (executable_blocks, bb->index))
380 simulate_stmt (stmt);
385 /* Simulate the execution of BLOCK. Evaluate the statement associated
386 with each variable reference inside the block. */
388 static void
389 simulate_block (basic_block block)
391 tree phi;
393 /* There is nothing to do for the exit block. */
394 if (block == EXIT_BLOCK_PTR)
395 return;
397 if (dump_file && (dump_flags & TDF_DETAILS))
398 fprintf (dump_file, "\nSimulating block %d\n", block->index);
400 /* Always simulate PHI nodes, even if we have simulated this block
401 before. */
402 for (phi = phi_nodes (block); phi; phi = PHI_CHAIN (phi))
403 simulate_stmt (phi);
405 /* If this is the first time we've simulated this block, then we
406 must simulate each of its statements. */
407 if (!TEST_BIT (executable_blocks, block->index))
409 block_stmt_iterator j;
410 unsigned int normal_edge_count;
411 edge e, normal_edge;
412 edge_iterator ei;
414 /* Note that we have simulated this block. */
415 SET_BIT (executable_blocks, block->index);
417 for (j = bsi_start (block); !bsi_end_p (j); bsi_next (&j))
419 tree stmt = bsi_stmt (j);
421 /* If this statement is already in the worklist then
422 "cancel" it. The reevaluation implied by the worklist
423 entry will produce the same value we generate here and
424 thus reevaluating it again from the worklist is
425 pointless. */
426 if (STMT_IN_SSA_EDGE_WORKLIST (stmt))
427 STMT_IN_SSA_EDGE_WORKLIST (stmt) = 0;
429 simulate_stmt (stmt);
432 /* We can not predict when abnormal edges will be executed, so
433 once a block is considered executable, we consider any
434 outgoing abnormal edges as executable.
436 At the same time, if this block has only one successor that is
437 reached by non-abnormal edges, then add that successor to the
438 worklist. */
439 normal_edge_count = 0;
440 normal_edge = NULL;
441 FOR_EACH_EDGE (e, ei, block->succs)
443 if (e->flags & EDGE_ABNORMAL)
444 add_control_edge (e);
445 else
447 normal_edge_count++;
448 normal_edge = e;
452 if (normal_edge_count == 1)
453 add_control_edge (normal_edge);
458 /* Initialize local data structures and work lists. */
460 static void
461 ssa_prop_init (void)
463 edge e;
464 edge_iterator ei;
465 basic_block bb;
466 size_t i;
468 /* Worklists of SSA edges. */
469 interesting_ssa_edges = VEC_alloc (tree, gc, 20);
470 varying_ssa_edges = VEC_alloc (tree, gc, 20);
472 executable_blocks = sbitmap_alloc (last_basic_block);
473 sbitmap_zero (executable_blocks);
475 bb_in_list = sbitmap_alloc (last_basic_block);
476 sbitmap_zero (bb_in_list);
478 if (dump_file && (dump_flags & TDF_DETAILS))
479 dump_immediate_uses (dump_file);
481 cfg_blocks = VEC_alloc (basic_block, heap, 20);
482 VEC_safe_grow (basic_block, heap, cfg_blocks, 20);
484 /* Initialize the values for every SSA_NAME. */
485 for (i = 1; i < num_ssa_names; i++)
486 if (ssa_name (i))
487 SSA_NAME_VALUE (ssa_name (i)) = NULL_TREE;
489 /* Initially assume that every edge in the CFG is not executable.
490 (including the edges coming out of ENTRY_BLOCK_PTR). */
491 FOR_ALL_BB (bb)
493 block_stmt_iterator si;
495 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
496 STMT_IN_SSA_EDGE_WORKLIST (bsi_stmt (si)) = 0;
498 FOR_EACH_EDGE (e, ei, bb->succs)
499 e->flags &= ~EDGE_EXECUTABLE;
502 /* Seed the algorithm by adding the successors of the entry block to the
503 edge worklist. */
504 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
505 add_control_edge (e);
509 /* Free allocated storage. */
511 static void
512 ssa_prop_fini (void)
514 VEC_free (tree, gc, interesting_ssa_edges);
515 VEC_free (tree, gc, varying_ssa_edges);
516 VEC_free (basic_block, heap, cfg_blocks);
517 cfg_blocks = NULL;
518 sbitmap_free (bb_in_list);
519 sbitmap_free (executable_blocks);
523 /* Get the main expression from statement STMT. */
525 tree
526 get_rhs (tree stmt)
528 enum tree_code code = TREE_CODE (stmt);
530 switch (code)
532 case RETURN_EXPR:
533 stmt = TREE_OPERAND (stmt, 0);
534 if (!stmt || TREE_CODE (stmt) != MODIFY_EXPR)
535 return stmt;
536 /* FALLTHRU */
538 case MODIFY_EXPR:
539 stmt = TREE_OPERAND (stmt, 1);
540 if (TREE_CODE (stmt) == WITH_SIZE_EXPR)
541 return TREE_OPERAND (stmt, 0);
542 else
543 return stmt;
545 case COND_EXPR:
546 return COND_EXPR_COND (stmt);
547 case SWITCH_EXPR:
548 return SWITCH_COND (stmt);
549 case GOTO_EXPR:
550 return GOTO_DESTINATION (stmt);
551 case LABEL_EXPR:
552 return LABEL_EXPR_LABEL (stmt);
554 default:
555 return stmt;
560 /* Set the main expression of *STMT_P to EXPR. If EXPR is not a valid
561 GIMPLE expression no changes are done and the function returns
562 false. */
564 bool
565 set_rhs (tree *stmt_p, tree expr)
567 tree stmt = *stmt_p, op;
568 enum tree_code code = TREE_CODE (expr);
569 stmt_ann_t ann;
570 tree var;
571 ssa_op_iter iter;
573 /* Verify the constant folded result is valid gimple. */
574 if (TREE_CODE_CLASS (code) == tcc_binary)
576 if (!is_gimple_val (TREE_OPERAND (expr, 0))
577 || !is_gimple_val (TREE_OPERAND (expr, 1)))
578 return false;
580 else if (TREE_CODE_CLASS (code) == tcc_unary)
582 if (!is_gimple_val (TREE_OPERAND (expr, 0)))
583 return false;
585 else if (code == ADDR_EXPR)
587 if (TREE_CODE (TREE_OPERAND (expr, 0)) == ARRAY_REF
588 && !is_gimple_val (TREE_OPERAND (TREE_OPERAND (expr, 0), 1)))
589 return false;
591 else if (code == COMPOUND_EXPR)
592 return false;
594 switch (TREE_CODE (stmt))
596 case RETURN_EXPR:
597 op = TREE_OPERAND (stmt, 0);
598 if (TREE_CODE (op) != MODIFY_EXPR)
600 TREE_OPERAND (stmt, 0) = expr;
601 break;
603 stmt = op;
604 /* FALLTHRU */
606 case MODIFY_EXPR:
607 op = TREE_OPERAND (stmt, 1);
608 if (TREE_CODE (op) == WITH_SIZE_EXPR)
609 stmt = op;
610 TREE_OPERAND (stmt, 1) = expr;
611 break;
613 case COND_EXPR:
614 if (!is_gimple_condexpr (expr))
615 return false;
616 COND_EXPR_COND (stmt) = expr;
617 break;
618 case SWITCH_EXPR:
619 SWITCH_COND (stmt) = expr;
620 break;
621 case GOTO_EXPR:
622 GOTO_DESTINATION (stmt) = expr;
623 break;
624 case LABEL_EXPR:
625 LABEL_EXPR_LABEL (stmt) = expr;
626 break;
628 default:
629 /* Replace the whole statement with EXPR. If EXPR has no side
630 effects, then replace *STMT_P with an empty statement. */
631 ann = stmt_ann (stmt);
632 *stmt_p = TREE_SIDE_EFFECTS (expr) ? expr : build_empty_stmt ();
633 (*stmt_p)->common.ann = (tree_ann_t) ann;
635 if (TREE_SIDE_EFFECTS (expr))
637 /* Fix all the SSA_NAMEs created by *STMT_P to point to its new
638 replacement. */
639 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_ALL_DEFS)
641 if (TREE_CODE (var) == SSA_NAME)
642 SSA_NAME_DEF_STMT (var) = *stmt_p;
645 break;
648 return true;
652 /* Entry point to the propagation engine.
654 VISIT_STMT is called for every statement visited.
655 VISIT_PHI is called for every PHI node visited. */
657 void
658 ssa_propagate (ssa_prop_visit_stmt_fn visit_stmt,
659 ssa_prop_visit_phi_fn visit_phi)
661 ssa_prop_visit_stmt = visit_stmt;
662 ssa_prop_visit_phi = visit_phi;
664 ssa_prop_init ();
666 /* Iterate until the worklists are empty. */
667 while (!cfg_blocks_empty_p ()
668 || VEC_length (tree, interesting_ssa_edges) > 0
669 || VEC_length (tree, varying_ssa_edges) > 0)
671 if (!cfg_blocks_empty_p ())
673 /* Pull the next block to simulate off the worklist. */
674 basic_block dest_block = cfg_blocks_get ();
675 simulate_block (dest_block);
678 /* In order to move things to varying as quickly as
679 possible,process the VARYING_SSA_EDGES worklist first. */
680 process_ssa_edge_worklist (&varying_ssa_edges);
682 /* Now process the INTERESTING_SSA_EDGES worklist. */
683 process_ssa_edge_worklist (&interesting_ssa_edges);
686 ssa_prop_fini ();
690 /* Return the first V_MAY_DEF or V_MUST_DEF operand for STMT. */
692 tree
693 first_vdef (tree stmt)
695 ssa_op_iter iter;
696 tree op;
698 /* Simply return the first operand we arrive at. */
699 FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_VIRTUAL_DEFS)
700 return (op);
702 gcc_unreachable ();
706 /* Return true if STMT is of the form 'LHS = mem_ref', where 'mem_ref'
707 is a non-volatile pointer dereference, a structure reference or a
708 reference to a single _DECL. Ignore volatile memory references
709 because they are not interesting for the optimizers. */
711 bool
712 stmt_makes_single_load (tree stmt)
714 tree rhs;
716 if (TREE_CODE (stmt) != MODIFY_EXPR)
717 return false;
719 if (ZERO_SSA_OPERANDS (stmt, SSA_OP_VMAYDEF|SSA_OP_VUSE))
720 return false;
722 rhs = TREE_OPERAND (stmt, 1);
723 STRIP_NOPS (rhs);
725 return (!TREE_THIS_VOLATILE (rhs)
726 && (DECL_P (rhs)
727 || REFERENCE_CLASS_P (rhs)));
731 /* Return true if STMT is of the form 'mem_ref = RHS', where 'mem_ref'
732 is a non-volatile pointer dereference, a structure reference or a
733 reference to a single _DECL. Ignore volatile memory references
734 because they are not interesting for the optimizers. */
736 bool
737 stmt_makes_single_store (tree stmt)
739 tree lhs;
741 if (TREE_CODE (stmt) != MODIFY_EXPR)
742 return false;
744 if (ZERO_SSA_OPERANDS (stmt, SSA_OP_VMAYDEF|SSA_OP_VMUSTDEF))
745 return false;
747 lhs = TREE_OPERAND (stmt, 0);
748 STRIP_NOPS (lhs);
750 return (!TREE_THIS_VOLATILE (lhs)
751 && (DECL_P (lhs)
752 || REFERENCE_CLASS_P (lhs)));
756 /* If STMT makes a single memory load and all the virtual use operands
757 have the same value in array VALUES, return it. Otherwise, return
758 NULL. */
760 prop_value_t *
761 get_value_loaded_by (tree stmt, prop_value_t *values)
763 ssa_op_iter i;
764 tree vuse;
765 prop_value_t *prev_val = NULL;
766 prop_value_t *val = NULL;
768 FOR_EACH_SSA_TREE_OPERAND (vuse, stmt, i, SSA_OP_VIRTUAL_USES)
770 val = &values[SSA_NAME_VERSION (vuse)];
771 if (prev_val && prev_val->value != val->value)
772 return NULL;
773 prev_val = val;
776 return val;
780 /* Propagation statistics. */
781 struct prop_stats_d
783 long num_const_prop;
784 long num_copy_prop;
785 long num_pred_folded;
788 static struct prop_stats_d prop_stats;
790 /* Replace USE references in statement STMT with the values stored in
791 PROP_VALUE. Return true if at least one reference was replaced. If
792 REPLACED_ADDRESSES_P is given, it will be set to true if an address
793 constant was replaced. */
795 bool
796 replace_uses_in (tree stmt, bool *replaced_addresses_p,
797 prop_value_t *prop_value)
799 bool replaced = false;
800 use_operand_p use;
801 ssa_op_iter iter;
803 FOR_EACH_SSA_USE_OPERAND (use, stmt, iter, SSA_OP_USE)
805 tree tuse = USE_FROM_PTR (use);
806 tree val = prop_value[SSA_NAME_VERSION (tuse)].value;
808 if (val == tuse || val == NULL_TREE)
809 continue;
811 if (TREE_CODE (stmt) == ASM_EXPR
812 && !may_propagate_copy_into_asm (tuse))
813 continue;
815 if (!may_propagate_copy (tuse, val))
816 continue;
818 if (TREE_CODE (val) != SSA_NAME)
819 prop_stats.num_const_prop++;
820 else
821 prop_stats.num_copy_prop++;
823 propagate_value (use, val);
825 replaced = true;
826 if (POINTER_TYPE_P (TREE_TYPE (tuse)) && replaced_addresses_p)
827 *replaced_addresses_p = true;
830 return replaced;
834 /* Replace the VUSE references in statement STMT with the values
835 stored in PROP_VALUE. Return true if a reference was replaced. If
836 REPLACED_ADDRESSES_P is given, it will be set to true if an address
837 constant was replaced.
839 Replacing VUSE operands is slightly more complex than replacing
840 regular USEs. We are only interested in two types of replacements
841 here:
843 1- If the value to be replaced is a constant or an SSA name for a
844 GIMPLE register, then we are making a copy/constant propagation
845 from a memory store. For instance,
847 # a_3 = V_MAY_DEF <a_2>
848 a.b = x_1;
850 # VUSE <a_3>
851 y_4 = a.b;
853 This replacement is only possible iff STMT is an assignment
854 whose RHS is identical to the LHS of the statement that created
855 the VUSE(s) that we are replacing. Otherwise, we may do the
856 wrong replacement:
858 # a_3 = V_MAY_DEF <a_2>
859 # b_5 = V_MAY_DEF <b_4>
860 *p = 10;
862 # VUSE <b_5>
863 x_8 = b;
865 Even though 'b_5' acquires the value '10' during propagation,
866 there is no way for the propagator to tell whether the
867 replacement is correct in every reached use, because values are
868 computed at definition sites. Therefore, when doing final
869 substitution of propagated values, we have to check each use
870 site. Since the RHS of STMT ('b') is different from the LHS of
871 the originating statement ('*p'), we cannot replace 'b' with
872 '10'.
874 Similarly, when merging values from PHI node arguments,
875 propagators need to take care not to merge the same values
876 stored in different locations:
878 if (...)
879 # a_3 = V_MAY_DEF <a_2>
880 a.b = 3;
881 else
882 # a_4 = V_MAY_DEF <a_2>
883 a.c = 3;
884 # a_5 = PHI <a_3, a_4>
886 It would be wrong to propagate '3' into 'a_5' because that
887 operation merges two stores to different memory locations.
890 2- If the value to be replaced is an SSA name for a virtual
891 register, then we simply replace each VUSE operand with its
892 value from PROP_VALUE. This is the same replacement done by
893 replace_uses_in. */
895 static bool
896 replace_vuses_in (tree stmt, bool *replaced_addresses_p,
897 prop_value_t *prop_value)
899 bool replaced = false;
900 ssa_op_iter iter;
901 use_operand_p vuse;
903 if (stmt_makes_single_load (stmt))
905 /* If STMT is an assignment whose RHS is a single memory load,
906 see if we are trying to propagate a constant or a GIMPLE
907 register (case #1 above). */
908 prop_value_t *val = get_value_loaded_by (stmt, prop_value);
909 tree rhs = TREE_OPERAND (stmt, 1);
911 if (val
912 && val->value
913 && (is_gimple_reg (val->value)
914 || is_gimple_min_invariant (val->value))
915 && simple_cst_equal (rhs, val->mem_ref) == 1)
918 /* If we are replacing a constant address, inform our
919 caller. */
920 if (TREE_CODE (val->value) != SSA_NAME
921 && POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (stmt, 1)))
922 && replaced_addresses_p)
923 *replaced_addresses_p = true;
925 /* We can only perform the substitution if the load is done
926 from the same memory location as the original store.
927 Since we already know that there are no intervening
928 stores between DEF_STMT and STMT, we only need to check
929 that the RHS of STMT is the same as the memory reference
930 propagated together with the value. */
931 TREE_OPERAND (stmt, 1) = val->value;
933 if (TREE_CODE (val->value) != SSA_NAME)
934 prop_stats.num_const_prop++;
935 else
936 prop_stats.num_copy_prop++;
938 /* Since we have replaced the whole RHS of STMT, there
939 is no point in checking the other VUSEs, as they will
940 all have the same value. */
941 return true;
945 /* Otherwise, the values for every VUSE operand must be other
946 SSA_NAMEs that can be propagated into STMT. */
947 FOR_EACH_SSA_USE_OPERAND (vuse, stmt, iter, SSA_OP_VIRTUAL_USES)
949 tree var = USE_FROM_PTR (vuse);
950 tree val = prop_value[SSA_NAME_VERSION (var)].value;
952 if (val == NULL_TREE || var == val)
953 continue;
955 /* Constants and copies propagated between real and virtual
956 operands are only possible in the cases handled above. They
957 should be ignored in any other context. */
958 if (is_gimple_min_invariant (val) || is_gimple_reg (val))
959 continue;
961 propagate_value (vuse, val);
962 prop_stats.num_copy_prop++;
963 replaced = true;
966 return replaced;
970 /* Replace propagated values into all the arguments for PHI using the
971 values from PROP_VALUE. */
973 static void
974 replace_phi_args_in (tree phi, prop_value_t *prop_value)
976 int i;
977 bool replaced = false;
978 tree prev_phi = NULL;
980 if (dump_file && (dump_flags & TDF_DETAILS))
981 prev_phi = unshare_expr (phi);
983 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
985 tree arg = PHI_ARG_DEF (phi, i);
987 if (TREE_CODE (arg) == SSA_NAME)
989 tree val = prop_value[SSA_NAME_VERSION (arg)].value;
991 if (val && val != arg && may_propagate_copy (arg, val))
993 if (TREE_CODE (val) != SSA_NAME)
994 prop_stats.num_const_prop++;
995 else
996 prop_stats.num_copy_prop++;
998 propagate_value (PHI_ARG_DEF_PTR (phi, i), val);
999 replaced = true;
1001 /* If we propagated a copy and this argument flows
1002 through an abnormal edge, update the replacement
1003 accordingly. */
1004 if (TREE_CODE (val) == SSA_NAME
1005 && PHI_ARG_EDGE (phi, i)->flags & EDGE_ABNORMAL)
1006 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1011 if (replaced && dump_file && (dump_flags & TDF_DETAILS))
1013 fprintf (dump_file, "Folded PHI node: ");
1014 print_generic_stmt (dump_file, prev_phi, TDF_SLIM);
1015 fprintf (dump_file, " into: ");
1016 print_generic_stmt (dump_file, phi, TDF_SLIM);
1017 fprintf (dump_file, "\n");
1022 /* If STMT has a predicate whose value can be computed using the value
1023 range information computed by VRP, compute its value and return true.
1024 Otherwise, return false. */
1026 static bool
1027 fold_predicate_in (tree stmt)
1029 tree *pred_p = NULL;
1030 bool modify_expr_p = false;
1031 tree val;
1033 if (TREE_CODE (stmt) == MODIFY_EXPR
1034 && COMPARISON_CLASS_P (TREE_OPERAND (stmt, 1)))
1036 modify_expr_p = true;
1037 pred_p = &TREE_OPERAND (stmt, 1);
1039 else if (TREE_CODE (stmt) == COND_EXPR)
1040 pred_p = &COND_EXPR_COND (stmt);
1041 else
1042 return false;
1044 val = vrp_evaluate_conditional (*pred_p, true);
1045 if (val)
1047 if (modify_expr_p)
1048 val = fold_convert (TREE_TYPE (*pred_p), val);
1050 if (dump_file)
1052 fprintf (dump_file, "Folding predicate ");
1053 print_generic_expr (dump_file, *pred_p, 0);
1054 fprintf (dump_file, " to ");
1055 print_generic_expr (dump_file, val, 0);
1056 fprintf (dump_file, "\n");
1059 prop_stats.num_pred_folded++;
1060 *pred_p = val;
1061 return true;
1064 return false;
1068 /* Perform final substitution and folding of propagated values.
1070 PROP_VALUE[I] contains the single value that should be substituted
1071 at every use of SSA name N_I. If PROP_VALUE is NULL, no values are
1072 substituted.
1074 If USE_RANGES_P is true, statements that contain predicate
1075 expressions are evaluated with a call to vrp_evaluate_conditional.
1076 This will only give meaningful results when called from tree-vrp.c
1077 (the information used by vrp_evaluate_conditional is built by the
1078 VRP pass). */
1080 void
1081 substitute_and_fold (prop_value_t *prop_value, bool use_ranges_p)
1083 basic_block bb;
1085 if (prop_value == NULL && !use_ranges_p)
1086 return;
1088 if (dump_file && (dump_flags & TDF_DETAILS))
1089 fprintf (dump_file, "\nSubstituing values and folding statements\n\n");
1091 memset (&prop_stats, 0, sizeof (prop_stats));
1093 /* Substitute values in every statement of every basic block. */
1094 FOR_EACH_BB (bb)
1096 block_stmt_iterator i;
1097 tree phi;
1099 /* Propagate known values into PHI nodes. */
1100 if (prop_value)
1101 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
1102 replace_phi_args_in (phi, prop_value);
1104 for (i = bsi_start (bb); !bsi_end_p (i); bsi_next (&i))
1106 bool replaced_address, did_replace;
1107 tree prev_stmt = NULL;
1108 tree stmt = bsi_stmt (i);
1110 /* Ignore ASSERT_EXPRs. They are used by VRP to generate
1111 range information for names and they are discarded
1112 afterwards. */
1113 if (TREE_CODE (stmt) == MODIFY_EXPR
1114 && TREE_CODE (TREE_OPERAND (stmt, 1)) == ASSERT_EXPR)
1115 continue;
1117 /* Replace the statement with its folded version and mark it
1118 folded. */
1119 did_replace = false;
1120 replaced_address = false;
1121 if (dump_file && (dump_flags & TDF_DETAILS))
1122 prev_stmt = unshare_expr (stmt);
1124 /* If we have range information, see if we can fold
1125 predicate expressions. */
1126 if (use_ranges_p)
1127 did_replace = fold_predicate_in (stmt);
1129 if (prop_value)
1131 /* Only replace real uses if we couldn't fold the
1132 statement using value range information (value range
1133 information is not collected on virtuals, so we only
1134 need to check this for real uses). */
1135 if (!did_replace)
1136 did_replace |= replace_uses_in (stmt, &replaced_address,
1137 prop_value);
1139 did_replace |= replace_vuses_in (stmt, &replaced_address,
1140 prop_value);
1143 /* If we made a replacement, fold and cleanup the statement. */
1144 if (did_replace)
1146 tree old_stmt = stmt;
1147 tree rhs;
1149 fold_stmt (bsi_stmt_ptr (i));
1150 stmt = bsi_stmt (i);
1152 /* If we folded a builtin function, we'll likely
1153 need to rename VDEFs. */
1154 mark_new_vars_to_rename (stmt);
1156 /* If we cleaned up EH information from the statement,
1157 remove EH edges. */
1158 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
1159 tree_purge_dead_eh_edges (bb);
1161 rhs = get_rhs (stmt);
1162 if (TREE_CODE (rhs) == ADDR_EXPR)
1163 recompute_tree_invariant_for_addr_expr (rhs);
1165 if (dump_file && (dump_flags & TDF_DETAILS))
1167 fprintf (dump_file, "Folded statement: ");
1168 print_generic_stmt (dump_file, prev_stmt, TDF_SLIM);
1169 fprintf (dump_file, " into: ");
1170 print_generic_stmt (dump_file, stmt, TDF_SLIM);
1171 fprintf (dump_file, "\n");
1175 /* Some statements may be simplified using ranges. For
1176 example, division may be replaced by shifts, modulo
1177 replaced with bitwise and, etc. Do this after
1178 substituting constants, folding, etc so that we're
1179 presented with a fully propagated, canonicalized
1180 statement. */
1181 if (use_ranges_p)
1182 simplify_stmt_using_ranges (stmt);
1187 if (dump_file && (dump_flags & TDF_STATS))
1189 fprintf (dump_file, "Constants propagated: %6ld\n",
1190 prop_stats.num_const_prop);
1191 fprintf (dump_file, "Copies propagated: %6ld\n",
1192 prop_stats.num_copy_prop);
1193 fprintf (dump_file, "Predicates folded: %6ld\n",
1194 prop_stats.num_pred_folded);
1198 #include "gt-tree-ssa-propagate.h"