Dead
[official-gcc.git] / gomp-20050608-branch / gcc / testsuite / ada / acats / tests / cxg / cxg2015.a
blob50fda5e1f4fb11f85949aac5b139e43b67570b23
1 -- CXG2015.A
2 --
3 -- Grant of Unlimited Rights
4 --
5 -- Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
6 -- F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
7 -- unlimited rights in the software and documentation contained herein.
8 -- Unlimited rights are defined in DFAR 252.227-7013(a)(19). By making
9 -- this public release, the Government intends to confer upon all
10 -- recipients unlimited rights equal to those held by the Government.
11 -- These rights include rights to use, duplicate, release or disclose the
12 -- released technical data and computer software in whole or in part, in
13 -- any manner and for any purpose whatsoever, and to have or permit others
14 -- to do so.
16 -- DISCLAIMER
18 -- ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
19 -- DISCLOSED ARE AS IS. THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
20 -- WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
21 -- SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
22 -- OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
23 -- PARTICULAR PURPOSE OF SAID MATERIAL.
24 --*
26 -- OBJECTIVE:
27 -- Check that the ARCSIN and ARCCOS functions return
28 -- results that are within the error bound allowed.
30 -- TEST DESCRIPTION:
31 -- This test consists of a generic package that is
32 -- instantiated to check both Float and a long float type.
33 -- The test for each floating point type is divided into
34 -- several parts:
35 -- Special value checks where the result is a known constant.
36 -- Checks in a specific range where a Taylor series can be
37 -- used to compute an accurate result for comparison.
38 -- Exception checks.
39 -- The Taylor series tests are a direct translation of the
40 -- FORTRAN code found in the reference.
42 -- SPECIAL REQUIREMENTS
43 -- The Strict Mode for the numerical accuracy must be
44 -- selected. The method by which this mode is selected
45 -- is implementation dependent.
47 -- APPLICABILITY CRITERIA:
48 -- This test applies only to implementations supporting the
49 -- Numerics Annex.
50 -- This test only applies to the Strict Mode for numerical
51 -- accuracy.
54 -- CHANGE HISTORY:
55 -- 18 Mar 96 SAIC Initial release for 2.1
56 -- 24 Apr 96 SAIC Fixed error bounds.
57 -- 17 Aug 96 SAIC Added reference information and improved
58 -- checking for machines with more than 23
59 -- digits of precision.
60 -- 03 Feb 97 PWB.CTA Removed checks with explicit Cycle => 2.0*Pi
61 -- 22 Dec 99 RLB Added model range checking to "exact" results,
62 -- in order to avoid too strictly requiring a specific
63 -- result, and too weakly checking results.
65 -- CHANGE NOTE:
66 -- According to Ken Dritz, author of the Numerics Annex of the RM,
67 -- one should never specify the cycle 2.0*Pi for the trigonometric
68 -- functions. In particular, if the machine number for the first
69 -- argument is not an exact multiple of the machine number for the
70 -- explicit cycle, then the specified exact results cannot be
71 -- reasonably expected. The affected checks in this test have been
72 -- marked as comments, with the additional notation "pwb-math".
73 -- Phil Brashear
74 --!
77 -- References:
79 -- Software Manual for the Elementary Functions
80 -- William J. Cody, Jr. and William Waite
81 -- Prentice-Hall, 1980
83 -- CRC Standard Mathematical Tables
84 -- 23rd Edition
86 -- Implementation and Testing of Function Software
87 -- W. J. Cody
88 -- Problems and Methodologies in Mathematical Software Production
89 -- editors P. C. Messina and A. Murli
90 -- Lecture Notes in Computer Science Volume 142
91 -- Springer Verlag, 1982
93 -- CELEFUNT: A Portable Test Package for Complex Elementary Functions
94 -- ACM Collected Algorithms number 714
96 with System;
97 with Report;
98 with Ada.Numerics.Generic_Elementary_Functions;
99 procedure CXG2015 is
100 Verbose : constant Boolean := False;
101 Max_Samples : constant := 1000;
104 -- CRC Standard Mathematical Tables; 23rd Edition; pg 738
105 Sqrt2 : constant :=
106 1.41421_35623_73095_04880_16887_24209_69807_85696_71875_37695;
107 Sqrt3 : constant :=
108 1.73205_08075_68877_29352_74463_41505_87236_69428_05253_81039;
110 Pi : constant := Ada.Numerics.Pi;
112 -- relative error bound from G.2.4(7);6.0
113 Minimum_Error : constant := 4.0;
115 generic
116 type Real is digits <>;
117 Half_PI_Low : in Real; -- The machine number closest to, but not greater
118 -- than PI/2.0.
119 Half_PI_High : in Real;-- The machine number closest to, but not less
120 -- than PI/2.0.
121 PI_Low : in Real; -- The machine number closest to, but not greater
122 -- than PI.
123 PI_High : in Real; -- The machine number closest to, but not less
124 -- than PI.
125 package Generic_Check is
126 procedure Do_Test;
127 end Generic_Check;
129 package body Generic_Check is
130 package Elementary_Functions is new
131 Ada.Numerics.Generic_Elementary_Functions (Real);
133 function Arcsin (X : Real) return Real renames
134 Elementary_Functions.Arcsin;
135 function Arcsin (X, Cycle : Real) return Real renames
136 Elementary_Functions.Arcsin;
137 function Arccos (X : Real) return Real renames
138 Elementary_Functions.ArcCos;
139 function Arccos (X, Cycle : Real) return Real renames
140 Elementary_Functions.ArcCos;
142 -- needed for support
143 function Log (X, Base : Real) return Real renames
144 Elementary_Functions.Log;
146 -- flag used to terminate some tests early
147 Accuracy_Error_Reported : Boolean := False;
149 -- The following value is a lower bound on the accuracy
150 -- required. It is normally 0.0 so that the lower bound
151 -- is computed from Model_Epsilon. However, for tests
152 -- where the expected result is only known to a certain
153 -- amount of precision this bound takes on a non-zero
154 -- value to account for that level of precision.
155 Error_Low_Bound : Real := 0.0;
158 procedure Check (Actual, Expected : Real;
159 Test_Name : String;
160 MRE : Real) is
161 Max_Error : Real;
162 Rel_Error : Real;
163 Abs_Error : Real;
164 begin
165 -- In the case where the expected result is very small or 0
166 -- we compute the maximum error as a multiple of Model_Epsilon instead
167 -- of Model_Epsilon and Expected.
168 Rel_Error := MRE * abs Expected * Real'Model_Epsilon;
169 Abs_Error := MRE * Real'Model_Epsilon;
170 if Rel_Error > Abs_Error then
171 Max_Error := Rel_Error;
172 else
173 Max_Error := Abs_Error;
174 end if;
176 -- take into account the low bound on the error
177 if Max_Error < Error_Low_Bound then
178 Max_Error := Error_Low_Bound;
179 end if;
181 if abs (Actual - Expected) > Max_Error then
182 Accuracy_Error_Reported := True;
183 Report.Failed (Test_Name &
184 " actual: " & Real'Image (Actual) &
185 " expected: " & Real'Image (Expected) &
186 " difference: " & Real'Image (Actual - Expected) &
187 " max err:" & Real'Image (Max_Error) );
188 elsif Verbose then
189 if Actual = Expected then
190 Report.Comment (Test_Name & " exact result");
191 else
192 Report.Comment (Test_Name & " passed");
193 end if;
194 end if;
195 end Check;
198 procedure Special_Value_Test is
199 -- In the following tests the expected result is accurate
200 -- to the machine precision so the minimum guaranteed error
201 -- bound can be used.
203 type Data_Point is
204 record
205 Degrees,
206 Radians,
207 Argument,
208 Error_Bound : Real;
209 end record;
211 type Test_Data_Type is array (Positive range <>) of Data_Point;
213 -- the values in the following tables only involve static
214 -- expressions so no loss of precision occurs. However,
215 -- rounding can be an issue with expressions involving Pi
216 -- and square roots. The error bound specified in the
217 -- table takes the sqrt error into account but not the
218 -- error due to Pi. The Pi error is added in in the
219 -- radians test below.
221 Arcsin_Test_Data : constant Test_Data_Type := (
222 -- degrees radians sine error_bound test #
223 --( 0.0, 0.0, 0.0, 0.0 ), -- 1 - In Exact_Result_Test.
224 ( 30.0, Pi/6.0, 0.5, 4.0 ), -- 2
225 ( 60.0, Pi/3.0, Sqrt3/2.0, 5.0 ), -- 3
226 --( 90.0, Pi/2.0, 1.0, 4.0 ), -- 4 - In Exact_Result_Test.
227 --(-90.0, -Pi/2.0, -1.0, 4.0 ), -- 5 - In Exact_Result_Test.
228 (-60.0, -Pi/3.0, -Sqrt3/2.0, 5.0 ), -- 6
229 (-30.0, -Pi/6.0, -0.5, 4.0 ), -- 7
230 ( 45.0, Pi/4.0, Sqrt2/2.0, 5.0 ), -- 8
231 (-45.0, -Pi/4.0, -Sqrt2/2.0, 5.0 ) ); -- 9
233 Arccos_Test_Data : constant Test_Data_Type := (
234 -- degrees radians cosine error_bound test #
235 --( 0.0, 0.0, 1.0, 0.0 ), -- 1 - In Exact_Result_Test.
236 ( 30.0, Pi/6.0, Sqrt3/2.0, 5.0 ), -- 2
237 ( 60.0, Pi/3.0, 0.5, 4.0 ), -- 3
238 --( 90.0, Pi/2.0, 0.0, 4.0 ), -- 4 - In Exact_Result_Test.
239 (120.0, 2.0*Pi/3.0, -0.5, 4.0 ), -- 5
240 (150.0, 5.0*Pi/6.0, -Sqrt3/2.0, 5.0 ), -- 6
241 --(180.0, Pi, -1.0, 4.0 ), -- 7 - In Exact_Result_Test.
242 ( 45.0, Pi/4.0, Sqrt2/2.0, 5.0 ), -- 8
243 (135.0, 3.0*Pi/4.0, -Sqrt2/2.0, 5.0 ) ); -- 9
245 Cycle_Error,
246 Radian_Error : Real;
247 begin
248 for I in Arcsin_Test_Data'Range loop
250 -- note exact result requirements A.5.1(38);6.0 and
251 -- G.2.4(12);6.0
252 if Arcsin_Test_Data (I).Error_Bound = 0.0 then
253 Cycle_Error := 0.0;
254 Radian_Error := 0.0;
255 else
256 Cycle_Error := Arcsin_Test_Data (I).Error_Bound;
257 -- allow for rounding error in the specification of Pi
258 Radian_Error := Cycle_Error + 1.0;
259 end if;
261 Check (Arcsin (Arcsin_Test_Data (I).Argument),
262 Arcsin_Test_Data (I).Radians,
263 "test" & Integer'Image (I) &
264 " arcsin(" &
265 Real'Image (Arcsin_Test_Data (I).Argument) &
266 ")",
267 Radian_Error);
268 --pwb-math Check (Arcsin (Arcsin_Test_Data (I).Argument, 2.0 * Pi),
269 --pwb-math Arcsin_Test_Data (I).Radians,
270 --pwb-math "test" & Integer'Image (I) &
271 --pwb-math " arcsin(" &
272 --pwb-math Real'Image (Arcsin_Test_Data (I).Argument) &
273 --pwb-math ", 2pi)",
274 --pwb-math Cycle_Error);
275 Check (Arcsin (Arcsin_Test_Data (I).Argument, 360.0),
276 Arcsin_Test_Data (I).Degrees,
277 "test" & Integer'Image (I) &
278 " arcsin(" &
279 Real'Image (Arcsin_Test_Data (I).Argument) &
280 ", 360)",
281 Cycle_Error);
282 end loop;
285 for I in Arccos_Test_Data'Range loop
287 -- note exact result requirements A.5.1(39);6.0 and
288 -- G.2.4(12);6.0
289 if Arccos_Test_Data (I).Error_Bound = 0.0 then
290 Cycle_Error := 0.0;
291 Radian_Error := 0.0;
292 else
293 Cycle_Error := Arccos_Test_Data (I).Error_Bound;
294 -- allow for rounding error in the specification of Pi
295 Radian_Error := Cycle_Error + 1.0;
296 end if;
298 Check (Arccos (Arccos_Test_Data (I).Argument),
299 Arccos_Test_Data (I).Radians,
300 "test" & Integer'Image (I) &
301 " arccos(" &
302 Real'Image (Arccos_Test_Data (I).Argument) &
303 ")",
304 Radian_Error);
305 --pwb-math Check (Arccos (Arccos_Test_Data (I).Argument, 2.0 * Pi),
306 --pwb-math Arccos_Test_Data (I).Radians,
307 --pwb-math "test" & Integer'Image (I) &
308 --pwb-math " arccos(" &
309 --pwb-math Real'Image (Arccos_Test_Data (I).Argument) &
310 --pwb-math ", 2pi)",
311 --pwb-math Cycle_Error);
312 Check (Arccos (Arccos_Test_Data (I).Argument, 360.0),
313 Arccos_Test_Data (I).Degrees,
314 "test" & Integer'Image (I) &
315 " arccos(" &
316 Real'Image (Arccos_Test_Data (I).Argument) &
317 ", 360)",
318 Cycle_Error);
319 end loop;
321 exception
322 when Constraint_Error =>
323 Report.Failed ("Constraint_Error raised in special value test");
324 when others =>
325 Report.Failed ("exception in special value test");
326 end Special_Value_Test;
329 procedure Check_Exact (Actual, Expected_Low, Expected_High : Real;
330 Test_Name : String) is
331 -- If the expected result is not a model number, then Expected_Low is
332 -- the first machine number less than the (exact) expected
333 -- result, and Expected_High is the first machine number greater than
334 -- the (exact) expected result. If the expected result is a model
335 -- number, Expected_Low = Expected_High = the result.
336 Model_Expected_Low : Real := Expected_Low;
337 Model_Expected_High : Real := Expected_High;
338 begin
339 -- Calculate the first model number nearest to, but below (or equal)
340 -- to the expected result:
341 while Real'Model (Model_Expected_Low) /= Model_Expected_Low loop
342 -- Try the next machine number lower:
343 Model_Expected_Low := Real'Adjacent(Model_Expected_Low, 0.0);
344 end loop;
345 -- Calculate the first model number nearest to, but above (or equal)
346 -- to the expected result:
347 while Real'Model (Model_Expected_High) /= Model_Expected_High loop
348 -- Try the next machine number higher:
349 Model_Expected_High := Real'Adjacent(Model_Expected_High, 100.0);
350 end loop;
352 if Actual < Model_Expected_Low or Actual > Model_Expected_High then
353 Accuracy_Error_Reported := True;
354 if Actual < Model_Expected_Low then
355 Report.Failed (Test_Name &
356 " actual: " & Real'Image (Actual) &
357 " expected low: " & Real'Image (Model_Expected_Low) &
358 " expected high: " & Real'Image (Model_Expected_High) &
359 " difference: " & Real'Image (Actual - Expected_Low));
360 else
361 Report.Failed (Test_Name &
362 " actual: " & Real'Image (Actual) &
363 " expected low: " & Real'Image (Model_Expected_Low) &
364 " expected high: " & Real'Image (Model_Expected_High) &
365 " difference: " & Real'Image (Expected_High - Actual));
366 end if;
367 elsif Verbose then
368 Report.Comment (Test_Name & " passed");
369 end if;
370 end Check_Exact;
373 procedure Exact_Result_Test is
374 begin
375 -- A.5.1(38)
376 Check_Exact (Arcsin (0.0), 0.0, 0.0, "arcsin(0)");
377 Check_Exact (Arcsin (0.0, 45.0), 0.0, 0.0, "arcsin(0,45)");
379 -- A.5.1(39)
380 Check_Exact (Arccos (1.0), 0.0, 0.0, "arccos(1)");
381 Check_Exact (Arccos (1.0, 75.0), 0.0, 0.0, "arccos(1,75)");
383 -- G.2.4(11-13)
384 Check_Exact (Arcsin (1.0), Half_PI_Low, Half_PI_High, "arcsin(1)");
385 Check_Exact (Arcsin (1.0, 360.0), 90.0, 90.0, "arcsin(1,360)");
387 Check_Exact (Arcsin (-1.0), -Half_PI_High, -Half_PI_Low, "arcsin(-1)");
388 Check_Exact (Arcsin (-1.0, 360.0), -90.0, -90.0, "arcsin(-1,360)");
390 Check_Exact (Arccos (0.0), Half_PI_Low, Half_PI_High, "arccos(0)");
391 Check_Exact (Arccos (0.0, 360.0), 90.0, 90.0, "arccos(0,360)");
393 Check_Exact (Arccos (-1.0), PI_Low, PI_High, "arccos(-1)");
394 Check_Exact (Arccos (-1.0, 360.0), 180.0, 180.0, "arccos(-1,360)");
396 exception
397 when Constraint_Error =>
398 Report.Failed ("Constraint_Error raised in Exact_Result Test");
399 when others =>
400 Report.Failed ("Exception in Exact_Result Test");
401 end Exact_Result_Test;
404 procedure Arcsin_Taylor_Series_Test is
405 -- the following range is chosen so that the Taylor series
406 -- used will produce a result accurate to machine precision.
408 -- The following formula is used for the Taylor series:
409 -- TS(x) = x { 1 + (xsq/2) [ (1/3) + (3/4)xsq { (1/5) +
410 -- (5/6)xsq [ (1/7) + (7/8)xsq/9 ] } ] }
411 -- where xsq = x * x
413 A : constant := -0.125;
414 B : constant := 0.125;
415 X : Real;
416 Y, Y_Sq : Real;
417 Actual, Sum, Xm : Real;
418 -- terms in Taylor series
419 K : constant Integer := Integer (
420 Log (
421 Real (Real'Machine_Radix) ** Real'Machine_Mantissa,
422 10.0)) + 1;
423 begin
424 Accuracy_Error_Reported := False; -- reset
425 for I in 1..Max_Samples loop
426 -- make sure there is no error in x-1, x, and x+1
427 X := (B - A) * Real (I) / Real (Max_Samples) + A;
429 Y := X;
430 Y_Sq := Y * Y;
431 Sum := 0.0;
432 Xm := Real (K + K + 1);
433 for M in 1 .. K loop
434 Sum := Y_Sq * (Sum + 1.0/Xm);
435 Xm := Xm - 2.0;
436 Sum := Sum * (Xm /(Xm + 1.0));
437 end loop;
438 Sum := Sum * Y;
439 Actual := Y + Sum;
440 Sum := (Y - Actual) + Sum;
441 if not Real'Machine_Rounds then
442 Actual := Actual + (Sum + Sum);
443 end if;
445 Check (Actual, Arcsin (X),
446 "Taylor Series test" & Integer'Image (I) & ": arcsin(" &
447 Real'Image (X) & ") ",
448 Minimum_Error);
450 if Accuracy_Error_Reported then
451 -- only report the first error in this test in order to keep
452 -- lots of failures from producing a huge error log
453 return;
454 end if;
456 end loop;
458 exception
459 when Constraint_Error =>
460 Report.Failed
461 ("Constraint_Error raised in Arcsin_Taylor_Series_Test" &
462 " for X=" & Real'Image (X));
463 when others =>
464 Report.Failed ("exception in Arcsin_Taylor_Series_Test" &
465 " for X=" & Real'Image (X));
466 end Arcsin_Taylor_Series_Test;
470 procedure Arccos_Taylor_Series_Test is
471 -- the following range is chosen so that the Taylor series
472 -- used will produce a result accurate to machine precision.
474 -- The following formula is used for the Taylor series:
475 -- TS(x) = x { 1 + (xsq/2) [ (1/3) + (3/4)xsq { (1/5) +
476 -- (5/6)xsq [ (1/7) + (7/8)xsq/9 ] } ] }
477 -- arccos(x) = pi/2 - TS(x)
478 A : constant := -0.125;
479 B : constant := 0.125;
480 C1, C2 : Real;
481 X : Real;
482 Y, Y_Sq : Real;
483 Actual, Sum, Xm, S : Real;
484 -- terms in Taylor series
485 K : constant Integer := Integer (
486 Log (
487 Real (Real'Machine_Radix) ** Real'Machine_Mantissa,
488 10.0)) + 1;
489 begin
490 if Real'Digits > 23 then
491 -- constants in this section only accurate to 23 digits
492 Error_Low_Bound := 0.00000_00000_00000_00000_001;
493 Report.Comment ("arctan accuracy checked to 23 digits");
494 end if;
496 -- C1 + C2 equals Pi/2 accurate to 23 digits
497 if Real'Machine_Radix = 10 then
498 C1 := 1.57;
499 C2 := 7.9632679489661923132E-4;
500 else
501 C1 := 201.0 / 128.0;
502 C2 := 4.8382679489661923132E-4;
503 end if;
505 Accuracy_Error_Reported := False; -- reset
506 for I in 1..Max_Samples loop
507 -- make sure there is no error in x-1, x, and x+1
508 X := (B - A) * Real (I) / Real (Max_Samples) + A;
510 Y := X;
511 Y_Sq := Y * Y;
512 Sum := 0.0;
513 Xm := Real (K + K + 1);
514 for M in 1 .. K loop
515 Sum := Y_Sq * (Sum + 1.0/Xm);
516 Xm := Xm - 2.0;
517 Sum := Sum * (Xm /(Xm + 1.0));
518 end loop;
519 Sum := Sum * Y;
521 -- at this point we have arcsin(x).
522 -- We compute arccos(x) = pi/2 - arcsin(x).
523 -- The following code segment is translated directly from
524 -- the CELEFUNT FORTRAN implementation
526 S := C1 + C2;
527 Sum := ((C1 - S) + C2) - Sum;
528 Actual := S + Sum;
529 Sum := ((S - Actual) + Sum) - Y;
530 S := Actual;
531 Actual := S + Sum;
532 Sum := (S - Actual) + Sum;
534 if not Real'Machine_Rounds then
535 Actual := Actual + (Sum + Sum);
536 end if;
538 Check (Actual, Arccos (X),
539 "Taylor Series test" & Integer'Image (I) & ": arccos(" &
540 Real'Image (X) & ") ",
541 Minimum_Error);
543 -- only report the first error in this test in order to keep
544 -- lots of failures from producing a huge error log
545 exit when Accuracy_Error_Reported;
546 end loop;
547 Error_Low_Bound := 0.0; -- reset
548 exception
549 when Constraint_Error =>
550 Report.Failed
551 ("Constraint_Error raised in Arccos_Taylor_Series_Test" &
552 " for X=" & Real'Image (X));
553 when others =>
554 Report.Failed ("exception in Arccos_Taylor_Series_Test" &
555 " for X=" & Real'Image (X));
556 end Arccos_Taylor_Series_Test;
560 procedure Identity_Test is
561 -- test the identity arcsin(-x) = -arcsin(x)
562 -- range chosen to be most of the valid range of the argument.
563 A : constant := -0.999;
564 B : constant := 0.999;
565 X : Real;
566 begin
567 Accuracy_Error_Reported := False; -- reset
568 for I in 1..Max_Samples loop
569 -- make sure there is no error in x-1, x, and x+1
570 X := (B - A) * Real (I) / Real (Max_Samples) + A;
572 Check (Arcsin(-X), -Arcsin (X),
573 "Identity test" & Integer'Image (I) & ": arcsin(" &
574 Real'Image (X) & ") ",
575 8.0); -- 2 arcsin evaluations => twice the error bound
577 if Accuracy_Error_Reported then
578 -- only report the first error in this test in order to keep
579 -- lots of failures from producing a huge error log
580 return;
581 end if;
582 end loop;
583 end Identity_Test;
586 procedure Exception_Test is
587 X1, X2 : Real := 0.0;
588 begin
589 begin
590 X1 := Arcsin (1.1);
591 Report.Failed ("no exception for Arcsin (1.1)");
592 exception
593 when Constraint_Error =>
594 Report.Failed ("Constraint_Error instead of " &
595 "Argument_Error for Arcsin (1.1)");
596 when Ada.Numerics.Argument_Error =>
597 null; -- expected result
598 when others =>
599 Report.Failed ("wrong exception for Arcsin(1.1)");
600 end;
602 begin
603 X2 := Arccos (-1.1);
604 Report.Failed ("no exception for Arccos (-1.1)");
605 exception
606 when Constraint_Error =>
607 Report.Failed ("Constraint_Error instead of " &
608 "Argument_Error for Arccos (-1.1)");
609 when Ada.Numerics.Argument_Error =>
610 null; -- expected result
611 when others =>
612 Report.Failed ("wrong exception for Arccos(-1.1)");
613 end;
616 -- optimizer thwarting
617 if Report.Ident_Bool (False) then
618 Report.Comment (Real'Image (X1 + X2));
619 end if;
620 end Exception_Test;
623 procedure Do_Test is
624 begin
625 Special_Value_Test;
626 Exact_Result_Test;
627 Arcsin_Taylor_Series_Test;
628 Arccos_Taylor_Series_Test;
629 Identity_Test;
630 Exception_Test;
631 end Do_Test;
632 end Generic_Check;
634 -----------------------------------------------------------------------
635 -----------------------------------------------------------------------
636 -- These expressions must be truly static, which is why we have to do them
637 -- outside of the generic, and we use the named numbers. Note that we know
638 -- that PI is not a machine number (it is irrational), and it should be
639 -- represented to more digits than supported by the target machine.
640 Float_Half_PI_Low : constant := Float'Adjacent(PI/2.0, 0.0);
641 Float_Half_PI_High : constant := Float'Adjacent(PI/2.0, 10.0);
642 Float_PI_Low : constant := Float'Adjacent(PI, 0.0);
643 Float_PI_High : constant := Float'Adjacent(PI, 10.0);
644 package Float_Check is new Generic_Check (Float,
645 Half_PI_Low => Float_Half_PI_Low,
646 Half_PI_High => Float_Half_PI_High,
647 PI_Low => Float_PI_Low,
648 PI_High => Float_PI_High);
650 -- check the floating point type with the most digits
651 type A_Long_Float is digits System.Max_Digits;
652 A_Long_Float_Half_PI_Low : constant := A_Long_Float'Adjacent(PI/2.0, 0.0);
653 A_Long_Float_Half_PI_High : constant := A_Long_Float'Adjacent(PI/2.0, 10.0);
654 A_Long_Float_PI_Low : constant := A_Long_Float'Adjacent(PI, 0.0);
655 A_Long_Float_PI_High : constant := A_Long_Float'Adjacent(PI, 10.0);
656 package A_Long_Float_Check is new Generic_Check (A_Long_Float,
657 Half_PI_Low => A_Long_Float_Half_PI_Low,
658 Half_PI_High => A_Long_Float_Half_PI_High,
659 PI_Low => A_Long_Float_PI_Low,
660 PI_High => A_Long_Float_PI_High);
662 -----------------------------------------------------------------------
663 -----------------------------------------------------------------------
666 begin
667 Report.Test ("CXG2015",
668 "Check the accuracy of the ARCSIN and ARCCOS functions");
670 if Verbose then
671 Report.Comment ("checking Standard.Float");
672 end if;
674 Float_Check.Do_Test;
676 if Verbose then
677 Report.Comment ("checking a digits" &
678 Integer'Image (System.Max_Digits) &
679 " floating point type");
680 end if;
682 A_Long_Float_Check.Do_Test;
685 Report.Result;
686 end CXG2015;