Dead
[official-gcc.git] / gomp-20050608-branch / gcc / dwarf2out.c
blob48c917324c4e1a26c988656ebc5b70bc5c0fdd4d
1 /* Output Dwarf2 format symbol table information from GCC.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
13 version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to the Free
22 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
23 02110-1301, USA. */
25 /* TODO: Emit .debug_line header even when there are no functions, since
26 the file numbers are used by .debug_info. Alternately, leave
27 out locations for types and decls.
28 Avoid talking about ctors and op= for PODs.
29 Factor out common prologue sequences into multiple CIEs. */
31 /* The first part of this file deals with the DWARF 2 frame unwind
32 information, which is also used by the GCC efficient exception handling
33 mechanism. The second part, controlled only by an #ifdef
34 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
35 information. */
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "tree.h"
42 #include "version.h"
43 #include "flags.h"
44 #include "real.h"
45 #include "rtl.h"
46 #include "hard-reg-set.h"
47 #include "regs.h"
48 #include "insn-config.h"
49 #include "reload.h"
50 #include "function.h"
51 #include "output.h"
52 #include "expr.h"
53 #include "libfuncs.h"
54 #include "except.h"
55 #include "dwarf2.h"
56 #include "dwarf2out.h"
57 #include "dwarf2asm.h"
58 #include "toplev.h"
59 #include "varray.h"
60 #include "ggc.h"
61 #include "md5.h"
62 #include "tm_p.h"
63 #include "diagnostic.h"
64 #include "debug.h"
65 #include "target.h"
66 #include "langhooks.h"
67 #include "hashtab.h"
68 #include "cgraph.h"
69 #include "input.h"
71 #ifdef DWARF2_DEBUGGING_INFO
72 static void dwarf2out_source_line (unsigned int, const char *);
73 #endif
75 /* DWARF2 Abbreviation Glossary:
76 CFA = Canonical Frame Address
77 a fixed address on the stack which identifies a call frame.
78 We define it to be the value of SP just before the call insn.
79 The CFA register and offset, which may change during the course
80 of the function, are used to calculate its value at runtime.
81 CFI = Call Frame Instruction
82 an instruction for the DWARF2 abstract machine
83 CIE = Common Information Entry
84 information describing information common to one or more FDEs
85 DIE = Debugging Information Entry
86 FDE = Frame Description Entry
87 information describing the stack call frame, in particular,
88 how to restore registers
90 DW_CFA_... = DWARF2 CFA call frame instruction
91 DW_TAG_... = DWARF2 DIE tag */
93 #ifndef DWARF2_FRAME_INFO
94 # ifdef DWARF2_DEBUGGING_INFO
95 # define DWARF2_FRAME_INFO \
96 (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
97 # else
98 # define DWARF2_FRAME_INFO 0
99 # endif
100 #endif
102 /* Decide whether we want to emit frame unwind information for the current
103 translation unit. */
106 dwarf2out_do_frame (void)
108 /* We want to emit correct CFA location expressions or lists, so we
109 have to return true if we're going to output debug info, even if
110 we're not going to output frame or unwind info. */
111 return (write_symbols == DWARF2_DEBUG
112 || write_symbols == VMS_AND_DWARF2_DEBUG
113 || DWARF2_FRAME_INFO
114 #ifdef DWARF2_UNWIND_INFO
115 || (DWARF2_UNWIND_INFO
116 && (flag_unwind_tables
117 || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)))
118 #endif
122 /* The size of the target's pointer type. */
123 #ifndef PTR_SIZE
124 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
125 #endif
127 DEF_VEC_P(rtx);
128 DEF_VEC_ALLOC_P(rtx,gc);
130 /* Array of RTXes referenced by the debugging information, which therefore
131 must be kept around forever. */
132 static GTY(()) VEC(rtx,gc) *used_rtx_array;
134 /* A pointer to the base of a list of incomplete types which might be
135 completed at some later time. incomplete_types_list needs to be a
136 VEC(tree,gc) because we want to tell the garbage collector about
137 it. */
138 static GTY(()) VEC(tree,gc) *incomplete_types;
140 /* A pointer to the base of a table of references to declaration
141 scopes. This table is a display which tracks the nesting
142 of declaration scopes at the current scope and containing
143 scopes. This table is used to find the proper place to
144 define type declaration DIE's. */
145 static GTY(()) VEC(tree,gc) *decl_scope_table;
147 /* Pointers to various DWARF2 sections. */
148 static GTY(()) section *debug_info_section;
149 static GTY(()) section *debug_abbrev_section;
150 static GTY(()) section *debug_aranges_section;
151 static GTY(()) section *debug_macinfo_section;
152 static GTY(()) section *debug_line_section;
153 static GTY(()) section *debug_loc_section;
154 static GTY(()) section *debug_pubnames_section;
155 static GTY(()) section *debug_str_section;
156 static GTY(()) section *debug_ranges_section;
158 /* How to start an assembler comment. */
159 #ifndef ASM_COMMENT_START
160 #define ASM_COMMENT_START ";#"
161 #endif
163 typedef struct dw_cfi_struct *dw_cfi_ref;
164 typedef struct dw_fde_struct *dw_fde_ref;
165 typedef union dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
167 /* Call frames are described using a sequence of Call Frame
168 Information instructions. The register number, offset
169 and address fields are provided as possible operands;
170 their use is selected by the opcode field. */
172 enum dw_cfi_oprnd_type {
173 dw_cfi_oprnd_unused,
174 dw_cfi_oprnd_reg_num,
175 dw_cfi_oprnd_offset,
176 dw_cfi_oprnd_addr,
177 dw_cfi_oprnd_loc
180 typedef union dw_cfi_oprnd_struct GTY(())
182 unsigned int GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num;
183 HOST_WIDE_INT GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset;
184 const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr;
185 struct dw_loc_descr_struct * GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc;
187 dw_cfi_oprnd;
189 typedef struct dw_cfi_struct GTY(())
191 dw_cfi_ref dw_cfi_next;
192 enum dwarf_call_frame_info dw_cfi_opc;
193 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
194 dw_cfi_oprnd1;
195 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
196 dw_cfi_oprnd2;
198 dw_cfi_node;
200 /* This is how we define the location of the CFA. We use to handle it
201 as REG + OFFSET all the time, but now it can be more complex.
202 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
203 Instead of passing around REG and OFFSET, we pass a copy
204 of this structure. */
205 typedef struct cfa_loc GTY(())
207 HOST_WIDE_INT offset;
208 HOST_WIDE_INT base_offset;
209 unsigned int reg;
210 int indirect; /* 1 if CFA is accessed via a dereference. */
211 } dw_cfa_location;
213 /* All call frame descriptions (FDE's) in the GCC generated DWARF
214 refer to a single Common Information Entry (CIE), defined at
215 the beginning of the .debug_frame section. This use of a single
216 CIE obviates the need to keep track of multiple CIE's
217 in the DWARF generation routines below. */
219 typedef struct dw_fde_struct GTY(())
221 tree decl;
222 const char *dw_fde_begin;
223 const char *dw_fde_current_label;
224 const char *dw_fde_end;
225 const char *dw_fde_hot_section_label;
226 const char *dw_fde_hot_section_end_label;
227 const char *dw_fde_unlikely_section_label;
228 const char *dw_fde_unlikely_section_end_label;
229 bool dw_fde_switched_sections;
230 dw_cfi_ref dw_fde_cfi;
231 unsigned funcdef_number;
232 unsigned all_throwers_are_sibcalls : 1;
233 unsigned nothrow : 1;
234 unsigned uses_eh_lsda : 1;
236 dw_fde_node;
238 /* Maximum size (in bytes) of an artificially generated label. */
239 #define MAX_ARTIFICIAL_LABEL_BYTES 30
241 /* The size of addresses as they appear in the Dwarf 2 data.
242 Some architectures use word addresses to refer to code locations,
243 but Dwarf 2 info always uses byte addresses. On such machines,
244 Dwarf 2 addresses need to be larger than the architecture's
245 pointers. */
246 #ifndef DWARF2_ADDR_SIZE
247 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
248 #endif
250 /* The size in bytes of a DWARF field indicating an offset or length
251 relative to a debug info section, specified to be 4 bytes in the
252 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
253 as PTR_SIZE. */
255 #ifndef DWARF_OFFSET_SIZE
256 #define DWARF_OFFSET_SIZE 4
257 #endif
259 /* According to the (draft) DWARF 3 specification, the initial length
260 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
261 bytes are 0xffffffff, followed by the length stored in the next 8
262 bytes.
264 However, the SGI/MIPS ABI uses an initial length which is equal to
265 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
267 #ifndef DWARF_INITIAL_LENGTH_SIZE
268 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
269 #endif
271 #define DWARF_VERSION 2
273 /* Round SIZE up to the nearest BOUNDARY. */
274 #define DWARF_ROUND(SIZE,BOUNDARY) \
275 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
277 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
278 #ifndef DWARF_CIE_DATA_ALIGNMENT
279 #ifdef STACK_GROWS_DOWNWARD
280 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
281 #else
282 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
283 #endif
284 #endif
286 /* A pointer to the base of a table that contains frame description
287 information for each routine. */
288 static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table;
290 /* Number of elements currently allocated for fde_table. */
291 static GTY(()) unsigned fde_table_allocated;
293 /* Number of elements in fde_table currently in use. */
294 static GTY(()) unsigned fde_table_in_use;
296 /* Size (in elements) of increments by which we may expand the
297 fde_table. */
298 #define FDE_TABLE_INCREMENT 256
300 /* A list of call frame insns for the CIE. */
301 static GTY(()) dw_cfi_ref cie_cfi_head;
303 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
304 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
305 attribute that accelerates the lookup of the FDE associated
306 with the subprogram. This variable holds the table index of the FDE
307 associated with the current function (body) definition. */
308 static unsigned current_funcdef_fde;
309 #endif
311 struct indirect_string_node GTY(())
313 const char *str;
314 unsigned int refcount;
315 unsigned int form;
316 char *label;
319 static GTY ((param_is (struct indirect_string_node))) htab_t debug_str_hash;
321 static GTY(()) int dw2_string_counter;
322 static GTY(()) unsigned long dwarf2out_cfi_label_num;
324 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
326 /* Forward declarations for functions defined in this file. */
328 static char *stripattributes (const char *);
329 static const char *dwarf_cfi_name (unsigned);
330 static dw_cfi_ref new_cfi (void);
331 static void add_cfi (dw_cfi_ref *, dw_cfi_ref);
332 static void add_fde_cfi (const char *, dw_cfi_ref);
333 static void lookup_cfa_1 (dw_cfi_ref, dw_cfa_location *);
334 static void lookup_cfa (dw_cfa_location *);
335 static void reg_save (const char *, unsigned, unsigned, HOST_WIDE_INT);
336 static void initial_return_save (rtx);
337 static HOST_WIDE_INT stack_adjust_offset (rtx);
338 static void output_cfi (dw_cfi_ref, dw_fde_ref, int);
339 static void output_call_frame_info (int);
340 static void dwarf2out_stack_adjust (rtx, bool);
341 static void flush_queued_reg_saves (void);
342 static bool clobbers_queued_reg_save (rtx);
343 static void dwarf2out_frame_debug_expr (rtx, const char *);
345 /* Support for complex CFA locations. */
346 static void output_cfa_loc (dw_cfi_ref);
347 static void get_cfa_from_loc_descr (dw_cfa_location *,
348 struct dw_loc_descr_struct *);
349 static struct dw_loc_descr_struct *build_cfa_loc
350 (dw_cfa_location *);
351 static void def_cfa_1 (const char *, dw_cfa_location *);
353 /* How to start an assembler comment. */
354 #ifndef ASM_COMMENT_START
355 #define ASM_COMMENT_START ";#"
356 #endif
358 /* Data and reference forms for relocatable data. */
359 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
360 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
362 #ifndef DEBUG_FRAME_SECTION
363 #define DEBUG_FRAME_SECTION ".debug_frame"
364 #endif
366 #ifndef FUNC_BEGIN_LABEL
367 #define FUNC_BEGIN_LABEL "LFB"
368 #endif
370 #ifndef FUNC_END_LABEL
371 #define FUNC_END_LABEL "LFE"
372 #endif
374 #ifndef FRAME_BEGIN_LABEL
375 #define FRAME_BEGIN_LABEL "Lframe"
376 #endif
377 #define CIE_AFTER_SIZE_LABEL "LSCIE"
378 #define CIE_END_LABEL "LECIE"
379 #define FDE_LABEL "LSFDE"
380 #define FDE_AFTER_SIZE_LABEL "LASFDE"
381 #define FDE_END_LABEL "LEFDE"
382 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
383 #define LINE_NUMBER_END_LABEL "LELT"
384 #define LN_PROLOG_AS_LABEL "LASLTP"
385 #define LN_PROLOG_END_LABEL "LELTP"
386 #define DIE_LABEL_PREFIX "DW"
388 /* The DWARF 2 CFA column which tracks the return address. Normally this
389 is the column for PC, or the first column after all of the hard
390 registers. */
391 #ifndef DWARF_FRAME_RETURN_COLUMN
392 #ifdef PC_REGNUM
393 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
394 #else
395 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
396 #endif
397 #endif
399 /* The mapping from gcc register number to DWARF 2 CFA column number. By
400 default, we just provide columns for all registers. */
401 #ifndef DWARF_FRAME_REGNUM
402 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
403 #endif
405 /* Hook used by __throw. */
408 expand_builtin_dwarf_sp_column (void)
410 return GEN_INT (DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
413 /* Return a pointer to a copy of the section string name S with all
414 attributes stripped off, and an asterisk prepended (for assemble_name). */
416 static inline char *
417 stripattributes (const char *s)
419 char *stripped = XNEWVEC (char, strlen (s) + 2);
420 char *p = stripped;
422 *p++ = '*';
424 while (*s && *s != ',')
425 *p++ = *s++;
427 *p = '\0';
428 return stripped;
431 /* Generate code to initialize the register size table. */
433 void
434 expand_builtin_init_dwarf_reg_sizes (tree address)
436 int i;
437 enum machine_mode mode = TYPE_MODE (char_type_node);
438 rtx addr = expand_normal (address);
439 rtx mem = gen_rtx_MEM (BLKmode, addr);
440 bool wrote_return_column = false;
442 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
443 if (DWARF_FRAME_REGNUM (i) < DWARF_FRAME_REGISTERS)
445 HOST_WIDE_INT offset = DWARF_FRAME_REGNUM (i) * GET_MODE_SIZE (mode);
446 enum machine_mode save_mode = reg_raw_mode[i];
447 HOST_WIDE_INT size;
449 if (HARD_REGNO_CALL_PART_CLOBBERED (i, save_mode))
450 save_mode = choose_hard_reg_mode (i, 1, true);
451 if (DWARF_FRAME_REGNUM (i) == DWARF_FRAME_RETURN_COLUMN)
453 if (save_mode == VOIDmode)
454 continue;
455 wrote_return_column = true;
457 size = GET_MODE_SIZE (save_mode);
458 if (offset < 0)
459 continue;
461 emit_move_insn (adjust_address (mem, mode, offset),
462 gen_int_mode (size, mode));
465 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
466 gcc_assert (wrote_return_column);
467 i = DWARF_ALT_FRAME_RETURN_COLUMN;
468 wrote_return_column = false;
469 #else
470 i = DWARF_FRAME_RETURN_COLUMN;
471 #endif
473 if (! wrote_return_column)
475 enum machine_mode save_mode = Pmode;
476 HOST_WIDE_INT offset = i * GET_MODE_SIZE (mode);
477 HOST_WIDE_INT size = GET_MODE_SIZE (save_mode);
478 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
482 /* Convert a DWARF call frame info. operation to its string name */
484 static const char *
485 dwarf_cfi_name (unsigned int cfi_opc)
487 switch (cfi_opc)
489 case DW_CFA_advance_loc:
490 return "DW_CFA_advance_loc";
491 case DW_CFA_offset:
492 return "DW_CFA_offset";
493 case DW_CFA_restore:
494 return "DW_CFA_restore";
495 case DW_CFA_nop:
496 return "DW_CFA_nop";
497 case DW_CFA_set_loc:
498 return "DW_CFA_set_loc";
499 case DW_CFA_advance_loc1:
500 return "DW_CFA_advance_loc1";
501 case DW_CFA_advance_loc2:
502 return "DW_CFA_advance_loc2";
503 case DW_CFA_advance_loc4:
504 return "DW_CFA_advance_loc4";
505 case DW_CFA_offset_extended:
506 return "DW_CFA_offset_extended";
507 case DW_CFA_restore_extended:
508 return "DW_CFA_restore_extended";
509 case DW_CFA_undefined:
510 return "DW_CFA_undefined";
511 case DW_CFA_same_value:
512 return "DW_CFA_same_value";
513 case DW_CFA_register:
514 return "DW_CFA_register";
515 case DW_CFA_remember_state:
516 return "DW_CFA_remember_state";
517 case DW_CFA_restore_state:
518 return "DW_CFA_restore_state";
519 case DW_CFA_def_cfa:
520 return "DW_CFA_def_cfa";
521 case DW_CFA_def_cfa_register:
522 return "DW_CFA_def_cfa_register";
523 case DW_CFA_def_cfa_offset:
524 return "DW_CFA_def_cfa_offset";
526 /* DWARF 3 */
527 case DW_CFA_def_cfa_expression:
528 return "DW_CFA_def_cfa_expression";
529 case DW_CFA_expression:
530 return "DW_CFA_expression";
531 case DW_CFA_offset_extended_sf:
532 return "DW_CFA_offset_extended_sf";
533 case DW_CFA_def_cfa_sf:
534 return "DW_CFA_def_cfa_sf";
535 case DW_CFA_def_cfa_offset_sf:
536 return "DW_CFA_def_cfa_offset_sf";
538 /* SGI/MIPS specific */
539 case DW_CFA_MIPS_advance_loc8:
540 return "DW_CFA_MIPS_advance_loc8";
542 /* GNU extensions */
543 case DW_CFA_GNU_window_save:
544 return "DW_CFA_GNU_window_save";
545 case DW_CFA_GNU_args_size:
546 return "DW_CFA_GNU_args_size";
547 case DW_CFA_GNU_negative_offset_extended:
548 return "DW_CFA_GNU_negative_offset_extended";
550 default:
551 return "DW_CFA_<unknown>";
555 /* Return a pointer to a newly allocated Call Frame Instruction. */
557 static inline dw_cfi_ref
558 new_cfi (void)
560 dw_cfi_ref cfi = ggc_alloc (sizeof (dw_cfi_node));
562 cfi->dw_cfi_next = NULL;
563 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
564 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
566 return cfi;
569 /* Add a Call Frame Instruction to list of instructions. */
571 static inline void
572 add_cfi (dw_cfi_ref *list_head, dw_cfi_ref cfi)
574 dw_cfi_ref *p;
576 /* Find the end of the chain. */
577 for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
580 *p = cfi;
583 /* Generate a new label for the CFI info to refer to. */
585 char *
586 dwarf2out_cfi_label (void)
588 static char label[20];
590 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", dwarf2out_cfi_label_num++);
591 ASM_OUTPUT_LABEL (asm_out_file, label);
592 return label;
595 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
596 or to the CIE if LABEL is NULL. */
598 static void
599 add_fde_cfi (const char *label, dw_cfi_ref cfi)
601 if (label)
603 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
605 if (*label == 0)
606 label = dwarf2out_cfi_label ();
608 if (fde->dw_fde_current_label == NULL
609 || strcmp (label, fde->dw_fde_current_label) != 0)
611 dw_cfi_ref xcfi;
613 fde->dw_fde_current_label = label = xstrdup (label);
615 /* Set the location counter to the new label. */
616 xcfi = new_cfi ();
617 xcfi->dw_cfi_opc = DW_CFA_advance_loc4;
618 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
619 add_cfi (&fde->dw_fde_cfi, xcfi);
622 add_cfi (&fde->dw_fde_cfi, cfi);
625 else
626 add_cfi (&cie_cfi_head, cfi);
629 /* Subroutine of lookup_cfa. */
631 static void
632 lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc)
634 switch (cfi->dw_cfi_opc)
636 case DW_CFA_def_cfa_offset:
637 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
638 break;
639 case DW_CFA_def_cfa_offset_sf:
640 loc->offset
641 = cfi->dw_cfi_oprnd1.dw_cfi_offset * DWARF_CIE_DATA_ALIGNMENT;
642 break;
643 case DW_CFA_def_cfa_register:
644 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
645 break;
646 case DW_CFA_def_cfa:
647 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
648 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
649 break;
650 case DW_CFA_def_cfa_sf:
651 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
652 loc->offset
653 = cfi->dw_cfi_oprnd2.dw_cfi_offset * DWARF_CIE_DATA_ALIGNMENT;
654 break;
655 case DW_CFA_def_cfa_expression:
656 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
657 break;
658 default:
659 break;
663 /* Find the previous value for the CFA. */
665 static void
666 lookup_cfa (dw_cfa_location *loc)
668 dw_cfi_ref cfi;
670 loc->reg = INVALID_REGNUM;
671 loc->offset = 0;
672 loc->indirect = 0;
673 loc->base_offset = 0;
675 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
676 lookup_cfa_1 (cfi, loc);
678 if (fde_table_in_use)
680 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
681 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
682 lookup_cfa_1 (cfi, loc);
686 /* The current rule for calculating the DWARF2 canonical frame address. */
687 static dw_cfa_location cfa;
689 /* The register used for saving registers to the stack, and its offset
690 from the CFA. */
691 static dw_cfa_location cfa_store;
693 /* The running total of the size of arguments pushed onto the stack. */
694 static HOST_WIDE_INT args_size;
696 /* The last args_size we actually output. */
697 static HOST_WIDE_INT old_args_size;
699 /* Entry point to update the canonical frame address (CFA).
700 LABEL is passed to add_fde_cfi. The value of CFA is now to be
701 calculated from REG+OFFSET. */
703 void
704 dwarf2out_def_cfa (const char *label, unsigned int reg, HOST_WIDE_INT offset)
706 dw_cfa_location loc;
707 loc.indirect = 0;
708 loc.base_offset = 0;
709 loc.reg = reg;
710 loc.offset = offset;
711 def_cfa_1 (label, &loc);
714 /* Determine if two dw_cfa_location structures define the same data. */
716 static bool
717 cfa_equal_p (const dw_cfa_location *loc1, const dw_cfa_location *loc2)
719 return (loc1->reg == loc2->reg
720 && loc1->offset == loc2->offset
721 && loc1->indirect == loc2->indirect
722 && (loc1->indirect == 0
723 || loc1->base_offset == loc2->base_offset));
726 /* This routine does the actual work. The CFA is now calculated from
727 the dw_cfa_location structure. */
729 static void
730 def_cfa_1 (const char *label, dw_cfa_location *loc_p)
732 dw_cfi_ref cfi;
733 dw_cfa_location old_cfa, loc;
735 cfa = *loc_p;
736 loc = *loc_p;
738 if (cfa_store.reg == loc.reg && loc.indirect == 0)
739 cfa_store.offset = loc.offset;
741 loc.reg = DWARF_FRAME_REGNUM (loc.reg);
742 lookup_cfa (&old_cfa);
744 /* If nothing changed, no need to issue any call frame instructions. */
745 if (cfa_equal_p (&loc, &old_cfa))
746 return;
748 cfi = new_cfi ();
750 if (loc.reg == old_cfa.reg && !loc.indirect)
752 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction, indicating
753 the CFA register did not change but the offset did. */
754 if (loc.offset < 0)
756 HOST_WIDE_INT f_offset = loc.offset / DWARF_CIE_DATA_ALIGNMENT;
757 gcc_assert (f_offset * DWARF_CIE_DATA_ALIGNMENT == loc.offset);
759 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset_sf;
760 cfi->dw_cfi_oprnd1.dw_cfi_offset = f_offset;
762 else
764 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
765 cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
769 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
770 else if (loc.offset == old_cfa.offset
771 && old_cfa.reg != INVALID_REGNUM
772 && !loc.indirect)
774 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
775 indicating the CFA register has changed to <register> but the
776 offset has not changed. */
777 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
778 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
780 #endif
782 else if (loc.indirect == 0)
784 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
785 indicating the CFA register has changed to <register> with
786 the specified offset. */
787 if (loc.offset < 0)
789 HOST_WIDE_INT f_offset = loc.offset / DWARF_CIE_DATA_ALIGNMENT;
790 gcc_assert (f_offset * DWARF_CIE_DATA_ALIGNMENT == loc.offset);
792 cfi->dw_cfi_opc = DW_CFA_def_cfa_sf;
793 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
794 cfi->dw_cfi_oprnd2.dw_cfi_offset = f_offset;
796 else
798 cfi->dw_cfi_opc = DW_CFA_def_cfa;
799 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
800 cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
803 else
805 /* Construct a DW_CFA_def_cfa_expression instruction to
806 calculate the CFA using a full location expression since no
807 register-offset pair is available. */
808 struct dw_loc_descr_struct *loc_list;
810 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
811 loc_list = build_cfa_loc (&loc);
812 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
815 add_fde_cfi (label, cfi);
818 /* Add the CFI for saving a register. REG is the CFA column number.
819 LABEL is passed to add_fde_cfi.
820 If SREG is -1, the register is saved at OFFSET from the CFA;
821 otherwise it is saved in SREG. */
823 static void
824 reg_save (const char *label, unsigned int reg, unsigned int sreg, HOST_WIDE_INT offset)
826 dw_cfi_ref cfi = new_cfi ();
828 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
830 if (sreg == INVALID_REGNUM)
832 if (reg & ~0x3f)
833 /* The register number won't fit in 6 bits, so we have to use
834 the long form. */
835 cfi->dw_cfi_opc = DW_CFA_offset_extended;
836 else
837 cfi->dw_cfi_opc = DW_CFA_offset;
839 #ifdef ENABLE_CHECKING
841 /* If we get an offset that is not a multiple of
842 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
843 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
844 description. */
845 HOST_WIDE_INT check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;
847 gcc_assert (check_offset * DWARF_CIE_DATA_ALIGNMENT == offset);
849 #endif
850 offset /= DWARF_CIE_DATA_ALIGNMENT;
851 if (offset < 0)
852 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
854 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
856 else if (sreg == reg)
857 cfi->dw_cfi_opc = DW_CFA_same_value;
858 else
860 cfi->dw_cfi_opc = DW_CFA_register;
861 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
864 add_fde_cfi (label, cfi);
867 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
868 This CFI tells the unwinder that it needs to restore the window registers
869 from the previous frame's window save area.
871 ??? Perhaps we should note in the CIE where windows are saved (instead of
872 assuming 0(cfa)) and what registers are in the window. */
874 void
875 dwarf2out_window_save (const char *label)
877 dw_cfi_ref cfi = new_cfi ();
879 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
880 add_fde_cfi (label, cfi);
883 /* Add a CFI to update the running total of the size of arguments
884 pushed onto the stack. */
886 void
887 dwarf2out_args_size (const char *label, HOST_WIDE_INT size)
889 dw_cfi_ref cfi;
891 if (size == old_args_size)
892 return;
894 old_args_size = size;
896 cfi = new_cfi ();
897 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
898 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
899 add_fde_cfi (label, cfi);
902 /* Entry point for saving a register to the stack. REG is the GCC register
903 number. LABEL and OFFSET are passed to reg_save. */
905 void
906 dwarf2out_reg_save (const char *label, unsigned int reg, HOST_WIDE_INT offset)
908 reg_save (label, DWARF_FRAME_REGNUM (reg), INVALID_REGNUM, offset);
911 /* Entry point for saving the return address in the stack.
912 LABEL and OFFSET are passed to reg_save. */
914 void
915 dwarf2out_return_save (const char *label, HOST_WIDE_INT offset)
917 reg_save (label, DWARF_FRAME_RETURN_COLUMN, INVALID_REGNUM, offset);
920 /* Entry point for saving the return address in a register.
921 LABEL and SREG are passed to reg_save. */
923 void
924 dwarf2out_return_reg (const char *label, unsigned int sreg)
926 reg_save (label, DWARF_FRAME_RETURN_COLUMN, DWARF_FRAME_REGNUM (sreg), 0);
929 /* Record the initial position of the return address. RTL is
930 INCOMING_RETURN_ADDR_RTX. */
932 static void
933 initial_return_save (rtx rtl)
935 unsigned int reg = INVALID_REGNUM;
936 HOST_WIDE_INT offset = 0;
938 switch (GET_CODE (rtl))
940 case REG:
941 /* RA is in a register. */
942 reg = DWARF_FRAME_REGNUM (REGNO (rtl));
943 break;
945 case MEM:
946 /* RA is on the stack. */
947 rtl = XEXP (rtl, 0);
948 switch (GET_CODE (rtl))
950 case REG:
951 gcc_assert (REGNO (rtl) == STACK_POINTER_REGNUM);
952 offset = 0;
953 break;
955 case PLUS:
956 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
957 offset = INTVAL (XEXP (rtl, 1));
958 break;
960 case MINUS:
961 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
962 offset = -INTVAL (XEXP (rtl, 1));
963 break;
965 default:
966 gcc_unreachable ();
969 break;
971 case PLUS:
972 /* The return address is at some offset from any value we can
973 actually load. For instance, on the SPARC it is in %i7+8. Just
974 ignore the offset for now; it doesn't matter for unwinding frames. */
975 gcc_assert (GET_CODE (XEXP (rtl, 1)) == CONST_INT);
976 initial_return_save (XEXP (rtl, 0));
977 return;
979 default:
980 gcc_unreachable ();
983 if (reg != DWARF_FRAME_RETURN_COLUMN)
984 reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
987 /* Given a SET, calculate the amount of stack adjustment it
988 contains. */
990 static HOST_WIDE_INT
991 stack_adjust_offset (rtx pattern)
993 rtx src = SET_SRC (pattern);
994 rtx dest = SET_DEST (pattern);
995 HOST_WIDE_INT offset = 0;
996 enum rtx_code code;
998 if (dest == stack_pointer_rtx)
1000 /* (set (reg sp) (plus (reg sp) (const_int))) */
1001 code = GET_CODE (src);
1002 if (! (code == PLUS || code == MINUS)
1003 || XEXP (src, 0) != stack_pointer_rtx
1004 || GET_CODE (XEXP (src, 1)) != CONST_INT)
1005 return 0;
1007 offset = INTVAL (XEXP (src, 1));
1008 if (code == PLUS)
1009 offset = -offset;
1011 else if (MEM_P (dest))
1013 /* (set (mem (pre_dec (reg sp))) (foo)) */
1014 src = XEXP (dest, 0);
1015 code = GET_CODE (src);
1017 switch (code)
1019 case PRE_MODIFY:
1020 case POST_MODIFY:
1021 if (XEXP (src, 0) == stack_pointer_rtx)
1023 rtx val = XEXP (XEXP (src, 1), 1);
1024 /* We handle only adjustments by constant amount. */
1025 gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS
1026 && GET_CODE (val) == CONST_INT);
1027 offset = -INTVAL (val);
1028 break;
1030 return 0;
1032 case PRE_DEC:
1033 case POST_DEC:
1034 if (XEXP (src, 0) == stack_pointer_rtx)
1036 offset = GET_MODE_SIZE (GET_MODE (dest));
1037 break;
1039 return 0;
1041 case PRE_INC:
1042 case POST_INC:
1043 if (XEXP (src, 0) == stack_pointer_rtx)
1045 offset = -GET_MODE_SIZE (GET_MODE (dest));
1046 break;
1048 return 0;
1050 default:
1051 return 0;
1054 else
1055 return 0;
1057 return offset;
1060 /* Check INSN to see if it looks like a push or a stack adjustment, and
1061 make a note of it if it does. EH uses this information to find out how
1062 much extra space it needs to pop off the stack. */
1064 static void
1065 dwarf2out_stack_adjust (rtx insn, bool after_p)
1067 HOST_WIDE_INT offset;
1068 const char *label;
1069 int i;
1071 /* Don't handle epilogues at all. Certainly it would be wrong to do so
1072 with this function. Proper support would require all frame-related
1073 insns to be marked, and to be able to handle saving state around
1074 epilogues textually in the middle of the function. */
1075 if (prologue_epilogue_contains (insn) || sibcall_epilogue_contains (insn))
1076 return;
1078 /* If only calls can throw, and we have a frame pointer,
1079 save up adjustments until we see the CALL_INSN. */
1080 if (!flag_asynchronous_unwind_tables && cfa.reg != STACK_POINTER_REGNUM)
1082 if (CALL_P (insn) && !after_p)
1084 /* Extract the size of the args from the CALL rtx itself. */
1085 insn = PATTERN (insn);
1086 if (GET_CODE (insn) == PARALLEL)
1087 insn = XVECEXP (insn, 0, 0);
1088 if (GET_CODE (insn) == SET)
1089 insn = SET_SRC (insn);
1090 gcc_assert (GET_CODE (insn) == CALL);
1091 dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
1093 return;
1096 if (CALL_P (insn) && !after_p)
1098 if (!flag_asynchronous_unwind_tables)
1099 dwarf2out_args_size ("", args_size);
1100 return;
1102 else if (BARRIER_P (insn))
1104 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1105 the compiler will have already emitted a stack adjustment, but
1106 doesn't bother for calls to noreturn functions. */
1107 #ifdef STACK_GROWS_DOWNWARD
1108 offset = -args_size;
1109 #else
1110 offset = args_size;
1111 #endif
1113 else if (GET_CODE (PATTERN (insn)) == SET)
1114 offset = stack_adjust_offset (PATTERN (insn));
1115 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1116 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1118 /* There may be stack adjustments inside compound insns. Search
1119 for them. */
1120 for (offset = 0, i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1121 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1122 offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i));
1124 else
1125 return;
1127 if (offset == 0)
1128 return;
1130 if (cfa.reg == STACK_POINTER_REGNUM)
1131 cfa.offset += offset;
1133 #ifndef STACK_GROWS_DOWNWARD
1134 offset = -offset;
1135 #endif
1137 args_size += offset;
1138 if (args_size < 0)
1139 args_size = 0;
1141 label = dwarf2out_cfi_label ();
1142 def_cfa_1 (label, &cfa);
1143 if (flag_asynchronous_unwind_tables)
1144 dwarf2out_args_size (label, args_size);
1147 #endif
1149 /* We delay emitting a register save until either (a) we reach the end
1150 of the prologue or (b) the register is clobbered. This clusters
1151 register saves so that there are fewer pc advances. */
1153 struct queued_reg_save GTY(())
1155 struct queued_reg_save *next;
1156 rtx reg;
1157 HOST_WIDE_INT cfa_offset;
1158 rtx saved_reg;
1161 static GTY(()) struct queued_reg_save *queued_reg_saves;
1163 /* The caller's ORIG_REG is saved in SAVED_IN_REG. */
1164 struct reg_saved_in_data GTY(()) {
1165 rtx orig_reg;
1166 rtx saved_in_reg;
1169 /* A list of registers saved in other registers.
1170 The list intentionally has a small maximum capacity of 4; if your
1171 port needs more than that, you might consider implementing a
1172 more efficient data structure. */
1173 static GTY(()) struct reg_saved_in_data regs_saved_in_regs[4];
1174 static GTY(()) size_t num_regs_saved_in_regs;
1176 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1177 static const char *last_reg_save_label;
1179 /* Add an entry to QUEUED_REG_SAVES saying that REG is now saved at
1180 SREG, or if SREG is NULL then it is saved at OFFSET to the CFA. */
1182 static void
1183 queue_reg_save (const char *label, rtx reg, rtx sreg, HOST_WIDE_INT offset)
1185 struct queued_reg_save *q;
1187 /* Duplicates waste space, but it's also necessary to remove them
1188 for correctness, since the queue gets output in reverse
1189 order. */
1190 for (q = queued_reg_saves; q != NULL; q = q->next)
1191 if (REGNO (q->reg) == REGNO (reg))
1192 break;
1194 if (q == NULL)
1196 q = ggc_alloc (sizeof (*q));
1197 q->next = queued_reg_saves;
1198 queued_reg_saves = q;
1201 q->reg = reg;
1202 q->cfa_offset = offset;
1203 q->saved_reg = sreg;
1205 last_reg_save_label = label;
1208 /* Output all the entries in QUEUED_REG_SAVES. */
1210 static void
1211 flush_queued_reg_saves (void)
1213 struct queued_reg_save *q;
1215 for (q = queued_reg_saves; q; q = q->next)
1217 size_t i;
1218 unsigned int reg, sreg;
1220 for (i = 0; i < num_regs_saved_in_regs; i++)
1221 if (REGNO (regs_saved_in_regs[i].orig_reg) == REGNO (q->reg))
1222 break;
1223 if (q->saved_reg && i == num_regs_saved_in_regs)
1225 gcc_assert (i != ARRAY_SIZE (regs_saved_in_regs));
1226 num_regs_saved_in_regs++;
1228 if (i != num_regs_saved_in_regs)
1230 regs_saved_in_regs[i].orig_reg = q->reg;
1231 regs_saved_in_regs[i].saved_in_reg = q->saved_reg;
1234 reg = DWARF_FRAME_REGNUM (REGNO (q->reg));
1235 if (q->saved_reg)
1236 sreg = DWARF_FRAME_REGNUM (REGNO (q->saved_reg));
1237 else
1238 sreg = INVALID_REGNUM;
1239 reg_save (last_reg_save_label, reg, sreg, q->cfa_offset);
1242 queued_reg_saves = NULL;
1243 last_reg_save_label = NULL;
1246 /* Does INSN clobber any register which QUEUED_REG_SAVES lists a saved
1247 location for? Or, does it clobber a register which we've previously
1248 said that some other register is saved in, and for which we now
1249 have a new location for? */
1251 static bool
1252 clobbers_queued_reg_save (rtx insn)
1254 struct queued_reg_save *q;
1256 for (q = queued_reg_saves; q; q = q->next)
1258 size_t i;
1259 if (modified_in_p (q->reg, insn))
1260 return true;
1261 for (i = 0; i < num_regs_saved_in_regs; i++)
1262 if (REGNO (q->reg) == REGNO (regs_saved_in_regs[i].orig_reg)
1263 && modified_in_p (regs_saved_in_regs[i].saved_in_reg, insn))
1264 return true;
1267 return false;
1270 /* Entry point for saving the first register into the second. */
1272 void
1273 dwarf2out_reg_save_reg (const char *label, rtx reg, rtx sreg)
1275 size_t i;
1276 unsigned int regno, sregno;
1278 for (i = 0; i < num_regs_saved_in_regs; i++)
1279 if (REGNO (regs_saved_in_regs[i].orig_reg) == REGNO (reg))
1280 break;
1281 if (i == num_regs_saved_in_regs)
1283 gcc_assert (i != ARRAY_SIZE (regs_saved_in_regs));
1284 num_regs_saved_in_regs++;
1286 regs_saved_in_regs[i].orig_reg = reg;
1287 regs_saved_in_regs[i].saved_in_reg = sreg;
1289 regno = DWARF_FRAME_REGNUM (REGNO (reg));
1290 sregno = DWARF_FRAME_REGNUM (REGNO (sreg));
1291 reg_save (label, regno, sregno, 0);
1294 /* What register, if any, is currently saved in REG? */
1296 static rtx
1297 reg_saved_in (rtx reg)
1299 unsigned int regn = REGNO (reg);
1300 size_t i;
1301 struct queued_reg_save *q;
1303 for (q = queued_reg_saves; q; q = q->next)
1304 if (q->saved_reg && regn == REGNO (q->saved_reg))
1305 return q->reg;
1307 for (i = 0; i < num_regs_saved_in_regs; i++)
1308 if (regs_saved_in_regs[i].saved_in_reg
1309 && regn == REGNO (regs_saved_in_regs[i].saved_in_reg))
1310 return regs_saved_in_regs[i].orig_reg;
1312 return NULL_RTX;
1316 /* A temporary register holding an integral value used in adjusting SP
1317 or setting up the store_reg. The "offset" field holds the integer
1318 value, not an offset. */
1319 static dw_cfa_location cfa_temp;
1321 /* Record call frame debugging information for an expression EXPR,
1322 which either sets SP or FP (adjusting how we calculate the frame
1323 address) or saves a register to the stack or another register.
1324 LABEL indicates the address of EXPR.
1326 This function encodes a state machine mapping rtxes to actions on
1327 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1328 users need not read the source code.
1330 The High-Level Picture
1332 Changes in the register we use to calculate the CFA: Currently we
1333 assume that if you copy the CFA register into another register, we
1334 should take the other one as the new CFA register; this seems to
1335 work pretty well. If it's wrong for some target, it's simple
1336 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1338 Changes in the register we use for saving registers to the stack:
1339 This is usually SP, but not always. Again, we deduce that if you
1340 copy SP into another register (and SP is not the CFA register),
1341 then the new register is the one we will be using for register
1342 saves. This also seems to work.
1344 Register saves: There's not much guesswork about this one; if
1345 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1346 register save, and the register used to calculate the destination
1347 had better be the one we think we're using for this purpose.
1348 It's also assumed that a copy from a call-saved register to another
1349 register is saving that register if RTX_FRAME_RELATED_P is set on
1350 that instruction. If the copy is from a call-saved register to
1351 the *same* register, that means that the register is now the same
1352 value as in the caller.
1354 Except: If the register being saved is the CFA register, and the
1355 offset is nonzero, we are saving the CFA, so we assume we have to
1356 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1357 the intent is to save the value of SP from the previous frame.
1359 In addition, if a register has previously been saved to a different
1360 register,
1362 Invariants / Summaries of Rules
1364 cfa current rule for calculating the CFA. It usually
1365 consists of a register and an offset.
1366 cfa_store register used by prologue code to save things to the stack
1367 cfa_store.offset is the offset from the value of
1368 cfa_store.reg to the actual CFA
1369 cfa_temp register holding an integral value. cfa_temp.offset
1370 stores the value, which will be used to adjust the
1371 stack pointer. cfa_temp is also used like cfa_store,
1372 to track stores to the stack via fp or a temp reg.
1374 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1375 with cfa.reg as the first operand changes the cfa.reg and its
1376 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1377 cfa_temp.offset.
1379 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1380 expression yielding a constant. This sets cfa_temp.reg
1381 and cfa_temp.offset.
1383 Rule 5: Create a new register cfa_store used to save items to the
1384 stack.
1386 Rules 10-14: Save a register to the stack. Define offset as the
1387 difference of the original location and cfa_store's
1388 location (or cfa_temp's location if cfa_temp is used).
1390 The Rules
1392 "{a,b}" indicates a choice of a xor b.
1393 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1395 Rule 1:
1396 (set <reg1> <reg2>:cfa.reg)
1397 effects: cfa.reg = <reg1>
1398 cfa.offset unchanged
1399 cfa_temp.reg = <reg1>
1400 cfa_temp.offset = cfa.offset
1402 Rule 2:
1403 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1404 {<const_int>,<reg>:cfa_temp.reg}))
1405 effects: cfa.reg = sp if fp used
1406 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1407 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1408 if cfa_store.reg==sp
1410 Rule 3:
1411 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1412 effects: cfa.reg = fp
1413 cfa_offset += +/- <const_int>
1415 Rule 4:
1416 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1417 constraints: <reg1> != fp
1418 <reg1> != sp
1419 effects: cfa.reg = <reg1>
1420 cfa_temp.reg = <reg1>
1421 cfa_temp.offset = cfa.offset
1423 Rule 5:
1424 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1425 constraints: <reg1> != fp
1426 <reg1> != sp
1427 effects: cfa_store.reg = <reg1>
1428 cfa_store.offset = cfa.offset - cfa_temp.offset
1430 Rule 6:
1431 (set <reg> <const_int>)
1432 effects: cfa_temp.reg = <reg>
1433 cfa_temp.offset = <const_int>
1435 Rule 7:
1436 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1437 effects: cfa_temp.reg = <reg1>
1438 cfa_temp.offset |= <const_int>
1440 Rule 8:
1441 (set <reg> (high <exp>))
1442 effects: none
1444 Rule 9:
1445 (set <reg> (lo_sum <exp> <const_int>))
1446 effects: cfa_temp.reg = <reg>
1447 cfa_temp.offset = <const_int>
1449 Rule 10:
1450 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1451 effects: cfa_store.offset -= <const_int>
1452 cfa.offset = cfa_store.offset if cfa.reg == sp
1453 cfa.reg = sp
1454 cfa.base_offset = -cfa_store.offset
1456 Rule 11:
1457 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1458 effects: cfa_store.offset += -/+ mode_size(mem)
1459 cfa.offset = cfa_store.offset if cfa.reg == sp
1460 cfa.reg = sp
1461 cfa.base_offset = -cfa_store.offset
1463 Rule 12:
1464 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1466 <reg2>)
1467 effects: cfa.reg = <reg1>
1468 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1470 Rule 13:
1471 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1472 effects: cfa.reg = <reg1>
1473 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1475 Rule 14:
1476 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1477 effects: cfa.reg = <reg1>
1478 cfa.base_offset = -cfa_temp.offset
1479 cfa_temp.offset -= mode_size(mem)
1481   Rule 15:
1482   (set <reg> {unspec, unspec_volatile})
1483   effects: target-dependent */
1485 static void
1486 dwarf2out_frame_debug_expr (rtx expr, const char *label)
1488 rtx src, dest;
1489 HOST_WIDE_INT offset;
1491 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1492 the PARALLEL independently. The first element is always processed if
1493 it is a SET. This is for backward compatibility. Other elements
1494 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1495 flag is set in them. */
1496 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1498 int par_index;
1499 int limit = XVECLEN (expr, 0);
1501 for (par_index = 0; par_index < limit; par_index++)
1502 if (GET_CODE (XVECEXP (expr, 0, par_index)) == SET
1503 && (RTX_FRAME_RELATED_P (XVECEXP (expr, 0, par_index))
1504 || par_index == 0))
1505 dwarf2out_frame_debug_expr (XVECEXP (expr, 0, par_index), label);
1507 return;
1510 gcc_assert (GET_CODE (expr) == SET);
1512 src = SET_SRC (expr);
1513 dest = SET_DEST (expr);
1515 if (REG_P (src))
1517 rtx rsi = reg_saved_in (src);
1518 if (rsi)
1519 src = rsi;
1522 switch (GET_CODE (dest))
1524 case REG:
1525 switch (GET_CODE (src))
1527 /* Setting FP from SP. */
1528 case REG:
1529 if (cfa.reg == (unsigned) REGNO (src))
1531 /* Rule 1 */
1532 /* Update the CFA rule wrt SP or FP. Make sure src is
1533 relative to the current CFA register.
1535 We used to require that dest be either SP or FP, but the
1536 ARM copies SP to a temporary register, and from there to
1537 FP. So we just rely on the backends to only set
1538 RTX_FRAME_RELATED_P on appropriate insns. */
1539 cfa.reg = REGNO (dest);
1540 cfa_temp.reg = cfa.reg;
1541 cfa_temp.offset = cfa.offset;
1543 else
1545 /* Saving a register in a register. */
1546 gcc_assert (!fixed_regs [REGNO (dest)]
1547 /* For the SPARC and its register window. */
1548 || (DWARF_FRAME_REGNUM (REGNO (src))
1549 == DWARF_FRAME_RETURN_COLUMN));
1550 queue_reg_save (label, src, dest, 0);
1552 break;
1554 case PLUS:
1555 case MINUS:
1556 case LO_SUM:
1557 if (dest == stack_pointer_rtx)
1559 /* Rule 2 */
1560 /* Adjusting SP. */
1561 switch (GET_CODE (XEXP (src, 1)))
1563 case CONST_INT:
1564 offset = INTVAL (XEXP (src, 1));
1565 break;
1566 case REG:
1567 gcc_assert ((unsigned) REGNO (XEXP (src, 1))
1568 == cfa_temp.reg);
1569 offset = cfa_temp.offset;
1570 break;
1571 default:
1572 gcc_unreachable ();
1575 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1577 /* Restoring SP from FP in the epilogue. */
1578 gcc_assert (cfa.reg == (unsigned) HARD_FRAME_POINTER_REGNUM);
1579 cfa.reg = STACK_POINTER_REGNUM;
1581 else if (GET_CODE (src) == LO_SUM)
1582 /* Assume we've set the source reg of the LO_SUM from sp. */
1584 else
1585 gcc_assert (XEXP (src, 0) == stack_pointer_rtx);
1587 if (GET_CODE (src) != MINUS)
1588 offset = -offset;
1589 if (cfa.reg == STACK_POINTER_REGNUM)
1590 cfa.offset += offset;
1591 if (cfa_store.reg == STACK_POINTER_REGNUM)
1592 cfa_store.offset += offset;
1594 else if (dest == hard_frame_pointer_rtx)
1596 /* Rule 3 */
1597 /* Either setting the FP from an offset of the SP,
1598 or adjusting the FP */
1599 gcc_assert (frame_pointer_needed);
1601 gcc_assert (REG_P (XEXP (src, 0))
1602 && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
1603 && GET_CODE (XEXP (src, 1)) == CONST_INT);
1604 offset = INTVAL (XEXP (src, 1));
1605 if (GET_CODE (src) != MINUS)
1606 offset = -offset;
1607 cfa.offset += offset;
1608 cfa.reg = HARD_FRAME_POINTER_REGNUM;
1610 else
1612 gcc_assert (GET_CODE (src) != MINUS);
1614 /* Rule 4 */
1615 if (REG_P (XEXP (src, 0))
1616 && REGNO (XEXP (src, 0)) == cfa.reg
1617 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1619 /* Setting a temporary CFA register that will be copied
1620 into the FP later on. */
1621 offset = - INTVAL (XEXP (src, 1));
1622 cfa.offset += offset;
1623 cfa.reg = REGNO (dest);
1624 /* Or used to save regs to the stack. */
1625 cfa_temp.reg = cfa.reg;
1626 cfa_temp.offset = cfa.offset;
1629 /* Rule 5 */
1630 else if (REG_P (XEXP (src, 0))
1631 && REGNO (XEXP (src, 0)) == cfa_temp.reg
1632 && XEXP (src, 1) == stack_pointer_rtx)
1634 /* Setting a scratch register that we will use instead
1635 of SP for saving registers to the stack. */
1636 gcc_assert (cfa.reg == STACK_POINTER_REGNUM);
1637 cfa_store.reg = REGNO (dest);
1638 cfa_store.offset = cfa.offset - cfa_temp.offset;
1641 /* Rule 9 */
1642 else if (GET_CODE (src) == LO_SUM
1643 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1645 cfa_temp.reg = REGNO (dest);
1646 cfa_temp.offset = INTVAL (XEXP (src, 1));
1648 else
1649 gcc_unreachable ();
1651 break;
1653 /* Rule 6 */
1654 case CONST_INT:
1655 cfa_temp.reg = REGNO (dest);
1656 cfa_temp.offset = INTVAL (src);
1657 break;
1659 /* Rule 7 */
1660 case IOR:
1661 gcc_assert (REG_P (XEXP (src, 0))
1662 && (unsigned) REGNO (XEXP (src, 0)) == cfa_temp.reg
1663 && GET_CODE (XEXP (src, 1)) == CONST_INT);
1665 if ((unsigned) REGNO (dest) != cfa_temp.reg)
1666 cfa_temp.reg = REGNO (dest);
1667 cfa_temp.offset |= INTVAL (XEXP (src, 1));
1668 break;
1670 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1671 which will fill in all of the bits. */
1672 /* Rule 8 */
1673 case HIGH:
1674 break;
1676 /* Rule 15 */
1677 case UNSPEC:
1678 case UNSPEC_VOLATILE:
1679 gcc_assert (targetm.dwarf_handle_frame_unspec);
1680 targetm.dwarf_handle_frame_unspec (label, expr, XINT (src, 1));
1681 return;
1683 default:
1684 gcc_unreachable ();
1687 def_cfa_1 (label, &cfa);
1688 break;
1690 case MEM:
1691 gcc_assert (REG_P (src));
1693 /* Saving a register to the stack. Make sure dest is relative to the
1694 CFA register. */
1695 switch (GET_CODE (XEXP (dest, 0)))
1697 /* Rule 10 */
1698 /* With a push. */
1699 case PRE_MODIFY:
1700 /* We can't handle variable size modifications. */
1701 gcc_assert (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1))
1702 == CONST_INT);
1703 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1705 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1706 && cfa_store.reg == STACK_POINTER_REGNUM);
1708 cfa_store.offset += offset;
1709 if (cfa.reg == STACK_POINTER_REGNUM)
1710 cfa.offset = cfa_store.offset;
1712 offset = -cfa_store.offset;
1713 break;
1715 /* Rule 11 */
1716 case PRE_INC:
1717 case PRE_DEC:
1718 offset = GET_MODE_SIZE (GET_MODE (dest));
1719 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1720 offset = -offset;
1722 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1723 && cfa_store.reg == STACK_POINTER_REGNUM);
1725 cfa_store.offset += offset;
1726 if (cfa.reg == STACK_POINTER_REGNUM)
1727 cfa.offset = cfa_store.offset;
1729 offset = -cfa_store.offset;
1730 break;
1732 /* Rule 12 */
1733 /* With an offset. */
1734 case PLUS:
1735 case MINUS:
1736 case LO_SUM:
1738 int regno;
1740 gcc_assert (GET_CODE (XEXP (XEXP (dest, 0), 1)) == CONST_INT
1741 && REG_P (XEXP (XEXP (dest, 0), 0)));
1742 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1743 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1744 offset = -offset;
1746 regno = REGNO (XEXP (XEXP (dest, 0), 0));
1748 if (cfa_store.reg == (unsigned) regno)
1749 offset -= cfa_store.offset;
1750 else
1752 gcc_assert (cfa_temp.reg == (unsigned) regno);
1753 offset -= cfa_temp.offset;
1756 break;
1758 /* Rule 13 */
1759 /* Without an offset. */
1760 case REG:
1762 int regno = REGNO (XEXP (dest, 0));
1764 if (cfa_store.reg == (unsigned) regno)
1765 offset = -cfa_store.offset;
1766 else
1768 gcc_assert (cfa_temp.reg == (unsigned) regno);
1769 offset = -cfa_temp.offset;
1772 break;
1774 /* Rule 14 */
1775 case POST_INC:
1776 gcc_assert (cfa_temp.reg
1777 == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)));
1778 offset = -cfa_temp.offset;
1779 cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1780 break;
1782 default:
1783 gcc_unreachable ();
1786 if (REGNO (src) != STACK_POINTER_REGNUM
1787 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1788 && (unsigned) REGNO (src) == cfa.reg)
1790 /* We're storing the current CFA reg into the stack. */
1792 if (cfa.offset == 0)
1794 /* If the source register is exactly the CFA, assume
1795 we're saving SP like any other register; this happens
1796 on the ARM. */
1797 def_cfa_1 (label, &cfa);
1798 queue_reg_save (label, stack_pointer_rtx, NULL_RTX, offset);
1799 break;
1801 else
1803 /* Otherwise, we'll need to look in the stack to
1804 calculate the CFA. */
1805 rtx x = XEXP (dest, 0);
1807 if (!REG_P (x))
1808 x = XEXP (x, 0);
1809 gcc_assert (REG_P (x));
1811 cfa.reg = REGNO (x);
1812 cfa.base_offset = offset;
1813 cfa.indirect = 1;
1814 def_cfa_1 (label, &cfa);
1815 break;
1819 def_cfa_1 (label, &cfa);
1820 queue_reg_save (label, src, NULL_RTX, offset);
1821 break;
1823 default:
1824 gcc_unreachable ();
1828 /* Record call frame debugging information for INSN, which either
1829 sets SP or FP (adjusting how we calculate the frame address) or saves a
1830 register to the stack. If INSN is NULL_RTX, initialize our state.
1832 If AFTER_P is false, we're being called before the insn is emitted,
1833 otherwise after. Call instructions get invoked twice. */
1835 void
1836 dwarf2out_frame_debug (rtx insn, bool after_p)
1838 const char *label;
1839 rtx src;
1841 if (insn == NULL_RTX)
1843 size_t i;
1845 /* Flush any queued register saves. */
1846 flush_queued_reg_saves ();
1848 /* Set up state for generating call frame debug info. */
1849 lookup_cfa (&cfa);
1850 gcc_assert (cfa.reg
1851 == (unsigned long)DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
1853 cfa.reg = STACK_POINTER_REGNUM;
1854 cfa_store = cfa;
1855 cfa_temp.reg = -1;
1856 cfa_temp.offset = 0;
1858 for (i = 0; i < num_regs_saved_in_regs; i++)
1860 regs_saved_in_regs[i].orig_reg = NULL_RTX;
1861 regs_saved_in_regs[i].saved_in_reg = NULL_RTX;
1863 num_regs_saved_in_regs = 0;
1864 return;
1867 if (!NONJUMP_INSN_P (insn) || clobbers_queued_reg_save (insn))
1868 flush_queued_reg_saves ();
1870 if (! RTX_FRAME_RELATED_P (insn))
1872 if (!ACCUMULATE_OUTGOING_ARGS)
1873 dwarf2out_stack_adjust (insn, after_p);
1874 return;
1877 label = dwarf2out_cfi_label ();
1878 src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1879 if (src)
1880 insn = XEXP (src, 0);
1881 else
1882 insn = PATTERN (insn);
1884 dwarf2out_frame_debug_expr (insn, label);
1887 #endif
1889 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
1890 static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
1891 (enum dwarf_call_frame_info cfi);
1893 static enum dw_cfi_oprnd_type
1894 dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi)
1896 switch (cfi)
1898 case DW_CFA_nop:
1899 case DW_CFA_GNU_window_save:
1900 return dw_cfi_oprnd_unused;
1902 case DW_CFA_set_loc:
1903 case DW_CFA_advance_loc1:
1904 case DW_CFA_advance_loc2:
1905 case DW_CFA_advance_loc4:
1906 case DW_CFA_MIPS_advance_loc8:
1907 return dw_cfi_oprnd_addr;
1909 case DW_CFA_offset:
1910 case DW_CFA_offset_extended:
1911 case DW_CFA_def_cfa:
1912 case DW_CFA_offset_extended_sf:
1913 case DW_CFA_def_cfa_sf:
1914 case DW_CFA_restore_extended:
1915 case DW_CFA_undefined:
1916 case DW_CFA_same_value:
1917 case DW_CFA_def_cfa_register:
1918 case DW_CFA_register:
1919 return dw_cfi_oprnd_reg_num;
1921 case DW_CFA_def_cfa_offset:
1922 case DW_CFA_GNU_args_size:
1923 case DW_CFA_def_cfa_offset_sf:
1924 return dw_cfi_oprnd_offset;
1926 case DW_CFA_def_cfa_expression:
1927 case DW_CFA_expression:
1928 return dw_cfi_oprnd_loc;
1930 default:
1931 gcc_unreachable ();
1935 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
1936 static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
1937 (enum dwarf_call_frame_info cfi);
1939 static enum dw_cfi_oprnd_type
1940 dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi)
1942 switch (cfi)
1944 case DW_CFA_def_cfa:
1945 case DW_CFA_def_cfa_sf:
1946 case DW_CFA_offset:
1947 case DW_CFA_offset_extended_sf:
1948 case DW_CFA_offset_extended:
1949 return dw_cfi_oprnd_offset;
1951 case DW_CFA_register:
1952 return dw_cfi_oprnd_reg_num;
1954 default:
1955 return dw_cfi_oprnd_unused;
1959 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1961 /* Switch to eh_frame_section. If we don't have an eh_frame_section,
1962 switch to the data section instead, and write out a synthetic label
1963 for collect2. */
1965 static void
1966 switch_to_eh_frame_section (void)
1968 tree label;
1970 #ifdef EH_FRAME_SECTION_NAME
1971 if (eh_frame_section == 0)
1973 int flags;
1975 if (EH_TABLES_CAN_BE_READ_ONLY)
1977 int fde_encoding;
1978 int per_encoding;
1979 int lsda_encoding;
1981 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1,
1982 /*global=*/0);
1983 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2,
1984 /*global=*/1);
1985 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0,
1986 /*global=*/0);
1987 flags = ((! flag_pic
1988 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
1989 && (fde_encoding & 0x70) != DW_EH_PE_aligned
1990 && (per_encoding & 0x70) != DW_EH_PE_absptr
1991 && (per_encoding & 0x70) != DW_EH_PE_aligned
1992 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
1993 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
1994 ? 0 : SECTION_WRITE);
1996 else
1997 flags = SECTION_WRITE;
1998 eh_frame_section = get_section (EH_FRAME_SECTION_NAME, flags, NULL);
2000 #endif
2002 if (eh_frame_section)
2003 switch_to_section (eh_frame_section);
2004 else
2006 /* We have no special eh_frame section. Put the information in
2007 the data section and emit special labels to guide collect2. */
2008 switch_to_section (data_section);
2009 label = get_file_function_name ('F');
2010 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2011 targetm.asm_out.globalize_label (asm_out_file,
2012 IDENTIFIER_POINTER (label));
2013 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
2017 /* Map register numbers held in the call frame info that gcc has
2018 collected using DWARF_FRAME_REGNUM to those that should be output in
2019 .debug_frame and .eh_frame. */
2020 #ifndef DWARF2_FRAME_REG_OUT
2021 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) (REGNO)
2022 #endif
2024 /* Output a Call Frame Information opcode and its operand(s). */
2026 static void
2027 output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
2029 unsigned long r;
2030 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
2031 dw2_asm_output_data (1, (cfi->dw_cfi_opc
2032 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
2033 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX,
2034 cfi->dw_cfi_oprnd1.dw_cfi_offset);
2035 else if (cfi->dw_cfi_opc == DW_CFA_offset)
2037 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2038 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
2039 "DW_CFA_offset, column 0x%lx", r);
2040 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2042 else if (cfi->dw_cfi_opc == DW_CFA_restore)
2044 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2045 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
2046 "DW_CFA_restore, column 0x%lx", r);
2048 else
2050 dw2_asm_output_data (1, cfi->dw_cfi_opc,
2051 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
2053 switch (cfi->dw_cfi_opc)
2055 case DW_CFA_set_loc:
2056 if (for_eh)
2057 dw2_asm_output_encoded_addr_rtx (
2058 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
2059 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
2060 false, NULL);
2061 else
2062 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2063 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
2064 break;
2066 case DW_CFA_advance_loc1:
2067 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2068 fde->dw_fde_current_label, NULL);
2069 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2070 break;
2072 case DW_CFA_advance_loc2:
2073 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2074 fde->dw_fde_current_label, NULL);
2075 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2076 break;
2078 case DW_CFA_advance_loc4:
2079 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2080 fde->dw_fde_current_label, NULL);
2081 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2082 break;
2084 case DW_CFA_MIPS_advance_loc8:
2085 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2086 fde->dw_fde_current_label, NULL);
2087 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2088 break;
2090 case DW_CFA_offset_extended:
2091 case DW_CFA_def_cfa:
2092 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2093 dw2_asm_output_data_uleb128 (r, NULL);
2094 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2095 break;
2097 case DW_CFA_offset_extended_sf:
2098 case DW_CFA_def_cfa_sf:
2099 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2100 dw2_asm_output_data_uleb128 (r, NULL);
2101 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2102 break;
2104 case DW_CFA_restore_extended:
2105 case DW_CFA_undefined:
2106 case DW_CFA_same_value:
2107 case DW_CFA_def_cfa_register:
2108 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2109 dw2_asm_output_data_uleb128 (r, NULL);
2110 break;
2112 case DW_CFA_register:
2113 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2114 dw2_asm_output_data_uleb128 (r, NULL);
2115 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, for_eh);
2116 dw2_asm_output_data_uleb128 (r, NULL);
2117 break;
2119 case DW_CFA_def_cfa_offset:
2120 case DW_CFA_GNU_args_size:
2121 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2122 break;
2124 case DW_CFA_def_cfa_offset_sf:
2125 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2126 break;
2128 case DW_CFA_GNU_window_save:
2129 break;
2131 case DW_CFA_def_cfa_expression:
2132 case DW_CFA_expression:
2133 output_cfa_loc (cfi);
2134 break;
2136 case DW_CFA_GNU_negative_offset_extended:
2137 /* Obsoleted by DW_CFA_offset_extended_sf. */
2138 gcc_unreachable ();
2140 default:
2141 break;
2146 /* Output the call frame information used to record information
2147 that relates to calculating the frame pointer, and records the
2148 location of saved registers. */
2150 static void
2151 output_call_frame_info (int for_eh)
2153 unsigned int i;
2154 dw_fde_ref fde;
2155 dw_cfi_ref cfi;
2156 char l1[20], l2[20], section_start_label[20];
2157 bool any_lsda_needed = false;
2158 char augmentation[6];
2159 int augmentation_size;
2160 int fde_encoding = DW_EH_PE_absptr;
2161 int per_encoding = DW_EH_PE_absptr;
2162 int lsda_encoding = DW_EH_PE_absptr;
2163 int return_reg;
2165 /* Don't emit a CIE if there won't be any FDEs. */
2166 if (fde_table_in_use == 0)
2167 return;
2169 /* If we make FDEs linkonce, we may have to emit an empty label for
2170 an FDE that wouldn't otherwise be emitted. We want to avoid
2171 having an FDE kept around when the function it refers to is
2172 discarded. Example where this matters: a primary function
2173 template in C++ requires EH information, but an explicit
2174 specialization doesn't. */
2175 if (TARGET_USES_WEAK_UNWIND_INFO
2176 && ! flag_asynchronous_unwind_tables
2177 && for_eh)
2178 for (i = 0; i < fde_table_in_use; i++)
2179 if ((fde_table[i].nothrow || fde_table[i].all_throwers_are_sibcalls)
2180 && !fde_table[i].uses_eh_lsda
2181 && ! DECL_WEAK (fde_table[i].decl))
2182 targetm.asm_out.unwind_label (asm_out_file, fde_table[i].decl,
2183 for_eh, /* empty */ 1);
2185 /* If we don't have any functions we'll want to unwind out of, don't
2186 emit any EH unwind information. Note that if exceptions aren't
2187 enabled, we won't have collected nothrow information, and if we
2188 asked for asynchronous tables, we always want this info. */
2189 if (for_eh)
2191 bool any_eh_needed = !flag_exceptions || flag_asynchronous_unwind_tables;
2193 for (i = 0; i < fde_table_in_use; i++)
2194 if (fde_table[i].uses_eh_lsda)
2195 any_eh_needed = any_lsda_needed = true;
2196 else if (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
2197 any_eh_needed = true;
2198 else if (! fde_table[i].nothrow
2199 && ! fde_table[i].all_throwers_are_sibcalls)
2200 any_eh_needed = true;
2202 if (! any_eh_needed)
2203 return;
2206 /* We're going to be generating comments, so turn on app. */
2207 if (flag_debug_asm)
2208 app_enable ();
2210 if (for_eh)
2211 switch_to_eh_frame_section ();
2212 else
2213 switch_to_section (get_section (DEBUG_FRAME_SECTION, SECTION_DEBUG, NULL));
2215 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
2216 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
2218 /* Output the CIE. */
2219 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
2220 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
2221 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2222 "Length of Common Information Entry");
2223 ASM_OUTPUT_LABEL (asm_out_file, l1);
2225 /* Now that the CIE pointer is PC-relative for EH,
2226 use 0 to identify the CIE. */
2227 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
2228 (for_eh ? 0 : DW_CIE_ID),
2229 "CIE Identifier Tag");
2231 dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");
2233 augmentation[0] = 0;
2234 augmentation_size = 0;
2235 if (for_eh)
2237 char *p;
2239 /* Augmentation:
2240 z Indicates that a uleb128 is present to size the
2241 augmentation section.
2242 L Indicates the encoding (and thus presence) of
2243 an LSDA pointer in the FDE augmentation.
2244 R Indicates a non-default pointer encoding for
2245 FDE code pointers.
2246 P Indicates the presence of an encoding + language
2247 personality routine in the CIE augmentation. */
2249 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
2250 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
2251 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
2253 p = augmentation + 1;
2254 if (eh_personality_libfunc)
2256 *p++ = 'P';
2257 augmentation_size += 1 + size_of_encoded_value (per_encoding);
2259 if (any_lsda_needed)
2261 *p++ = 'L';
2262 augmentation_size += 1;
2264 if (fde_encoding != DW_EH_PE_absptr)
2266 *p++ = 'R';
2267 augmentation_size += 1;
2269 if (p > augmentation + 1)
2271 augmentation[0] = 'z';
2272 *p = '\0';
2275 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
2276 if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
2278 int offset = ( 4 /* Length */
2279 + 4 /* CIE Id */
2280 + 1 /* CIE version */
2281 + strlen (augmentation) + 1 /* Augmentation */
2282 + size_of_uleb128 (1) /* Code alignment */
2283 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
2284 + 1 /* RA column */
2285 + 1 /* Augmentation size */
2286 + 1 /* Personality encoding */ );
2287 int pad = -offset & (PTR_SIZE - 1);
2289 augmentation_size += pad;
2291 /* Augmentations should be small, so there's scarce need to
2292 iterate for a solution. Die if we exceed one uleb128 byte. */
2293 gcc_assert (size_of_uleb128 (augmentation_size) == 1);
2297 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
2298 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
2299 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
2300 "CIE Data Alignment Factor");
2302 return_reg = DWARF2_FRAME_REG_OUT (DWARF_FRAME_RETURN_COLUMN, for_eh);
2303 if (DW_CIE_VERSION == 1)
2304 dw2_asm_output_data (1, return_reg, "CIE RA Column");
2305 else
2306 dw2_asm_output_data_uleb128 (return_reg, "CIE RA Column");
2308 if (augmentation[0])
2310 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
2311 if (eh_personality_libfunc)
2313 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
2314 eh_data_format_name (per_encoding));
2315 dw2_asm_output_encoded_addr_rtx (per_encoding,
2316 eh_personality_libfunc,
2317 true, NULL);
2320 if (any_lsda_needed)
2321 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
2322 eh_data_format_name (lsda_encoding));
2324 if (fde_encoding != DW_EH_PE_absptr)
2325 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
2326 eh_data_format_name (fde_encoding));
2329 for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
2330 output_cfi (cfi, NULL, for_eh);
2332 /* Pad the CIE out to an address sized boundary. */
2333 ASM_OUTPUT_ALIGN (asm_out_file,
2334 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
2335 ASM_OUTPUT_LABEL (asm_out_file, l2);
2337 /* Loop through all of the FDE's. */
2338 for (i = 0; i < fde_table_in_use; i++)
2340 fde = &fde_table[i];
2342 /* Don't emit EH unwind info for leaf functions that don't need it. */
2343 if (for_eh && !flag_asynchronous_unwind_tables && flag_exceptions
2344 && (fde->nothrow || fde->all_throwers_are_sibcalls)
2345 && ! (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
2346 && !fde->uses_eh_lsda)
2347 continue;
2349 targetm.asm_out.unwind_label (asm_out_file, fde->decl, for_eh, /* empty */ 0);
2350 targetm.asm_out.internal_label (asm_out_file, FDE_LABEL, for_eh + i * 2);
2351 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
2352 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
2353 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2354 "FDE Length");
2355 ASM_OUTPUT_LABEL (asm_out_file, l1);
2357 if (for_eh)
2358 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
2359 else
2360 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
2361 "FDE CIE offset");
2363 if (for_eh)
2365 rtx sym_ref = gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin);
2366 SYMBOL_REF_FLAGS (sym_ref) |= SYMBOL_FLAG_LOCAL;
2367 dw2_asm_output_encoded_addr_rtx (fde_encoding,
2368 sym_ref,
2369 false,
2370 "FDE initial location");
2371 if (fde->dw_fde_switched_sections)
2373 rtx sym_ref2 = gen_rtx_SYMBOL_REF (Pmode,
2374 fde->dw_fde_unlikely_section_label);
2375 rtx sym_ref3= gen_rtx_SYMBOL_REF (Pmode,
2376 fde->dw_fde_hot_section_label);
2377 SYMBOL_REF_FLAGS (sym_ref2) |= SYMBOL_FLAG_LOCAL;
2378 SYMBOL_REF_FLAGS (sym_ref3) |= SYMBOL_FLAG_LOCAL;
2379 dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref3, false,
2380 "FDE initial location");
2381 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2382 fde->dw_fde_hot_section_end_label,
2383 fde->dw_fde_hot_section_label,
2384 "FDE address range");
2385 dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref2, false,
2386 "FDE initial location");
2387 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2388 fde->dw_fde_unlikely_section_end_label,
2389 fde->dw_fde_unlikely_section_label,
2390 "FDE address range");
2392 else
2393 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2394 fde->dw_fde_end, fde->dw_fde_begin,
2395 "FDE address range");
2397 else
2399 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
2400 "FDE initial location");
2401 if (fde->dw_fde_switched_sections)
2403 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2404 fde->dw_fde_hot_section_label,
2405 "FDE initial location");
2406 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2407 fde->dw_fde_hot_section_end_label,
2408 fde->dw_fde_hot_section_label,
2409 "FDE address range");
2410 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2411 fde->dw_fde_unlikely_section_label,
2412 "FDE initial location");
2413 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2414 fde->dw_fde_unlikely_section_end_label,
2415 fde->dw_fde_unlikely_section_label,
2416 "FDE address range");
2418 else
2419 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2420 fde->dw_fde_end, fde->dw_fde_begin,
2421 "FDE address range");
2424 if (augmentation[0])
2426 if (any_lsda_needed)
2428 int size = size_of_encoded_value (lsda_encoding);
2430 if (lsda_encoding == DW_EH_PE_aligned)
2432 int offset = ( 4 /* Length */
2433 + 4 /* CIE offset */
2434 + 2 * size_of_encoded_value (fde_encoding)
2435 + 1 /* Augmentation size */ );
2436 int pad = -offset & (PTR_SIZE - 1);
2438 size += pad;
2439 gcc_assert (size_of_uleb128 (size) == 1);
2442 dw2_asm_output_data_uleb128 (size, "Augmentation size");
2444 if (fde->uses_eh_lsda)
2446 ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
2447 fde->funcdef_number);
2448 dw2_asm_output_encoded_addr_rtx (
2449 lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
2450 false, "Language Specific Data Area");
2452 else
2454 if (lsda_encoding == DW_EH_PE_aligned)
2455 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2456 dw2_asm_output_data
2457 (size_of_encoded_value (lsda_encoding), 0,
2458 "Language Specific Data Area (none)");
2461 else
2462 dw2_asm_output_data_uleb128 (0, "Augmentation size");
2465 /* Loop through the Call Frame Instructions associated with
2466 this FDE. */
2467 fde->dw_fde_current_label = fde->dw_fde_begin;
2468 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
2469 output_cfi (cfi, fde, for_eh);
2471 /* Pad the FDE out to an address sized boundary. */
2472 ASM_OUTPUT_ALIGN (asm_out_file,
2473 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
2474 ASM_OUTPUT_LABEL (asm_out_file, l2);
2477 if (for_eh && targetm.terminate_dw2_eh_frame_info)
2478 dw2_asm_output_data (4, 0, "End of Table");
2479 #ifdef MIPS_DEBUGGING_INFO
2480 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2481 get a value of 0. Putting .align 0 after the label fixes it. */
2482 ASM_OUTPUT_ALIGN (asm_out_file, 0);
2483 #endif
2485 /* Turn off app to make assembly quicker. */
2486 if (flag_debug_asm)
2487 app_disable ();
2490 /* Output a marker (i.e. a label) for the beginning of a function, before
2491 the prologue. */
2493 void
2494 dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED,
2495 const char *file ATTRIBUTE_UNUSED)
2497 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2498 char * dup_label;
2499 dw_fde_ref fde;
2501 current_function_func_begin_label = NULL;
2503 #ifdef TARGET_UNWIND_INFO
2504 /* ??? current_function_func_begin_label is also used by except.c
2505 for call-site information. We must emit this label if it might
2506 be used. */
2507 if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
2508 && ! dwarf2out_do_frame ())
2509 return;
2510 #else
2511 if (! dwarf2out_do_frame ())
2512 return;
2513 #endif
2515 switch_to_section (function_section (current_function_decl));
2516 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
2517 current_function_funcdef_no);
2518 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
2519 current_function_funcdef_no);
2520 dup_label = xstrdup (label);
2521 current_function_func_begin_label = dup_label;
2523 #ifdef TARGET_UNWIND_INFO
2524 /* We can elide the fde allocation if we're not emitting debug info. */
2525 if (! dwarf2out_do_frame ())
2526 return;
2527 #endif
2529 /* Expand the fde table if necessary. */
2530 if (fde_table_in_use == fde_table_allocated)
2532 fde_table_allocated += FDE_TABLE_INCREMENT;
2533 fde_table = ggc_realloc (fde_table,
2534 fde_table_allocated * sizeof (dw_fde_node));
2535 memset (fde_table + fde_table_in_use, 0,
2536 FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2539 /* Record the FDE associated with this function. */
2540 current_funcdef_fde = fde_table_in_use;
2542 /* Add the new FDE at the end of the fde_table. */
2543 fde = &fde_table[fde_table_in_use++];
2544 fde->decl = current_function_decl;
2545 fde->dw_fde_begin = dup_label;
2546 fde->dw_fde_current_label = NULL;
2547 fde->dw_fde_hot_section_label = NULL;
2548 fde->dw_fde_hot_section_end_label = NULL;
2549 fde->dw_fde_unlikely_section_label = NULL;
2550 fde->dw_fde_unlikely_section_end_label = NULL;
2551 fde->dw_fde_switched_sections = false;
2552 fde->dw_fde_end = NULL;
2553 fde->dw_fde_cfi = NULL;
2554 fde->funcdef_number = current_function_funcdef_no;
2555 fde->nothrow = TREE_NOTHROW (current_function_decl);
2556 fde->uses_eh_lsda = cfun->uses_eh_lsda;
2557 fde->all_throwers_are_sibcalls = cfun->all_throwers_are_sibcalls;
2559 args_size = old_args_size = 0;
2561 /* We only want to output line number information for the genuine dwarf2
2562 prologue case, not the eh frame case. */
2563 #ifdef DWARF2_DEBUGGING_INFO
2564 if (file)
2565 dwarf2out_source_line (line, file);
2566 #endif
2569 /* Output a marker (i.e. a label) for the absolute end of the generated code
2570 for a function definition. This gets called *after* the epilogue code has
2571 been generated. */
2573 void
2574 dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED,
2575 const char *file ATTRIBUTE_UNUSED)
2577 dw_fde_ref fde;
2578 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2580 /* Output a label to mark the endpoint of the code generated for this
2581 function. */
2582 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
2583 current_function_funcdef_no);
2584 ASM_OUTPUT_LABEL (asm_out_file, label);
2585 fde = &fde_table[fde_table_in_use - 1];
2586 fde->dw_fde_end = xstrdup (label);
2589 void
2590 dwarf2out_frame_init (void)
2592 /* Allocate the initial hunk of the fde_table. */
2593 fde_table = ggc_alloc_cleared (FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2594 fde_table_allocated = FDE_TABLE_INCREMENT;
2595 fde_table_in_use = 0;
2597 /* Generate the CFA instructions common to all FDE's. Do it now for the
2598 sake of lookup_cfa. */
2600 /* On entry, the Canonical Frame Address is at SP. */
2601 dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
2603 #ifdef DWARF2_UNWIND_INFO
2604 if (DWARF2_UNWIND_INFO)
2605 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2606 #endif
2609 void
2610 dwarf2out_frame_finish (void)
2612 /* Output call frame information. */
2613 if (DWARF2_FRAME_INFO)
2614 output_call_frame_info (0);
2616 #ifndef TARGET_UNWIND_INFO
2617 /* Output another copy for the unwinder. */
2618 if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
2619 output_call_frame_info (1);
2620 #endif
2622 #endif
2624 /* And now, the subset of the debugging information support code necessary
2625 for emitting location expressions. */
2627 /* We need some way to distinguish DW_OP_addr with a direct symbol
2628 relocation from DW_OP_addr with a dtp-relative symbol relocation. */
2629 #define INTERNAL_DW_OP_tls_addr (0x100 + DW_OP_addr)
2632 typedef struct dw_val_struct *dw_val_ref;
2633 typedef struct die_struct *dw_die_ref;
2634 typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
2635 typedef struct dw_loc_list_struct *dw_loc_list_ref;
2637 /* Each DIE may have a series of attribute/value pairs. Values
2638 can take on several forms. The forms that are used in this
2639 implementation are listed below. */
2641 enum dw_val_class
2643 dw_val_class_addr,
2644 dw_val_class_offset,
2645 dw_val_class_loc,
2646 dw_val_class_loc_list,
2647 dw_val_class_range_list,
2648 dw_val_class_const,
2649 dw_val_class_unsigned_const,
2650 dw_val_class_long_long,
2651 dw_val_class_vec,
2652 dw_val_class_flag,
2653 dw_val_class_die_ref,
2654 dw_val_class_fde_ref,
2655 dw_val_class_lbl_id,
2656 dw_val_class_lbl_offset,
2657 dw_val_class_str
2660 /* Describe a double word constant value. */
2661 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2663 typedef struct dw_long_long_struct GTY(())
2665 unsigned long hi;
2666 unsigned long low;
2668 dw_long_long_const;
2670 /* Describe a floating point constant value, or a vector constant value. */
2672 typedef struct dw_vec_struct GTY(())
2674 unsigned char * GTY((length ("%h.length"))) array;
2675 unsigned length;
2676 unsigned elt_size;
2678 dw_vec_const;
2680 /* The dw_val_node describes an attribute's value, as it is
2681 represented internally. */
2683 typedef struct dw_val_struct GTY(())
2685 enum dw_val_class val_class;
2686 union dw_val_struct_union
2688 rtx GTY ((tag ("dw_val_class_addr"))) val_addr;
2689 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_offset"))) val_offset;
2690 dw_loc_list_ref GTY ((tag ("dw_val_class_loc_list"))) val_loc_list;
2691 dw_loc_descr_ref GTY ((tag ("dw_val_class_loc"))) val_loc;
2692 HOST_WIDE_INT GTY ((default)) val_int;
2693 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned;
2694 dw_long_long_const GTY ((tag ("dw_val_class_long_long"))) val_long_long;
2695 dw_vec_const GTY ((tag ("dw_val_class_vec"))) val_vec;
2696 struct dw_val_die_union
2698 dw_die_ref die;
2699 int external;
2700 } GTY ((tag ("dw_val_class_die_ref"))) val_die_ref;
2701 unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index;
2702 struct indirect_string_node * GTY ((tag ("dw_val_class_str"))) val_str;
2703 char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id;
2704 unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag;
2706 GTY ((desc ("%1.val_class"))) v;
2708 dw_val_node;
2710 /* Locations in memory are described using a sequence of stack machine
2711 operations. */
2713 typedef struct dw_loc_descr_struct GTY(())
2715 dw_loc_descr_ref dw_loc_next;
2716 enum dwarf_location_atom dw_loc_opc;
2717 dw_val_node dw_loc_oprnd1;
2718 dw_val_node dw_loc_oprnd2;
2719 int dw_loc_addr;
2721 dw_loc_descr_node;
2723 /* Location lists are ranges + location descriptions for that range,
2724 so you can track variables that are in different places over
2725 their entire life. */
2726 typedef struct dw_loc_list_struct GTY(())
2728 dw_loc_list_ref dw_loc_next;
2729 const char *begin; /* Label for begin address of range */
2730 const char *end; /* Label for end address of range */
2731 char *ll_symbol; /* Label for beginning of location list.
2732 Only on head of list */
2733 const char *section; /* Section this loclist is relative to */
2734 dw_loc_descr_ref expr;
2735 } dw_loc_list_node;
2737 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2739 static const char *dwarf_stack_op_name (unsigned);
2740 static dw_loc_descr_ref new_loc_descr (enum dwarf_location_atom,
2741 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT);
2742 static void add_loc_descr (dw_loc_descr_ref *, dw_loc_descr_ref);
2743 static unsigned long size_of_loc_descr (dw_loc_descr_ref);
2744 static unsigned long size_of_locs (dw_loc_descr_ref);
2745 static void output_loc_operands (dw_loc_descr_ref);
2746 static void output_loc_sequence (dw_loc_descr_ref);
2748 /* Convert a DWARF stack opcode into its string name. */
2750 static const char *
2751 dwarf_stack_op_name (unsigned int op)
2753 switch (op)
2755 case DW_OP_addr:
2756 case INTERNAL_DW_OP_tls_addr:
2757 return "DW_OP_addr";
2758 case DW_OP_deref:
2759 return "DW_OP_deref";
2760 case DW_OP_const1u:
2761 return "DW_OP_const1u";
2762 case DW_OP_const1s:
2763 return "DW_OP_const1s";
2764 case DW_OP_const2u:
2765 return "DW_OP_const2u";
2766 case DW_OP_const2s:
2767 return "DW_OP_const2s";
2768 case DW_OP_const4u:
2769 return "DW_OP_const4u";
2770 case DW_OP_const4s:
2771 return "DW_OP_const4s";
2772 case DW_OP_const8u:
2773 return "DW_OP_const8u";
2774 case DW_OP_const8s:
2775 return "DW_OP_const8s";
2776 case DW_OP_constu:
2777 return "DW_OP_constu";
2778 case DW_OP_consts:
2779 return "DW_OP_consts";
2780 case DW_OP_dup:
2781 return "DW_OP_dup";
2782 case DW_OP_drop:
2783 return "DW_OP_drop";
2784 case DW_OP_over:
2785 return "DW_OP_over";
2786 case DW_OP_pick:
2787 return "DW_OP_pick";
2788 case DW_OP_swap:
2789 return "DW_OP_swap";
2790 case DW_OP_rot:
2791 return "DW_OP_rot";
2792 case DW_OP_xderef:
2793 return "DW_OP_xderef";
2794 case DW_OP_abs:
2795 return "DW_OP_abs";
2796 case DW_OP_and:
2797 return "DW_OP_and";
2798 case DW_OP_div:
2799 return "DW_OP_div";
2800 case DW_OP_minus:
2801 return "DW_OP_minus";
2802 case DW_OP_mod:
2803 return "DW_OP_mod";
2804 case DW_OP_mul:
2805 return "DW_OP_mul";
2806 case DW_OP_neg:
2807 return "DW_OP_neg";
2808 case DW_OP_not:
2809 return "DW_OP_not";
2810 case DW_OP_or:
2811 return "DW_OP_or";
2812 case DW_OP_plus:
2813 return "DW_OP_plus";
2814 case DW_OP_plus_uconst:
2815 return "DW_OP_plus_uconst";
2816 case DW_OP_shl:
2817 return "DW_OP_shl";
2818 case DW_OP_shr:
2819 return "DW_OP_shr";
2820 case DW_OP_shra:
2821 return "DW_OP_shra";
2822 case DW_OP_xor:
2823 return "DW_OP_xor";
2824 case DW_OP_bra:
2825 return "DW_OP_bra";
2826 case DW_OP_eq:
2827 return "DW_OP_eq";
2828 case DW_OP_ge:
2829 return "DW_OP_ge";
2830 case DW_OP_gt:
2831 return "DW_OP_gt";
2832 case DW_OP_le:
2833 return "DW_OP_le";
2834 case DW_OP_lt:
2835 return "DW_OP_lt";
2836 case DW_OP_ne:
2837 return "DW_OP_ne";
2838 case DW_OP_skip:
2839 return "DW_OP_skip";
2840 case DW_OP_lit0:
2841 return "DW_OP_lit0";
2842 case DW_OP_lit1:
2843 return "DW_OP_lit1";
2844 case DW_OP_lit2:
2845 return "DW_OP_lit2";
2846 case DW_OP_lit3:
2847 return "DW_OP_lit3";
2848 case DW_OP_lit4:
2849 return "DW_OP_lit4";
2850 case DW_OP_lit5:
2851 return "DW_OP_lit5";
2852 case DW_OP_lit6:
2853 return "DW_OP_lit6";
2854 case DW_OP_lit7:
2855 return "DW_OP_lit7";
2856 case DW_OP_lit8:
2857 return "DW_OP_lit8";
2858 case DW_OP_lit9:
2859 return "DW_OP_lit9";
2860 case DW_OP_lit10:
2861 return "DW_OP_lit10";
2862 case DW_OP_lit11:
2863 return "DW_OP_lit11";
2864 case DW_OP_lit12:
2865 return "DW_OP_lit12";
2866 case DW_OP_lit13:
2867 return "DW_OP_lit13";
2868 case DW_OP_lit14:
2869 return "DW_OP_lit14";
2870 case DW_OP_lit15:
2871 return "DW_OP_lit15";
2872 case DW_OP_lit16:
2873 return "DW_OP_lit16";
2874 case DW_OP_lit17:
2875 return "DW_OP_lit17";
2876 case DW_OP_lit18:
2877 return "DW_OP_lit18";
2878 case DW_OP_lit19:
2879 return "DW_OP_lit19";
2880 case DW_OP_lit20:
2881 return "DW_OP_lit20";
2882 case DW_OP_lit21:
2883 return "DW_OP_lit21";
2884 case DW_OP_lit22:
2885 return "DW_OP_lit22";
2886 case DW_OP_lit23:
2887 return "DW_OP_lit23";
2888 case DW_OP_lit24:
2889 return "DW_OP_lit24";
2890 case DW_OP_lit25:
2891 return "DW_OP_lit25";
2892 case DW_OP_lit26:
2893 return "DW_OP_lit26";
2894 case DW_OP_lit27:
2895 return "DW_OP_lit27";
2896 case DW_OP_lit28:
2897 return "DW_OP_lit28";
2898 case DW_OP_lit29:
2899 return "DW_OP_lit29";
2900 case DW_OP_lit30:
2901 return "DW_OP_lit30";
2902 case DW_OP_lit31:
2903 return "DW_OP_lit31";
2904 case DW_OP_reg0:
2905 return "DW_OP_reg0";
2906 case DW_OP_reg1:
2907 return "DW_OP_reg1";
2908 case DW_OP_reg2:
2909 return "DW_OP_reg2";
2910 case DW_OP_reg3:
2911 return "DW_OP_reg3";
2912 case DW_OP_reg4:
2913 return "DW_OP_reg4";
2914 case DW_OP_reg5:
2915 return "DW_OP_reg5";
2916 case DW_OP_reg6:
2917 return "DW_OP_reg6";
2918 case DW_OP_reg7:
2919 return "DW_OP_reg7";
2920 case DW_OP_reg8:
2921 return "DW_OP_reg8";
2922 case DW_OP_reg9:
2923 return "DW_OP_reg9";
2924 case DW_OP_reg10:
2925 return "DW_OP_reg10";
2926 case DW_OP_reg11:
2927 return "DW_OP_reg11";
2928 case DW_OP_reg12:
2929 return "DW_OP_reg12";
2930 case DW_OP_reg13:
2931 return "DW_OP_reg13";
2932 case DW_OP_reg14:
2933 return "DW_OP_reg14";
2934 case DW_OP_reg15:
2935 return "DW_OP_reg15";
2936 case DW_OP_reg16:
2937 return "DW_OP_reg16";
2938 case DW_OP_reg17:
2939 return "DW_OP_reg17";
2940 case DW_OP_reg18:
2941 return "DW_OP_reg18";
2942 case DW_OP_reg19:
2943 return "DW_OP_reg19";
2944 case DW_OP_reg20:
2945 return "DW_OP_reg20";
2946 case DW_OP_reg21:
2947 return "DW_OP_reg21";
2948 case DW_OP_reg22:
2949 return "DW_OP_reg22";
2950 case DW_OP_reg23:
2951 return "DW_OP_reg23";
2952 case DW_OP_reg24:
2953 return "DW_OP_reg24";
2954 case DW_OP_reg25:
2955 return "DW_OP_reg25";
2956 case DW_OP_reg26:
2957 return "DW_OP_reg26";
2958 case DW_OP_reg27:
2959 return "DW_OP_reg27";
2960 case DW_OP_reg28:
2961 return "DW_OP_reg28";
2962 case DW_OP_reg29:
2963 return "DW_OP_reg29";
2964 case DW_OP_reg30:
2965 return "DW_OP_reg30";
2966 case DW_OP_reg31:
2967 return "DW_OP_reg31";
2968 case DW_OP_breg0:
2969 return "DW_OP_breg0";
2970 case DW_OP_breg1:
2971 return "DW_OP_breg1";
2972 case DW_OP_breg2:
2973 return "DW_OP_breg2";
2974 case DW_OP_breg3:
2975 return "DW_OP_breg3";
2976 case DW_OP_breg4:
2977 return "DW_OP_breg4";
2978 case DW_OP_breg5:
2979 return "DW_OP_breg5";
2980 case DW_OP_breg6:
2981 return "DW_OP_breg6";
2982 case DW_OP_breg7:
2983 return "DW_OP_breg7";
2984 case DW_OP_breg8:
2985 return "DW_OP_breg8";
2986 case DW_OP_breg9:
2987 return "DW_OP_breg9";
2988 case DW_OP_breg10:
2989 return "DW_OP_breg10";
2990 case DW_OP_breg11:
2991 return "DW_OP_breg11";
2992 case DW_OP_breg12:
2993 return "DW_OP_breg12";
2994 case DW_OP_breg13:
2995 return "DW_OP_breg13";
2996 case DW_OP_breg14:
2997 return "DW_OP_breg14";
2998 case DW_OP_breg15:
2999 return "DW_OP_breg15";
3000 case DW_OP_breg16:
3001 return "DW_OP_breg16";
3002 case DW_OP_breg17:
3003 return "DW_OP_breg17";
3004 case DW_OP_breg18:
3005 return "DW_OP_breg18";
3006 case DW_OP_breg19:
3007 return "DW_OP_breg19";
3008 case DW_OP_breg20:
3009 return "DW_OP_breg20";
3010 case DW_OP_breg21:
3011 return "DW_OP_breg21";
3012 case DW_OP_breg22:
3013 return "DW_OP_breg22";
3014 case DW_OP_breg23:
3015 return "DW_OP_breg23";
3016 case DW_OP_breg24:
3017 return "DW_OP_breg24";
3018 case DW_OP_breg25:
3019 return "DW_OP_breg25";
3020 case DW_OP_breg26:
3021 return "DW_OP_breg26";
3022 case DW_OP_breg27:
3023 return "DW_OP_breg27";
3024 case DW_OP_breg28:
3025 return "DW_OP_breg28";
3026 case DW_OP_breg29:
3027 return "DW_OP_breg29";
3028 case DW_OP_breg30:
3029 return "DW_OP_breg30";
3030 case DW_OP_breg31:
3031 return "DW_OP_breg31";
3032 case DW_OP_regx:
3033 return "DW_OP_regx";
3034 case DW_OP_fbreg:
3035 return "DW_OP_fbreg";
3036 case DW_OP_bregx:
3037 return "DW_OP_bregx";
3038 case DW_OP_piece:
3039 return "DW_OP_piece";
3040 case DW_OP_deref_size:
3041 return "DW_OP_deref_size";
3042 case DW_OP_xderef_size:
3043 return "DW_OP_xderef_size";
3044 case DW_OP_nop:
3045 return "DW_OP_nop";
3046 case DW_OP_push_object_address:
3047 return "DW_OP_push_object_address";
3048 case DW_OP_call2:
3049 return "DW_OP_call2";
3050 case DW_OP_call4:
3051 return "DW_OP_call4";
3052 case DW_OP_call_ref:
3053 return "DW_OP_call_ref";
3054 case DW_OP_GNU_push_tls_address:
3055 return "DW_OP_GNU_push_tls_address";
3056 default:
3057 return "OP_<unknown>";
3061 /* Return a pointer to a newly allocated location description. Location
3062 descriptions are simple expression terms that can be strung
3063 together to form more complicated location (address) descriptions. */
3065 static inline dw_loc_descr_ref
3066 new_loc_descr (enum dwarf_location_atom op, unsigned HOST_WIDE_INT oprnd1,
3067 unsigned HOST_WIDE_INT oprnd2)
3069 dw_loc_descr_ref descr = ggc_alloc_cleared (sizeof (dw_loc_descr_node));
3071 descr->dw_loc_opc = op;
3072 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
3073 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
3074 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
3075 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
3077 return descr;
3080 /* Add a location description term to a location description expression. */
3082 static inline void
3083 add_loc_descr (dw_loc_descr_ref *list_head, dw_loc_descr_ref descr)
3085 dw_loc_descr_ref *d;
3087 /* Find the end of the chain. */
3088 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
3091 *d = descr;
3094 /* Return the size of a location descriptor. */
3096 static unsigned long
3097 size_of_loc_descr (dw_loc_descr_ref loc)
3099 unsigned long size = 1;
3101 switch (loc->dw_loc_opc)
3103 case DW_OP_addr:
3104 case INTERNAL_DW_OP_tls_addr:
3105 size += DWARF2_ADDR_SIZE;
3106 break;
3107 case DW_OP_const1u:
3108 case DW_OP_const1s:
3109 size += 1;
3110 break;
3111 case DW_OP_const2u:
3112 case DW_OP_const2s:
3113 size += 2;
3114 break;
3115 case DW_OP_const4u:
3116 case DW_OP_const4s:
3117 size += 4;
3118 break;
3119 case DW_OP_const8u:
3120 case DW_OP_const8s:
3121 size += 8;
3122 break;
3123 case DW_OP_constu:
3124 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3125 break;
3126 case DW_OP_consts:
3127 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3128 break;
3129 case DW_OP_pick:
3130 size += 1;
3131 break;
3132 case DW_OP_plus_uconst:
3133 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3134 break;
3135 case DW_OP_skip:
3136 case DW_OP_bra:
3137 size += 2;
3138 break;
3139 case DW_OP_breg0:
3140 case DW_OP_breg1:
3141 case DW_OP_breg2:
3142 case DW_OP_breg3:
3143 case DW_OP_breg4:
3144 case DW_OP_breg5:
3145 case DW_OP_breg6:
3146 case DW_OP_breg7:
3147 case DW_OP_breg8:
3148 case DW_OP_breg9:
3149 case DW_OP_breg10:
3150 case DW_OP_breg11:
3151 case DW_OP_breg12:
3152 case DW_OP_breg13:
3153 case DW_OP_breg14:
3154 case DW_OP_breg15:
3155 case DW_OP_breg16:
3156 case DW_OP_breg17:
3157 case DW_OP_breg18:
3158 case DW_OP_breg19:
3159 case DW_OP_breg20:
3160 case DW_OP_breg21:
3161 case DW_OP_breg22:
3162 case DW_OP_breg23:
3163 case DW_OP_breg24:
3164 case DW_OP_breg25:
3165 case DW_OP_breg26:
3166 case DW_OP_breg27:
3167 case DW_OP_breg28:
3168 case DW_OP_breg29:
3169 case DW_OP_breg30:
3170 case DW_OP_breg31:
3171 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3172 break;
3173 case DW_OP_regx:
3174 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3175 break;
3176 case DW_OP_fbreg:
3177 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3178 break;
3179 case DW_OP_bregx:
3180 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3181 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
3182 break;
3183 case DW_OP_piece:
3184 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3185 break;
3186 case DW_OP_deref_size:
3187 case DW_OP_xderef_size:
3188 size += 1;
3189 break;
3190 case DW_OP_call2:
3191 size += 2;
3192 break;
3193 case DW_OP_call4:
3194 size += 4;
3195 break;
3196 case DW_OP_call_ref:
3197 size += DWARF2_ADDR_SIZE;
3198 break;
3199 default:
3200 break;
3203 return size;
3206 /* Return the size of a series of location descriptors. */
3208 static unsigned long
3209 size_of_locs (dw_loc_descr_ref loc)
3211 unsigned long size;
3213 for (size = 0; loc != NULL; loc = loc->dw_loc_next)
3215 loc->dw_loc_addr = size;
3216 size += size_of_loc_descr (loc);
3219 return size;
3222 /* Output location description stack opcode's operands (if any). */
3224 static void
3225 output_loc_operands (dw_loc_descr_ref loc)
3227 dw_val_ref val1 = &loc->dw_loc_oprnd1;
3228 dw_val_ref val2 = &loc->dw_loc_oprnd2;
3230 switch (loc->dw_loc_opc)
3232 #ifdef DWARF2_DEBUGGING_INFO
3233 case DW_OP_addr:
3234 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
3235 break;
3236 case DW_OP_const2u:
3237 case DW_OP_const2s:
3238 dw2_asm_output_data (2, val1->v.val_int, NULL);
3239 break;
3240 case DW_OP_const4u:
3241 case DW_OP_const4s:
3242 dw2_asm_output_data (4, val1->v.val_int, NULL);
3243 break;
3244 case DW_OP_const8u:
3245 case DW_OP_const8s:
3246 gcc_assert (HOST_BITS_PER_LONG >= 64);
3247 dw2_asm_output_data (8, val1->v.val_int, NULL);
3248 break;
3249 case DW_OP_skip:
3250 case DW_OP_bra:
3252 int offset;
3254 gcc_assert (val1->val_class == dw_val_class_loc);
3255 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
3257 dw2_asm_output_data (2, offset, NULL);
3259 break;
3260 #else
3261 case DW_OP_addr:
3262 case DW_OP_const2u:
3263 case DW_OP_const2s:
3264 case DW_OP_const4u:
3265 case DW_OP_const4s:
3266 case DW_OP_const8u:
3267 case DW_OP_const8s:
3268 case DW_OP_skip:
3269 case DW_OP_bra:
3270 /* We currently don't make any attempt to make sure these are
3271 aligned properly like we do for the main unwind info, so
3272 don't support emitting things larger than a byte if we're
3273 only doing unwinding. */
3274 gcc_unreachable ();
3275 #endif
3276 case DW_OP_const1u:
3277 case DW_OP_const1s:
3278 dw2_asm_output_data (1, val1->v.val_int, NULL);
3279 break;
3280 case DW_OP_constu:
3281 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3282 break;
3283 case DW_OP_consts:
3284 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3285 break;
3286 case DW_OP_pick:
3287 dw2_asm_output_data (1, val1->v.val_int, NULL);
3288 break;
3289 case DW_OP_plus_uconst:
3290 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3291 break;
3292 case DW_OP_breg0:
3293 case DW_OP_breg1:
3294 case DW_OP_breg2:
3295 case DW_OP_breg3:
3296 case DW_OP_breg4:
3297 case DW_OP_breg5:
3298 case DW_OP_breg6:
3299 case DW_OP_breg7:
3300 case DW_OP_breg8:
3301 case DW_OP_breg9:
3302 case DW_OP_breg10:
3303 case DW_OP_breg11:
3304 case DW_OP_breg12:
3305 case DW_OP_breg13:
3306 case DW_OP_breg14:
3307 case DW_OP_breg15:
3308 case DW_OP_breg16:
3309 case DW_OP_breg17:
3310 case DW_OP_breg18:
3311 case DW_OP_breg19:
3312 case DW_OP_breg20:
3313 case DW_OP_breg21:
3314 case DW_OP_breg22:
3315 case DW_OP_breg23:
3316 case DW_OP_breg24:
3317 case DW_OP_breg25:
3318 case DW_OP_breg26:
3319 case DW_OP_breg27:
3320 case DW_OP_breg28:
3321 case DW_OP_breg29:
3322 case DW_OP_breg30:
3323 case DW_OP_breg31:
3324 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3325 break;
3326 case DW_OP_regx:
3327 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3328 break;
3329 case DW_OP_fbreg:
3330 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3331 break;
3332 case DW_OP_bregx:
3333 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3334 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
3335 break;
3336 case DW_OP_piece:
3337 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3338 break;
3339 case DW_OP_deref_size:
3340 case DW_OP_xderef_size:
3341 dw2_asm_output_data (1, val1->v.val_int, NULL);
3342 break;
3344 case INTERNAL_DW_OP_tls_addr:
3345 if (targetm.asm_out.output_dwarf_dtprel)
3347 targetm.asm_out.output_dwarf_dtprel (asm_out_file,
3348 DWARF2_ADDR_SIZE,
3349 val1->v.val_addr);
3350 fputc ('\n', asm_out_file);
3352 else
3353 gcc_unreachable ();
3354 break;
3356 default:
3357 /* Other codes have no operands. */
3358 break;
3362 /* Output a sequence of location operations. */
3364 static void
3365 output_loc_sequence (dw_loc_descr_ref loc)
3367 for (; loc != NULL; loc = loc->dw_loc_next)
3369 /* Output the opcode. */
3370 dw2_asm_output_data (1, loc->dw_loc_opc,
3371 "%s", dwarf_stack_op_name (loc->dw_loc_opc));
3373 /* Output the operand(s) (if any). */
3374 output_loc_operands (loc);
3378 /* This routine will generate the correct assembly data for a location
3379 description based on a cfi entry with a complex address. */
3381 static void
3382 output_cfa_loc (dw_cfi_ref cfi)
3384 dw_loc_descr_ref loc;
3385 unsigned long size;
3387 /* Output the size of the block. */
3388 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3389 size = size_of_locs (loc);
3390 dw2_asm_output_data_uleb128 (size, NULL);
3392 /* Now output the operations themselves. */
3393 output_loc_sequence (loc);
3396 /* This function builds a dwarf location descriptor sequence from
3397 a dw_cfa_location. */
3399 static struct dw_loc_descr_struct *
3400 build_cfa_loc (dw_cfa_location *cfa)
3402 struct dw_loc_descr_struct *head, *tmp;
3404 if (cfa->indirect)
3406 if (cfa->base_offset)
3408 if (cfa->reg <= 31)
3409 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
3410 else
3411 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
3413 else if (cfa->reg <= 31)
3414 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3415 else
3416 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3418 head->dw_loc_oprnd1.val_class = dw_val_class_const;
3419 tmp = new_loc_descr (DW_OP_deref, 0, 0);
3420 add_loc_descr (&head, tmp);
3421 if (cfa->offset != 0)
3423 tmp = new_loc_descr (DW_OP_plus_uconst, cfa->offset, 0);
3424 add_loc_descr (&head, tmp);
3427 else
3429 if (cfa->offset == 0)
3430 if (cfa->reg <= 31)
3431 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3432 else
3433 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3434 else if (cfa->reg <= 31)
3435 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->offset, 0);
3436 else
3437 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->offset);
3440 return head;
3443 /* This function fills in aa dw_cfa_location structure from a dwarf location
3444 descriptor sequence. */
3446 static void
3447 get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_struct *loc)
3449 struct dw_loc_descr_struct *ptr;
3450 cfa->offset = 0;
3451 cfa->base_offset = 0;
3452 cfa->indirect = 0;
3453 cfa->reg = -1;
3455 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
3457 enum dwarf_location_atom op = ptr->dw_loc_opc;
3459 switch (op)
3461 case DW_OP_reg0:
3462 case DW_OP_reg1:
3463 case DW_OP_reg2:
3464 case DW_OP_reg3:
3465 case DW_OP_reg4:
3466 case DW_OP_reg5:
3467 case DW_OP_reg6:
3468 case DW_OP_reg7:
3469 case DW_OP_reg8:
3470 case DW_OP_reg9:
3471 case DW_OP_reg10:
3472 case DW_OP_reg11:
3473 case DW_OP_reg12:
3474 case DW_OP_reg13:
3475 case DW_OP_reg14:
3476 case DW_OP_reg15:
3477 case DW_OP_reg16:
3478 case DW_OP_reg17:
3479 case DW_OP_reg18:
3480 case DW_OP_reg19:
3481 case DW_OP_reg20:
3482 case DW_OP_reg21:
3483 case DW_OP_reg22:
3484 case DW_OP_reg23:
3485 case DW_OP_reg24:
3486 case DW_OP_reg25:
3487 case DW_OP_reg26:
3488 case DW_OP_reg27:
3489 case DW_OP_reg28:
3490 case DW_OP_reg29:
3491 case DW_OP_reg30:
3492 case DW_OP_reg31:
3493 cfa->reg = op - DW_OP_reg0;
3494 break;
3495 case DW_OP_regx:
3496 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3497 break;
3498 case DW_OP_breg0:
3499 case DW_OP_breg1:
3500 case DW_OP_breg2:
3501 case DW_OP_breg3:
3502 case DW_OP_breg4:
3503 case DW_OP_breg5:
3504 case DW_OP_breg6:
3505 case DW_OP_breg7:
3506 case DW_OP_breg8:
3507 case DW_OP_breg9:
3508 case DW_OP_breg10:
3509 case DW_OP_breg11:
3510 case DW_OP_breg12:
3511 case DW_OP_breg13:
3512 case DW_OP_breg14:
3513 case DW_OP_breg15:
3514 case DW_OP_breg16:
3515 case DW_OP_breg17:
3516 case DW_OP_breg18:
3517 case DW_OP_breg19:
3518 case DW_OP_breg20:
3519 case DW_OP_breg21:
3520 case DW_OP_breg22:
3521 case DW_OP_breg23:
3522 case DW_OP_breg24:
3523 case DW_OP_breg25:
3524 case DW_OP_breg26:
3525 case DW_OP_breg27:
3526 case DW_OP_breg28:
3527 case DW_OP_breg29:
3528 case DW_OP_breg30:
3529 case DW_OP_breg31:
3530 cfa->reg = op - DW_OP_breg0;
3531 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
3532 break;
3533 case DW_OP_bregx:
3534 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3535 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
3536 break;
3537 case DW_OP_deref:
3538 cfa->indirect = 1;
3539 break;
3540 case DW_OP_plus_uconst:
3541 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
3542 break;
3543 default:
3544 internal_error ("DW_LOC_OP %s not implemented",
3545 dwarf_stack_op_name (ptr->dw_loc_opc));
3549 #endif /* .debug_frame support */
3551 /* And now, the support for symbolic debugging information. */
3552 #ifdef DWARF2_DEBUGGING_INFO
3554 /* .debug_str support. */
3555 static int output_indirect_string (void **, void *);
3557 static void dwarf2out_init (const char *);
3558 static void dwarf2out_finish (const char *);
3559 static void dwarf2out_define (unsigned int, const char *);
3560 static void dwarf2out_undef (unsigned int, const char *);
3561 static void dwarf2out_start_source_file (unsigned, const char *);
3562 static void dwarf2out_end_source_file (unsigned);
3563 static void dwarf2out_begin_block (unsigned, unsigned);
3564 static void dwarf2out_end_block (unsigned, unsigned);
3565 static bool dwarf2out_ignore_block (tree);
3566 static void dwarf2out_global_decl (tree);
3567 static void dwarf2out_type_decl (tree, int);
3568 static void dwarf2out_imported_module_or_decl (tree, tree);
3569 static void dwarf2out_abstract_function (tree);
3570 static void dwarf2out_var_location (rtx);
3571 static void dwarf2out_begin_function (tree);
3572 static void dwarf2out_switch_text_section (void);
3574 /* The debug hooks structure. */
3576 const struct gcc_debug_hooks dwarf2_debug_hooks =
3578 dwarf2out_init,
3579 dwarf2out_finish,
3580 dwarf2out_define,
3581 dwarf2out_undef,
3582 dwarf2out_start_source_file,
3583 dwarf2out_end_source_file,
3584 dwarf2out_begin_block,
3585 dwarf2out_end_block,
3586 dwarf2out_ignore_block,
3587 dwarf2out_source_line,
3588 dwarf2out_begin_prologue,
3589 debug_nothing_int_charstar, /* end_prologue */
3590 dwarf2out_end_epilogue,
3591 dwarf2out_begin_function,
3592 debug_nothing_int, /* end_function */
3593 dwarf2out_decl, /* function_decl */
3594 dwarf2out_global_decl,
3595 dwarf2out_type_decl, /* type_decl */
3596 dwarf2out_imported_module_or_decl,
3597 debug_nothing_tree, /* deferred_inline_function */
3598 /* The DWARF 2 backend tries to reduce debugging bloat by not
3599 emitting the abstract description of inline functions until
3600 something tries to reference them. */
3601 dwarf2out_abstract_function, /* outlining_inline_function */
3602 debug_nothing_rtx, /* label */
3603 debug_nothing_int, /* handle_pch */
3604 dwarf2out_var_location,
3605 dwarf2out_switch_text_section,
3606 1 /* start_end_main_source_file */
3608 #endif
3610 /* NOTE: In the comments in this file, many references are made to
3611 "Debugging Information Entries". This term is abbreviated as `DIE'
3612 throughout the remainder of this file. */
3614 /* An internal representation of the DWARF output is built, and then
3615 walked to generate the DWARF debugging info. The walk of the internal
3616 representation is done after the entire program has been compiled.
3617 The types below are used to describe the internal representation. */
3619 /* Various DIE's use offsets relative to the beginning of the
3620 .debug_info section to refer to each other. */
3622 typedef long int dw_offset;
3624 /* Define typedefs here to avoid circular dependencies. */
3626 typedef struct dw_attr_struct *dw_attr_ref;
3627 typedef struct dw_line_info_struct *dw_line_info_ref;
3628 typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
3629 typedef struct pubname_struct *pubname_ref;
3630 typedef struct dw_ranges_struct *dw_ranges_ref;
3632 /* Each entry in the line_info_table maintains the file and
3633 line number associated with the label generated for that
3634 entry. The label gives the PC value associated with
3635 the line number entry. */
3637 typedef struct dw_line_info_struct GTY(())
3639 unsigned long dw_file_num;
3640 unsigned long dw_line_num;
3642 dw_line_info_entry;
3644 /* Line information for functions in separate sections; each one gets its
3645 own sequence. */
3646 typedef struct dw_separate_line_info_struct GTY(())
3648 unsigned long dw_file_num;
3649 unsigned long dw_line_num;
3650 unsigned long function;
3652 dw_separate_line_info_entry;
3654 /* Each DIE attribute has a field specifying the attribute kind,
3655 a link to the next attribute in the chain, and an attribute value.
3656 Attributes are typically linked below the DIE they modify. */
3658 typedef struct dw_attr_struct GTY(())
3660 enum dwarf_attribute dw_attr;
3661 dw_attr_ref dw_attr_next;
3662 dw_val_node dw_attr_val;
3664 dw_attr_node;
3666 /* The Debugging Information Entry (DIE) structure */
3668 typedef struct die_struct GTY(())
3670 enum dwarf_tag die_tag;
3671 char *die_symbol;
3672 dw_attr_ref die_attr;
3673 dw_die_ref die_parent;
3674 dw_die_ref die_child;
3675 dw_die_ref die_sib;
3676 dw_die_ref die_definition; /* ref from a specification to its definition */
3677 dw_offset die_offset;
3678 unsigned long die_abbrev;
3679 int die_mark;
3680 unsigned int decl_id;
3682 die_node;
3684 /* The pubname structure */
3686 typedef struct pubname_struct GTY(())
3688 dw_die_ref die;
3689 char *name;
3691 pubname_entry;
3693 struct dw_ranges_struct GTY(())
3695 int block_num;
3698 /* The limbo die list structure. */
3699 typedef struct limbo_die_struct GTY(())
3701 dw_die_ref die;
3702 tree created_for;
3703 struct limbo_die_struct *next;
3705 limbo_die_node;
3707 /* How to start an assembler comment. */
3708 #ifndef ASM_COMMENT_START
3709 #define ASM_COMMENT_START ";#"
3710 #endif
3712 /* Define a macro which returns nonzero for a TYPE_DECL which was
3713 implicitly generated for a tagged type.
3715 Note that unlike the gcc front end (which generates a NULL named
3716 TYPE_DECL node for each complete tagged type, each array type, and
3717 each function type node created) the g++ front end generates a
3718 _named_ TYPE_DECL node for each tagged type node created.
3719 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3720 generate a DW_TAG_typedef DIE for them. */
3722 #define TYPE_DECL_IS_STUB(decl) \
3723 (DECL_NAME (decl) == NULL_TREE \
3724 || (DECL_ARTIFICIAL (decl) \
3725 && is_tagged_type (TREE_TYPE (decl)) \
3726 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3727 /* This is necessary for stub decls that \
3728 appear in nested inline functions. */ \
3729 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3730 && (decl_ultimate_origin (decl) \
3731 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3733 /* Information concerning the compilation unit's programming
3734 language, and compiler version. */
3736 /* Fixed size portion of the DWARF compilation unit header. */
3737 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
3738 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
3740 /* Fixed size portion of public names info. */
3741 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3743 /* Fixed size portion of the address range info. */
3744 #define DWARF_ARANGES_HEADER_SIZE \
3745 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3746 DWARF2_ADDR_SIZE * 2) \
3747 - DWARF_INITIAL_LENGTH_SIZE)
3749 /* Size of padding portion in the address range info. It must be
3750 aligned to twice the pointer size. */
3751 #define DWARF_ARANGES_PAD_SIZE \
3752 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3753 DWARF2_ADDR_SIZE * 2) \
3754 - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
3756 /* Use assembler line directives if available. */
3757 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3758 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3759 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3760 #else
3761 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3762 #endif
3763 #endif
3765 /* Minimum line offset in a special line info. opcode.
3766 This value was chosen to give a reasonable range of values. */
3767 #define DWARF_LINE_BASE -10
3769 /* First special line opcode - leave room for the standard opcodes. */
3770 #define DWARF_LINE_OPCODE_BASE 10
3772 /* Range of line offsets in a special line info. opcode. */
3773 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3775 /* Flag that indicates the initial value of the is_stmt_start flag.
3776 In the present implementation, we do not mark any lines as
3777 the beginning of a source statement, because that information
3778 is not made available by the GCC front-end. */
3779 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3781 #ifdef DWARF2_DEBUGGING_INFO
3782 /* This location is used by calc_die_sizes() to keep track
3783 the offset of each DIE within the .debug_info section. */
3784 static unsigned long next_die_offset;
3785 #endif
3787 /* Record the root of the DIE's built for the current compilation unit. */
3788 static GTY(()) dw_die_ref comp_unit_die;
3790 /* A list of DIEs with a NULL parent waiting to be relocated. */
3791 static GTY(()) limbo_die_node *limbo_die_list;
3793 /* Filenames referenced by this compilation unit. */
3794 static GTY(()) varray_type file_table;
3795 static GTY(()) varray_type file_table_emitted;
3796 static GTY(()) size_t file_table_last_lookup_index;
3798 /* A hash table of references to DIE's that describe declarations.
3799 The key is a DECL_UID() which is a unique number identifying each decl. */
3800 static GTY ((param_is (struct die_struct))) htab_t decl_die_table;
3802 /* Node of the variable location list. */
3803 struct var_loc_node GTY ((chain_next ("%h.next")))
3805 rtx GTY (()) var_loc_note;
3806 const char * GTY (()) label;
3807 const char * GTY (()) section_label;
3808 struct var_loc_node * GTY (()) next;
3811 /* Variable location list. */
3812 struct var_loc_list_def GTY (())
3814 struct var_loc_node * GTY (()) first;
3816 /* Do not mark the last element of the chained list because
3817 it is marked through the chain. */
3818 struct var_loc_node * GTY ((skip ("%h"))) last;
3820 /* DECL_UID of the variable decl. */
3821 unsigned int decl_id;
3823 typedef struct var_loc_list_def var_loc_list;
3826 /* Table of decl location linked lists. */
3827 static GTY ((param_is (var_loc_list))) htab_t decl_loc_table;
3829 /* A pointer to the base of a list of references to DIE's that
3830 are uniquely identified by their tag, presence/absence of
3831 children DIE's, and list of attribute/value pairs. */
3832 static GTY((length ("abbrev_die_table_allocated")))
3833 dw_die_ref *abbrev_die_table;
3835 /* Number of elements currently allocated for abbrev_die_table. */
3836 static GTY(()) unsigned abbrev_die_table_allocated;
3838 /* Number of elements in type_die_table currently in use. */
3839 static GTY(()) unsigned abbrev_die_table_in_use;
3841 /* Size (in elements) of increments by which we may expand the
3842 abbrev_die_table. */
3843 #define ABBREV_DIE_TABLE_INCREMENT 256
3845 /* A pointer to the base of a table that contains line information
3846 for each source code line in .text in the compilation unit. */
3847 static GTY((length ("line_info_table_allocated")))
3848 dw_line_info_ref line_info_table;
3850 /* Number of elements currently allocated for line_info_table. */
3851 static GTY(()) unsigned line_info_table_allocated;
3853 /* Number of elements in line_info_table currently in use. */
3854 static GTY(()) unsigned line_info_table_in_use;
3856 /* True if the compilation unit places functions in more than one section. */
3857 static GTY(()) bool have_multiple_function_sections = false;
3859 /* A pointer to the base of a table that contains line information
3860 for each source code line outside of .text in the compilation unit. */
3861 static GTY ((length ("separate_line_info_table_allocated")))
3862 dw_separate_line_info_ref separate_line_info_table;
3864 /* Number of elements currently allocated for separate_line_info_table. */
3865 static GTY(()) unsigned separate_line_info_table_allocated;
3867 /* Number of elements in separate_line_info_table currently in use. */
3868 static GTY(()) unsigned separate_line_info_table_in_use;
3870 /* Size (in elements) of increments by which we may expand the
3871 line_info_table. */
3872 #define LINE_INFO_TABLE_INCREMENT 1024
3874 /* A pointer to the base of a table that contains a list of publicly
3875 accessible names. */
3876 static GTY ((length ("pubname_table_allocated"))) pubname_ref pubname_table;
3878 /* Number of elements currently allocated for pubname_table. */
3879 static GTY(()) unsigned pubname_table_allocated;
3881 /* Number of elements in pubname_table currently in use. */
3882 static GTY(()) unsigned pubname_table_in_use;
3884 /* Size (in elements) of increments by which we may expand the
3885 pubname_table. */
3886 #define PUBNAME_TABLE_INCREMENT 64
3888 /* Array of dies for which we should generate .debug_arange info. */
3889 static GTY((length ("arange_table_allocated"))) dw_die_ref *arange_table;
3891 /* Number of elements currently allocated for arange_table. */
3892 static GTY(()) unsigned arange_table_allocated;
3894 /* Number of elements in arange_table currently in use. */
3895 static GTY(()) unsigned arange_table_in_use;
3897 /* Size (in elements) of increments by which we may expand the
3898 arange_table. */
3899 #define ARANGE_TABLE_INCREMENT 64
3901 /* Array of dies for which we should generate .debug_ranges info. */
3902 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table;
3904 /* Number of elements currently allocated for ranges_table. */
3905 static GTY(()) unsigned ranges_table_allocated;
3907 /* Number of elements in ranges_table currently in use. */
3908 static GTY(()) unsigned ranges_table_in_use;
3910 /* Size (in elements) of increments by which we may expand the
3911 ranges_table. */
3912 #define RANGES_TABLE_INCREMENT 64
3914 /* Whether we have location lists that need outputting */
3915 static GTY(()) bool have_location_lists;
3917 /* Unique label counter. */
3918 static GTY(()) unsigned int loclabel_num;
3920 #ifdef DWARF2_DEBUGGING_INFO
3921 /* Record whether the function being analyzed contains inlined functions. */
3922 static int current_function_has_inlines;
3923 #endif
3924 #if 0 && defined (MIPS_DEBUGGING_INFO)
3925 static int comp_unit_has_inlines;
3926 #endif
3928 /* Number of file tables emitted in maybe_emit_file(). */
3929 static GTY(()) int emitcount = 0;
3931 /* Number of internal labels generated by gen_internal_sym(). */
3932 static GTY(()) int label_num;
3934 #ifdef DWARF2_DEBUGGING_INFO
3936 /* Offset from the "steady-state frame pointer" to the CFA,
3937 within the current function. */
3938 static HOST_WIDE_INT frame_pointer_cfa_offset;
3940 /* Forward declarations for functions defined in this file. */
3942 static int is_pseudo_reg (rtx);
3943 static tree type_main_variant (tree);
3944 static int is_tagged_type (tree);
3945 static const char *dwarf_tag_name (unsigned);
3946 static const char *dwarf_attr_name (unsigned);
3947 static const char *dwarf_form_name (unsigned);
3948 static tree decl_ultimate_origin (tree);
3949 static tree block_ultimate_origin (tree);
3950 static tree decl_class_context (tree);
3951 static void add_dwarf_attr (dw_die_ref, dw_attr_ref);
3952 static inline enum dw_val_class AT_class (dw_attr_ref);
3953 static void add_AT_flag (dw_die_ref, enum dwarf_attribute, unsigned);
3954 static inline unsigned AT_flag (dw_attr_ref);
3955 static void add_AT_int (dw_die_ref, enum dwarf_attribute, HOST_WIDE_INT);
3956 static inline HOST_WIDE_INT AT_int (dw_attr_ref);
3957 static void add_AT_unsigned (dw_die_ref, enum dwarf_attribute, unsigned HOST_WIDE_INT);
3958 static inline unsigned HOST_WIDE_INT AT_unsigned (dw_attr_ref);
3959 static void add_AT_long_long (dw_die_ref, enum dwarf_attribute, unsigned long,
3960 unsigned long);
3961 static inline void add_AT_vec (dw_die_ref, enum dwarf_attribute, unsigned int,
3962 unsigned int, unsigned char *);
3963 static hashval_t debug_str_do_hash (const void *);
3964 static int debug_str_eq (const void *, const void *);
3965 static void add_AT_string (dw_die_ref, enum dwarf_attribute, const char *);
3966 static inline const char *AT_string (dw_attr_ref);
3967 static int AT_string_form (dw_attr_ref);
3968 static void add_AT_die_ref (dw_die_ref, enum dwarf_attribute, dw_die_ref);
3969 static void add_AT_specification (dw_die_ref, dw_die_ref);
3970 static inline dw_die_ref AT_ref (dw_attr_ref);
3971 static inline int AT_ref_external (dw_attr_ref);
3972 static inline void set_AT_ref_external (dw_attr_ref, int);
3973 static void add_AT_fde_ref (dw_die_ref, enum dwarf_attribute, unsigned);
3974 static void add_AT_loc (dw_die_ref, enum dwarf_attribute, dw_loc_descr_ref);
3975 static inline dw_loc_descr_ref AT_loc (dw_attr_ref);
3976 static void add_AT_loc_list (dw_die_ref, enum dwarf_attribute,
3977 dw_loc_list_ref);
3978 static inline dw_loc_list_ref AT_loc_list (dw_attr_ref);
3979 static void add_AT_addr (dw_die_ref, enum dwarf_attribute, rtx);
3980 static inline rtx AT_addr (dw_attr_ref);
3981 static void add_AT_lbl_id (dw_die_ref, enum dwarf_attribute, const char *);
3982 static void add_AT_lbl_offset (dw_die_ref, enum dwarf_attribute, const char *);
3983 static void add_AT_offset (dw_die_ref, enum dwarf_attribute,
3984 unsigned HOST_WIDE_INT);
3985 static void add_AT_range_list (dw_die_ref, enum dwarf_attribute,
3986 unsigned long);
3987 static inline const char *AT_lbl (dw_attr_ref);
3988 static dw_attr_ref get_AT (dw_die_ref, enum dwarf_attribute);
3989 static const char *get_AT_low_pc (dw_die_ref);
3990 static const char *get_AT_hi_pc (dw_die_ref);
3991 static const char *get_AT_string (dw_die_ref, enum dwarf_attribute);
3992 static int get_AT_flag (dw_die_ref, enum dwarf_attribute);
3993 static unsigned get_AT_unsigned (dw_die_ref, enum dwarf_attribute);
3994 static inline dw_die_ref get_AT_ref (dw_die_ref, enum dwarf_attribute);
3995 static bool is_c_family (void);
3996 static bool is_cxx (void);
3997 static bool is_java (void);
3998 static bool is_fortran (void);
3999 static bool is_ada (void);
4000 static void remove_AT (dw_die_ref, enum dwarf_attribute);
4001 static void remove_child_TAG (dw_die_ref, enum dwarf_tag);
4002 static inline void free_die (dw_die_ref);
4003 static void remove_children (dw_die_ref);
4004 static void add_child_die (dw_die_ref, dw_die_ref);
4005 static dw_die_ref new_die (enum dwarf_tag, dw_die_ref, tree);
4006 static dw_die_ref lookup_type_die (tree);
4007 static void equate_type_number_to_die (tree, dw_die_ref);
4008 static hashval_t decl_die_table_hash (const void *);
4009 static int decl_die_table_eq (const void *, const void *);
4010 static dw_die_ref lookup_decl_die (tree);
4011 static hashval_t decl_loc_table_hash (const void *);
4012 static int decl_loc_table_eq (const void *, const void *);
4013 static var_loc_list *lookup_decl_loc (tree);
4014 static void equate_decl_number_to_die (tree, dw_die_ref);
4015 static void add_var_loc_to_decl (tree, struct var_loc_node *);
4016 static void print_spaces (FILE *);
4017 static void print_die (dw_die_ref, FILE *);
4018 static void print_dwarf_line_table (FILE *);
4019 static void reverse_die_lists (dw_die_ref);
4020 static void reverse_all_dies (dw_die_ref);
4021 static dw_die_ref push_new_compile_unit (dw_die_ref, dw_die_ref);
4022 static dw_die_ref pop_compile_unit (dw_die_ref);
4023 static void loc_checksum (dw_loc_descr_ref, struct md5_ctx *);
4024 static void attr_checksum (dw_attr_ref, struct md5_ctx *, int *);
4025 static void die_checksum (dw_die_ref, struct md5_ctx *, int *);
4026 static int same_loc_p (dw_loc_descr_ref, dw_loc_descr_ref, int *);
4027 static int same_dw_val_p (dw_val_node *, dw_val_node *, int *);
4028 static int same_attr_p (dw_attr_ref, dw_attr_ref, int *);
4029 static int same_die_p (dw_die_ref, dw_die_ref, int *);
4030 static int same_die_p_wrap (dw_die_ref, dw_die_ref);
4031 static void compute_section_prefix (dw_die_ref);
4032 static int is_type_die (dw_die_ref);
4033 static int is_comdat_die (dw_die_ref);
4034 static int is_symbol_die (dw_die_ref);
4035 static void assign_symbol_names (dw_die_ref);
4036 static void break_out_includes (dw_die_ref);
4037 static hashval_t htab_cu_hash (const void *);
4038 static int htab_cu_eq (const void *, const void *);
4039 static void htab_cu_del (void *);
4040 static int check_duplicate_cu (dw_die_ref, htab_t, unsigned *);
4041 static void record_comdat_symbol_number (dw_die_ref, htab_t, unsigned);
4042 static void add_sibling_attributes (dw_die_ref);
4043 static void build_abbrev_table (dw_die_ref);
4044 static void output_location_lists (dw_die_ref);
4045 static int constant_size (long unsigned);
4046 static unsigned long size_of_die (dw_die_ref);
4047 static void calc_die_sizes (dw_die_ref);
4048 static void mark_dies (dw_die_ref);
4049 static void unmark_dies (dw_die_ref);
4050 static void unmark_all_dies (dw_die_ref);
4051 static unsigned long size_of_pubnames (void);
4052 static unsigned long size_of_aranges (void);
4053 static enum dwarf_form value_format (dw_attr_ref);
4054 static void output_value_format (dw_attr_ref);
4055 static void output_abbrev_section (void);
4056 static void output_die_symbol (dw_die_ref);
4057 static void output_die (dw_die_ref);
4058 static void output_compilation_unit_header (void);
4059 static void output_comp_unit (dw_die_ref, int);
4060 static const char *dwarf2_name (tree, int);
4061 static void add_pubname (tree, dw_die_ref);
4062 static void output_pubnames (void);
4063 static void add_arange (tree, dw_die_ref);
4064 static void output_aranges (void);
4065 static unsigned int add_ranges (tree);
4066 static void output_ranges (void);
4067 static void output_line_info (void);
4068 static void output_file_names (void);
4069 static dw_die_ref base_type_die (tree);
4070 static tree root_type (tree);
4071 static int is_base_type (tree);
4072 static bool is_subrange_type (tree);
4073 static dw_die_ref subrange_type_die (tree, dw_die_ref);
4074 static dw_die_ref modified_type_die (tree, int, int, dw_die_ref);
4075 static int type_is_enum (tree);
4076 static unsigned int dbx_reg_number (rtx);
4077 static void add_loc_descr_op_piece (dw_loc_descr_ref *, int);
4078 static dw_loc_descr_ref reg_loc_descriptor (rtx);
4079 static dw_loc_descr_ref one_reg_loc_descriptor (unsigned int);
4080 static dw_loc_descr_ref multiple_reg_loc_descriptor (rtx, rtx);
4081 static dw_loc_descr_ref int_loc_descriptor (HOST_WIDE_INT);
4082 static dw_loc_descr_ref based_loc_descr (rtx, HOST_WIDE_INT);
4083 static int is_based_loc (rtx);
4084 static dw_loc_descr_ref mem_loc_descriptor (rtx, enum machine_mode mode);
4085 static dw_loc_descr_ref concat_loc_descriptor (rtx, rtx);
4086 static dw_loc_descr_ref loc_descriptor (rtx);
4087 static dw_loc_descr_ref loc_descriptor_from_tree_1 (tree, int);
4088 static dw_loc_descr_ref loc_descriptor_from_tree (tree);
4089 static HOST_WIDE_INT ceiling (HOST_WIDE_INT, unsigned int);
4090 static tree field_type (tree);
4091 static unsigned int simple_type_align_in_bits (tree);
4092 static unsigned int simple_decl_align_in_bits (tree);
4093 static unsigned HOST_WIDE_INT simple_type_size_in_bits (tree);
4094 static HOST_WIDE_INT field_byte_offset (tree);
4095 static void add_AT_location_description (dw_die_ref, enum dwarf_attribute,
4096 dw_loc_descr_ref);
4097 static void add_data_member_location_attribute (dw_die_ref, tree);
4098 static void add_const_value_attribute (dw_die_ref, rtx);
4099 static void insert_int (HOST_WIDE_INT, unsigned, unsigned char *);
4100 static HOST_WIDE_INT extract_int (const unsigned char *, unsigned);
4101 static void insert_float (rtx, unsigned char *);
4102 static rtx rtl_for_decl_location (tree);
4103 static void add_location_or_const_value_attribute (dw_die_ref, tree,
4104 enum dwarf_attribute);
4105 static void tree_add_const_value_attribute (dw_die_ref, tree);
4106 static void add_name_attribute (dw_die_ref, const char *);
4107 static void add_comp_dir_attribute (dw_die_ref);
4108 static void add_bound_info (dw_die_ref, enum dwarf_attribute, tree);
4109 static void add_subscript_info (dw_die_ref, tree);
4110 static void add_byte_size_attribute (dw_die_ref, tree);
4111 static void add_bit_offset_attribute (dw_die_ref, tree);
4112 static void add_bit_size_attribute (dw_die_ref, tree);
4113 static void add_prototyped_attribute (dw_die_ref, tree);
4114 static void add_abstract_origin_attribute (dw_die_ref, tree);
4115 static void add_pure_or_virtual_attribute (dw_die_ref, tree);
4116 static void add_src_coords_attributes (dw_die_ref, tree);
4117 static void add_name_and_src_coords_attributes (dw_die_ref, tree);
4118 static void push_decl_scope (tree);
4119 static void pop_decl_scope (void);
4120 static dw_die_ref scope_die_for (tree, dw_die_ref);
4121 static inline int local_scope_p (dw_die_ref);
4122 static inline int class_or_namespace_scope_p (dw_die_ref);
4123 static void add_type_attribute (dw_die_ref, tree, int, int, dw_die_ref);
4124 static void add_calling_convention_attribute (dw_die_ref, tree);
4125 static const char *type_tag (tree);
4126 static tree member_declared_type (tree);
4127 #if 0
4128 static const char *decl_start_label (tree);
4129 #endif
4130 static void gen_array_type_die (tree, dw_die_ref);
4131 #if 0
4132 static void gen_entry_point_die (tree, dw_die_ref);
4133 #endif
4134 static void gen_inlined_enumeration_type_die (tree, dw_die_ref);
4135 static void gen_inlined_structure_type_die (tree, dw_die_ref);
4136 static void gen_inlined_union_type_die (tree, dw_die_ref);
4137 static dw_die_ref gen_enumeration_type_die (tree, dw_die_ref);
4138 static dw_die_ref gen_formal_parameter_die (tree, dw_die_ref);
4139 static void gen_unspecified_parameters_die (tree, dw_die_ref);
4140 static void gen_formal_types_die (tree, dw_die_ref);
4141 static void gen_subprogram_die (tree, dw_die_ref);
4142 static void gen_variable_die (tree, dw_die_ref);
4143 static void gen_label_die (tree, dw_die_ref);
4144 static void gen_lexical_block_die (tree, dw_die_ref, int);
4145 static void gen_inlined_subroutine_die (tree, dw_die_ref, int);
4146 static void gen_field_die (tree, dw_die_ref);
4147 static void gen_ptr_to_mbr_type_die (tree, dw_die_ref);
4148 static dw_die_ref gen_compile_unit_die (const char *);
4149 static void gen_inheritance_die (tree, tree, dw_die_ref);
4150 static void gen_member_die (tree, dw_die_ref);
4151 static void gen_struct_or_union_type_die (tree, dw_die_ref);
4152 static void gen_subroutine_type_die (tree, dw_die_ref);
4153 static void gen_typedef_die (tree, dw_die_ref);
4154 static void gen_type_die (tree, dw_die_ref);
4155 static void gen_tagged_type_instantiation_die (tree, dw_die_ref);
4156 static void gen_block_die (tree, dw_die_ref, int);
4157 static void decls_for_scope (tree, dw_die_ref, int);
4158 static int is_redundant_typedef (tree);
4159 static void gen_namespace_die (tree);
4160 static void gen_decl_die (tree, dw_die_ref);
4161 static dw_die_ref force_decl_die (tree);
4162 static dw_die_ref force_type_die (tree);
4163 static dw_die_ref setup_namespace_context (tree, dw_die_ref);
4164 static void declare_in_namespace (tree, dw_die_ref);
4165 static unsigned lookup_filename (const char *);
4166 static void init_file_table (void);
4167 static void retry_incomplete_types (void);
4168 static void gen_type_die_for_member (tree, tree, dw_die_ref);
4169 static void splice_child_die (dw_die_ref, dw_die_ref);
4170 static int file_info_cmp (const void *, const void *);
4171 static dw_loc_list_ref new_loc_list (dw_loc_descr_ref, const char *,
4172 const char *, const char *, unsigned);
4173 static void add_loc_descr_to_loc_list (dw_loc_list_ref *, dw_loc_descr_ref,
4174 const char *, const char *,
4175 const char *);
4176 static void output_loc_list (dw_loc_list_ref);
4177 static char *gen_internal_sym (const char *);
4179 static void prune_unmark_dies (dw_die_ref);
4180 static void prune_unused_types_mark (dw_die_ref, int);
4181 static void prune_unused_types_walk (dw_die_ref);
4182 static void prune_unused_types_walk_attribs (dw_die_ref);
4183 static void prune_unused_types_prune (dw_die_ref);
4184 static void prune_unused_types (void);
4185 static int maybe_emit_file (int);
4187 /* Section names used to hold DWARF debugging information. */
4188 #ifndef DEBUG_INFO_SECTION
4189 #define DEBUG_INFO_SECTION ".debug_info"
4190 #endif
4191 #ifndef DEBUG_ABBREV_SECTION
4192 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
4193 #endif
4194 #ifndef DEBUG_ARANGES_SECTION
4195 #define DEBUG_ARANGES_SECTION ".debug_aranges"
4196 #endif
4197 #ifndef DEBUG_MACINFO_SECTION
4198 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
4199 #endif
4200 #ifndef DEBUG_LINE_SECTION
4201 #define DEBUG_LINE_SECTION ".debug_line"
4202 #endif
4203 #ifndef DEBUG_LOC_SECTION
4204 #define DEBUG_LOC_SECTION ".debug_loc"
4205 #endif
4206 #ifndef DEBUG_PUBNAMES_SECTION
4207 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
4208 #endif
4209 #ifndef DEBUG_STR_SECTION
4210 #define DEBUG_STR_SECTION ".debug_str"
4211 #endif
4212 #ifndef DEBUG_RANGES_SECTION
4213 #define DEBUG_RANGES_SECTION ".debug_ranges"
4214 #endif
4216 /* Standard ELF section names for compiled code and data. */
4217 #ifndef TEXT_SECTION_NAME
4218 #define TEXT_SECTION_NAME ".text"
4219 #endif
4221 /* Section flags for .debug_str section. */
4222 #define DEBUG_STR_SECTION_FLAGS \
4223 (HAVE_GAS_SHF_MERGE && flag_merge_constants \
4224 ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1 \
4225 : SECTION_DEBUG)
4227 /* Labels we insert at beginning sections we can reference instead of
4228 the section names themselves. */
4230 #ifndef TEXT_SECTION_LABEL
4231 #define TEXT_SECTION_LABEL "Ltext"
4232 #endif
4233 #ifndef COLD_TEXT_SECTION_LABEL
4234 #define COLD_TEXT_SECTION_LABEL "Ltext_cold"
4235 #endif
4236 #ifndef DEBUG_LINE_SECTION_LABEL
4237 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
4238 #endif
4239 #ifndef DEBUG_INFO_SECTION_LABEL
4240 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
4241 #endif
4242 #ifndef DEBUG_ABBREV_SECTION_LABEL
4243 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
4244 #endif
4245 #ifndef DEBUG_LOC_SECTION_LABEL
4246 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
4247 #endif
4248 #ifndef DEBUG_RANGES_SECTION_LABEL
4249 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
4250 #endif
4251 #ifndef DEBUG_MACINFO_SECTION_LABEL
4252 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
4253 #endif
4255 /* Definitions of defaults for formats and names of various special
4256 (artificial) labels which may be generated within this file (when the -g
4257 options is used and DWARF2_DEBUGGING_INFO is in effect.
4258 If necessary, these may be overridden from within the tm.h file, but
4259 typically, overriding these defaults is unnecessary. */
4261 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4262 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4263 static char cold_text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4264 static char cold_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4265 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4266 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4267 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4268 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4269 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4270 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
4272 #ifndef TEXT_END_LABEL
4273 #define TEXT_END_LABEL "Letext"
4274 #endif
4275 #ifndef COLD_END_LABEL
4276 #define COLD_END_LABEL "Letext_cold"
4277 #endif
4278 #ifndef BLOCK_BEGIN_LABEL
4279 #define BLOCK_BEGIN_LABEL "LBB"
4280 #endif
4281 #ifndef BLOCK_END_LABEL
4282 #define BLOCK_END_LABEL "LBE"
4283 #endif
4284 #ifndef LINE_CODE_LABEL
4285 #define LINE_CODE_LABEL "LM"
4286 #endif
4287 #ifndef SEPARATE_LINE_CODE_LABEL
4288 #define SEPARATE_LINE_CODE_LABEL "LSM"
4289 #endif
4291 /* We allow a language front-end to designate a function that is to be
4292 called to "demangle" any name before it is put into a DIE. */
4294 static const char *(*demangle_name_func) (const char *);
4296 void
4297 dwarf2out_set_demangle_name_func (const char *(*func) (const char *))
4299 demangle_name_func = func;
4302 /* Test if rtl node points to a pseudo register. */
4304 static inline int
4305 is_pseudo_reg (rtx rtl)
4307 return ((REG_P (rtl) && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
4308 || (GET_CODE (rtl) == SUBREG
4309 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
4312 /* Return a reference to a type, with its const and volatile qualifiers
4313 removed. */
4315 static inline tree
4316 type_main_variant (tree type)
4318 type = TYPE_MAIN_VARIANT (type);
4320 /* ??? There really should be only one main variant among any group of
4321 variants of a given type (and all of the MAIN_VARIANT values for all
4322 members of the group should point to that one type) but sometimes the C
4323 front-end messes this up for array types, so we work around that bug
4324 here. */
4325 if (TREE_CODE (type) == ARRAY_TYPE)
4326 while (type != TYPE_MAIN_VARIANT (type))
4327 type = TYPE_MAIN_VARIANT (type);
4329 return type;
4332 /* Return nonzero if the given type node represents a tagged type. */
4334 static inline int
4335 is_tagged_type (tree type)
4337 enum tree_code code = TREE_CODE (type);
4339 return (code == RECORD_TYPE || code == UNION_TYPE
4340 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
4343 /* Convert a DIE tag into its string name. */
4345 static const char *
4346 dwarf_tag_name (unsigned int tag)
4348 switch (tag)
4350 case DW_TAG_padding:
4351 return "DW_TAG_padding";
4352 case DW_TAG_array_type:
4353 return "DW_TAG_array_type";
4354 case DW_TAG_class_type:
4355 return "DW_TAG_class_type";
4356 case DW_TAG_entry_point:
4357 return "DW_TAG_entry_point";
4358 case DW_TAG_enumeration_type:
4359 return "DW_TAG_enumeration_type";
4360 case DW_TAG_formal_parameter:
4361 return "DW_TAG_formal_parameter";
4362 case DW_TAG_imported_declaration:
4363 return "DW_TAG_imported_declaration";
4364 case DW_TAG_label:
4365 return "DW_TAG_label";
4366 case DW_TAG_lexical_block:
4367 return "DW_TAG_lexical_block";
4368 case DW_TAG_member:
4369 return "DW_TAG_member";
4370 case DW_TAG_pointer_type:
4371 return "DW_TAG_pointer_type";
4372 case DW_TAG_reference_type:
4373 return "DW_TAG_reference_type";
4374 case DW_TAG_compile_unit:
4375 return "DW_TAG_compile_unit";
4376 case DW_TAG_string_type:
4377 return "DW_TAG_string_type";
4378 case DW_TAG_structure_type:
4379 return "DW_TAG_structure_type";
4380 case DW_TAG_subroutine_type:
4381 return "DW_TAG_subroutine_type";
4382 case DW_TAG_typedef:
4383 return "DW_TAG_typedef";
4384 case DW_TAG_union_type:
4385 return "DW_TAG_union_type";
4386 case DW_TAG_unspecified_parameters:
4387 return "DW_TAG_unspecified_parameters";
4388 case DW_TAG_variant:
4389 return "DW_TAG_variant";
4390 case DW_TAG_common_block:
4391 return "DW_TAG_common_block";
4392 case DW_TAG_common_inclusion:
4393 return "DW_TAG_common_inclusion";
4394 case DW_TAG_inheritance:
4395 return "DW_TAG_inheritance";
4396 case DW_TAG_inlined_subroutine:
4397 return "DW_TAG_inlined_subroutine";
4398 case DW_TAG_module:
4399 return "DW_TAG_module";
4400 case DW_TAG_ptr_to_member_type:
4401 return "DW_TAG_ptr_to_member_type";
4402 case DW_TAG_set_type:
4403 return "DW_TAG_set_type";
4404 case DW_TAG_subrange_type:
4405 return "DW_TAG_subrange_type";
4406 case DW_TAG_with_stmt:
4407 return "DW_TAG_with_stmt";
4408 case DW_TAG_access_declaration:
4409 return "DW_TAG_access_declaration";
4410 case DW_TAG_base_type:
4411 return "DW_TAG_base_type";
4412 case DW_TAG_catch_block:
4413 return "DW_TAG_catch_block";
4414 case DW_TAG_const_type:
4415 return "DW_TAG_const_type";
4416 case DW_TAG_constant:
4417 return "DW_TAG_constant";
4418 case DW_TAG_enumerator:
4419 return "DW_TAG_enumerator";
4420 case DW_TAG_file_type:
4421 return "DW_TAG_file_type";
4422 case DW_TAG_friend:
4423 return "DW_TAG_friend";
4424 case DW_TAG_namelist:
4425 return "DW_TAG_namelist";
4426 case DW_TAG_namelist_item:
4427 return "DW_TAG_namelist_item";
4428 case DW_TAG_namespace:
4429 return "DW_TAG_namespace";
4430 case DW_TAG_packed_type:
4431 return "DW_TAG_packed_type";
4432 case DW_TAG_subprogram:
4433 return "DW_TAG_subprogram";
4434 case DW_TAG_template_type_param:
4435 return "DW_TAG_template_type_param";
4436 case DW_TAG_template_value_param:
4437 return "DW_TAG_template_value_param";
4438 case DW_TAG_thrown_type:
4439 return "DW_TAG_thrown_type";
4440 case DW_TAG_try_block:
4441 return "DW_TAG_try_block";
4442 case DW_TAG_variant_part:
4443 return "DW_TAG_variant_part";
4444 case DW_TAG_variable:
4445 return "DW_TAG_variable";
4446 case DW_TAG_volatile_type:
4447 return "DW_TAG_volatile_type";
4448 case DW_TAG_imported_module:
4449 return "DW_TAG_imported_module";
4450 case DW_TAG_MIPS_loop:
4451 return "DW_TAG_MIPS_loop";
4452 case DW_TAG_format_label:
4453 return "DW_TAG_format_label";
4454 case DW_TAG_function_template:
4455 return "DW_TAG_function_template";
4456 case DW_TAG_class_template:
4457 return "DW_TAG_class_template";
4458 case DW_TAG_GNU_BINCL:
4459 return "DW_TAG_GNU_BINCL";
4460 case DW_TAG_GNU_EINCL:
4461 return "DW_TAG_GNU_EINCL";
4462 default:
4463 return "DW_TAG_<unknown>";
4467 /* Convert a DWARF attribute code into its string name. */
4469 static const char *
4470 dwarf_attr_name (unsigned int attr)
4472 switch (attr)
4474 case DW_AT_sibling:
4475 return "DW_AT_sibling";
4476 case DW_AT_location:
4477 return "DW_AT_location";
4478 case DW_AT_name:
4479 return "DW_AT_name";
4480 case DW_AT_ordering:
4481 return "DW_AT_ordering";
4482 case DW_AT_subscr_data:
4483 return "DW_AT_subscr_data";
4484 case DW_AT_byte_size:
4485 return "DW_AT_byte_size";
4486 case DW_AT_bit_offset:
4487 return "DW_AT_bit_offset";
4488 case DW_AT_bit_size:
4489 return "DW_AT_bit_size";
4490 case DW_AT_element_list:
4491 return "DW_AT_element_list";
4492 case DW_AT_stmt_list:
4493 return "DW_AT_stmt_list";
4494 case DW_AT_low_pc:
4495 return "DW_AT_low_pc";
4496 case DW_AT_high_pc:
4497 return "DW_AT_high_pc";
4498 case DW_AT_language:
4499 return "DW_AT_language";
4500 case DW_AT_member:
4501 return "DW_AT_member";
4502 case DW_AT_discr:
4503 return "DW_AT_discr";
4504 case DW_AT_discr_value:
4505 return "DW_AT_discr_value";
4506 case DW_AT_visibility:
4507 return "DW_AT_visibility";
4508 case DW_AT_import:
4509 return "DW_AT_import";
4510 case DW_AT_string_length:
4511 return "DW_AT_string_length";
4512 case DW_AT_common_reference:
4513 return "DW_AT_common_reference";
4514 case DW_AT_comp_dir:
4515 return "DW_AT_comp_dir";
4516 case DW_AT_const_value:
4517 return "DW_AT_const_value";
4518 case DW_AT_containing_type:
4519 return "DW_AT_containing_type";
4520 case DW_AT_default_value:
4521 return "DW_AT_default_value";
4522 case DW_AT_inline:
4523 return "DW_AT_inline";
4524 case DW_AT_is_optional:
4525 return "DW_AT_is_optional";
4526 case DW_AT_lower_bound:
4527 return "DW_AT_lower_bound";
4528 case DW_AT_producer:
4529 return "DW_AT_producer";
4530 case DW_AT_prototyped:
4531 return "DW_AT_prototyped";
4532 case DW_AT_return_addr:
4533 return "DW_AT_return_addr";
4534 case DW_AT_start_scope:
4535 return "DW_AT_start_scope";
4536 case DW_AT_stride_size:
4537 return "DW_AT_stride_size";
4538 case DW_AT_upper_bound:
4539 return "DW_AT_upper_bound";
4540 case DW_AT_abstract_origin:
4541 return "DW_AT_abstract_origin";
4542 case DW_AT_accessibility:
4543 return "DW_AT_accessibility";
4544 case DW_AT_address_class:
4545 return "DW_AT_address_class";
4546 case DW_AT_artificial:
4547 return "DW_AT_artificial";
4548 case DW_AT_base_types:
4549 return "DW_AT_base_types";
4550 case DW_AT_calling_convention:
4551 return "DW_AT_calling_convention";
4552 case DW_AT_count:
4553 return "DW_AT_count";
4554 case DW_AT_data_member_location:
4555 return "DW_AT_data_member_location";
4556 case DW_AT_decl_column:
4557 return "DW_AT_decl_column";
4558 case DW_AT_decl_file:
4559 return "DW_AT_decl_file";
4560 case DW_AT_decl_line:
4561 return "DW_AT_decl_line";
4562 case DW_AT_declaration:
4563 return "DW_AT_declaration";
4564 case DW_AT_discr_list:
4565 return "DW_AT_discr_list";
4566 case DW_AT_encoding:
4567 return "DW_AT_encoding";
4568 case DW_AT_external:
4569 return "DW_AT_external";
4570 case DW_AT_frame_base:
4571 return "DW_AT_frame_base";
4572 case DW_AT_friend:
4573 return "DW_AT_friend";
4574 case DW_AT_identifier_case:
4575 return "DW_AT_identifier_case";
4576 case DW_AT_macro_info:
4577 return "DW_AT_macro_info";
4578 case DW_AT_namelist_items:
4579 return "DW_AT_namelist_items";
4580 case DW_AT_priority:
4581 return "DW_AT_priority";
4582 case DW_AT_segment:
4583 return "DW_AT_segment";
4584 case DW_AT_specification:
4585 return "DW_AT_specification";
4586 case DW_AT_static_link:
4587 return "DW_AT_static_link";
4588 case DW_AT_type:
4589 return "DW_AT_type";
4590 case DW_AT_use_location:
4591 return "DW_AT_use_location";
4592 case DW_AT_variable_parameter:
4593 return "DW_AT_variable_parameter";
4594 case DW_AT_virtuality:
4595 return "DW_AT_virtuality";
4596 case DW_AT_vtable_elem_location:
4597 return "DW_AT_vtable_elem_location";
4599 case DW_AT_allocated:
4600 return "DW_AT_allocated";
4601 case DW_AT_associated:
4602 return "DW_AT_associated";
4603 case DW_AT_data_location:
4604 return "DW_AT_data_location";
4605 case DW_AT_stride:
4606 return "DW_AT_stride";
4607 case DW_AT_entry_pc:
4608 return "DW_AT_entry_pc";
4609 case DW_AT_use_UTF8:
4610 return "DW_AT_use_UTF8";
4611 case DW_AT_extension:
4612 return "DW_AT_extension";
4613 case DW_AT_ranges:
4614 return "DW_AT_ranges";
4615 case DW_AT_trampoline:
4616 return "DW_AT_trampoline";
4617 case DW_AT_call_column:
4618 return "DW_AT_call_column";
4619 case DW_AT_call_file:
4620 return "DW_AT_call_file";
4621 case DW_AT_call_line:
4622 return "DW_AT_call_line";
4624 case DW_AT_MIPS_fde:
4625 return "DW_AT_MIPS_fde";
4626 case DW_AT_MIPS_loop_begin:
4627 return "DW_AT_MIPS_loop_begin";
4628 case DW_AT_MIPS_tail_loop_begin:
4629 return "DW_AT_MIPS_tail_loop_begin";
4630 case DW_AT_MIPS_epilog_begin:
4631 return "DW_AT_MIPS_epilog_begin";
4632 case DW_AT_MIPS_loop_unroll_factor:
4633 return "DW_AT_MIPS_loop_unroll_factor";
4634 case DW_AT_MIPS_software_pipeline_depth:
4635 return "DW_AT_MIPS_software_pipeline_depth";
4636 case DW_AT_MIPS_linkage_name:
4637 return "DW_AT_MIPS_linkage_name";
4638 case DW_AT_MIPS_stride:
4639 return "DW_AT_MIPS_stride";
4640 case DW_AT_MIPS_abstract_name:
4641 return "DW_AT_MIPS_abstract_name";
4642 case DW_AT_MIPS_clone_origin:
4643 return "DW_AT_MIPS_clone_origin";
4644 case DW_AT_MIPS_has_inlines:
4645 return "DW_AT_MIPS_has_inlines";
4647 case DW_AT_sf_names:
4648 return "DW_AT_sf_names";
4649 case DW_AT_src_info:
4650 return "DW_AT_src_info";
4651 case DW_AT_mac_info:
4652 return "DW_AT_mac_info";
4653 case DW_AT_src_coords:
4654 return "DW_AT_src_coords";
4655 case DW_AT_body_begin:
4656 return "DW_AT_body_begin";
4657 case DW_AT_body_end:
4658 return "DW_AT_body_end";
4659 case DW_AT_GNU_vector:
4660 return "DW_AT_GNU_vector";
4662 case DW_AT_VMS_rtnbeg_pd_address:
4663 return "DW_AT_VMS_rtnbeg_pd_address";
4665 default:
4666 return "DW_AT_<unknown>";
4670 /* Convert a DWARF value form code into its string name. */
4672 static const char *
4673 dwarf_form_name (unsigned int form)
4675 switch (form)
4677 case DW_FORM_addr:
4678 return "DW_FORM_addr";
4679 case DW_FORM_block2:
4680 return "DW_FORM_block2";
4681 case DW_FORM_block4:
4682 return "DW_FORM_block4";
4683 case DW_FORM_data2:
4684 return "DW_FORM_data2";
4685 case DW_FORM_data4:
4686 return "DW_FORM_data4";
4687 case DW_FORM_data8:
4688 return "DW_FORM_data8";
4689 case DW_FORM_string:
4690 return "DW_FORM_string";
4691 case DW_FORM_block:
4692 return "DW_FORM_block";
4693 case DW_FORM_block1:
4694 return "DW_FORM_block1";
4695 case DW_FORM_data1:
4696 return "DW_FORM_data1";
4697 case DW_FORM_flag:
4698 return "DW_FORM_flag";
4699 case DW_FORM_sdata:
4700 return "DW_FORM_sdata";
4701 case DW_FORM_strp:
4702 return "DW_FORM_strp";
4703 case DW_FORM_udata:
4704 return "DW_FORM_udata";
4705 case DW_FORM_ref_addr:
4706 return "DW_FORM_ref_addr";
4707 case DW_FORM_ref1:
4708 return "DW_FORM_ref1";
4709 case DW_FORM_ref2:
4710 return "DW_FORM_ref2";
4711 case DW_FORM_ref4:
4712 return "DW_FORM_ref4";
4713 case DW_FORM_ref8:
4714 return "DW_FORM_ref8";
4715 case DW_FORM_ref_udata:
4716 return "DW_FORM_ref_udata";
4717 case DW_FORM_indirect:
4718 return "DW_FORM_indirect";
4719 default:
4720 return "DW_FORM_<unknown>";
4724 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4725 instance of an inlined instance of a decl which is local to an inline
4726 function, so we have to trace all of the way back through the origin chain
4727 to find out what sort of node actually served as the original seed for the
4728 given block. */
4730 static tree
4731 decl_ultimate_origin (tree decl)
4733 if (!CODE_CONTAINS_STRUCT (TREE_CODE (decl), TS_DECL_COMMON))
4734 return NULL_TREE;
4736 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4737 nodes in the function to point to themselves; ignore that if
4738 we're trying to output the abstract instance of this function. */
4739 if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4740 return NULL_TREE;
4742 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4743 most distant ancestor, this should never happen. */
4744 gcc_assert (!DECL_FROM_INLINE (DECL_ORIGIN (decl)));
4746 return DECL_ABSTRACT_ORIGIN (decl);
4749 /* Determine the "ultimate origin" of a block. The block may be an inlined
4750 instance of an inlined instance of a block which is local to an inline
4751 function, so we have to trace all of the way back through the origin chain
4752 to find out what sort of node actually served as the original seed for the
4753 given block. */
4755 static tree
4756 block_ultimate_origin (tree block)
4758 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
4760 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4761 nodes in the function to point to themselves; ignore that if
4762 we're trying to output the abstract instance of this function. */
4763 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
4764 return NULL_TREE;
4766 if (immediate_origin == NULL_TREE)
4767 return NULL_TREE;
4768 else
4770 tree ret_val;
4771 tree lookahead = immediate_origin;
4775 ret_val = lookahead;
4776 lookahead = (TREE_CODE (ret_val) == BLOCK
4777 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
4779 while (lookahead != NULL && lookahead != ret_val);
4781 /* The block's abstract origin chain may not be the *ultimate* origin of
4782 the block. It could lead to a DECL that has an abstract origin set.
4783 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
4784 will give us if it has one). Note that DECL's abstract origins are
4785 supposed to be the most distant ancestor (or so decl_ultimate_origin
4786 claims), so we don't need to loop following the DECL origins. */
4787 if (DECL_P (ret_val))
4788 return DECL_ORIGIN (ret_val);
4790 return ret_val;
4794 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4795 of a virtual function may refer to a base class, so we check the 'this'
4796 parameter. */
4798 static tree
4799 decl_class_context (tree decl)
4801 tree context = NULL_TREE;
4803 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4804 context = DECL_CONTEXT (decl);
4805 else
4806 context = TYPE_MAIN_VARIANT
4807 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4809 if (context && !TYPE_P (context))
4810 context = NULL_TREE;
4812 return context;
4815 /* Add an attribute/value pair to a DIE. We build the lists up in reverse
4816 addition order, and correct that in reverse_all_dies. */
4818 static inline void
4819 add_dwarf_attr (dw_die_ref die, dw_attr_ref attr)
4821 if (die != NULL && attr != NULL)
4823 attr->dw_attr_next = die->die_attr;
4824 die->die_attr = attr;
4828 static inline enum dw_val_class
4829 AT_class (dw_attr_ref a)
4831 return a->dw_attr_val.val_class;
4834 /* Add a flag value attribute to a DIE. */
4836 static inline void
4837 add_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int flag)
4839 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4841 attr->dw_attr_next = NULL;
4842 attr->dw_attr = attr_kind;
4843 attr->dw_attr_val.val_class = dw_val_class_flag;
4844 attr->dw_attr_val.v.val_flag = flag;
4845 add_dwarf_attr (die, attr);
4848 static inline unsigned
4849 AT_flag (dw_attr_ref a)
4851 gcc_assert (a && AT_class (a) == dw_val_class_flag);
4852 return a->dw_attr_val.v.val_flag;
4855 /* Add a signed integer attribute value to a DIE. */
4857 static inline void
4858 add_AT_int (dw_die_ref die, enum dwarf_attribute attr_kind, HOST_WIDE_INT int_val)
4860 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4862 attr->dw_attr_next = NULL;
4863 attr->dw_attr = attr_kind;
4864 attr->dw_attr_val.val_class = dw_val_class_const;
4865 attr->dw_attr_val.v.val_int = int_val;
4866 add_dwarf_attr (die, attr);
4869 static inline HOST_WIDE_INT
4870 AT_int (dw_attr_ref a)
4872 gcc_assert (a && AT_class (a) == dw_val_class_const);
4873 return a->dw_attr_val.v.val_int;
4876 /* Add an unsigned integer attribute value to a DIE. */
4878 static inline void
4879 add_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind,
4880 unsigned HOST_WIDE_INT unsigned_val)
4882 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4884 attr->dw_attr_next = NULL;
4885 attr->dw_attr = attr_kind;
4886 attr->dw_attr_val.val_class = dw_val_class_unsigned_const;
4887 attr->dw_attr_val.v.val_unsigned = unsigned_val;
4888 add_dwarf_attr (die, attr);
4891 static inline unsigned HOST_WIDE_INT
4892 AT_unsigned (dw_attr_ref a)
4894 gcc_assert (a && AT_class (a) == dw_val_class_unsigned_const);
4895 return a->dw_attr_val.v.val_unsigned;
4898 /* Add an unsigned double integer attribute value to a DIE. */
4900 static inline void
4901 add_AT_long_long (dw_die_ref die, enum dwarf_attribute attr_kind,
4902 long unsigned int val_hi, long unsigned int val_low)
4904 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4906 attr->dw_attr_next = NULL;
4907 attr->dw_attr = attr_kind;
4908 attr->dw_attr_val.val_class = dw_val_class_long_long;
4909 attr->dw_attr_val.v.val_long_long.hi = val_hi;
4910 attr->dw_attr_val.v.val_long_long.low = val_low;
4911 add_dwarf_attr (die, attr);
4914 /* Add a floating point attribute value to a DIE and return it. */
4916 static inline void
4917 add_AT_vec (dw_die_ref die, enum dwarf_attribute attr_kind,
4918 unsigned int length, unsigned int elt_size, unsigned char *array)
4920 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4922 attr->dw_attr_next = NULL;
4923 attr->dw_attr = attr_kind;
4924 attr->dw_attr_val.val_class = dw_val_class_vec;
4925 attr->dw_attr_val.v.val_vec.length = length;
4926 attr->dw_attr_val.v.val_vec.elt_size = elt_size;
4927 attr->dw_attr_val.v.val_vec.array = array;
4928 add_dwarf_attr (die, attr);
4931 /* Hash and equality functions for debug_str_hash. */
4933 static hashval_t
4934 debug_str_do_hash (const void *x)
4936 return htab_hash_string (((const struct indirect_string_node *)x)->str);
4939 static int
4940 debug_str_eq (const void *x1, const void *x2)
4942 return strcmp ((((const struct indirect_string_node *)x1)->str),
4943 (const char *)x2) == 0;
4946 /* Add a string attribute value to a DIE. */
4948 static inline void
4949 add_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind, const char *str)
4951 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4952 struct indirect_string_node *node;
4953 void **slot;
4955 if (! debug_str_hash)
4956 debug_str_hash = htab_create_ggc (10, debug_str_do_hash,
4957 debug_str_eq, NULL);
4959 slot = htab_find_slot_with_hash (debug_str_hash, str,
4960 htab_hash_string (str), INSERT);
4961 if (*slot == NULL)
4962 *slot = ggc_alloc_cleared (sizeof (struct indirect_string_node));
4963 node = (struct indirect_string_node *) *slot;
4964 node->str = ggc_strdup (str);
4965 node->refcount++;
4967 attr->dw_attr_next = NULL;
4968 attr->dw_attr = attr_kind;
4969 attr->dw_attr_val.val_class = dw_val_class_str;
4970 attr->dw_attr_val.v.val_str = node;
4971 add_dwarf_attr (die, attr);
4974 static inline const char *
4975 AT_string (dw_attr_ref a)
4977 gcc_assert (a && AT_class (a) == dw_val_class_str);
4978 return a->dw_attr_val.v.val_str->str;
4981 /* Find out whether a string should be output inline in DIE
4982 or out-of-line in .debug_str section. */
4984 static int
4985 AT_string_form (dw_attr_ref a)
4987 struct indirect_string_node *node;
4988 unsigned int len;
4989 char label[32];
4991 gcc_assert (a && AT_class (a) == dw_val_class_str);
4993 node = a->dw_attr_val.v.val_str;
4994 if (node->form)
4995 return node->form;
4997 len = strlen (node->str) + 1;
4999 /* If the string is shorter or equal to the size of the reference, it is
5000 always better to put it inline. */
5001 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
5002 return node->form = DW_FORM_string;
5004 /* If we cannot expect the linker to merge strings in .debug_str
5005 section, only put it into .debug_str if it is worth even in this
5006 single module. */
5007 if ((debug_str_section->common.flags & SECTION_MERGE) == 0
5008 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len)
5009 return node->form = DW_FORM_string;
5011 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
5012 ++dw2_string_counter;
5013 node->label = xstrdup (label);
5015 return node->form = DW_FORM_strp;
5018 /* Add a DIE reference attribute value to a DIE. */
5020 static inline void
5021 add_AT_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind, dw_die_ref targ_die)
5023 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5025 attr->dw_attr_next = NULL;
5026 attr->dw_attr = attr_kind;
5027 attr->dw_attr_val.val_class = dw_val_class_die_ref;
5028 attr->dw_attr_val.v.val_die_ref.die = targ_die;
5029 attr->dw_attr_val.v.val_die_ref.external = 0;
5030 add_dwarf_attr (die, attr);
5033 /* Add an AT_specification attribute to a DIE, and also make the back
5034 pointer from the specification to the definition. */
5036 static inline void
5037 add_AT_specification (dw_die_ref die, dw_die_ref targ_die)
5039 add_AT_die_ref (die, DW_AT_specification, targ_die);
5040 gcc_assert (!targ_die->die_definition);
5041 targ_die->die_definition = die;
5044 static inline dw_die_ref
5045 AT_ref (dw_attr_ref a)
5047 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
5048 return a->dw_attr_val.v.val_die_ref.die;
5051 static inline int
5052 AT_ref_external (dw_attr_ref a)
5054 if (a && AT_class (a) == dw_val_class_die_ref)
5055 return a->dw_attr_val.v.val_die_ref.external;
5057 return 0;
5060 static inline void
5061 set_AT_ref_external (dw_attr_ref a, int i)
5063 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
5064 a->dw_attr_val.v.val_die_ref.external = i;
5067 /* Add an FDE reference attribute value to a DIE. */
5069 static inline void
5070 add_AT_fde_ref (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int targ_fde)
5072 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5074 attr->dw_attr_next = NULL;
5075 attr->dw_attr = attr_kind;
5076 attr->dw_attr_val.val_class = dw_val_class_fde_ref;
5077 attr->dw_attr_val.v.val_fde_index = targ_fde;
5078 add_dwarf_attr (die, attr);
5081 /* Add a location description attribute value to a DIE. */
5083 static inline void
5084 add_AT_loc (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_descr_ref loc)
5086 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5088 attr->dw_attr_next = NULL;
5089 attr->dw_attr = attr_kind;
5090 attr->dw_attr_val.val_class = dw_val_class_loc;
5091 attr->dw_attr_val.v.val_loc = loc;
5092 add_dwarf_attr (die, attr);
5095 static inline dw_loc_descr_ref
5096 AT_loc (dw_attr_ref a)
5098 gcc_assert (a && AT_class (a) == dw_val_class_loc);
5099 return a->dw_attr_val.v.val_loc;
5102 static inline void
5103 add_AT_loc_list (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_list_ref loc_list)
5105 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5107 attr->dw_attr_next = NULL;
5108 attr->dw_attr = attr_kind;
5109 attr->dw_attr_val.val_class = dw_val_class_loc_list;
5110 attr->dw_attr_val.v.val_loc_list = loc_list;
5111 add_dwarf_attr (die, attr);
5112 have_location_lists = true;
5115 static inline dw_loc_list_ref
5116 AT_loc_list (dw_attr_ref a)
5118 gcc_assert (a && AT_class (a) == dw_val_class_loc_list);
5119 return a->dw_attr_val.v.val_loc_list;
5122 /* Add an address constant attribute value to a DIE. */
5124 static inline void
5125 add_AT_addr (dw_die_ref die, enum dwarf_attribute attr_kind, rtx addr)
5127 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5129 attr->dw_attr_next = NULL;
5130 attr->dw_attr = attr_kind;
5131 attr->dw_attr_val.val_class = dw_val_class_addr;
5132 attr->dw_attr_val.v.val_addr = addr;
5133 add_dwarf_attr (die, attr);
5136 static inline rtx
5137 AT_addr (dw_attr_ref a)
5139 gcc_assert (a && AT_class (a) == dw_val_class_addr);
5140 return a->dw_attr_val.v.val_addr;
5143 /* Add a label identifier attribute value to a DIE. */
5145 static inline void
5146 add_AT_lbl_id (dw_die_ref die, enum dwarf_attribute attr_kind, const char *lbl_id)
5148 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5150 attr->dw_attr_next = NULL;
5151 attr->dw_attr = attr_kind;
5152 attr->dw_attr_val.val_class = dw_val_class_lbl_id;
5153 attr->dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
5154 add_dwarf_attr (die, attr);
5157 /* Add a section offset attribute value to a DIE. */
5159 static inline void
5160 add_AT_lbl_offset (dw_die_ref die, enum dwarf_attribute attr_kind, const char *label)
5162 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5164 attr->dw_attr_next = NULL;
5165 attr->dw_attr = attr_kind;
5166 attr->dw_attr_val.val_class = dw_val_class_lbl_offset;
5167 attr->dw_attr_val.v.val_lbl_id = xstrdup (label);
5168 add_dwarf_attr (die, attr);
5171 /* Add an offset attribute value to a DIE. */
5173 static inline void
5174 add_AT_offset (dw_die_ref die, enum dwarf_attribute attr_kind,
5175 unsigned HOST_WIDE_INT offset)
5177 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5179 attr->dw_attr_next = NULL;
5180 attr->dw_attr = attr_kind;
5181 attr->dw_attr_val.val_class = dw_val_class_offset;
5182 attr->dw_attr_val.v.val_offset = offset;
5183 add_dwarf_attr (die, attr);
5186 /* Add an range_list attribute value to a DIE. */
5188 static void
5189 add_AT_range_list (dw_die_ref die, enum dwarf_attribute attr_kind,
5190 long unsigned int offset)
5192 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5194 attr->dw_attr_next = NULL;
5195 attr->dw_attr = attr_kind;
5196 attr->dw_attr_val.val_class = dw_val_class_range_list;
5197 attr->dw_attr_val.v.val_offset = offset;
5198 add_dwarf_attr (die, attr);
5201 static inline const char *
5202 AT_lbl (dw_attr_ref a)
5204 gcc_assert (a && (AT_class (a) == dw_val_class_lbl_id
5205 || AT_class (a) == dw_val_class_lbl_offset));
5206 return a->dw_attr_val.v.val_lbl_id;
5209 /* Get the attribute of type attr_kind. */
5211 static dw_attr_ref
5212 get_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5214 dw_attr_ref a;
5215 dw_die_ref spec = NULL;
5217 if (die != NULL)
5219 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5220 if (a->dw_attr == attr_kind)
5221 return a;
5222 else if (a->dw_attr == DW_AT_specification
5223 || a->dw_attr == DW_AT_abstract_origin)
5224 spec = AT_ref (a);
5226 if (spec)
5227 return get_AT (spec, attr_kind);
5230 return NULL;
5233 /* Return the "low pc" attribute value, typically associated with a subprogram
5234 DIE. Return null if the "low pc" attribute is either not present, or if it
5235 cannot be represented as an assembler label identifier. */
5237 static inline const char *
5238 get_AT_low_pc (dw_die_ref die)
5240 dw_attr_ref a = get_AT (die, DW_AT_low_pc);
5242 return a ? AT_lbl (a) : NULL;
5245 /* Return the "high pc" attribute value, typically associated with a subprogram
5246 DIE. Return null if the "high pc" attribute is either not present, or if it
5247 cannot be represented as an assembler label identifier. */
5249 static inline const char *
5250 get_AT_hi_pc (dw_die_ref die)
5252 dw_attr_ref a = get_AT (die, DW_AT_high_pc);
5254 return a ? AT_lbl (a) : NULL;
5257 /* Return the value of the string attribute designated by ATTR_KIND, or
5258 NULL if it is not present. */
5260 static inline const char *
5261 get_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind)
5263 dw_attr_ref a = get_AT (die, attr_kind);
5265 return a ? AT_string (a) : NULL;
5268 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
5269 if it is not present. */
5271 static inline int
5272 get_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind)
5274 dw_attr_ref a = get_AT (die, attr_kind);
5276 return a ? AT_flag (a) : 0;
5279 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
5280 if it is not present. */
5282 static inline unsigned
5283 get_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind)
5285 dw_attr_ref a = get_AT (die, attr_kind);
5287 return a ? AT_unsigned (a) : 0;
5290 static inline dw_die_ref
5291 get_AT_ref (dw_die_ref die, enum dwarf_attribute attr_kind)
5293 dw_attr_ref a = get_AT (die, attr_kind);
5295 return a ? AT_ref (a) : NULL;
5298 /* Return TRUE if the language is C or C++. */
5300 static inline bool
5301 is_c_family (void)
5303 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5305 return (lang == DW_LANG_C || lang == DW_LANG_C89
5306 || lang == DW_LANG_C_plus_plus);
5309 /* Return TRUE if the language is C++. */
5311 static inline bool
5312 is_cxx (void)
5314 return (get_AT_unsigned (comp_unit_die, DW_AT_language)
5315 == DW_LANG_C_plus_plus);
5318 /* Return TRUE if the language is Fortran. */
5320 static inline bool
5321 is_fortran (void)
5323 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5325 return (lang == DW_LANG_Fortran77
5326 || lang == DW_LANG_Fortran90
5327 || lang == DW_LANG_Fortran95);
5330 /* Return TRUE if the language is Java. */
5332 static inline bool
5333 is_java (void)
5335 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5337 return lang == DW_LANG_Java;
5340 /* Return TRUE if the language is Ada. */
5342 static inline bool
5343 is_ada (void)
5345 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5347 return lang == DW_LANG_Ada95 || lang == DW_LANG_Ada83;
5350 /* Free up the memory used by A. */
5352 static inline void free_AT (dw_attr_ref);
5353 static inline void
5354 free_AT (dw_attr_ref a)
5356 if (AT_class (a) == dw_val_class_str)
5357 if (a->dw_attr_val.v.val_str->refcount)
5358 a->dw_attr_val.v.val_str->refcount--;
5361 /* Remove the specified attribute if present. */
5363 static void
5364 remove_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5366 dw_attr_ref *p;
5367 dw_attr_ref removed = NULL;
5369 if (die != NULL)
5371 for (p = &(die->die_attr); *p; p = &((*p)->dw_attr_next))
5372 if ((*p)->dw_attr == attr_kind)
5374 removed = *p;
5375 *p = (*p)->dw_attr_next;
5376 break;
5379 if (removed != 0)
5380 free_AT (removed);
5384 /* Remove child die whose die_tag is specified tag. */
5386 static void
5387 remove_child_TAG (dw_die_ref die, enum dwarf_tag tag)
5389 dw_die_ref current, prev, next;
5390 current = die->die_child;
5391 prev = NULL;
5392 while (current != NULL)
5394 if (current->die_tag == tag)
5396 next = current->die_sib;
5397 if (prev == NULL)
5398 die->die_child = next;
5399 else
5400 prev->die_sib = next;
5401 free_die (current);
5402 current = next;
5404 else
5406 prev = current;
5407 current = current->die_sib;
5412 /* Free up the memory used by DIE. */
5414 static inline void
5415 free_die (dw_die_ref die)
5417 remove_children (die);
5420 /* Discard the children of this DIE. */
5422 static void
5423 remove_children (dw_die_ref die)
5425 dw_die_ref child_die = die->die_child;
5427 die->die_child = NULL;
5429 while (child_die != NULL)
5431 dw_die_ref tmp_die = child_die;
5432 dw_attr_ref a;
5434 child_die = child_die->die_sib;
5436 for (a = tmp_die->die_attr; a != NULL;)
5438 dw_attr_ref tmp_a = a;
5440 a = a->dw_attr_next;
5441 free_AT (tmp_a);
5444 free_die (tmp_die);
5448 /* Add a child DIE below its parent. We build the lists up in reverse
5449 addition order, and correct that in reverse_all_dies. */
5451 static inline void
5452 add_child_die (dw_die_ref die, dw_die_ref child_die)
5454 if (die != NULL && child_die != NULL)
5456 gcc_assert (die != child_die);
5458 child_die->die_parent = die;
5459 child_die->die_sib = die->die_child;
5460 die->die_child = child_die;
5464 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5465 is the specification, to the front of PARENT's list of children. */
5467 static void
5468 splice_child_die (dw_die_ref parent, dw_die_ref child)
5470 dw_die_ref *p;
5472 /* We want the declaration DIE from inside the class, not the
5473 specification DIE at toplevel. */
5474 if (child->die_parent != parent)
5476 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
5478 if (tmp)
5479 child = tmp;
5482 gcc_assert (child->die_parent == parent
5483 || (child->die_parent
5484 == get_AT_ref (parent, DW_AT_specification)));
5486 for (p = &(child->die_parent->die_child); *p; p = &((*p)->die_sib))
5487 if (*p == child)
5489 *p = child->die_sib;
5490 break;
5493 child->die_parent = parent;
5494 child->die_sib = parent->die_child;
5495 parent->die_child = child;
5498 /* Return a pointer to a newly created DIE node. */
5500 static inline dw_die_ref
5501 new_die (enum dwarf_tag tag_value, dw_die_ref parent_die, tree t)
5503 dw_die_ref die = ggc_alloc_cleared (sizeof (die_node));
5505 die->die_tag = tag_value;
5507 if (parent_die != NULL)
5508 add_child_die (parent_die, die);
5509 else
5511 limbo_die_node *limbo_node;
5513 limbo_node = ggc_alloc_cleared (sizeof (limbo_die_node));
5514 limbo_node->die = die;
5515 limbo_node->created_for = t;
5516 limbo_node->next = limbo_die_list;
5517 limbo_die_list = limbo_node;
5520 return die;
5523 /* Return the DIE associated with the given type specifier. */
5525 static inline dw_die_ref
5526 lookup_type_die (tree type)
5528 return TYPE_SYMTAB_DIE (type);
5531 /* Equate a DIE to a given type specifier. */
5533 static inline void
5534 equate_type_number_to_die (tree type, dw_die_ref type_die)
5536 TYPE_SYMTAB_DIE (type) = type_die;
5539 /* Returns a hash value for X (which really is a die_struct). */
5541 static hashval_t
5542 decl_die_table_hash (const void *x)
5544 return (hashval_t) ((const dw_die_ref) x)->decl_id;
5547 /* Return nonzero if decl_id of die_struct X is the same as UID of decl *Y. */
5549 static int
5550 decl_die_table_eq (const void *x, const void *y)
5552 return (((const dw_die_ref) x)->decl_id == DECL_UID ((const tree) y));
5555 /* Return the DIE associated with a given declaration. */
5557 static inline dw_die_ref
5558 lookup_decl_die (tree decl)
5560 return htab_find_with_hash (decl_die_table, decl, DECL_UID (decl));
5563 /* Returns a hash value for X (which really is a var_loc_list). */
5565 static hashval_t
5566 decl_loc_table_hash (const void *x)
5568 return (hashval_t) ((const var_loc_list *) x)->decl_id;
5571 /* Return nonzero if decl_id of var_loc_list X is the same as
5572 UID of decl *Y. */
5574 static int
5575 decl_loc_table_eq (const void *x, const void *y)
5577 return (((const var_loc_list *) x)->decl_id == DECL_UID ((const tree) y));
5580 /* Return the var_loc list associated with a given declaration. */
5582 static inline var_loc_list *
5583 lookup_decl_loc (tree decl)
5585 return htab_find_with_hash (decl_loc_table, decl, DECL_UID (decl));
5588 /* Equate a DIE to a particular declaration. */
5590 static void
5591 equate_decl_number_to_die (tree decl, dw_die_ref decl_die)
5593 unsigned int decl_id = DECL_UID (decl);
5594 void **slot;
5596 slot = htab_find_slot_with_hash (decl_die_table, decl, decl_id, INSERT);
5597 *slot = decl_die;
5598 decl_die->decl_id = decl_id;
5601 /* Add a variable location node to the linked list for DECL. */
5603 static void
5604 add_var_loc_to_decl (tree decl, struct var_loc_node *loc)
5606 unsigned int decl_id = DECL_UID (decl);
5607 var_loc_list *temp;
5608 void **slot;
5610 slot = htab_find_slot_with_hash (decl_loc_table, decl, decl_id, INSERT);
5611 if (*slot == NULL)
5613 temp = ggc_alloc_cleared (sizeof (var_loc_list));
5614 temp->decl_id = decl_id;
5615 *slot = temp;
5617 else
5618 temp = *slot;
5620 if (temp->last)
5622 /* If the current location is the same as the end of the list,
5623 we have nothing to do. */
5624 if (!rtx_equal_p (NOTE_VAR_LOCATION_LOC (temp->last->var_loc_note),
5625 NOTE_VAR_LOCATION_LOC (loc->var_loc_note)))
5627 /* Add LOC to the end of list and update LAST. */
5628 temp->last->next = loc;
5629 temp->last = loc;
5632 /* Do not add empty location to the beginning of the list. */
5633 else if (NOTE_VAR_LOCATION_LOC (loc->var_loc_note) != NULL_RTX)
5635 temp->first = loc;
5636 temp->last = loc;
5640 /* Keep track of the number of spaces used to indent the
5641 output of the debugging routines that print the structure of
5642 the DIE internal representation. */
5643 static int print_indent;
5645 /* Indent the line the number of spaces given by print_indent. */
5647 static inline void
5648 print_spaces (FILE *outfile)
5650 fprintf (outfile, "%*s", print_indent, "");
5653 /* Print the information associated with a given DIE, and its children.
5654 This routine is a debugging aid only. */
5656 static void
5657 print_die (dw_die_ref die, FILE *outfile)
5659 dw_attr_ref a;
5660 dw_die_ref c;
5662 print_spaces (outfile);
5663 fprintf (outfile, "DIE %4lu: %s\n",
5664 die->die_offset, dwarf_tag_name (die->die_tag));
5665 print_spaces (outfile);
5666 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5667 fprintf (outfile, " offset: %lu\n", die->die_offset);
5669 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5671 print_spaces (outfile);
5672 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5674 switch (AT_class (a))
5676 case dw_val_class_addr:
5677 fprintf (outfile, "address");
5678 break;
5679 case dw_val_class_offset:
5680 fprintf (outfile, "offset");
5681 break;
5682 case dw_val_class_loc:
5683 fprintf (outfile, "location descriptor");
5684 break;
5685 case dw_val_class_loc_list:
5686 fprintf (outfile, "location list -> label:%s",
5687 AT_loc_list (a)->ll_symbol);
5688 break;
5689 case dw_val_class_range_list:
5690 fprintf (outfile, "range list");
5691 break;
5692 case dw_val_class_const:
5693 fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, AT_int (a));
5694 break;
5695 case dw_val_class_unsigned_const:
5696 fprintf (outfile, HOST_WIDE_INT_PRINT_UNSIGNED, AT_unsigned (a));
5697 break;
5698 case dw_val_class_long_long:
5699 fprintf (outfile, "constant (%lu,%lu)",
5700 a->dw_attr_val.v.val_long_long.hi,
5701 a->dw_attr_val.v.val_long_long.low);
5702 break;
5703 case dw_val_class_vec:
5704 fprintf (outfile, "floating-point or vector constant");
5705 break;
5706 case dw_val_class_flag:
5707 fprintf (outfile, "%u", AT_flag (a));
5708 break;
5709 case dw_val_class_die_ref:
5710 if (AT_ref (a) != NULL)
5712 if (AT_ref (a)->die_symbol)
5713 fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
5714 else
5715 fprintf (outfile, "die -> %lu", AT_ref (a)->die_offset);
5717 else
5718 fprintf (outfile, "die -> <null>");
5719 break;
5720 case dw_val_class_lbl_id:
5721 case dw_val_class_lbl_offset:
5722 fprintf (outfile, "label: %s", AT_lbl (a));
5723 break;
5724 case dw_val_class_str:
5725 if (AT_string (a) != NULL)
5726 fprintf (outfile, "\"%s\"", AT_string (a));
5727 else
5728 fprintf (outfile, "<null>");
5729 break;
5730 default:
5731 break;
5734 fprintf (outfile, "\n");
5737 if (die->die_child != NULL)
5739 print_indent += 4;
5740 for (c = die->die_child; c != NULL; c = c->die_sib)
5741 print_die (c, outfile);
5743 print_indent -= 4;
5745 if (print_indent == 0)
5746 fprintf (outfile, "\n");
5749 /* Print the contents of the source code line number correspondence table.
5750 This routine is a debugging aid only. */
5752 static void
5753 print_dwarf_line_table (FILE *outfile)
5755 unsigned i;
5756 dw_line_info_ref line_info;
5758 fprintf (outfile, "\n\nDWARF source line information\n");
5759 for (i = 1; i < line_info_table_in_use; i++)
5761 line_info = &line_info_table[i];
5762 fprintf (outfile, "%5d: ", i);
5763 fprintf (outfile, "%-20s",
5764 VARRAY_CHAR_PTR (file_table, line_info->dw_file_num));
5765 fprintf (outfile, "%6ld", line_info->dw_line_num);
5766 fprintf (outfile, "\n");
5769 fprintf (outfile, "\n\n");
5772 /* Print the information collected for a given DIE. */
5774 void
5775 debug_dwarf_die (dw_die_ref die)
5777 print_die (die, stderr);
5780 /* Print all DWARF information collected for the compilation unit.
5781 This routine is a debugging aid only. */
5783 void
5784 debug_dwarf (void)
5786 print_indent = 0;
5787 print_die (comp_unit_die, stderr);
5788 if (! DWARF2_ASM_LINE_DEBUG_INFO)
5789 print_dwarf_line_table (stderr);
5792 /* We build up the lists of children and attributes by pushing new ones
5793 onto the beginning of the list. Reverse the lists for DIE so that
5794 they are in order of addition. */
5796 static void
5797 reverse_die_lists (dw_die_ref die)
5799 dw_die_ref c, cp, cn;
5800 dw_attr_ref a, ap, an;
5802 for (a = die->die_attr, ap = 0; a; a = an)
5804 an = a->dw_attr_next;
5805 a->dw_attr_next = ap;
5806 ap = a;
5809 die->die_attr = ap;
5811 for (c = die->die_child, cp = 0; c; c = cn)
5813 cn = c->die_sib;
5814 c->die_sib = cp;
5815 cp = c;
5818 die->die_child = cp;
5821 /* reverse_die_lists only reverses the single die you pass it. Since we used to
5822 reverse all dies in add_sibling_attributes, which runs through all the dies,
5823 it would reverse all the dies. Now, however, since we don't call
5824 reverse_die_lists in add_sibling_attributes, we need a routine to
5825 recursively reverse all the dies. This is that routine. */
5827 static void
5828 reverse_all_dies (dw_die_ref die)
5830 dw_die_ref c;
5832 reverse_die_lists (die);
5834 for (c = die->die_child; c; c = c->die_sib)
5835 reverse_all_dies (c);
5838 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5839 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5840 DIE that marks the start of the DIEs for this include file. */
5842 static dw_die_ref
5843 push_new_compile_unit (dw_die_ref old_unit, dw_die_ref bincl_die)
5845 const char *filename = get_AT_string (bincl_die, DW_AT_name);
5846 dw_die_ref new_unit = gen_compile_unit_die (filename);
5848 new_unit->die_sib = old_unit;
5849 return new_unit;
5852 /* Close an include-file CU and reopen the enclosing one. */
5854 static dw_die_ref
5855 pop_compile_unit (dw_die_ref old_unit)
5857 dw_die_ref new_unit = old_unit->die_sib;
5859 old_unit->die_sib = NULL;
5860 return new_unit;
5863 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5864 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5866 /* Calculate the checksum of a location expression. */
5868 static inline void
5869 loc_checksum (dw_loc_descr_ref loc, struct md5_ctx *ctx)
5871 CHECKSUM (loc->dw_loc_opc);
5872 CHECKSUM (loc->dw_loc_oprnd1);
5873 CHECKSUM (loc->dw_loc_oprnd2);
5876 /* Calculate the checksum of an attribute. */
5878 static void
5879 attr_checksum (dw_attr_ref at, struct md5_ctx *ctx, int *mark)
5881 dw_loc_descr_ref loc;
5882 rtx r;
5884 CHECKSUM (at->dw_attr);
5886 /* We don't care about differences in file numbering. */
5887 if (at->dw_attr == DW_AT_decl_file
5888 /* Or that this was compiled with a different compiler snapshot; if
5889 the output is the same, that's what matters. */
5890 || at->dw_attr == DW_AT_producer)
5891 return;
5893 switch (AT_class (at))
5895 case dw_val_class_const:
5896 CHECKSUM (at->dw_attr_val.v.val_int);
5897 break;
5898 case dw_val_class_unsigned_const:
5899 CHECKSUM (at->dw_attr_val.v.val_unsigned);
5900 break;
5901 case dw_val_class_long_long:
5902 CHECKSUM (at->dw_attr_val.v.val_long_long);
5903 break;
5904 case dw_val_class_vec:
5905 CHECKSUM (at->dw_attr_val.v.val_vec);
5906 break;
5907 case dw_val_class_flag:
5908 CHECKSUM (at->dw_attr_val.v.val_flag);
5909 break;
5910 case dw_val_class_str:
5911 CHECKSUM_STRING (AT_string (at));
5912 break;
5914 case dw_val_class_addr:
5915 r = AT_addr (at);
5916 gcc_assert (GET_CODE (r) == SYMBOL_REF);
5917 CHECKSUM_STRING (XSTR (r, 0));
5918 break;
5920 case dw_val_class_offset:
5921 CHECKSUM (at->dw_attr_val.v.val_offset);
5922 break;
5924 case dw_val_class_loc:
5925 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5926 loc_checksum (loc, ctx);
5927 break;
5929 case dw_val_class_die_ref:
5930 die_checksum (AT_ref (at), ctx, mark);
5931 break;
5933 case dw_val_class_fde_ref:
5934 case dw_val_class_lbl_id:
5935 case dw_val_class_lbl_offset:
5936 break;
5938 default:
5939 break;
5943 /* Calculate the checksum of a DIE. */
5945 static void
5946 die_checksum (dw_die_ref die, struct md5_ctx *ctx, int *mark)
5948 dw_die_ref c;
5949 dw_attr_ref a;
5951 /* To avoid infinite recursion. */
5952 if (die->die_mark)
5954 CHECKSUM (die->die_mark);
5955 return;
5957 die->die_mark = ++(*mark);
5959 CHECKSUM (die->die_tag);
5961 for (a = die->die_attr; a; a = a->dw_attr_next)
5962 attr_checksum (a, ctx, mark);
5964 for (c = die->die_child; c; c = c->die_sib)
5965 die_checksum (c, ctx, mark);
5968 #undef CHECKSUM
5969 #undef CHECKSUM_STRING
5971 /* Do the location expressions look same? */
5972 static inline int
5973 same_loc_p (dw_loc_descr_ref loc1, dw_loc_descr_ref loc2, int *mark)
5975 return loc1->dw_loc_opc == loc2->dw_loc_opc
5976 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
5977 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
5980 /* Do the values look the same? */
5981 static int
5982 same_dw_val_p (dw_val_node *v1, dw_val_node *v2, int *mark)
5984 dw_loc_descr_ref loc1, loc2;
5985 rtx r1, r2;
5987 if (v1->val_class != v2->val_class)
5988 return 0;
5990 switch (v1->val_class)
5992 case dw_val_class_const:
5993 return v1->v.val_int == v2->v.val_int;
5994 case dw_val_class_unsigned_const:
5995 return v1->v.val_unsigned == v2->v.val_unsigned;
5996 case dw_val_class_long_long:
5997 return v1->v.val_long_long.hi == v2->v.val_long_long.hi
5998 && v1->v.val_long_long.low == v2->v.val_long_long.low;
5999 case dw_val_class_vec:
6000 if (v1->v.val_vec.length != v2->v.val_vec.length
6001 || v1->v.val_vec.elt_size != v2->v.val_vec.elt_size)
6002 return 0;
6003 if (memcmp (v1->v.val_vec.array, v2->v.val_vec.array,
6004 v1->v.val_vec.length * v1->v.val_vec.elt_size))
6005 return 0;
6006 return 1;
6007 case dw_val_class_flag:
6008 return v1->v.val_flag == v2->v.val_flag;
6009 case dw_val_class_str:
6010 return !strcmp(v1->v.val_str->str, v2->v.val_str->str);
6012 case dw_val_class_addr:
6013 r1 = v1->v.val_addr;
6014 r2 = v2->v.val_addr;
6015 if (GET_CODE (r1) != GET_CODE (r2))
6016 return 0;
6017 gcc_assert (GET_CODE (r1) == SYMBOL_REF);
6018 return !strcmp (XSTR (r1, 0), XSTR (r2, 0));
6020 case dw_val_class_offset:
6021 return v1->v.val_offset == v2->v.val_offset;
6023 case dw_val_class_loc:
6024 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
6025 loc1 && loc2;
6026 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
6027 if (!same_loc_p (loc1, loc2, mark))
6028 return 0;
6029 return !loc1 && !loc2;
6031 case dw_val_class_die_ref:
6032 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
6034 case dw_val_class_fde_ref:
6035 case dw_val_class_lbl_id:
6036 case dw_val_class_lbl_offset:
6037 return 1;
6039 default:
6040 return 1;
6044 /* Do the attributes look the same? */
6046 static int
6047 same_attr_p (dw_attr_ref at1, dw_attr_ref at2, int *mark)
6049 if (at1->dw_attr != at2->dw_attr)
6050 return 0;
6052 /* We don't care about differences in file numbering. */
6053 if (at1->dw_attr == DW_AT_decl_file
6054 /* Or that this was compiled with a different compiler snapshot; if
6055 the output is the same, that's what matters. */
6056 || at1->dw_attr == DW_AT_producer)
6057 return 1;
6059 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
6062 /* Do the dies look the same? */
6064 static int
6065 same_die_p (dw_die_ref die1, dw_die_ref die2, int *mark)
6067 dw_die_ref c1, c2;
6068 dw_attr_ref a1, a2;
6070 /* To avoid infinite recursion. */
6071 if (die1->die_mark)
6072 return die1->die_mark == die2->die_mark;
6073 die1->die_mark = die2->die_mark = ++(*mark);
6075 if (die1->die_tag != die2->die_tag)
6076 return 0;
6078 for (a1 = die1->die_attr, a2 = die2->die_attr;
6079 a1 && a2;
6080 a1 = a1->dw_attr_next, a2 = a2->dw_attr_next)
6081 if (!same_attr_p (a1, a2, mark))
6082 return 0;
6083 if (a1 || a2)
6084 return 0;
6086 for (c1 = die1->die_child, c2 = die2->die_child;
6087 c1 && c2;
6088 c1 = c1->die_sib, c2 = c2->die_sib)
6089 if (!same_die_p (c1, c2, mark))
6090 return 0;
6091 if (c1 || c2)
6092 return 0;
6094 return 1;
6097 /* Do the dies look the same? Wrapper around same_die_p. */
6099 static int
6100 same_die_p_wrap (dw_die_ref die1, dw_die_ref die2)
6102 int mark = 0;
6103 int ret = same_die_p (die1, die2, &mark);
6105 unmark_all_dies (die1);
6106 unmark_all_dies (die2);
6108 return ret;
6111 /* The prefix to attach to symbols on DIEs in the current comdat debug
6112 info section. */
6113 static char *comdat_symbol_id;
6115 /* The index of the current symbol within the current comdat CU. */
6116 static unsigned int comdat_symbol_number;
6118 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
6119 children, and set comdat_symbol_id accordingly. */
6121 static void
6122 compute_section_prefix (dw_die_ref unit_die)
6124 const char *die_name = get_AT_string (unit_die, DW_AT_name);
6125 const char *base = die_name ? lbasename (die_name) : "anonymous";
6126 char *name = alloca (strlen (base) + 64);
6127 char *p;
6128 int i, mark;
6129 unsigned char checksum[16];
6130 struct md5_ctx ctx;
6132 /* Compute the checksum of the DIE, then append part of it as hex digits to
6133 the name filename of the unit. */
6135 md5_init_ctx (&ctx);
6136 mark = 0;
6137 die_checksum (unit_die, &ctx, &mark);
6138 unmark_all_dies (unit_die);
6139 md5_finish_ctx (&ctx, checksum);
6141 sprintf (name, "%s.", base);
6142 clean_symbol_name (name);
6144 p = name + strlen (name);
6145 for (i = 0; i < 4; i++)
6147 sprintf (p, "%.2x", checksum[i]);
6148 p += 2;
6151 comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
6152 comdat_symbol_number = 0;
6155 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
6157 static int
6158 is_type_die (dw_die_ref die)
6160 switch (die->die_tag)
6162 case DW_TAG_array_type:
6163 case DW_TAG_class_type:
6164 case DW_TAG_enumeration_type:
6165 case DW_TAG_pointer_type:
6166 case DW_TAG_reference_type:
6167 case DW_TAG_string_type:
6168 case DW_TAG_structure_type:
6169 case DW_TAG_subroutine_type:
6170 case DW_TAG_union_type:
6171 case DW_TAG_ptr_to_member_type:
6172 case DW_TAG_set_type:
6173 case DW_TAG_subrange_type:
6174 case DW_TAG_base_type:
6175 case DW_TAG_const_type:
6176 case DW_TAG_file_type:
6177 case DW_TAG_packed_type:
6178 case DW_TAG_volatile_type:
6179 case DW_TAG_typedef:
6180 return 1;
6181 default:
6182 return 0;
6186 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
6187 Basically, we want to choose the bits that are likely to be shared between
6188 compilations (types) and leave out the bits that are specific to individual
6189 compilations (functions). */
6191 static int
6192 is_comdat_die (dw_die_ref c)
6194 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
6195 we do for stabs. The advantage is a greater likelihood of sharing between
6196 objects that don't include headers in the same order (and therefore would
6197 put the base types in a different comdat). jason 8/28/00 */
6199 if (c->die_tag == DW_TAG_base_type)
6200 return 0;
6202 if (c->die_tag == DW_TAG_pointer_type
6203 || c->die_tag == DW_TAG_reference_type
6204 || c->die_tag == DW_TAG_const_type
6205 || c->die_tag == DW_TAG_volatile_type)
6207 dw_die_ref t = get_AT_ref (c, DW_AT_type);
6209 return t ? is_comdat_die (t) : 0;
6212 return is_type_die (c);
6215 /* Returns 1 iff C is the sort of DIE that might be referred to from another
6216 compilation unit. */
6218 static int
6219 is_symbol_die (dw_die_ref c)
6221 return (is_type_die (c)
6222 || (get_AT (c, DW_AT_declaration)
6223 && !get_AT (c, DW_AT_specification)));
6226 static char *
6227 gen_internal_sym (const char *prefix)
6229 char buf[256];
6231 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
6232 return xstrdup (buf);
6235 /* Assign symbols to all worthy DIEs under DIE. */
6237 static void
6238 assign_symbol_names (dw_die_ref die)
6240 dw_die_ref c;
6242 if (is_symbol_die (die))
6244 if (comdat_symbol_id)
6246 char *p = alloca (strlen (comdat_symbol_id) + 64);
6248 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
6249 comdat_symbol_id, comdat_symbol_number++);
6250 die->die_symbol = xstrdup (p);
6252 else
6253 die->die_symbol = gen_internal_sym ("LDIE");
6256 for (c = die->die_child; c != NULL; c = c->die_sib)
6257 assign_symbol_names (c);
6260 struct cu_hash_table_entry
6262 dw_die_ref cu;
6263 unsigned min_comdat_num, max_comdat_num;
6264 struct cu_hash_table_entry *next;
6267 /* Routines to manipulate hash table of CUs. */
6268 static hashval_t
6269 htab_cu_hash (const void *of)
6271 const struct cu_hash_table_entry *entry = of;
6273 return htab_hash_string (entry->cu->die_symbol);
6276 static int
6277 htab_cu_eq (const void *of1, const void *of2)
6279 const struct cu_hash_table_entry *entry1 = of1;
6280 const struct die_struct *entry2 = of2;
6282 return !strcmp (entry1->cu->die_symbol, entry2->die_symbol);
6285 static void
6286 htab_cu_del (void *what)
6288 struct cu_hash_table_entry *next, *entry = what;
6290 while (entry)
6292 next = entry->next;
6293 free (entry);
6294 entry = next;
6298 /* Check whether we have already seen this CU and set up SYM_NUM
6299 accordingly. */
6300 static int
6301 check_duplicate_cu (dw_die_ref cu, htab_t htable, unsigned int *sym_num)
6303 struct cu_hash_table_entry dummy;
6304 struct cu_hash_table_entry **slot, *entry, *last = &dummy;
6306 dummy.max_comdat_num = 0;
6308 slot = (struct cu_hash_table_entry **)
6309 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6310 INSERT);
6311 entry = *slot;
6313 for (; entry; last = entry, entry = entry->next)
6315 if (same_die_p_wrap (cu, entry->cu))
6316 break;
6319 if (entry)
6321 *sym_num = entry->min_comdat_num;
6322 return 1;
6325 entry = XCNEW (struct cu_hash_table_entry);
6326 entry->cu = cu;
6327 entry->min_comdat_num = *sym_num = last->max_comdat_num;
6328 entry->next = *slot;
6329 *slot = entry;
6331 return 0;
6334 /* Record SYM_NUM to record of CU in HTABLE. */
6335 static void
6336 record_comdat_symbol_number (dw_die_ref cu, htab_t htable, unsigned int sym_num)
6338 struct cu_hash_table_entry **slot, *entry;
6340 slot = (struct cu_hash_table_entry **)
6341 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6342 NO_INSERT);
6343 entry = *slot;
6345 entry->max_comdat_num = sym_num;
6348 /* Traverse the DIE (which is always comp_unit_die), and set up
6349 additional compilation units for each of the include files we see
6350 bracketed by BINCL/EINCL. */
6352 static void
6353 break_out_includes (dw_die_ref die)
6355 dw_die_ref *ptr;
6356 dw_die_ref unit = NULL;
6357 limbo_die_node *node, **pnode;
6358 htab_t cu_hash_table;
6360 for (ptr = &(die->die_child); *ptr;)
6362 dw_die_ref c = *ptr;
6364 if (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
6365 || (unit && is_comdat_die (c)))
6367 /* This DIE is for a secondary CU; remove it from the main one. */
6368 *ptr = c->die_sib;
6370 if (c->die_tag == DW_TAG_GNU_BINCL)
6372 unit = push_new_compile_unit (unit, c);
6373 free_die (c);
6375 else if (c->die_tag == DW_TAG_GNU_EINCL)
6377 unit = pop_compile_unit (unit);
6378 free_die (c);
6380 else
6381 add_child_die (unit, c);
6383 else
6385 /* Leave this DIE in the main CU. */
6386 ptr = &(c->die_sib);
6387 continue;
6391 #if 0
6392 /* We can only use this in debugging, since the frontend doesn't check
6393 to make sure that we leave every include file we enter. */
6394 gcc_assert (!unit);
6395 #endif
6397 assign_symbol_names (die);
6398 cu_hash_table = htab_create (10, htab_cu_hash, htab_cu_eq, htab_cu_del);
6399 for (node = limbo_die_list, pnode = &limbo_die_list;
6400 node;
6401 node = node->next)
6403 int is_dupl;
6405 compute_section_prefix (node->die);
6406 is_dupl = check_duplicate_cu (node->die, cu_hash_table,
6407 &comdat_symbol_number);
6408 assign_symbol_names (node->die);
6409 if (is_dupl)
6410 *pnode = node->next;
6411 else
6413 pnode = &node->next;
6414 record_comdat_symbol_number (node->die, cu_hash_table,
6415 comdat_symbol_number);
6418 htab_delete (cu_hash_table);
6421 /* Traverse the DIE and add a sibling attribute if it may have the
6422 effect of speeding up access to siblings. To save some space,
6423 avoid generating sibling attributes for DIE's without children. */
6425 static void
6426 add_sibling_attributes (dw_die_ref die)
6428 dw_die_ref c;
6430 if (die->die_tag != DW_TAG_compile_unit
6431 && die->die_sib && die->die_child != NULL)
6432 /* Add the sibling link to the front of the attribute list. */
6433 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
6435 for (c = die->die_child; c != NULL; c = c->die_sib)
6436 add_sibling_attributes (c);
6439 /* Output all location lists for the DIE and its children. */
6441 static void
6442 output_location_lists (dw_die_ref die)
6444 dw_die_ref c;
6445 dw_attr_ref d_attr;
6447 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6448 if (AT_class (d_attr) == dw_val_class_loc_list)
6449 output_loc_list (AT_loc_list (d_attr));
6451 for (c = die->die_child; c != NULL; c = c->die_sib)
6452 output_location_lists (c);
6456 /* The format of each DIE (and its attribute value pairs) is encoded in an
6457 abbreviation table. This routine builds the abbreviation table and assigns
6458 a unique abbreviation id for each abbreviation entry. The children of each
6459 die are visited recursively. */
6461 static void
6462 build_abbrev_table (dw_die_ref die)
6464 unsigned long abbrev_id;
6465 unsigned int n_alloc;
6466 dw_die_ref c;
6467 dw_attr_ref d_attr, a_attr;
6469 /* Scan the DIE references, and mark as external any that refer to
6470 DIEs from other CUs (i.e. those which are not marked). */
6471 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6472 if (AT_class (d_attr) == dw_val_class_die_ref
6473 && AT_ref (d_attr)->die_mark == 0)
6475 gcc_assert (AT_ref (d_attr)->die_symbol);
6477 set_AT_ref_external (d_attr, 1);
6480 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6482 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6484 if (abbrev->die_tag == die->die_tag)
6486 if ((abbrev->die_child != NULL) == (die->die_child != NULL))
6488 a_attr = abbrev->die_attr;
6489 d_attr = die->die_attr;
6491 while (a_attr != NULL && d_attr != NULL)
6493 if ((a_attr->dw_attr != d_attr->dw_attr)
6494 || (value_format (a_attr) != value_format (d_attr)))
6495 break;
6497 a_attr = a_attr->dw_attr_next;
6498 d_attr = d_attr->dw_attr_next;
6501 if (a_attr == NULL && d_attr == NULL)
6502 break;
6507 if (abbrev_id >= abbrev_die_table_in_use)
6509 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
6511 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
6512 abbrev_die_table = ggc_realloc (abbrev_die_table,
6513 sizeof (dw_die_ref) * n_alloc);
6515 memset (&abbrev_die_table[abbrev_die_table_allocated], 0,
6516 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
6517 abbrev_die_table_allocated = n_alloc;
6520 ++abbrev_die_table_in_use;
6521 abbrev_die_table[abbrev_id] = die;
6524 die->die_abbrev = abbrev_id;
6525 for (c = die->die_child; c != NULL; c = c->die_sib)
6526 build_abbrev_table (c);
6529 /* Return the power-of-two number of bytes necessary to represent VALUE. */
6531 static int
6532 constant_size (long unsigned int value)
6534 int log;
6536 if (value == 0)
6537 log = 0;
6538 else
6539 log = floor_log2 (value);
6541 log = log / 8;
6542 log = 1 << (floor_log2 (log) + 1);
6544 return log;
6547 /* Return the size of a DIE as it is represented in the
6548 .debug_info section. */
6550 static unsigned long
6551 size_of_die (dw_die_ref die)
6553 unsigned long size = 0;
6554 dw_attr_ref a;
6556 size += size_of_uleb128 (die->die_abbrev);
6557 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6559 switch (AT_class (a))
6561 case dw_val_class_addr:
6562 size += DWARF2_ADDR_SIZE;
6563 break;
6564 case dw_val_class_offset:
6565 size += DWARF_OFFSET_SIZE;
6566 break;
6567 case dw_val_class_loc:
6569 unsigned long lsize = size_of_locs (AT_loc (a));
6571 /* Block length. */
6572 size += constant_size (lsize);
6573 size += lsize;
6575 break;
6576 case dw_val_class_loc_list:
6577 size += DWARF_OFFSET_SIZE;
6578 break;
6579 case dw_val_class_range_list:
6580 size += DWARF_OFFSET_SIZE;
6581 break;
6582 case dw_val_class_const:
6583 size += size_of_sleb128 (AT_int (a));
6584 break;
6585 case dw_val_class_unsigned_const:
6586 size += constant_size (AT_unsigned (a));
6587 break;
6588 case dw_val_class_long_long:
6589 size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
6590 break;
6591 case dw_val_class_vec:
6592 size += 1 + (a->dw_attr_val.v.val_vec.length
6593 * a->dw_attr_val.v.val_vec.elt_size); /* block */
6594 break;
6595 case dw_val_class_flag:
6596 size += 1;
6597 break;
6598 case dw_val_class_die_ref:
6599 if (AT_ref_external (a))
6600 size += DWARF2_ADDR_SIZE;
6601 else
6602 size += DWARF_OFFSET_SIZE;
6603 break;
6604 case dw_val_class_fde_ref:
6605 size += DWARF_OFFSET_SIZE;
6606 break;
6607 case dw_val_class_lbl_id:
6608 size += DWARF2_ADDR_SIZE;
6609 break;
6610 case dw_val_class_lbl_offset:
6611 size += DWARF_OFFSET_SIZE;
6612 break;
6613 case dw_val_class_str:
6614 if (AT_string_form (a) == DW_FORM_strp)
6615 size += DWARF_OFFSET_SIZE;
6616 else
6617 size += strlen (a->dw_attr_val.v.val_str->str) + 1;
6618 break;
6619 default:
6620 gcc_unreachable ();
6624 return size;
6627 /* Size the debugging information associated with a given DIE. Visits the
6628 DIE's children recursively. Updates the global variable next_die_offset, on
6629 each time through. Uses the current value of next_die_offset to update the
6630 die_offset field in each DIE. */
6632 static void
6633 calc_die_sizes (dw_die_ref die)
6635 dw_die_ref c;
6637 die->die_offset = next_die_offset;
6638 next_die_offset += size_of_die (die);
6640 for (c = die->die_child; c != NULL; c = c->die_sib)
6641 calc_die_sizes (c);
6643 if (die->die_child != NULL)
6644 /* Count the null byte used to terminate sibling lists. */
6645 next_die_offset += 1;
6648 /* Set the marks for a die and its children. We do this so
6649 that we know whether or not a reference needs to use FORM_ref_addr; only
6650 DIEs in the same CU will be marked. We used to clear out the offset
6651 and use that as the flag, but ran into ordering problems. */
6653 static void
6654 mark_dies (dw_die_ref die)
6656 dw_die_ref c;
6658 gcc_assert (!die->die_mark);
6660 die->die_mark = 1;
6661 for (c = die->die_child; c; c = c->die_sib)
6662 mark_dies (c);
6665 /* Clear the marks for a die and its children. */
6667 static void
6668 unmark_dies (dw_die_ref die)
6670 dw_die_ref c;
6672 gcc_assert (die->die_mark);
6674 die->die_mark = 0;
6675 for (c = die->die_child; c; c = c->die_sib)
6676 unmark_dies (c);
6679 /* Clear the marks for a die, its children and referred dies. */
6681 static void
6682 unmark_all_dies (dw_die_ref die)
6684 dw_die_ref c;
6685 dw_attr_ref a;
6687 if (!die->die_mark)
6688 return;
6689 die->die_mark = 0;
6691 for (c = die->die_child; c; c = c->die_sib)
6692 unmark_all_dies (c);
6694 for (a = die->die_attr; a; a = a->dw_attr_next)
6695 if (AT_class (a) == dw_val_class_die_ref)
6696 unmark_all_dies (AT_ref (a));
6699 /* Return the size of the .debug_pubnames table generated for the
6700 compilation unit. */
6702 static unsigned long
6703 size_of_pubnames (void)
6705 unsigned long size;
6706 unsigned i;
6708 size = DWARF_PUBNAMES_HEADER_SIZE;
6709 for (i = 0; i < pubname_table_in_use; i++)
6711 pubname_ref p = &pubname_table[i];
6712 size += DWARF_OFFSET_SIZE + strlen (p->name) + 1;
6715 size += DWARF_OFFSET_SIZE;
6716 return size;
6719 /* Return the size of the information in the .debug_aranges section. */
6721 static unsigned long
6722 size_of_aranges (void)
6724 unsigned long size;
6726 size = DWARF_ARANGES_HEADER_SIZE;
6728 /* Count the address/length pair for this compilation unit. */
6729 size += 2 * DWARF2_ADDR_SIZE;
6730 size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
6732 /* Count the two zero words used to terminated the address range table. */
6733 size += 2 * DWARF2_ADDR_SIZE;
6734 return size;
6737 /* Select the encoding of an attribute value. */
6739 static enum dwarf_form
6740 value_format (dw_attr_ref a)
6742 switch (a->dw_attr_val.val_class)
6744 case dw_val_class_addr:
6745 return DW_FORM_addr;
6746 case dw_val_class_range_list:
6747 case dw_val_class_offset:
6748 switch (DWARF_OFFSET_SIZE)
6750 case 4:
6751 return DW_FORM_data4;
6752 case 8:
6753 return DW_FORM_data8;
6754 default:
6755 gcc_unreachable ();
6757 case dw_val_class_loc_list:
6758 /* FIXME: Could be DW_FORM_data8, with a > 32 bit size
6759 .debug_loc section */
6760 return DW_FORM_data4;
6761 case dw_val_class_loc:
6762 switch (constant_size (size_of_locs (AT_loc (a))))
6764 case 1:
6765 return DW_FORM_block1;
6766 case 2:
6767 return DW_FORM_block2;
6768 default:
6769 gcc_unreachable ();
6771 case dw_val_class_const:
6772 return DW_FORM_sdata;
6773 case dw_val_class_unsigned_const:
6774 switch (constant_size (AT_unsigned (a)))
6776 case 1:
6777 return DW_FORM_data1;
6778 case 2:
6779 return DW_FORM_data2;
6780 case 4:
6781 return DW_FORM_data4;
6782 case 8:
6783 return DW_FORM_data8;
6784 default:
6785 gcc_unreachable ();
6787 case dw_val_class_long_long:
6788 return DW_FORM_block1;
6789 case dw_val_class_vec:
6790 return DW_FORM_block1;
6791 case dw_val_class_flag:
6792 return DW_FORM_flag;
6793 case dw_val_class_die_ref:
6794 if (AT_ref_external (a))
6795 return DW_FORM_ref_addr;
6796 else
6797 return DW_FORM_ref;
6798 case dw_val_class_fde_ref:
6799 return DW_FORM_data;
6800 case dw_val_class_lbl_id:
6801 return DW_FORM_addr;
6802 case dw_val_class_lbl_offset:
6803 return DW_FORM_data;
6804 case dw_val_class_str:
6805 return AT_string_form (a);
6807 default:
6808 gcc_unreachable ();
6812 /* Output the encoding of an attribute value. */
6814 static void
6815 output_value_format (dw_attr_ref a)
6817 enum dwarf_form form = value_format (a);
6819 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
6822 /* Output the .debug_abbrev section which defines the DIE abbreviation
6823 table. */
6825 static void
6826 output_abbrev_section (void)
6828 unsigned long abbrev_id;
6830 dw_attr_ref a_attr;
6832 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6834 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6836 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
6837 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
6838 dwarf_tag_name (abbrev->die_tag));
6840 if (abbrev->die_child != NULL)
6841 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
6842 else
6843 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
6845 for (a_attr = abbrev->die_attr; a_attr != NULL;
6846 a_attr = a_attr->dw_attr_next)
6848 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
6849 dwarf_attr_name (a_attr->dw_attr));
6850 output_value_format (a_attr);
6853 dw2_asm_output_data (1, 0, NULL);
6854 dw2_asm_output_data (1, 0, NULL);
6857 /* Terminate the table. */
6858 dw2_asm_output_data (1, 0, NULL);
6861 /* Output a symbol we can use to refer to this DIE from another CU. */
6863 static inline void
6864 output_die_symbol (dw_die_ref die)
6866 char *sym = die->die_symbol;
6868 if (sym == 0)
6869 return;
6871 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
6872 /* We make these global, not weak; if the target doesn't support
6873 .linkonce, it doesn't support combining the sections, so debugging
6874 will break. */
6875 targetm.asm_out.globalize_label (asm_out_file, sym);
6877 ASM_OUTPUT_LABEL (asm_out_file, sym);
6880 /* Return a new location list, given the begin and end range, and the
6881 expression. gensym tells us whether to generate a new internal symbol for
6882 this location list node, which is done for the head of the list only. */
6884 static inline dw_loc_list_ref
6885 new_loc_list (dw_loc_descr_ref expr, const char *begin, const char *end,
6886 const char *section, unsigned int gensym)
6888 dw_loc_list_ref retlist = ggc_alloc_cleared (sizeof (dw_loc_list_node));
6890 retlist->begin = begin;
6891 retlist->end = end;
6892 retlist->expr = expr;
6893 retlist->section = section;
6894 if (gensym)
6895 retlist->ll_symbol = gen_internal_sym ("LLST");
6897 return retlist;
6900 /* Add a location description expression to a location list. */
6902 static inline void
6903 add_loc_descr_to_loc_list (dw_loc_list_ref *list_head, dw_loc_descr_ref descr,
6904 const char *begin, const char *end,
6905 const char *section)
6907 dw_loc_list_ref *d;
6909 /* Find the end of the chain. */
6910 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
6913 /* Add a new location list node to the list. */
6914 *d = new_loc_list (descr, begin, end, section, 0);
6917 static void
6918 dwarf2out_switch_text_section (void)
6920 dw_fde_ref fde;
6922 gcc_assert (cfun);
6924 fde = &fde_table[fde_table_in_use - 1];
6925 fde->dw_fde_switched_sections = true;
6926 fde->dw_fde_hot_section_label = cfun->hot_section_label;
6927 fde->dw_fde_hot_section_end_label = cfun->hot_section_end_label;
6928 fde->dw_fde_unlikely_section_label = cfun->cold_section_label;
6929 fde->dw_fde_unlikely_section_end_label = cfun->cold_section_end_label;
6930 have_multiple_function_sections = true;
6933 /* Output the location list given to us. */
6935 static void
6936 output_loc_list (dw_loc_list_ref list_head)
6938 dw_loc_list_ref curr = list_head;
6940 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
6942 /* Walk the location list, and output each range + expression. */
6943 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
6945 unsigned long size;
6946 if (!have_multiple_function_sections)
6948 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
6949 "Location list begin address (%s)",
6950 list_head->ll_symbol);
6951 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
6952 "Location list end address (%s)",
6953 list_head->ll_symbol);
6955 else
6957 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->begin,
6958 "Location list begin address (%s)",
6959 list_head->ll_symbol);
6960 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->end,
6961 "Location list end address (%s)",
6962 list_head->ll_symbol);
6964 size = size_of_locs (curr->expr);
6966 /* Output the block length for this list of location operations. */
6967 gcc_assert (size <= 0xffff);
6968 dw2_asm_output_data (2, size, "%s", "Location expression size");
6970 output_loc_sequence (curr->expr);
6973 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
6974 "Location list terminator begin (%s)",
6975 list_head->ll_symbol);
6976 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
6977 "Location list terminator end (%s)",
6978 list_head->ll_symbol);
6981 /* Output the DIE and its attributes. Called recursively to generate
6982 the definitions of each child DIE. */
6984 static void
6985 output_die (dw_die_ref die)
6987 dw_attr_ref a;
6988 dw_die_ref c;
6989 unsigned long size;
6991 /* If someone in another CU might refer to us, set up a symbol for
6992 them to point to. */
6993 if (die->die_symbol)
6994 output_die_symbol (die);
6996 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
6997 die->die_offset, dwarf_tag_name (die->die_tag));
6999 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
7001 const char *name = dwarf_attr_name (a->dw_attr);
7003 switch (AT_class (a))
7005 case dw_val_class_addr:
7006 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
7007 break;
7009 case dw_val_class_offset:
7010 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
7011 "%s", name);
7012 break;
7014 case dw_val_class_range_list:
7016 char *p = strchr (ranges_section_label, '\0');
7018 sprintf (p, "+" HOST_WIDE_INT_PRINT_HEX,
7019 a->dw_attr_val.v.val_offset);
7020 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
7021 "%s", name);
7022 *p = '\0';
7024 break;
7026 case dw_val_class_loc:
7027 size = size_of_locs (AT_loc (a));
7029 /* Output the block length for this list of location operations. */
7030 dw2_asm_output_data (constant_size (size), size, "%s", name);
7032 output_loc_sequence (AT_loc (a));
7033 break;
7035 case dw_val_class_const:
7036 /* ??? It would be slightly more efficient to use a scheme like is
7037 used for unsigned constants below, but gdb 4.x does not sign
7038 extend. Gdb 5.x does sign extend. */
7039 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
7040 break;
7042 case dw_val_class_unsigned_const:
7043 dw2_asm_output_data (constant_size (AT_unsigned (a)),
7044 AT_unsigned (a), "%s", name);
7045 break;
7047 case dw_val_class_long_long:
7049 unsigned HOST_WIDE_INT first, second;
7051 dw2_asm_output_data (1,
7052 2 * HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
7053 "%s", name);
7055 if (WORDS_BIG_ENDIAN)
7057 first = a->dw_attr_val.v.val_long_long.hi;
7058 second = a->dw_attr_val.v.val_long_long.low;
7060 else
7062 first = a->dw_attr_val.v.val_long_long.low;
7063 second = a->dw_attr_val.v.val_long_long.hi;
7066 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
7067 first, "long long constant");
7068 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
7069 second, NULL);
7071 break;
7073 case dw_val_class_vec:
7075 unsigned int elt_size = a->dw_attr_val.v.val_vec.elt_size;
7076 unsigned int len = a->dw_attr_val.v.val_vec.length;
7077 unsigned int i;
7078 unsigned char *p;
7080 dw2_asm_output_data (1, len * elt_size, "%s", name);
7081 if (elt_size > sizeof (HOST_WIDE_INT))
7083 elt_size /= 2;
7084 len *= 2;
7086 for (i = 0, p = a->dw_attr_val.v.val_vec.array;
7087 i < len;
7088 i++, p += elt_size)
7089 dw2_asm_output_data (elt_size, extract_int (p, elt_size),
7090 "fp or vector constant word %u", i);
7091 break;
7094 case dw_val_class_flag:
7095 dw2_asm_output_data (1, AT_flag (a), "%s", name);
7096 break;
7098 case dw_val_class_loc_list:
7100 char *sym = AT_loc_list (a)->ll_symbol;
7102 gcc_assert (sym);
7103 dw2_asm_output_offset (DWARF_OFFSET_SIZE, sym, "%s", name);
7105 break;
7107 case dw_val_class_die_ref:
7108 if (AT_ref_external (a))
7110 char *sym = AT_ref (a)->die_symbol;
7112 gcc_assert (sym);
7113 dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, "%s", name);
7115 else
7117 gcc_assert (AT_ref (a)->die_offset);
7118 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
7119 "%s", name);
7121 break;
7123 case dw_val_class_fde_ref:
7125 char l1[20];
7127 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
7128 a->dw_attr_val.v.val_fde_index * 2);
7129 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, "%s", name);
7131 break;
7133 case dw_val_class_lbl_id:
7134 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
7135 break;
7137 case dw_val_class_lbl_offset:
7138 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a), "%s", name);
7139 break;
7141 case dw_val_class_str:
7142 if (AT_string_form (a) == DW_FORM_strp)
7143 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
7144 a->dw_attr_val.v.val_str->label,
7145 "%s: \"%s\"", name, AT_string (a));
7146 else
7147 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
7148 break;
7150 default:
7151 gcc_unreachable ();
7155 for (c = die->die_child; c != NULL; c = c->die_sib)
7156 output_die (c);
7158 /* Add null byte to terminate sibling list. */
7159 if (die->die_child != NULL)
7160 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
7161 die->die_offset);
7164 /* Output the compilation unit that appears at the beginning of the
7165 .debug_info section, and precedes the DIE descriptions. */
7167 static void
7168 output_compilation_unit_header (void)
7170 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7171 dw2_asm_output_data (4, 0xffffffff,
7172 "Initial length escape value indicating 64-bit DWARF extension");
7173 dw2_asm_output_data (DWARF_OFFSET_SIZE,
7174 next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
7175 "Length of Compilation Unit Info");
7176 dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
7177 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
7178 "Offset Into Abbrev. Section");
7179 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
7182 /* Output the compilation unit DIE and its children. */
7184 static void
7185 output_comp_unit (dw_die_ref die, int output_if_empty)
7187 const char *secname;
7188 char *oldsym, *tmp;
7190 /* Unless we are outputting main CU, we may throw away empty ones. */
7191 if (!output_if_empty && die->die_child == NULL)
7192 return;
7194 /* Even if there are no children of this DIE, we must output the information
7195 about the compilation unit. Otherwise, on an empty translation unit, we
7196 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
7197 will then complain when examining the file. First mark all the DIEs in
7198 this CU so we know which get local refs. */
7199 mark_dies (die);
7201 build_abbrev_table (die);
7203 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
7204 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
7205 calc_die_sizes (die);
7207 oldsym = die->die_symbol;
7208 if (oldsym)
7210 tmp = alloca (strlen (oldsym) + 24);
7212 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
7213 secname = tmp;
7214 die->die_symbol = NULL;
7215 switch_to_section (get_section (secname, SECTION_DEBUG, NULL));
7217 else
7218 switch_to_section (debug_info_section);
7220 /* Output debugging information. */
7221 output_compilation_unit_header ();
7222 output_die (die);
7224 /* Leave the marks on the main CU, so we can check them in
7225 output_pubnames. */
7226 if (oldsym)
7228 unmark_dies (die);
7229 die->die_symbol = oldsym;
7233 /* The DWARF2 pubname for a nested thingy looks like "A::f". The
7234 output of lang_hooks.decl_printable_name for C++ looks like
7235 "A::f(int)". Let's drop the argument list, and maybe the scope. */
7237 static const char *
7238 dwarf2_name (tree decl, int scope)
7240 return lang_hooks.decl_printable_name (decl, scope ? 1 : 0);
7243 /* Add a new entry to .debug_pubnames if appropriate. */
7245 static void
7246 add_pubname (tree decl, dw_die_ref die)
7248 pubname_ref p;
7250 if (! TREE_PUBLIC (decl))
7251 return;
7253 if (pubname_table_in_use == pubname_table_allocated)
7255 pubname_table_allocated += PUBNAME_TABLE_INCREMENT;
7256 pubname_table
7257 = ggc_realloc (pubname_table,
7258 (pubname_table_allocated * sizeof (pubname_entry)));
7259 memset (pubname_table + pubname_table_in_use, 0,
7260 PUBNAME_TABLE_INCREMENT * sizeof (pubname_entry));
7263 p = &pubname_table[pubname_table_in_use++];
7264 p->die = die;
7265 p->name = xstrdup (dwarf2_name (decl, 1));
7268 /* Output the public names table used to speed up access to externally
7269 visible names. For now, only generate entries for externally
7270 visible procedures. */
7272 static void
7273 output_pubnames (void)
7275 unsigned i;
7276 unsigned long pubnames_length = size_of_pubnames ();
7278 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7279 dw2_asm_output_data (4, 0xffffffff,
7280 "Initial length escape value indicating 64-bit DWARF extension");
7281 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
7282 "Length of Public Names Info");
7283 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7284 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7285 "Offset of Compilation Unit Info");
7286 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
7287 "Compilation Unit Length");
7289 for (i = 0; i < pubname_table_in_use; i++)
7291 pubname_ref pub = &pubname_table[i];
7293 /* We shouldn't see pubnames for DIEs outside of the main CU. */
7294 gcc_assert (pub->die->die_mark);
7296 dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
7297 "DIE offset");
7299 dw2_asm_output_nstring (pub->name, -1, "external name");
7302 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
7305 /* Add a new entry to .debug_aranges if appropriate. */
7307 static void
7308 add_arange (tree decl, dw_die_ref die)
7310 if (! DECL_SECTION_NAME (decl))
7311 return;
7313 if (arange_table_in_use == arange_table_allocated)
7315 arange_table_allocated += ARANGE_TABLE_INCREMENT;
7316 arange_table = ggc_realloc (arange_table,
7317 (arange_table_allocated
7318 * sizeof (dw_die_ref)));
7319 memset (arange_table + arange_table_in_use, 0,
7320 ARANGE_TABLE_INCREMENT * sizeof (dw_die_ref));
7323 arange_table[arange_table_in_use++] = die;
7326 /* Output the information that goes into the .debug_aranges table.
7327 Namely, define the beginning and ending address range of the
7328 text section generated for this compilation unit. */
7330 static void
7331 output_aranges (void)
7333 unsigned i;
7334 unsigned long aranges_length = size_of_aranges ();
7336 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7337 dw2_asm_output_data (4, 0xffffffff,
7338 "Initial length escape value indicating 64-bit DWARF extension");
7339 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
7340 "Length of Address Ranges Info");
7341 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7342 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7343 "Offset of Compilation Unit Info");
7344 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
7345 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
7347 /* We need to align to twice the pointer size here. */
7348 if (DWARF_ARANGES_PAD_SIZE)
7350 /* Pad using a 2 byte words so that padding is correct for any
7351 pointer size. */
7352 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
7353 2 * DWARF2_ADDR_SIZE);
7354 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
7355 dw2_asm_output_data (2, 0, NULL);
7358 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
7359 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
7360 text_section_label, "Length");
7361 if (flag_reorder_blocks_and_partition)
7363 dw2_asm_output_addr (DWARF2_ADDR_SIZE, cold_text_section_label,
7364 "Address");
7365 dw2_asm_output_delta (DWARF2_ADDR_SIZE, cold_end_label,
7366 cold_text_section_label, "Length");
7369 for (i = 0; i < arange_table_in_use; i++)
7371 dw_die_ref die = arange_table[i];
7373 /* We shouldn't see aranges for DIEs outside of the main CU. */
7374 gcc_assert (die->die_mark);
7376 if (die->die_tag == DW_TAG_subprogram)
7378 dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
7379 "Address");
7380 dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
7381 get_AT_low_pc (die), "Length");
7383 else
7385 /* A static variable; extract the symbol from DW_AT_location.
7386 Note that this code isn't currently hit, as we only emit
7387 aranges for functions (jason 9/23/99). */
7388 dw_attr_ref a = get_AT (die, DW_AT_location);
7389 dw_loc_descr_ref loc;
7391 gcc_assert (a && AT_class (a) == dw_val_class_loc);
7393 loc = AT_loc (a);
7394 gcc_assert (loc->dw_loc_opc == DW_OP_addr);
7396 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
7397 loc->dw_loc_oprnd1.v.val_addr, "Address");
7398 dw2_asm_output_data (DWARF2_ADDR_SIZE,
7399 get_AT_unsigned (die, DW_AT_byte_size),
7400 "Length");
7404 /* Output the terminator words. */
7405 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7406 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7409 /* Add a new entry to .debug_ranges. Return the offset at which it
7410 was placed. */
7412 static unsigned int
7413 add_ranges (tree block)
7415 unsigned int in_use = ranges_table_in_use;
7417 if (in_use == ranges_table_allocated)
7419 ranges_table_allocated += RANGES_TABLE_INCREMENT;
7420 ranges_table
7421 = ggc_realloc (ranges_table, (ranges_table_allocated
7422 * sizeof (struct dw_ranges_struct)));
7423 memset (ranges_table + ranges_table_in_use, 0,
7424 RANGES_TABLE_INCREMENT * sizeof (struct dw_ranges_struct));
7427 ranges_table[in_use].block_num = (block ? BLOCK_NUMBER (block) : 0);
7428 ranges_table_in_use = in_use + 1;
7430 return in_use * 2 * DWARF2_ADDR_SIZE;
7433 static void
7434 output_ranges (void)
7436 unsigned i;
7437 static const char *const start_fmt = "Offset 0x%x";
7438 const char *fmt = start_fmt;
7440 for (i = 0; i < ranges_table_in_use; i++)
7442 int block_num = ranges_table[i].block_num;
7444 if (block_num)
7446 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
7447 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
7449 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
7450 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
7452 /* If all code is in the text section, then the compilation
7453 unit base address defaults to DW_AT_low_pc, which is the
7454 base of the text section. */
7455 if (!have_multiple_function_sections)
7457 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
7458 text_section_label,
7459 fmt, i * 2 * DWARF2_ADDR_SIZE);
7460 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
7461 text_section_label, NULL);
7464 /* Otherwise, we add a DW_AT_entry_pc attribute to force the
7465 compilation unit base address to zero, which allows us to
7466 use absolute addresses, and not worry about whether the
7467 target supports cross-section arithmetic. */
7468 else
7470 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
7471 fmt, i * 2 * DWARF2_ADDR_SIZE);
7472 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
7475 fmt = NULL;
7477 else
7479 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7480 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7481 fmt = start_fmt;
7486 /* Data structure containing information about input files. */
7487 struct file_info
7489 char *path; /* Complete file name. */
7490 char *fname; /* File name part. */
7491 int length; /* Length of entire string. */
7492 int file_idx; /* Index in input file table. */
7493 int dir_idx; /* Index in directory table. */
7496 /* Data structure containing information about directories with source
7497 files. */
7498 struct dir_info
7500 char *path; /* Path including directory name. */
7501 int length; /* Path length. */
7502 int prefix; /* Index of directory entry which is a prefix. */
7503 int count; /* Number of files in this directory. */
7504 int dir_idx; /* Index of directory used as base. */
7505 int used; /* Used in the end? */
7508 /* Callback function for file_info comparison. We sort by looking at
7509 the directories in the path. */
7511 static int
7512 file_info_cmp (const void *p1, const void *p2)
7514 const struct file_info *s1 = p1;
7515 const struct file_info *s2 = p2;
7516 unsigned char *cp1;
7517 unsigned char *cp2;
7519 /* Take care of file names without directories. We need to make sure that
7520 we return consistent values to qsort since some will get confused if
7521 we return the same value when identical operands are passed in opposite
7522 orders. So if neither has a directory, return 0 and otherwise return
7523 1 or -1 depending on which one has the directory. */
7524 if ((s1->path == s1->fname || s2->path == s2->fname))
7525 return (s2->path == s2->fname) - (s1->path == s1->fname);
7527 cp1 = (unsigned char *) s1->path;
7528 cp2 = (unsigned char *) s2->path;
7530 while (1)
7532 ++cp1;
7533 ++cp2;
7534 /* Reached the end of the first path? If so, handle like above. */
7535 if ((cp1 == (unsigned char *) s1->fname)
7536 || (cp2 == (unsigned char *) s2->fname))
7537 return ((cp2 == (unsigned char *) s2->fname)
7538 - (cp1 == (unsigned char *) s1->fname));
7540 /* Character of current path component the same? */
7541 else if (*cp1 != *cp2)
7542 return *cp1 - *cp2;
7546 /* Output the directory table and the file name table. We try to minimize
7547 the total amount of memory needed. A heuristic is used to avoid large
7548 slowdowns with many input files. */
7550 static void
7551 output_file_names (void)
7553 struct file_info *files;
7554 struct dir_info *dirs;
7555 int *saved;
7556 int *savehere;
7557 int *backmap;
7558 size_t ndirs;
7559 int idx_offset;
7560 size_t i;
7561 int idx;
7563 /* Handle the case where file_table is empty. */
7564 if (VARRAY_ACTIVE_SIZE (file_table) <= 1)
7566 dw2_asm_output_data (1, 0, "End directory table");
7567 dw2_asm_output_data (1, 0, "End file name table");
7568 return;
7571 /* Allocate the various arrays we need. */
7572 files = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct file_info));
7573 dirs = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct dir_info));
7575 /* Sort the file names. */
7576 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7578 char *f;
7580 /* Skip all leading "./". */
7581 f = VARRAY_CHAR_PTR (file_table, i);
7582 while (f[0] == '.' && f[1] == '/')
7583 f += 2;
7585 /* Create a new array entry. */
7586 files[i].path = f;
7587 files[i].length = strlen (f);
7588 files[i].file_idx = i;
7590 /* Search for the file name part. */
7591 f = strrchr (f, '/');
7592 files[i].fname = f == NULL ? files[i].path : f + 1;
7595 qsort (files + 1, VARRAY_ACTIVE_SIZE (file_table) - 1,
7596 sizeof (files[0]), file_info_cmp);
7598 /* Find all the different directories used. */
7599 dirs[0].path = files[1].path;
7600 dirs[0].length = files[1].fname - files[1].path;
7601 dirs[0].prefix = -1;
7602 dirs[0].count = 1;
7603 dirs[0].dir_idx = 0;
7604 dirs[0].used = 0;
7605 files[1].dir_idx = 0;
7606 ndirs = 1;
7608 for (i = 2; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7609 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
7610 && memcmp (dirs[ndirs - 1].path, files[i].path,
7611 dirs[ndirs - 1].length) == 0)
7613 /* Same directory as last entry. */
7614 files[i].dir_idx = ndirs - 1;
7615 ++dirs[ndirs - 1].count;
7617 else
7619 size_t j;
7621 /* This is a new directory. */
7622 dirs[ndirs].path = files[i].path;
7623 dirs[ndirs].length = files[i].fname - files[i].path;
7624 dirs[ndirs].count = 1;
7625 dirs[ndirs].dir_idx = ndirs;
7626 dirs[ndirs].used = 0;
7627 files[i].dir_idx = ndirs;
7629 /* Search for a prefix. */
7630 dirs[ndirs].prefix = -1;
7631 for (j = 0; j < ndirs; j++)
7632 if (dirs[j].length < dirs[ndirs].length
7633 && dirs[j].length > 1
7634 && (dirs[ndirs].prefix == -1
7635 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
7636 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
7637 dirs[ndirs].prefix = j;
7639 ++ndirs;
7642 /* Now to the actual work. We have to find a subset of the directories which
7643 allow expressing the file name using references to the directory table
7644 with the least amount of characters. We do not do an exhaustive search
7645 where we would have to check out every combination of every single
7646 possible prefix. Instead we use a heuristic which provides nearly optimal
7647 results in most cases and never is much off. */
7648 saved = alloca (ndirs * sizeof (int));
7649 savehere = alloca (ndirs * sizeof (int));
7651 memset (saved, '\0', ndirs * sizeof (saved[0]));
7652 for (i = 0; i < ndirs; i++)
7654 size_t j;
7655 int total;
7657 /* We can always save some space for the current directory. But this
7658 does not mean it will be enough to justify adding the directory. */
7659 savehere[i] = dirs[i].length;
7660 total = (savehere[i] - saved[i]) * dirs[i].count;
7662 for (j = i + 1; j < ndirs; j++)
7664 savehere[j] = 0;
7665 if (saved[j] < dirs[i].length)
7667 /* Determine whether the dirs[i] path is a prefix of the
7668 dirs[j] path. */
7669 int k;
7671 k = dirs[j].prefix;
7672 while (k != -1 && k != (int) i)
7673 k = dirs[k].prefix;
7675 if (k == (int) i)
7677 /* Yes it is. We can possibly safe some memory but
7678 writing the filenames in dirs[j] relative to
7679 dirs[i]. */
7680 savehere[j] = dirs[i].length;
7681 total += (savehere[j] - saved[j]) * dirs[j].count;
7686 /* Check whether we can safe enough to justify adding the dirs[i]
7687 directory. */
7688 if (total > dirs[i].length + 1)
7690 /* It's worthwhile adding. */
7691 for (j = i; j < ndirs; j++)
7692 if (savehere[j] > 0)
7694 /* Remember how much we saved for this directory so far. */
7695 saved[j] = savehere[j];
7697 /* Remember the prefix directory. */
7698 dirs[j].dir_idx = i;
7703 /* We have to emit them in the order they appear in the file_table array
7704 since the index is used in the debug info generation. To do this
7705 efficiently we generate a back-mapping of the indices first. */
7706 backmap = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (int));
7707 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7709 backmap[files[i].file_idx] = i;
7711 /* Mark this directory as used. */
7712 dirs[dirs[files[i].dir_idx].dir_idx].used = 1;
7715 /* That was it. We are ready to emit the information. First emit the
7716 directory name table. We have to make sure the first actually emitted
7717 directory name has index one; zero is reserved for the current working
7718 directory. Make sure we do not confuse these indices with the one for the
7719 constructed table (even though most of the time they are identical). */
7720 idx = 1;
7721 idx_offset = dirs[0].length > 0 ? 1 : 0;
7722 for (i = 1 - idx_offset; i < ndirs; i++)
7723 if (dirs[i].used != 0)
7725 dirs[i].used = idx++;
7726 dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
7727 "Directory Entry: 0x%x", dirs[i].used);
7730 dw2_asm_output_data (1, 0, "End directory table");
7732 /* Correct the index for the current working directory entry if it
7733 exists. */
7734 if (idx_offset == 0)
7735 dirs[0].used = 0;
7737 /* Now write all the file names. */
7738 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7740 int file_idx = backmap[i];
7741 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
7743 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
7744 "File Entry: 0x%lx", (unsigned long) i);
7746 /* Include directory index. */
7747 dw2_asm_output_data_uleb128 (dirs[dir_idx].used, NULL);
7749 /* Modification time. */
7750 dw2_asm_output_data_uleb128 (0, NULL);
7752 /* File length in bytes. */
7753 dw2_asm_output_data_uleb128 (0, NULL);
7756 dw2_asm_output_data (1, 0, "End file name table");
7760 /* Output the source line number correspondence information. This
7761 information goes into the .debug_line section. */
7763 static void
7764 output_line_info (void)
7766 char l1[20], l2[20], p1[20], p2[20];
7767 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7768 char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7769 unsigned opc;
7770 unsigned n_op_args;
7771 unsigned long lt_index;
7772 unsigned long current_line;
7773 long line_offset;
7774 long line_delta;
7775 unsigned long current_file;
7776 unsigned long function;
7778 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
7779 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
7780 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
7781 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
7783 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7784 dw2_asm_output_data (4, 0xffffffff,
7785 "Initial length escape value indicating 64-bit DWARF extension");
7786 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
7787 "Length of Source Line Info");
7788 ASM_OUTPUT_LABEL (asm_out_file, l1);
7790 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7791 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
7792 ASM_OUTPUT_LABEL (asm_out_file, p1);
7794 /* Define the architecture-dependent minimum instruction length (in
7795 bytes). In this implementation of DWARF, this field is used for
7796 information purposes only. Since GCC generates assembly language,
7797 we have no a priori knowledge of how many instruction bytes are
7798 generated for each source line, and therefore can use only the
7799 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
7800 commands. Accordingly, we fix this as `1', which is "correct
7801 enough" for all architectures, and don't let the target override. */
7802 dw2_asm_output_data (1, 1,
7803 "Minimum Instruction Length");
7805 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
7806 "Default is_stmt_start flag");
7807 dw2_asm_output_data (1, DWARF_LINE_BASE,
7808 "Line Base Value (Special Opcodes)");
7809 dw2_asm_output_data (1, DWARF_LINE_RANGE,
7810 "Line Range Value (Special Opcodes)");
7811 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
7812 "Special Opcode Base");
7814 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
7816 switch (opc)
7818 case DW_LNS_advance_pc:
7819 case DW_LNS_advance_line:
7820 case DW_LNS_set_file:
7821 case DW_LNS_set_column:
7822 case DW_LNS_fixed_advance_pc:
7823 n_op_args = 1;
7824 break;
7825 default:
7826 n_op_args = 0;
7827 break;
7830 dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
7831 opc, n_op_args);
7834 /* Write out the information about the files we use. */
7835 output_file_names ();
7836 ASM_OUTPUT_LABEL (asm_out_file, p2);
7838 /* We used to set the address register to the first location in the text
7839 section here, but that didn't accomplish anything since we already
7840 have a line note for the opening brace of the first function. */
7842 /* Generate the line number to PC correspondence table, encoded as
7843 a series of state machine operations. */
7844 current_file = 1;
7845 current_line = 1;
7847 if (cfun && in_cold_section_p)
7848 strcpy (prev_line_label, cfun->cold_section_label);
7849 else
7850 strcpy (prev_line_label, text_section_label);
7851 for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
7853 dw_line_info_ref line_info = &line_info_table[lt_index];
7855 #if 0
7856 /* Disable this optimization for now; GDB wants to see two line notes
7857 at the beginning of a function so it can find the end of the
7858 prologue. */
7860 /* Don't emit anything for redundant notes. Just updating the
7861 address doesn't accomplish anything, because we already assume
7862 that anything after the last address is this line. */
7863 if (line_info->dw_line_num == current_line
7864 && line_info->dw_file_num == current_file)
7865 continue;
7866 #endif
7868 /* Emit debug info for the address of the current line.
7870 Unfortunately, we have little choice here currently, and must always
7871 use the most general form. GCC does not know the address delta
7872 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
7873 attributes which will give an upper bound on the address range. We
7874 could perhaps use length attributes to determine when it is safe to
7875 use DW_LNS_fixed_advance_pc. */
7877 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
7878 if (0)
7880 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
7881 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7882 "DW_LNS_fixed_advance_pc");
7883 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7885 else
7887 /* This can handle any delta. This takes
7888 4+DWARF2_ADDR_SIZE bytes. */
7889 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7890 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7891 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7892 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7895 strcpy (prev_line_label, line_label);
7897 /* Emit debug info for the source file of the current line, if
7898 different from the previous line. */
7899 if (line_info->dw_file_num != current_file)
7901 current_file = line_info->dw_file_num;
7902 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7903 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7904 VARRAY_CHAR_PTR (file_table,
7905 current_file));
7908 /* Emit debug info for the current line number, choosing the encoding
7909 that uses the least amount of space. */
7910 if (line_info->dw_line_num != current_line)
7912 line_offset = line_info->dw_line_num - current_line;
7913 line_delta = line_offset - DWARF_LINE_BASE;
7914 current_line = line_info->dw_line_num;
7915 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7916 /* This can handle deltas from -10 to 234, using the current
7917 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
7918 takes 1 byte. */
7919 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7920 "line %lu", current_line);
7921 else
7923 /* This can handle any delta. This takes at least 4 bytes,
7924 depending on the value being encoded. */
7925 dw2_asm_output_data (1, DW_LNS_advance_line,
7926 "advance to line %lu", current_line);
7927 dw2_asm_output_data_sleb128 (line_offset, NULL);
7928 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7931 else
7932 /* We still need to start a new row, so output a copy insn. */
7933 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7936 /* Emit debug info for the address of the end of the function. */
7937 if (0)
7939 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7940 "DW_LNS_fixed_advance_pc");
7941 dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
7943 else
7945 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7946 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7947 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7948 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
7951 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7952 dw2_asm_output_data_uleb128 (1, NULL);
7953 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7955 function = 0;
7956 current_file = 1;
7957 current_line = 1;
7958 for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
7960 dw_separate_line_info_ref line_info
7961 = &separate_line_info_table[lt_index];
7963 #if 0
7964 /* Don't emit anything for redundant notes. */
7965 if (line_info->dw_line_num == current_line
7966 && line_info->dw_file_num == current_file
7967 && line_info->function == function)
7968 goto cont;
7969 #endif
7971 /* Emit debug info for the address of the current line. If this is
7972 a new function, or the first line of a function, then we need
7973 to handle it differently. */
7974 ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
7975 lt_index);
7976 if (function != line_info->function)
7978 function = line_info->function;
7980 /* Set the address register to the first line in the function. */
7981 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7982 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7983 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7984 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7986 else
7988 /* ??? See the DW_LNS_advance_pc comment above. */
7989 if (0)
7991 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7992 "DW_LNS_fixed_advance_pc");
7993 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7995 else
7997 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7998 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7999 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8000 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8004 strcpy (prev_line_label, line_label);
8006 /* Emit debug info for the source file of the current line, if
8007 different from the previous line. */
8008 if (line_info->dw_file_num != current_file)
8010 current_file = line_info->dw_file_num;
8011 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
8012 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
8013 VARRAY_CHAR_PTR (file_table,
8014 current_file));
8017 /* Emit debug info for the current line number, choosing the encoding
8018 that uses the least amount of space. */
8019 if (line_info->dw_line_num != current_line)
8021 line_offset = line_info->dw_line_num - current_line;
8022 line_delta = line_offset - DWARF_LINE_BASE;
8023 current_line = line_info->dw_line_num;
8024 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
8025 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
8026 "line %lu", current_line);
8027 else
8029 dw2_asm_output_data (1, DW_LNS_advance_line,
8030 "advance to line %lu", current_line);
8031 dw2_asm_output_data_sleb128 (line_offset, NULL);
8032 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8035 else
8036 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8038 #if 0
8039 cont:
8040 #endif
8042 lt_index++;
8044 /* If we're done with a function, end its sequence. */
8045 if (lt_index == separate_line_info_table_in_use
8046 || separate_line_info_table[lt_index].function != function)
8048 current_file = 1;
8049 current_line = 1;
8051 /* Emit debug info for the address of the end of the function. */
8052 ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
8053 if (0)
8055 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
8056 "DW_LNS_fixed_advance_pc");
8057 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
8059 else
8061 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8062 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8063 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8064 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8067 /* Output the marker for the end of this sequence. */
8068 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
8069 dw2_asm_output_data_uleb128 (1, NULL);
8070 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
8074 /* Output the marker for the end of the line number info. */
8075 ASM_OUTPUT_LABEL (asm_out_file, l2);
8078 /* Given a pointer to a tree node for some base type, return a pointer to
8079 a DIE that describes the given type.
8081 This routine must only be called for GCC type nodes that correspond to
8082 Dwarf base (fundamental) types. */
8084 static dw_die_ref
8085 base_type_die (tree type)
8087 dw_die_ref base_type_result;
8088 enum dwarf_type encoding;
8090 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
8091 return 0;
8093 switch (TREE_CODE (type))
8095 case INTEGER_TYPE:
8096 if (TYPE_STRING_FLAG (type))
8098 if (TYPE_UNSIGNED (type))
8099 encoding = DW_ATE_unsigned_char;
8100 else
8101 encoding = DW_ATE_signed_char;
8103 else if (TYPE_UNSIGNED (type))
8104 encoding = DW_ATE_unsigned;
8105 else
8106 encoding = DW_ATE_signed;
8107 break;
8109 case REAL_TYPE:
8110 if (DECIMAL_FLOAT_MODE_P (TYPE_MODE (type)))
8111 encoding = DW_ATE_decimal_float;
8112 else
8113 encoding = DW_ATE_float;
8114 break;
8116 /* Dwarf2 doesn't know anything about complex ints, so use
8117 a user defined type for it. */
8118 case COMPLEX_TYPE:
8119 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
8120 encoding = DW_ATE_complex_float;
8121 else
8122 encoding = DW_ATE_lo_user;
8123 break;
8125 case BOOLEAN_TYPE:
8126 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
8127 encoding = DW_ATE_boolean;
8128 break;
8130 default:
8131 /* No other TREE_CODEs are Dwarf fundamental types. */
8132 gcc_unreachable ();
8135 base_type_result = new_die (DW_TAG_base_type, comp_unit_die, type);
8137 /* This probably indicates a bug. */
8138 if (! TYPE_NAME (type))
8139 add_name_attribute (base_type_result, "__unknown__");
8141 add_AT_unsigned (base_type_result, DW_AT_byte_size,
8142 int_size_in_bytes (type));
8143 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
8145 return base_type_result;
8148 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
8149 the Dwarf "root" type for the given input type. The Dwarf "root" type of
8150 a given type is generally the same as the given type, except that if the
8151 given type is a pointer or reference type, then the root type of the given
8152 type is the root type of the "basis" type for the pointer or reference
8153 type. (This definition of the "root" type is recursive.) Also, the root
8154 type of a `const' qualified type or a `volatile' qualified type is the
8155 root type of the given type without the qualifiers. */
8157 static tree
8158 root_type (tree type)
8160 if (TREE_CODE (type) == ERROR_MARK)
8161 return error_mark_node;
8163 switch (TREE_CODE (type))
8165 case ERROR_MARK:
8166 return error_mark_node;
8168 case POINTER_TYPE:
8169 case REFERENCE_TYPE:
8170 return type_main_variant (root_type (TREE_TYPE (type)));
8172 default:
8173 return type_main_variant (type);
8177 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
8178 given input type is a Dwarf "fundamental" type. Otherwise return null. */
8180 static inline int
8181 is_base_type (tree type)
8183 switch (TREE_CODE (type))
8185 case ERROR_MARK:
8186 case VOID_TYPE:
8187 case INTEGER_TYPE:
8188 case REAL_TYPE:
8189 case COMPLEX_TYPE:
8190 case BOOLEAN_TYPE:
8191 return 1;
8193 case ARRAY_TYPE:
8194 case RECORD_TYPE:
8195 case UNION_TYPE:
8196 case QUAL_UNION_TYPE:
8197 case ENUMERAL_TYPE:
8198 case FUNCTION_TYPE:
8199 case METHOD_TYPE:
8200 case POINTER_TYPE:
8201 case REFERENCE_TYPE:
8202 case OFFSET_TYPE:
8203 case LANG_TYPE:
8204 case VECTOR_TYPE:
8205 return 0;
8207 default:
8208 gcc_unreachable ();
8211 return 0;
8214 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
8215 node, return the size in bits for the type if it is a constant, or else
8216 return the alignment for the type if the type's size is not constant, or
8217 else return BITS_PER_WORD if the type actually turns out to be an
8218 ERROR_MARK node. */
8220 static inline unsigned HOST_WIDE_INT
8221 simple_type_size_in_bits (tree type)
8223 if (TREE_CODE (type) == ERROR_MARK)
8224 return BITS_PER_WORD;
8225 else if (TYPE_SIZE (type) == NULL_TREE)
8226 return 0;
8227 else if (host_integerp (TYPE_SIZE (type), 1))
8228 return tree_low_cst (TYPE_SIZE (type), 1);
8229 else
8230 return TYPE_ALIGN (type);
8233 /* Return true if the debug information for the given type should be
8234 emitted as a subrange type. */
8236 static inline bool
8237 is_subrange_type (tree type)
8239 tree subtype = TREE_TYPE (type);
8241 /* Subrange types are identified by the fact that they are integer
8242 types, and that they have a subtype which is either an integer type
8243 or an enumeral type. */
8245 if (TREE_CODE (type) != INTEGER_TYPE
8246 || subtype == NULL_TREE)
8247 return false;
8249 if (TREE_CODE (subtype) != INTEGER_TYPE
8250 && TREE_CODE (subtype) != ENUMERAL_TYPE)
8251 return false;
8253 if (TREE_CODE (type) == TREE_CODE (subtype)
8254 && int_size_in_bytes (type) == int_size_in_bytes (subtype)
8255 && TYPE_MIN_VALUE (type) != NULL
8256 && TYPE_MIN_VALUE (subtype) != NULL
8257 && tree_int_cst_equal (TYPE_MIN_VALUE (type), TYPE_MIN_VALUE (subtype))
8258 && TYPE_MAX_VALUE (type) != NULL
8259 && TYPE_MAX_VALUE (subtype) != NULL
8260 && tree_int_cst_equal (TYPE_MAX_VALUE (type), TYPE_MAX_VALUE (subtype)))
8262 /* The type and its subtype have the same representation. If in
8263 addition the two types also have the same name, then the given
8264 type is not a subrange type, but rather a plain base type. */
8265 /* FIXME: brobecker/2004-03-22:
8266 Sizetype INTEGER_CSTs nodes are canonicalized. It should
8267 therefore be sufficient to check the TYPE_SIZE node pointers
8268 rather than checking the actual size. Unfortunately, we have
8269 found some cases, such as in the Ada "integer" type, where
8270 this is not the case. Until this problem is solved, we need to
8271 keep checking the actual size. */
8272 tree type_name = TYPE_NAME (type);
8273 tree subtype_name = TYPE_NAME (subtype);
8275 if (type_name != NULL && TREE_CODE (type_name) == TYPE_DECL)
8276 type_name = DECL_NAME (type_name);
8278 if (subtype_name != NULL && TREE_CODE (subtype_name) == TYPE_DECL)
8279 subtype_name = DECL_NAME (subtype_name);
8281 if (type_name == subtype_name)
8282 return false;
8285 return true;
8288 /* Given a pointer to a tree node for a subrange type, return a pointer
8289 to a DIE that describes the given type. */
8291 static dw_die_ref
8292 subrange_type_die (tree type, dw_die_ref context_die)
8294 dw_die_ref subrange_die;
8295 const HOST_WIDE_INT size_in_bytes = int_size_in_bytes (type);
8297 if (context_die == NULL)
8298 context_die = comp_unit_die;
8300 subrange_die = new_die (DW_TAG_subrange_type, context_die, type);
8302 if (int_size_in_bytes (TREE_TYPE (type)) != size_in_bytes)
8304 /* The size of the subrange type and its base type do not match,
8305 so we need to generate a size attribute for the subrange type. */
8306 add_AT_unsigned (subrange_die, DW_AT_byte_size, size_in_bytes);
8309 if (TYPE_MIN_VALUE (type) != NULL)
8310 add_bound_info (subrange_die, DW_AT_lower_bound,
8311 TYPE_MIN_VALUE (type));
8312 if (TYPE_MAX_VALUE (type) != NULL)
8313 add_bound_info (subrange_die, DW_AT_upper_bound,
8314 TYPE_MAX_VALUE (type));
8316 return subrange_die;
8319 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
8320 entry that chains various modifiers in front of the given type. */
8322 static dw_die_ref
8323 modified_type_die (tree type, int is_const_type, int is_volatile_type,
8324 dw_die_ref context_die)
8326 enum tree_code code = TREE_CODE (type);
8327 dw_die_ref mod_type_die;
8328 dw_die_ref sub_die = NULL;
8329 tree item_type = NULL;
8330 tree qualified_type;
8331 tree name;
8333 if (code == ERROR_MARK)
8334 return NULL;
8336 /* See if we already have the appropriately qualified variant of
8337 this type. */
8338 qualified_type
8339 = get_qualified_type (type,
8340 ((is_const_type ? TYPE_QUAL_CONST : 0)
8341 | (is_volatile_type ? TYPE_QUAL_VOLATILE : 0)));
8343 /* If we do, then we can just use its DIE, if it exists. */
8344 if (qualified_type)
8346 mod_type_die = lookup_type_die (qualified_type);
8347 if (mod_type_die)
8348 return mod_type_die;
8351 name = qualified_type ? TYPE_NAME (qualified_type) : NULL;
8353 /* Handle C typedef types. */
8354 if (name && TREE_CODE (name) == TYPE_DECL && DECL_ORIGINAL_TYPE (name))
8356 tree dtype = TREE_TYPE (name);
8358 if (qualified_type == dtype)
8360 /* For a named type, use the typedef. */
8361 gen_type_die (qualified_type, context_die);
8362 return lookup_type_die (qualified_type);
8364 else if (DECL_ORIGINAL_TYPE (name)
8365 && (is_const_type < TYPE_READONLY (dtype)
8366 || is_volatile_type < TYPE_VOLATILE (dtype)))
8367 /* cv-unqualified version of named type. Just use the unnamed
8368 type to which it refers. */
8369 return modified_type_die (DECL_ORIGINAL_TYPE (name),
8370 is_const_type, is_volatile_type,
8371 context_die);
8372 /* Else cv-qualified version of named type; fall through. */
8375 if (is_const_type)
8377 mod_type_die = new_die (DW_TAG_const_type, comp_unit_die, type);
8378 sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
8380 else if (is_volatile_type)
8382 mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die, type);
8383 sub_die = modified_type_die (type, 0, 0, context_die);
8385 else if (code == POINTER_TYPE)
8387 mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die, type);
8388 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8389 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8390 item_type = TREE_TYPE (type);
8392 else if (code == REFERENCE_TYPE)
8394 mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die, type);
8395 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8396 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8397 item_type = TREE_TYPE (type);
8399 else if (is_subrange_type (type))
8401 mod_type_die = subrange_type_die (type, context_die);
8402 item_type = TREE_TYPE (type);
8404 else if (is_base_type (type))
8405 mod_type_die = base_type_die (type);
8406 else
8408 gen_type_die (type, context_die);
8410 /* We have to get the type_main_variant here (and pass that to the
8411 `lookup_type_die' routine) because the ..._TYPE node we have
8412 might simply be a *copy* of some original type node (where the
8413 copy was created to help us keep track of typedef names) and
8414 that copy might have a different TYPE_UID from the original
8415 ..._TYPE node. */
8416 if (TREE_CODE (type) != VECTOR_TYPE)
8417 return lookup_type_die (type_main_variant (type));
8418 else
8419 /* Vectors have the debugging information in the type,
8420 not the main variant. */
8421 return lookup_type_die (type);
8424 /* Builtin types don't have a DECL_ORIGINAL_TYPE. For those,
8425 don't output a DW_TAG_typedef, since there isn't one in the
8426 user's program; just attach a DW_AT_name to the type. */
8427 if (name
8428 && (TREE_CODE (name) != TYPE_DECL || TREE_TYPE (name) == qualified_type))
8430 if (TREE_CODE (name) == TYPE_DECL)
8431 /* Could just call add_name_and_src_coords_attributes here,
8432 but since this is a builtin type it doesn't have any
8433 useful source coordinates anyway. */
8434 name = DECL_NAME (name);
8435 add_name_attribute (mod_type_die, IDENTIFIER_POINTER (name));
8438 if (qualified_type)
8439 equate_type_number_to_die (qualified_type, mod_type_die);
8441 if (item_type)
8442 /* We must do this after the equate_type_number_to_die call, in case
8443 this is a recursive type. This ensures that the modified_type_die
8444 recursion will terminate even if the type is recursive. Recursive
8445 types are possible in Ada. */
8446 sub_die = modified_type_die (item_type,
8447 TYPE_READONLY (item_type),
8448 TYPE_VOLATILE (item_type),
8449 context_die);
8451 if (sub_die != NULL)
8452 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
8454 return mod_type_die;
8457 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
8458 an enumerated type. */
8460 static inline int
8461 type_is_enum (tree type)
8463 return TREE_CODE (type) == ENUMERAL_TYPE;
8466 /* Return the DBX register number described by a given RTL node. */
8468 static unsigned int
8469 dbx_reg_number (rtx rtl)
8471 unsigned regno = REGNO (rtl);
8473 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
8475 #ifdef LEAF_REG_REMAP
8476 regno = LEAF_REG_REMAP (regno);
8477 #endif
8479 return DBX_REGISTER_NUMBER (regno);
8482 /* Optionally add a DW_OP_piece term to a location description expression.
8483 DW_OP_piece is only added if the location description expression already
8484 doesn't end with DW_OP_piece. */
8486 static void
8487 add_loc_descr_op_piece (dw_loc_descr_ref *list_head, int size)
8489 dw_loc_descr_ref loc;
8491 if (*list_head != NULL)
8493 /* Find the end of the chain. */
8494 for (loc = *list_head; loc->dw_loc_next != NULL; loc = loc->dw_loc_next)
8497 if (loc->dw_loc_opc != DW_OP_piece)
8498 loc->dw_loc_next = new_loc_descr (DW_OP_piece, size, 0);
8502 /* Return a location descriptor that designates a machine register or
8503 zero if there is none. */
8505 static dw_loc_descr_ref
8506 reg_loc_descriptor (rtx rtl)
8508 rtx regs;
8510 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
8511 return 0;
8513 regs = targetm.dwarf_register_span (rtl);
8515 if (hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)] > 1 || regs)
8516 return multiple_reg_loc_descriptor (rtl, regs);
8517 else
8518 return one_reg_loc_descriptor (dbx_reg_number (rtl));
8521 /* Return a location descriptor that designates a machine register for
8522 a given hard register number. */
8524 static dw_loc_descr_ref
8525 one_reg_loc_descriptor (unsigned int regno)
8527 if (regno <= 31)
8528 return new_loc_descr (DW_OP_reg0 + regno, 0, 0);
8529 else
8530 return new_loc_descr (DW_OP_regx, regno, 0);
8533 /* Given an RTL of a register, return a location descriptor that
8534 designates a value that spans more than one register. */
8536 static dw_loc_descr_ref
8537 multiple_reg_loc_descriptor (rtx rtl, rtx regs)
8539 int nregs, size, i;
8540 unsigned reg;
8541 dw_loc_descr_ref loc_result = NULL;
8543 reg = REGNO (rtl);
8544 #ifdef LEAF_REG_REMAP
8545 reg = LEAF_REG_REMAP (reg);
8546 #endif
8547 gcc_assert ((unsigned) DBX_REGISTER_NUMBER (reg) == dbx_reg_number (rtl));
8548 nregs = hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)];
8550 /* Simple, contiguous registers. */
8551 if (regs == NULL_RTX)
8553 size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
8555 loc_result = NULL;
8556 while (nregs--)
8558 dw_loc_descr_ref t;
8560 t = one_reg_loc_descriptor (DBX_REGISTER_NUMBER (reg));
8561 add_loc_descr (&loc_result, t);
8562 add_loc_descr_op_piece (&loc_result, size);
8563 ++reg;
8565 return loc_result;
8568 /* Now onto stupid register sets in non contiguous locations. */
8570 gcc_assert (GET_CODE (regs) == PARALLEL);
8572 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8573 loc_result = NULL;
8575 for (i = 0; i < XVECLEN (regs, 0); ++i)
8577 dw_loc_descr_ref t;
8579 t = one_reg_loc_descriptor (REGNO (XVECEXP (regs, 0, i)));
8580 add_loc_descr (&loc_result, t);
8581 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8582 add_loc_descr_op_piece (&loc_result, size);
8584 return loc_result;
8587 /* Return a location descriptor that designates a constant. */
8589 static dw_loc_descr_ref
8590 int_loc_descriptor (HOST_WIDE_INT i)
8592 enum dwarf_location_atom op;
8594 /* Pick the smallest representation of a constant, rather than just
8595 defaulting to the LEB encoding. */
8596 if (i >= 0)
8598 if (i <= 31)
8599 op = DW_OP_lit0 + i;
8600 else if (i <= 0xff)
8601 op = DW_OP_const1u;
8602 else if (i <= 0xffff)
8603 op = DW_OP_const2u;
8604 else if (HOST_BITS_PER_WIDE_INT == 32
8605 || i <= 0xffffffff)
8606 op = DW_OP_const4u;
8607 else
8608 op = DW_OP_constu;
8610 else
8612 if (i >= -0x80)
8613 op = DW_OP_const1s;
8614 else if (i >= -0x8000)
8615 op = DW_OP_const2s;
8616 else if (HOST_BITS_PER_WIDE_INT == 32
8617 || i >= -0x80000000)
8618 op = DW_OP_const4s;
8619 else
8620 op = DW_OP_consts;
8623 return new_loc_descr (op, i, 0);
8626 /* Return a location descriptor that designates a base+offset location. */
8628 static dw_loc_descr_ref
8629 based_loc_descr (rtx reg, HOST_WIDE_INT offset)
8631 unsigned int regno;
8633 /* We only use "frame base" when we're sure we're talking about the
8634 post-prologue local stack frame. We do this by *not* running
8635 register elimination until this point, and recognizing the special
8636 argument pointer and soft frame pointer rtx's. */
8637 if (reg == arg_pointer_rtx || reg == frame_pointer_rtx)
8639 rtx elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
8641 if (elim != reg)
8643 if (GET_CODE (elim) == PLUS)
8645 offset += INTVAL (XEXP (elim, 1));
8646 elim = XEXP (elim, 0);
8648 gcc_assert (elim == (frame_pointer_needed ? hard_frame_pointer_rtx
8649 : stack_pointer_rtx));
8650 offset += frame_pointer_cfa_offset;
8652 return new_loc_descr (DW_OP_fbreg, offset, 0);
8656 regno = dbx_reg_number (reg);
8657 if (regno <= 31)
8658 return new_loc_descr (DW_OP_breg0 + regno, offset, 0);
8659 else
8660 return new_loc_descr (DW_OP_bregx, regno, offset);
8663 /* Return true if this RTL expression describes a base+offset calculation. */
8665 static inline int
8666 is_based_loc (rtx rtl)
8668 return (GET_CODE (rtl) == PLUS
8669 && ((REG_P (XEXP (rtl, 0))
8670 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
8671 && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
8674 /* The following routine converts the RTL for a variable or parameter
8675 (resident in memory) into an equivalent Dwarf representation of a
8676 mechanism for getting the address of that same variable onto the top of a
8677 hypothetical "address evaluation" stack.
8679 When creating memory location descriptors, we are effectively transforming
8680 the RTL for a memory-resident object into its Dwarf postfix expression
8681 equivalent. This routine recursively descends an RTL tree, turning
8682 it into Dwarf postfix code as it goes.
8684 MODE is the mode of the memory reference, needed to handle some
8685 autoincrement addressing modes.
8687 CAN_USE_FBREG is a flag whether we can use DW_AT_frame_base in the
8688 location list for RTL.
8690 Return 0 if we can't represent the location. */
8692 static dw_loc_descr_ref
8693 mem_loc_descriptor (rtx rtl, enum machine_mode mode)
8695 dw_loc_descr_ref mem_loc_result = NULL;
8696 enum dwarf_location_atom op;
8698 /* Note that for a dynamically sized array, the location we will generate a
8699 description of here will be the lowest numbered location which is
8700 actually within the array. That's *not* necessarily the same as the
8701 zeroth element of the array. */
8703 rtl = targetm.delegitimize_address (rtl);
8705 switch (GET_CODE (rtl))
8707 case POST_INC:
8708 case POST_DEC:
8709 case POST_MODIFY:
8710 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
8711 just fall into the SUBREG code. */
8713 /* ... fall through ... */
8715 case SUBREG:
8716 /* The case of a subreg may arise when we have a local (register)
8717 variable or a formal (register) parameter which doesn't quite fill
8718 up an entire register. For now, just assume that it is
8719 legitimate to make the Dwarf info refer to the whole register which
8720 contains the given subreg. */
8721 rtl = XEXP (rtl, 0);
8723 /* ... fall through ... */
8725 case REG:
8726 /* Whenever a register number forms a part of the description of the
8727 method for calculating the (dynamic) address of a memory resident
8728 object, DWARF rules require the register number be referred to as
8729 a "base register". This distinction is not based in any way upon
8730 what category of register the hardware believes the given register
8731 belongs to. This is strictly DWARF terminology we're dealing with
8732 here. Note that in cases where the location of a memory-resident
8733 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
8734 OP_CONST (0)) the actual DWARF location descriptor that we generate
8735 may just be OP_BASEREG (basereg). This may look deceptively like
8736 the object in question was allocated to a register (rather than in
8737 memory) so DWARF consumers need to be aware of the subtle
8738 distinction between OP_REG and OP_BASEREG. */
8739 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
8740 mem_loc_result = based_loc_descr (rtl, 0);
8741 break;
8743 case MEM:
8744 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8745 if (mem_loc_result != 0)
8746 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
8747 break;
8749 case LO_SUM:
8750 rtl = XEXP (rtl, 1);
8752 /* ... fall through ... */
8754 case LABEL_REF:
8755 /* Some ports can transform a symbol ref into a label ref, because
8756 the symbol ref is too far away and has to be dumped into a constant
8757 pool. */
8758 case CONST:
8759 case SYMBOL_REF:
8760 /* Alternatively, the symbol in the constant pool might be referenced
8761 by a different symbol. */
8762 if (GET_CODE (rtl) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (rtl))
8764 bool marked;
8765 rtx tmp = get_pool_constant_mark (rtl, &marked);
8767 if (GET_CODE (tmp) == SYMBOL_REF)
8769 rtl = tmp;
8770 if (CONSTANT_POOL_ADDRESS_P (tmp))
8771 get_pool_constant_mark (tmp, &marked);
8772 else
8773 marked = true;
8776 /* If all references to this pool constant were optimized away,
8777 it was not output and thus we can't represent it.
8778 FIXME: might try to use DW_OP_const_value here, though
8779 DW_OP_piece complicates it. */
8780 if (!marked)
8781 return 0;
8784 mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
8785 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
8786 mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
8787 VEC_safe_push (rtx, gc, used_rtx_array, rtl);
8788 break;
8790 case PRE_MODIFY:
8791 /* Extract the PLUS expression nested inside and fall into
8792 PLUS code below. */
8793 rtl = XEXP (rtl, 1);
8794 goto plus;
8796 case PRE_INC:
8797 case PRE_DEC:
8798 /* Turn these into a PLUS expression and fall into the PLUS code
8799 below. */
8800 rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
8801 GEN_INT (GET_CODE (rtl) == PRE_INC
8802 ? GET_MODE_UNIT_SIZE (mode)
8803 : -GET_MODE_UNIT_SIZE (mode)));
8805 /* ... fall through ... */
8807 case PLUS:
8808 plus:
8809 if (is_based_loc (rtl))
8810 mem_loc_result = based_loc_descr (XEXP (rtl, 0),
8811 INTVAL (XEXP (rtl, 1)));
8812 else
8814 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode);
8815 if (mem_loc_result == 0)
8816 break;
8818 if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
8819 && INTVAL (XEXP (rtl, 1)) >= 0)
8820 add_loc_descr (&mem_loc_result,
8821 new_loc_descr (DW_OP_plus_uconst,
8822 INTVAL (XEXP (rtl, 1)), 0));
8823 else
8825 add_loc_descr (&mem_loc_result,
8826 mem_loc_descriptor (XEXP (rtl, 1), mode));
8827 add_loc_descr (&mem_loc_result,
8828 new_loc_descr (DW_OP_plus, 0, 0));
8831 break;
8833 /* If a pseudo-reg is optimized away, it is possible for it to
8834 be replaced with a MEM containing a multiply or shift. */
8835 case MULT:
8836 op = DW_OP_mul;
8837 goto do_binop;
8839 case ASHIFT:
8840 op = DW_OP_shl;
8841 goto do_binop;
8843 case ASHIFTRT:
8844 op = DW_OP_shra;
8845 goto do_binop;
8847 case LSHIFTRT:
8848 op = DW_OP_shr;
8849 goto do_binop;
8851 do_binop:
8853 dw_loc_descr_ref op0 = mem_loc_descriptor (XEXP (rtl, 0), mode);
8854 dw_loc_descr_ref op1 = mem_loc_descriptor (XEXP (rtl, 1), mode);
8856 if (op0 == 0 || op1 == 0)
8857 break;
8859 mem_loc_result = op0;
8860 add_loc_descr (&mem_loc_result, op1);
8861 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
8862 break;
8865 case CONST_INT:
8866 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
8867 break;
8869 default:
8870 gcc_unreachable ();
8873 return mem_loc_result;
8876 /* Return a descriptor that describes the concatenation of two locations.
8877 This is typically a complex variable. */
8879 static dw_loc_descr_ref
8880 concat_loc_descriptor (rtx x0, rtx x1)
8882 dw_loc_descr_ref cc_loc_result = NULL;
8883 dw_loc_descr_ref x0_ref = loc_descriptor (x0);
8884 dw_loc_descr_ref x1_ref = loc_descriptor (x1);
8886 if (x0_ref == 0 || x1_ref == 0)
8887 return 0;
8889 cc_loc_result = x0_ref;
8890 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x0)));
8892 add_loc_descr (&cc_loc_result, x1_ref);
8893 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x1)));
8895 return cc_loc_result;
8898 /* Output a proper Dwarf location descriptor for a variable or parameter
8899 which is either allocated in a register or in a memory location. For a
8900 register, we just generate an OP_REG and the register number. For a
8901 memory location we provide a Dwarf postfix expression describing how to
8902 generate the (dynamic) address of the object onto the address stack.
8904 If we don't know how to describe it, return 0. */
8906 static dw_loc_descr_ref
8907 loc_descriptor (rtx rtl)
8909 dw_loc_descr_ref loc_result = NULL;
8911 switch (GET_CODE (rtl))
8913 case SUBREG:
8914 /* The case of a subreg may arise when we have a local (register)
8915 variable or a formal (register) parameter which doesn't quite fill
8916 up an entire register. For now, just assume that it is
8917 legitimate to make the Dwarf info refer to the whole register which
8918 contains the given subreg. */
8919 rtl = SUBREG_REG (rtl);
8921 /* ... fall through ... */
8923 case REG:
8924 loc_result = reg_loc_descriptor (rtl);
8925 break;
8927 case MEM:
8928 loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8929 break;
8931 case CONCAT:
8932 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1));
8933 break;
8935 case VAR_LOCATION:
8936 /* Single part. */
8937 if (GET_CODE (XEXP (rtl, 1)) != PARALLEL)
8939 loc_result = loc_descriptor (XEXP (XEXP (rtl, 1), 0));
8940 break;
8943 rtl = XEXP (rtl, 1);
8944 /* FALLTHRU */
8946 case PARALLEL:
8948 rtvec par_elems = XVEC (rtl, 0);
8949 int num_elem = GET_NUM_ELEM (par_elems);
8950 enum machine_mode mode;
8951 int i;
8953 /* Create the first one, so we have something to add to. */
8954 loc_result = loc_descriptor (XEXP (RTVEC_ELT (par_elems, 0), 0));
8955 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, 0), 0));
8956 add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
8957 for (i = 1; i < num_elem; i++)
8959 dw_loc_descr_ref temp;
8961 temp = loc_descriptor (XEXP (RTVEC_ELT (par_elems, i), 0));
8962 add_loc_descr (&loc_result, temp);
8963 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, i), 0));
8964 add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
8967 break;
8969 default:
8970 gcc_unreachable ();
8973 return loc_result;
8976 /* Similar, but generate the descriptor from trees instead of rtl. This comes
8977 up particularly with variable length arrays. WANT_ADDRESS is 2 if this is
8978 a top-level invocation of loc_descriptor_from_tree; is 1 if this is not a
8979 top-level invocation, and we require the address of LOC; is 0 if we require
8980 the value of LOC. */
8982 static dw_loc_descr_ref
8983 loc_descriptor_from_tree_1 (tree loc, int want_address)
8985 dw_loc_descr_ref ret, ret1;
8986 int have_address = 0;
8987 enum dwarf_location_atom op;
8989 /* ??? Most of the time we do not take proper care for sign/zero
8990 extending the values properly. Hopefully this won't be a real
8991 problem... */
8993 switch (TREE_CODE (loc))
8995 case ERROR_MARK:
8996 return 0;
8998 case PLACEHOLDER_EXPR:
8999 /* This case involves extracting fields from an object to determine the
9000 position of other fields. We don't try to encode this here. The
9001 only user of this is Ada, which encodes the needed information using
9002 the names of types. */
9003 return 0;
9005 case CALL_EXPR:
9006 return 0;
9008 case PREINCREMENT_EXPR:
9009 case PREDECREMENT_EXPR:
9010 case POSTINCREMENT_EXPR:
9011 case POSTDECREMENT_EXPR:
9012 /* There are no opcodes for these operations. */
9013 return 0;
9015 case ADDR_EXPR:
9016 /* If we already want an address, there's nothing we can do. */
9017 if (want_address)
9018 return 0;
9020 /* Otherwise, process the argument and look for the address. */
9021 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 1);
9023 case VAR_DECL:
9024 if (DECL_THREAD_LOCAL_P (loc))
9026 rtx rtl;
9028 /* If this is not defined, we have no way to emit the data. */
9029 if (!targetm.asm_out.output_dwarf_dtprel)
9030 return 0;
9032 /* The way DW_OP_GNU_push_tls_address is specified, we can only
9033 look up addresses of objects in the current module. */
9034 if (DECL_EXTERNAL (loc))
9035 return 0;
9037 rtl = rtl_for_decl_location (loc);
9038 if (rtl == NULL_RTX)
9039 return 0;
9041 if (!MEM_P (rtl))
9042 return 0;
9043 rtl = XEXP (rtl, 0);
9044 if (! CONSTANT_P (rtl))
9045 return 0;
9047 ret = new_loc_descr (INTERNAL_DW_OP_tls_addr, 0, 0);
9048 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
9049 ret->dw_loc_oprnd1.v.val_addr = rtl;
9051 ret1 = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
9052 add_loc_descr (&ret, ret1);
9054 have_address = 1;
9055 break;
9057 /* FALLTHRU */
9059 case PARM_DECL:
9060 if (DECL_HAS_VALUE_EXPR_P (loc))
9061 return loc_descriptor_from_tree_1 (DECL_VALUE_EXPR (loc),
9062 want_address);
9063 /* FALLTHRU */
9065 case RESULT_DECL:
9067 rtx rtl = rtl_for_decl_location (loc);
9069 if (rtl == NULL_RTX)
9070 return 0;
9071 else if (GET_CODE (rtl) == CONST_INT)
9073 HOST_WIDE_INT val = INTVAL (rtl);
9074 if (TYPE_UNSIGNED (TREE_TYPE (loc)))
9075 val &= GET_MODE_MASK (DECL_MODE (loc));
9076 ret = int_loc_descriptor (val);
9078 else if (GET_CODE (rtl) == CONST_STRING)
9079 return 0;
9080 else if (CONSTANT_P (rtl))
9082 ret = new_loc_descr (DW_OP_addr, 0, 0);
9083 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
9084 ret->dw_loc_oprnd1.v.val_addr = rtl;
9086 else
9088 enum machine_mode mode;
9090 /* Certain constructs can only be represented at top-level. */
9091 if (want_address == 2)
9092 return loc_descriptor (rtl);
9094 mode = GET_MODE (rtl);
9095 if (MEM_P (rtl))
9097 rtl = XEXP (rtl, 0);
9098 have_address = 1;
9100 ret = mem_loc_descriptor (rtl, mode);
9103 break;
9105 case INDIRECT_REF:
9106 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9107 have_address = 1;
9108 break;
9110 case COMPOUND_EXPR:
9111 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), want_address);
9113 case NOP_EXPR:
9114 case CONVERT_EXPR:
9115 case NON_LVALUE_EXPR:
9116 case VIEW_CONVERT_EXPR:
9117 case SAVE_EXPR:
9118 case MODIFY_EXPR:
9119 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), want_address);
9121 case COMPONENT_REF:
9122 case BIT_FIELD_REF:
9123 case ARRAY_REF:
9124 case ARRAY_RANGE_REF:
9126 tree obj, offset;
9127 HOST_WIDE_INT bitsize, bitpos, bytepos;
9128 enum machine_mode mode;
9129 int volatilep;
9130 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (loc));
9132 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
9133 &unsignedp, &volatilep, false);
9135 if (obj == loc)
9136 return 0;
9138 ret = loc_descriptor_from_tree_1 (obj, 1);
9139 if (ret == 0
9140 || bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
9141 return 0;
9143 if (offset != NULL_TREE)
9145 /* Variable offset. */
9146 add_loc_descr (&ret, loc_descriptor_from_tree_1 (offset, 0));
9147 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
9150 bytepos = bitpos / BITS_PER_UNIT;
9151 if (bytepos > 0)
9152 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
9153 else if (bytepos < 0)
9155 add_loc_descr (&ret, int_loc_descriptor (bytepos));
9156 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
9159 have_address = 1;
9160 break;
9163 case INTEGER_CST:
9164 if (host_integerp (loc, 0))
9165 ret = int_loc_descriptor (tree_low_cst (loc, 0));
9166 else
9167 return 0;
9168 break;
9170 case CONSTRUCTOR:
9172 /* Get an RTL for this, if something has been emitted. */
9173 rtx rtl = lookup_constant_def (loc);
9174 enum machine_mode mode;
9176 if (!rtl || !MEM_P (rtl))
9177 return 0;
9178 mode = GET_MODE (rtl);
9179 rtl = XEXP (rtl, 0);
9180 ret = mem_loc_descriptor (rtl, mode);
9181 have_address = 1;
9182 break;
9185 case TRUTH_AND_EXPR:
9186 case TRUTH_ANDIF_EXPR:
9187 case BIT_AND_EXPR:
9188 op = DW_OP_and;
9189 goto do_binop;
9191 case TRUTH_XOR_EXPR:
9192 case BIT_XOR_EXPR:
9193 op = DW_OP_xor;
9194 goto do_binop;
9196 case TRUTH_OR_EXPR:
9197 case TRUTH_ORIF_EXPR:
9198 case BIT_IOR_EXPR:
9199 op = DW_OP_or;
9200 goto do_binop;
9202 case FLOOR_DIV_EXPR:
9203 case CEIL_DIV_EXPR:
9204 case ROUND_DIV_EXPR:
9205 case TRUNC_DIV_EXPR:
9206 op = DW_OP_div;
9207 goto do_binop;
9209 case MINUS_EXPR:
9210 op = DW_OP_minus;
9211 goto do_binop;
9213 case FLOOR_MOD_EXPR:
9214 case CEIL_MOD_EXPR:
9215 case ROUND_MOD_EXPR:
9216 case TRUNC_MOD_EXPR:
9217 op = DW_OP_mod;
9218 goto do_binop;
9220 case MULT_EXPR:
9221 op = DW_OP_mul;
9222 goto do_binop;
9224 case LSHIFT_EXPR:
9225 op = DW_OP_shl;
9226 goto do_binop;
9228 case RSHIFT_EXPR:
9229 op = (TYPE_UNSIGNED (TREE_TYPE (loc)) ? DW_OP_shr : DW_OP_shra);
9230 goto do_binop;
9232 case PLUS_EXPR:
9233 if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
9234 && host_integerp (TREE_OPERAND (loc, 1), 0))
9236 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9237 if (ret == 0)
9238 return 0;
9240 add_loc_descr (&ret,
9241 new_loc_descr (DW_OP_plus_uconst,
9242 tree_low_cst (TREE_OPERAND (loc, 1),
9244 0));
9245 break;
9248 op = DW_OP_plus;
9249 goto do_binop;
9251 case LE_EXPR:
9252 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9253 return 0;
9255 op = DW_OP_le;
9256 goto do_binop;
9258 case GE_EXPR:
9259 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9260 return 0;
9262 op = DW_OP_ge;
9263 goto do_binop;
9265 case LT_EXPR:
9266 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9267 return 0;
9269 op = DW_OP_lt;
9270 goto do_binop;
9272 case GT_EXPR:
9273 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9274 return 0;
9276 op = DW_OP_gt;
9277 goto do_binop;
9279 case EQ_EXPR:
9280 op = DW_OP_eq;
9281 goto do_binop;
9283 case NE_EXPR:
9284 op = DW_OP_ne;
9285 goto do_binop;
9287 do_binop:
9288 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9289 ret1 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
9290 if (ret == 0 || ret1 == 0)
9291 return 0;
9293 add_loc_descr (&ret, ret1);
9294 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9295 break;
9297 case TRUTH_NOT_EXPR:
9298 case BIT_NOT_EXPR:
9299 op = DW_OP_not;
9300 goto do_unop;
9302 case ABS_EXPR:
9303 op = DW_OP_abs;
9304 goto do_unop;
9306 case NEGATE_EXPR:
9307 op = DW_OP_neg;
9308 goto do_unop;
9310 do_unop:
9311 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9312 if (ret == 0)
9313 return 0;
9315 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9316 break;
9318 case MIN_EXPR:
9319 case MAX_EXPR:
9321 const enum tree_code code =
9322 TREE_CODE (loc) == MIN_EXPR ? GT_EXPR : LT_EXPR;
9324 loc = build3 (COND_EXPR, TREE_TYPE (loc),
9325 build2 (code, integer_type_node,
9326 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
9327 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
9330 /* ... fall through ... */
9332 case COND_EXPR:
9334 dw_loc_descr_ref lhs
9335 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
9336 dw_loc_descr_ref rhs
9337 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 2), 0);
9338 dw_loc_descr_ref bra_node, jump_node, tmp;
9340 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9341 if (ret == 0 || lhs == 0 || rhs == 0)
9342 return 0;
9344 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
9345 add_loc_descr (&ret, bra_node);
9347 add_loc_descr (&ret, rhs);
9348 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
9349 add_loc_descr (&ret, jump_node);
9351 add_loc_descr (&ret, lhs);
9352 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9353 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
9355 /* ??? Need a node to point the skip at. Use a nop. */
9356 tmp = new_loc_descr (DW_OP_nop, 0, 0);
9357 add_loc_descr (&ret, tmp);
9358 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9359 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
9361 break;
9363 case FIX_TRUNC_EXPR:
9364 case FIX_CEIL_EXPR:
9365 case FIX_FLOOR_EXPR:
9366 case FIX_ROUND_EXPR:
9367 return 0;
9369 default:
9370 /* Leave front-end specific codes as simply unknown. This comes
9371 up, for instance, with the C STMT_EXPR. */
9372 if ((unsigned int) TREE_CODE (loc)
9373 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
9374 return 0;
9376 #ifdef ENABLE_CHECKING
9377 /* Otherwise this is a generic code; we should just lists all of
9378 these explicitly. We forgot one. */
9379 gcc_unreachable ();
9380 #else
9381 /* In a release build, we want to degrade gracefully: better to
9382 generate incomplete debugging information than to crash. */
9383 return NULL;
9384 #endif
9387 /* Show if we can't fill the request for an address. */
9388 if (want_address && !have_address)
9389 return 0;
9391 /* If we've got an address and don't want one, dereference. */
9392 if (!want_address && have_address && ret)
9394 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
9396 if (size > DWARF2_ADDR_SIZE || size == -1)
9397 return 0;
9398 else if (size == DWARF2_ADDR_SIZE)
9399 op = DW_OP_deref;
9400 else
9401 op = DW_OP_deref_size;
9403 add_loc_descr (&ret, new_loc_descr (op, size, 0));
9406 return ret;
9409 static inline dw_loc_descr_ref
9410 loc_descriptor_from_tree (tree loc)
9412 return loc_descriptor_from_tree_1 (loc, 2);
9415 /* Given a value, round it up to the lowest multiple of `boundary'
9416 which is not less than the value itself. */
9418 static inline HOST_WIDE_INT
9419 ceiling (HOST_WIDE_INT value, unsigned int boundary)
9421 return (((value + boundary - 1) / boundary) * boundary);
9424 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
9425 pointer to the declared type for the relevant field variable, or return
9426 `integer_type_node' if the given node turns out to be an
9427 ERROR_MARK node. */
9429 static inline tree
9430 field_type (tree decl)
9432 tree type;
9434 if (TREE_CODE (decl) == ERROR_MARK)
9435 return integer_type_node;
9437 type = DECL_BIT_FIELD_TYPE (decl);
9438 if (type == NULL_TREE)
9439 type = TREE_TYPE (decl);
9441 return type;
9444 /* Given a pointer to a tree node, return the alignment in bits for
9445 it, or else return BITS_PER_WORD if the node actually turns out to
9446 be an ERROR_MARK node. */
9448 static inline unsigned
9449 simple_type_align_in_bits (tree type)
9451 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
9454 static inline unsigned
9455 simple_decl_align_in_bits (tree decl)
9457 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
9460 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
9461 lowest addressed byte of the "containing object" for the given FIELD_DECL,
9462 or return 0 if we are unable to determine what that offset is, either
9463 because the argument turns out to be a pointer to an ERROR_MARK node, or
9464 because the offset is actually variable. (We can't handle the latter case
9465 just yet). */
9467 static HOST_WIDE_INT
9468 field_byte_offset (tree decl)
9470 unsigned int type_align_in_bits;
9471 unsigned int decl_align_in_bits;
9472 unsigned HOST_WIDE_INT type_size_in_bits;
9473 HOST_WIDE_INT object_offset_in_bits;
9474 tree type;
9475 tree field_size_tree;
9476 HOST_WIDE_INT bitpos_int;
9477 HOST_WIDE_INT deepest_bitpos;
9478 unsigned HOST_WIDE_INT field_size_in_bits;
9480 if (TREE_CODE (decl) == ERROR_MARK)
9481 return 0;
9483 gcc_assert (TREE_CODE (decl) == FIELD_DECL);
9485 type = field_type (decl);
9486 field_size_tree = DECL_SIZE (decl);
9488 /* The size could be unspecified if there was an error, or for
9489 a flexible array member. */
9490 if (! field_size_tree)
9491 field_size_tree = bitsize_zero_node;
9493 /* We cannot yet cope with fields whose positions are variable, so
9494 for now, when we see such things, we simply return 0. Someday, we may
9495 be able to handle such cases, but it will be damn difficult. */
9496 if (! host_integerp (bit_position (decl), 0))
9497 return 0;
9499 bitpos_int = int_bit_position (decl);
9501 /* If we don't know the size of the field, pretend it's a full word. */
9502 if (host_integerp (field_size_tree, 1))
9503 field_size_in_bits = tree_low_cst (field_size_tree, 1);
9504 else
9505 field_size_in_bits = BITS_PER_WORD;
9507 type_size_in_bits = simple_type_size_in_bits (type);
9508 type_align_in_bits = simple_type_align_in_bits (type);
9509 decl_align_in_bits = simple_decl_align_in_bits (decl);
9511 /* The GCC front-end doesn't make any attempt to keep track of the starting
9512 bit offset (relative to the start of the containing structure type) of the
9513 hypothetical "containing object" for a bit-field. Thus, when computing
9514 the byte offset value for the start of the "containing object" of a
9515 bit-field, we must deduce this information on our own. This can be rather
9516 tricky to do in some cases. For example, handling the following structure
9517 type definition when compiling for an i386/i486 target (which only aligns
9518 long long's to 32-bit boundaries) can be very tricky:
9520 struct S { int field1; long long field2:31; };
9522 Fortunately, there is a simple rule-of-thumb which can be used in such
9523 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for the
9524 structure shown above. It decides to do this based upon one simple rule
9525 for bit-field allocation. GCC allocates each "containing object" for each
9526 bit-field at the first (i.e. lowest addressed) legitimate alignment
9527 boundary (based upon the required minimum alignment for the declared type
9528 of the field) which it can possibly use, subject to the condition that
9529 there is still enough available space remaining in the containing object
9530 (when allocated at the selected point) to fully accommodate all of the
9531 bits of the bit-field itself.
9533 This simple rule makes it obvious why GCC allocates 8 bytes for each
9534 object of the structure type shown above. When looking for a place to
9535 allocate the "containing object" for `field2', the compiler simply tries
9536 to allocate a 64-bit "containing object" at each successive 32-bit
9537 boundary (starting at zero) until it finds a place to allocate that 64-
9538 bit field such that at least 31 contiguous (and previously unallocated)
9539 bits remain within that selected 64 bit field. (As it turns out, for the
9540 example above, the compiler finds it is OK to allocate the "containing
9541 object" 64-bit field at bit-offset zero within the structure type.)
9543 Here we attempt to work backwards from the limited set of facts we're
9544 given, and we try to deduce from those facts, where GCC must have believed
9545 that the containing object started (within the structure type). The value
9546 we deduce is then used (by the callers of this routine) to generate
9547 DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
9548 and, in the case of DW_AT_location, regular fields as well). */
9550 /* Figure out the bit-distance from the start of the structure to the
9551 "deepest" bit of the bit-field. */
9552 deepest_bitpos = bitpos_int + field_size_in_bits;
9554 /* This is the tricky part. Use some fancy footwork to deduce where the
9555 lowest addressed bit of the containing object must be. */
9556 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9558 /* Round up to type_align by default. This works best for bitfields. */
9559 object_offset_in_bits += type_align_in_bits - 1;
9560 object_offset_in_bits /= type_align_in_bits;
9561 object_offset_in_bits *= type_align_in_bits;
9563 if (object_offset_in_bits > bitpos_int)
9565 /* Sigh, the decl must be packed. */
9566 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9568 /* Round up to decl_align instead. */
9569 object_offset_in_bits += decl_align_in_bits - 1;
9570 object_offset_in_bits /= decl_align_in_bits;
9571 object_offset_in_bits *= decl_align_in_bits;
9574 return object_offset_in_bits / BITS_PER_UNIT;
9577 /* The following routines define various Dwarf attributes and any data
9578 associated with them. */
9580 /* Add a location description attribute value to a DIE.
9582 This emits location attributes suitable for whole variables and
9583 whole parameters. Note that the location attributes for struct fields are
9584 generated by the routine `data_member_location_attribute' below. */
9586 static inline void
9587 add_AT_location_description (dw_die_ref die, enum dwarf_attribute attr_kind,
9588 dw_loc_descr_ref descr)
9590 if (descr != 0)
9591 add_AT_loc (die, attr_kind, descr);
9594 /* Attach the specialized form of location attribute used for data members of
9595 struct and union types. In the special case of a FIELD_DECL node which
9596 represents a bit-field, the "offset" part of this special location
9597 descriptor must indicate the distance in bytes from the lowest-addressed
9598 byte of the containing struct or union type to the lowest-addressed byte of
9599 the "containing object" for the bit-field. (See the `field_byte_offset'
9600 function above).
9602 For any given bit-field, the "containing object" is a hypothetical object
9603 (of some integral or enum type) within which the given bit-field lives. The
9604 type of this hypothetical "containing object" is always the same as the
9605 declared type of the individual bit-field itself (for GCC anyway... the
9606 DWARF spec doesn't actually mandate this). Note that it is the size (in
9607 bytes) of the hypothetical "containing object" which will be given in the
9608 DW_AT_byte_size attribute for this bit-field. (See the
9609 `byte_size_attribute' function below.) It is also used when calculating the
9610 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
9611 function below.) */
9613 static void
9614 add_data_member_location_attribute (dw_die_ref die, tree decl)
9616 HOST_WIDE_INT offset;
9617 dw_loc_descr_ref loc_descr = 0;
9619 if (TREE_CODE (decl) == TREE_BINFO)
9621 /* We're working on the TAG_inheritance for a base class. */
9622 if (BINFO_VIRTUAL_P (decl) && is_cxx ())
9624 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
9625 aren't at a fixed offset from all (sub)objects of the same
9626 type. We need to extract the appropriate offset from our
9627 vtable. The following dwarf expression means
9629 BaseAddr = ObAddr + *((*ObAddr) - Offset)
9631 This is specific to the V3 ABI, of course. */
9633 dw_loc_descr_ref tmp;
9635 /* Make a copy of the object address. */
9636 tmp = new_loc_descr (DW_OP_dup, 0, 0);
9637 add_loc_descr (&loc_descr, tmp);
9639 /* Extract the vtable address. */
9640 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9641 add_loc_descr (&loc_descr, tmp);
9643 /* Calculate the address of the offset. */
9644 offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
9645 gcc_assert (offset < 0);
9647 tmp = int_loc_descriptor (-offset);
9648 add_loc_descr (&loc_descr, tmp);
9649 tmp = new_loc_descr (DW_OP_minus, 0, 0);
9650 add_loc_descr (&loc_descr, tmp);
9652 /* Extract the offset. */
9653 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9654 add_loc_descr (&loc_descr, tmp);
9656 /* Add it to the object address. */
9657 tmp = new_loc_descr (DW_OP_plus, 0, 0);
9658 add_loc_descr (&loc_descr, tmp);
9660 else
9661 offset = tree_low_cst (BINFO_OFFSET (decl), 0);
9663 else
9664 offset = field_byte_offset (decl);
9666 if (! loc_descr)
9668 enum dwarf_location_atom op;
9670 /* The DWARF2 standard says that we should assume that the structure
9671 address is already on the stack, so we can specify a structure field
9672 address by using DW_OP_plus_uconst. */
9674 #ifdef MIPS_DEBUGGING_INFO
9675 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
9676 operator correctly. It works only if we leave the offset on the
9677 stack. */
9678 op = DW_OP_constu;
9679 #else
9680 op = DW_OP_plus_uconst;
9681 #endif
9683 loc_descr = new_loc_descr (op, offset, 0);
9686 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
9689 /* Writes integer values to dw_vec_const array. */
9691 static void
9692 insert_int (HOST_WIDE_INT val, unsigned int size, unsigned char *dest)
9694 while (size != 0)
9696 *dest++ = val & 0xff;
9697 val >>= 8;
9698 --size;
9702 /* Reads integers from dw_vec_const array. Inverse of insert_int. */
9704 static HOST_WIDE_INT
9705 extract_int (const unsigned char *src, unsigned int size)
9707 HOST_WIDE_INT val = 0;
9709 src += size;
9710 while (size != 0)
9712 val <<= 8;
9713 val |= *--src & 0xff;
9714 --size;
9716 return val;
9719 /* Writes floating point values to dw_vec_const array. */
9721 static void
9722 insert_float (rtx rtl, unsigned char *array)
9724 REAL_VALUE_TYPE rv;
9725 long val[4];
9726 int i;
9728 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
9729 real_to_target (val, &rv, GET_MODE (rtl));
9731 /* real_to_target puts 32-bit pieces in each long. Pack them. */
9732 for (i = 0; i < GET_MODE_SIZE (GET_MODE (rtl)) / 4; i++)
9734 insert_int (val[i], 4, array);
9735 array += 4;
9739 /* Attach a DW_AT_const_value attribute for a variable or a parameter which
9740 does not have a "location" either in memory or in a register. These
9741 things can arise in GNU C when a constant is passed as an actual parameter
9742 to an inlined function. They can also arise in C++ where declared
9743 constants do not necessarily get memory "homes". */
9745 static void
9746 add_const_value_attribute (dw_die_ref die, rtx rtl)
9748 switch (GET_CODE (rtl))
9750 case CONST_INT:
9752 HOST_WIDE_INT val = INTVAL (rtl);
9754 if (val < 0)
9755 add_AT_int (die, DW_AT_const_value, val);
9756 else
9757 add_AT_unsigned (die, DW_AT_const_value, (unsigned HOST_WIDE_INT) val);
9759 break;
9761 case CONST_DOUBLE:
9762 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
9763 floating-point constant. A CONST_DOUBLE is used whenever the
9764 constant requires more than one word in order to be adequately
9765 represented. We output CONST_DOUBLEs as blocks. */
9767 enum machine_mode mode = GET_MODE (rtl);
9769 if (SCALAR_FLOAT_MODE_P (mode))
9771 unsigned int length = GET_MODE_SIZE (mode);
9772 unsigned char *array = ggc_alloc (length);
9774 insert_float (rtl, array);
9775 add_AT_vec (die, DW_AT_const_value, length / 4, 4, array);
9777 else
9779 /* ??? We really should be using HOST_WIDE_INT throughout. */
9780 gcc_assert (HOST_BITS_PER_LONG == HOST_BITS_PER_WIDE_INT);
9782 add_AT_long_long (die, DW_AT_const_value,
9783 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
9786 break;
9788 case CONST_VECTOR:
9790 enum machine_mode mode = GET_MODE (rtl);
9791 unsigned int elt_size = GET_MODE_UNIT_SIZE (mode);
9792 unsigned int length = CONST_VECTOR_NUNITS (rtl);
9793 unsigned char *array = ggc_alloc (length * elt_size);
9794 unsigned int i;
9795 unsigned char *p;
9797 switch (GET_MODE_CLASS (mode))
9799 case MODE_VECTOR_INT:
9800 for (i = 0, p = array; i < length; i++, p += elt_size)
9802 rtx elt = CONST_VECTOR_ELT (rtl, i);
9803 HOST_WIDE_INT lo, hi;
9805 switch (GET_CODE (elt))
9807 case CONST_INT:
9808 lo = INTVAL (elt);
9809 hi = -(lo < 0);
9810 break;
9812 case CONST_DOUBLE:
9813 lo = CONST_DOUBLE_LOW (elt);
9814 hi = CONST_DOUBLE_HIGH (elt);
9815 break;
9817 default:
9818 gcc_unreachable ();
9821 if (elt_size <= sizeof (HOST_WIDE_INT))
9822 insert_int (lo, elt_size, p);
9823 else
9825 unsigned char *p0 = p;
9826 unsigned char *p1 = p + sizeof (HOST_WIDE_INT);
9828 gcc_assert (elt_size == 2 * sizeof (HOST_WIDE_INT));
9829 if (WORDS_BIG_ENDIAN)
9831 p0 = p1;
9832 p1 = p;
9834 insert_int (lo, sizeof (HOST_WIDE_INT), p0);
9835 insert_int (hi, sizeof (HOST_WIDE_INT), p1);
9838 break;
9840 case MODE_VECTOR_FLOAT:
9841 for (i = 0, p = array; i < length; i++, p += elt_size)
9843 rtx elt = CONST_VECTOR_ELT (rtl, i);
9844 insert_float (elt, p);
9846 break;
9848 default:
9849 gcc_unreachable ();
9852 add_AT_vec (die, DW_AT_const_value, length, elt_size, array);
9854 break;
9856 case CONST_STRING:
9857 add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
9858 break;
9860 case SYMBOL_REF:
9861 case LABEL_REF:
9862 case CONST:
9863 add_AT_addr (die, DW_AT_const_value, rtl);
9864 VEC_safe_push (rtx, gc, used_rtx_array, rtl);
9865 break;
9867 case PLUS:
9868 /* In cases where an inlined instance of an inline function is passed
9869 the address of an `auto' variable (which is local to the caller) we
9870 can get a situation where the DECL_RTL of the artificial local
9871 variable (for the inlining) which acts as a stand-in for the
9872 corresponding formal parameter (of the inline function) will look
9873 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
9874 exactly a compile-time constant expression, but it isn't the address
9875 of the (artificial) local variable either. Rather, it represents the
9876 *value* which the artificial local variable always has during its
9877 lifetime. We currently have no way to represent such quasi-constant
9878 values in Dwarf, so for now we just punt and generate nothing. */
9879 break;
9881 default:
9882 /* No other kinds of rtx should be possible here. */
9883 gcc_unreachable ();
9888 /* Generate an RTL constant from a decl initializer INIT with decl type TYPE,
9889 for use in a later add_const_value_attribute call. */
9891 static rtx
9892 rtl_for_decl_init (tree init, tree type)
9894 rtx rtl = NULL_RTX;
9896 /* If a variable is initialized with a string constant without embedded
9897 zeros, build CONST_STRING. */
9898 if (TREE_CODE (init) == STRING_CST && TREE_CODE (type) == ARRAY_TYPE)
9900 tree enttype = TREE_TYPE (type);
9901 tree domain = TYPE_DOMAIN (type);
9902 enum machine_mode mode = TYPE_MODE (enttype);
9904 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
9905 && domain
9906 && integer_zerop (TYPE_MIN_VALUE (domain))
9907 && compare_tree_int (TYPE_MAX_VALUE (domain),
9908 TREE_STRING_LENGTH (init) - 1) == 0
9909 && ((size_t) TREE_STRING_LENGTH (init)
9910 == strlen (TREE_STRING_POINTER (init)) + 1))
9911 rtl = gen_rtx_CONST_STRING (VOIDmode,
9912 ggc_strdup (TREE_STRING_POINTER (init)));
9914 /* If the initializer is something that we know will expand into an
9915 immediate RTL constant, expand it now. Expanding anything else
9916 tends to produce unresolved symbols; see debug/5770 and c++/6381. */
9917 /* Aggregate, vector, and complex types may contain constructors that may
9918 result in code being generated when expand_expr is called, so we can't
9919 handle them here. Integer and float are useful and safe types to handle
9920 here. */
9921 else if ((INTEGRAL_TYPE_P (type) || SCALAR_FLOAT_TYPE_P (type))
9922 && initializer_constant_valid_p (init, type) == null_pointer_node)
9924 rtl = expand_expr (init, NULL_RTX, VOIDmode, EXPAND_INITIALIZER);
9926 /* If expand_expr returns a MEM, it wasn't immediate. */
9927 gcc_assert (!rtl || !MEM_P (rtl));
9930 return rtl;
9933 /* Generate RTL for the variable DECL to represent its location. */
9935 static rtx
9936 rtl_for_decl_location (tree decl)
9938 rtx rtl;
9940 /* Here we have to decide where we are going to say the parameter "lives"
9941 (as far as the debugger is concerned). We only have a couple of
9942 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
9944 DECL_RTL normally indicates where the parameter lives during most of the
9945 activation of the function. If optimization is enabled however, this
9946 could be either NULL or else a pseudo-reg. Both of those cases indicate
9947 that the parameter doesn't really live anywhere (as far as the code
9948 generation parts of GCC are concerned) during most of the function's
9949 activation. That will happen (for example) if the parameter is never
9950 referenced within the function.
9952 We could just generate a location descriptor here for all non-NULL
9953 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
9954 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
9955 where DECL_RTL is NULL or is a pseudo-reg.
9957 Note however that we can only get away with using DECL_INCOMING_RTL as
9958 a backup substitute for DECL_RTL in certain limited cases. In cases
9959 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
9960 we can be sure that the parameter was passed using the same type as it is
9961 declared to have within the function, and that its DECL_INCOMING_RTL
9962 points us to a place where a value of that type is passed.
9964 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
9965 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
9966 because in these cases DECL_INCOMING_RTL points us to a value of some
9967 type which is *different* from the type of the parameter itself. Thus,
9968 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
9969 such cases, the debugger would end up (for example) trying to fetch a
9970 `float' from a place which actually contains the first part of a
9971 `double'. That would lead to really incorrect and confusing
9972 output at debug-time.
9974 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
9975 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
9976 are a couple of exceptions however. On little-endian machines we can
9977 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
9978 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
9979 an integral type that is smaller than TREE_TYPE (decl). These cases arise
9980 when (on a little-endian machine) a non-prototyped function has a
9981 parameter declared to be of type `short' or `char'. In such cases,
9982 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
9983 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
9984 passed `int' value. If the debugger then uses that address to fetch
9985 a `short' or a `char' (on a little-endian machine) the result will be
9986 the correct data, so we allow for such exceptional cases below.
9988 Note that our goal here is to describe the place where the given formal
9989 parameter lives during most of the function's activation (i.e. between the
9990 end of the prologue and the start of the epilogue). We'll do that as best
9991 as we can. Note however that if the given formal parameter is modified
9992 sometime during the execution of the function, then a stack backtrace (at
9993 debug-time) will show the function as having been called with the *new*
9994 value rather than the value which was originally passed in. This happens
9995 rarely enough that it is not a major problem, but it *is* a problem, and
9996 I'd like to fix it.
9998 A future version of dwarf2out.c may generate two additional attributes for
9999 any given DW_TAG_formal_parameter DIE which will describe the "passed
10000 type" and the "passed location" for the given formal parameter in addition
10001 to the attributes we now generate to indicate the "declared type" and the
10002 "active location" for each parameter. This additional set of attributes
10003 could be used by debuggers for stack backtraces. Separately, note that
10004 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
10005 This happens (for example) for inlined-instances of inline function formal
10006 parameters which are never referenced. This really shouldn't be
10007 happening. All PARM_DECL nodes should get valid non-NULL
10008 DECL_INCOMING_RTL values. FIXME. */
10010 /* Use DECL_RTL as the "location" unless we find something better. */
10011 rtl = DECL_RTL_IF_SET (decl);
10013 /* When generating abstract instances, ignore everything except
10014 constants, symbols living in memory, and symbols living in
10015 fixed registers. */
10016 if (! reload_completed)
10018 if (rtl
10019 && (CONSTANT_P (rtl)
10020 || (MEM_P (rtl)
10021 && CONSTANT_P (XEXP (rtl, 0)))
10022 || (REG_P (rtl)
10023 && TREE_CODE (decl) == VAR_DECL
10024 && TREE_STATIC (decl))))
10026 rtl = targetm.delegitimize_address (rtl);
10027 return rtl;
10029 rtl = NULL_RTX;
10031 else if (TREE_CODE (decl) == PARM_DECL)
10033 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
10035 tree declared_type = TREE_TYPE (decl);
10036 tree passed_type = DECL_ARG_TYPE (decl);
10037 enum machine_mode dmode = TYPE_MODE (declared_type);
10038 enum machine_mode pmode = TYPE_MODE (passed_type);
10040 /* This decl represents a formal parameter which was optimized out.
10041 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
10042 all cases where (rtl == NULL_RTX) just below. */
10043 if (dmode == pmode)
10044 rtl = DECL_INCOMING_RTL (decl);
10045 else if (SCALAR_INT_MODE_P (dmode)
10046 && GET_MODE_SIZE (dmode) <= GET_MODE_SIZE (pmode)
10047 && DECL_INCOMING_RTL (decl))
10049 rtx inc = DECL_INCOMING_RTL (decl);
10050 if (REG_P (inc))
10051 rtl = inc;
10052 else if (MEM_P (inc))
10054 if (BYTES_BIG_ENDIAN)
10055 rtl = adjust_address_nv (inc, dmode,
10056 GET_MODE_SIZE (pmode)
10057 - GET_MODE_SIZE (dmode));
10058 else
10059 rtl = inc;
10064 /* If the parm was passed in registers, but lives on the stack, then
10065 make a big endian correction if the mode of the type of the
10066 parameter is not the same as the mode of the rtl. */
10067 /* ??? This is the same series of checks that are made in dbxout.c before
10068 we reach the big endian correction code there. It isn't clear if all
10069 of these checks are necessary here, but keeping them all is the safe
10070 thing to do. */
10071 else if (MEM_P (rtl)
10072 && XEXP (rtl, 0) != const0_rtx
10073 && ! CONSTANT_P (XEXP (rtl, 0))
10074 /* Not passed in memory. */
10075 && !MEM_P (DECL_INCOMING_RTL (decl))
10076 /* Not passed by invisible reference. */
10077 && (!REG_P (XEXP (rtl, 0))
10078 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
10079 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
10080 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
10081 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
10082 #endif
10084 /* Big endian correction check. */
10085 && BYTES_BIG_ENDIAN
10086 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
10087 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
10088 < UNITS_PER_WORD))
10090 int offset = (UNITS_PER_WORD
10091 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
10093 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
10094 plus_constant (XEXP (rtl, 0), offset));
10097 else if (TREE_CODE (decl) == VAR_DECL
10098 && rtl
10099 && MEM_P (rtl)
10100 && GET_MODE (rtl) != TYPE_MODE (TREE_TYPE (decl))
10101 && BYTES_BIG_ENDIAN)
10103 int rsize = GET_MODE_SIZE (GET_MODE (rtl));
10104 int dsize = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)));
10106 /* If a variable is declared "register" yet is smaller than
10107 a register, then if we store the variable to memory, it
10108 looks like we're storing a register-sized value, when in
10109 fact we are not. We need to adjust the offset of the
10110 storage location to reflect the actual value's bytes,
10111 else gdb will not be able to display it. */
10112 if (rsize > dsize)
10113 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
10114 plus_constant (XEXP (rtl, 0), rsize-dsize));
10117 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
10118 and will have been substituted directly into all expressions that use it.
10119 C does not have such a concept, but C++ and other languages do. */
10120 if (!rtl && TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
10121 rtl = rtl_for_decl_init (DECL_INITIAL (decl), TREE_TYPE (decl));
10123 if (rtl)
10124 rtl = targetm.delegitimize_address (rtl);
10126 /* If we don't look past the constant pool, we risk emitting a
10127 reference to a constant pool entry that isn't referenced from
10128 code, and thus is not emitted. */
10129 if (rtl)
10130 rtl = avoid_constant_pool_reference (rtl);
10132 return rtl;
10135 /* We need to figure out what section we should use as the base for the
10136 address ranges where a given location is valid.
10137 1. If this particular DECL has a section associated with it, use that.
10138 2. If this function has a section associated with it, use that.
10139 3. Otherwise, use the text section.
10140 XXX: If you split a variable across multiple sections, we won't notice. */
10142 static const char *
10143 secname_for_decl (tree decl)
10145 const char *secname;
10147 if (VAR_OR_FUNCTION_DECL_P (decl) && DECL_SECTION_NAME (decl))
10149 tree sectree = DECL_SECTION_NAME (decl);
10150 secname = TREE_STRING_POINTER (sectree);
10152 else if (current_function_decl && DECL_SECTION_NAME (current_function_decl))
10154 tree sectree = DECL_SECTION_NAME (current_function_decl);
10155 secname = TREE_STRING_POINTER (sectree);
10157 else if (cfun && in_cold_section_p)
10158 secname = cfun->cold_section_label;
10159 else
10160 secname = text_section_label;
10162 return secname;
10165 /* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
10166 data attribute for a variable or a parameter. We generate the
10167 DW_AT_const_value attribute only in those cases where the given variable
10168 or parameter does not have a true "location" either in memory or in a
10169 register. This can happen (for example) when a constant is passed as an
10170 actual argument in a call to an inline function. (It's possible that
10171 these things can crop up in other ways also.) Note that one type of
10172 constant value which can be passed into an inlined function is a constant
10173 pointer. This can happen for example if an actual argument in an inlined
10174 function call evaluates to a compile-time constant address. */
10176 static void
10177 add_location_or_const_value_attribute (dw_die_ref die, tree decl,
10178 enum dwarf_attribute attr)
10180 rtx rtl;
10181 dw_loc_descr_ref descr;
10182 var_loc_list *loc_list;
10183 struct var_loc_node *node;
10184 if (TREE_CODE (decl) == ERROR_MARK)
10185 return;
10187 gcc_assert (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == PARM_DECL
10188 || TREE_CODE (decl) == RESULT_DECL);
10190 /* See if we possibly have multiple locations for this variable. */
10191 loc_list = lookup_decl_loc (decl);
10193 /* If it truly has multiple locations, the first and last node will
10194 differ. */
10195 if (loc_list && loc_list->first != loc_list->last)
10197 const char *endname, *secname;
10198 dw_loc_list_ref list;
10199 rtx varloc;
10201 /* Now that we know what section we are using for a base,
10202 actually construct the list of locations.
10203 The first location information is what is passed to the
10204 function that creates the location list, and the remaining
10205 locations just get added on to that list.
10206 Note that we only know the start address for a location
10207 (IE location changes), so to build the range, we use
10208 the range [current location start, next location start].
10209 This means we have to special case the last node, and generate
10210 a range of [last location start, end of function label]. */
10212 node = loc_list->first;
10213 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10214 secname = secname_for_decl (decl);
10216 list = new_loc_list (loc_descriptor (varloc),
10217 node->label, node->next->label, secname, 1);
10218 node = node->next;
10220 for (; node->next; node = node->next)
10221 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10223 /* The variable has a location between NODE->LABEL and
10224 NODE->NEXT->LABEL. */
10225 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10226 add_loc_descr_to_loc_list (&list, loc_descriptor (varloc),
10227 node->label, node->next->label, secname);
10230 /* If the variable has a location at the last label
10231 it keeps its location until the end of function. */
10232 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10234 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
10236 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10237 if (!current_function_decl)
10238 endname = text_end_label;
10239 else
10241 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
10242 current_function_funcdef_no);
10243 endname = ggc_strdup (label_id);
10245 add_loc_descr_to_loc_list (&list, loc_descriptor (varloc),
10246 node->label, endname, secname);
10249 /* Finally, add the location list to the DIE, and we are done. */
10250 add_AT_loc_list (die, attr, list);
10251 return;
10254 /* Try to get some constant RTL for this decl, and use that as the value of
10255 the location. */
10257 rtl = rtl_for_decl_location (decl);
10258 if (rtl && (CONSTANT_P (rtl) || GET_CODE (rtl) == CONST_STRING))
10260 add_const_value_attribute (die, rtl);
10261 return;
10264 /* If we have tried to generate the location otherwise, and it
10265 didn't work out (we wouldn't be here if we did), and we have a one entry
10266 location list, try generating a location from that. */
10267 if (loc_list && loc_list->first)
10269 node = loc_list->first;
10270 descr = loc_descriptor (NOTE_VAR_LOCATION (node->var_loc_note));
10271 if (descr)
10273 add_AT_location_description (die, attr, descr);
10274 return;
10278 /* We couldn't get any rtl, so try directly generating the location
10279 description from the tree. */
10280 descr = loc_descriptor_from_tree (decl);
10281 if (descr)
10283 add_AT_location_description (die, attr, descr);
10284 return;
10288 /* If we don't have a copy of this variable in memory for some reason (such
10289 as a C++ member constant that doesn't have an out-of-line definition),
10290 we should tell the debugger about the constant value. */
10292 static void
10293 tree_add_const_value_attribute (dw_die_ref var_die, tree decl)
10295 tree init = DECL_INITIAL (decl);
10296 tree type = TREE_TYPE (decl);
10297 rtx rtl;
10299 if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init)
10300 /* OK */;
10301 else
10302 return;
10304 rtl = rtl_for_decl_init (init, type);
10305 if (rtl)
10306 add_const_value_attribute (var_die, rtl);
10309 /* Convert the CFI instructions for the current function into a location
10310 list. This is used for DW_AT_frame_base when we targeting a dwarf2
10311 consumer that does not support the dwarf3 DW_OP_call_frame_cfa. */
10313 static dw_loc_list_ref
10314 convert_cfa_to_loc_list (void)
10316 dw_fde_ref fde;
10317 dw_loc_list_ref list, *list_tail;
10318 dw_cfi_ref cfi;
10319 dw_cfa_location last_cfa, next_cfa;
10320 const char *start_label, *last_label, *section;
10322 fde = &fde_table[fde_table_in_use - 1];
10324 section = secname_for_decl (current_function_decl);
10325 list_tail = &list;
10326 list = NULL;
10328 next_cfa.reg = INVALID_REGNUM;
10329 next_cfa.offset = 0;
10330 next_cfa.indirect = 0;
10331 next_cfa.base_offset = 0;
10333 start_label = fde->dw_fde_begin;
10335 /* ??? Bald assumption that the CIE opcode list does not contain
10336 advance opcodes. */
10337 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
10338 lookup_cfa_1 (cfi, &next_cfa);
10340 last_cfa = next_cfa;
10341 last_label = start_label;
10343 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
10344 switch (cfi->dw_cfi_opc)
10346 case DW_CFA_advance_loc1:
10347 case DW_CFA_advance_loc2:
10348 case DW_CFA_advance_loc4:
10349 if (!cfa_equal_p (&last_cfa, &next_cfa))
10351 *list_tail = new_loc_list (build_cfa_loc (&last_cfa), start_label,
10352 last_label, section, list == NULL);
10354 list_tail = &(*list_tail)->dw_loc_next;
10355 last_cfa = next_cfa;
10356 start_label = last_label;
10358 last_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
10359 break;
10361 case DW_CFA_advance_loc:
10362 /* The encoding is complex enough that we should never emit this. */
10363 case DW_CFA_remember_state:
10364 case DW_CFA_restore_state:
10365 /* We don't handle these two in this function. It would be possible
10366 if it were to be required. */
10367 gcc_unreachable ();
10369 default:
10370 lookup_cfa_1 (cfi, &next_cfa);
10371 break;
10374 if (!cfa_equal_p (&last_cfa, &next_cfa))
10376 *list_tail = new_loc_list (build_cfa_loc (&last_cfa), start_label,
10377 last_label, section, list == NULL);
10378 list_tail = &(*list_tail)->dw_loc_next;
10379 start_label = last_label;
10381 *list_tail = new_loc_list (build_cfa_loc (&next_cfa), start_label,
10382 fde->dw_fde_end, section, list == NULL);
10384 return list;
10387 /* Compute a displacement from the "steady-state frame pointer" to
10388 the CFA, and store it in frame_pointer_cfa_offset. */
10390 static void
10391 compute_frame_pointer_to_cfa_displacement (void)
10393 HOST_WIDE_INT offset;
10394 rtx reg, elim;
10396 #ifdef FRAME_POINTER_CFA_OFFSET
10397 reg = frame_pointer_rtx;
10398 offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
10399 #else
10400 reg = arg_pointer_rtx;
10401 offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
10402 #endif
10404 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10405 if (GET_CODE (elim) == PLUS)
10407 offset += INTVAL (XEXP (elim, 1));
10408 elim = XEXP (elim, 0);
10410 gcc_assert (elim == (frame_pointer_needed ? hard_frame_pointer_rtx
10411 : stack_pointer_rtx));
10413 frame_pointer_cfa_offset = -offset;
10416 /* Generate a DW_AT_name attribute given some string value to be included as
10417 the value of the attribute. */
10419 static void
10420 add_name_attribute (dw_die_ref die, const char *name_string)
10422 if (name_string != NULL && *name_string != 0)
10424 if (demangle_name_func)
10425 name_string = (*demangle_name_func) (name_string);
10427 add_AT_string (die, DW_AT_name, name_string);
10431 /* Generate a DW_AT_comp_dir attribute for DIE. */
10433 static void
10434 add_comp_dir_attribute (dw_die_ref die)
10436 const char *wd = get_src_pwd ();
10437 if (wd != NULL)
10438 add_AT_string (die, DW_AT_comp_dir, wd);
10441 /* Given a tree node describing an array bound (either lower or upper) output
10442 a representation for that bound. */
10444 static void
10445 add_bound_info (dw_die_ref subrange_die, enum dwarf_attribute bound_attr, tree bound)
10447 switch (TREE_CODE (bound))
10449 case ERROR_MARK:
10450 return;
10452 /* All fixed-bounds are represented by INTEGER_CST nodes. */
10453 case INTEGER_CST:
10454 if (! host_integerp (bound, 0)
10455 || (bound_attr == DW_AT_lower_bound
10456 && (((is_c_family () || is_java ()) && integer_zerop (bound))
10457 || (is_fortran () && integer_onep (bound)))))
10458 /* Use the default. */
10460 else
10461 add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
10462 break;
10464 case CONVERT_EXPR:
10465 case NOP_EXPR:
10466 case NON_LVALUE_EXPR:
10467 case VIEW_CONVERT_EXPR:
10468 add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
10469 break;
10471 case SAVE_EXPR:
10472 break;
10474 case VAR_DECL:
10475 case PARM_DECL:
10476 case RESULT_DECL:
10478 dw_die_ref decl_die = lookup_decl_die (bound);
10480 /* ??? Can this happen, or should the variable have been bound
10481 first? Probably it can, since I imagine that we try to create
10482 the types of parameters in the order in which they exist in
10483 the list, and won't have created a forward reference to a
10484 later parameter. */
10485 if (decl_die != NULL)
10486 add_AT_die_ref (subrange_die, bound_attr, decl_die);
10487 break;
10490 default:
10492 /* Otherwise try to create a stack operation procedure to
10493 evaluate the value of the array bound. */
10495 dw_die_ref ctx, decl_die;
10496 dw_loc_descr_ref loc;
10498 loc = loc_descriptor_from_tree (bound);
10499 if (loc == NULL)
10500 break;
10502 if (current_function_decl == 0)
10503 ctx = comp_unit_die;
10504 else
10505 ctx = lookup_decl_die (current_function_decl);
10507 decl_die = new_die (DW_TAG_variable, ctx, bound);
10508 add_AT_flag (decl_die, DW_AT_artificial, 1);
10509 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
10510 add_AT_loc (decl_die, DW_AT_location, loc);
10512 add_AT_die_ref (subrange_die, bound_attr, decl_die);
10513 break;
10518 /* Note that the block of subscript information for an array type also
10519 includes information about the element type of type given array type. */
10521 static void
10522 add_subscript_info (dw_die_ref type_die, tree type)
10524 #ifndef MIPS_DEBUGGING_INFO
10525 unsigned dimension_number;
10526 #endif
10527 tree lower, upper;
10528 dw_die_ref subrange_die;
10530 /* The GNU compilers represent multidimensional array types as sequences of
10531 one dimensional array types whose element types are themselves array
10532 types. Here we squish that down, so that each multidimensional array
10533 type gets only one array_type DIE in the Dwarf debugging info. The draft
10534 Dwarf specification say that we are allowed to do this kind of
10535 compression in C (because there is no difference between an array or
10536 arrays and a multidimensional array in C) but for other source languages
10537 (e.g. Ada) we probably shouldn't do this. */
10539 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10540 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10541 We work around this by disabling this feature. See also
10542 gen_array_type_die. */
10543 #ifndef MIPS_DEBUGGING_INFO
10544 for (dimension_number = 0;
10545 TREE_CODE (type) == ARRAY_TYPE;
10546 type = TREE_TYPE (type), dimension_number++)
10547 #endif
10549 tree domain = TYPE_DOMAIN (type);
10551 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
10552 and (in GNU C only) variable bounds. Handle all three forms
10553 here. */
10554 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
10555 if (domain)
10557 /* We have an array type with specified bounds. */
10558 lower = TYPE_MIN_VALUE (domain);
10559 upper = TYPE_MAX_VALUE (domain);
10561 /* Define the index type. */
10562 if (TREE_TYPE (domain))
10564 /* ??? This is probably an Ada unnamed subrange type. Ignore the
10565 TREE_TYPE field. We can't emit debug info for this
10566 because it is an unnamed integral type. */
10567 if (TREE_CODE (domain) == INTEGER_TYPE
10568 && TYPE_NAME (domain) == NULL_TREE
10569 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
10570 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
10572 else
10573 add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
10574 type_die);
10577 /* ??? If upper is NULL, the array has unspecified length,
10578 but it does have a lower bound. This happens with Fortran
10579 dimension arr(N:*)
10580 Since the debugger is definitely going to need to know N
10581 to produce useful results, go ahead and output the lower
10582 bound solo, and hope the debugger can cope. */
10584 add_bound_info (subrange_die, DW_AT_lower_bound, lower);
10585 if (upper)
10586 add_bound_info (subrange_die, DW_AT_upper_bound, upper);
10589 /* Otherwise we have an array type with an unspecified length. The
10590 DWARF-2 spec does not say how to handle this; let's just leave out the
10591 bounds. */
10595 static void
10596 add_byte_size_attribute (dw_die_ref die, tree tree_node)
10598 unsigned size;
10600 switch (TREE_CODE (tree_node))
10602 case ERROR_MARK:
10603 size = 0;
10604 break;
10605 case ENUMERAL_TYPE:
10606 case RECORD_TYPE:
10607 case UNION_TYPE:
10608 case QUAL_UNION_TYPE:
10609 size = int_size_in_bytes (tree_node);
10610 break;
10611 case FIELD_DECL:
10612 /* For a data member of a struct or union, the DW_AT_byte_size is
10613 generally given as the number of bytes normally allocated for an
10614 object of the *declared* type of the member itself. This is true
10615 even for bit-fields. */
10616 size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
10617 break;
10618 default:
10619 gcc_unreachable ();
10622 /* Note that `size' might be -1 when we get to this point. If it is, that
10623 indicates that the byte size of the entity in question is variable. We
10624 have no good way of expressing this fact in Dwarf at the present time,
10625 so just let the -1 pass on through. */
10626 add_AT_unsigned (die, DW_AT_byte_size, size);
10629 /* For a FIELD_DECL node which represents a bit-field, output an attribute
10630 which specifies the distance in bits from the highest order bit of the
10631 "containing object" for the bit-field to the highest order bit of the
10632 bit-field itself.
10634 For any given bit-field, the "containing object" is a hypothetical object
10635 (of some integral or enum type) within which the given bit-field lives. The
10636 type of this hypothetical "containing object" is always the same as the
10637 declared type of the individual bit-field itself. The determination of the
10638 exact location of the "containing object" for a bit-field is rather
10639 complicated. It's handled by the `field_byte_offset' function (above).
10641 Note that it is the size (in bytes) of the hypothetical "containing object"
10642 which will be given in the DW_AT_byte_size attribute for this bit-field.
10643 (See `byte_size_attribute' above). */
10645 static inline void
10646 add_bit_offset_attribute (dw_die_ref die, tree decl)
10648 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
10649 tree type = DECL_BIT_FIELD_TYPE (decl);
10650 HOST_WIDE_INT bitpos_int;
10651 HOST_WIDE_INT highest_order_object_bit_offset;
10652 HOST_WIDE_INT highest_order_field_bit_offset;
10653 HOST_WIDE_INT unsigned bit_offset;
10655 /* Must be a field and a bit field. */
10656 gcc_assert (type && TREE_CODE (decl) == FIELD_DECL);
10658 /* We can't yet handle bit-fields whose offsets are variable, so if we
10659 encounter such things, just return without generating any attribute
10660 whatsoever. Likewise for variable or too large size. */
10661 if (! host_integerp (bit_position (decl), 0)
10662 || ! host_integerp (DECL_SIZE (decl), 1))
10663 return;
10665 bitpos_int = int_bit_position (decl);
10667 /* Note that the bit offset is always the distance (in bits) from the
10668 highest-order bit of the "containing object" to the highest-order bit of
10669 the bit-field itself. Since the "high-order end" of any object or field
10670 is different on big-endian and little-endian machines, the computation
10671 below must take account of these differences. */
10672 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
10673 highest_order_field_bit_offset = bitpos_int;
10675 if (! BYTES_BIG_ENDIAN)
10677 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
10678 highest_order_object_bit_offset += simple_type_size_in_bits (type);
10681 bit_offset
10682 = (! BYTES_BIG_ENDIAN
10683 ? highest_order_object_bit_offset - highest_order_field_bit_offset
10684 : highest_order_field_bit_offset - highest_order_object_bit_offset);
10686 add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
10689 /* For a FIELD_DECL node which represents a bit field, output an attribute
10690 which specifies the length in bits of the given field. */
10692 static inline void
10693 add_bit_size_attribute (dw_die_ref die, tree decl)
10695 /* Must be a field and a bit field. */
10696 gcc_assert (TREE_CODE (decl) == FIELD_DECL
10697 && DECL_BIT_FIELD_TYPE (decl));
10699 if (host_integerp (DECL_SIZE (decl), 1))
10700 add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
10703 /* If the compiled language is ANSI C, then add a 'prototyped'
10704 attribute, if arg types are given for the parameters of a function. */
10706 static inline void
10707 add_prototyped_attribute (dw_die_ref die, tree func_type)
10709 if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
10710 && TYPE_ARG_TYPES (func_type) != NULL)
10711 add_AT_flag (die, DW_AT_prototyped, 1);
10714 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
10715 by looking in either the type declaration or object declaration
10716 equate table. */
10718 static inline void
10719 add_abstract_origin_attribute (dw_die_ref die, tree origin)
10721 dw_die_ref origin_die = NULL;
10723 if (TREE_CODE (origin) != FUNCTION_DECL)
10725 /* We may have gotten separated from the block for the inlined
10726 function, if we're in an exception handler or some such; make
10727 sure that the abstract function has been written out.
10729 Doing this for nested functions is wrong, however; functions are
10730 distinct units, and our context might not even be inline. */
10731 tree fn = origin;
10733 if (TYPE_P (fn))
10734 fn = TYPE_STUB_DECL (fn);
10736 fn = decl_function_context (fn);
10737 if (fn)
10738 dwarf2out_abstract_function (fn);
10741 if (DECL_P (origin))
10742 origin_die = lookup_decl_die (origin);
10743 else if (TYPE_P (origin))
10744 origin_die = lookup_type_die (origin);
10746 /* XXX: Functions that are never lowered don't always have correct block
10747 trees (in the case of java, they simply have no block tree, in some other
10748 languages). For these functions, there is nothing we can really do to
10749 output correct debug info for inlined functions in all cases. Rather
10750 than die, we'll just produce deficient debug info now, in that we will
10751 have variables without a proper abstract origin. In the future, when all
10752 functions are lowered, we should re-add a gcc_assert (origin_die)
10753 here. */
10755 if (origin_die)
10756 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
10759 /* We do not currently support the pure_virtual attribute. */
10761 static inline void
10762 add_pure_or_virtual_attribute (dw_die_ref die, tree func_decl)
10764 if (DECL_VINDEX (func_decl))
10766 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
10768 if (host_integerp (DECL_VINDEX (func_decl), 0))
10769 add_AT_loc (die, DW_AT_vtable_elem_location,
10770 new_loc_descr (DW_OP_constu,
10771 tree_low_cst (DECL_VINDEX (func_decl), 0),
10772 0));
10774 /* GNU extension: Record what type this method came from originally. */
10775 if (debug_info_level > DINFO_LEVEL_TERSE)
10776 add_AT_die_ref (die, DW_AT_containing_type,
10777 lookup_type_die (DECL_CONTEXT (func_decl)));
10781 /* Add source coordinate attributes for the given decl. */
10783 static void
10784 add_src_coords_attributes (dw_die_ref die, tree decl)
10786 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
10787 unsigned file_index = lookup_filename (s.file);
10789 add_AT_unsigned (die, DW_AT_decl_file, file_index);
10790 add_AT_unsigned (die, DW_AT_decl_line, s.line);
10793 /* Add a DW_AT_name attribute and source coordinate attribute for the
10794 given decl, but only if it actually has a name. */
10796 static void
10797 add_name_and_src_coords_attributes (dw_die_ref die, tree decl)
10799 tree decl_name;
10801 decl_name = DECL_NAME (decl);
10802 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
10804 add_name_attribute (die, dwarf2_name (decl, 0));
10805 if (! DECL_ARTIFICIAL (decl))
10806 add_src_coords_attributes (die, decl);
10808 if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
10809 && TREE_PUBLIC (decl)
10810 && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
10811 && !DECL_ABSTRACT (decl)
10812 && !(TREE_CODE (decl) == VAR_DECL && DECL_REGISTER (decl)))
10813 add_AT_string (die, DW_AT_MIPS_linkage_name,
10814 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
10817 #ifdef VMS_DEBUGGING_INFO
10818 /* Get the function's name, as described by its RTL. This may be different
10819 from the DECL_NAME name used in the source file. */
10820 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
10822 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
10823 XEXP (DECL_RTL (decl), 0));
10824 VEC_safe_push (tree, gc, used_rtx_array, XEXP (DECL_RTL (decl), 0));
10826 #endif
10829 /* Push a new declaration scope. */
10831 static void
10832 push_decl_scope (tree scope)
10834 VEC_safe_push (tree, gc, decl_scope_table, scope);
10837 /* Pop a declaration scope. */
10839 static inline void
10840 pop_decl_scope (void)
10842 VEC_pop (tree, decl_scope_table);
10845 /* Return the DIE for the scope that immediately contains this type.
10846 Non-named types get global scope. Named types nested in other
10847 types get their containing scope if it's open, or global scope
10848 otherwise. All other types (i.e. function-local named types) get
10849 the current active scope. */
10851 static dw_die_ref
10852 scope_die_for (tree t, dw_die_ref context_die)
10854 dw_die_ref scope_die = NULL;
10855 tree containing_scope;
10856 int i;
10858 /* Non-types always go in the current scope. */
10859 gcc_assert (TYPE_P (t));
10861 containing_scope = TYPE_CONTEXT (t);
10863 /* Use the containing namespace if it was passed in (for a declaration). */
10864 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
10866 if (context_die == lookup_decl_die (containing_scope))
10867 /* OK */;
10868 else
10869 containing_scope = NULL_TREE;
10872 /* Ignore function type "scopes" from the C frontend. They mean that
10873 a tagged type is local to a parmlist of a function declarator, but
10874 that isn't useful to DWARF. */
10875 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
10876 containing_scope = NULL_TREE;
10878 if (containing_scope == NULL_TREE)
10879 scope_die = comp_unit_die;
10880 else if (TYPE_P (containing_scope))
10882 /* For types, we can just look up the appropriate DIE. But
10883 first we check to see if we're in the middle of emitting it
10884 so we know where the new DIE should go. */
10885 for (i = VEC_length (tree, decl_scope_table) - 1; i >= 0; --i)
10886 if (VEC_index (tree, decl_scope_table, i) == containing_scope)
10887 break;
10889 if (i < 0)
10891 gcc_assert (debug_info_level <= DINFO_LEVEL_TERSE
10892 || TREE_ASM_WRITTEN (containing_scope));
10894 /* If none of the current dies are suitable, we get file scope. */
10895 scope_die = comp_unit_die;
10897 else
10898 scope_die = lookup_type_die (containing_scope);
10900 else
10901 scope_die = context_die;
10903 return scope_die;
10906 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
10908 static inline int
10909 local_scope_p (dw_die_ref context_die)
10911 for (; context_die; context_die = context_die->die_parent)
10912 if (context_die->die_tag == DW_TAG_inlined_subroutine
10913 || context_die->die_tag == DW_TAG_subprogram)
10914 return 1;
10916 return 0;
10919 /* Returns nonzero if CONTEXT_DIE is a class or namespace, for deciding
10920 whether or not to treat a DIE in this context as a declaration. */
10922 static inline int
10923 class_or_namespace_scope_p (dw_die_ref context_die)
10925 return (context_die
10926 && (context_die->die_tag == DW_TAG_structure_type
10927 || context_die->die_tag == DW_TAG_union_type
10928 || context_die->die_tag == DW_TAG_namespace));
10931 /* Many forms of DIEs require a "type description" attribute. This
10932 routine locates the proper "type descriptor" die for the type given
10933 by 'type', and adds a DW_AT_type attribute below the given die. */
10935 static void
10936 add_type_attribute (dw_die_ref object_die, tree type, int decl_const,
10937 int decl_volatile, dw_die_ref context_die)
10939 enum tree_code code = TREE_CODE (type);
10940 dw_die_ref type_die = NULL;
10942 /* ??? If this type is an unnamed subrange type of an integral or
10943 floating-point type, use the inner type. This is because we have no
10944 support for unnamed types in base_type_die. This can happen if this is
10945 an Ada subrange type. Correct solution is emit a subrange type die. */
10946 if ((code == INTEGER_TYPE || code == REAL_TYPE)
10947 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
10948 type = TREE_TYPE (type), code = TREE_CODE (type);
10950 if (code == ERROR_MARK
10951 /* Handle a special case. For functions whose return type is void, we
10952 generate *no* type attribute. (Note that no object may have type
10953 `void', so this only applies to function return types). */
10954 || code == VOID_TYPE)
10955 return;
10957 type_die = modified_type_die (type,
10958 decl_const || TYPE_READONLY (type),
10959 decl_volatile || TYPE_VOLATILE (type),
10960 context_die);
10962 if (type_die != NULL)
10963 add_AT_die_ref (object_die, DW_AT_type, type_die);
10966 /* Given an object die, add the calling convention attribute for the
10967 function call type. */
10968 static void
10969 add_calling_convention_attribute (dw_die_ref subr_die, tree type)
10971 enum dwarf_calling_convention value = DW_CC_normal;
10973 value = targetm.dwarf_calling_convention (type);
10975 /* Only add the attribute if the backend requests it, and
10976 is not DW_CC_normal. */
10977 if (value && (value != DW_CC_normal))
10978 add_AT_unsigned (subr_die, DW_AT_calling_convention, value);
10981 /* Given a tree pointer to a struct, class, union, or enum type node, return
10982 a pointer to the (string) tag name for the given type, or zero if the type
10983 was declared without a tag. */
10985 static const char *
10986 type_tag (tree type)
10988 const char *name = 0;
10990 if (TYPE_NAME (type) != 0)
10992 tree t = 0;
10994 /* Find the IDENTIFIER_NODE for the type name. */
10995 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
10996 t = TYPE_NAME (type);
10998 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
10999 a TYPE_DECL node, regardless of whether or not a `typedef' was
11000 involved. */
11001 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
11002 && ! DECL_IGNORED_P (TYPE_NAME (type)))
11003 t = DECL_NAME (TYPE_NAME (type));
11005 /* Now get the name as a string, or invent one. */
11006 if (t != 0)
11007 name = IDENTIFIER_POINTER (t);
11010 return (name == 0 || *name == '\0') ? 0 : name;
11013 /* Return the type associated with a data member, make a special check
11014 for bit field types. */
11016 static inline tree
11017 member_declared_type (tree member)
11019 return (DECL_BIT_FIELD_TYPE (member)
11020 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
11023 /* Get the decl's label, as described by its RTL. This may be different
11024 from the DECL_NAME name used in the source file. */
11026 #if 0
11027 static const char *
11028 decl_start_label (tree decl)
11030 rtx x;
11031 const char *fnname;
11033 x = DECL_RTL (decl);
11034 gcc_assert (MEM_P (x));
11036 x = XEXP (x, 0);
11037 gcc_assert (GET_CODE (x) == SYMBOL_REF);
11039 fnname = XSTR (x, 0);
11040 return fnname;
11042 #endif
11044 /* These routines generate the internal representation of the DIE's for
11045 the compilation unit. Debugging information is collected by walking
11046 the declaration trees passed in from dwarf2out_decl(). */
11048 static void
11049 gen_array_type_die (tree type, dw_die_ref context_die)
11051 dw_die_ref scope_die = scope_die_for (type, context_die);
11052 dw_die_ref array_die;
11053 tree element_type;
11055 /* ??? The SGI dwarf reader fails for array of array of enum types unless
11056 the inner array type comes before the outer array type. Thus we must
11057 call gen_type_die before we call new_die. See below also. */
11058 #ifdef MIPS_DEBUGGING_INFO
11059 gen_type_die (TREE_TYPE (type), context_die);
11060 #endif
11062 array_die = new_die (DW_TAG_array_type, scope_die, type);
11063 add_name_attribute (array_die, type_tag (type));
11064 equate_type_number_to_die (type, array_die);
11066 if (TREE_CODE (type) == VECTOR_TYPE)
11068 /* The frontend feeds us a representation for the vector as a struct
11069 containing an array. Pull out the array type. */
11070 type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type)));
11071 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
11074 #if 0
11075 /* We default the array ordering. SDB will probably do
11076 the right things even if DW_AT_ordering is not present. It's not even
11077 an issue until we start to get into multidimensional arrays anyway. If
11078 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
11079 then we'll have to put the DW_AT_ordering attribute back in. (But if
11080 and when we find out that we need to put these in, we will only do so
11081 for multidimensional arrays. */
11082 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
11083 #endif
11085 #ifdef MIPS_DEBUGGING_INFO
11086 /* The SGI compilers handle arrays of unknown bound by setting
11087 AT_declaration and not emitting any subrange DIEs. */
11088 if (! TYPE_DOMAIN (type))
11089 add_AT_flag (array_die, DW_AT_declaration, 1);
11090 else
11091 #endif
11092 add_subscript_info (array_die, type);
11094 /* Add representation of the type of the elements of this array type. */
11095 element_type = TREE_TYPE (type);
11097 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
11098 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
11099 We work around this by disabling this feature. See also
11100 add_subscript_info. */
11101 #ifndef MIPS_DEBUGGING_INFO
11102 while (TREE_CODE (element_type) == ARRAY_TYPE)
11103 element_type = TREE_TYPE (element_type);
11105 gen_type_die (element_type, context_die);
11106 #endif
11108 add_type_attribute (array_die, element_type, 0, 0, context_die);
11111 #if 0
11112 static void
11113 gen_entry_point_die (tree decl, dw_die_ref context_die)
11115 tree origin = decl_ultimate_origin (decl);
11116 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
11118 if (origin != NULL)
11119 add_abstract_origin_attribute (decl_die, origin);
11120 else
11122 add_name_and_src_coords_attributes (decl_die, decl);
11123 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
11124 0, 0, context_die);
11127 if (DECL_ABSTRACT (decl))
11128 equate_decl_number_to_die (decl, decl_die);
11129 else
11130 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
11132 #endif
11134 /* Walk through the list of incomplete types again, trying once more to
11135 emit full debugging info for them. */
11137 static void
11138 retry_incomplete_types (void)
11140 int i;
11142 for (i = VEC_length (tree, incomplete_types) - 1; i >= 0; i--)
11143 gen_type_die (VEC_index (tree, incomplete_types, i), comp_unit_die);
11146 /* Generate a DIE to represent an inlined instance of an enumeration type. */
11148 static void
11149 gen_inlined_enumeration_type_die (tree type, dw_die_ref context_die)
11151 dw_die_ref type_die = new_die (DW_TAG_enumeration_type, context_die, type);
11153 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11154 be incomplete and such types are not marked. */
11155 add_abstract_origin_attribute (type_die, type);
11158 /* Generate a DIE to represent an inlined instance of a structure type. */
11160 static void
11161 gen_inlined_structure_type_die (tree type, dw_die_ref context_die)
11163 dw_die_ref type_die = new_die (DW_TAG_structure_type, context_die, type);
11165 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11166 be incomplete and such types are not marked. */
11167 add_abstract_origin_attribute (type_die, type);
11170 /* Generate a DIE to represent an inlined instance of a union type. */
11172 static void
11173 gen_inlined_union_type_die (tree type, dw_die_ref context_die)
11175 dw_die_ref type_die = new_die (DW_TAG_union_type, context_die, type);
11177 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11178 be incomplete and such types are not marked. */
11179 add_abstract_origin_attribute (type_die, type);
11182 /* Generate a DIE to represent an enumeration type. Note that these DIEs
11183 include all of the information about the enumeration values also. Each
11184 enumerated type name/value is listed as a child of the enumerated type
11185 DIE. */
11187 static dw_die_ref
11188 gen_enumeration_type_die (tree type, dw_die_ref context_die)
11190 dw_die_ref type_die = lookup_type_die (type);
11192 if (type_die == NULL)
11194 type_die = new_die (DW_TAG_enumeration_type,
11195 scope_die_for (type, context_die), type);
11196 equate_type_number_to_die (type, type_die);
11197 add_name_attribute (type_die, type_tag (type));
11199 else if (! TYPE_SIZE (type))
11200 return type_die;
11201 else
11202 remove_AT (type_die, DW_AT_declaration);
11204 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
11205 given enum type is incomplete, do not generate the DW_AT_byte_size
11206 attribute or the DW_AT_element_list attribute. */
11207 if (TYPE_SIZE (type))
11209 tree link;
11211 TREE_ASM_WRITTEN (type) = 1;
11212 add_byte_size_attribute (type_die, type);
11213 if (TYPE_STUB_DECL (type) != NULL_TREE)
11214 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
11216 /* If the first reference to this type was as the return type of an
11217 inline function, then it may not have a parent. Fix this now. */
11218 if (type_die->die_parent == NULL)
11219 add_child_die (scope_die_for (type, context_die), type_die);
11221 for (link = TYPE_VALUES (type);
11222 link != NULL; link = TREE_CHAIN (link))
11224 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
11225 tree value = TREE_VALUE (link);
11227 add_name_attribute (enum_die,
11228 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
11230 if (host_integerp (value, TYPE_UNSIGNED (TREE_TYPE (value))))
11231 /* DWARF2 does not provide a way of indicating whether or
11232 not enumeration constants are signed or unsigned. GDB
11233 always assumes the values are signed, so we output all
11234 values as if they were signed. That means that
11235 enumeration constants with very large unsigned values
11236 will appear to have negative values in the debugger. */
11237 add_AT_int (enum_die, DW_AT_const_value,
11238 tree_low_cst (value, tree_int_cst_sgn (value) > 0));
11241 else
11242 add_AT_flag (type_die, DW_AT_declaration, 1);
11244 return type_die;
11247 /* Generate a DIE to represent either a real live formal parameter decl or to
11248 represent just the type of some formal parameter position in some function
11249 type.
11251 Note that this routine is a bit unusual because its argument may be a
11252 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
11253 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
11254 node. If it's the former then this function is being called to output a
11255 DIE to represent a formal parameter object (or some inlining thereof). If
11256 it's the latter, then this function is only being called to output a
11257 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
11258 argument type of some subprogram type. */
11260 static dw_die_ref
11261 gen_formal_parameter_die (tree node, dw_die_ref context_die)
11263 dw_die_ref parm_die
11264 = new_die (DW_TAG_formal_parameter, context_die, node);
11265 tree origin;
11267 switch (TREE_CODE_CLASS (TREE_CODE (node)))
11269 case tcc_declaration:
11270 origin = decl_ultimate_origin (node);
11271 if (origin != NULL)
11272 add_abstract_origin_attribute (parm_die, origin);
11273 else
11275 add_name_and_src_coords_attributes (parm_die, node);
11276 add_type_attribute (parm_die, TREE_TYPE (node),
11277 TREE_READONLY (node),
11278 TREE_THIS_VOLATILE (node),
11279 context_die);
11280 if (DECL_ARTIFICIAL (node))
11281 add_AT_flag (parm_die, DW_AT_artificial, 1);
11284 equate_decl_number_to_die (node, parm_die);
11285 if (! DECL_ABSTRACT (node))
11286 add_location_or_const_value_attribute (parm_die, node, DW_AT_location);
11288 break;
11290 case tcc_type:
11291 /* We were called with some kind of a ..._TYPE node. */
11292 add_type_attribute (parm_die, node, 0, 0, context_die);
11293 break;
11295 default:
11296 gcc_unreachable ();
11299 return parm_die;
11302 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
11303 at the end of an (ANSI prototyped) formal parameters list. */
11305 static void
11306 gen_unspecified_parameters_die (tree decl_or_type, dw_die_ref context_die)
11308 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
11311 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
11312 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
11313 parameters as specified in some function type specification (except for
11314 those which appear as part of a function *definition*). */
11316 static void
11317 gen_formal_types_die (tree function_or_method_type, dw_die_ref context_die)
11319 tree link;
11320 tree formal_type = NULL;
11321 tree first_parm_type;
11322 tree arg;
11324 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
11326 arg = DECL_ARGUMENTS (function_or_method_type);
11327 function_or_method_type = TREE_TYPE (function_or_method_type);
11329 else
11330 arg = NULL_TREE;
11332 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
11334 /* Make our first pass over the list of formal parameter types and output a
11335 DW_TAG_formal_parameter DIE for each one. */
11336 for (link = first_parm_type; link; )
11338 dw_die_ref parm_die;
11340 formal_type = TREE_VALUE (link);
11341 if (formal_type == void_type_node)
11342 break;
11344 /* Output a (nameless) DIE to represent the formal parameter itself. */
11345 parm_die = gen_formal_parameter_die (formal_type, context_die);
11346 if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
11347 && link == first_parm_type)
11348 || (arg && DECL_ARTIFICIAL (arg)))
11349 add_AT_flag (parm_die, DW_AT_artificial, 1);
11351 link = TREE_CHAIN (link);
11352 if (arg)
11353 arg = TREE_CHAIN (arg);
11356 /* If this function type has an ellipsis, add a
11357 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
11358 if (formal_type != void_type_node)
11359 gen_unspecified_parameters_die (function_or_method_type, context_die);
11361 /* Make our second (and final) pass over the list of formal parameter types
11362 and output DIEs to represent those types (as necessary). */
11363 for (link = TYPE_ARG_TYPES (function_or_method_type);
11364 link && TREE_VALUE (link);
11365 link = TREE_CHAIN (link))
11366 gen_type_die (TREE_VALUE (link), context_die);
11369 /* We want to generate the DIE for TYPE so that we can generate the
11370 die for MEMBER, which has been defined; we will need to refer back
11371 to the member declaration nested within TYPE. If we're trying to
11372 generate minimal debug info for TYPE, processing TYPE won't do the
11373 trick; we need to attach the member declaration by hand. */
11375 static void
11376 gen_type_die_for_member (tree type, tree member, dw_die_ref context_die)
11378 gen_type_die (type, context_die);
11380 /* If we're trying to avoid duplicate debug info, we may not have
11381 emitted the member decl for this function. Emit it now. */
11382 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
11383 && ! lookup_decl_die (member))
11385 dw_die_ref type_die;
11386 gcc_assert (!decl_ultimate_origin (member));
11388 push_decl_scope (type);
11389 type_die = lookup_type_die (type);
11390 if (TREE_CODE (member) == FUNCTION_DECL)
11391 gen_subprogram_die (member, type_die);
11392 else if (TREE_CODE (member) == FIELD_DECL)
11394 /* Ignore the nameless fields that are used to skip bits but handle
11395 C++ anonymous unions and structs. */
11396 if (DECL_NAME (member) != NULL_TREE
11397 || TREE_CODE (TREE_TYPE (member)) == UNION_TYPE
11398 || TREE_CODE (TREE_TYPE (member)) == RECORD_TYPE)
11400 gen_type_die (member_declared_type (member), type_die);
11401 gen_field_die (member, type_die);
11404 else
11405 gen_variable_die (member, type_die);
11407 pop_decl_scope ();
11411 /* Generate the DWARF2 info for the "abstract" instance of a function which we
11412 may later generate inlined and/or out-of-line instances of. */
11414 static void
11415 dwarf2out_abstract_function (tree decl)
11417 dw_die_ref old_die;
11418 tree save_fn;
11419 tree context;
11420 int was_abstract = DECL_ABSTRACT (decl);
11422 /* Make sure we have the actual abstract inline, not a clone. */
11423 decl = DECL_ORIGIN (decl);
11425 old_die = lookup_decl_die (decl);
11426 if (old_die && get_AT (old_die, DW_AT_inline))
11427 /* We've already generated the abstract instance. */
11428 return;
11430 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
11431 we don't get confused by DECL_ABSTRACT. */
11432 if (debug_info_level > DINFO_LEVEL_TERSE)
11434 context = decl_class_context (decl);
11435 if (context)
11436 gen_type_die_for_member
11437 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
11440 /* Pretend we've just finished compiling this function. */
11441 save_fn = current_function_decl;
11442 current_function_decl = decl;
11444 set_decl_abstract_flags (decl, 1);
11445 dwarf2out_decl (decl);
11446 if (! was_abstract)
11447 set_decl_abstract_flags (decl, 0);
11449 current_function_decl = save_fn;
11452 /* Generate a DIE to represent a declared function (either file-scope or
11453 block-local). */
11455 static void
11456 gen_subprogram_die (tree decl, dw_die_ref context_die)
11458 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
11459 tree origin = decl_ultimate_origin (decl);
11460 dw_die_ref subr_die;
11461 tree fn_arg_types;
11462 tree outer_scope;
11463 dw_die_ref old_die = lookup_decl_die (decl);
11464 int declaration = (current_function_decl != decl
11465 || class_or_namespace_scope_p (context_die));
11467 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
11468 started to generate the abstract instance of an inline, decided to output
11469 its containing class, and proceeded to emit the declaration of the inline
11470 from the member list for the class. If so, DECLARATION takes priority;
11471 we'll get back to the abstract instance when done with the class. */
11473 /* The class-scope declaration DIE must be the primary DIE. */
11474 if (origin && declaration && class_or_namespace_scope_p (context_die))
11476 origin = NULL;
11477 gcc_assert (!old_die);
11480 /* Now that the C++ front end lazily declares artificial member fns, we
11481 might need to retrofit the declaration into its class. */
11482 if (!declaration && !origin && !old_die
11483 && DECL_CONTEXT (decl) && TYPE_P (DECL_CONTEXT (decl))
11484 && !class_or_namespace_scope_p (context_die)
11485 && debug_info_level > DINFO_LEVEL_TERSE)
11486 old_die = force_decl_die (decl);
11488 if (origin != NULL)
11490 gcc_assert (!declaration || local_scope_p (context_die));
11492 /* Fixup die_parent for the abstract instance of a nested
11493 inline function. */
11494 if (old_die && old_die->die_parent == NULL)
11495 add_child_die (context_die, old_die);
11497 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11498 add_abstract_origin_attribute (subr_die, origin);
11500 else if (old_die)
11502 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
11503 unsigned file_index = lookup_filename (s.file);
11505 if (!get_AT_flag (old_die, DW_AT_declaration)
11506 /* We can have a normal definition following an inline one in the
11507 case of redefinition of GNU C extern inlines.
11508 It seems reasonable to use AT_specification in this case. */
11509 && !get_AT (old_die, DW_AT_inline))
11511 /* Detect and ignore this case, where we are trying to output
11512 something we have already output. */
11513 return;
11516 /* If the definition comes from the same place as the declaration,
11517 maybe use the old DIE. We always want the DIE for this function
11518 that has the *_pc attributes to be under comp_unit_die so the
11519 debugger can find it. We also need to do this for abstract
11520 instances of inlines, since the spec requires the out-of-line copy
11521 to have the same parent. For local class methods, this doesn't
11522 apply; we just use the old DIE. */
11523 if ((old_die->die_parent == comp_unit_die || context_die == NULL)
11524 && (DECL_ARTIFICIAL (decl)
11525 || (get_AT_unsigned (old_die, DW_AT_decl_file) == file_index
11526 && (get_AT_unsigned (old_die, DW_AT_decl_line)
11527 == (unsigned) s.line))))
11529 subr_die = old_die;
11531 /* Clear out the declaration attribute and the formal parameters.
11532 Do not remove all children, because it is possible that this
11533 declaration die was forced using force_decl_die(). In such
11534 cases die that forced declaration die (e.g. TAG_imported_module)
11535 is one of the children that we do not want to remove. */
11536 remove_AT (subr_die, DW_AT_declaration);
11537 remove_child_TAG (subr_die, DW_TAG_formal_parameter);
11539 else
11541 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11542 add_AT_specification (subr_die, old_die);
11543 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
11544 add_AT_unsigned (subr_die, DW_AT_decl_file, file_index);
11545 if (get_AT_unsigned (old_die, DW_AT_decl_line)
11546 != (unsigned) s.line)
11547 add_AT_unsigned
11548 (subr_die, DW_AT_decl_line, s.line);
11551 else
11553 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11555 if (TREE_PUBLIC (decl))
11556 add_AT_flag (subr_die, DW_AT_external, 1);
11558 add_name_and_src_coords_attributes (subr_die, decl);
11559 if (debug_info_level > DINFO_LEVEL_TERSE)
11561 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
11562 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
11563 0, 0, context_die);
11566 add_pure_or_virtual_attribute (subr_die, decl);
11567 if (DECL_ARTIFICIAL (decl))
11568 add_AT_flag (subr_die, DW_AT_artificial, 1);
11570 if (TREE_PROTECTED (decl))
11571 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
11572 else if (TREE_PRIVATE (decl))
11573 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
11576 if (declaration)
11578 if (!old_die || !get_AT (old_die, DW_AT_inline))
11580 add_AT_flag (subr_die, DW_AT_declaration, 1);
11582 /* The first time we see a member function, it is in the context of
11583 the class to which it belongs. We make sure of this by emitting
11584 the class first. The next time is the definition, which is
11585 handled above. The two may come from the same source text.
11587 Note that force_decl_die() forces function declaration die. It is
11588 later reused to represent definition. */
11589 equate_decl_number_to_die (decl, subr_die);
11592 else if (DECL_ABSTRACT (decl))
11594 if (DECL_DECLARED_INLINE_P (decl))
11596 if (cgraph_function_possibly_inlined_p (decl))
11597 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
11598 else
11599 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
11601 else
11603 if (cgraph_function_possibly_inlined_p (decl))
11604 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
11605 else
11606 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_not_inlined);
11609 equate_decl_number_to_die (decl, subr_die);
11611 else if (!DECL_EXTERNAL (decl))
11613 if (!old_die || !get_AT (old_die, DW_AT_inline))
11614 equate_decl_number_to_die (decl, subr_die);
11616 if (!flag_reorder_blocks_and_partition)
11618 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
11619 current_function_funcdef_no);
11620 add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
11621 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
11622 current_function_funcdef_no);
11623 add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
11625 add_pubname (decl, subr_die);
11626 add_arange (decl, subr_die);
11628 else
11629 { /* Do nothing for now; maybe need to duplicate die, one for
11630 hot section and ond for cold section, then use the hot/cold
11631 section begin/end labels to generate the aranges... */
11633 add_AT_lbl_id (subr_die, DW_AT_low_pc, hot_section_label);
11634 add_AT_lbl_id (subr_die, DW_AT_high_pc, hot_section_end_label);
11635 add_AT_lbl_id (subr_die, DW_AT_lo_user, unlikely_section_label);
11636 add_AT_lbl_id (subr_die, DW_AT_hi_user, cold_section_end_label);
11638 add_pubname (decl, subr_die);
11639 add_arange (decl, subr_die);
11640 add_arange (decl, subr_die);
11644 #ifdef MIPS_DEBUGGING_INFO
11645 /* Add a reference to the FDE for this routine. */
11646 add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
11647 #endif
11649 /* We define the "frame base" as the function's CFA. This is more
11650 convenient for several reasons: (1) It's stable across the prologue
11651 and epilogue, which makes it better than just a frame pointer,
11652 (2) With dwarf3, there exists a one-byte encoding that allows us
11653 to reference the .debug_frame data by proxy, but failing that,
11654 (3) We can at least reuse the code inspection and interpretation
11655 code that determines the CFA position at various points in the
11656 function. */
11657 /* ??? Use some command-line or configury switch to enable the use
11658 of dwarf3 DW_OP_call_frame_cfa. At present there are no dwarf
11659 consumers that understand it; fall back to "pure" dwarf2 and
11660 convert the CFA data into a location list. */
11662 dw_loc_list_ref list = convert_cfa_to_loc_list ();
11663 if (list->dw_loc_next)
11664 add_AT_loc_list (subr_die, DW_AT_frame_base, list);
11665 else
11666 add_AT_loc (subr_die, DW_AT_frame_base, list->expr);
11669 /* Compute a displacement from the "steady-state frame pointer" to
11670 the CFA. The former is what all stack slots and argument slots
11671 will reference in the rtl; the later is what we've told the
11672 debugger about. We'll need to adjust all frame_base references
11673 by this displacement. */
11674 compute_frame_pointer_to_cfa_displacement ();
11676 if (cfun->static_chain_decl)
11677 add_AT_location_description (subr_die, DW_AT_static_link,
11678 loc_descriptor_from_tree (cfun->static_chain_decl));
11681 /* Now output descriptions of the arguments for this function. This gets
11682 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
11683 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
11684 `...' at the end of the formal parameter list. In order to find out if
11685 there was a trailing ellipsis or not, we must instead look at the type
11686 associated with the FUNCTION_DECL. This will be a node of type
11687 FUNCTION_TYPE. If the chain of type nodes hanging off of this
11688 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
11689 an ellipsis at the end. */
11691 /* In the case where we are describing a mere function declaration, all we
11692 need to do here (and all we *can* do here) is to describe the *types* of
11693 its formal parameters. */
11694 if (debug_info_level <= DINFO_LEVEL_TERSE)
11696 else if (declaration)
11697 gen_formal_types_die (decl, subr_die);
11698 else
11700 /* Generate DIEs to represent all known formal parameters. */
11701 tree arg_decls = DECL_ARGUMENTS (decl);
11702 tree parm;
11704 /* When generating DIEs, generate the unspecified_parameters DIE
11705 instead if we come across the arg "__builtin_va_alist" */
11706 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
11707 if (TREE_CODE (parm) == PARM_DECL)
11709 if (DECL_NAME (parm)
11710 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
11711 "__builtin_va_alist"))
11712 gen_unspecified_parameters_die (parm, subr_die);
11713 else
11714 gen_decl_die (parm, subr_die);
11717 /* Decide whether we need an unspecified_parameters DIE at the end.
11718 There are 2 more cases to do this for: 1) the ansi ... declaration -
11719 this is detectable when the end of the arg list is not a
11720 void_type_node 2) an unprototyped function declaration (not a
11721 definition). This just means that we have no info about the
11722 parameters at all. */
11723 fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
11724 if (fn_arg_types != NULL)
11726 /* This is the prototyped case, check for.... */
11727 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
11728 gen_unspecified_parameters_die (decl, subr_die);
11730 else if (DECL_INITIAL (decl) == NULL_TREE)
11731 gen_unspecified_parameters_die (decl, subr_die);
11734 /* Output Dwarf info for all of the stuff within the body of the function
11735 (if it has one - it may be just a declaration). */
11736 outer_scope = DECL_INITIAL (decl);
11738 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
11739 a function. This BLOCK actually represents the outermost binding contour
11740 for the function, i.e. the contour in which the function's formal
11741 parameters and labels get declared. Curiously, it appears that the front
11742 end doesn't actually put the PARM_DECL nodes for the current function onto
11743 the BLOCK_VARS list for this outer scope, but are strung off of the
11744 DECL_ARGUMENTS list for the function instead.
11746 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
11747 the LABEL_DECL nodes for the function however, and we output DWARF info
11748 for those in decls_for_scope. Just within the `outer_scope' there will be
11749 a BLOCK node representing the function's outermost pair of curly braces,
11750 and any blocks used for the base and member initializers of a C++
11751 constructor function. */
11752 if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
11754 /* Emit a DW_TAG_variable DIE for a named return value. */
11755 if (DECL_NAME (DECL_RESULT (decl)))
11756 gen_decl_die (DECL_RESULT (decl), subr_die);
11758 current_function_has_inlines = 0;
11759 decls_for_scope (outer_scope, subr_die, 0);
11761 #if 0 && defined (MIPS_DEBUGGING_INFO)
11762 if (current_function_has_inlines)
11764 add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
11765 if (! comp_unit_has_inlines)
11767 add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
11768 comp_unit_has_inlines = 1;
11771 #endif
11773 /* Add the calling convention attribute if requested. */
11774 add_calling_convention_attribute (subr_die, TREE_TYPE (decl));
11778 /* Generate a DIE to represent a declared data object. */
11780 static void
11781 gen_variable_die (tree decl, dw_die_ref context_die)
11783 tree origin = decl_ultimate_origin (decl);
11784 dw_die_ref var_die = new_die (DW_TAG_variable, context_die, decl);
11786 dw_die_ref old_die = lookup_decl_die (decl);
11787 int declaration = (DECL_EXTERNAL (decl)
11788 /* If DECL is COMDAT and has not actually been
11789 emitted, we cannot take its address; there
11790 might end up being no definition anywhere in
11791 the program. For example, consider the C++
11792 test case:
11794 template <class T>
11795 struct S { static const int i = 7; };
11797 template <class T>
11798 const int S<T>::i;
11800 int f() { return S<int>::i; }
11802 Here, S<int>::i is not DECL_EXTERNAL, but no
11803 definition is required, so the compiler will
11804 not emit a definition. */
11805 || (TREE_CODE (decl) == VAR_DECL
11806 && DECL_COMDAT (decl) && !TREE_ASM_WRITTEN (decl))
11807 || class_or_namespace_scope_p (context_die));
11809 if (origin != NULL)
11810 add_abstract_origin_attribute (var_die, origin);
11812 /* Loop unrolling can create multiple blocks that refer to the same
11813 static variable, so we must test for the DW_AT_declaration flag.
11815 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
11816 copy decls and set the DECL_ABSTRACT flag on them instead of
11817 sharing them.
11819 ??? Duplicated blocks have been rewritten to use .debug_ranges.
11821 ??? The declare_in_namespace support causes us to get two DIEs for one
11822 variable, both of which are declarations. We want to avoid considering
11823 one to be a specification, so we must test that this DIE is not a
11824 declaration. */
11825 else if (old_die && TREE_STATIC (decl) && ! declaration
11826 && get_AT_flag (old_die, DW_AT_declaration) == 1)
11828 /* This is a definition of a C++ class level static. */
11829 add_AT_specification (var_die, old_die);
11830 if (DECL_NAME (decl))
11832 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
11833 unsigned file_index = lookup_filename (s.file);
11835 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
11836 add_AT_unsigned (var_die, DW_AT_decl_file, file_index);
11838 if (get_AT_unsigned (old_die, DW_AT_decl_line)
11839 != (unsigned) s.line)
11841 add_AT_unsigned (var_die, DW_AT_decl_line, s.line);
11844 else
11846 add_name_and_src_coords_attributes (var_die, decl);
11847 add_type_attribute (var_die, TREE_TYPE (decl), TREE_READONLY (decl),
11848 TREE_THIS_VOLATILE (decl), context_die);
11850 if (TREE_PUBLIC (decl))
11851 add_AT_flag (var_die, DW_AT_external, 1);
11853 if (DECL_ARTIFICIAL (decl))
11854 add_AT_flag (var_die, DW_AT_artificial, 1);
11856 if (TREE_PROTECTED (decl))
11857 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
11858 else if (TREE_PRIVATE (decl))
11859 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
11862 if (declaration)
11863 add_AT_flag (var_die, DW_AT_declaration, 1);
11865 if (DECL_ABSTRACT (decl) || declaration)
11866 equate_decl_number_to_die (decl, var_die);
11868 if (! declaration && ! DECL_ABSTRACT (decl))
11870 add_location_or_const_value_attribute (var_die, decl, DW_AT_location);
11871 add_pubname (decl, var_die);
11873 else
11874 tree_add_const_value_attribute (var_die, decl);
11877 /* Generate a DIE to represent a label identifier. */
11879 static void
11880 gen_label_die (tree decl, dw_die_ref context_die)
11882 tree origin = decl_ultimate_origin (decl);
11883 dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
11884 rtx insn;
11885 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11887 if (origin != NULL)
11888 add_abstract_origin_attribute (lbl_die, origin);
11889 else
11890 add_name_and_src_coords_attributes (lbl_die, decl);
11892 if (DECL_ABSTRACT (decl))
11893 equate_decl_number_to_die (decl, lbl_die);
11894 else
11896 insn = DECL_RTL_IF_SET (decl);
11898 /* Deleted labels are programmer specified labels which have been
11899 eliminated because of various optimizations. We still emit them
11900 here so that it is possible to put breakpoints on them. */
11901 if (insn
11902 && (LABEL_P (insn)
11903 || ((NOTE_P (insn)
11904 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))))
11906 /* When optimization is enabled (via -O) some parts of the compiler
11907 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
11908 represent source-level labels which were explicitly declared by
11909 the user. This really shouldn't be happening though, so catch
11910 it if it ever does happen. */
11911 gcc_assert (!INSN_DELETED_P (insn));
11913 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
11914 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
11919 /* A helper function for gen_inlined_subroutine_die. Add source coordinate
11920 attributes to the DIE for a block STMT, to describe where the inlined
11921 function was called from. This is similar to add_src_coords_attributes. */
11923 static inline void
11924 add_call_src_coords_attributes (tree stmt, dw_die_ref die)
11926 expanded_location s = expand_location (BLOCK_SOURCE_LOCATION (stmt));
11927 unsigned file_index = lookup_filename (s.file);
11929 add_AT_unsigned (die, DW_AT_call_file, file_index);
11930 add_AT_unsigned (die, DW_AT_call_line, s.line);
11933 /* A helper function for gen_lexical_block_die and gen_inlined_subroutine_die.
11934 Add low_pc and high_pc attributes to the DIE for a block STMT. */
11936 static inline void
11937 add_high_low_attributes (tree stmt, dw_die_ref die)
11939 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11941 if (BLOCK_FRAGMENT_CHAIN (stmt))
11943 tree chain;
11945 add_AT_range_list (die, DW_AT_ranges, add_ranges (stmt));
11947 chain = BLOCK_FRAGMENT_CHAIN (stmt);
11950 add_ranges (chain);
11951 chain = BLOCK_FRAGMENT_CHAIN (chain);
11953 while (chain);
11954 add_ranges (NULL);
11956 else
11958 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11959 BLOCK_NUMBER (stmt));
11960 add_AT_lbl_id (die, DW_AT_low_pc, label);
11961 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11962 BLOCK_NUMBER (stmt));
11963 add_AT_lbl_id (die, DW_AT_high_pc, label);
11967 /* Generate a DIE for a lexical block. */
11969 static void
11970 gen_lexical_block_die (tree stmt, dw_die_ref context_die, int depth)
11972 dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
11974 if (! BLOCK_ABSTRACT (stmt))
11975 add_high_low_attributes (stmt, stmt_die);
11977 decls_for_scope (stmt, stmt_die, depth);
11980 /* Generate a DIE for an inlined subprogram. */
11982 static void
11983 gen_inlined_subroutine_die (tree stmt, dw_die_ref context_die, int depth)
11985 tree decl = block_ultimate_origin (stmt);
11987 /* Emit info for the abstract instance first, if we haven't yet. We
11988 must emit this even if the block is abstract, otherwise when we
11989 emit the block below (or elsewhere), we may end up trying to emit
11990 a die whose origin die hasn't been emitted, and crashing. */
11991 dwarf2out_abstract_function (decl);
11993 if (! BLOCK_ABSTRACT (stmt))
11995 dw_die_ref subr_die
11996 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
11998 add_abstract_origin_attribute (subr_die, decl);
11999 add_high_low_attributes (stmt, subr_die);
12000 add_call_src_coords_attributes (stmt, subr_die);
12002 decls_for_scope (stmt, subr_die, depth);
12003 current_function_has_inlines = 1;
12005 else
12006 /* We may get here if we're the outer block of function A that was
12007 inlined into function B that was inlined into function C. When
12008 generating debugging info for C, dwarf2out_abstract_function(B)
12009 would mark all inlined blocks as abstract, including this one.
12010 So, we wouldn't (and shouldn't) expect labels to be generated
12011 for this one. Instead, just emit debugging info for
12012 declarations within the block. This is particularly important
12013 in the case of initializers of arguments passed from B to us:
12014 if they're statement expressions containing declarations, we
12015 wouldn't generate dies for their abstract variables, and then,
12016 when generating dies for the real variables, we'd die (pun
12017 intended :-) */
12018 gen_lexical_block_die (stmt, context_die, depth);
12021 /* Generate a DIE for a field in a record, or structure. */
12023 static void
12024 gen_field_die (tree decl, dw_die_ref context_die)
12026 dw_die_ref decl_die;
12028 if (TREE_TYPE (decl) == error_mark_node)
12029 return;
12031 decl_die = new_die (DW_TAG_member, context_die, decl);
12032 add_name_and_src_coords_attributes (decl_die, decl);
12033 add_type_attribute (decl_die, member_declared_type (decl),
12034 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
12035 context_die);
12037 if (DECL_BIT_FIELD_TYPE (decl))
12039 add_byte_size_attribute (decl_die, decl);
12040 add_bit_size_attribute (decl_die, decl);
12041 add_bit_offset_attribute (decl_die, decl);
12044 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
12045 add_data_member_location_attribute (decl_die, decl);
12047 if (DECL_ARTIFICIAL (decl))
12048 add_AT_flag (decl_die, DW_AT_artificial, 1);
12050 if (TREE_PROTECTED (decl))
12051 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
12052 else if (TREE_PRIVATE (decl))
12053 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
12055 /* Equate decl number to die, so that we can look up this decl later on. */
12056 equate_decl_number_to_die (decl, decl_die);
12059 #if 0
12060 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
12061 Use modified_type_die instead.
12062 We keep this code here just in case these types of DIEs may be needed to
12063 represent certain things in other languages (e.g. Pascal) someday. */
12065 static void
12066 gen_pointer_type_die (tree type, dw_die_ref context_die)
12068 dw_die_ref ptr_die
12069 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
12071 equate_type_number_to_die (type, ptr_die);
12072 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
12073 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
12076 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
12077 Use modified_type_die instead.
12078 We keep this code here just in case these types of DIEs may be needed to
12079 represent certain things in other languages (e.g. Pascal) someday. */
12081 static void
12082 gen_reference_type_die (tree type, dw_die_ref context_die)
12084 dw_die_ref ref_die
12085 = new_die (DW_TAG_reference_type, scope_die_for (type, context_die), type);
12087 equate_type_number_to_die (type, ref_die);
12088 add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
12089 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
12091 #endif
12093 /* Generate a DIE for a pointer to a member type. */
12095 static void
12096 gen_ptr_to_mbr_type_die (tree type, dw_die_ref context_die)
12098 dw_die_ref ptr_die
12099 = new_die (DW_TAG_ptr_to_member_type,
12100 scope_die_for (type, context_die), type);
12102 equate_type_number_to_die (type, ptr_die);
12103 add_AT_die_ref (ptr_die, DW_AT_containing_type,
12104 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
12105 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
12108 /* Generate the DIE for the compilation unit. */
12110 static dw_die_ref
12111 gen_compile_unit_die (const char *filename)
12113 dw_die_ref die;
12114 char producer[250];
12115 const char *language_string = lang_hooks.name;
12116 int language;
12118 die = new_die (DW_TAG_compile_unit, NULL, NULL);
12120 if (filename)
12122 add_name_attribute (die, filename);
12123 /* Don't add cwd for <built-in>. */
12124 if (filename[0] != DIR_SEPARATOR && filename[0] != '<')
12125 add_comp_dir_attribute (die);
12128 sprintf (producer, "%s %s", language_string, version_string);
12130 #ifdef MIPS_DEBUGGING_INFO
12131 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
12132 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
12133 not appear in the producer string, the debugger reaches the conclusion
12134 that the object file is stripped and has no debugging information.
12135 To get the MIPS/SGI debugger to believe that there is debugging
12136 information in the object file, we add a -g to the producer string. */
12137 if (debug_info_level > DINFO_LEVEL_TERSE)
12138 strcat (producer, " -g");
12139 #endif
12141 add_AT_string (die, DW_AT_producer, producer);
12143 if (strcmp (language_string, "GNU C++") == 0)
12144 language = DW_LANG_C_plus_plus;
12145 else if (strcmp (language_string, "GNU Ada") == 0)
12146 language = DW_LANG_Ada95;
12147 else if (strcmp (language_string, "GNU F77") == 0)
12148 language = DW_LANG_Fortran77;
12149 else if (strcmp (language_string, "GNU F95") == 0)
12150 language = DW_LANG_Fortran95;
12151 else if (strcmp (language_string, "GNU Pascal") == 0)
12152 language = DW_LANG_Pascal83;
12153 else if (strcmp (language_string, "GNU Java") == 0)
12154 language = DW_LANG_Java;
12155 else
12156 language = DW_LANG_C89;
12158 add_AT_unsigned (die, DW_AT_language, language);
12159 return die;
12162 /* Generate the DIE for a base class. */
12164 static void
12165 gen_inheritance_die (tree binfo, tree access, dw_die_ref context_die)
12167 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
12169 add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
12170 add_data_member_location_attribute (die, binfo);
12172 if (BINFO_VIRTUAL_P (binfo))
12173 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
12175 if (access == access_public_node)
12176 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
12177 else if (access == access_protected_node)
12178 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
12181 /* Generate a DIE for a class member. */
12183 static void
12184 gen_member_die (tree type, dw_die_ref context_die)
12186 tree member;
12187 tree binfo = TYPE_BINFO (type);
12188 dw_die_ref child;
12190 /* If this is not an incomplete type, output descriptions of each of its
12191 members. Note that as we output the DIEs necessary to represent the
12192 members of this record or union type, we will also be trying to output
12193 DIEs to represent the *types* of those members. However the `type'
12194 function (above) will specifically avoid generating type DIEs for member
12195 types *within* the list of member DIEs for this (containing) type except
12196 for those types (of members) which are explicitly marked as also being
12197 members of this (containing) type themselves. The g++ front- end can
12198 force any given type to be treated as a member of some other (containing)
12199 type by setting the TYPE_CONTEXT of the given (member) type to point to
12200 the TREE node representing the appropriate (containing) type. */
12202 /* First output info about the base classes. */
12203 if (binfo)
12205 VEC(tree,gc) *accesses = BINFO_BASE_ACCESSES (binfo);
12206 int i;
12207 tree base;
12209 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base); i++)
12210 gen_inheritance_die (base,
12211 (accesses ? VEC_index (tree, accesses, i)
12212 : access_public_node), context_die);
12215 /* Now output info about the data members and type members. */
12216 for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
12218 /* If we thought we were generating minimal debug info for TYPE
12219 and then changed our minds, some of the member declarations
12220 may have already been defined. Don't define them again, but
12221 do put them in the right order. */
12223 child = lookup_decl_die (member);
12224 if (child)
12225 splice_child_die (context_die, child);
12226 else
12227 gen_decl_die (member, context_die);
12230 /* Now output info about the function members (if any). */
12231 for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
12233 /* Don't include clones in the member list. */
12234 if (DECL_ABSTRACT_ORIGIN (member))
12235 continue;
12237 child = lookup_decl_die (member);
12238 if (child)
12239 splice_child_die (context_die, child);
12240 else
12241 gen_decl_die (member, context_die);
12245 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
12246 is set, we pretend that the type was never defined, so we only get the
12247 member DIEs needed by later specification DIEs. */
12249 static void
12250 gen_struct_or_union_type_die (tree type, dw_die_ref context_die)
12252 dw_die_ref type_die = lookup_type_die (type);
12253 dw_die_ref scope_die = 0;
12254 int nested = 0;
12255 int complete = (TYPE_SIZE (type)
12256 && (! TYPE_STUB_DECL (type)
12257 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
12258 int ns_decl = (context_die && context_die->die_tag == DW_TAG_namespace);
12260 if (type_die && ! complete)
12261 return;
12263 if (TYPE_CONTEXT (type) != NULL_TREE
12264 && (AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
12265 || TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL))
12266 nested = 1;
12268 scope_die = scope_die_for (type, context_die);
12270 if (! type_die || (nested && scope_die == comp_unit_die))
12271 /* First occurrence of type or toplevel definition of nested class. */
12273 dw_die_ref old_die = type_die;
12275 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
12276 ? DW_TAG_structure_type : DW_TAG_union_type,
12277 scope_die, type);
12278 equate_type_number_to_die (type, type_die);
12279 if (old_die)
12280 add_AT_specification (type_die, old_die);
12281 else
12282 add_name_attribute (type_die, type_tag (type));
12284 else
12285 remove_AT (type_die, DW_AT_declaration);
12287 /* If this type has been completed, then give it a byte_size attribute and
12288 then give a list of members. */
12289 if (complete && !ns_decl)
12291 /* Prevent infinite recursion in cases where the type of some member of
12292 this type is expressed in terms of this type itself. */
12293 TREE_ASM_WRITTEN (type) = 1;
12294 add_byte_size_attribute (type_die, type);
12295 if (TYPE_STUB_DECL (type) != NULL_TREE)
12296 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
12298 /* If the first reference to this type was as the return type of an
12299 inline function, then it may not have a parent. Fix this now. */
12300 if (type_die->die_parent == NULL)
12301 add_child_die (scope_die, type_die);
12303 push_decl_scope (type);
12304 gen_member_die (type, type_die);
12305 pop_decl_scope ();
12307 /* GNU extension: Record what type our vtable lives in. */
12308 if (TYPE_VFIELD (type))
12310 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
12312 gen_type_die (vtype, context_die);
12313 add_AT_die_ref (type_die, DW_AT_containing_type,
12314 lookup_type_die (vtype));
12317 else
12319 add_AT_flag (type_die, DW_AT_declaration, 1);
12321 /* We don't need to do this for function-local types. */
12322 if (TYPE_STUB_DECL (type)
12323 && ! decl_function_context (TYPE_STUB_DECL (type)))
12324 VEC_safe_push (tree, gc, incomplete_types, type);
12328 /* Generate a DIE for a subroutine _type_. */
12330 static void
12331 gen_subroutine_type_die (tree type, dw_die_ref context_die)
12333 tree return_type = TREE_TYPE (type);
12334 dw_die_ref subr_die
12335 = new_die (DW_TAG_subroutine_type,
12336 scope_die_for (type, context_die), type);
12338 equate_type_number_to_die (type, subr_die);
12339 add_prototyped_attribute (subr_die, type);
12340 add_type_attribute (subr_die, return_type, 0, 0, context_die);
12341 gen_formal_types_die (type, subr_die);
12344 /* Generate a DIE for a type definition. */
12346 static void
12347 gen_typedef_die (tree decl, dw_die_ref context_die)
12349 dw_die_ref type_die;
12350 tree origin;
12352 if (TREE_ASM_WRITTEN (decl))
12353 return;
12355 TREE_ASM_WRITTEN (decl) = 1;
12356 type_die = new_die (DW_TAG_typedef, context_die, decl);
12357 origin = decl_ultimate_origin (decl);
12358 if (origin != NULL)
12359 add_abstract_origin_attribute (type_die, origin);
12360 else
12362 tree type;
12364 add_name_and_src_coords_attributes (type_die, decl);
12365 if (DECL_ORIGINAL_TYPE (decl))
12367 type = DECL_ORIGINAL_TYPE (decl);
12369 gcc_assert (type != TREE_TYPE (decl));
12370 equate_type_number_to_die (TREE_TYPE (decl), type_die);
12372 else
12373 type = TREE_TYPE (decl);
12375 add_type_attribute (type_die, type, TREE_READONLY (decl),
12376 TREE_THIS_VOLATILE (decl), context_die);
12379 if (DECL_ABSTRACT (decl))
12380 equate_decl_number_to_die (decl, type_die);
12383 /* Generate a type description DIE. */
12385 static void
12386 gen_type_die (tree type, dw_die_ref context_die)
12388 int need_pop;
12390 if (type == NULL_TREE || type == error_mark_node)
12391 return;
12393 if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
12394 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
12396 if (TREE_ASM_WRITTEN (type))
12397 return;
12399 /* Prevent broken recursion; we can't hand off to the same type. */
12400 gcc_assert (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) != type);
12402 TREE_ASM_WRITTEN (type) = 1;
12403 gen_decl_die (TYPE_NAME (type), context_die);
12404 return;
12407 /* We are going to output a DIE to represent the unqualified version
12408 of this type (i.e. without any const or volatile qualifiers) so
12409 get the main variant (i.e. the unqualified version) of this type
12410 now. (Vectors are special because the debugging info is in the
12411 cloned type itself). */
12412 if (TREE_CODE (type) != VECTOR_TYPE)
12413 type = type_main_variant (type);
12415 if (TREE_ASM_WRITTEN (type))
12416 return;
12418 switch (TREE_CODE (type))
12420 case ERROR_MARK:
12421 break;
12423 case POINTER_TYPE:
12424 case REFERENCE_TYPE:
12425 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
12426 ensures that the gen_type_die recursion will terminate even if the
12427 type is recursive. Recursive types are possible in Ada. */
12428 /* ??? We could perhaps do this for all types before the switch
12429 statement. */
12430 TREE_ASM_WRITTEN (type) = 1;
12432 /* For these types, all that is required is that we output a DIE (or a
12433 set of DIEs) to represent the "basis" type. */
12434 gen_type_die (TREE_TYPE (type), context_die);
12435 break;
12437 case OFFSET_TYPE:
12438 /* This code is used for C++ pointer-to-data-member types.
12439 Output a description of the relevant class type. */
12440 gen_type_die (TYPE_OFFSET_BASETYPE (type), context_die);
12442 /* Output a description of the type of the object pointed to. */
12443 gen_type_die (TREE_TYPE (type), context_die);
12445 /* Now output a DIE to represent this pointer-to-data-member type
12446 itself. */
12447 gen_ptr_to_mbr_type_die (type, context_die);
12448 break;
12450 case FUNCTION_TYPE:
12451 /* Force out return type (in case it wasn't forced out already). */
12452 gen_type_die (TREE_TYPE (type), context_die);
12453 gen_subroutine_type_die (type, context_die);
12454 break;
12456 case METHOD_TYPE:
12457 /* Force out return type (in case it wasn't forced out already). */
12458 gen_type_die (TREE_TYPE (type), context_die);
12459 gen_subroutine_type_die (type, context_die);
12460 break;
12462 case ARRAY_TYPE:
12463 gen_array_type_die (type, context_die);
12464 break;
12466 case VECTOR_TYPE:
12467 gen_array_type_die (type, context_die);
12468 break;
12470 case ENUMERAL_TYPE:
12471 case RECORD_TYPE:
12472 case UNION_TYPE:
12473 case QUAL_UNION_TYPE:
12474 /* If this is a nested type whose containing class hasn't been written
12475 out yet, writing it out will cover this one, too. This does not apply
12476 to instantiations of member class templates; they need to be added to
12477 the containing class as they are generated. FIXME: This hurts the
12478 idea of combining type decls from multiple TUs, since we can't predict
12479 what set of template instantiations we'll get. */
12480 if (TYPE_CONTEXT (type)
12481 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
12482 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
12484 gen_type_die (TYPE_CONTEXT (type), context_die);
12486 if (TREE_ASM_WRITTEN (type))
12487 return;
12489 /* If that failed, attach ourselves to the stub. */
12490 push_decl_scope (TYPE_CONTEXT (type));
12491 context_die = lookup_type_die (TYPE_CONTEXT (type));
12492 need_pop = 1;
12494 else
12496 declare_in_namespace (type, context_die);
12497 need_pop = 0;
12500 if (TREE_CODE (type) == ENUMERAL_TYPE)
12501 gen_enumeration_type_die (type, context_die);
12502 else
12503 gen_struct_or_union_type_die (type, context_die);
12505 if (need_pop)
12506 pop_decl_scope ();
12508 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
12509 it up if it is ever completed. gen_*_type_die will set it for us
12510 when appropriate. */
12511 return;
12513 case VOID_TYPE:
12514 case INTEGER_TYPE:
12515 case REAL_TYPE:
12516 case COMPLEX_TYPE:
12517 case BOOLEAN_TYPE:
12518 /* No DIEs needed for fundamental types. */
12519 break;
12521 case LANG_TYPE:
12522 /* No Dwarf representation currently defined. */
12523 break;
12525 default:
12526 gcc_unreachable ();
12529 TREE_ASM_WRITTEN (type) = 1;
12532 /* Generate a DIE for a tagged type instantiation. */
12534 static void
12535 gen_tagged_type_instantiation_die (tree type, dw_die_ref context_die)
12537 if (type == NULL_TREE || type == error_mark_node)
12538 return;
12540 /* We are going to output a DIE to represent the unqualified version of
12541 this type (i.e. without any const or volatile qualifiers) so make sure
12542 that we have the main variant (i.e. the unqualified version) of this
12543 type now. */
12544 gcc_assert (type == type_main_variant (type));
12546 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
12547 an instance of an unresolved type. */
12549 switch (TREE_CODE (type))
12551 case ERROR_MARK:
12552 break;
12554 case ENUMERAL_TYPE:
12555 gen_inlined_enumeration_type_die (type, context_die);
12556 break;
12558 case RECORD_TYPE:
12559 gen_inlined_structure_type_die (type, context_die);
12560 break;
12562 case UNION_TYPE:
12563 case QUAL_UNION_TYPE:
12564 gen_inlined_union_type_die (type, context_die);
12565 break;
12567 default:
12568 gcc_unreachable ();
12572 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
12573 things which are local to the given block. */
12575 static void
12576 gen_block_die (tree stmt, dw_die_ref context_die, int depth)
12578 int must_output_die = 0;
12579 tree origin;
12580 tree decl;
12581 enum tree_code origin_code;
12583 /* Ignore blocks that are NULL. */
12584 if (stmt == NULL_TREE)
12585 return;
12587 /* If the block is one fragment of a non-contiguous block, do not
12588 process the variables, since they will have been done by the
12589 origin block. Do process subblocks. */
12590 if (BLOCK_FRAGMENT_ORIGIN (stmt))
12592 tree sub;
12594 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
12595 gen_block_die (sub, context_die, depth + 1);
12597 return;
12600 /* Determine the "ultimate origin" of this block. This block may be an
12601 inlined instance of an inlined instance of inline function, so we have
12602 to trace all of the way back through the origin chain to find out what
12603 sort of node actually served as the original seed for the creation of
12604 the current block. */
12605 origin = block_ultimate_origin (stmt);
12606 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
12608 /* Determine if we need to output any Dwarf DIEs at all to represent this
12609 block. */
12610 if (origin_code == FUNCTION_DECL)
12611 /* The outer scopes for inlinings *must* always be represented. We
12612 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
12613 must_output_die = 1;
12614 else
12616 /* In the case where the current block represents an inlining of the
12617 "body block" of an inline function, we must *NOT* output any DIE for
12618 this block because we have already output a DIE to represent the whole
12619 inlined function scope and the "body block" of any function doesn't
12620 really represent a different scope according to ANSI C rules. So we
12621 check here to make sure that this block does not represent a "body
12622 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
12623 if (! is_body_block (origin ? origin : stmt))
12625 /* Determine if this block directly contains any "significant"
12626 local declarations which we will need to output DIEs for. */
12627 if (debug_info_level > DINFO_LEVEL_TERSE)
12628 /* We are not in terse mode so *any* local declaration counts
12629 as being a "significant" one. */
12630 must_output_die = (BLOCK_VARS (stmt) != NULL
12631 && (TREE_USED (stmt)
12632 || TREE_ASM_WRITTEN (stmt)
12633 || BLOCK_ABSTRACT (stmt)));
12634 else
12635 /* We are in terse mode, so only local (nested) function
12636 definitions count as "significant" local declarations. */
12637 for (decl = BLOCK_VARS (stmt);
12638 decl != NULL; decl = TREE_CHAIN (decl))
12639 if (TREE_CODE (decl) == FUNCTION_DECL
12640 && DECL_INITIAL (decl))
12642 must_output_die = 1;
12643 break;
12648 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
12649 DIE for any block which contains no significant local declarations at
12650 all. Rather, in such cases we just call `decls_for_scope' so that any
12651 needed Dwarf info for any sub-blocks will get properly generated. Note
12652 that in terse mode, our definition of what constitutes a "significant"
12653 local declaration gets restricted to include only inlined function
12654 instances and local (nested) function definitions. */
12655 if (must_output_die)
12657 if (origin_code == FUNCTION_DECL)
12658 gen_inlined_subroutine_die (stmt, context_die, depth);
12659 else
12660 gen_lexical_block_die (stmt, context_die, depth);
12662 else
12663 decls_for_scope (stmt, context_die, depth);
12666 /* Generate all of the decls declared within a given scope and (recursively)
12667 all of its sub-blocks. */
12669 static void
12670 decls_for_scope (tree stmt, dw_die_ref context_die, int depth)
12672 tree decl;
12673 tree subblocks;
12675 /* Ignore NULL blocks. */
12676 if (stmt == NULL_TREE)
12677 return;
12679 if (TREE_USED (stmt))
12681 /* Output the DIEs to represent all of the data objects and typedefs
12682 declared directly within this block but not within any nested
12683 sub-blocks. Also, nested function and tag DIEs have been
12684 generated with a parent of NULL; fix that up now. */
12685 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl))
12687 dw_die_ref die;
12689 if (TREE_CODE (decl) == FUNCTION_DECL)
12690 die = lookup_decl_die (decl);
12691 else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
12692 die = lookup_type_die (TREE_TYPE (decl));
12693 else
12694 die = NULL;
12696 if (die != NULL && die->die_parent == NULL)
12697 add_child_die (context_die, die);
12698 /* Do not produce debug information for static variables since
12699 these might be optimized out. We are called for these later
12700 in cgraph_varpool_analyze_pending_decls. */
12701 if (TREE_CODE (decl) == VAR_DECL && TREE_STATIC (decl))
12703 else
12704 gen_decl_die (decl, context_die);
12708 /* If we're at -g1, we're not interested in subblocks. */
12709 if (debug_info_level <= DINFO_LEVEL_TERSE)
12710 return;
12712 /* Output the DIEs to represent all sub-blocks (and the items declared
12713 therein) of this block. */
12714 for (subblocks = BLOCK_SUBBLOCKS (stmt);
12715 subblocks != NULL;
12716 subblocks = BLOCK_CHAIN (subblocks))
12717 gen_block_die (subblocks, context_die, depth + 1);
12720 /* Is this a typedef we can avoid emitting? */
12722 static inline int
12723 is_redundant_typedef (tree decl)
12725 if (TYPE_DECL_IS_STUB (decl))
12726 return 1;
12728 if (DECL_ARTIFICIAL (decl)
12729 && DECL_CONTEXT (decl)
12730 && is_tagged_type (DECL_CONTEXT (decl))
12731 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
12732 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
12733 /* Also ignore the artificial member typedef for the class name. */
12734 return 1;
12736 return 0;
12739 /* Returns the DIE for decl. A DIE will always be returned. */
12741 static dw_die_ref
12742 force_decl_die (tree decl)
12744 dw_die_ref decl_die;
12745 unsigned saved_external_flag;
12746 tree save_fn = NULL_TREE;
12747 decl_die = lookup_decl_die (decl);
12748 if (!decl_die)
12750 dw_die_ref context_die;
12751 tree decl_context = DECL_CONTEXT (decl);
12752 if (decl_context)
12754 /* Find die that represents this context. */
12755 if (TYPE_P (decl_context))
12756 context_die = force_type_die (decl_context);
12757 else
12758 context_die = force_decl_die (decl_context);
12760 else
12761 context_die = comp_unit_die;
12763 decl_die = lookup_decl_die (decl);
12764 if (decl_die)
12765 return decl_die;
12767 switch (TREE_CODE (decl))
12769 case FUNCTION_DECL:
12770 /* Clear current_function_decl, so that gen_subprogram_die thinks
12771 that this is a declaration. At this point, we just want to force
12772 declaration die. */
12773 save_fn = current_function_decl;
12774 current_function_decl = NULL_TREE;
12775 gen_subprogram_die (decl, context_die);
12776 current_function_decl = save_fn;
12777 break;
12779 case VAR_DECL:
12780 /* Set external flag to force declaration die. Restore it after
12781 gen_decl_die() call. */
12782 saved_external_flag = DECL_EXTERNAL (decl);
12783 DECL_EXTERNAL (decl) = 1;
12784 gen_decl_die (decl, context_die);
12785 DECL_EXTERNAL (decl) = saved_external_flag;
12786 break;
12788 case NAMESPACE_DECL:
12789 dwarf2out_decl (decl);
12790 break;
12792 default:
12793 gcc_unreachable ();
12796 /* We should be able to find the DIE now. */
12797 if (!decl_die)
12798 decl_die = lookup_decl_die (decl);
12799 gcc_assert (decl_die);
12802 return decl_die;
12805 /* Returns the DIE for TYPE. A DIE is always returned. */
12807 static dw_die_ref
12808 force_type_die (tree type)
12810 dw_die_ref type_die;
12812 type_die = lookup_type_die (type);
12813 if (!type_die)
12815 dw_die_ref context_die;
12816 if (TYPE_CONTEXT (type))
12818 if (TYPE_P (TYPE_CONTEXT (type)))
12819 context_die = force_type_die (TYPE_CONTEXT (type));
12820 else
12821 context_die = force_decl_die (TYPE_CONTEXT (type));
12823 else
12824 context_die = comp_unit_die;
12826 type_die = lookup_type_die (type);
12827 if (type_die)
12828 return type_die;
12829 gen_type_die (type, context_die);
12830 type_die = lookup_type_die (type);
12831 gcc_assert (type_die);
12833 return type_die;
12836 /* Force out any required namespaces to be able to output DECL,
12837 and return the new context_die for it, if it's changed. */
12839 static dw_die_ref
12840 setup_namespace_context (tree thing, dw_die_ref context_die)
12842 tree context = (DECL_P (thing)
12843 ? DECL_CONTEXT (thing) : TYPE_CONTEXT (thing));
12844 if (context && TREE_CODE (context) == NAMESPACE_DECL)
12845 /* Force out the namespace. */
12846 context_die = force_decl_die (context);
12848 return context_die;
12851 /* Emit a declaration DIE for THING (which is either a DECL or a tagged
12852 type) within its namespace, if appropriate.
12854 For compatibility with older debuggers, namespace DIEs only contain
12855 declarations; all definitions are emitted at CU scope. */
12857 static void
12858 declare_in_namespace (tree thing, dw_die_ref context_die)
12860 dw_die_ref ns_context;
12862 if (debug_info_level <= DINFO_LEVEL_TERSE)
12863 return;
12865 /* If this decl is from an inlined function, then don't try to emit it in its
12866 namespace, as we will get confused. It would have already been emitted
12867 when the abstract instance of the inline function was emitted anyways. */
12868 if (DECL_P (thing) && DECL_ABSTRACT_ORIGIN (thing))
12869 return;
12871 ns_context = setup_namespace_context (thing, context_die);
12873 if (ns_context != context_die)
12875 if (DECL_P (thing))
12876 gen_decl_die (thing, ns_context);
12877 else
12878 gen_type_die (thing, ns_context);
12882 /* Generate a DIE for a namespace or namespace alias. */
12884 static void
12885 gen_namespace_die (tree decl)
12887 dw_die_ref context_die = setup_namespace_context (decl, comp_unit_die);
12889 /* Namespace aliases have a DECL_ABSTRACT_ORIGIN of the namespace
12890 they are an alias of. */
12891 if (DECL_ABSTRACT_ORIGIN (decl) == NULL)
12893 /* Output a real namespace. */
12894 dw_die_ref namespace_die
12895 = new_die (DW_TAG_namespace, context_die, decl);
12896 add_name_and_src_coords_attributes (namespace_die, decl);
12897 equate_decl_number_to_die (decl, namespace_die);
12899 else
12901 /* Output a namespace alias. */
12903 /* Force out the namespace we are an alias of, if necessary. */
12904 dw_die_ref origin_die
12905 = force_decl_die (DECL_ABSTRACT_ORIGIN (decl));
12907 /* Now create the namespace alias DIE. */
12908 dw_die_ref namespace_die
12909 = new_die (DW_TAG_imported_declaration, context_die, decl);
12910 add_name_and_src_coords_attributes (namespace_die, decl);
12911 add_AT_die_ref (namespace_die, DW_AT_import, origin_die);
12912 equate_decl_number_to_die (decl, namespace_die);
12916 /* Generate Dwarf debug information for a decl described by DECL. */
12918 static void
12919 gen_decl_die (tree decl, dw_die_ref context_die)
12921 tree origin;
12923 if (DECL_P (decl) && DECL_IGNORED_P (decl))
12924 return;
12926 switch (TREE_CODE (decl))
12928 case ERROR_MARK:
12929 break;
12931 case CONST_DECL:
12932 /* The individual enumerators of an enum type get output when we output
12933 the Dwarf representation of the relevant enum type itself. */
12934 break;
12936 case FUNCTION_DECL:
12937 /* Don't output any DIEs to represent mere function declarations,
12938 unless they are class members or explicit block externs. */
12939 if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
12940 && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
12941 break;
12943 #if 0
12944 /* FIXME */
12945 /* This doesn't work because the C frontend sets DECL_ABSTRACT_ORIGIN
12946 on local redeclarations of global functions. That seems broken. */
12947 if (current_function_decl != decl)
12948 /* This is only a declaration. */;
12949 #endif
12951 /* If we're emitting a clone, emit info for the abstract instance. */
12952 if (DECL_ORIGIN (decl) != decl)
12953 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));
12955 /* If we're emitting an out-of-line copy of an inline function,
12956 emit info for the abstract instance and set up to refer to it. */
12957 else if (cgraph_function_possibly_inlined_p (decl)
12958 && ! DECL_ABSTRACT (decl)
12959 && ! class_or_namespace_scope_p (context_die)
12960 /* dwarf2out_abstract_function won't emit a die if this is just
12961 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
12962 that case, because that works only if we have a die. */
12963 && DECL_INITIAL (decl) != NULL_TREE)
12965 dwarf2out_abstract_function (decl);
12966 set_decl_origin_self (decl);
12969 /* Otherwise we're emitting the primary DIE for this decl. */
12970 else if (debug_info_level > DINFO_LEVEL_TERSE)
12972 /* Before we describe the FUNCTION_DECL itself, make sure that we
12973 have described its return type. */
12974 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
12976 /* And its virtual context. */
12977 if (DECL_VINDEX (decl) != NULL_TREE)
12978 gen_type_die (DECL_CONTEXT (decl), context_die);
12980 /* And its containing type. */
12981 origin = decl_class_context (decl);
12982 if (origin != NULL_TREE)
12983 gen_type_die_for_member (origin, decl, context_die);
12985 /* And its containing namespace. */
12986 declare_in_namespace (decl, context_die);
12989 /* Now output a DIE to represent the function itself. */
12990 gen_subprogram_die (decl, context_die);
12991 break;
12993 case TYPE_DECL:
12994 /* If we are in terse mode, don't generate any DIEs to represent any
12995 actual typedefs. */
12996 if (debug_info_level <= DINFO_LEVEL_TERSE)
12997 break;
12999 /* In the special case of a TYPE_DECL node representing the declaration
13000 of some type tag, if the given TYPE_DECL is marked as having been
13001 instantiated from some other (original) TYPE_DECL node (e.g. one which
13002 was generated within the original definition of an inline function) we
13003 have to generate a special (abbreviated) DW_TAG_structure_type,
13004 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
13005 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
13007 gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
13008 break;
13011 if (is_redundant_typedef (decl))
13012 gen_type_die (TREE_TYPE (decl), context_die);
13013 else
13014 /* Output a DIE to represent the typedef itself. */
13015 gen_typedef_die (decl, context_die);
13016 break;
13018 case LABEL_DECL:
13019 if (debug_info_level >= DINFO_LEVEL_NORMAL)
13020 gen_label_die (decl, context_die);
13021 break;
13023 case VAR_DECL:
13024 case RESULT_DECL:
13025 /* If we are in terse mode, don't generate any DIEs to represent any
13026 variable declarations or definitions. */
13027 if (debug_info_level <= DINFO_LEVEL_TERSE)
13028 break;
13030 /* Output any DIEs that are needed to specify the type of this data
13031 object. */
13032 gen_type_die (TREE_TYPE (decl), context_die);
13034 /* And its containing type. */
13035 origin = decl_class_context (decl);
13036 if (origin != NULL_TREE)
13037 gen_type_die_for_member (origin, decl, context_die);
13039 /* And its containing namespace. */
13040 declare_in_namespace (decl, context_die);
13042 /* Now output the DIE to represent the data object itself. This gets
13043 complicated because of the possibility that the VAR_DECL really
13044 represents an inlined instance of a formal parameter for an inline
13045 function. */
13046 origin = decl_ultimate_origin (decl);
13047 if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
13048 gen_formal_parameter_die (decl, context_die);
13049 else
13050 gen_variable_die (decl, context_die);
13051 break;
13053 case FIELD_DECL:
13054 /* Ignore the nameless fields that are used to skip bits but handle C++
13055 anonymous unions and structs. */
13056 if (DECL_NAME (decl) != NULL_TREE
13057 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
13058 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE)
13060 gen_type_die (member_declared_type (decl), context_die);
13061 gen_field_die (decl, context_die);
13063 break;
13065 case PARM_DECL:
13066 gen_type_die (TREE_TYPE (decl), context_die);
13067 gen_formal_parameter_die (decl, context_die);
13068 break;
13070 case NAMESPACE_DECL:
13071 gen_namespace_die (decl);
13072 break;
13074 default:
13075 /* Probably some frontend-internal decl. Assume we don't care. */
13076 gcc_assert ((int)TREE_CODE (decl) > NUM_TREE_CODES);
13077 break;
13081 /* Add Ada "use" clause information for SGI Workshop debugger. */
13083 void
13084 dwarf2out_add_library_unit_info (const char *filename, const char *context_list)
13086 unsigned int file_index;
13088 if (filename != NULL)
13090 dw_die_ref unit_die = new_die (DW_TAG_module, comp_unit_die, NULL);
13091 tree context_list_decl
13092 = build_decl (LABEL_DECL, get_identifier (context_list),
13093 void_type_node);
13095 TREE_PUBLIC (context_list_decl) = TRUE;
13096 add_name_attribute (unit_die, context_list);
13097 file_index = lookup_filename (filename);
13098 add_AT_unsigned (unit_die, DW_AT_decl_file, file_index);
13099 add_pubname (context_list_decl, unit_die);
13103 /* Output debug information for global decl DECL. Called from toplev.c after
13104 compilation proper has finished. */
13106 static void
13107 dwarf2out_global_decl (tree decl)
13109 /* Output DWARF2 information for file-scope tentative data object
13110 declarations, file-scope (extern) function declarations (which had no
13111 corresponding body) and file-scope tagged type declarations and
13112 definitions which have not yet been forced out. */
13113 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
13114 dwarf2out_decl (decl);
13117 /* Output debug information for type decl DECL. Called from toplev.c
13118 and from language front ends (to record built-in types). */
13119 static void
13120 dwarf2out_type_decl (tree decl, int local)
13122 if (!local)
13123 dwarf2out_decl (decl);
13126 /* Output debug information for imported module or decl. */
13128 static void
13129 dwarf2out_imported_module_or_decl (tree decl, tree context)
13131 dw_die_ref imported_die, at_import_die;
13132 dw_die_ref scope_die;
13133 unsigned file_index;
13134 expanded_location xloc;
13136 if (debug_info_level <= DINFO_LEVEL_TERSE)
13137 return;
13139 gcc_assert (decl);
13141 /* To emit DW_TAG_imported_module or DW_TAG_imported_decl, we need two DIEs.
13142 We need decl DIE for reference and scope die. First, get DIE for the decl
13143 itself. */
13145 /* Get the scope die for decl context. Use comp_unit_die for global module
13146 or decl. If die is not found for non globals, force new die. */
13147 if (!context)
13148 scope_die = comp_unit_die;
13149 else if (TYPE_P (context))
13150 scope_die = force_type_die (context);
13151 else
13152 scope_die = force_decl_die (context);
13154 /* For TYPE_DECL or CONST_DECL, lookup TREE_TYPE. */
13155 if (TREE_CODE (decl) == TYPE_DECL || TREE_CODE (decl) == CONST_DECL)
13156 at_import_die = force_type_die (TREE_TYPE (decl));
13157 else
13159 at_import_die = lookup_decl_die (decl);
13160 if (!at_import_die)
13162 /* If we're trying to avoid duplicate debug info, we may not have
13163 emitted the member decl for this field. Emit it now. */
13164 if (TREE_CODE (decl) == FIELD_DECL)
13166 tree type = DECL_CONTEXT (decl);
13167 dw_die_ref type_context_die;
13169 if (TYPE_CONTEXT (type))
13170 if (TYPE_P (TYPE_CONTEXT (type)))
13171 type_context_die = force_type_die (TYPE_CONTEXT (type));
13172 else
13173 type_context_die = force_decl_die (TYPE_CONTEXT (type));
13174 else
13175 type_context_die = comp_unit_die;
13176 gen_type_die_for_member (type, decl, type_context_die);
13178 at_import_die = force_decl_die (decl);
13182 /* OK, now we have DIEs for decl as well as scope. Emit imported die. */
13183 if (TREE_CODE (decl) == NAMESPACE_DECL)
13184 imported_die = new_die (DW_TAG_imported_module, scope_die, context);
13185 else
13186 imported_die = new_die (DW_TAG_imported_declaration, scope_die, context);
13188 xloc = expand_location (input_location);
13189 file_index = lookup_filename (xloc.file);
13190 add_AT_unsigned (imported_die, DW_AT_decl_file, file_index);
13191 add_AT_unsigned (imported_die, DW_AT_decl_line, xloc.line);
13192 add_AT_die_ref (imported_die, DW_AT_import, at_import_die);
13195 /* Write the debugging output for DECL. */
13197 void
13198 dwarf2out_decl (tree decl)
13200 dw_die_ref context_die = comp_unit_die;
13202 switch (TREE_CODE (decl))
13204 case ERROR_MARK:
13205 return;
13207 case FUNCTION_DECL:
13208 /* What we would really like to do here is to filter out all mere
13209 file-scope declarations of file-scope functions which are never
13210 referenced later within this translation unit (and keep all of ones
13211 that *are* referenced later on) but we aren't clairvoyant, so we have
13212 no idea which functions will be referenced in the future (i.e. later
13213 on within the current translation unit). So here we just ignore all
13214 file-scope function declarations which are not also definitions. If
13215 and when the debugger needs to know something about these functions,
13216 it will have to hunt around and find the DWARF information associated
13217 with the definition of the function.
13219 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
13220 nodes represent definitions and which ones represent mere
13221 declarations. We have to check DECL_INITIAL instead. That's because
13222 the C front-end supports some weird semantics for "extern inline"
13223 function definitions. These can get inlined within the current
13224 translation unit (and thus, we need to generate Dwarf info for their
13225 abstract instances so that the Dwarf info for the concrete inlined
13226 instances can have something to refer to) but the compiler never
13227 generates any out-of-lines instances of such things (despite the fact
13228 that they *are* definitions).
13230 The important point is that the C front-end marks these "extern
13231 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
13232 them anyway. Note that the C++ front-end also plays some similar games
13233 for inline function definitions appearing within include files which
13234 also contain `#pragma interface' pragmas. */
13235 if (DECL_INITIAL (decl) == NULL_TREE)
13236 return;
13238 /* If we're a nested function, initially use a parent of NULL; if we're
13239 a plain function, this will be fixed up in decls_for_scope. If
13240 we're a method, it will be ignored, since we already have a DIE. */
13241 if (decl_function_context (decl)
13242 /* But if we're in terse mode, we don't care about scope. */
13243 && debug_info_level > DINFO_LEVEL_TERSE)
13244 context_die = NULL;
13245 break;
13247 case VAR_DECL:
13248 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
13249 declaration and if the declaration was never even referenced from
13250 within this entire compilation unit. We suppress these DIEs in
13251 order to save space in the .debug section (by eliminating entries
13252 which are probably useless). Note that we must not suppress
13253 block-local extern declarations (whether used or not) because that
13254 would screw-up the debugger's name lookup mechanism and cause it to
13255 miss things which really ought to be in scope at a given point. */
13256 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
13257 return;
13259 /* For local statics lookup proper context die. */
13260 if (TREE_STATIC (decl) && decl_function_context (decl))
13261 context_die = lookup_decl_die (DECL_CONTEXT (decl));
13263 /* If we are in terse mode, don't generate any DIEs to represent any
13264 variable declarations or definitions. */
13265 if (debug_info_level <= DINFO_LEVEL_TERSE)
13266 return;
13267 break;
13269 case NAMESPACE_DECL:
13270 if (debug_info_level <= DINFO_LEVEL_TERSE)
13271 return;
13272 if (lookup_decl_die (decl) != NULL)
13273 return;
13274 break;
13276 case TYPE_DECL:
13277 /* Don't emit stubs for types unless they are needed by other DIEs. */
13278 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
13279 return;
13281 /* Don't bother trying to generate any DIEs to represent any of the
13282 normal built-in types for the language we are compiling. */
13283 if (DECL_IS_BUILTIN (decl))
13285 /* OK, we need to generate one for `bool' so GDB knows what type
13286 comparisons have. */
13287 if ((get_AT_unsigned (comp_unit_die, DW_AT_language)
13288 == DW_LANG_C_plus_plus)
13289 && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE
13290 && ! DECL_IGNORED_P (decl))
13291 modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
13293 return;
13296 /* If we are in terse mode, don't generate any DIEs for types. */
13297 if (debug_info_level <= DINFO_LEVEL_TERSE)
13298 return;
13300 /* If we're a function-scope tag, initially use a parent of NULL;
13301 this will be fixed up in decls_for_scope. */
13302 if (decl_function_context (decl))
13303 context_die = NULL;
13305 break;
13307 default:
13308 return;
13311 gen_decl_die (decl, context_die);
13314 /* Output a marker (i.e. a label) for the beginning of the generated code for
13315 a lexical block. */
13317 static void
13318 dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED,
13319 unsigned int blocknum)
13321 switch_to_section (current_function_section ());
13322 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
13325 /* Output a marker (i.e. a label) for the end of the generated code for a
13326 lexical block. */
13328 static void
13329 dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int blocknum)
13331 switch_to_section (current_function_section ());
13332 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
13335 /* Returns nonzero if it is appropriate not to emit any debugging
13336 information for BLOCK, because it doesn't contain any instructions.
13338 Don't allow this for blocks with nested functions or local classes
13339 as we would end up with orphans, and in the presence of scheduling
13340 we may end up calling them anyway. */
13342 static bool
13343 dwarf2out_ignore_block (tree block)
13345 tree decl;
13347 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
13348 if (TREE_CODE (decl) == FUNCTION_DECL
13349 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
13350 return 0;
13352 return 1;
13355 /* Lookup FILE_NAME (in the list of filenames that we know about here in
13356 dwarf2out.c) and return its "index". The index of each (known) filename is
13357 just a unique number which is associated with only that one filename. We
13358 need such numbers for the sake of generating labels (in the .debug_sfnames
13359 section) and references to those files numbers (in the .debug_srcinfo
13360 and.debug_macinfo sections). If the filename given as an argument is not
13361 found in our current list, add it to the list and assign it the next
13362 available unique index number. In order to speed up searches, we remember
13363 the index of the filename was looked up last. This handles the majority of
13364 all searches. */
13366 static unsigned
13367 lookup_filename (const char *file_name)
13369 size_t i, n;
13370 char *save_file_name;
13372 /* Check to see if the file name that was searched on the previous
13373 call matches this file name. If so, return the index. */
13374 if (file_table_last_lookup_index != 0)
13376 const char *last
13377 = VARRAY_CHAR_PTR (file_table, file_table_last_lookup_index);
13378 if (strcmp (file_name, last) == 0)
13379 return file_table_last_lookup_index;
13382 /* Didn't match the previous lookup, search the table. */
13383 n = VARRAY_ACTIVE_SIZE (file_table);
13384 for (i = 1; i < n; i++)
13385 if (strcmp (file_name, VARRAY_CHAR_PTR (file_table, i)) == 0)
13387 file_table_last_lookup_index = i;
13388 return i;
13391 /* Add the new entry to the end of the filename table. */
13392 file_table_last_lookup_index = n;
13393 save_file_name = (char *) ggc_strdup (file_name);
13394 VARRAY_PUSH_CHAR_PTR (file_table, save_file_name);
13395 VARRAY_PUSH_UINT (file_table_emitted, 0);
13397 /* If the assembler is emitting the file table, and we aren't eliminating
13398 unused debug types, then we must emit .file here. If we are eliminating
13399 unused debug types, then this will be done by the maybe_emit_file call in
13400 prune_unused_types_walk_attribs. */
13402 if (DWARF2_ASM_LINE_DEBUG_INFO && ! flag_eliminate_unused_debug_types)
13403 return maybe_emit_file (i);
13405 return i;
13408 /* If the assembler will construct the file table, then translate the compiler
13409 internal file table number into the assembler file table number, and emit
13410 a .file directive if we haven't already emitted one yet. The file table
13411 numbers are different because we prune debug info for unused variables and
13412 types, which may include filenames. */
13414 static int
13415 maybe_emit_file (int fileno)
13417 if (DWARF2_ASM_LINE_DEBUG_INFO && fileno > 0)
13419 if (!VARRAY_UINT (file_table_emitted, fileno))
13421 VARRAY_UINT (file_table_emitted, fileno) = ++emitcount;
13422 fprintf (asm_out_file, "\t.file %u ",
13423 VARRAY_UINT (file_table_emitted, fileno));
13424 output_quoted_string (asm_out_file,
13425 VARRAY_CHAR_PTR (file_table, fileno));
13426 fputc ('\n', asm_out_file);
13428 return VARRAY_UINT (file_table_emitted, fileno);
13430 else
13431 return fileno;
13434 /* Initialize the compiler internal file table. */
13436 static void
13437 init_file_table (void)
13439 /* Allocate the initial hunk of the file_table. */
13440 VARRAY_CHAR_PTR_INIT (file_table, 64, "file_table");
13441 VARRAY_UINT_INIT (file_table_emitted, 64, "file_table_emitted");
13443 /* Skip the first entry - file numbers begin at 1. */
13444 VARRAY_PUSH_CHAR_PTR (file_table, NULL);
13445 VARRAY_PUSH_UINT (file_table_emitted, 0);
13446 file_table_last_lookup_index = 0;
13449 /* Called by the final INSN scan whenever we see a var location. We
13450 use it to drop labels in the right places, and throw the location in
13451 our lookup table. */
13453 static void
13454 dwarf2out_var_location (rtx loc_note)
13456 char loclabel[MAX_ARTIFICIAL_LABEL_BYTES];
13457 struct var_loc_node *newloc;
13458 rtx prev_insn;
13459 static rtx last_insn;
13460 static const char *last_label;
13461 tree decl;
13463 if (!DECL_P (NOTE_VAR_LOCATION_DECL (loc_note)))
13464 return;
13465 prev_insn = PREV_INSN (loc_note);
13467 newloc = ggc_alloc_cleared (sizeof (struct var_loc_node));
13468 /* If the insn we processed last time is the previous insn
13469 and it is also a var location note, use the label we emitted
13470 last time. */
13471 if (last_insn != NULL_RTX
13472 && last_insn == prev_insn
13473 && NOTE_P (prev_insn)
13474 && NOTE_LINE_NUMBER (prev_insn) == NOTE_INSN_VAR_LOCATION)
13476 newloc->label = last_label;
13478 else
13480 ASM_GENERATE_INTERNAL_LABEL (loclabel, "LVL", loclabel_num);
13481 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LVL", loclabel_num);
13482 loclabel_num++;
13483 newloc->label = ggc_strdup (loclabel);
13485 newloc->var_loc_note = loc_note;
13486 newloc->next = NULL;
13488 if (cfun && in_cold_section_p)
13489 newloc->section_label = cfun->cold_section_label;
13490 else
13491 newloc->section_label = text_section_label;
13493 last_insn = loc_note;
13494 last_label = newloc->label;
13495 decl = NOTE_VAR_LOCATION_DECL (loc_note);
13496 if (DECL_DEBUG_EXPR_IS_FROM (decl) && DECL_DEBUG_EXPR (decl)
13497 && DECL_P (DECL_DEBUG_EXPR (decl)))
13498 decl = DECL_DEBUG_EXPR (decl);
13499 add_var_loc_to_decl (decl, newloc);
13502 /* We need to reset the locations at the beginning of each
13503 function. We can't do this in the end_function hook, because the
13504 declarations that use the locations won't have been output when
13505 that hook is called. Also compute have_multiple_function_sections here. */
13507 static void
13508 dwarf2out_begin_function (tree fun)
13510 htab_empty (decl_loc_table);
13512 if (function_section (fun) != text_section)
13513 have_multiple_function_sections = true;
13516 /* Output a label to mark the beginning of a source code line entry
13517 and record information relating to this source line, in
13518 'line_info_table' for later output of the .debug_line section. */
13520 static void
13521 dwarf2out_source_line (unsigned int line, const char *filename)
13523 if (debug_info_level >= DINFO_LEVEL_NORMAL
13524 && line != 0)
13526 switch_to_section (current_function_section ());
13528 /* If requested, emit something human-readable. */
13529 if (flag_debug_asm)
13530 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
13531 filename, line);
13533 if (DWARF2_ASM_LINE_DEBUG_INFO)
13535 unsigned file_num = lookup_filename (filename);
13537 file_num = maybe_emit_file (file_num);
13539 /* Emit the .loc directive understood by GNU as. */
13540 fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);
13542 /* Indicate that line number info exists. */
13543 line_info_table_in_use++;
13545 else if (function_section (current_function_decl) != text_section)
13547 dw_separate_line_info_ref line_info;
13548 targetm.asm_out.internal_label (asm_out_file, SEPARATE_LINE_CODE_LABEL,
13549 separate_line_info_table_in_use);
13551 /* Expand the line info table if necessary. */
13552 if (separate_line_info_table_in_use
13553 == separate_line_info_table_allocated)
13555 separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13556 separate_line_info_table
13557 = ggc_realloc (separate_line_info_table,
13558 separate_line_info_table_allocated
13559 * sizeof (dw_separate_line_info_entry));
13560 memset (separate_line_info_table
13561 + separate_line_info_table_in_use,
13563 (LINE_INFO_TABLE_INCREMENT
13564 * sizeof (dw_separate_line_info_entry)));
13567 /* Add the new entry at the end of the line_info_table. */
13568 line_info
13569 = &separate_line_info_table[separate_line_info_table_in_use++];
13570 line_info->dw_file_num = lookup_filename (filename);
13571 line_info->dw_line_num = line;
13572 line_info->function = current_function_funcdef_no;
13574 else
13576 dw_line_info_ref line_info;
13578 targetm.asm_out.internal_label (asm_out_file, LINE_CODE_LABEL,
13579 line_info_table_in_use);
13581 /* Expand the line info table if necessary. */
13582 if (line_info_table_in_use == line_info_table_allocated)
13584 line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13585 line_info_table
13586 = ggc_realloc (line_info_table,
13587 (line_info_table_allocated
13588 * sizeof (dw_line_info_entry)));
13589 memset (line_info_table + line_info_table_in_use, 0,
13590 LINE_INFO_TABLE_INCREMENT * sizeof (dw_line_info_entry));
13593 /* Add the new entry at the end of the line_info_table. */
13594 line_info = &line_info_table[line_info_table_in_use++];
13595 line_info->dw_file_num = lookup_filename (filename);
13596 line_info->dw_line_num = line;
13601 /* Record the beginning of a new source file. */
13603 static void
13604 dwarf2out_start_source_file (unsigned int lineno, const char *filename)
13606 if (flag_eliminate_dwarf2_dups)
13608 /* Record the beginning of the file for break_out_includes. */
13609 dw_die_ref bincl_die;
13611 bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die, NULL);
13612 add_AT_string (bincl_die, DW_AT_name, filename);
13615 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13617 int fileno;
13619 switch_to_section (debug_macinfo_section);
13620 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
13621 dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
13622 lineno);
13624 fileno = maybe_emit_file (lookup_filename (filename));
13625 dw2_asm_output_data_uleb128 (fileno, "Filename we just started");
13629 /* Record the end of a source file. */
13631 static void
13632 dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED)
13634 if (flag_eliminate_dwarf2_dups)
13635 /* Record the end of the file for break_out_includes. */
13636 new_die (DW_TAG_GNU_EINCL, comp_unit_die, NULL);
13638 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13640 switch_to_section (debug_macinfo_section);
13641 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
13645 /* Called from debug_define in toplev.c. The `buffer' parameter contains
13646 the tail part of the directive line, i.e. the part which is past the
13647 initial whitespace, #, whitespace, directive-name, whitespace part. */
13649 static void
13650 dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED,
13651 const char *buffer ATTRIBUTE_UNUSED)
13653 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13655 switch_to_section (debug_macinfo_section);
13656 dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
13657 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13658 dw2_asm_output_nstring (buffer, -1, "The macro");
13662 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
13663 the tail part of the directive line, i.e. the part which is past the
13664 initial whitespace, #, whitespace, directive-name, whitespace part. */
13666 static void
13667 dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED,
13668 const char *buffer ATTRIBUTE_UNUSED)
13670 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13672 switch_to_section (debug_macinfo_section);
13673 dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
13674 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13675 dw2_asm_output_nstring (buffer, -1, "The macro");
13679 /* Set up for Dwarf output at the start of compilation. */
13681 static void
13682 dwarf2out_init (const char *filename ATTRIBUTE_UNUSED)
13684 init_file_table ();
13686 /* Allocate the decl_die_table. */
13687 decl_die_table = htab_create_ggc (10, decl_die_table_hash,
13688 decl_die_table_eq, NULL);
13690 /* Allocate the decl_loc_table. */
13691 decl_loc_table = htab_create_ggc (10, decl_loc_table_hash,
13692 decl_loc_table_eq, NULL);
13694 /* Allocate the initial hunk of the decl_scope_table. */
13695 decl_scope_table = VEC_alloc (tree, gc, 256);
13697 /* Allocate the initial hunk of the abbrev_die_table. */
13698 abbrev_die_table = ggc_alloc_cleared (ABBREV_DIE_TABLE_INCREMENT
13699 * sizeof (dw_die_ref));
13700 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
13701 /* Zero-th entry is allocated, but unused. */
13702 abbrev_die_table_in_use = 1;
13704 /* Allocate the initial hunk of the line_info_table. */
13705 line_info_table = ggc_alloc_cleared (LINE_INFO_TABLE_INCREMENT
13706 * sizeof (dw_line_info_entry));
13707 line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
13709 /* Zero-th entry is allocated, but unused. */
13710 line_info_table_in_use = 1;
13712 /* Generate the initial DIE for the .debug section. Note that the (string)
13713 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
13714 will (typically) be a relative pathname and that this pathname should be
13715 taken as being relative to the directory from which the compiler was
13716 invoked when the given (base) source file was compiled. We will fill
13717 in this value in dwarf2out_finish. */
13718 comp_unit_die = gen_compile_unit_die (NULL);
13720 incomplete_types = VEC_alloc (tree, gc, 64);
13722 used_rtx_array = VEC_alloc (rtx, gc, 32);
13724 debug_info_section = get_section (DEBUG_INFO_SECTION,
13725 SECTION_DEBUG, NULL);
13726 debug_abbrev_section = get_section (DEBUG_ABBREV_SECTION,
13727 SECTION_DEBUG, NULL);
13728 debug_aranges_section = get_section (DEBUG_ARANGES_SECTION,
13729 SECTION_DEBUG, NULL);
13730 debug_macinfo_section = get_section (DEBUG_MACINFO_SECTION,
13731 SECTION_DEBUG, NULL);
13732 debug_line_section = get_section (DEBUG_LINE_SECTION,
13733 SECTION_DEBUG, NULL);
13734 debug_loc_section = get_section (DEBUG_LOC_SECTION,
13735 SECTION_DEBUG, NULL);
13736 debug_pubnames_section = get_section (DEBUG_PUBNAMES_SECTION,
13737 SECTION_DEBUG, NULL);
13738 debug_str_section = get_section (DEBUG_STR_SECTION,
13739 DEBUG_STR_SECTION_FLAGS, NULL);
13740 debug_ranges_section = get_section (DEBUG_RANGES_SECTION,
13741 SECTION_DEBUG, NULL);
13743 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
13744 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
13745 DEBUG_ABBREV_SECTION_LABEL, 0);
13746 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
13747 ASM_GENERATE_INTERNAL_LABEL (cold_text_section_label,
13748 COLD_TEXT_SECTION_LABEL, 0);
13749 ASM_GENERATE_INTERNAL_LABEL (cold_end_label, COLD_END_LABEL, 0);
13751 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
13752 DEBUG_INFO_SECTION_LABEL, 0);
13753 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
13754 DEBUG_LINE_SECTION_LABEL, 0);
13755 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
13756 DEBUG_RANGES_SECTION_LABEL, 0);
13757 switch_to_section (debug_abbrev_section);
13758 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
13759 switch_to_section (debug_info_section);
13760 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
13761 switch_to_section (debug_line_section);
13762 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
13764 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13766 switch_to_section (debug_macinfo_section);
13767 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
13768 DEBUG_MACINFO_SECTION_LABEL, 0);
13769 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
13772 switch_to_section (text_section);
13773 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
13774 if (flag_reorder_blocks_and_partition)
13776 switch_to_section (unlikely_text_section ());
13777 ASM_OUTPUT_LABEL (asm_out_file, cold_text_section_label);
13781 /* A helper function for dwarf2out_finish called through
13782 ht_forall. Emit one queued .debug_str string. */
13784 static int
13785 output_indirect_string (void **h, void *v ATTRIBUTE_UNUSED)
13787 struct indirect_string_node *node = (struct indirect_string_node *) *h;
13789 if (node->form == DW_FORM_strp)
13791 switch_to_section (debug_str_section);
13792 ASM_OUTPUT_LABEL (asm_out_file, node->label);
13793 assemble_string (node->str, strlen (node->str) + 1);
13796 return 1;
13801 /* Clear the marks for a die and its children.
13802 Be cool if the mark isn't set. */
13804 static void
13805 prune_unmark_dies (dw_die_ref die)
13807 dw_die_ref c;
13808 die->die_mark = 0;
13809 for (c = die->die_child; c; c = c->die_sib)
13810 prune_unmark_dies (c);
13814 /* Given DIE that we're marking as used, find any other dies
13815 it references as attributes and mark them as used. */
13817 static void
13818 prune_unused_types_walk_attribs (dw_die_ref die)
13820 dw_attr_ref a;
13822 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
13824 if (a->dw_attr_val.val_class == dw_val_class_die_ref)
13826 /* A reference to another DIE.
13827 Make sure that it will get emitted. */
13828 prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
13830 else if (a->dw_attr == DW_AT_decl_file || a->dw_attr == DW_AT_call_file)
13832 /* A reference to a file. Make sure the file name is emitted. */
13833 a->dw_attr_val.v.val_unsigned =
13834 maybe_emit_file (a->dw_attr_val.v.val_unsigned);
13840 /* Mark DIE as being used. If DOKIDS is true, then walk down
13841 to DIE's children. */
13843 static void
13844 prune_unused_types_mark (dw_die_ref die, int dokids)
13846 dw_die_ref c;
13848 if (die->die_mark == 0)
13850 /* We haven't done this node yet. Mark it as used. */
13851 die->die_mark = 1;
13853 /* We also have to mark its parents as used.
13854 (But we don't want to mark our parents' kids due to this.) */
13855 if (die->die_parent)
13856 prune_unused_types_mark (die->die_parent, 0);
13858 /* Mark any referenced nodes. */
13859 prune_unused_types_walk_attribs (die);
13861 /* If this node is a specification,
13862 also mark the definition, if it exists. */
13863 if (get_AT_flag (die, DW_AT_declaration) && die->die_definition)
13864 prune_unused_types_mark (die->die_definition, 1);
13867 if (dokids && die->die_mark != 2)
13869 /* We need to walk the children, but haven't done so yet.
13870 Remember that we've walked the kids. */
13871 die->die_mark = 2;
13873 /* Walk them. */
13874 for (c = die->die_child; c; c = c->die_sib)
13876 /* If this is an array type, we need to make sure our
13877 kids get marked, even if they're types. */
13878 if (die->die_tag == DW_TAG_array_type)
13879 prune_unused_types_mark (c, 1);
13880 else
13881 prune_unused_types_walk (c);
13887 /* Walk the tree DIE and mark types that we actually use. */
13889 static void
13890 prune_unused_types_walk (dw_die_ref die)
13892 dw_die_ref c;
13894 /* Don't do anything if this node is already marked. */
13895 if (die->die_mark)
13896 return;
13898 switch (die->die_tag) {
13899 case DW_TAG_const_type:
13900 case DW_TAG_packed_type:
13901 case DW_TAG_pointer_type:
13902 case DW_TAG_reference_type:
13903 case DW_TAG_volatile_type:
13904 case DW_TAG_typedef:
13905 case DW_TAG_array_type:
13906 case DW_TAG_structure_type:
13907 case DW_TAG_union_type:
13908 case DW_TAG_class_type:
13909 case DW_TAG_friend:
13910 case DW_TAG_variant_part:
13911 case DW_TAG_enumeration_type:
13912 case DW_TAG_subroutine_type:
13913 case DW_TAG_string_type:
13914 case DW_TAG_set_type:
13915 case DW_TAG_subrange_type:
13916 case DW_TAG_ptr_to_member_type:
13917 case DW_TAG_file_type:
13918 /* It's a type node --- don't mark it. */
13919 return;
13921 default:
13922 /* Mark everything else. */
13923 break;
13926 die->die_mark = 1;
13928 /* Now, mark any dies referenced from here. */
13929 prune_unused_types_walk_attribs (die);
13931 /* Mark children. */
13932 for (c = die->die_child; c; c = c->die_sib)
13933 prune_unused_types_walk (c);
13937 /* Remove from the tree DIE any dies that aren't marked. */
13939 static void
13940 prune_unused_types_prune (dw_die_ref die)
13942 dw_die_ref c, p, n;
13944 gcc_assert (die->die_mark);
13946 p = NULL;
13947 for (c = die->die_child; c; c = n)
13949 n = c->die_sib;
13950 if (c->die_mark)
13952 prune_unused_types_prune (c);
13953 p = c;
13955 else
13957 if (p)
13958 p->die_sib = n;
13959 else
13960 die->die_child = n;
13961 free_die (c);
13967 /* Remove dies representing declarations that we never use. */
13969 static void
13970 prune_unused_types (void)
13972 unsigned int i;
13973 limbo_die_node *node;
13975 /* Clear all the marks. */
13976 prune_unmark_dies (comp_unit_die);
13977 for (node = limbo_die_list; node; node = node->next)
13978 prune_unmark_dies (node->die);
13980 /* Set the mark on nodes that are actually used. */
13981 prune_unused_types_walk (comp_unit_die);
13982 for (node = limbo_die_list; node; node = node->next)
13983 prune_unused_types_walk (node->die);
13985 /* Also set the mark on nodes referenced from the
13986 pubname_table or arange_table. */
13987 for (i = 0; i < pubname_table_in_use; i++)
13988 prune_unused_types_mark (pubname_table[i].die, 1);
13989 for (i = 0; i < arange_table_in_use; i++)
13990 prune_unused_types_mark (arange_table[i], 1);
13992 /* Get rid of nodes that aren't marked. */
13993 prune_unused_types_prune (comp_unit_die);
13994 for (node = limbo_die_list; node; node = node->next)
13995 prune_unused_types_prune (node->die);
13997 /* Leave the marks clear. */
13998 prune_unmark_dies (comp_unit_die);
13999 for (node = limbo_die_list; node; node = node->next)
14000 prune_unmark_dies (node->die);
14003 /* Output stuff that dwarf requires at the end of every file,
14004 and generate the DWARF-2 debugging info. */
14006 static void
14007 dwarf2out_finish (const char *filename)
14009 limbo_die_node *node, *next_node;
14010 dw_die_ref die = 0;
14012 /* Add the name for the main input file now. We delayed this from
14013 dwarf2out_init to avoid complications with PCH. */
14014 add_name_attribute (comp_unit_die, filename);
14015 if (filename[0] != DIR_SEPARATOR)
14016 add_comp_dir_attribute (comp_unit_die);
14017 else if (get_AT (comp_unit_die, DW_AT_comp_dir) == NULL)
14019 size_t i;
14020 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
14021 if (VARRAY_CHAR_PTR (file_table, i)[0] != DIR_SEPARATOR
14022 /* Don't add cwd for <built-in>. */
14023 && VARRAY_CHAR_PTR (file_table, i)[0] != '<')
14025 add_comp_dir_attribute (comp_unit_die);
14026 break;
14030 /* Traverse the limbo die list, and add parent/child links. The only
14031 dies without parents that should be here are concrete instances of
14032 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
14033 For concrete instances, we can get the parent die from the abstract
14034 instance. */
14035 for (node = limbo_die_list; node; node = next_node)
14037 next_node = node->next;
14038 die = node->die;
14040 if (die->die_parent == NULL)
14042 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
14044 if (origin)
14045 add_child_die (origin->die_parent, die);
14046 else if (die == comp_unit_die)
14048 else if (errorcount > 0 || sorrycount > 0)
14049 /* It's OK to be confused by errors in the input. */
14050 add_child_die (comp_unit_die, die);
14051 else
14053 /* In certain situations, the lexical block containing a
14054 nested function can be optimized away, which results
14055 in the nested function die being orphaned. Likewise
14056 with the return type of that nested function. Force
14057 this to be a child of the containing function.
14059 It may happen that even the containing function got fully
14060 inlined and optimized out. In that case we are lost and
14061 assign the empty child. This should not be big issue as
14062 the function is likely unreachable too. */
14063 tree context = NULL_TREE;
14065 gcc_assert (node->created_for);
14067 if (DECL_P (node->created_for))
14068 context = DECL_CONTEXT (node->created_for);
14069 else if (TYPE_P (node->created_for))
14070 context = TYPE_CONTEXT (node->created_for);
14072 gcc_assert (context && TREE_CODE (context) == FUNCTION_DECL);
14074 origin = lookup_decl_die (context);
14075 if (origin)
14076 add_child_die (origin, die);
14077 else
14078 add_child_die (comp_unit_die, die);
14083 limbo_die_list = NULL;
14085 /* Walk through the list of incomplete types again, trying once more to
14086 emit full debugging info for them. */
14087 retry_incomplete_types ();
14089 /* We need to reverse all the dies before break_out_includes, or
14090 we'll see the end of an include file before the beginning. */
14091 reverse_all_dies (comp_unit_die);
14093 if (flag_eliminate_unused_debug_types)
14094 prune_unused_types ();
14096 /* Generate separate CUs for each of the include files we've seen.
14097 They will go into limbo_die_list. */
14098 if (flag_eliminate_dwarf2_dups)
14099 break_out_includes (comp_unit_die);
14101 /* Traverse the DIE's and add add sibling attributes to those DIE's
14102 that have children. */
14103 add_sibling_attributes (comp_unit_die);
14104 for (node = limbo_die_list; node; node = node->next)
14105 add_sibling_attributes (node->die);
14107 /* Output a terminator label for the .text section. */
14108 switch_to_section (text_section);
14109 targetm.asm_out.internal_label (asm_out_file, TEXT_END_LABEL, 0);
14110 if (flag_reorder_blocks_and_partition)
14112 switch_to_section (unlikely_text_section ());
14113 targetm.asm_out.internal_label (asm_out_file, COLD_END_LABEL, 0);
14116 /* Output the source line correspondence table. We must do this
14117 even if there is no line information. Otherwise, on an empty
14118 translation unit, we will generate a present, but empty,
14119 .debug_info section. IRIX 6.5 `nm' will then complain when
14120 examining the file. */
14121 if (! DWARF2_ASM_LINE_DEBUG_INFO)
14123 switch_to_section (debug_line_section);
14124 output_line_info ();
14127 /* We can only use the low/high_pc attributes if all of the code was
14128 in .text. */
14129 if (!have_multiple_function_sections)
14131 add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
14132 add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
14135 /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
14136 "base address". Use zero so that these addresses become absolute. */
14137 else if (have_location_lists || ranges_table_in_use)
14138 add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
14140 /* Output location list section if necessary. */
14141 if (have_location_lists)
14143 /* Output the location lists info. */
14144 switch_to_section (debug_loc_section);
14145 ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
14146 DEBUG_LOC_SECTION_LABEL, 0);
14147 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
14148 output_location_lists (die);
14151 if (debug_info_level >= DINFO_LEVEL_NORMAL)
14152 add_AT_lbl_offset (comp_unit_die, DW_AT_stmt_list,
14153 debug_line_section_label);
14155 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
14156 add_AT_lbl_offset (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
14158 /* Output all of the compilation units. We put the main one last so that
14159 the offsets are available to output_pubnames. */
14160 for (node = limbo_die_list; node; node = node->next)
14161 output_comp_unit (node->die, 0);
14163 output_comp_unit (comp_unit_die, 0);
14165 /* Output the abbreviation table. */
14166 switch_to_section (debug_abbrev_section);
14167 output_abbrev_section ();
14169 /* Output public names table if necessary. */
14170 if (pubname_table_in_use)
14172 switch_to_section (debug_pubnames_section);
14173 output_pubnames ();
14176 /* Output the address range information. We only put functions in the arange
14177 table, so don't write it out if we don't have any. */
14178 if (fde_table_in_use)
14180 switch_to_section (debug_aranges_section);
14181 output_aranges ();
14184 /* Output ranges section if necessary. */
14185 if (ranges_table_in_use)
14187 switch_to_section (debug_ranges_section);
14188 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
14189 output_ranges ();
14192 /* Have to end the macro section. */
14193 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
14195 switch_to_section (debug_macinfo_section);
14196 dw2_asm_output_data (1, 0, "End compilation unit");
14199 /* If we emitted any DW_FORM_strp form attribute, output the string
14200 table too. */
14201 if (debug_str_hash)
14202 htab_traverse (debug_str_hash, output_indirect_string, NULL);
14204 #else
14206 /* This should never be used, but its address is needed for comparisons. */
14207 const struct gcc_debug_hooks dwarf2_debug_hooks;
14209 #endif /* DWARF2_DEBUGGING_INFO */
14211 #include "gt-dwarf2out.h"