acinclude.m4: Restore the situation that we don't build modules on darwin.
[official-gcc.git] / gcc / reload.c
blob9bfb74854cae88d29dc6a403cda54b7ea957cd67
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation,
4 Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
23 /* This file contains subroutines used only from the file reload1.c.
24 It knows how to scan one insn for operands and values
25 that need to be copied into registers to make valid code.
26 It also finds other operands and values which are valid
27 but for which equivalent values in registers exist and
28 ought to be used instead.
30 Before processing the first insn of the function, call `init_reload'.
31 init_reload actually has to be called earlier anyway.
33 To scan an insn, call `find_reloads'. This does two things:
34 1. sets up tables describing which values must be reloaded
35 for this insn, and what kind of hard regs they must be reloaded into;
36 2. optionally record the locations where those values appear in
37 the data, so they can be replaced properly later.
38 This is done only if the second arg to `find_reloads' is nonzero.
40 The third arg to `find_reloads' specifies the number of levels
41 of indirect addressing supported by the machine. If it is zero,
42 indirect addressing is not valid. If it is one, (MEM (REG n))
43 is valid even if (REG n) did not get a hard register; if it is two,
44 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
45 hard register, and similarly for higher values.
47 Then you must choose the hard regs to reload those pseudo regs into,
48 and generate appropriate load insns before this insn and perhaps
49 also store insns after this insn. Set up the array `reload_reg_rtx'
50 to contain the REG rtx's for the registers you used. In some
51 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
52 for certain reloads. Then that tells you which register to use,
53 so you do not need to allocate one. But you still do need to add extra
54 instructions to copy the value into and out of that register.
56 Finally you must call `subst_reloads' to substitute the reload reg rtx's
57 into the locations already recorded.
59 NOTE SIDE EFFECTS:
61 find_reloads can alter the operands of the instruction it is called on.
63 1. Two operands of any sort may be interchanged, if they are in a
64 commutative instruction.
65 This happens only if find_reloads thinks the instruction will compile
66 better that way.
68 2. Pseudo-registers that are equivalent to constants are replaced
69 with those constants if they are not in hard registers.
71 1 happens every time find_reloads is called.
72 2 happens only when REPLACE is 1, which is only when
73 actually doing the reloads, not when just counting them.
75 Using a reload register for several reloads in one insn:
77 When an insn has reloads, it is considered as having three parts:
78 the input reloads, the insn itself after reloading, and the output reloads.
79 Reloads of values used in memory addresses are often needed for only one part.
81 When this is so, reload_when_needed records which part needs the reload.
82 Two reloads for different parts of the insn can share the same reload
83 register.
85 When a reload is used for addresses in multiple parts, or when it is
86 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
87 a register with any other reload. */
89 #define REG_OK_STRICT
91 #include "config.h"
92 #include "system.h"
93 #include "coretypes.h"
94 #include "tm.h"
95 #include "rtl.h"
96 #include "tm_p.h"
97 #include "insn-config.h"
98 #include "expr.h"
99 #include "optabs.h"
100 #include "recog.h"
101 #include "reload.h"
102 #include "regs.h"
103 #include "addresses.h"
104 #include "hard-reg-set.h"
105 #include "flags.h"
106 #include "real.h"
107 #include "output.h"
108 #include "function.h"
109 #include "toplev.h"
110 #include "params.h"
111 #include "target.h"
113 /* True if X is a constant that can be forced into the constant pool. */
114 #define CONST_POOL_OK_P(X) \
115 (CONSTANT_P (X) \
116 && GET_CODE (X) != HIGH \
117 && !targetm.cannot_force_const_mem (X))
119 /* True if C is a non-empty register class that has too few registers
120 to be safely used as a reload target class. */
121 #define SMALL_REGISTER_CLASS_P(C) \
122 (reg_class_size [(C)] == 1 \
123 || (reg_class_size [(C)] >= 1 && CLASS_LIKELY_SPILLED_P (C)))
126 /* All reloads of the current insn are recorded here. See reload.h for
127 comments. */
128 int n_reloads;
129 struct reload rld[MAX_RELOADS];
131 /* All the "earlyclobber" operands of the current insn
132 are recorded here. */
133 int n_earlyclobbers;
134 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
136 int reload_n_operands;
138 /* Replacing reloads.
140 If `replace_reloads' is nonzero, then as each reload is recorded
141 an entry is made for it in the table `replacements'.
142 Then later `subst_reloads' can look through that table and
143 perform all the replacements needed. */
145 /* Nonzero means record the places to replace. */
146 static int replace_reloads;
148 /* Each replacement is recorded with a structure like this. */
149 struct replacement
151 rtx *where; /* Location to store in */
152 rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
153 a SUBREG; 0 otherwise. */
154 int what; /* which reload this is for */
155 enum machine_mode mode; /* mode it must have */
158 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
160 /* Number of replacements currently recorded. */
161 static int n_replacements;
163 /* Used to track what is modified by an operand. */
164 struct decomposition
166 int reg_flag; /* Nonzero if referencing a register. */
167 int safe; /* Nonzero if this can't conflict with anything. */
168 rtx base; /* Base address for MEM. */
169 HOST_WIDE_INT start; /* Starting offset or register number. */
170 HOST_WIDE_INT end; /* Ending offset or register number. */
173 #ifdef SECONDARY_MEMORY_NEEDED
175 /* Save MEMs needed to copy from one class of registers to another. One MEM
176 is used per mode, but normally only one or two modes are ever used.
178 We keep two versions, before and after register elimination. The one
179 after register elimination is record separately for each operand. This
180 is done in case the address is not valid to be sure that we separately
181 reload each. */
183 static rtx secondary_memlocs[NUM_MACHINE_MODES];
184 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
185 static int secondary_memlocs_elim_used = 0;
186 #endif
188 /* The instruction we are doing reloads for;
189 so we can test whether a register dies in it. */
190 static rtx this_insn;
192 /* Nonzero if this instruction is a user-specified asm with operands. */
193 static int this_insn_is_asm;
195 /* If hard_regs_live_known is nonzero,
196 we can tell which hard regs are currently live,
197 at least enough to succeed in choosing dummy reloads. */
198 static int hard_regs_live_known;
200 /* Indexed by hard reg number,
201 element is nonnegative if hard reg has been spilled.
202 This vector is passed to `find_reloads' as an argument
203 and is not changed here. */
204 static short *static_reload_reg_p;
206 /* Set to 1 in subst_reg_equivs if it changes anything. */
207 static int subst_reg_equivs_changed;
209 /* On return from push_reload, holds the reload-number for the OUT
210 operand, which can be different for that from the input operand. */
211 static int output_reloadnum;
213 /* Compare two RTX's. */
214 #define MATCHES(x, y) \
215 (x == y || (x != 0 && (REG_P (x) \
216 ? REG_P (y) && REGNO (x) == REGNO (y) \
217 : rtx_equal_p (x, y) && ! side_effects_p (x))))
219 /* Indicates if two reloads purposes are for similar enough things that we
220 can merge their reloads. */
221 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
222 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
223 || ((when1) == (when2) && (op1) == (op2)) \
224 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
225 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
226 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
227 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
228 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
230 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
231 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
232 ((when1) != (when2) \
233 || ! ((op1) == (op2) \
234 || (when1) == RELOAD_FOR_INPUT \
235 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
236 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
238 /* If we are going to reload an address, compute the reload type to
239 use. */
240 #define ADDR_TYPE(type) \
241 ((type) == RELOAD_FOR_INPUT_ADDRESS \
242 ? RELOAD_FOR_INPADDR_ADDRESS \
243 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
244 ? RELOAD_FOR_OUTADDR_ADDRESS \
245 : (type)))
247 static int push_secondary_reload (int, rtx, int, int, enum reg_class,
248 enum machine_mode, enum reload_type,
249 enum insn_code *, secondary_reload_info *);
250 static enum reg_class find_valid_class (enum machine_mode, enum machine_mode,
251 int, unsigned int);
252 static int reload_inner_reg_of_subreg (rtx, enum machine_mode, int);
253 static void push_replacement (rtx *, int, enum machine_mode);
254 static void dup_replacements (rtx *, rtx *);
255 static void combine_reloads (void);
256 static int find_reusable_reload (rtx *, rtx, enum reg_class,
257 enum reload_type, int, int);
258 static rtx find_dummy_reload (rtx, rtx, rtx *, rtx *, enum machine_mode,
259 enum machine_mode, enum reg_class, int, int);
260 static int hard_reg_set_here_p (unsigned int, unsigned int, rtx);
261 static struct decomposition decompose (rtx);
262 static int immune_p (rtx, rtx, struct decomposition);
263 static int alternative_allows_memconst (const char *, int);
264 static rtx find_reloads_toplev (rtx, int, enum reload_type, int, int, rtx,
265 int *);
266 static rtx make_memloc (rtx, int);
267 static int maybe_memory_address_p (enum machine_mode, rtx, rtx *);
268 static int find_reloads_address (enum machine_mode, rtx *, rtx, rtx *,
269 int, enum reload_type, int, rtx);
270 static rtx subst_reg_equivs (rtx, rtx);
271 static rtx subst_indexed_address (rtx);
272 static void update_auto_inc_notes (rtx, int, int);
273 static int find_reloads_address_1 (enum machine_mode, rtx, int,
274 enum rtx_code, enum rtx_code, rtx *,
275 int, enum reload_type,int, rtx);
276 static void find_reloads_address_part (rtx, rtx *, enum reg_class,
277 enum machine_mode, int,
278 enum reload_type, int);
279 static rtx find_reloads_subreg_address (rtx, int, int, enum reload_type,
280 int, rtx);
281 static void copy_replacements_1 (rtx *, rtx *, int);
282 static int find_inc_amount (rtx, rtx);
283 static int refers_to_mem_for_reload_p (rtx);
284 static int refers_to_regno_for_reload_p (unsigned int, unsigned int,
285 rtx, rtx *);
287 /* Determine if any secondary reloads are needed for loading (if IN_P is
288 nonzero) or storing (if IN_P is zero) X to or from a reload register of
289 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
290 are needed, push them.
292 Return the reload number of the secondary reload we made, or -1 if
293 we didn't need one. *PICODE is set to the insn_code to use if we do
294 need a secondary reload. */
296 static int
297 push_secondary_reload (int in_p, rtx x, int opnum, int optional,
298 enum reg_class reload_class,
299 enum machine_mode reload_mode, enum reload_type type,
300 enum insn_code *picode, secondary_reload_info *prev_sri)
302 enum reg_class class = NO_REGS;
303 enum reg_class scratch_class;
304 enum machine_mode mode = reload_mode;
305 enum insn_code icode = CODE_FOR_nothing;
306 enum insn_code t_icode = CODE_FOR_nothing;
307 enum reload_type secondary_type;
308 int s_reload, t_reload = -1;
309 const char *scratch_constraint;
310 char letter;
311 secondary_reload_info sri;
313 if (type == RELOAD_FOR_INPUT_ADDRESS
314 || type == RELOAD_FOR_OUTPUT_ADDRESS
315 || type == RELOAD_FOR_INPADDR_ADDRESS
316 || type == RELOAD_FOR_OUTADDR_ADDRESS)
317 secondary_type = type;
318 else
319 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
321 *picode = CODE_FOR_nothing;
323 /* If X is a paradoxical SUBREG, use the inner value to determine both the
324 mode and object being reloaded. */
325 if (GET_CODE (x) == SUBREG
326 && (GET_MODE_SIZE (GET_MODE (x))
327 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
329 x = SUBREG_REG (x);
330 reload_mode = GET_MODE (x);
333 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
334 is still a pseudo-register by now, it *must* have an equivalent MEM
335 but we don't want to assume that), use that equivalent when seeing if
336 a secondary reload is needed since whether or not a reload is needed
337 might be sensitive to the form of the MEM. */
339 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER
340 && reg_equiv_mem[REGNO (x)] != 0)
341 x = reg_equiv_mem[REGNO (x)];
343 sri.icode = CODE_FOR_nothing;
344 sri.prev_sri = prev_sri;
345 class = targetm.secondary_reload (in_p, x, reload_class, reload_mode, &sri);
346 icode = sri.icode;
348 /* If we don't need any secondary registers, done. */
349 if (class == NO_REGS && icode == CODE_FOR_nothing)
350 return -1;
352 if (class != NO_REGS)
353 t_reload = push_secondary_reload (in_p, x, opnum, optional, class,
354 reload_mode, type, &t_icode, &sri);
356 /* If we will be using an insn, the secondary reload is for a
357 scratch register. */
359 if (icode != CODE_FOR_nothing)
361 /* If IN_P is nonzero, the reload register will be the output in
362 operand 0. If IN_P is zero, the reload register will be the input
363 in operand 1. Outputs should have an initial "=", which we must
364 skip. */
366 /* ??? It would be useful to be able to handle only two, or more than
367 three, operands, but for now we can only handle the case of having
368 exactly three: output, input and one temp/scratch. */
369 gcc_assert (insn_data[(int) icode].n_operands == 3);
371 /* ??? We currently have no way to represent a reload that needs
372 an icode to reload from an intermediate tertiary reload register.
373 We should probably have a new field in struct reload to tag a
374 chain of scratch operand reloads onto. */
375 gcc_assert (class == NO_REGS);
377 scratch_constraint = insn_data[(int) icode].operand[2].constraint;
378 gcc_assert (*scratch_constraint == '=');
379 scratch_constraint++;
380 if (*scratch_constraint == '&')
381 scratch_constraint++;
382 letter = *scratch_constraint;
383 scratch_class = (letter == 'r' ? GENERAL_REGS
384 : REG_CLASS_FROM_CONSTRAINT ((unsigned char) letter,
385 scratch_constraint));
387 class = scratch_class;
388 mode = insn_data[(int) icode].operand[2].mode;
391 /* This case isn't valid, so fail. Reload is allowed to use the same
392 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
393 in the case of a secondary register, we actually need two different
394 registers for correct code. We fail here to prevent the possibility of
395 silently generating incorrect code later.
397 The convention is that secondary input reloads are valid only if the
398 secondary_class is different from class. If you have such a case, you
399 can not use secondary reloads, you must work around the problem some
400 other way.
402 Allow this when a reload_in/out pattern is being used. I.e. assume
403 that the generated code handles this case. */
405 gcc_assert (!in_p || class != reload_class || icode != CODE_FOR_nothing
406 || t_icode != CODE_FOR_nothing);
408 /* See if we can reuse an existing secondary reload. */
409 for (s_reload = 0; s_reload < n_reloads; s_reload++)
410 if (rld[s_reload].secondary_p
411 && (reg_class_subset_p (class, rld[s_reload].class)
412 || reg_class_subset_p (rld[s_reload].class, class))
413 && ((in_p && rld[s_reload].inmode == mode)
414 || (! in_p && rld[s_reload].outmode == mode))
415 && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
416 || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
417 && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
418 || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
419 && (SMALL_REGISTER_CLASS_P (class) || SMALL_REGISTER_CLASSES)
420 && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
421 opnum, rld[s_reload].opnum))
423 if (in_p)
424 rld[s_reload].inmode = mode;
425 if (! in_p)
426 rld[s_reload].outmode = mode;
428 if (reg_class_subset_p (class, rld[s_reload].class))
429 rld[s_reload].class = class;
431 rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
432 rld[s_reload].optional &= optional;
433 rld[s_reload].secondary_p = 1;
434 if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
435 opnum, rld[s_reload].opnum))
436 rld[s_reload].when_needed = RELOAD_OTHER;
439 if (s_reload == n_reloads)
441 #ifdef SECONDARY_MEMORY_NEEDED
442 /* If we need a memory location to copy between the two reload regs,
443 set it up now. Note that we do the input case before making
444 the reload and the output case after. This is due to the
445 way reloads are output. */
447 if (in_p && icode == CODE_FOR_nothing
448 && SECONDARY_MEMORY_NEEDED (class, reload_class, mode))
450 get_secondary_mem (x, reload_mode, opnum, type);
452 /* We may have just added new reloads. Make sure we add
453 the new reload at the end. */
454 s_reload = n_reloads;
456 #endif
458 /* We need to make a new secondary reload for this register class. */
459 rld[s_reload].in = rld[s_reload].out = 0;
460 rld[s_reload].class = class;
462 rld[s_reload].inmode = in_p ? mode : VOIDmode;
463 rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
464 rld[s_reload].reg_rtx = 0;
465 rld[s_reload].optional = optional;
466 rld[s_reload].inc = 0;
467 /* Maybe we could combine these, but it seems too tricky. */
468 rld[s_reload].nocombine = 1;
469 rld[s_reload].in_reg = 0;
470 rld[s_reload].out_reg = 0;
471 rld[s_reload].opnum = opnum;
472 rld[s_reload].when_needed = secondary_type;
473 rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
474 rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
475 rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
476 rld[s_reload].secondary_out_icode
477 = ! in_p ? t_icode : CODE_FOR_nothing;
478 rld[s_reload].secondary_p = 1;
480 n_reloads++;
482 #ifdef SECONDARY_MEMORY_NEEDED
483 if (! in_p && icode == CODE_FOR_nothing
484 && SECONDARY_MEMORY_NEEDED (reload_class, class, mode))
485 get_secondary_mem (x, mode, opnum, type);
486 #endif
489 *picode = icode;
490 return s_reload;
493 /* If a secondary reload is needed, return its class. If both an intermediate
494 register and a scratch register is needed, we return the class of the
495 intermediate register. */
496 enum reg_class
497 secondary_reload_class (bool in_p, enum reg_class class,
498 enum machine_mode mode, rtx x)
500 enum insn_code icode;
501 secondary_reload_info sri;
503 sri.icode = CODE_FOR_nothing;
504 sri.prev_sri = NULL;
505 class = targetm.secondary_reload (in_p, x, class, mode, &sri);
506 icode = sri.icode;
508 /* If there are no secondary reloads at all, we return NO_REGS.
509 If an intermediate register is needed, we return its class. */
510 if (icode == CODE_FOR_nothing || class != NO_REGS)
511 return class;
513 /* No intermediate register is needed, but we have a special reload
514 pattern, which we assume for now needs a scratch register. */
515 return scratch_reload_class (icode);
518 /* ICODE is the insn_code of a reload pattern. Check that it has exactly
519 three operands, verify that operand 2 is an output operand, and return
520 its register class.
521 ??? We'd like to be able to handle any pattern with at least 2 operands,
522 for zero or more scratch registers, but that needs more infrastructure. */
523 enum reg_class
524 scratch_reload_class (enum insn_code icode)
526 const char *scratch_constraint;
527 char scratch_letter;
528 enum reg_class class;
530 gcc_assert (insn_data[(int) icode].n_operands == 3);
531 scratch_constraint = insn_data[(int) icode].operand[2].constraint;
532 gcc_assert (*scratch_constraint == '=');
533 scratch_constraint++;
534 if (*scratch_constraint == '&')
535 scratch_constraint++;
536 scratch_letter = *scratch_constraint;
537 if (scratch_letter == 'r')
538 return GENERAL_REGS;
539 class = REG_CLASS_FROM_CONSTRAINT ((unsigned char) scratch_letter,
540 scratch_constraint);
541 gcc_assert (class != NO_REGS);
542 return class;
545 #ifdef SECONDARY_MEMORY_NEEDED
547 /* Return a memory location that will be used to copy X in mode MODE.
548 If we haven't already made a location for this mode in this insn,
549 call find_reloads_address on the location being returned. */
552 get_secondary_mem (rtx x ATTRIBUTE_UNUSED, enum machine_mode mode,
553 int opnum, enum reload_type type)
555 rtx loc;
556 int mem_valid;
558 /* By default, if MODE is narrower than a word, widen it to a word.
559 This is required because most machines that require these memory
560 locations do not support short load and stores from all registers
561 (e.g., FP registers). */
563 #ifdef SECONDARY_MEMORY_NEEDED_MODE
564 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
565 #else
566 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
567 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
568 #endif
570 /* If we already have made a MEM for this operand in MODE, return it. */
571 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
572 return secondary_memlocs_elim[(int) mode][opnum];
574 /* If this is the first time we've tried to get a MEM for this mode,
575 allocate a new one. `something_changed' in reload will get set
576 by noticing that the frame size has changed. */
578 if (secondary_memlocs[(int) mode] == 0)
580 #ifdef SECONDARY_MEMORY_NEEDED_RTX
581 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
582 #else
583 secondary_memlocs[(int) mode]
584 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
585 #endif
588 /* Get a version of the address doing any eliminations needed. If that
589 didn't give us a new MEM, make a new one if it isn't valid. */
591 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
592 mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
594 if (! mem_valid && loc == secondary_memlocs[(int) mode])
595 loc = copy_rtx (loc);
597 /* The only time the call below will do anything is if the stack
598 offset is too large. In that case IND_LEVELS doesn't matter, so we
599 can just pass a zero. Adjust the type to be the address of the
600 corresponding object. If the address was valid, save the eliminated
601 address. If it wasn't valid, we need to make a reload each time, so
602 don't save it. */
604 if (! mem_valid)
606 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
607 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
608 : RELOAD_OTHER);
610 find_reloads_address (mode, &loc, XEXP (loc, 0), &XEXP (loc, 0),
611 opnum, type, 0, 0);
614 secondary_memlocs_elim[(int) mode][opnum] = loc;
615 if (secondary_memlocs_elim_used <= (int)mode)
616 secondary_memlocs_elim_used = (int)mode + 1;
617 return loc;
620 /* Clear any secondary memory locations we've made. */
622 void
623 clear_secondary_mem (void)
625 memset (secondary_memlocs, 0, sizeof secondary_memlocs);
627 #endif /* SECONDARY_MEMORY_NEEDED */
630 /* Find the largest class which has at least one register valid in
631 mode INNER, and which for every such register, that register number
632 plus N is also valid in OUTER (if in range) and is cheap to move
633 into REGNO. Such a class must exist. */
635 static enum reg_class
636 find_valid_class (enum machine_mode outer ATTRIBUTE_UNUSED,
637 enum machine_mode inner ATTRIBUTE_UNUSED, int n,
638 unsigned int dest_regno ATTRIBUTE_UNUSED)
640 int best_cost = -1;
641 int class;
642 int regno;
643 enum reg_class best_class = NO_REGS;
644 enum reg_class dest_class ATTRIBUTE_UNUSED = REGNO_REG_CLASS (dest_regno);
645 unsigned int best_size = 0;
646 int cost;
648 for (class = 1; class < N_REG_CLASSES; class++)
650 int bad = 0;
651 int good = 0;
652 for (regno = 0; regno < FIRST_PSEUDO_REGISTER - n && ! bad; regno++)
653 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno))
655 if (HARD_REGNO_MODE_OK (regno, inner))
657 good = 1;
658 if (! TEST_HARD_REG_BIT (reg_class_contents[class], regno + n)
659 || ! HARD_REGNO_MODE_OK (regno + n, outer))
660 bad = 1;
664 if (bad || !good)
665 continue;
666 cost = REGISTER_MOVE_COST (outer, class, dest_class);
668 if ((reg_class_size[class] > best_size
669 && (best_cost < 0 || best_cost >= cost))
670 || best_cost > cost)
672 best_class = class;
673 best_size = reg_class_size[class];
674 best_cost = REGISTER_MOVE_COST (outer, class, dest_class);
678 gcc_assert (best_size != 0);
680 return best_class;
683 /* Return the number of a previously made reload that can be combined with
684 a new one, or n_reloads if none of the existing reloads can be used.
685 OUT, CLASS, TYPE and OPNUM are the same arguments as passed to
686 push_reload, they determine the kind of the new reload that we try to
687 combine. P_IN points to the corresponding value of IN, which can be
688 modified by this function.
689 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
691 static int
692 find_reusable_reload (rtx *p_in, rtx out, enum reg_class class,
693 enum reload_type type, int opnum, int dont_share)
695 rtx in = *p_in;
696 int i;
697 /* We can't merge two reloads if the output of either one is
698 earlyclobbered. */
700 if (earlyclobber_operand_p (out))
701 return n_reloads;
703 /* We can use an existing reload if the class is right
704 and at least one of IN and OUT is a match
705 and the other is at worst neutral.
706 (A zero compared against anything is neutral.)
708 If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
709 for the same thing since that can cause us to need more reload registers
710 than we otherwise would. */
712 for (i = 0; i < n_reloads; i++)
713 if ((reg_class_subset_p (class, rld[i].class)
714 || reg_class_subset_p (rld[i].class, class))
715 /* If the existing reload has a register, it must fit our class. */
716 && (rld[i].reg_rtx == 0
717 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
718 true_regnum (rld[i].reg_rtx)))
719 && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
720 && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
721 || (out != 0 && MATCHES (rld[i].out, out)
722 && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
723 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
724 && (SMALL_REGISTER_CLASS_P (class) || SMALL_REGISTER_CLASSES)
725 && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
726 return i;
728 /* Reloading a plain reg for input can match a reload to postincrement
729 that reg, since the postincrement's value is the right value.
730 Likewise, it can match a preincrement reload, since we regard
731 the preincrementation as happening before any ref in this insn
732 to that register. */
733 for (i = 0; i < n_reloads; i++)
734 if ((reg_class_subset_p (class, rld[i].class)
735 || reg_class_subset_p (rld[i].class, class))
736 /* If the existing reload has a register, it must fit our
737 class. */
738 && (rld[i].reg_rtx == 0
739 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
740 true_regnum (rld[i].reg_rtx)))
741 && out == 0 && rld[i].out == 0 && rld[i].in != 0
742 && ((REG_P (in)
743 && GET_RTX_CLASS (GET_CODE (rld[i].in)) == RTX_AUTOINC
744 && MATCHES (XEXP (rld[i].in, 0), in))
745 || (REG_P (rld[i].in)
746 && GET_RTX_CLASS (GET_CODE (in)) == RTX_AUTOINC
747 && MATCHES (XEXP (in, 0), rld[i].in)))
748 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
749 && (SMALL_REGISTER_CLASS_P (class) || SMALL_REGISTER_CLASSES)
750 && MERGABLE_RELOADS (type, rld[i].when_needed,
751 opnum, rld[i].opnum))
753 /* Make sure reload_in ultimately has the increment,
754 not the plain register. */
755 if (REG_P (in))
756 *p_in = rld[i].in;
757 return i;
759 return n_reloads;
762 /* Return nonzero if X is a SUBREG which will require reloading of its
763 SUBREG_REG expression. */
765 static int
766 reload_inner_reg_of_subreg (rtx x, enum machine_mode mode, int output)
768 rtx inner;
770 /* Only SUBREGs are problematical. */
771 if (GET_CODE (x) != SUBREG)
772 return 0;
774 inner = SUBREG_REG (x);
776 /* If INNER is a constant or PLUS, then INNER must be reloaded. */
777 if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
778 return 1;
780 /* If INNER is not a hard register, then INNER will not need to
781 be reloaded. */
782 if (!REG_P (inner)
783 || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
784 return 0;
786 /* If INNER is not ok for MODE, then INNER will need reloading. */
787 if (! HARD_REGNO_MODE_OK (subreg_regno (x), mode))
788 return 1;
790 /* If the outer part is a word or smaller, INNER larger than a
791 word and the number of regs for INNER is not the same as the
792 number of words in INNER, then INNER will need reloading. */
793 return (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
794 && output
795 && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
796 && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
797 != (int) hard_regno_nregs[REGNO (inner)][GET_MODE (inner)]));
800 /* Return nonzero if IN can be reloaded into REGNO with mode MODE without
801 requiring an extra reload register. The caller has already found that
802 IN contains some reference to REGNO, so check that we can produce the
803 new value in a single step. E.g. if we have
804 (set (reg r13) (plus (reg r13) (const int 1))), and there is an
805 instruction that adds one to a register, this should succeed.
806 However, if we have something like
807 (set (reg r13) (plus (reg r13) (const int 999))), and the constant 999
808 needs to be loaded into a register first, we need a separate reload
809 register.
810 Such PLUS reloads are generated by find_reload_address_part.
811 The out-of-range PLUS expressions are usually introduced in the instruction
812 patterns by register elimination and substituting pseudos without a home
813 by their function-invariant equivalences. */
814 static int
815 can_reload_into (rtx in, int regno, enum machine_mode mode)
817 rtx dst, test_insn;
818 int r = 0;
819 struct recog_data save_recog_data;
821 /* For matching constraints, we often get notional input reloads where
822 we want to use the original register as the reload register. I.e.
823 technically this is a non-optional input-output reload, but IN is
824 already a valid register, and has been chosen as the reload register.
825 Speed this up, since it trivially works. */
826 if (REG_P (in))
827 return 1;
829 /* To test MEMs properly, we'd have to take into account all the reloads
830 that are already scheduled, which can become quite complicated.
831 And since we've already handled address reloads for this MEM, it
832 should always succeed anyway. */
833 if (MEM_P (in))
834 return 1;
836 /* If we can make a simple SET insn that does the job, everything should
837 be fine. */
838 dst = gen_rtx_REG (mode, regno);
839 test_insn = make_insn_raw (gen_rtx_SET (VOIDmode, dst, in));
840 save_recog_data = recog_data;
841 if (recog_memoized (test_insn) >= 0)
843 extract_insn (test_insn);
844 r = constrain_operands (1);
846 recog_data = save_recog_data;
847 return r;
850 /* Record one reload that needs to be performed.
851 IN is an rtx saying where the data are to be found before this instruction.
852 OUT says where they must be stored after the instruction.
853 (IN is zero for data not read, and OUT is zero for data not written.)
854 INLOC and OUTLOC point to the places in the instructions where
855 IN and OUT were found.
856 If IN and OUT are both nonzero, it means the same register must be used
857 to reload both IN and OUT.
859 CLASS is a register class required for the reloaded data.
860 INMODE is the machine mode that the instruction requires
861 for the reg that replaces IN and OUTMODE is likewise for OUT.
863 If IN is zero, then OUT's location and mode should be passed as
864 INLOC and INMODE.
866 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
868 OPTIONAL nonzero means this reload does not need to be performed:
869 it can be discarded if that is more convenient.
871 OPNUM and TYPE say what the purpose of this reload is.
873 The return value is the reload-number for this reload.
875 If both IN and OUT are nonzero, in some rare cases we might
876 want to make two separate reloads. (Actually we never do this now.)
877 Therefore, the reload-number for OUT is stored in
878 output_reloadnum when we return; the return value applies to IN.
879 Usually (presently always), when IN and OUT are nonzero,
880 the two reload-numbers are equal, but the caller should be careful to
881 distinguish them. */
884 push_reload (rtx in, rtx out, rtx *inloc, rtx *outloc,
885 enum reg_class class, enum machine_mode inmode,
886 enum machine_mode outmode, int strict_low, int optional,
887 int opnum, enum reload_type type)
889 int i;
890 int dont_share = 0;
891 int dont_remove_subreg = 0;
892 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
893 int secondary_in_reload = -1, secondary_out_reload = -1;
894 enum insn_code secondary_in_icode = CODE_FOR_nothing;
895 enum insn_code secondary_out_icode = CODE_FOR_nothing;
897 /* INMODE and/or OUTMODE could be VOIDmode if no mode
898 has been specified for the operand. In that case,
899 use the operand's mode as the mode to reload. */
900 if (inmode == VOIDmode && in != 0)
901 inmode = GET_MODE (in);
902 if (outmode == VOIDmode && out != 0)
903 outmode = GET_MODE (out);
905 /* If IN is a pseudo register everywhere-equivalent to a constant, and
906 it is not in a hard register, reload straight from the constant,
907 since we want to get rid of such pseudo registers.
908 Often this is done earlier, but not always in find_reloads_address. */
909 if (in != 0 && REG_P (in))
911 int regno = REGNO (in);
913 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
914 && reg_equiv_constant[regno] != 0)
915 in = reg_equiv_constant[regno];
918 /* Likewise for OUT. Of course, OUT will never be equivalent to
919 an actual constant, but it might be equivalent to a memory location
920 (in the case of a parameter). */
921 if (out != 0 && REG_P (out))
923 int regno = REGNO (out);
925 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
926 && reg_equiv_constant[regno] != 0)
927 out = reg_equiv_constant[regno];
930 /* If we have a read-write operand with an address side-effect,
931 change either IN or OUT so the side-effect happens only once. */
932 if (in != 0 && out != 0 && MEM_P (in) && rtx_equal_p (in, out))
933 switch (GET_CODE (XEXP (in, 0)))
935 case POST_INC: case POST_DEC: case POST_MODIFY:
936 in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
937 break;
939 case PRE_INC: case PRE_DEC: case PRE_MODIFY:
940 out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
941 break;
943 default:
944 break;
947 /* If we are reloading a (SUBREG constant ...), really reload just the
948 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
949 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
950 a pseudo and hence will become a MEM) with M1 wider than M2 and the
951 register is a pseudo, also reload the inside expression.
952 For machines that extend byte loads, do this for any SUBREG of a pseudo
953 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
954 M2 is an integral mode that gets extended when loaded.
955 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
956 either M1 is not valid for R or M2 is wider than a word but we only
957 need one word to store an M2-sized quantity in R.
958 (However, if OUT is nonzero, we need to reload the reg *and*
959 the subreg, so do nothing here, and let following statement handle it.)
961 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
962 we can't handle it here because CONST_INT does not indicate a mode.
964 Similarly, we must reload the inside expression if we have a
965 STRICT_LOW_PART (presumably, in == out in the cas).
967 Also reload the inner expression if it does not require a secondary
968 reload but the SUBREG does.
970 Finally, reload the inner expression if it is a register that is in
971 the class whose registers cannot be referenced in a different size
972 and M1 is not the same size as M2. If subreg_lowpart_p is false, we
973 cannot reload just the inside since we might end up with the wrong
974 register class. But if it is inside a STRICT_LOW_PART, we have
975 no choice, so we hope we do get the right register class there. */
977 if (in != 0 && GET_CODE (in) == SUBREG
978 && (subreg_lowpart_p (in) || strict_low)
979 #ifdef CANNOT_CHANGE_MODE_CLASS
980 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (in)), inmode, class)
981 #endif
982 && (CONSTANT_P (SUBREG_REG (in))
983 || GET_CODE (SUBREG_REG (in)) == PLUS
984 || strict_low
985 || (((REG_P (SUBREG_REG (in))
986 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
987 || MEM_P (SUBREG_REG (in)))
988 && ((GET_MODE_SIZE (inmode)
989 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
990 #ifdef LOAD_EXTEND_OP
991 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
992 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
993 <= UNITS_PER_WORD)
994 && (GET_MODE_SIZE (inmode)
995 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
996 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
997 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != UNKNOWN)
998 #endif
999 #ifdef WORD_REGISTER_OPERATIONS
1000 || ((GET_MODE_SIZE (inmode)
1001 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1002 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
1003 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
1004 / UNITS_PER_WORD)))
1005 #endif
1007 || (REG_P (SUBREG_REG (in))
1008 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1009 /* The case where out is nonzero
1010 is handled differently in the following statement. */
1011 && (out == 0 || subreg_lowpart_p (in))
1012 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1013 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1014 > UNITS_PER_WORD)
1015 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1016 / UNITS_PER_WORD)
1017 != (int) hard_regno_nregs[REGNO (SUBREG_REG (in))]
1018 [GET_MODE (SUBREG_REG (in))]))
1019 || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
1020 || (secondary_reload_class (1, class, inmode, in) != NO_REGS
1021 && (secondary_reload_class (1, class, GET_MODE (SUBREG_REG (in)),
1022 SUBREG_REG (in))
1023 == NO_REGS))
1024 #ifdef CANNOT_CHANGE_MODE_CLASS
1025 || (REG_P (SUBREG_REG (in))
1026 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1027 && REG_CANNOT_CHANGE_MODE_P
1028 (REGNO (SUBREG_REG (in)), GET_MODE (SUBREG_REG (in)), inmode))
1029 #endif
1032 in_subreg_loc = inloc;
1033 inloc = &SUBREG_REG (in);
1034 in = *inloc;
1035 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1036 if (MEM_P (in))
1037 /* This is supposed to happen only for paradoxical subregs made by
1038 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
1039 gcc_assert (GET_MODE_SIZE (GET_MODE (in)) <= GET_MODE_SIZE (inmode));
1040 #endif
1041 inmode = GET_MODE (in);
1044 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1045 either M1 is not valid for R or M2 is wider than a word but we only
1046 need one word to store an M2-sized quantity in R.
1048 However, we must reload the inner reg *as well as* the subreg in
1049 that case. */
1051 /* Similar issue for (SUBREG constant ...) if it was not handled by the
1052 code above. This can happen if SUBREG_BYTE != 0. */
1054 if (in != 0 && reload_inner_reg_of_subreg (in, inmode, 0))
1056 enum reg_class in_class = class;
1058 if (REG_P (SUBREG_REG (in)))
1059 in_class
1060 = find_valid_class (inmode, GET_MODE (SUBREG_REG (in)),
1061 subreg_regno_offset (REGNO (SUBREG_REG (in)),
1062 GET_MODE (SUBREG_REG (in)),
1063 SUBREG_BYTE (in),
1064 GET_MODE (in)),
1065 REGNO (SUBREG_REG (in)));
1067 /* This relies on the fact that emit_reload_insns outputs the
1068 instructions for input reloads of type RELOAD_OTHER in the same
1069 order as the reloads. Thus if the outer reload is also of type
1070 RELOAD_OTHER, we are guaranteed that this inner reload will be
1071 output before the outer reload. */
1072 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
1073 in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
1074 dont_remove_subreg = 1;
1077 /* Similarly for paradoxical and problematical SUBREGs on the output.
1078 Note that there is no reason we need worry about the previous value
1079 of SUBREG_REG (out); even if wider than out,
1080 storing in a subreg is entitled to clobber it all
1081 (except in the case of STRICT_LOW_PART,
1082 and in that case the constraint should label it input-output.) */
1083 if (out != 0 && GET_CODE (out) == SUBREG
1084 && (subreg_lowpart_p (out) || strict_low)
1085 #ifdef CANNOT_CHANGE_MODE_CLASS
1086 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (out)), outmode, class)
1087 #endif
1088 && (CONSTANT_P (SUBREG_REG (out))
1089 || strict_low
1090 || (((REG_P (SUBREG_REG (out))
1091 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1092 || MEM_P (SUBREG_REG (out)))
1093 && ((GET_MODE_SIZE (outmode)
1094 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1095 #ifdef WORD_REGISTER_OPERATIONS
1096 || ((GET_MODE_SIZE (outmode)
1097 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1098 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1099 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1100 / UNITS_PER_WORD)))
1101 #endif
1103 || (REG_P (SUBREG_REG (out))
1104 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1105 && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1106 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1107 > UNITS_PER_WORD)
1108 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1109 / UNITS_PER_WORD)
1110 != (int) hard_regno_nregs[REGNO (SUBREG_REG (out))]
1111 [GET_MODE (SUBREG_REG (out))]))
1112 || ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode)))
1113 || (secondary_reload_class (0, class, outmode, out) != NO_REGS
1114 && (secondary_reload_class (0, class, GET_MODE (SUBREG_REG (out)),
1115 SUBREG_REG (out))
1116 == NO_REGS))
1117 #ifdef CANNOT_CHANGE_MODE_CLASS
1118 || (REG_P (SUBREG_REG (out))
1119 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1120 && REG_CANNOT_CHANGE_MODE_P (REGNO (SUBREG_REG (out)),
1121 GET_MODE (SUBREG_REG (out)),
1122 outmode))
1123 #endif
1126 out_subreg_loc = outloc;
1127 outloc = &SUBREG_REG (out);
1128 out = *outloc;
1129 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1130 gcc_assert (!MEM_P (out)
1131 || GET_MODE_SIZE (GET_MODE (out))
1132 <= GET_MODE_SIZE (outmode));
1133 #endif
1134 outmode = GET_MODE (out);
1137 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1138 either M1 is not valid for R or M2 is wider than a word but we only
1139 need one word to store an M2-sized quantity in R.
1141 However, we must reload the inner reg *as well as* the subreg in
1142 that case. In this case, the inner reg is an in-out reload. */
1144 if (out != 0 && reload_inner_reg_of_subreg (out, outmode, 1))
1146 /* This relies on the fact that emit_reload_insns outputs the
1147 instructions for output reloads of type RELOAD_OTHER in reverse
1148 order of the reloads. Thus if the outer reload is also of type
1149 RELOAD_OTHER, we are guaranteed that this inner reload will be
1150 output after the outer reload. */
1151 dont_remove_subreg = 1;
1152 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1153 &SUBREG_REG (out),
1154 find_valid_class (outmode, GET_MODE (SUBREG_REG (out)),
1155 subreg_regno_offset (REGNO (SUBREG_REG (out)),
1156 GET_MODE (SUBREG_REG (out)),
1157 SUBREG_BYTE (out),
1158 GET_MODE (out)),
1159 REGNO (SUBREG_REG (out))),
1160 VOIDmode, VOIDmode, 0, 0,
1161 opnum, RELOAD_OTHER);
1164 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1165 if (in != 0 && out != 0 && MEM_P (out)
1166 && (REG_P (in) || MEM_P (in))
1167 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1168 dont_share = 1;
1170 /* If IN is a SUBREG of a hard register, make a new REG. This
1171 simplifies some of the cases below. */
1173 if (in != 0 && GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))
1174 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1175 && ! dont_remove_subreg)
1176 in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1178 /* Similarly for OUT. */
1179 if (out != 0 && GET_CODE (out) == SUBREG
1180 && REG_P (SUBREG_REG (out))
1181 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1182 && ! dont_remove_subreg)
1183 out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1185 /* Narrow down the class of register wanted if that is
1186 desirable on this machine for efficiency. */
1187 if (in != 0)
1188 class = PREFERRED_RELOAD_CLASS (in, class);
1190 /* Output reloads may need analogous treatment, different in detail. */
1191 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1192 if (out != 0)
1193 class = PREFERRED_OUTPUT_RELOAD_CLASS (out, class);
1194 #endif
1196 /* Make sure we use a class that can handle the actual pseudo
1197 inside any subreg. For example, on the 386, QImode regs
1198 can appear within SImode subregs. Although GENERAL_REGS
1199 can handle SImode, QImode needs a smaller class. */
1200 #ifdef LIMIT_RELOAD_CLASS
1201 if (in_subreg_loc)
1202 class = LIMIT_RELOAD_CLASS (inmode, class);
1203 else if (in != 0 && GET_CODE (in) == SUBREG)
1204 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
1206 if (out_subreg_loc)
1207 class = LIMIT_RELOAD_CLASS (outmode, class);
1208 if (out != 0 && GET_CODE (out) == SUBREG)
1209 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
1210 #endif
1212 /* Verify that this class is at least possible for the mode that
1213 is specified. */
1214 if (this_insn_is_asm)
1216 enum machine_mode mode;
1217 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1218 mode = inmode;
1219 else
1220 mode = outmode;
1221 if (mode == VOIDmode)
1223 error_for_asm (this_insn, "cannot reload integer constant "
1224 "operand in %<asm%>");
1225 mode = word_mode;
1226 if (in != 0)
1227 inmode = word_mode;
1228 if (out != 0)
1229 outmode = word_mode;
1231 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1232 if (HARD_REGNO_MODE_OK (i, mode)
1233 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], i))
1235 int nregs = hard_regno_nregs[i][mode];
1237 int j;
1238 for (j = 1; j < nregs; j++)
1239 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class], i + j))
1240 break;
1241 if (j == nregs)
1242 break;
1244 if (i == FIRST_PSEUDO_REGISTER)
1246 error_for_asm (this_insn, "impossible register constraint "
1247 "in %<asm%>");
1248 class = ALL_REGS;
1252 /* Optional output reloads are always OK even if we have no register class,
1253 since the function of these reloads is only to have spill_reg_store etc.
1254 set, so that the storing insn can be deleted later. */
1255 gcc_assert (class != NO_REGS
1256 || (optional != 0 && type == RELOAD_FOR_OUTPUT));
1258 i = find_reusable_reload (&in, out, class, type, opnum, dont_share);
1260 if (i == n_reloads)
1262 /* See if we need a secondary reload register to move between CLASS
1263 and IN or CLASS and OUT. Get the icode and push any required reloads
1264 needed for each of them if so. */
1266 if (in != 0)
1267 secondary_in_reload
1268 = push_secondary_reload (1, in, opnum, optional, class, inmode, type,
1269 &secondary_in_icode, NULL);
1270 if (out != 0 && GET_CODE (out) != SCRATCH)
1271 secondary_out_reload
1272 = push_secondary_reload (0, out, opnum, optional, class, outmode,
1273 type, &secondary_out_icode, NULL);
1275 /* We found no existing reload suitable for re-use.
1276 So add an additional reload. */
1278 #ifdef SECONDARY_MEMORY_NEEDED
1279 /* If a memory location is needed for the copy, make one. */
1280 if (in != 0 && (REG_P (in) || GET_CODE (in) == SUBREG)
1281 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
1282 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
1283 class, inmode))
1284 get_secondary_mem (in, inmode, opnum, type);
1285 #endif
1287 i = n_reloads;
1288 rld[i].in = in;
1289 rld[i].out = out;
1290 rld[i].class = class;
1291 rld[i].inmode = inmode;
1292 rld[i].outmode = outmode;
1293 rld[i].reg_rtx = 0;
1294 rld[i].optional = optional;
1295 rld[i].inc = 0;
1296 rld[i].nocombine = 0;
1297 rld[i].in_reg = inloc ? *inloc : 0;
1298 rld[i].out_reg = outloc ? *outloc : 0;
1299 rld[i].opnum = opnum;
1300 rld[i].when_needed = type;
1301 rld[i].secondary_in_reload = secondary_in_reload;
1302 rld[i].secondary_out_reload = secondary_out_reload;
1303 rld[i].secondary_in_icode = secondary_in_icode;
1304 rld[i].secondary_out_icode = secondary_out_icode;
1305 rld[i].secondary_p = 0;
1307 n_reloads++;
1309 #ifdef SECONDARY_MEMORY_NEEDED
1310 if (out != 0 && (REG_P (out) || GET_CODE (out) == SUBREG)
1311 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
1312 && SECONDARY_MEMORY_NEEDED (class,
1313 REGNO_REG_CLASS (reg_or_subregno (out)),
1314 outmode))
1315 get_secondary_mem (out, outmode, opnum, type);
1316 #endif
1318 else
1320 /* We are reusing an existing reload,
1321 but we may have additional information for it.
1322 For example, we may now have both IN and OUT
1323 while the old one may have just one of them. */
1325 /* The modes can be different. If they are, we want to reload in
1326 the larger mode, so that the value is valid for both modes. */
1327 if (inmode != VOIDmode
1328 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1329 rld[i].inmode = inmode;
1330 if (outmode != VOIDmode
1331 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1332 rld[i].outmode = outmode;
1333 if (in != 0)
1335 rtx in_reg = inloc ? *inloc : 0;
1336 /* If we merge reloads for two distinct rtl expressions that
1337 are identical in content, there might be duplicate address
1338 reloads. Remove the extra set now, so that if we later find
1339 that we can inherit this reload, we can get rid of the
1340 address reloads altogether.
1342 Do not do this if both reloads are optional since the result
1343 would be an optional reload which could potentially leave
1344 unresolved address replacements.
1346 It is not sufficient to call transfer_replacements since
1347 choose_reload_regs will remove the replacements for address
1348 reloads of inherited reloads which results in the same
1349 problem. */
1350 if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1351 && ! (rld[i].optional && optional))
1353 /* We must keep the address reload with the lower operand
1354 number alive. */
1355 if (opnum > rld[i].opnum)
1357 remove_address_replacements (in);
1358 in = rld[i].in;
1359 in_reg = rld[i].in_reg;
1361 else
1362 remove_address_replacements (rld[i].in);
1364 rld[i].in = in;
1365 rld[i].in_reg = in_reg;
1367 if (out != 0)
1369 rld[i].out = out;
1370 rld[i].out_reg = outloc ? *outloc : 0;
1372 if (reg_class_subset_p (class, rld[i].class))
1373 rld[i].class = class;
1374 rld[i].optional &= optional;
1375 if (MERGE_TO_OTHER (type, rld[i].when_needed,
1376 opnum, rld[i].opnum))
1377 rld[i].when_needed = RELOAD_OTHER;
1378 rld[i].opnum = MIN (rld[i].opnum, opnum);
1381 /* If the ostensible rtx being reloaded differs from the rtx found
1382 in the location to substitute, this reload is not safe to combine
1383 because we cannot reliably tell whether it appears in the insn. */
1385 if (in != 0 && in != *inloc)
1386 rld[i].nocombine = 1;
1388 #if 0
1389 /* This was replaced by changes in find_reloads_address_1 and the new
1390 function inc_for_reload, which go with a new meaning of reload_inc. */
1392 /* If this is an IN/OUT reload in an insn that sets the CC,
1393 it must be for an autoincrement. It doesn't work to store
1394 the incremented value after the insn because that would clobber the CC.
1395 So we must do the increment of the value reloaded from,
1396 increment it, store it back, then decrement again. */
1397 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1399 out = 0;
1400 rld[i].out = 0;
1401 rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1402 /* If we did not find a nonzero amount-to-increment-by,
1403 that contradicts the belief that IN is being incremented
1404 in an address in this insn. */
1405 gcc_assert (rld[i].inc != 0);
1407 #endif
1409 /* If we will replace IN and OUT with the reload-reg,
1410 record where they are located so that substitution need
1411 not do a tree walk. */
1413 if (replace_reloads)
1415 if (inloc != 0)
1417 struct replacement *r = &replacements[n_replacements++];
1418 r->what = i;
1419 r->subreg_loc = in_subreg_loc;
1420 r->where = inloc;
1421 r->mode = inmode;
1423 if (outloc != 0 && outloc != inloc)
1425 struct replacement *r = &replacements[n_replacements++];
1426 r->what = i;
1427 r->where = outloc;
1428 r->subreg_loc = out_subreg_loc;
1429 r->mode = outmode;
1433 /* If this reload is just being introduced and it has both
1434 an incoming quantity and an outgoing quantity that are
1435 supposed to be made to match, see if either one of the two
1436 can serve as the place to reload into.
1438 If one of them is acceptable, set rld[i].reg_rtx
1439 to that one. */
1441 if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1443 rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1444 inmode, outmode,
1445 rld[i].class, i,
1446 earlyclobber_operand_p (out));
1448 /* If the outgoing register already contains the same value
1449 as the incoming one, we can dispense with loading it.
1450 The easiest way to tell the caller that is to give a phony
1451 value for the incoming operand (same as outgoing one). */
1452 if (rld[i].reg_rtx == out
1453 && (REG_P (in) || CONSTANT_P (in))
1454 && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
1455 static_reload_reg_p, i, inmode))
1456 rld[i].in = out;
1459 /* If this is an input reload and the operand contains a register that
1460 dies in this insn and is used nowhere else, see if it is the right class
1461 to be used for this reload. Use it if so. (This occurs most commonly
1462 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1463 this if it is also an output reload that mentions the register unless
1464 the output is a SUBREG that clobbers an entire register.
1466 Note that the operand might be one of the spill regs, if it is a
1467 pseudo reg and we are in a block where spilling has not taken place.
1468 But if there is no spilling in this block, that is OK.
1469 An explicitly used hard reg cannot be a spill reg. */
1471 if (rld[i].reg_rtx == 0 && in != 0 && hard_regs_live_known)
1473 rtx note;
1474 int regno;
1475 enum machine_mode rel_mode = inmode;
1477 if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1478 rel_mode = outmode;
1480 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1481 if (REG_NOTE_KIND (note) == REG_DEAD
1482 && REG_P (XEXP (note, 0))
1483 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1484 && reg_mentioned_p (XEXP (note, 0), in)
1485 /* Check that we don't use a hardreg for an uninitialized
1486 pseudo. See also find_dummy_reload(). */
1487 && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1488 || ! bitmap_bit_p (ENTRY_BLOCK_PTR->il.rtl->global_live_at_end,
1489 ORIGINAL_REGNO (XEXP (note, 0))))
1490 && ! refers_to_regno_for_reload_p (regno,
1491 (regno
1492 + hard_regno_nregs[regno]
1493 [rel_mode]),
1494 PATTERN (this_insn), inloc)
1495 /* If this is also an output reload, IN cannot be used as
1496 the reload register if it is set in this insn unless IN
1497 is also OUT. */
1498 && (out == 0 || in == out
1499 || ! hard_reg_set_here_p (regno,
1500 (regno
1501 + hard_regno_nregs[regno]
1502 [rel_mode]),
1503 PATTERN (this_insn)))
1504 /* ??? Why is this code so different from the previous?
1505 Is there any simple coherent way to describe the two together?
1506 What's going on here. */
1507 && (in != out
1508 || (GET_CODE (in) == SUBREG
1509 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1510 / UNITS_PER_WORD)
1511 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1512 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1513 /* Make sure the operand fits in the reg that dies. */
1514 && (GET_MODE_SIZE (rel_mode)
1515 <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1516 && HARD_REGNO_MODE_OK (regno, inmode)
1517 && HARD_REGNO_MODE_OK (regno, outmode))
1519 unsigned int offs;
1520 unsigned int nregs = MAX (hard_regno_nregs[regno][inmode],
1521 hard_regno_nregs[regno][outmode]);
1523 for (offs = 0; offs < nregs; offs++)
1524 if (fixed_regs[regno + offs]
1525 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1526 regno + offs))
1527 break;
1529 if (offs == nregs
1530 && (! (refers_to_regno_for_reload_p
1531 (regno, (regno + hard_regno_nregs[regno][inmode]),
1532 in, (rtx *)0))
1533 || can_reload_into (in, regno, inmode)))
1535 rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1536 break;
1541 if (out)
1542 output_reloadnum = i;
1544 return i;
1547 /* Record an additional place we must replace a value
1548 for which we have already recorded a reload.
1549 RELOADNUM is the value returned by push_reload
1550 when the reload was recorded.
1551 This is used in insn patterns that use match_dup. */
1553 static void
1554 push_replacement (rtx *loc, int reloadnum, enum machine_mode mode)
1556 if (replace_reloads)
1558 struct replacement *r = &replacements[n_replacements++];
1559 r->what = reloadnum;
1560 r->where = loc;
1561 r->subreg_loc = 0;
1562 r->mode = mode;
1566 /* Duplicate any replacement we have recorded to apply at
1567 location ORIG_LOC to also be performed at DUP_LOC.
1568 This is used in insn patterns that use match_dup. */
1570 static void
1571 dup_replacements (rtx *dup_loc, rtx *orig_loc)
1573 int i, n = n_replacements;
1575 for (i = 0; i < n; i++)
1577 struct replacement *r = &replacements[i];
1578 if (r->where == orig_loc)
1579 push_replacement (dup_loc, r->what, r->mode);
1583 /* Transfer all replacements that used to be in reload FROM to be in
1584 reload TO. */
1586 void
1587 transfer_replacements (int to, int from)
1589 int i;
1591 for (i = 0; i < n_replacements; i++)
1592 if (replacements[i].what == from)
1593 replacements[i].what = to;
1596 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1597 or a subpart of it. If we have any replacements registered for IN_RTX,
1598 cancel the reloads that were supposed to load them.
1599 Return nonzero if we canceled any reloads. */
1601 remove_address_replacements (rtx in_rtx)
1603 int i, j;
1604 char reload_flags[MAX_RELOADS];
1605 int something_changed = 0;
1607 memset (reload_flags, 0, sizeof reload_flags);
1608 for (i = 0, j = 0; i < n_replacements; i++)
1610 if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1611 reload_flags[replacements[i].what] |= 1;
1612 else
1614 replacements[j++] = replacements[i];
1615 reload_flags[replacements[i].what] |= 2;
1618 /* Note that the following store must be done before the recursive calls. */
1619 n_replacements = j;
1621 for (i = n_reloads - 1; i >= 0; i--)
1623 if (reload_flags[i] == 1)
1625 deallocate_reload_reg (i);
1626 remove_address_replacements (rld[i].in);
1627 rld[i].in = 0;
1628 something_changed = 1;
1631 return something_changed;
1634 /* If there is only one output reload, and it is not for an earlyclobber
1635 operand, try to combine it with a (logically unrelated) input reload
1636 to reduce the number of reload registers needed.
1638 This is safe if the input reload does not appear in
1639 the value being output-reloaded, because this implies
1640 it is not needed any more once the original insn completes.
1642 If that doesn't work, see we can use any of the registers that
1643 die in this insn as a reload register. We can if it is of the right
1644 class and does not appear in the value being output-reloaded. */
1646 static void
1647 combine_reloads (void)
1649 int i;
1650 int output_reload = -1;
1651 int secondary_out = -1;
1652 rtx note;
1654 /* Find the output reload; return unless there is exactly one
1655 and that one is mandatory. */
1657 for (i = 0; i < n_reloads; i++)
1658 if (rld[i].out != 0)
1660 if (output_reload >= 0)
1661 return;
1662 output_reload = i;
1665 if (output_reload < 0 || rld[output_reload].optional)
1666 return;
1668 /* An input-output reload isn't combinable. */
1670 if (rld[output_reload].in != 0)
1671 return;
1673 /* If this reload is for an earlyclobber operand, we can't do anything. */
1674 if (earlyclobber_operand_p (rld[output_reload].out))
1675 return;
1677 /* If there is a reload for part of the address of this operand, we would
1678 need to chnage it to RELOAD_FOR_OTHER_ADDRESS. But that would extend
1679 its life to the point where doing this combine would not lower the
1680 number of spill registers needed. */
1681 for (i = 0; i < n_reloads; i++)
1682 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
1683 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
1684 && rld[i].opnum == rld[output_reload].opnum)
1685 return;
1687 /* Check each input reload; can we combine it? */
1689 for (i = 0; i < n_reloads; i++)
1690 if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1691 /* Life span of this reload must not extend past main insn. */
1692 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1693 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1694 && rld[i].when_needed != RELOAD_OTHER
1695 && (CLASS_MAX_NREGS (rld[i].class, rld[i].inmode)
1696 == CLASS_MAX_NREGS (rld[output_reload].class,
1697 rld[output_reload].outmode))
1698 && rld[i].inc == 0
1699 && rld[i].reg_rtx == 0
1700 #ifdef SECONDARY_MEMORY_NEEDED
1701 /* Don't combine two reloads with different secondary
1702 memory locations. */
1703 && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1704 || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1705 || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1706 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1707 #endif
1708 && (SMALL_REGISTER_CLASSES
1709 ? (rld[i].class == rld[output_reload].class)
1710 : (reg_class_subset_p (rld[i].class,
1711 rld[output_reload].class)
1712 || reg_class_subset_p (rld[output_reload].class,
1713 rld[i].class)))
1714 && (MATCHES (rld[i].in, rld[output_reload].out)
1715 /* Args reversed because the first arg seems to be
1716 the one that we imagine being modified
1717 while the second is the one that might be affected. */
1718 || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1719 rld[i].in)
1720 /* However, if the input is a register that appears inside
1721 the output, then we also can't share.
1722 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1723 If the same reload reg is used for both reg 69 and the
1724 result to be stored in memory, then that result
1725 will clobber the address of the memory ref. */
1726 && ! (REG_P (rld[i].in)
1727 && reg_overlap_mentioned_for_reload_p (rld[i].in,
1728 rld[output_reload].out))))
1729 && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode,
1730 rld[i].when_needed != RELOAD_FOR_INPUT)
1731 && (reg_class_size[(int) rld[i].class]
1732 || SMALL_REGISTER_CLASSES)
1733 /* We will allow making things slightly worse by combining an
1734 input and an output, but no worse than that. */
1735 && (rld[i].when_needed == RELOAD_FOR_INPUT
1736 || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1738 int j;
1740 /* We have found a reload to combine with! */
1741 rld[i].out = rld[output_reload].out;
1742 rld[i].out_reg = rld[output_reload].out_reg;
1743 rld[i].outmode = rld[output_reload].outmode;
1744 /* Mark the old output reload as inoperative. */
1745 rld[output_reload].out = 0;
1746 /* The combined reload is needed for the entire insn. */
1747 rld[i].when_needed = RELOAD_OTHER;
1748 /* If the output reload had a secondary reload, copy it. */
1749 if (rld[output_reload].secondary_out_reload != -1)
1751 rld[i].secondary_out_reload
1752 = rld[output_reload].secondary_out_reload;
1753 rld[i].secondary_out_icode
1754 = rld[output_reload].secondary_out_icode;
1757 #ifdef SECONDARY_MEMORY_NEEDED
1758 /* Copy any secondary MEM. */
1759 if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1760 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1761 = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1762 #endif
1763 /* If required, minimize the register class. */
1764 if (reg_class_subset_p (rld[output_reload].class,
1765 rld[i].class))
1766 rld[i].class = rld[output_reload].class;
1768 /* Transfer all replacements from the old reload to the combined. */
1769 for (j = 0; j < n_replacements; j++)
1770 if (replacements[j].what == output_reload)
1771 replacements[j].what = i;
1773 return;
1776 /* If this insn has only one operand that is modified or written (assumed
1777 to be the first), it must be the one corresponding to this reload. It
1778 is safe to use anything that dies in this insn for that output provided
1779 that it does not occur in the output (we already know it isn't an
1780 earlyclobber. If this is an asm insn, give up. */
1782 if (INSN_CODE (this_insn) == -1)
1783 return;
1785 for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1786 if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1787 || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1788 return;
1790 /* See if some hard register that dies in this insn and is not used in
1791 the output is the right class. Only works if the register we pick
1792 up can fully hold our output reload. */
1793 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1794 if (REG_NOTE_KIND (note) == REG_DEAD
1795 && REG_P (XEXP (note, 0))
1796 && ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1797 rld[output_reload].out)
1798 && REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1799 && HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1800 && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].class],
1801 REGNO (XEXP (note, 0)))
1802 && (hard_regno_nregs[REGNO (XEXP (note, 0))][rld[output_reload].outmode]
1803 <= hard_regno_nregs[REGNO (XEXP (note, 0))][GET_MODE (XEXP (note, 0))])
1804 /* Ensure that a secondary or tertiary reload for this output
1805 won't want this register. */
1806 && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1807 || (! (TEST_HARD_REG_BIT
1808 (reg_class_contents[(int) rld[secondary_out].class],
1809 REGNO (XEXP (note, 0))))
1810 && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1811 || ! (TEST_HARD_REG_BIT
1812 (reg_class_contents[(int) rld[secondary_out].class],
1813 REGNO (XEXP (note, 0)))))))
1814 && ! fixed_regs[REGNO (XEXP (note, 0))])
1816 rld[output_reload].reg_rtx
1817 = gen_rtx_REG (rld[output_reload].outmode,
1818 REGNO (XEXP (note, 0)));
1819 return;
1823 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1824 See if one of IN and OUT is a register that may be used;
1825 this is desirable since a spill-register won't be needed.
1826 If so, return the register rtx that proves acceptable.
1828 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1829 CLASS is the register class required for the reload.
1831 If FOR_REAL is >= 0, it is the number of the reload,
1832 and in some cases when it can be discovered that OUT doesn't need
1833 to be computed, clear out rld[FOR_REAL].out.
1835 If FOR_REAL is -1, this should not be done, because this call
1836 is just to see if a register can be found, not to find and install it.
1838 EARLYCLOBBER is nonzero if OUT is an earlyclobber operand. This
1839 puts an additional constraint on being able to use IN for OUT since
1840 IN must not appear elsewhere in the insn (it is assumed that IN itself
1841 is safe from the earlyclobber). */
1843 static rtx
1844 find_dummy_reload (rtx real_in, rtx real_out, rtx *inloc, rtx *outloc,
1845 enum machine_mode inmode, enum machine_mode outmode,
1846 enum reg_class class, int for_real, int earlyclobber)
1848 rtx in = real_in;
1849 rtx out = real_out;
1850 int in_offset = 0;
1851 int out_offset = 0;
1852 rtx value = 0;
1854 /* If operands exceed a word, we can't use either of them
1855 unless they have the same size. */
1856 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1857 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1858 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1859 return 0;
1861 /* Note that {in,out}_offset are needed only when 'in' or 'out'
1862 respectively refers to a hard register. */
1864 /* Find the inside of any subregs. */
1865 while (GET_CODE (out) == SUBREG)
1867 if (REG_P (SUBREG_REG (out))
1868 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1869 out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
1870 GET_MODE (SUBREG_REG (out)),
1871 SUBREG_BYTE (out),
1872 GET_MODE (out));
1873 out = SUBREG_REG (out);
1875 while (GET_CODE (in) == SUBREG)
1877 if (REG_P (SUBREG_REG (in))
1878 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
1879 in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
1880 GET_MODE (SUBREG_REG (in)),
1881 SUBREG_BYTE (in),
1882 GET_MODE (in));
1883 in = SUBREG_REG (in);
1886 /* Narrow down the reg class, the same way push_reload will;
1887 otherwise we might find a dummy now, but push_reload won't. */
1888 class = PREFERRED_RELOAD_CLASS (in, class);
1890 /* See if OUT will do. */
1891 if (REG_P (out)
1892 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1894 unsigned int regno = REGNO (out) + out_offset;
1895 unsigned int nwords = hard_regno_nregs[regno][outmode];
1896 rtx saved_rtx;
1898 /* When we consider whether the insn uses OUT,
1899 ignore references within IN. They don't prevent us
1900 from copying IN into OUT, because those refs would
1901 move into the insn that reloads IN.
1903 However, we only ignore IN in its role as this reload.
1904 If the insn uses IN elsewhere and it contains OUT,
1905 that counts. We can't be sure it's the "same" operand
1906 so it might not go through this reload. */
1907 saved_rtx = *inloc;
1908 *inloc = const0_rtx;
1910 if (regno < FIRST_PSEUDO_REGISTER
1911 && HARD_REGNO_MODE_OK (regno, outmode)
1912 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1913 PATTERN (this_insn), outloc))
1915 unsigned int i;
1917 for (i = 0; i < nwords; i++)
1918 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1919 regno + i))
1920 break;
1922 if (i == nwords)
1924 if (REG_P (real_out))
1925 value = real_out;
1926 else
1927 value = gen_rtx_REG (outmode, regno);
1931 *inloc = saved_rtx;
1934 /* Consider using IN if OUT was not acceptable
1935 or if OUT dies in this insn (like the quotient in a divmod insn).
1936 We can't use IN unless it is dies in this insn,
1937 which means we must know accurately which hard regs are live.
1938 Also, the result can't go in IN if IN is used within OUT,
1939 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
1940 if (hard_regs_live_known
1941 && REG_P (in)
1942 && REGNO (in) < FIRST_PSEUDO_REGISTER
1943 && (value == 0
1944 || find_reg_note (this_insn, REG_UNUSED, real_out))
1945 && find_reg_note (this_insn, REG_DEAD, real_in)
1946 && !fixed_regs[REGNO (in)]
1947 && HARD_REGNO_MODE_OK (REGNO (in),
1948 /* The only case where out and real_out might
1949 have different modes is where real_out
1950 is a subreg, and in that case, out
1951 has a real mode. */
1952 (GET_MODE (out) != VOIDmode
1953 ? GET_MODE (out) : outmode))
1954 /* But only do all this if we can be sure, that this input
1955 operand doesn't correspond with an uninitialized pseudoreg.
1956 global can assign some hardreg to it, which is the same as
1957 a different pseudo also currently live (as it can ignore the
1958 conflict). So we never must introduce writes to such hardregs,
1959 as they would clobber the other live pseudo using the same.
1960 See also PR20973. */
1961 && (ORIGINAL_REGNO (in) < FIRST_PSEUDO_REGISTER
1962 || ! bitmap_bit_p (ENTRY_BLOCK_PTR->il.rtl->global_live_at_end,
1963 ORIGINAL_REGNO (in))))
1965 unsigned int regno = REGNO (in) + in_offset;
1966 unsigned int nwords = hard_regno_nregs[regno][inmode];
1968 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
1969 && ! hard_reg_set_here_p (regno, regno + nwords,
1970 PATTERN (this_insn))
1971 && (! earlyclobber
1972 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
1973 PATTERN (this_insn), inloc)))
1975 unsigned int i;
1977 for (i = 0; i < nwords; i++)
1978 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1979 regno + i))
1980 break;
1982 if (i == nwords)
1984 /* If we were going to use OUT as the reload reg
1985 and changed our mind, it means OUT is a dummy that
1986 dies here. So don't bother copying value to it. */
1987 if (for_real >= 0 && value == real_out)
1988 rld[for_real].out = 0;
1989 if (REG_P (real_in))
1990 value = real_in;
1991 else
1992 value = gen_rtx_REG (inmode, regno);
1997 return value;
2000 /* This page contains subroutines used mainly for determining
2001 whether the IN or an OUT of a reload can serve as the
2002 reload register. */
2004 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
2007 earlyclobber_operand_p (rtx x)
2009 int i;
2011 for (i = 0; i < n_earlyclobbers; i++)
2012 if (reload_earlyclobbers[i] == x)
2013 return 1;
2015 return 0;
2018 /* Return 1 if expression X alters a hard reg in the range
2019 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
2020 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
2021 X should be the body of an instruction. */
2023 static int
2024 hard_reg_set_here_p (unsigned int beg_regno, unsigned int end_regno, rtx x)
2026 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2028 rtx op0 = SET_DEST (x);
2030 while (GET_CODE (op0) == SUBREG)
2031 op0 = SUBREG_REG (op0);
2032 if (REG_P (op0))
2034 unsigned int r = REGNO (op0);
2036 /* See if this reg overlaps range under consideration. */
2037 if (r < end_regno
2038 && r + hard_regno_nregs[r][GET_MODE (op0)] > beg_regno)
2039 return 1;
2042 else if (GET_CODE (x) == PARALLEL)
2044 int i = XVECLEN (x, 0) - 1;
2046 for (; i >= 0; i--)
2047 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
2048 return 1;
2051 return 0;
2054 /* Return 1 if ADDR is a valid memory address for mode MODE,
2055 and check that each pseudo reg has the proper kind of
2056 hard reg. */
2059 strict_memory_address_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx addr)
2061 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2062 return 0;
2064 win:
2065 return 1;
2068 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2069 if they are the same hard reg, and has special hacks for
2070 autoincrement and autodecrement.
2071 This is specifically intended for find_reloads to use
2072 in determining whether two operands match.
2073 X is the operand whose number is the lower of the two.
2075 The value is 2 if Y contains a pre-increment that matches
2076 a non-incrementing address in X. */
2078 /* ??? To be completely correct, we should arrange to pass
2079 for X the output operand and for Y the input operand.
2080 For now, we assume that the output operand has the lower number
2081 because that is natural in (SET output (... input ...)). */
2084 operands_match_p (rtx x, rtx y)
2086 int i;
2087 RTX_CODE code = GET_CODE (x);
2088 const char *fmt;
2089 int success_2;
2091 if (x == y)
2092 return 1;
2093 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
2094 && (REG_P (y) || (GET_CODE (y) == SUBREG
2095 && REG_P (SUBREG_REG (y)))))
2097 int j;
2099 if (code == SUBREG)
2101 i = REGNO (SUBREG_REG (x));
2102 if (i >= FIRST_PSEUDO_REGISTER)
2103 goto slow;
2104 i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2105 GET_MODE (SUBREG_REG (x)),
2106 SUBREG_BYTE (x),
2107 GET_MODE (x));
2109 else
2110 i = REGNO (x);
2112 if (GET_CODE (y) == SUBREG)
2114 j = REGNO (SUBREG_REG (y));
2115 if (j >= FIRST_PSEUDO_REGISTER)
2116 goto slow;
2117 j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2118 GET_MODE (SUBREG_REG (y)),
2119 SUBREG_BYTE (y),
2120 GET_MODE (y));
2122 else
2123 j = REGNO (y);
2125 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
2126 multiple hard register group of scalar integer registers, so that
2127 for example (reg:DI 0) and (reg:SI 1) will be considered the same
2128 register. */
2129 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2130 && SCALAR_INT_MODE_P (GET_MODE (x))
2131 && i < FIRST_PSEUDO_REGISTER)
2132 i += hard_regno_nregs[i][GET_MODE (x)] - 1;
2133 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2134 && SCALAR_INT_MODE_P (GET_MODE (y))
2135 && j < FIRST_PSEUDO_REGISTER)
2136 j += hard_regno_nregs[j][GET_MODE (y)] - 1;
2138 return i == j;
2140 /* If two operands must match, because they are really a single
2141 operand of an assembler insn, then two postincrements are invalid
2142 because the assembler insn would increment only once.
2143 On the other hand, a postincrement matches ordinary indexing
2144 if the postincrement is the output operand. */
2145 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2146 return operands_match_p (XEXP (x, 0), y);
2147 /* Two preincrements are invalid
2148 because the assembler insn would increment only once.
2149 On the other hand, a preincrement matches ordinary indexing
2150 if the preincrement is the input operand.
2151 In this case, return 2, since some callers need to do special
2152 things when this happens. */
2153 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2154 || GET_CODE (y) == PRE_MODIFY)
2155 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2157 slow:
2159 /* Now we have disposed of all the cases in which different rtx codes
2160 can match. */
2161 if (code != GET_CODE (y))
2162 return 0;
2164 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2165 if (GET_MODE (x) != GET_MODE (y))
2166 return 0;
2168 switch (code)
2170 case CONST_INT:
2171 case CONST_DOUBLE:
2172 return 0;
2174 case LABEL_REF:
2175 return XEXP (x, 0) == XEXP (y, 0);
2176 case SYMBOL_REF:
2177 return XSTR (x, 0) == XSTR (y, 0);
2179 default:
2180 break;
2183 /* Compare the elements. If any pair of corresponding elements
2184 fail to match, return 0 for the whole things. */
2186 success_2 = 0;
2187 fmt = GET_RTX_FORMAT (code);
2188 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2190 int val, j;
2191 switch (fmt[i])
2193 case 'w':
2194 if (XWINT (x, i) != XWINT (y, i))
2195 return 0;
2196 break;
2198 case 'i':
2199 if (XINT (x, i) != XINT (y, i))
2200 return 0;
2201 break;
2203 case 'e':
2204 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2205 if (val == 0)
2206 return 0;
2207 /* If any subexpression returns 2,
2208 we should return 2 if we are successful. */
2209 if (val == 2)
2210 success_2 = 1;
2211 break;
2213 case '0':
2214 break;
2216 case 'E':
2217 if (XVECLEN (x, i) != XVECLEN (y, i))
2218 return 0;
2219 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2221 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2222 if (val == 0)
2223 return 0;
2224 if (val == 2)
2225 success_2 = 1;
2227 break;
2229 /* It is believed that rtx's at this level will never
2230 contain anything but integers and other rtx's,
2231 except for within LABEL_REFs and SYMBOL_REFs. */
2232 default:
2233 gcc_unreachable ();
2236 return 1 + success_2;
2239 /* Describe the range of registers or memory referenced by X.
2240 If X is a register, set REG_FLAG and put the first register
2241 number into START and the last plus one into END.
2242 If X is a memory reference, put a base address into BASE
2243 and a range of integer offsets into START and END.
2244 If X is pushing on the stack, we can assume it causes no trouble,
2245 so we set the SAFE field. */
2247 static struct decomposition
2248 decompose (rtx x)
2250 struct decomposition val;
2251 int all_const = 0;
2253 memset (&val, 0, sizeof (val));
2255 switch (GET_CODE (x))
2257 case MEM:
2259 rtx base = NULL_RTX, offset = 0;
2260 rtx addr = XEXP (x, 0);
2262 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2263 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2265 val.base = XEXP (addr, 0);
2266 val.start = -GET_MODE_SIZE (GET_MODE (x));
2267 val.end = GET_MODE_SIZE (GET_MODE (x));
2268 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2269 return val;
2272 if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2274 if (GET_CODE (XEXP (addr, 1)) == PLUS
2275 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2276 && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2278 val.base = XEXP (addr, 0);
2279 val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2280 val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
2281 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2282 return val;
2286 if (GET_CODE (addr) == CONST)
2288 addr = XEXP (addr, 0);
2289 all_const = 1;
2291 if (GET_CODE (addr) == PLUS)
2293 if (CONSTANT_P (XEXP (addr, 0)))
2295 base = XEXP (addr, 1);
2296 offset = XEXP (addr, 0);
2298 else if (CONSTANT_P (XEXP (addr, 1)))
2300 base = XEXP (addr, 0);
2301 offset = XEXP (addr, 1);
2305 if (offset == 0)
2307 base = addr;
2308 offset = const0_rtx;
2310 if (GET_CODE (offset) == CONST)
2311 offset = XEXP (offset, 0);
2312 if (GET_CODE (offset) == PLUS)
2314 if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
2316 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2317 offset = XEXP (offset, 0);
2319 else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
2321 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2322 offset = XEXP (offset, 1);
2324 else
2326 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2327 offset = const0_rtx;
2330 else if (GET_CODE (offset) != CONST_INT)
2332 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2333 offset = const0_rtx;
2336 if (all_const && GET_CODE (base) == PLUS)
2337 base = gen_rtx_CONST (GET_MODE (base), base);
2339 gcc_assert (GET_CODE (offset) == CONST_INT);
2341 val.start = INTVAL (offset);
2342 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2343 val.base = base;
2345 break;
2347 case REG:
2348 val.reg_flag = 1;
2349 val.start = true_regnum (x);
2350 if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
2352 /* A pseudo with no hard reg. */
2353 val.start = REGNO (x);
2354 val.end = val.start + 1;
2356 else
2357 /* A hard reg. */
2358 val.end = val.start + hard_regno_nregs[val.start][GET_MODE (x)];
2359 break;
2361 case SUBREG:
2362 if (!REG_P (SUBREG_REG (x)))
2363 /* This could be more precise, but it's good enough. */
2364 return decompose (SUBREG_REG (x));
2365 val.reg_flag = 1;
2366 val.start = true_regnum (x);
2367 if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
2368 return decompose (SUBREG_REG (x));
2369 else
2370 /* A hard reg. */
2371 val.end = val.start + hard_regno_nregs[val.start][GET_MODE (x)];
2372 break;
2374 case SCRATCH:
2375 /* This hasn't been assigned yet, so it can't conflict yet. */
2376 val.safe = 1;
2377 break;
2379 default:
2380 gcc_assert (CONSTANT_P (x));
2381 val.safe = 1;
2382 break;
2384 return val;
2387 /* Return 1 if altering Y will not modify the value of X.
2388 Y is also described by YDATA, which should be decompose (Y). */
2390 static int
2391 immune_p (rtx x, rtx y, struct decomposition ydata)
2393 struct decomposition xdata;
2395 if (ydata.reg_flag)
2396 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*) 0);
2397 if (ydata.safe)
2398 return 1;
2400 gcc_assert (MEM_P (y));
2401 /* If Y is memory and X is not, Y can't affect X. */
2402 if (!MEM_P (x))
2403 return 1;
2405 xdata = decompose (x);
2407 if (! rtx_equal_p (xdata.base, ydata.base))
2409 /* If bases are distinct symbolic constants, there is no overlap. */
2410 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2411 return 1;
2412 /* Constants and stack slots never overlap. */
2413 if (CONSTANT_P (xdata.base)
2414 && (ydata.base == frame_pointer_rtx
2415 || ydata.base == hard_frame_pointer_rtx
2416 || ydata.base == stack_pointer_rtx))
2417 return 1;
2418 if (CONSTANT_P (ydata.base)
2419 && (xdata.base == frame_pointer_rtx
2420 || xdata.base == hard_frame_pointer_rtx
2421 || xdata.base == stack_pointer_rtx))
2422 return 1;
2423 /* If either base is variable, we don't know anything. */
2424 return 0;
2427 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2430 /* Similar, but calls decompose. */
2433 safe_from_earlyclobber (rtx op, rtx clobber)
2435 struct decomposition early_data;
2437 early_data = decompose (clobber);
2438 return immune_p (op, clobber, early_data);
2441 /* Main entry point of this file: search the body of INSN
2442 for values that need reloading and record them with push_reload.
2443 REPLACE nonzero means record also where the values occur
2444 so that subst_reloads can be used.
2446 IND_LEVELS says how many levels of indirection are supported by this
2447 machine; a value of zero means that a memory reference is not a valid
2448 memory address.
2450 LIVE_KNOWN says we have valid information about which hard
2451 regs are live at each point in the program; this is true when
2452 we are called from global_alloc but false when stupid register
2453 allocation has been done.
2455 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2456 which is nonnegative if the reg has been commandeered for reloading into.
2457 It is copied into STATIC_RELOAD_REG_P and referenced from there
2458 by various subroutines.
2460 Return TRUE if some operands need to be changed, because of swapping
2461 commutative operands, reg_equiv_address substitution, or whatever. */
2464 find_reloads (rtx insn, int replace, int ind_levels, int live_known,
2465 short *reload_reg_p)
2467 int insn_code_number;
2468 int i, j;
2469 int noperands;
2470 /* These start out as the constraints for the insn
2471 and they are chewed up as we consider alternatives. */
2472 char *constraints[MAX_RECOG_OPERANDS];
2473 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2474 a register. */
2475 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2476 char pref_or_nothing[MAX_RECOG_OPERANDS];
2477 /* Nonzero for a MEM operand whose entire address needs a reload.
2478 May be -1 to indicate the entire address may or may not need a reload. */
2479 int address_reloaded[MAX_RECOG_OPERANDS];
2480 /* Nonzero for an address operand that needs to be completely reloaded.
2481 May be -1 to indicate the entire operand may or may not need a reload. */
2482 int address_operand_reloaded[MAX_RECOG_OPERANDS];
2483 /* Value of enum reload_type to use for operand. */
2484 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2485 /* Value of enum reload_type to use within address of operand. */
2486 enum reload_type address_type[MAX_RECOG_OPERANDS];
2487 /* Save the usage of each operand. */
2488 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2489 int no_input_reloads = 0, no_output_reloads = 0;
2490 int n_alternatives;
2491 int this_alternative[MAX_RECOG_OPERANDS];
2492 char this_alternative_match_win[MAX_RECOG_OPERANDS];
2493 char this_alternative_win[MAX_RECOG_OPERANDS];
2494 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2495 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2496 int this_alternative_matches[MAX_RECOG_OPERANDS];
2497 int swapped;
2498 int goal_alternative[MAX_RECOG_OPERANDS];
2499 int this_alternative_number;
2500 int goal_alternative_number = 0;
2501 int operand_reloadnum[MAX_RECOG_OPERANDS];
2502 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2503 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2504 char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2505 char goal_alternative_win[MAX_RECOG_OPERANDS];
2506 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2507 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2508 int goal_alternative_swapped;
2509 int best;
2510 int commutative;
2511 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2512 rtx substed_operand[MAX_RECOG_OPERANDS];
2513 rtx body = PATTERN (insn);
2514 rtx set = single_set (insn);
2515 int goal_earlyclobber = 0, this_earlyclobber;
2516 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2517 int retval = 0;
2519 this_insn = insn;
2520 n_reloads = 0;
2521 n_replacements = 0;
2522 n_earlyclobbers = 0;
2523 replace_reloads = replace;
2524 hard_regs_live_known = live_known;
2525 static_reload_reg_p = reload_reg_p;
2527 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2528 neither are insns that SET cc0. Insns that use CC0 are not allowed
2529 to have any input reloads. */
2530 if (JUMP_P (insn) || CALL_P (insn))
2531 no_output_reloads = 1;
2533 #ifdef HAVE_cc0
2534 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2535 no_input_reloads = 1;
2536 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2537 no_output_reloads = 1;
2538 #endif
2540 #ifdef SECONDARY_MEMORY_NEEDED
2541 /* The eliminated forms of any secondary memory locations are per-insn, so
2542 clear them out here. */
2544 if (secondary_memlocs_elim_used)
2546 memset (secondary_memlocs_elim, 0,
2547 sizeof (secondary_memlocs_elim[0]) * secondary_memlocs_elim_used);
2548 secondary_memlocs_elim_used = 0;
2550 #endif
2552 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2553 is cheap to move between them. If it is not, there may not be an insn
2554 to do the copy, so we may need a reload. */
2555 if (GET_CODE (body) == SET
2556 && REG_P (SET_DEST (body))
2557 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2558 && REG_P (SET_SRC (body))
2559 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2560 && REGISTER_MOVE_COST (GET_MODE (SET_SRC (body)),
2561 REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2562 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2563 return 0;
2565 extract_insn (insn);
2567 noperands = reload_n_operands = recog_data.n_operands;
2568 n_alternatives = recog_data.n_alternatives;
2570 /* Just return "no reloads" if insn has no operands with constraints. */
2571 if (noperands == 0 || n_alternatives == 0)
2572 return 0;
2574 insn_code_number = INSN_CODE (insn);
2575 this_insn_is_asm = insn_code_number < 0;
2577 memcpy (operand_mode, recog_data.operand_mode,
2578 noperands * sizeof (enum machine_mode));
2579 memcpy (constraints, recog_data.constraints, noperands * sizeof (char *));
2581 commutative = -1;
2583 /* If we will need to know, later, whether some pair of operands
2584 are the same, we must compare them now and save the result.
2585 Reloading the base and index registers will clobber them
2586 and afterward they will fail to match. */
2588 for (i = 0; i < noperands; i++)
2590 char *p;
2591 int c;
2593 substed_operand[i] = recog_data.operand[i];
2594 p = constraints[i];
2596 modified[i] = RELOAD_READ;
2598 /* Scan this operand's constraint to see if it is an output operand,
2599 an in-out operand, is commutative, or should match another. */
2601 while ((c = *p))
2603 p += CONSTRAINT_LEN (c, p);
2604 switch (c)
2606 case '=':
2607 modified[i] = RELOAD_WRITE;
2608 break;
2609 case '+':
2610 modified[i] = RELOAD_READ_WRITE;
2611 break;
2612 case '%':
2614 /* The last operand should not be marked commutative. */
2615 gcc_assert (i != noperands - 1);
2617 /* We currently only support one commutative pair of
2618 operands. Some existing asm code currently uses more
2619 than one pair. Previously, that would usually work,
2620 but sometimes it would crash the compiler. We
2621 continue supporting that case as well as we can by
2622 silently ignoring all but the first pair. In the
2623 future we may handle it correctly. */
2624 if (commutative < 0)
2625 commutative = i;
2626 else
2627 gcc_assert (this_insn_is_asm);
2629 break;
2630 /* Use of ISDIGIT is tempting here, but it may get expensive because
2631 of locale support we don't want. */
2632 case '0': case '1': case '2': case '3': case '4':
2633 case '5': case '6': case '7': case '8': case '9':
2635 c = strtoul (p - 1, &p, 10);
2637 operands_match[c][i]
2638 = operands_match_p (recog_data.operand[c],
2639 recog_data.operand[i]);
2641 /* An operand may not match itself. */
2642 gcc_assert (c != i);
2644 /* If C can be commuted with C+1, and C might need to match I,
2645 then C+1 might also need to match I. */
2646 if (commutative >= 0)
2648 if (c == commutative || c == commutative + 1)
2650 int other = c + (c == commutative ? 1 : -1);
2651 operands_match[other][i]
2652 = operands_match_p (recog_data.operand[other],
2653 recog_data.operand[i]);
2655 if (i == commutative || i == commutative + 1)
2657 int other = i + (i == commutative ? 1 : -1);
2658 operands_match[c][other]
2659 = operands_match_p (recog_data.operand[c],
2660 recog_data.operand[other]);
2662 /* Note that C is supposed to be less than I.
2663 No need to consider altering both C and I because in
2664 that case we would alter one into the other. */
2671 /* Examine each operand that is a memory reference or memory address
2672 and reload parts of the addresses into index registers.
2673 Also here any references to pseudo regs that didn't get hard regs
2674 but are equivalent to constants get replaced in the insn itself
2675 with those constants. Nobody will ever see them again.
2677 Finally, set up the preferred classes of each operand. */
2679 for (i = 0; i < noperands; i++)
2681 RTX_CODE code = GET_CODE (recog_data.operand[i]);
2683 address_reloaded[i] = 0;
2684 address_operand_reloaded[i] = 0;
2685 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2686 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2687 : RELOAD_OTHER);
2688 address_type[i]
2689 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2690 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2691 : RELOAD_OTHER);
2693 if (*constraints[i] == 0)
2694 /* Ignore things like match_operator operands. */
2696 else if (constraints[i][0] == 'p'
2697 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
2699 address_operand_reloaded[i]
2700 = find_reloads_address (recog_data.operand_mode[i], (rtx*) 0,
2701 recog_data.operand[i],
2702 recog_data.operand_loc[i],
2703 i, operand_type[i], ind_levels, insn);
2705 /* If we now have a simple operand where we used to have a
2706 PLUS or MULT, re-recognize and try again. */
2707 if ((OBJECT_P (*recog_data.operand_loc[i])
2708 || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2709 && (GET_CODE (recog_data.operand[i]) == MULT
2710 || GET_CODE (recog_data.operand[i]) == PLUS))
2712 INSN_CODE (insn) = -1;
2713 retval = find_reloads (insn, replace, ind_levels, live_known,
2714 reload_reg_p);
2715 return retval;
2718 recog_data.operand[i] = *recog_data.operand_loc[i];
2719 substed_operand[i] = recog_data.operand[i];
2721 /* Address operands are reloaded in their existing mode,
2722 no matter what is specified in the machine description. */
2723 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2725 else if (code == MEM)
2727 address_reloaded[i]
2728 = find_reloads_address (GET_MODE (recog_data.operand[i]),
2729 recog_data.operand_loc[i],
2730 XEXP (recog_data.operand[i], 0),
2731 &XEXP (recog_data.operand[i], 0),
2732 i, address_type[i], ind_levels, insn);
2733 recog_data.operand[i] = *recog_data.operand_loc[i];
2734 substed_operand[i] = recog_data.operand[i];
2736 else if (code == SUBREG)
2738 rtx reg = SUBREG_REG (recog_data.operand[i]);
2739 rtx op
2740 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2741 ind_levels,
2742 set != 0
2743 && &SET_DEST (set) == recog_data.operand_loc[i],
2744 insn,
2745 &address_reloaded[i]);
2747 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2748 that didn't get a hard register, emit a USE with a REG_EQUAL
2749 note in front so that we might inherit a previous, possibly
2750 wider reload. */
2752 if (replace
2753 && MEM_P (op)
2754 && REG_P (reg)
2755 && (GET_MODE_SIZE (GET_MODE (reg))
2756 >= GET_MODE_SIZE (GET_MODE (op))))
2757 set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
2758 insn),
2759 REG_EQUAL, reg_equiv_memory_loc[REGNO (reg)]);
2761 substed_operand[i] = recog_data.operand[i] = op;
2763 else if (code == PLUS || GET_RTX_CLASS (code) == RTX_UNARY)
2764 /* We can get a PLUS as an "operand" as a result of register
2765 elimination. See eliminate_regs and gen_reload. We handle
2766 a unary operator by reloading the operand. */
2767 substed_operand[i] = recog_data.operand[i]
2768 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2769 ind_levels, 0, insn,
2770 &address_reloaded[i]);
2771 else if (code == REG)
2773 /* This is equivalent to calling find_reloads_toplev.
2774 The code is duplicated for speed.
2775 When we find a pseudo always equivalent to a constant,
2776 we replace it by the constant. We must be sure, however,
2777 that we don't try to replace it in the insn in which it
2778 is being set. */
2779 int regno = REGNO (recog_data.operand[i]);
2780 if (reg_equiv_constant[regno] != 0
2781 && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2783 /* Record the existing mode so that the check if constants are
2784 allowed will work when operand_mode isn't specified. */
2786 if (operand_mode[i] == VOIDmode)
2787 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2789 substed_operand[i] = recog_data.operand[i]
2790 = reg_equiv_constant[regno];
2792 if (reg_equiv_memory_loc[regno] != 0
2793 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
2794 /* We need not give a valid is_set_dest argument since the case
2795 of a constant equivalence was checked above. */
2796 substed_operand[i] = recog_data.operand[i]
2797 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2798 ind_levels, 0, insn,
2799 &address_reloaded[i]);
2801 /* If the operand is still a register (we didn't replace it with an
2802 equivalent), get the preferred class to reload it into. */
2803 code = GET_CODE (recog_data.operand[i]);
2804 preferred_class[i]
2805 = ((code == REG && REGNO (recog_data.operand[i])
2806 >= FIRST_PSEUDO_REGISTER)
2807 ? reg_preferred_class (REGNO (recog_data.operand[i]))
2808 : NO_REGS);
2809 pref_or_nothing[i]
2810 = (code == REG
2811 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2812 && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2815 /* If this is simply a copy from operand 1 to operand 0, merge the
2816 preferred classes for the operands. */
2817 if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2818 && recog_data.operand[1] == SET_SRC (set))
2820 preferred_class[0] = preferred_class[1]
2821 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2822 pref_or_nothing[0] |= pref_or_nothing[1];
2823 pref_or_nothing[1] |= pref_or_nothing[0];
2826 /* Now see what we need for pseudo-regs that didn't get hard regs
2827 or got the wrong kind of hard reg. For this, we must consider
2828 all the operands together against the register constraints. */
2830 best = MAX_RECOG_OPERANDS * 2 + 600;
2832 swapped = 0;
2833 goal_alternative_swapped = 0;
2834 try_swapped:
2836 /* The constraints are made of several alternatives.
2837 Each operand's constraint looks like foo,bar,... with commas
2838 separating the alternatives. The first alternatives for all
2839 operands go together, the second alternatives go together, etc.
2841 First loop over alternatives. */
2843 for (this_alternative_number = 0;
2844 this_alternative_number < n_alternatives;
2845 this_alternative_number++)
2847 /* Loop over operands for one constraint alternative. */
2848 /* LOSERS counts those that don't fit this alternative
2849 and would require loading. */
2850 int losers = 0;
2851 /* BAD is set to 1 if it some operand can't fit this alternative
2852 even after reloading. */
2853 int bad = 0;
2854 /* REJECT is a count of how undesirable this alternative says it is
2855 if any reloading is required. If the alternative matches exactly
2856 then REJECT is ignored, but otherwise it gets this much
2857 counted against it in addition to the reloading needed. Each
2858 ? counts three times here since we want the disparaging caused by
2859 a bad register class to only count 1/3 as much. */
2860 int reject = 0;
2862 this_earlyclobber = 0;
2864 for (i = 0; i < noperands; i++)
2866 char *p = constraints[i];
2867 char *end;
2868 int len;
2869 int win = 0;
2870 int did_match = 0;
2871 /* 0 => this operand can be reloaded somehow for this alternative. */
2872 int badop = 1;
2873 /* 0 => this operand can be reloaded if the alternative allows regs. */
2874 int winreg = 0;
2875 int c;
2876 int m;
2877 rtx operand = recog_data.operand[i];
2878 int offset = 0;
2879 /* Nonzero means this is a MEM that must be reloaded into a reg
2880 regardless of what the constraint says. */
2881 int force_reload = 0;
2882 int offmemok = 0;
2883 /* Nonzero if a constant forced into memory would be OK for this
2884 operand. */
2885 int constmemok = 0;
2886 int earlyclobber = 0;
2888 /* If the predicate accepts a unary operator, it means that
2889 we need to reload the operand, but do not do this for
2890 match_operator and friends. */
2891 if (UNARY_P (operand) && *p != 0)
2892 operand = XEXP (operand, 0);
2894 /* If the operand is a SUBREG, extract
2895 the REG or MEM (or maybe even a constant) within.
2896 (Constants can occur as a result of reg_equiv_constant.) */
2898 while (GET_CODE (operand) == SUBREG)
2900 /* Offset only matters when operand is a REG and
2901 it is a hard reg. This is because it is passed
2902 to reg_fits_class_p if it is a REG and all pseudos
2903 return 0 from that function. */
2904 if (REG_P (SUBREG_REG (operand))
2905 && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
2907 if (!subreg_offset_representable_p
2908 (REGNO (SUBREG_REG (operand)),
2909 GET_MODE (SUBREG_REG (operand)),
2910 SUBREG_BYTE (operand),
2911 GET_MODE (operand)))
2912 force_reload = 1;
2913 offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
2914 GET_MODE (SUBREG_REG (operand)),
2915 SUBREG_BYTE (operand),
2916 GET_MODE (operand));
2918 operand = SUBREG_REG (operand);
2919 /* Force reload if this is a constant or PLUS or if there may
2920 be a problem accessing OPERAND in the outer mode. */
2921 if (CONSTANT_P (operand)
2922 || GET_CODE (operand) == PLUS
2923 /* We must force a reload of paradoxical SUBREGs
2924 of a MEM because the alignment of the inner value
2925 may not be enough to do the outer reference. On
2926 big-endian machines, it may also reference outside
2927 the object.
2929 On machines that extend byte operations and we have a
2930 SUBREG where both the inner and outer modes are no wider
2931 than a word and the inner mode is narrower, is integral,
2932 and gets extended when loaded from memory, combine.c has
2933 made assumptions about the behavior of the machine in such
2934 register access. If the data is, in fact, in memory we
2935 must always load using the size assumed to be in the
2936 register and let the insn do the different-sized
2937 accesses.
2939 This is doubly true if WORD_REGISTER_OPERATIONS. In
2940 this case eliminate_regs has left non-paradoxical
2941 subregs for push_reload to see. Make sure it does
2942 by forcing the reload.
2944 ??? When is it right at this stage to have a subreg
2945 of a mem that is _not_ to be handled specially? IMO
2946 those should have been reduced to just a mem. */
2947 || ((MEM_P (operand)
2948 || (REG_P (operand)
2949 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
2950 #ifndef WORD_REGISTER_OPERATIONS
2951 && (((GET_MODE_BITSIZE (GET_MODE (operand))
2952 < BIGGEST_ALIGNMENT)
2953 && (GET_MODE_SIZE (operand_mode[i])
2954 > GET_MODE_SIZE (GET_MODE (operand))))
2955 || BYTES_BIG_ENDIAN
2956 #ifdef LOAD_EXTEND_OP
2957 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2958 && (GET_MODE_SIZE (GET_MODE (operand))
2959 <= UNITS_PER_WORD)
2960 && (GET_MODE_SIZE (operand_mode[i])
2961 > GET_MODE_SIZE (GET_MODE (operand)))
2962 && INTEGRAL_MODE_P (GET_MODE (operand))
2963 && LOAD_EXTEND_OP (GET_MODE (operand)) != UNKNOWN)
2964 #endif
2966 #endif
2969 force_reload = 1;
2972 this_alternative[i] = (int) NO_REGS;
2973 this_alternative_win[i] = 0;
2974 this_alternative_match_win[i] = 0;
2975 this_alternative_offmemok[i] = 0;
2976 this_alternative_earlyclobber[i] = 0;
2977 this_alternative_matches[i] = -1;
2979 /* An empty constraint or empty alternative
2980 allows anything which matched the pattern. */
2981 if (*p == 0 || *p == ',')
2982 win = 1, badop = 0;
2984 /* Scan this alternative's specs for this operand;
2985 set WIN if the operand fits any letter in this alternative.
2986 Otherwise, clear BADOP if this operand could
2987 fit some letter after reloads,
2988 or set WINREG if this operand could fit after reloads
2989 provided the constraint allows some registers. */
2992 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
2994 case '\0':
2995 len = 0;
2996 break;
2997 case ',':
2998 c = '\0';
2999 break;
3001 case '=': case '+': case '*':
3002 break;
3004 case '%':
3005 /* We only support one commutative marker, the first
3006 one. We already set commutative above. */
3007 break;
3009 case '?':
3010 reject += 6;
3011 break;
3013 case '!':
3014 reject = 600;
3015 break;
3017 case '#':
3018 /* Ignore rest of this alternative as far as
3019 reloading is concerned. */
3021 p++;
3022 while (*p && *p != ',');
3023 len = 0;
3024 break;
3026 case '0': case '1': case '2': case '3': case '4':
3027 case '5': case '6': case '7': case '8': case '9':
3028 m = strtoul (p, &end, 10);
3029 p = end;
3030 len = 0;
3032 this_alternative_matches[i] = m;
3033 /* We are supposed to match a previous operand.
3034 If we do, we win if that one did.
3035 If we do not, count both of the operands as losers.
3036 (This is too conservative, since most of the time
3037 only a single reload insn will be needed to make
3038 the two operands win. As a result, this alternative
3039 may be rejected when it is actually desirable.) */
3040 if ((swapped && (m != commutative || i != commutative + 1))
3041 /* If we are matching as if two operands were swapped,
3042 also pretend that operands_match had been computed
3043 with swapped.
3044 But if I is the second of those and C is the first,
3045 don't exchange them, because operands_match is valid
3046 only on one side of its diagonal. */
3047 ? (operands_match
3048 [(m == commutative || m == commutative + 1)
3049 ? 2 * commutative + 1 - m : m]
3050 [(i == commutative || i == commutative + 1)
3051 ? 2 * commutative + 1 - i : i])
3052 : operands_match[m][i])
3054 /* If we are matching a non-offsettable address where an
3055 offsettable address was expected, then we must reject
3056 this combination, because we can't reload it. */
3057 if (this_alternative_offmemok[m]
3058 && MEM_P (recog_data.operand[m])
3059 && this_alternative[m] == (int) NO_REGS
3060 && ! this_alternative_win[m])
3061 bad = 1;
3063 did_match = this_alternative_win[m];
3065 else
3067 /* Operands don't match. */
3068 rtx value;
3069 int loc1, loc2;
3070 /* Retroactively mark the operand we had to match
3071 as a loser, if it wasn't already. */
3072 if (this_alternative_win[m])
3073 losers++;
3074 this_alternative_win[m] = 0;
3075 if (this_alternative[m] == (int) NO_REGS)
3076 bad = 1;
3077 /* But count the pair only once in the total badness of
3078 this alternative, if the pair can be a dummy reload.
3079 The pointers in operand_loc are not swapped; swap
3080 them by hand if necessary. */
3081 if (swapped && i == commutative)
3082 loc1 = commutative + 1;
3083 else if (swapped && i == commutative + 1)
3084 loc1 = commutative;
3085 else
3086 loc1 = i;
3087 if (swapped && m == commutative)
3088 loc2 = commutative + 1;
3089 else if (swapped && m == commutative + 1)
3090 loc2 = commutative;
3091 else
3092 loc2 = m;
3093 value
3094 = find_dummy_reload (recog_data.operand[i],
3095 recog_data.operand[m],
3096 recog_data.operand_loc[loc1],
3097 recog_data.operand_loc[loc2],
3098 operand_mode[i], operand_mode[m],
3099 this_alternative[m], -1,
3100 this_alternative_earlyclobber[m]);
3102 if (value != 0)
3103 losers--;
3105 /* This can be fixed with reloads if the operand
3106 we are supposed to match can be fixed with reloads. */
3107 badop = 0;
3108 this_alternative[i] = this_alternative[m];
3110 /* If we have to reload this operand and some previous
3111 operand also had to match the same thing as this
3112 operand, we don't know how to do that. So reject this
3113 alternative. */
3114 if (! did_match || force_reload)
3115 for (j = 0; j < i; j++)
3116 if (this_alternative_matches[j]
3117 == this_alternative_matches[i])
3118 badop = 1;
3119 break;
3121 case 'p':
3122 /* All necessary reloads for an address_operand
3123 were handled in find_reloads_address. */
3124 this_alternative[i]
3125 = (int) base_reg_class (VOIDmode, ADDRESS, SCRATCH);
3126 win = 1;
3127 badop = 0;
3128 break;
3130 case 'm':
3131 if (force_reload)
3132 break;
3133 if (MEM_P (operand)
3134 || (REG_P (operand)
3135 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3136 && reg_renumber[REGNO (operand)] < 0))
3137 win = 1;
3138 if (CONST_POOL_OK_P (operand))
3139 badop = 0;
3140 constmemok = 1;
3141 break;
3143 case '<':
3144 if (MEM_P (operand)
3145 && ! address_reloaded[i]
3146 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3147 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3148 win = 1;
3149 break;
3151 case '>':
3152 if (MEM_P (operand)
3153 && ! address_reloaded[i]
3154 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3155 || GET_CODE (XEXP (operand, 0)) == POST_INC))
3156 win = 1;
3157 break;
3159 /* Memory operand whose address is not offsettable. */
3160 case 'V':
3161 if (force_reload)
3162 break;
3163 if (MEM_P (operand)
3164 && ! (ind_levels ? offsettable_memref_p (operand)
3165 : offsettable_nonstrict_memref_p (operand))
3166 /* Certain mem addresses will become offsettable
3167 after they themselves are reloaded. This is important;
3168 we don't want our own handling of unoffsettables
3169 to override the handling of reg_equiv_address. */
3170 && !(REG_P (XEXP (operand, 0))
3171 && (ind_levels == 0
3172 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
3173 win = 1;
3174 break;
3176 /* Memory operand whose address is offsettable. */
3177 case 'o':
3178 if (force_reload)
3179 break;
3180 if ((MEM_P (operand)
3181 /* If IND_LEVELS, find_reloads_address won't reload a
3182 pseudo that didn't get a hard reg, so we have to
3183 reject that case. */
3184 && ((ind_levels ? offsettable_memref_p (operand)
3185 : offsettable_nonstrict_memref_p (operand))
3186 /* A reloaded address is offsettable because it is now
3187 just a simple register indirect. */
3188 || address_reloaded[i] == 1))
3189 || (REG_P (operand)
3190 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3191 && reg_renumber[REGNO (operand)] < 0
3192 /* If reg_equiv_address is nonzero, we will be
3193 loading it into a register; hence it will be
3194 offsettable, but we cannot say that reg_equiv_mem
3195 is offsettable without checking. */
3196 && ((reg_equiv_mem[REGNO (operand)] != 0
3197 && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
3198 || (reg_equiv_address[REGNO (operand)] != 0))))
3199 win = 1;
3200 if (CONST_POOL_OK_P (operand)
3201 || MEM_P (operand))
3202 badop = 0;
3203 constmemok = 1;
3204 offmemok = 1;
3205 break;
3207 case '&':
3208 /* Output operand that is stored before the need for the
3209 input operands (and their index registers) is over. */
3210 earlyclobber = 1, this_earlyclobber = 1;
3211 break;
3213 case 'E':
3214 case 'F':
3215 if (GET_CODE (operand) == CONST_DOUBLE
3216 || (GET_CODE (operand) == CONST_VECTOR
3217 && (GET_MODE_CLASS (GET_MODE (operand))
3218 == MODE_VECTOR_FLOAT)))
3219 win = 1;
3220 break;
3222 case 'G':
3223 case 'H':
3224 if (GET_CODE (operand) == CONST_DOUBLE
3225 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (operand, c, p))
3226 win = 1;
3227 break;
3229 case 's':
3230 if (GET_CODE (operand) == CONST_INT
3231 || (GET_CODE (operand) == CONST_DOUBLE
3232 && GET_MODE (operand) == VOIDmode))
3233 break;
3234 case 'i':
3235 if (CONSTANT_P (operand)
3236 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand)))
3237 win = 1;
3238 break;
3240 case 'n':
3241 if (GET_CODE (operand) == CONST_INT
3242 || (GET_CODE (operand) == CONST_DOUBLE
3243 && GET_MODE (operand) == VOIDmode))
3244 win = 1;
3245 break;
3247 case 'I':
3248 case 'J':
3249 case 'K':
3250 case 'L':
3251 case 'M':
3252 case 'N':
3253 case 'O':
3254 case 'P':
3255 if (GET_CODE (operand) == CONST_INT
3256 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (operand), c, p))
3257 win = 1;
3258 break;
3260 case 'X':
3261 win = 1;
3262 break;
3264 case 'g':
3265 if (! force_reload
3266 /* A PLUS is never a valid operand, but reload can make
3267 it from a register when eliminating registers. */
3268 && GET_CODE (operand) != PLUS
3269 /* A SCRATCH is not a valid operand. */
3270 && GET_CODE (operand) != SCRATCH
3271 && (! CONSTANT_P (operand)
3272 || ! flag_pic
3273 || LEGITIMATE_PIC_OPERAND_P (operand))
3274 && (GENERAL_REGS == ALL_REGS
3275 || !REG_P (operand)
3276 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3277 && reg_renumber[REGNO (operand)] < 0)))
3278 win = 1;
3279 /* Drop through into 'r' case. */
3281 case 'r':
3282 this_alternative[i]
3283 = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3284 goto reg;
3286 default:
3287 if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS)
3289 #ifdef EXTRA_CONSTRAINT_STR
3290 if (EXTRA_MEMORY_CONSTRAINT (c, p))
3292 if (force_reload)
3293 break;
3294 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3295 win = 1;
3296 /* If the address was already reloaded,
3297 we win as well. */
3298 else if (MEM_P (operand)
3299 && address_reloaded[i] == 1)
3300 win = 1;
3301 /* Likewise if the address will be reloaded because
3302 reg_equiv_address is nonzero. For reg_equiv_mem
3303 we have to check. */
3304 else if (REG_P (operand)
3305 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3306 && reg_renumber[REGNO (operand)] < 0
3307 && ((reg_equiv_mem[REGNO (operand)] != 0
3308 && EXTRA_CONSTRAINT_STR (reg_equiv_mem[REGNO (operand)], c, p))
3309 || (reg_equiv_address[REGNO (operand)] != 0)))
3310 win = 1;
3312 /* If we didn't already win, we can reload
3313 constants via force_const_mem, and other
3314 MEMs by reloading the address like for 'o'. */
3315 if (CONST_POOL_OK_P (operand)
3316 || MEM_P (operand))
3317 badop = 0;
3318 constmemok = 1;
3319 offmemok = 1;
3320 break;
3322 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
3324 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3325 win = 1;
3327 /* If we didn't already win, we can reload
3328 the address into a base register. */
3329 this_alternative[i]
3330 = (int) base_reg_class (VOIDmode, ADDRESS, SCRATCH);
3331 badop = 0;
3332 break;
3335 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3336 win = 1;
3337 #endif
3338 break;
3341 this_alternative[i]
3342 = (int) (reg_class_subunion
3343 [this_alternative[i]]
3344 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)]);
3345 reg:
3346 if (GET_MODE (operand) == BLKmode)
3347 break;
3348 winreg = 1;
3349 if (REG_P (operand)
3350 && reg_fits_class_p (operand, this_alternative[i],
3351 offset, GET_MODE (recog_data.operand[i])))
3352 win = 1;
3353 break;
3355 while ((p += len), c);
3357 constraints[i] = p;
3359 /* If this operand could be handled with a reg,
3360 and some reg is allowed, then this operand can be handled. */
3361 if (winreg && this_alternative[i] != (int) NO_REGS)
3362 badop = 0;
3364 /* Record which operands fit this alternative. */
3365 this_alternative_earlyclobber[i] = earlyclobber;
3366 if (win && ! force_reload)
3367 this_alternative_win[i] = 1;
3368 else if (did_match && ! force_reload)
3369 this_alternative_match_win[i] = 1;
3370 else
3372 int const_to_mem = 0;
3374 this_alternative_offmemok[i] = offmemok;
3375 losers++;
3376 if (badop)
3377 bad = 1;
3378 /* Alternative loses if it has no regs for a reg operand. */
3379 if (REG_P (operand)
3380 && this_alternative[i] == (int) NO_REGS
3381 && this_alternative_matches[i] < 0)
3382 bad = 1;
3384 /* If this is a constant that is reloaded into the desired
3385 class by copying it to memory first, count that as another
3386 reload. This is consistent with other code and is
3387 required to avoid choosing another alternative when
3388 the constant is moved into memory by this function on
3389 an early reload pass. Note that the test here is
3390 precisely the same as in the code below that calls
3391 force_const_mem. */
3392 if (CONST_POOL_OK_P (operand)
3393 && ((PREFERRED_RELOAD_CLASS (operand,
3394 (enum reg_class) this_alternative[i])
3395 == NO_REGS)
3396 || no_input_reloads)
3397 && operand_mode[i] != VOIDmode)
3399 const_to_mem = 1;
3400 if (this_alternative[i] != (int) NO_REGS)
3401 losers++;
3404 /* If we can't reload this value at all, reject this
3405 alternative. Note that we could also lose due to
3406 LIMIT_RELOAD_RELOAD_CLASS, but we don't check that
3407 here. */
3409 if (! CONSTANT_P (operand)
3410 && (enum reg_class) this_alternative[i] != NO_REGS
3411 && (PREFERRED_RELOAD_CLASS (operand,
3412 (enum reg_class) this_alternative[i])
3413 == NO_REGS))
3414 bad = 1;
3416 /* Alternative loses if it requires a type of reload not
3417 permitted for this insn. We can always reload SCRATCH
3418 and objects with a REG_UNUSED note. */
3419 else if (GET_CODE (operand) != SCRATCH
3420 && modified[i] != RELOAD_READ && no_output_reloads
3421 && ! find_reg_note (insn, REG_UNUSED, operand))
3422 bad = 1;
3423 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3424 && ! const_to_mem)
3425 bad = 1;
3427 /* We prefer to reload pseudos over reloading other things,
3428 since such reloads may be able to be eliminated later.
3429 If we are reloading a SCRATCH, we won't be generating any
3430 insns, just using a register, so it is also preferred.
3431 So bump REJECT in other cases. Don't do this in the
3432 case where we are forcing a constant into memory and
3433 it will then win since we don't want to have a different
3434 alternative match then. */
3435 if (! (REG_P (operand)
3436 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3437 && GET_CODE (operand) != SCRATCH
3438 && ! (const_to_mem && constmemok))
3439 reject += 2;
3441 /* Input reloads can be inherited more often than output
3442 reloads can be removed, so penalize output reloads. */
3443 if (operand_type[i] != RELOAD_FOR_INPUT
3444 && GET_CODE (operand) != SCRATCH)
3445 reject++;
3448 /* If this operand is a pseudo register that didn't get a hard
3449 reg and this alternative accepts some register, see if the
3450 class that we want is a subset of the preferred class for this
3451 register. If not, but it intersects that class, use the
3452 preferred class instead. If it does not intersect the preferred
3453 class, show that usage of this alternative should be discouraged;
3454 it will be discouraged more still if the register is `preferred
3455 or nothing'. We do this because it increases the chance of
3456 reusing our spill register in a later insn and avoiding a pair
3457 of memory stores and loads.
3459 Don't bother with this if this alternative will accept this
3460 operand.
3462 Don't do this for a multiword operand, since it is only a
3463 small win and has the risk of requiring more spill registers,
3464 which could cause a large loss.
3466 Don't do this if the preferred class has only one register
3467 because we might otherwise exhaust the class. */
3469 if (! win && ! did_match
3470 && this_alternative[i] != (int) NO_REGS
3471 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3472 && reg_class_size [(int) preferred_class[i]] > 0
3473 && ! SMALL_REGISTER_CLASS_P (preferred_class[i]))
3475 if (! reg_class_subset_p (this_alternative[i],
3476 preferred_class[i]))
3478 /* Since we don't have a way of forming the intersection,
3479 we just do something special if the preferred class
3480 is a subset of the class we have; that's the most
3481 common case anyway. */
3482 if (reg_class_subset_p (preferred_class[i],
3483 this_alternative[i]))
3484 this_alternative[i] = (int) preferred_class[i];
3485 else
3486 reject += (2 + 2 * pref_or_nothing[i]);
3491 /* Now see if any output operands that are marked "earlyclobber"
3492 in this alternative conflict with any input operands
3493 or any memory addresses. */
3495 for (i = 0; i < noperands; i++)
3496 if (this_alternative_earlyclobber[i]
3497 && (this_alternative_win[i] || this_alternative_match_win[i]))
3499 struct decomposition early_data;
3501 early_data = decompose (recog_data.operand[i]);
3503 gcc_assert (modified[i] != RELOAD_READ);
3505 if (this_alternative[i] == NO_REGS)
3507 this_alternative_earlyclobber[i] = 0;
3508 gcc_assert (this_insn_is_asm);
3509 error_for_asm (this_insn,
3510 "%<&%> constraint used with no register class");
3513 for (j = 0; j < noperands; j++)
3514 /* Is this an input operand or a memory ref? */
3515 if ((MEM_P (recog_data.operand[j])
3516 || modified[j] != RELOAD_WRITE)
3517 && j != i
3518 /* Ignore things like match_operator operands. */
3519 && *recog_data.constraints[j] != 0
3520 /* Don't count an input operand that is constrained to match
3521 the early clobber operand. */
3522 && ! (this_alternative_matches[j] == i
3523 && rtx_equal_p (recog_data.operand[i],
3524 recog_data.operand[j]))
3525 /* Is it altered by storing the earlyclobber operand? */
3526 && !immune_p (recog_data.operand[j], recog_data.operand[i],
3527 early_data))
3529 /* If the output is in a non-empty few-regs class,
3530 it's costly to reload it, so reload the input instead. */
3531 if (SMALL_REGISTER_CLASS_P (this_alternative[i])
3532 && (REG_P (recog_data.operand[j])
3533 || GET_CODE (recog_data.operand[j]) == SUBREG))
3535 losers++;
3536 this_alternative_win[j] = 0;
3537 this_alternative_match_win[j] = 0;
3539 else
3540 break;
3542 /* If an earlyclobber operand conflicts with something,
3543 it must be reloaded, so request this and count the cost. */
3544 if (j != noperands)
3546 losers++;
3547 this_alternative_win[i] = 0;
3548 this_alternative_match_win[j] = 0;
3549 for (j = 0; j < noperands; j++)
3550 if (this_alternative_matches[j] == i
3551 && this_alternative_match_win[j])
3553 this_alternative_win[j] = 0;
3554 this_alternative_match_win[j] = 0;
3555 losers++;
3560 /* If one alternative accepts all the operands, no reload required,
3561 choose that alternative; don't consider the remaining ones. */
3562 if (losers == 0)
3564 /* Unswap these so that they are never swapped at `finish'. */
3565 if (commutative >= 0)
3567 recog_data.operand[commutative] = substed_operand[commutative];
3568 recog_data.operand[commutative + 1]
3569 = substed_operand[commutative + 1];
3571 for (i = 0; i < noperands; i++)
3573 goal_alternative_win[i] = this_alternative_win[i];
3574 goal_alternative_match_win[i] = this_alternative_match_win[i];
3575 goal_alternative[i] = this_alternative[i];
3576 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3577 goal_alternative_matches[i] = this_alternative_matches[i];
3578 goal_alternative_earlyclobber[i]
3579 = this_alternative_earlyclobber[i];
3581 goal_alternative_number = this_alternative_number;
3582 goal_alternative_swapped = swapped;
3583 goal_earlyclobber = this_earlyclobber;
3584 goto finish;
3587 /* REJECT, set by the ! and ? constraint characters and when a register
3588 would be reloaded into a non-preferred class, discourages the use of
3589 this alternative for a reload goal. REJECT is incremented by six
3590 for each ? and two for each non-preferred class. */
3591 losers = losers * 6 + reject;
3593 /* If this alternative can be made to work by reloading,
3594 and it needs less reloading than the others checked so far,
3595 record it as the chosen goal for reloading. */
3596 if (! bad && best > losers)
3598 for (i = 0; i < noperands; i++)
3600 goal_alternative[i] = this_alternative[i];
3601 goal_alternative_win[i] = this_alternative_win[i];
3602 goal_alternative_match_win[i] = this_alternative_match_win[i];
3603 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3604 goal_alternative_matches[i] = this_alternative_matches[i];
3605 goal_alternative_earlyclobber[i]
3606 = this_alternative_earlyclobber[i];
3608 goal_alternative_swapped = swapped;
3609 best = losers;
3610 goal_alternative_number = this_alternative_number;
3611 goal_earlyclobber = this_earlyclobber;
3615 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3616 then we need to try each alternative twice,
3617 the second time matching those two operands
3618 as if we had exchanged them.
3619 To do this, really exchange them in operands.
3621 If we have just tried the alternatives the second time,
3622 return operands to normal and drop through. */
3624 if (commutative >= 0)
3626 swapped = !swapped;
3627 if (swapped)
3629 enum reg_class tclass;
3630 int t;
3632 recog_data.operand[commutative] = substed_operand[commutative + 1];
3633 recog_data.operand[commutative + 1] = substed_operand[commutative];
3634 /* Swap the duplicates too. */
3635 for (i = 0; i < recog_data.n_dups; i++)
3636 if (recog_data.dup_num[i] == commutative
3637 || recog_data.dup_num[i] == commutative + 1)
3638 *recog_data.dup_loc[i]
3639 = recog_data.operand[(int) recog_data.dup_num[i]];
3641 tclass = preferred_class[commutative];
3642 preferred_class[commutative] = preferred_class[commutative + 1];
3643 preferred_class[commutative + 1] = tclass;
3645 t = pref_or_nothing[commutative];
3646 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3647 pref_or_nothing[commutative + 1] = t;
3649 t = address_reloaded[commutative];
3650 address_reloaded[commutative] = address_reloaded[commutative + 1];
3651 address_reloaded[commutative + 1] = t;
3653 memcpy (constraints, recog_data.constraints,
3654 noperands * sizeof (char *));
3655 goto try_swapped;
3657 else
3659 recog_data.operand[commutative] = substed_operand[commutative];
3660 recog_data.operand[commutative + 1]
3661 = substed_operand[commutative + 1];
3662 /* Unswap the duplicates too. */
3663 for (i = 0; i < recog_data.n_dups; i++)
3664 if (recog_data.dup_num[i] == commutative
3665 || recog_data.dup_num[i] == commutative + 1)
3666 *recog_data.dup_loc[i]
3667 = recog_data.operand[(int) recog_data.dup_num[i]];
3671 /* The operands don't meet the constraints.
3672 goal_alternative describes the alternative
3673 that we could reach by reloading the fewest operands.
3674 Reload so as to fit it. */
3676 if (best == MAX_RECOG_OPERANDS * 2 + 600)
3678 /* No alternative works with reloads?? */
3679 if (insn_code_number >= 0)
3680 fatal_insn ("unable to generate reloads for:", insn);
3681 error_for_asm (insn, "inconsistent operand constraints in an %<asm%>");
3682 /* Avoid further trouble with this insn. */
3683 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3684 n_reloads = 0;
3685 return 0;
3688 /* Jump to `finish' from above if all operands are valid already.
3689 In that case, goal_alternative_win is all 1. */
3690 finish:
3692 /* Right now, for any pair of operands I and J that are required to match,
3693 with I < J,
3694 goal_alternative_matches[J] is I.
3695 Set up goal_alternative_matched as the inverse function:
3696 goal_alternative_matched[I] = J. */
3698 for (i = 0; i < noperands; i++)
3699 goal_alternative_matched[i] = -1;
3701 for (i = 0; i < noperands; i++)
3702 if (! goal_alternative_win[i]
3703 && goal_alternative_matches[i] >= 0)
3704 goal_alternative_matched[goal_alternative_matches[i]] = i;
3706 for (i = 0; i < noperands; i++)
3707 goal_alternative_win[i] |= goal_alternative_match_win[i];
3709 /* If the best alternative is with operands 1 and 2 swapped,
3710 consider them swapped before reporting the reloads. Update the
3711 operand numbers of any reloads already pushed. */
3713 if (goal_alternative_swapped)
3715 rtx tem;
3717 tem = substed_operand[commutative];
3718 substed_operand[commutative] = substed_operand[commutative + 1];
3719 substed_operand[commutative + 1] = tem;
3720 tem = recog_data.operand[commutative];
3721 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3722 recog_data.operand[commutative + 1] = tem;
3723 tem = *recog_data.operand_loc[commutative];
3724 *recog_data.operand_loc[commutative]
3725 = *recog_data.operand_loc[commutative + 1];
3726 *recog_data.operand_loc[commutative + 1] = tem;
3728 for (i = 0; i < n_reloads; i++)
3730 if (rld[i].opnum == commutative)
3731 rld[i].opnum = commutative + 1;
3732 else if (rld[i].opnum == commutative + 1)
3733 rld[i].opnum = commutative;
3737 for (i = 0; i < noperands; i++)
3739 operand_reloadnum[i] = -1;
3741 /* If this is an earlyclobber operand, we need to widen the scope.
3742 The reload must remain valid from the start of the insn being
3743 reloaded until after the operand is stored into its destination.
3744 We approximate this with RELOAD_OTHER even though we know that we
3745 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3747 One special case that is worth checking is when we have an
3748 output that is earlyclobber but isn't used past the insn (typically
3749 a SCRATCH). In this case, we only need have the reload live
3750 through the insn itself, but not for any of our input or output
3751 reloads.
3752 But we must not accidentally narrow the scope of an existing
3753 RELOAD_OTHER reload - leave these alone.
3755 In any case, anything needed to address this operand can remain
3756 however they were previously categorized. */
3758 if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3759 operand_type[i]
3760 = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3761 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3764 /* Any constants that aren't allowed and can't be reloaded
3765 into registers are here changed into memory references. */
3766 for (i = 0; i < noperands; i++)
3767 if (! goal_alternative_win[i]
3768 && CONST_POOL_OK_P (recog_data.operand[i])
3769 && ((PREFERRED_RELOAD_CLASS (recog_data.operand[i],
3770 (enum reg_class) goal_alternative[i])
3771 == NO_REGS)
3772 || no_input_reloads)
3773 && operand_mode[i] != VOIDmode)
3775 substed_operand[i] = recog_data.operand[i]
3776 = find_reloads_toplev (force_const_mem (operand_mode[i],
3777 recog_data.operand[i]),
3778 i, address_type[i], ind_levels, 0, insn,
3779 NULL);
3780 if (alternative_allows_memconst (recog_data.constraints[i],
3781 goal_alternative_number))
3782 goal_alternative_win[i] = 1;
3785 /* Likewise any invalid constants appearing as operand of a PLUS
3786 that is to be reloaded. */
3787 for (i = 0; i < noperands; i++)
3788 if (! goal_alternative_win[i]
3789 && GET_CODE (recog_data.operand[i]) == PLUS
3790 && CONST_POOL_OK_P (XEXP (recog_data.operand[i], 1))
3791 && (PREFERRED_RELOAD_CLASS (XEXP (recog_data.operand[i], 1),
3792 (enum reg_class) goal_alternative[i])
3793 == NO_REGS)
3794 && operand_mode[i] != VOIDmode)
3796 rtx tem = force_const_mem (operand_mode[i],
3797 XEXP (recog_data.operand[i], 1));
3798 tem = gen_rtx_PLUS (operand_mode[i],
3799 XEXP (recog_data.operand[i], 0), tem);
3801 substed_operand[i] = recog_data.operand[i]
3802 = find_reloads_toplev (tem, i, address_type[i],
3803 ind_levels, 0, insn, NULL);
3806 /* Record the values of the earlyclobber operands for the caller. */
3807 if (goal_earlyclobber)
3808 for (i = 0; i < noperands; i++)
3809 if (goal_alternative_earlyclobber[i])
3810 reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
3812 /* Now record reloads for all the operands that need them. */
3813 for (i = 0; i < noperands; i++)
3814 if (! goal_alternative_win[i])
3816 /* Operands that match previous ones have already been handled. */
3817 if (goal_alternative_matches[i] >= 0)
3819 /* Handle an operand with a nonoffsettable address
3820 appearing where an offsettable address will do
3821 by reloading the address into a base register.
3823 ??? We can also do this when the operand is a register and
3824 reg_equiv_mem is not offsettable, but this is a bit tricky,
3825 so we don't bother with it. It may not be worth doing. */
3826 else if (goal_alternative_matched[i] == -1
3827 && goal_alternative_offmemok[i]
3828 && MEM_P (recog_data.operand[i]))
3830 operand_reloadnum[i]
3831 = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
3832 &XEXP (recog_data.operand[i], 0), (rtx*) 0,
3833 base_reg_class (VOIDmode, MEM, SCRATCH),
3834 GET_MODE (XEXP (recog_data.operand[i], 0)),
3835 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
3836 rld[operand_reloadnum[i]].inc
3837 = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
3839 /* If this operand is an output, we will have made any
3840 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3841 now we are treating part of the operand as an input, so
3842 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
3844 if (modified[i] == RELOAD_WRITE)
3846 for (j = 0; j < n_reloads; j++)
3848 if (rld[j].opnum == i)
3850 if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
3851 rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
3852 else if (rld[j].when_needed
3853 == RELOAD_FOR_OUTADDR_ADDRESS)
3854 rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
3859 else if (goal_alternative_matched[i] == -1)
3861 operand_reloadnum[i]
3862 = push_reload ((modified[i] != RELOAD_WRITE
3863 ? recog_data.operand[i] : 0),
3864 (modified[i] != RELOAD_READ
3865 ? recog_data.operand[i] : 0),
3866 (modified[i] != RELOAD_WRITE
3867 ? recog_data.operand_loc[i] : 0),
3868 (modified[i] != RELOAD_READ
3869 ? recog_data.operand_loc[i] : 0),
3870 (enum reg_class) goal_alternative[i],
3871 (modified[i] == RELOAD_WRITE
3872 ? VOIDmode : operand_mode[i]),
3873 (modified[i] == RELOAD_READ
3874 ? VOIDmode : operand_mode[i]),
3875 (insn_code_number < 0 ? 0
3876 : insn_data[insn_code_number].operand[i].strict_low),
3877 0, i, operand_type[i]);
3879 /* In a matching pair of operands, one must be input only
3880 and the other must be output only.
3881 Pass the input operand as IN and the other as OUT. */
3882 else if (modified[i] == RELOAD_READ
3883 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
3885 operand_reloadnum[i]
3886 = push_reload (recog_data.operand[i],
3887 recog_data.operand[goal_alternative_matched[i]],
3888 recog_data.operand_loc[i],
3889 recog_data.operand_loc[goal_alternative_matched[i]],
3890 (enum reg_class) goal_alternative[i],
3891 operand_mode[i],
3892 operand_mode[goal_alternative_matched[i]],
3893 0, 0, i, RELOAD_OTHER);
3894 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
3896 else if (modified[i] == RELOAD_WRITE
3897 && modified[goal_alternative_matched[i]] == RELOAD_READ)
3899 operand_reloadnum[goal_alternative_matched[i]]
3900 = push_reload (recog_data.operand[goal_alternative_matched[i]],
3901 recog_data.operand[i],
3902 recog_data.operand_loc[goal_alternative_matched[i]],
3903 recog_data.operand_loc[i],
3904 (enum reg_class) goal_alternative[i],
3905 operand_mode[goal_alternative_matched[i]],
3906 operand_mode[i],
3907 0, 0, i, RELOAD_OTHER);
3908 operand_reloadnum[i] = output_reloadnum;
3910 else
3912 gcc_assert (insn_code_number < 0);
3913 error_for_asm (insn, "inconsistent operand constraints "
3914 "in an %<asm%>");
3915 /* Avoid further trouble with this insn. */
3916 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3917 n_reloads = 0;
3918 return 0;
3921 else if (goal_alternative_matched[i] < 0
3922 && goal_alternative_matches[i] < 0
3923 && address_operand_reloaded[i] != 1
3924 && optimize)
3926 /* For each non-matching operand that's a MEM or a pseudo-register
3927 that didn't get a hard register, make an optional reload.
3928 This may get done even if the insn needs no reloads otherwise. */
3930 rtx operand = recog_data.operand[i];
3932 while (GET_CODE (operand) == SUBREG)
3933 operand = SUBREG_REG (operand);
3934 if ((MEM_P (operand)
3935 || (REG_P (operand)
3936 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3937 /* If this is only for an output, the optional reload would not
3938 actually cause us to use a register now, just note that
3939 something is stored here. */
3940 && ((enum reg_class) goal_alternative[i] != NO_REGS
3941 || modified[i] == RELOAD_WRITE)
3942 && ! no_input_reloads
3943 /* An optional output reload might allow to delete INSN later.
3944 We mustn't make in-out reloads on insns that are not permitted
3945 output reloads.
3946 If this is an asm, we can't delete it; we must not even call
3947 push_reload for an optional output reload in this case,
3948 because we can't be sure that the constraint allows a register,
3949 and push_reload verifies the constraints for asms. */
3950 && (modified[i] == RELOAD_READ
3951 || (! no_output_reloads && ! this_insn_is_asm)))
3952 operand_reloadnum[i]
3953 = push_reload ((modified[i] != RELOAD_WRITE
3954 ? recog_data.operand[i] : 0),
3955 (modified[i] != RELOAD_READ
3956 ? recog_data.operand[i] : 0),
3957 (modified[i] != RELOAD_WRITE
3958 ? recog_data.operand_loc[i] : 0),
3959 (modified[i] != RELOAD_READ
3960 ? recog_data.operand_loc[i] : 0),
3961 (enum reg_class) goal_alternative[i],
3962 (modified[i] == RELOAD_WRITE
3963 ? VOIDmode : operand_mode[i]),
3964 (modified[i] == RELOAD_READ
3965 ? VOIDmode : operand_mode[i]),
3966 (insn_code_number < 0 ? 0
3967 : insn_data[insn_code_number].operand[i].strict_low),
3968 1, i, operand_type[i]);
3969 /* If a memory reference remains (either as a MEM or a pseudo that
3970 did not get a hard register), yet we can't make an optional
3971 reload, check if this is actually a pseudo register reference;
3972 we then need to emit a USE and/or a CLOBBER so that reload
3973 inheritance will do the right thing. */
3974 else if (replace
3975 && (MEM_P (operand)
3976 || (REG_P (operand)
3977 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3978 && reg_renumber [REGNO (operand)] < 0)))
3980 operand = *recog_data.operand_loc[i];
3982 while (GET_CODE (operand) == SUBREG)
3983 operand = SUBREG_REG (operand);
3984 if (REG_P (operand))
3986 if (modified[i] != RELOAD_WRITE)
3987 /* We mark the USE with QImode so that we recognize
3988 it as one that can be safely deleted at the end
3989 of reload. */
3990 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
3991 insn), QImode);
3992 if (modified[i] != RELOAD_READ)
3993 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, operand), insn);
3997 else if (goal_alternative_matches[i] >= 0
3998 && goal_alternative_win[goal_alternative_matches[i]]
3999 && modified[i] == RELOAD_READ
4000 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
4001 && ! no_input_reloads && ! no_output_reloads
4002 && optimize)
4004 /* Similarly, make an optional reload for a pair of matching
4005 objects that are in MEM or a pseudo that didn't get a hard reg. */
4007 rtx operand = recog_data.operand[i];
4009 while (GET_CODE (operand) == SUBREG)
4010 operand = SUBREG_REG (operand);
4011 if ((MEM_P (operand)
4012 || (REG_P (operand)
4013 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4014 && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
4015 != NO_REGS))
4016 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
4017 = push_reload (recog_data.operand[goal_alternative_matches[i]],
4018 recog_data.operand[i],
4019 recog_data.operand_loc[goal_alternative_matches[i]],
4020 recog_data.operand_loc[i],
4021 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
4022 operand_mode[goal_alternative_matches[i]],
4023 operand_mode[i],
4024 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
4027 /* Perform whatever substitutions on the operands we are supposed
4028 to make due to commutativity or replacement of registers
4029 with equivalent constants or memory slots. */
4031 for (i = 0; i < noperands; i++)
4033 /* We only do this on the last pass through reload, because it is
4034 possible for some data (like reg_equiv_address) to be changed during
4035 later passes. Moreover, we lose the opportunity to get a useful
4036 reload_{in,out}_reg when we do these replacements. */
4038 if (replace)
4040 rtx substitution = substed_operand[i];
4042 *recog_data.operand_loc[i] = substitution;
4044 /* If we're replacing an operand with a LABEL_REF, we need
4045 to make sure that there's a REG_LABEL note attached to
4046 this instruction. */
4047 if (!JUMP_P (insn)
4048 && GET_CODE (substitution) == LABEL_REF
4049 && !find_reg_note (insn, REG_LABEL, XEXP (substitution, 0)))
4050 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
4051 XEXP (substitution, 0),
4052 REG_NOTES (insn));
4054 else
4055 retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
4058 /* If this insn pattern contains any MATCH_DUP's, make sure that
4059 they will be substituted if the operands they match are substituted.
4060 Also do now any substitutions we already did on the operands.
4062 Don't do this if we aren't making replacements because we might be
4063 propagating things allocated by frame pointer elimination into places
4064 it doesn't expect. */
4066 if (insn_code_number >= 0 && replace)
4067 for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
4069 int opno = recog_data.dup_num[i];
4070 *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
4071 dup_replacements (recog_data.dup_loc[i], recog_data.operand_loc[opno]);
4074 #if 0
4075 /* This loses because reloading of prior insns can invalidate the equivalence
4076 (or at least find_equiv_reg isn't smart enough to find it any more),
4077 causing this insn to need more reload regs than it needed before.
4078 It may be too late to make the reload regs available.
4079 Now this optimization is done safely in choose_reload_regs. */
4081 /* For each reload of a reg into some other class of reg,
4082 search for an existing equivalent reg (same value now) in the right class.
4083 We can use it as long as we don't need to change its contents. */
4084 for (i = 0; i < n_reloads; i++)
4085 if (rld[i].reg_rtx == 0
4086 && rld[i].in != 0
4087 && REG_P (rld[i].in)
4088 && rld[i].out == 0)
4090 rld[i].reg_rtx
4091 = find_equiv_reg (rld[i].in, insn, rld[i].class, -1,
4092 static_reload_reg_p, 0, rld[i].inmode);
4093 /* Prevent generation of insn to load the value
4094 because the one we found already has the value. */
4095 if (rld[i].reg_rtx)
4096 rld[i].in = rld[i].reg_rtx;
4098 #endif
4100 /* Perhaps an output reload can be combined with another
4101 to reduce needs by one. */
4102 if (!goal_earlyclobber)
4103 combine_reloads ();
4105 /* If we have a pair of reloads for parts of an address, they are reloading
4106 the same object, the operands themselves were not reloaded, and they
4107 are for two operands that are supposed to match, merge the reloads and
4108 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
4110 for (i = 0; i < n_reloads; i++)
4112 int k;
4114 for (j = i + 1; j < n_reloads; j++)
4115 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4116 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4117 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4118 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4119 && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
4120 || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4121 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4122 || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4123 && rtx_equal_p (rld[i].in, rld[j].in)
4124 && (operand_reloadnum[rld[i].opnum] < 0
4125 || rld[operand_reloadnum[rld[i].opnum]].optional)
4126 && (operand_reloadnum[rld[j].opnum] < 0
4127 || rld[operand_reloadnum[rld[j].opnum]].optional)
4128 && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
4129 || (goal_alternative_matches[rld[j].opnum]
4130 == rld[i].opnum)))
4132 for (k = 0; k < n_replacements; k++)
4133 if (replacements[k].what == j)
4134 replacements[k].what = i;
4136 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4137 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4138 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4139 else
4140 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4141 rld[j].in = 0;
4145 /* Scan all the reloads and update their type.
4146 If a reload is for the address of an operand and we didn't reload
4147 that operand, change the type. Similarly, change the operand number
4148 of a reload when two operands match. If a reload is optional, treat it
4149 as though the operand isn't reloaded.
4151 ??? This latter case is somewhat odd because if we do the optional
4152 reload, it means the object is hanging around. Thus we need only
4153 do the address reload if the optional reload was NOT done.
4155 Change secondary reloads to be the address type of their operand, not
4156 the normal type.
4158 If an operand's reload is now RELOAD_OTHER, change any
4159 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
4160 RELOAD_FOR_OTHER_ADDRESS. */
4162 for (i = 0; i < n_reloads; i++)
4164 if (rld[i].secondary_p
4165 && rld[i].when_needed == operand_type[rld[i].opnum])
4166 rld[i].when_needed = address_type[rld[i].opnum];
4168 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4169 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4170 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4171 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4172 && (operand_reloadnum[rld[i].opnum] < 0
4173 || rld[operand_reloadnum[rld[i].opnum]].optional))
4175 /* If we have a secondary reload to go along with this reload,
4176 change its type to RELOAD_FOR_OPADDR_ADDR. */
4178 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4179 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4180 && rld[i].secondary_in_reload != -1)
4182 int secondary_in_reload = rld[i].secondary_in_reload;
4184 rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4186 /* If there's a tertiary reload we have to change it also. */
4187 if (secondary_in_reload > 0
4188 && rld[secondary_in_reload].secondary_in_reload != -1)
4189 rld[rld[secondary_in_reload].secondary_in_reload].when_needed
4190 = RELOAD_FOR_OPADDR_ADDR;
4193 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4194 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4195 && rld[i].secondary_out_reload != -1)
4197 int secondary_out_reload = rld[i].secondary_out_reload;
4199 rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4201 /* If there's a tertiary reload we have to change it also. */
4202 if (secondary_out_reload
4203 && rld[secondary_out_reload].secondary_out_reload != -1)
4204 rld[rld[secondary_out_reload].secondary_out_reload].when_needed
4205 = RELOAD_FOR_OPADDR_ADDR;
4208 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4209 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4210 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4211 else
4212 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4215 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4216 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4217 && operand_reloadnum[rld[i].opnum] >= 0
4218 && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4219 == RELOAD_OTHER))
4220 rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4222 if (goal_alternative_matches[rld[i].opnum] >= 0)
4223 rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4226 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4227 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4228 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4230 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4231 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
4232 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4233 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4234 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4235 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4236 This is complicated by the fact that a single operand can have more
4237 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
4238 choose_reload_regs without affecting code quality, and cases that
4239 actually fail are extremely rare, so it turns out to be better to fix
4240 the problem here by not generating cases that choose_reload_regs will
4241 fail for. */
4242 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4243 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4244 a single operand.
4245 We can reduce the register pressure by exploiting that a
4246 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4247 does not conflict with any of them, if it is only used for the first of
4248 the RELOAD_FOR_X_ADDRESS reloads. */
4250 int first_op_addr_num = -2;
4251 int first_inpaddr_num[MAX_RECOG_OPERANDS];
4252 int first_outpaddr_num[MAX_RECOG_OPERANDS];
4253 int need_change = 0;
4254 /* We use last_op_addr_reload and the contents of the above arrays
4255 first as flags - -2 means no instance encountered, -1 means exactly
4256 one instance encountered.
4257 If more than one instance has been encountered, we store the reload
4258 number of the first reload of the kind in question; reload numbers
4259 are known to be non-negative. */
4260 for (i = 0; i < noperands; i++)
4261 first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4262 for (i = n_reloads - 1; i >= 0; i--)
4264 switch (rld[i].when_needed)
4266 case RELOAD_FOR_OPERAND_ADDRESS:
4267 if (++first_op_addr_num >= 0)
4269 first_op_addr_num = i;
4270 need_change = 1;
4272 break;
4273 case RELOAD_FOR_INPUT_ADDRESS:
4274 if (++first_inpaddr_num[rld[i].opnum] >= 0)
4276 first_inpaddr_num[rld[i].opnum] = i;
4277 need_change = 1;
4279 break;
4280 case RELOAD_FOR_OUTPUT_ADDRESS:
4281 if (++first_outpaddr_num[rld[i].opnum] >= 0)
4283 first_outpaddr_num[rld[i].opnum] = i;
4284 need_change = 1;
4286 break;
4287 default:
4288 break;
4292 if (need_change)
4294 for (i = 0; i < n_reloads; i++)
4296 int first_num;
4297 enum reload_type type;
4299 switch (rld[i].when_needed)
4301 case RELOAD_FOR_OPADDR_ADDR:
4302 first_num = first_op_addr_num;
4303 type = RELOAD_FOR_OPERAND_ADDRESS;
4304 break;
4305 case RELOAD_FOR_INPADDR_ADDRESS:
4306 first_num = first_inpaddr_num[rld[i].opnum];
4307 type = RELOAD_FOR_INPUT_ADDRESS;
4308 break;
4309 case RELOAD_FOR_OUTADDR_ADDRESS:
4310 first_num = first_outpaddr_num[rld[i].opnum];
4311 type = RELOAD_FOR_OUTPUT_ADDRESS;
4312 break;
4313 default:
4314 continue;
4316 if (first_num < 0)
4317 continue;
4318 else if (i > first_num)
4319 rld[i].when_needed = type;
4320 else
4322 /* Check if the only TYPE reload that uses reload I is
4323 reload FIRST_NUM. */
4324 for (j = n_reloads - 1; j > first_num; j--)
4326 if (rld[j].when_needed == type
4327 && (rld[i].secondary_p
4328 ? rld[j].secondary_in_reload == i
4329 : reg_mentioned_p (rld[i].in, rld[j].in)))
4331 rld[i].when_needed = type;
4332 break;
4340 /* See if we have any reloads that are now allowed to be merged
4341 because we've changed when the reload is needed to
4342 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4343 check for the most common cases. */
4345 for (i = 0; i < n_reloads; i++)
4346 if (rld[i].in != 0 && rld[i].out == 0
4347 && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4348 || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4349 || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4350 for (j = 0; j < n_reloads; j++)
4351 if (i != j && rld[j].in != 0 && rld[j].out == 0
4352 && rld[j].when_needed == rld[i].when_needed
4353 && MATCHES (rld[i].in, rld[j].in)
4354 && rld[i].class == rld[j].class
4355 && !rld[i].nocombine && !rld[j].nocombine
4356 && rld[i].reg_rtx == rld[j].reg_rtx)
4358 rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4359 transfer_replacements (i, j);
4360 rld[j].in = 0;
4363 #ifdef HAVE_cc0
4364 /* If we made any reloads for addresses, see if they violate a
4365 "no input reloads" requirement for this insn. But loads that we
4366 do after the insn (such as for output addresses) are fine. */
4367 if (no_input_reloads)
4368 for (i = 0; i < n_reloads; i++)
4369 gcc_assert (rld[i].in == 0
4370 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS
4371 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS);
4372 #endif
4374 /* Compute reload_mode and reload_nregs. */
4375 for (i = 0; i < n_reloads; i++)
4377 rld[i].mode
4378 = (rld[i].inmode == VOIDmode
4379 || (GET_MODE_SIZE (rld[i].outmode)
4380 > GET_MODE_SIZE (rld[i].inmode)))
4381 ? rld[i].outmode : rld[i].inmode;
4383 rld[i].nregs = CLASS_MAX_NREGS (rld[i].class, rld[i].mode);
4386 /* Special case a simple move with an input reload and a
4387 destination of a hard reg, if the hard reg is ok, use it. */
4388 for (i = 0; i < n_reloads; i++)
4389 if (rld[i].when_needed == RELOAD_FOR_INPUT
4390 && GET_CODE (PATTERN (insn)) == SET
4391 && REG_P (SET_DEST (PATTERN (insn)))
4392 && SET_SRC (PATTERN (insn)) == rld[i].in)
4394 rtx dest = SET_DEST (PATTERN (insn));
4395 unsigned int regno = REGNO (dest);
4397 if (regno < FIRST_PSEUDO_REGISTER
4398 && TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno)
4399 && HARD_REGNO_MODE_OK (regno, rld[i].mode))
4401 int nr = hard_regno_nregs[regno][rld[i].mode];
4402 int ok = 1, nri;
4404 for (nri = 1; nri < nr; nri ++)
4405 if (! TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno + nri))
4406 ok = 0;
4408 if (ok)
4409 rld[i].reg_rtx = dest;
4413 return retval;
4416 /* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
4417 accepts a memory operand with constant address. */
4419 static int
4420 alternative_allows_memconst (const char *constraint, int altnum)
4422 int c;
4423 /* Skip alternatives before the one requested. */
4424 while (altnum > 0)
4426 while (*constraint++ != ',');
4427 altnum--;
4429 /* Scan the requested alternative for 'm' or 'o'.
4430 If one of them is present, this alternative accepts memory constants. */
4431 for (; (c = *constraint) && c != ',' && c != '#';
4432 constraint += CONSTRAINT_LEN (c, constraint))
4433 if (c == 'm' || c == 'o' || EXTRA_MEMORY_CONSTRAINT (c, constraint))
4434 return 1;
4435 return 0;
4438 /* Scan X for memory references and scan the addresses for reloading.
4439 Also checks for references to "constant" regs that we want to eliminate
4440 and replaces them with the values they stand for.
4441 We may alter X destructively if it contains a reference to such.
4442 If X is just a constant reg, we return the equivalent value
4443 instead of X.
4445 IND_LEVELS says how many levels of indirect addressing this machine
4446 supports.
4448 OPNUM and TYPE identify the purpose of the reload.
4450 IS_SET_DEST is true if X is the destination of a SET, which is not
4451 appropriate to be replaced by a constant.
4453 INSN, if nonzero, is the insn in which we do the reload. It is used
4454 to determine if we may generate output reloads, and where to put USEs
4455 for pseudos that we have to replace with stack slots.
4457 ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
4458 result of find_reloads_address. */
4460 static rtx
4461 find_reloads_toplev (rtx x, int opnum, enum reload_type type,
4462 int ind_levels, int is_set_dest, rtx insn,
4463 int *address_reloaded)
4465 RTX_CODE code = GET_CODE (x);
4467 const char *fmt = GET_RTX_FORMAT (code);
4468 int i;
4469 int copied;
4471 if (code == REG)
4473 /* This code is duplicated for speed in find_reloads. */
4474 int regno = REGNO (x);
4475 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4476 x = reg_equiv_constant[regno];
4477 #if 0
4478 /* This creates (subreg (mem...)) which would cause an unnecessary
4479 reload of the mem. */
4480 else if (reg_equiv_mem[regno] != 0)
4481 x = reg_equiv_mem[regno];
4482 #endif
4483 else if (reg_equiv_memory_loc[regno]
4484 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
4486 rtx mem = make_memloc (x, regno);
4487 if (reg_equiv_address[regno]
4488 || ! rtx_equal_p (mem, reg_equiv_mem[regno]))
4490 /* If this is not a toplevel operand, find_reloads doesn't see
4491 this substitution. We have to emit a USE of the pseudo so
4492 that delete_output_reload can see it. */
4493 if (replace_reloads && recog_data.operand[opnum] != x)
4494 /* We mark the USE with QImode so that we recognize it
4495 as one that can be safely deleted at the end of
4496 reload. */
4497 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4498 QImode);
4499 x = mem;
4500 i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4501 opnum, type, ind_levels, insn);
4502 if (address_reloaded)
4503 *address_reloaded = i;
4506 return x;
4508 if (code == MEM)
4510 rtx tem = x;
4512 i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4513 opnum, type, ind_levels, insn);
4514 if (address_reloaded)
4515 *address_reloaded = i;
4517 return tem;
4520 if (code == SUBREG && REG_P (SUBREG_REG (x)))
4522 /* Check for SUBREG containing a REG that's equivalent to a
4523 constant. If the constant has a known value, truncate it
4524 right now. Similarly if we are extracting a single-word of a
4525 multi-word constant. If the constant is symbolic, allow it
4526 to be substituted normally. push_reload will strip the
4527 subreg later. The constant must not be VOIDmode, because we
4528 will lose the mode of the register (this should never happen
4529 because one of the cases above should handle it). */
4531 int regno = REGNO (SUBREG_REG (x));
4532 rtx tem;
4534 if (subreg_lowpart_p (x)
4535 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4536 && reg_equiv_constant[regno] != 0
4537 && (tem = gen_lowpart_common (GET_MODE (x),
4538 reg_equiv_constant[regno])) != 0)
4539 return tem;
4541 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4542 && reg_equiv_constant[regno] != 0)
4544 tem =
4545 simplify_gen_subreg (GET_MODE (x), reg_equiv_constant[regno],
4546 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
4547 gcc_assert (tem);
4548 return tem;
4551 /* If the subreg contains a reg that will be converted to a mem,
4552 convert the subreg to a narrower memref now.
4553 Otherwise, we would get (subreg (mem ...) ...),
4554 which would force reload of the mem.
4556 We also need to do this if there is an equivalent MEM that is
4557 not offsettable. In that case, alter_subreg would produce an
4558 invalid address on big-endian machines.
4560 For machines that extend byte loads, we must not reload using
4561 a wider mode if we have a paradoxical SUBREG. find_reloads will
4562 force a reload in that case. So we should not do anything here. */
4564 else if (regno >= FIRST_PSEUDO_REGISTER
4565 #ifdef LOAD_EXTEND_OP
4566 && (GET_MODE_SIZE (GET_MODE (x))
4567 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4568 #endif
4569 && (reg_equiv_address[regno] != 0
4570 || (reg_equiv_mem[regno] != 0
4571 && (! strict_memory_address_p (GET_MODE (x),
4572 XEXP (reg_equiv_mem[regno], 0))
4573 || ! offsettable_memref_p (reg_equiv_mem[regno])
4574 || num_not_at_initial_offset))))
4575 x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
4576 insn);
4579 for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4581 if (fmt[i] == 'e')
4583 rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4584 ind_levels, is_set_dest, insn,
4585 address_reloaded);
4586 /* If we have replaced a reg with it's equivalent memory loc -
4587 that can still be handled here e.g. if it's in a paradoxical
4588 subreg - we must make the change in a copy, rather than using
4589 a destructive change. This way, find_reloads can still elect
4590 not to do the change. */
4591 if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4593 x = shallow_copy_rtx (x);
4594 copied = 1;
4596 XEXP (x, i) = new_part;
4599 return x;
4602 /* Return a mem ref for the memory equivalent of reg REGNO.
4603 This mem ref is not shared with anything. */
4605 static rtx
4606 make_memloc (rtx ad, int regno)
4608 /* We must rerun eliminate_regs, in case the elimination
4609 offsets have changed. */
4610 rtx tem
4611 = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0, NULL_RTX), 0);
4613 /* If TEM might contain a pseudo, we must copy it to avoid
4614 modifying it when we do the substitution for the reload. */
4615 if (rtx_varies_p (tem, 0))
4616 tem = copy_rtx (tem);
4618 tem = replace_equiv_address_nv (reg_equiv_memory_loc[regno], tem);
4619 tem = adjust_address_nv (tem, GET_MODE (ad), 0);
4621 /* Copy the result if it's still the same as the equivalence, to avoid
4622 modifying it when we do the substitution for the reload. */
4623 if (tem == reg_equiv_memory_loc[regno])
4624 tem = copy_rtx (tem);
4625 return tem;
4628 /* Returns true if AD could be turned into a valid memory reference
4629 to mode MODE by reloading the part pointed to by PART into a
4630 register. */
4632 static int
4633 maybe_memory_address_p (enum machine_mode mode, rtx ad, rtx *part)
4635 int retv;
4636 rtx tem = *part;
4637 rtx reg = gen_rtx_REG (GET_MODE (tem), max_reg_num ());
4639 *part = reg;
4640 retv = memory_address_p (mode, ad);
4641 *part = tem;
4643 return retv;
4646 /* Record all reloads needed for handling memory address AD
4647 which appears in *LOC in a memory reference to mode MODE
4648 which itself is found in location *MEMREFLOC.
4649 Note that we take shortcuts assuming that no multi-reg machine mode
4650 occurs as part of an address.
4652 OPNUM and TYPE specify the purpose of this reload.
4654 IND_LEVELS says how many levels of indirect addressing this machine
4655 supports.
4657 INSN, if nonzero, is the insn in which we do the reload. It is used
4658 to determine if we may generate output reloads, and where to put USEs
4659 for pseudos that we have to replace with stack slots.
4661 Value is one if this address is reloaded or replaced as a whole; it is
4662 zero if the top level of this address was not reloaded or replaced, and
4663 it is -1 if it may or may not have been reloaded or replaced.
4665 Note that there is no verification that the address will be valid after
4666 this routine does its work. Instead, we rely on the fact that the address
4667 was valid when reload started. So we need only undo things that reload
4668 could have broken. These are wrong register types, pseudos not allocated
4669 to a hard register, and frame pointer elimination. */
4671 static int
4672 find_reloads_address (enum machine_mode mode, rtx *memrefloc, rtx ad,
4673 rtx *loc, int opnum, enum reload_type type,
4674 int ind_levels, rtx insn)
4676 int regno;
4677 int removed_and = 0;
4678 int op_index;
4679 rtx tem;
4681 /* If the address is a register, see if it is a legitimate address and
4682 reload if not. We first handle the cases where we need not reload
4683 or where we must reload in a non-standard way. */
4685 if (REG_P (ad))
4687 regno = REGNO (ad);
4689 /* If the register is equivalent to an invariant expression, substitute
4690 the invariant, and eliminate any eliminable register references. */
4691 tem = reg_equiv_constant[regno];
4692 if (tem != 0
4693 && (tem = eliminate_regs (tem, mode, insn))
4694 && strict_memory_address_p (mode, tem))
4696 *loc = ad = tem;
4697 return 0;
4700 tem = reg_equiv_memory_loc[regno];
4701 if (tem != 0)
4703 if (reg_equiv_address[regno] != 0 || num_not_at_initial_offset)
4705 tem = make_memloc (ad, regno);
4706 if (! strict_memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
4708 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4709 &XEXP (tem, 0), opnum,
4710 ADDR_TYPE (type), ind_levels, insn);
4712 /* We can avoid a reload if the register's equivalent memory
4713 expression is valid as an indirect memory address.
4714 But not all addresses are valid in a mem used as an indirect
4715 address: only reg or reg+constant. */
4717 if (ind_levels > 0
4718 && strict_memory_address_p (mode, tem)
4719 && (REG_P (XEXP (tem, 0))
4720 || (GET_CODE (XEXP (tem, 0)) == PLUS
4721 && REG_P (XEXP (XEXP (tem, 0), 0))
4722 && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4724 /* TEM is not the same as what we'll be replacing the
4725 pseudo with after reload, put a USE in front of INSN
4726 in the final reload pass. */
4727 if (replace_reloads
4728 && num_not_at_initial_offset
4729 && ! rtx_equal_p (tem, reg_equiv_mem[regno]))
4731 *loc = tem;
4732 /* We mark the USE with QImode so that we
4733 recognize it as one that can be safely
4734 deleted at the end of reload. */
4735 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
4736 insn), QImode);
4738 /* This doesn't really count as replacing the address
4739 as a whole, since it is still a memory access. */
4741 return 0;
4743 ad = tem;
4747 /* The only remaining case where we can avoid a reload is if this is a
4748 hard register that is valid as a base register and which is not the
4749 subject of a CLOBBER in this insn. */
4751 else if (regno < FIRST_PSEUDO_REGISTER
4752 && regno_ok_for_base_p (regno, mode, MEM, SCRATCH)
4753 && ! regno_clobbered_p (regno, this_insn, mode, 0))
4754 return 0;
4756 /* If we do not have one of the cases above, we must do the reload. */
4757 push_reload (ad, NULL_RTX, loc, (rtx*) 0, base_reg_class (mode, MEM, SCRATCH),
4758 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4759 return 1;
4762 if (strict_memory_address_p (mode, ad))
4764 /* The address appears valid, so reloads are not needed.
4765 But the address may contain an eliminable register.
4766 This can happen because a machine with indirect addressing
4767 may consider a pseudo register by itself a valid address even when
4768 it has failed to get a hard reg.
4769 So do a tree-walk to find and eliminate all such regs. */
4771 /* But first quickly dispose of a common case. */
4772 if (GET_CODE (ad) == PLUS
4773 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4774 && REG_P (XEXP (ad, 0))
4775 && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4776 return 0;
4778 subst_reg_equivs_changed = 0;
4779 *loc = subst_reg_equivs (ad, insn);
4781 if (! subst_reg_equivs_changed)
4782 return 0;
4784 /* Check result for validity after substitution. */
4785 if (strict_memory_address_p (mode, ad))
4786 return 0;
4789 #ifdef LEGITIMIZE_RELOAD_ADDRESS
4792 if (memrefloc)
4794 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
4795 ind_levels, win);
4797 break;
4798 win:
4799 *memrefloc = copy_rtx (*memrefloc);
4800 XEXP (*memrefloc, 0) = ad;
4801 move_replacements (&ad, &XEXP (*memrefloc, 0));
4802 return -1;
4804 while (0);
4805 #endif
4807 /* The address is not valid. We have to figure out why. First see if
4808 we have an outer AND and remove it if so. Then analyze what's inside. */
4810 if (GET_CODE (ad) == AND)
4812 removed_and = 1;
4813 loc = &XEXP (ad, 0);
4814 ad = *loc;
4817 /* One possibility for why the address is invalid is that it is itself
4818 a MEM. This can happen when the frame pointer is being eliminated, a
4819 pseudo is not allocated to a hard register, and the offset between the
4820 frame and stack pointers is not its initial value. In that case the
4821 pseudo will have been replaced by a MEM referring to the
4822 stack pointer. */
4823 if (MEM_P (ad))
4825 /* First ensure that the address in this MEM is valid. Then, unless
4826 indirect addresses are valid, reload the MEM into a register. */
4827 tem = ad;
4828 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
4829 opnum, ADDR_TYPE (type),
4830 ind_levels == 0 ? 0 : ind_levels - 1, insn);
4832 /* If tem was changed, then we must create a new memory reference to
4833 hold it and store it back into memrefloc. */
4834 if (tem != ad && memrefloc)
4836 *memrefloc = copy_rtx (*memrefloc);
4837 copy_replacements (tem, XEXP (*memrefloc, 0));
4838 loc = &XEXP (*memrefloc, 0);
4839 if (removed_and)
4840 loc = &XEXP (*loc, 0);
4843 /* Check similar cases as for indirect addresses as above except
4844 that we can allow pseudos and a MEM since they should have been
4845 taken care of above. */
4847 if (ind_levels == 0
4848 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
4849 || MEM_P (XEXP (tem, 0))
4850 || ! (REG_P (XEXP (tem, 0))
4851 || (GET_CODE (XEXP (tem, 0)) == PLUS
4852 && REG_P (XEXP (XEXP (tem, 0), 0))
4853 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
4855 /* Must use TEM here, not AD, since it is the one that will
4856 have any subexpressions reloaded, if needed. */
4857 push_reload (tem, NULL_RTX, loc, (rtx*) 0,
4858 base_reg_class (mode, MEM, SCRATCH), GET_MODE (tem),
4859 VOIDmode, 0,
4860 0, opnum, type);
4861 return ! removed_and;
4863 else
4864 return 0;
4867 /* If we have address of a stack slot but it's not valid because the
4868 displacement is too large, compute the sum in a register.
4869 Handle all base registers here, not just fp/ap/sp, because on some
4870 targets (namely SH) we can also get too large displacements from
4871 big-endian corrections. */
4872 else if (GET_CODE (ad) == PLUS
4873 && REG_P (XEXP (ad, 0))
4874 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
4875 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4876 && regno_ok_for_base_p (REGNO (XEXP (ad, 0)), mode, PLUS,
4877 CONST_INT))
4880 /* Unshare the MEM rtx so we can safely alter it. */
4881 if (memrefloc)
4883 *memrefloc = copy_rtx (*memrefloc);
4884 loc = &XEXP (*memrefloc, 0);
4885 if (removed_and)
4886 loc = &XEXP (*loc, 0);
4889 if (double_reg_address_ok)
4891 /* Unshare the sum as well. */
4892 *loc = ad = copy_rtx (ad);
4894 /* Reload the displacement into an index reg.
4895 We assume the frame pointer or arg pointer is a base reg. */
4896 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4897 INDEX_REG_CLASS, GET_MODE (ad), opnum,
4898 type, ind_levels);
4899 return 0;
4901 else
4903 /* If the sum of two regs is not necessarily valid,
4904 reload the sum into a base reg.
4905 That will at least work. */
4906 find_reloads_address_part (ad, loc,
4907 base_reg_class (mode, MEM, SCRATCH),
4908 Pmode, opnum, type, ind_levels);
4910 return ! removed_and;
4913 /* If we have an indexed stack slot, there are three possible reasons why
4914 it might be invalid: The index might need to be reloaded, the address
4915 might have been made by frame pointer elimination and hence have a
4916 constant out of range, or both reasons might apply.
4918 We can easily check for an index needing reload, but even if that is the
4919 case, we might also have an invalid constant. To avoid making the
4920 conservative assumption and requiring two reloads, we see if this address
4921 is valid when not interpreted strictly. If it is, the only problem is
4922 that the index needs a reload and find_reloads_address_1 will take care
4923 of it.
4925 Handle all base registers here, not just fp/ap/sp, because on some
4926 targets (namely SPARC) we can also get invalid addresses from preventive
4927 subreg big-endian corrections made by find_reloads_toplev. We
4928 can also get expressions involving LO_SUM (rather than PLUS) from
4929 find_reloads_subreg_address.
4931 If we decide to do something, it must be that `double_reg_address_ok'
4932 is true. We generate a reload of the base register + constant and
4933 rework the sum so that the reload register will be added to the index.
4934 This is safe because we know the address isn't shared.
4936 We check for the base register as both the first and second operand of
4937 the innermost PLUS and/or LO_SUM. */
4939 for (op_index = 0; op_index < 2; ++op_index)
4941 rtx operand, addend;
4942 enum rtx_code inner_code;
4944 if (GET_CODE (ad) != PLUS)
4945 continue;
4947 inner_code = GET_CODE (XEXP (ad, 0));
4948 if (!(GET_CODE (ad) == PLUS
4949 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4950 && (inner_code == PLUS || inner_code == LO_SUM)))
4951 continue;
4953 operand = XEXP (XEXP (ad, 0), op_index);
4954 if (!REG_P (operand) || REGNO (operand) >= FIRST_PSEUDO_REGISTER)
4955 continue;
4957 addend = XEXP (XEXP (ad, 0), 1 - op_index);
4959 if ((regno_ok_for_base_p (REGNO (operand), mode, inner_code,
4960 GET_CODE (addend))
4961 || operand == frame_pointer_rtx
4962 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4963 || operand == hard_frame_pointer_rtx
4964 #endif
4965 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4966 || operand == arg_pointer_rtx
4967 #endif
4968 || operand == stack_pointer_rtx)
4969 && ! maybe_memory_address_p (mode, ad,
4970 &XEXP (XEXP (ad, 0), 1 - op_index)))
4972 rtx offset_reg;
4973 enum reg_class cls;
4975 offset_reg = plus_constant (operand, INTVAL (XEXP (ad, 1)));
4977 /* Form the adjusted address. */
4978 if (GET_CODE (XEXP (ad, 0)) == PLUS)
4979 ad = gen_rtx_PLUS (GET_MODE (ad),
4980 op_index == 0 ? offset_reg : addend,
4981 op_index == 0 ? addend : offset_reg);
4982 else
4983 ad = gen_rtx_LO_SUM (GET_MODE (ad),
4984 op_index == 0 ? offset_reg : addend,
4985 op_index == 0 ? addend : offset_reg);
4986 *loc = ad;
4988 cls = base_reg_class (mode, MEM, GET_CODE (addend));
4989 find_reloads_address_part (XEXP (ad, op_index),
4990 &XEXP (ad, op_index), cls,
4991 GET_MODE (ad), opnum, type, ind_levels);
4992 find_reloads_address_1 (mode,
4993 XEXP (ad, 1 - op_index), 1, GET_CODE (ad),
4994 GET_CODE (XEXP (ad, op_index)),
4995 &XEXP (ad, 1 - op_index), opnum,
4996 type, 0, insn);
4998 return 0;
5002 /* See if address becomes valid when an eliminable register
5003 in a sum is replaced. */
5005 tem = ad;
5006 if (GET_CODE (ad) == PLUS)
5007 tem = subst_indexed_address (ad);
5008 if (tem != ad && strict_memory_address_p (mode, tem))
5010 /* Ok, we win that way. Replace any additional eliminable
5011 registers. */
5013 subst_reg_equivs_changed = 0;
5014 tem = subst_reg_equivs (tem, insn);
5016 /* Make sure that didn't make the address invalid again. */
5018 if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
5020 *loc = tem;
5021 return 0;
5025 /* If constants aren't valid addresses, reload the constant address
5026 into a register. */
5027 if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
5029 /* If AD is an address in the constant pool, the MEM rtx may be shared.
5030 Unshare it so we can safely alter it. */
5031 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
5032 && CONSTANT_POOL_ADDRESS_P (ad))
5034 *memrefloc = copy_rtx (*memrefloc);
5035 loc = &XEXP (*memrefloc, 0);
5036 if (removed_and)
5037 loc = &XEXP (*loc, 0);
5040 find_reloads_address_part (ad, loc, base_reg_class (mode, MEM, SCRATCH),
5041 Pmode, opnum, type, ind_levels);
5042 return ! removed_and;
5045 return find_reloads_address_1 (mode, ad, 0, MEM, SCRATCH, loc, opnum, type,
5046 ind_levels, insn);
5049 /* Find all pseudo regs appearing in AD
5050 that are eliminable in favor of equivalent values
5051 and do not have hard regs; replace them by their equivalents.
5052 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
5053 front of it for pseudos that we have to replace with stack slots. */
5055 static rtx
5056 subst_reg_equivs (rtx ad, rtx insn)
5058 RTX_CODE code = GET_CODE (ad);
5059 int i;
5060 const char *fmt;
5062 switch (code)
5064 case HIGH:
5065 case CONST_INT:
5066 case CONST:
5067 case CONST_DOUBLE:
5068 case CONST_VECTOR:
5069 case SYMBOL_REF:
5070 case LABEL_REF:
5071 case PC:
5072 case CC0:
5073 return ad;
5075 case REG:
5077 int regno = REGNO (ad);
5079 if (reg_equiv_constant[regno] != 0)
5081 subst_reg_equivs_changed = 1;
5082 return reg_equiv_constant[regno];
5084 if (reg_equiv_memory_loc[regno] && num_not_at_initial_offset)
5086 rtx mem = make_memloc (ad, regno);
5087 if (! rtx_equal_p (mem, reg_equiv_mem[regno]))
5089 subst_reg_equivs_changed = 1;
5090 /* We mark the USE with QImode so that we recognize it
5091 as one that can be safely deleted at the end of
5092 reload. */
5093 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
5094 QImode);
5095 return mem;
5099 return ad;
5101 case PLUS:
5102 /* Quickly dispose of a common case. */
5103 if (XEXP (ad, 0) == frame_pointer_rtx
5104 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
5105 return ad;
5106 break;
5108 default:
5109 break;
5112 fmt = GET_RTX_FORMAT (code);
5113 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5114 if (fmt[i] == 'e')
5115 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
5116 return ad;
5119 /* Compute the sum of X and Y, making canonicalizations assumed in an
5120 address, namely: sum constant integers, surround the sum of two
5121 constants with a CONST, put the constant as the second operand, and
5122 group the constant on the outermost sum.
5124 This routine assumes both inputs are already in canonical form. */
5127 form_sum (rtx x, rtx y)
5129 rtx tem;
5130 enum machine_mode mode = GET_MODE (x);
5132 if (mode == VOIDmode)
5133 mode = GET_MODE (y);
5135 if (mode == VOIDmode)
5136 mode = Pmode;
5138 if (GET_CODE (x) == CONST_INT)
5139 return plus_constant (y, INTVAL (x));
5140 else if (GET_CODE (y) == CONST_INT)
5141 return plus_constant (x, INTVAL (y));
5142 else if (CONSTANT_P (x))
5143 tem = x, x = y, y = tem;
5145 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
5146 return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
5148 /* Note that if the operands of Y are specified in the opposite
5149 order in the recursive calls below, infinite recursion will occur. */
5150 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
5151 return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
5153 /* If both constant, encapsulate sum. Otherwise, just form sum. A
5154 constant will have been placed second. */
5155 if (CONSTANT_P (x) && CONSTANT_P (y))
5157 if (GET_CODE (x) == CONST)
5158 x = XEXP (x, 0);
5159 if (GET_CODE (y) == CONST)
5160 y = XEXP (y, 0);
5162 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
5165 return gen_rtx_PLUS (mode, x, y);
5168 /* If ADDR is a sum containing a pseudo register that should be
5169 replaced with a constant (from reg_equiv_constant),
5170 return the result of doing so, and also apply the associative
5171 law so that the result is more likely to be a valid address.
5172 (But it is not guaranteed to be one.)
5174 Note that at most one register is replaced, even if more are
5175 replaceable. Also, we try to put the result into a canonical form
5176 so it is more likely to be a valid address.
5178 In all other cases, return ADDR. */
5180 static rtx
5181 subst_indexed_address (rtx addr)
5183 rtx op0 = 0, op1 = 0, op2 = 0;
5184 rtx tem;
5185 int regno;
5187 if (GET_CODE (addr) == PLUS)
5189 /* Try to find a register to replace. */
5190 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5191 if (REG_P (op0)
5192 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5193 && reg_renumber[regno] < 0
5194 && reg_equiv_constant[regno] != 0)
5195 op0 = reg_equiv_constant[regno];
5196 else if (REG_P (op1)
5197 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5198 && reg_renumber[regno] < 0
5199 && reg_equiv_constant[regno] != 0)
5200 op1 = reg_equiv_constant[regno];
5201 else if (GET_CODE (op0) == PLUS
5202 && (tem = subst_indexed_address (op0)) != op0)
5203 op0 = tem;
5204 else if (GET_CODE (op1) == PLUS
5205 && (tem = subst_indexed_address (op1)) != op1)
5206 op1 = tem;
5207 else
5208 return addr;
5210 /* Pick out up to three things to add. */
5211 if (GET_CODE (op1) == PLUS)
5212 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5213 else if (GET_CODE (op0) == PLUS)
5214 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5216 /* Compute the sum. */
5217 if (op2 != 0)
5218 op1 = form_sum (op1, op2);
5219 if (op1 != 0)
5220 op0 = form_sum (op0, op1);
5222 return op0;
5224 return addr;
5227 /* Update the REG_INC notes for an insn. It updates all REG_INC
5228 notes for the instruction which refer to REGNO the to refer
5229 to the reload number.
5231 INSN is the insn for which any REG_INC notes need updating.
5233 REGNO is the register number which has been reloaded.
5235 RELOADNUM is the reload number. */
5237 static void
5238 update_auto_inc_notes (rtx insn ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED,
5239 int reloadnum ATTRIBUTE_UNUSED)
5241 #ifdef AUTO_INC_DEC
5242 rtx link;
5244 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5245 if (REG_NOTE_KIND (link) == REG_INC
5246 && (int) REGNO (XEXP (link, 0)) == regno)
5247 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5248 #endif
5251 /* Record the pseudo registers we must reload into hard registers in a
5252 subexpression of a would-be memory address, X referring to a value
5253 in mode MODE. (This function is not called if the address we find
5254 is strictly valid.)
5256 CONTEXT = 1 means we are considering regs as index regs,
5257 = 0 means we are considering them as base regs.
5258 OUTER_CODE is the code of the enclosing RTX, typically a MEM, a PLUS,
5259 or an autoinc code.
5260 If CONTEXT == 0 and OUTER_CODE is a PLUS or LO_SUM, then INDEX_CODE
5261 is the code of the index part of the address. Otherwise, pass SCRATCH
5262 for this argument.
5263 OPNUM and TYPE specify the purpose of any reloads made.
5265 IND_LEVELS says how many levels of indirect addressing are
5266 supported at this point in the address.
5268 INSN, if nonzero, is the insn in which we do the reload. It is used
5269 to determine if we may generate output reloads.
5271 We return nonzero if X, as a whole, is reloaded or replaced. */
5273 /* Note that we take shortcuts assuming that no multi-reg machine mode
5274 occurs as part of an address.
5275 Also, this is not fully machine-customizable; it works for machines
5276 such as VAXen and 68000's and 32000's, but other possible machines
5277 could have addressing modes that this does not handle right.
5278 If you add push_reload calls here, you need to make sure gen_reload
5279 handles those cases gracefully. */
5281 static int
5282 find_reloads_address_1 (enum machine_mode mode, rtx x, int context,
5283 enum rtx_code outer_code, enum rtx_code index_code,
5284 rtx *loc, int opnum, enum reload_type type,
5285 int ind_levels, rtx insn)
5287 #define REG_OK_FOR_CONTEXT(CONTEXT, REGNO, MODE, OUTER, INDEX) \
5288 ((CONTEXT) == 0 \
5289 ? regno_ok_for_base_p (REGNO, MODE, OUTER, INDEX) \
5290 : REGNO_OK_FOR_INDEX_P (REGNO))
5292 enum reg_class context_reg_class;
5293 RTX_CODE code = GET_CODE (x);
5295 if (context == 1)
5296 context_reg_class = INDEX_REG_CLASS;
5297 else
5298 context_reg_class = base_reg_class (mode, outer_code, index_code);
5300 switch (code)
5302 case PLUS:
5304 rtx orig_op0 = XEXP (x, 0);
5305 rtx orig_op1 = XEXP (x, 1);
5306 RTX_CODE code0 = GET_CODE (orig_op0);
5307 RTX_CODE code1 = GET_CODE (orig_op1);
5308 rtx op0 = orig_op0;
5309 rtx op1 = orig_op1;
5311 if (GET_CODE (op0) == SUBREG)
5313 op0 = SUBREG_REG (op0);
5314 code0 = GET_CODE (op0);
5315 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5316 op0 = gen_rtx_REG (word_mode,
5317 (REGNO (op0) +
5318 subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5319 GET_MODE (SUBREG_REG (orig_op0)),
5320 SUBREG_BYTE (orig_op0),
5321 GET_MODE (orig_op0))));
5324 if (GET_CODE (op1) == SUBREG)
5326 op1 = SUBREG_REG (op1);
5327 code1 = GET_CODE (op1);
5328 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5329 /* ??? Why is this given op1's mode and above for
5330 ??? op0 SUBREGs we use word_mode? */
5331 op1 = gen_rtx_REG (GET_MODE (op1),
5332 (REGNO (op1) +
5333 subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5334 GET_MODE (SUBREG_REG (orig_op1)),
5335 SUBREG_BYTE (orig_op1),
5336 GET_MODE (orig_op1))));
5338 /* Plus in the index register may be created only as a result of
5339 register remateralization for expression like &localvar*4. Reload it.
5340 It may be possible to combine the displacement on the outer level,
5341 but it is probably not worthwhile to do so. */
5342 if (context == 1)
5344 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5345 opnum, ADDR_TYPE (type), ind_levels, insn);
5346 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5347 context_reg_class,
5348 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5349 return 1;
5352 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5353 || code0 == ZERO_EXTEND || code1 == MEM)
5355 find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
5356 &XEXP (x, 0), opnum, type, ind_levels,
5357 insn);
5358 find_reloads_address_1 (mode, orig_op1, 0, PLUS, code0,
5359 &XEXP (x, 1), opnum, type, ind_levels,
5360 insn);
5363 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5364 || code1 == ZERO_EXTEND || code0 == MEM)
5366 find_reloads_address_1 (mode, orig_op0, 0, PLUS, code1,
5367 &XEXP (x, 0), opnum, type, ind_levels,
5368 insn);
5369 find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
5370 &XEXP (x, 1), opnum, type, ind_levels,
5371 insn);
5374 else if (code0 == CONST_INT || code0 == CONST
5375 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5376 find_reloads_address_1 (mode, orig_op1, 0, PLUS, code0,
5377 &XEXP (x, 1), opnum, type, ind_levels,
5378 insn);
5380 else if (code1 == CONST_INT || code1 == CONST
5381 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5382 find_reloads_address_1 (mode, orig_op0, 0, PLUS, code1,
5383 &XEXP (x, 0), opnum, type, ind_levels,
5384 insn);
5386 else if (code0 == REG && code1 == REG)
5388 if (REGNO_OK_FOR_INDEX_P (REGNO (op0))
5389 && regno_ok_for_base_p (REGNO (op1), mode, PLUS, REG))
5390 return 0;
5391 else if (REGNO_OK_FOR_INDEX_P (REGNO (op1))
5392 && regno_ok_for_base_p (REGNO (op0), mode, PLUS, REG))
5393 return 0;
5394 else if (regno_ok_for_base_p (REGNO (op1), mode, PLUS, REG))
5395 find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
5396 &XEXP (x, 0), opnum, type, ind_levels,
5397 insn);
5398 else if (regno_ok_for_base_p (REGNO (op0), mode, PLUS, REG))
5399 find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
5400 &XEXP (x, 1), opnum, type, ind_levels,
5401 insn);
5402 else if (REGNO_OK_FOR_INDEX_P (REGNO (op1)))
5403 find_reloads_address_1 (mode, orig_op0, 0, PLUS, REG,
5404 &XEXP (x, 0), opnum, type, ind_levels,
5405 insn);
5406 else if (REGNO_OK_FOR_INDEX_P (REGNO (op0)))
5407 find_reloads_address_1 (mode, orig_op1, 0, PLUS, REG,
5408 &XEXP (x, 1), opnum, type, ind_levels,
5409 insn);
5410 else
5412 find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
5413 &XEXP (x, 0), opnum, type, ind_levels,
5414 insn);
5415 find_reloads_address_1 (mode, orig_op1, 0, PLUS, REG,
5416 &XEXP (x, 1), opnum, type, ind_levels,
5417 insn);
5421 else if (code0 == REG)
5423 find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
5424 &XEXP (x, 0), opnum, type, ind_levels,
5425 insn);
5426 find_reloads_address_1 (mode, orig_op1, 0, PLUS, REG,
5427 &XEXP (x, 1), opnum, type, ind_levels,
5428 insn);
5431 else if (code1 == REG)
5433 find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
5434 &XEXP (x, 1), opnum, type, ind_levels,
5435 insn);
5436 find_reloads_address_1 (mode, orig_op0, 0, PLUS, REG,
5437 &XEXP (x, 0), opnum, type, ind_levels,
5438 insn);
5442 return 0;
5444 case POST_MODIFY:
5445 case PRE_MODIFY:
5447 rtx op0 = XEXP (x, 0);
5448 rtx op1 = XEXP (x, 1);
5449 enum rtx_code index_code;
5450 int regno;
5451 int reloadnum;
5453 if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5454 return 0;
5456 /* Currently, we only support {PRE,POST}_MODIFY constructs
5457 where a base register is {inc,dec}remented by the contents
5458 of another register or by a constant value. Thus, these
5459 operands must match. */
5460 gcc_assert (op0 == XEXP (op1, 0));
5462 /* Require index register (or constant). Let's just handle the
5463 register case in the meantime... If the target allows
5464 auto-modify by a constant then we could try replacing a pseudo
5465 register with its equivalent constant where applicable. */
5466 if (REG_P (XEXP (op1, 1)))
5467 if (!REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5468 find_reloads_address_1 (mode, XEXP (op1, 1), 1, code, SCRATCH,
5469 &XEXP (op1, 1), opnum, type, ind_levels,
5470 insn);
5472 gcc_assert (REG_P (XEXP (op1, 0)));
5474 regno = REGNO (XEXP (op1, 0));
5475 index_code = GET_CODE (XEXP (op1, 1));
5477 /* A register that is incremented cannot be constant! */
5478 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5479 || reg_equiv_constant[regno] == 0);
5481 /* Handle a register that is equivalent to a memory location
5482 which cannot be addressed directly. */
5483 if (reg_equiv_memory_loc[regno] != 0
5484 && (reg_equiv_address[regno] != 0
5485 || num_not_at_initial_offset))
5487 rtx tem = make_memloc (XEXP (x, 0), regno);
5489 if (reg_equiv_address[regno]
5490 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5492 /* First reload the memory location's address.
5493 We can't use ADDR_TYPE (type) here, because we need to
5494 write back the value after reading it, hence we actually
5495 need two registers. */
5496 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5497 &XEXP (tem, 0), opnum,
5498 RELOAD_OTHER,
5499 ind_levels, insn);
5501 /* Then reload the memory location into a base
5502 register. */
5503 reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5504 &XEXP (op1, 0),
5505 base_reg_class (mode, code,
5506 index_code),
5507 GET_MODE (x), GET_MODE (x), 0,
5508 0, opnum, RELOAD_OTHER);
5510 update_auto_inc_notes (this_insn, regno, reloadnum);
5511 return 0;
5515 if (reg_renumber[regno] >= 0)
5516 regno = reg_renumber[regno];
5518 /* We require a base register here... */
5519 if (!regno_ok_for_base_p (regno, GET_MODE (x), code, index_code))
5521 reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5522 &XEXP (op1, 0), &XEXP (x, 0),
5523 base_reg_class (mode, code, index_code),
5524 GET_MODE (x), GET_MODE (x), 0, 0,
5525 opnum, RELOAD_OTHER);
5527 update_auto_inc_notes (this_insn, regno, reloadnum);
5528 return 0;
5531 return 0;
5533 case POST_INC:
5534 case POST_DEC:
5535 case PRE_INC:
5536 case PRE_DEC:
5537 if (REG_P (XEXP (x, 0)))
5539 int regno = REGNO (XEXP (x, 0));
5540 int value = 0;
5541 rtx x_orig = x;
5543 /* A register that is incremented cannot be constant! */
5544 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5545 || reg_equiv_constant[regno] == 0);
5547 /* Handle a register that is equivalent to a memory location
5548 which cannot be addressed directly. */
5549 if (reg_equiv_memory_loc[regno] != 0
5550 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5552 rtx tem = make_memloc (XEXP (x, 0), regno);
5553 if (reg_equiv_address[regno]
5554 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5556 /* First reload the memory location's address.
5557 We can't use ADDR_TYPE (type) here, because we need to
5558 write back the value after reading it, hence we actually
5559 need two registers. */
5560 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5561 &XEXP (tem, 0), opnum, type,
5562 ind_levels, insn);
5563 /* Put this inside a new increment-expression. */
5564 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5565 /* Proceed to reload that, as if it contained a register. */
5569 /* If we have a hard register that is ok as an index,
5570 don't make a reload. If an autoincrement of a nice register
5571 isn't "valid", it must be that no autoincrement is "valid".
5572 If that is true and something made an autoincrement anyway,
5573 this must be a special context where one is allowed.
5574 (For example, a "push" instruction.)
5575 We can't improve this address, so leave it alone. */
5577 /* Otherwise, reload the autoincrement into a suitable hard reg
5578 and record how much to increment by. */
5580 if (reg_renumber[regno] >= 0)
5581 regno = reg_renumber[regno];
5582 if (regno >= FIRST_PSEUDO_REGISTER
5583 || !REG_OK_FOR_CONTEXT (context, regno, mode, outer_code,
5584 index_code))
5586 int reloadnum;
5588 /* If we can output the register afterwards, do so, this
5589 saves the extra update.
5590 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5591 CALL_INSN - and it does not set CC0.
5592 But don't do this if we cannot directly address the
5593 memory location, since this will make it harder to
5594 reuse address reloads, and increases register pressure.
5595 Also don't do this if we can probably update x directly. */
5596 rtx equiv = (MEM_P (XEXP (x, 0))
5597 ? XEXP (x, 0)
5598 : reg_equiv_mem[regno]);
5599 int icode = (int) add_optab->handlers[(int) Pmode].insn_code;
5600 if (insn && NONJUMP_INSN_P (insn) && equiv
5601 && memory_operand (equiv, GET_MODE (equiv))
5602 #ifdef HAVE_cc0
5603 && ! sets_cc0_p (PATTERN (insn))
5604 #endif
5605 && ! (icode != CODE_FOR_nothing
5606 && ((*insn_data[icode].operand[0].predicate)
5607 (equiv, Pmode))
5608 && ((*insn_data[icode].operand[1].predicate)
5609 (equiv, Pmode))))
5611 /* We use the original pseudo for loc, so that
5612 emit_reload_insns() knows which pseudo this
5613 reload refers to and updates the pseudo rtx, not
5614 its equivalent memory location, as well as the
5615 corresponding entry in reg_last_reload_reg. */
5616 loc = &XEXP (x_orig, 0);
5617 x = XEXP (x, 0);
5618 reloadnum
5619 = push_reload (x, x, loc, loc,
5620 context_reg_class,
5621 GET_MODE (x), GET_MODE (x), 0, 0,
5622 opnum, RELOAD_OTHER);
5624 else
5626 reloadnum
5627 = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5628 context_reg_class,
5629 GET_MODE (x), GET_MODE (x), 0, 0,
5630 opnum, type);
5631 rld[reloadnum].inc
5632 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5634 value = 1;
5637 update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5638 reloadnum);
5640 return value;
5643 else if (MEM_P (XEXP (x, 0)))
5645 /* This is probably the result of a substitution, by eliminate_regs,
5646 of an equivalent address for a pseudo that was not allocated to a
5647 hard register. Verify that the specified address is valid and
5648 reload it into a register. */
5649 /* Variable `tem' might or might not be used in FIND_REG_INC_NOTE. */
5650 rtx tem ATTRIBUTE_UNUSED = XEXP (x, 0);
5651 rtx link;
5652 int reloadnum;
5654 /* Since we know we are going to reload this item, don't decrement
5655 for the indirection level.
5657 Note that this is actually conservative: it would be slightly
5658 more efficient to use the value of SPILL_INDIRECT_LEVELS from
5659 reload1.c here. */
5660 /* We can't use ADDR_TYPE (type) here, because we need to
5661 write back the value after reading it, hence we actually
5662 need two registers. */
5663 find_reloads_address (GET_MODE (x), &XEXP (x, 0),
5664 XEXP (XEXP (x, 0), 0), &XEXP (XEXP (x, 0), 0),
5665 opnum, type, ind_levels, insn);
5667 reloadnum = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5668 context_reg_class,
5669 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5670 rld[reloadnum].inc
5671 = find_inc_amount (PATTERN (this_insn), XEXP (x, 0));
5673 link = FIND_REG_INC_NOTE (this_insn, tem);
5674 if (link != 0)
5675 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5677 return 1;
5679 return 0;
5681 case TRUNCATE:
5682 case SIGN_EXTEND:
5683 case ZERO_EXTEND:
5684 /* Look for parts to reload in the inner expression and reload them
5685 too, in addition to this operation. Reloading all inner parts in
5686 addition to this one shouldn't be necessary, but at this point,
5687 we don't know if we can possibly omit any part that *can* be
5688 reloaded. Targets that are better off reloading just either part
5689 (or perhaps even a different part of an outer expression), should
5690 define LEGITIMIZE_RELOAD_ADDRESS. */
5691 find_reloads_address_1 (GET_MODE (XEXP (x, 0)), XEXP (x, 0),
5692 context, code, SCRATCH, &XEXP (x, 0), opnum,
5693 type, ind_levels, insn);
5694 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5695 context_reg_class,
5696 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5697 return 1;
5699 case MEM:
5700 /* This is probably the result of a substitution, by eliminate_regs, of
5701 an equivalent address for a pseudo that was not allocated to a hard
5702 register. Verify that the specified address is valid and reload it
5703 into a register.
5705 Since we know we are going to reload this item, don't decrement for
5706 the indirection level.
5708 Note that this is actually conservative: it would be slightly more
5709 efficient to use the value of SPILL_INDIRECT_LEVELS from
5710 reload1.c here. */
5712 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5713 opnum, ADDR_TYPE (type), ind_levels, insn);
5714 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5715 context_reg_class,
5716 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5717 return 1;
5719 case REG:
5721 int regno = REGNO (x);
5723 if (reg_equiv_constant[regno] != 0)
5725 find_reloads_address_part (reg_equiv_constant[regno], loc,
5726 context_reg_class,
5727 GET_MODE (x), opnum, type, ind_levels);
5728 return 1;
5731 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5732 that feeds this insn. */
5733 if (reg_equiv_mem[regno] != 0)
5735 push_reload (reg_equiv_mem[regno], NULL_RTX, loc, (rtx*) 0,
5736 context_reg_class,
5737 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5738 return 1;
5740 #endif
5742 if (reg_equiv_memory_loc[regno]
5743 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5745 rtx tem = make_memloc (x, regno);
5746 if (reg_equiv_address[regno] != 0
5747 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5749 x = tem;
5750 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5751 &XEXP (x, 0), opnum, ADDR_TYPE (type),
5752 ind_levels, insn);
5756 if (reg_renumber[regno] >= 0)
5757 regno = reg_renumber[regno];
5759 if (regno >= FIRST_PSEUDO_REGISTER
5760 || !REG_OK_FOR_CONTEXT (context, regno, mode, outer_code,
5761 index_code))
5763 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5764 context_reg_class,
5765 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5766 return 1;
5769 /* If a register appearing in an address is the subject of a CLOBBER
5770 in this insn, reload it into some other register to be safe.
5771 The CLOBBER is supposed to make the register unavailable
5772 from before this insn to after it. */
5773 if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
5775 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5776 context_reg_class,
5777 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5778 return 1;
5781 return 0;
5783 case SUBREG:
5784 if (REG_P (SUBREG_REG (x)))
5786 /* If this is a SUBREG of a hard register and the resulting register
5787 is of the wrong class, reload the whole SUBREG. This avoids
5788 needless copies if SUBREG_REG is multi-word. */
5789 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5791 int regno ATTRIBUTE_UNUSED = subreg_regno (x);
5793 if (!REG_OK_FOR_CONTEXT (context, regno, mode, outer_code,
5794 index_code))
5796 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5797 context_reg_class,
5798 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5799 return 1;
5802 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
5803 is larger than the class size, then reload the whole SUBREG. */
5804 else
5806 enum reg_class class = context_reg_class;
5807 if ((unsigned) CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x)))
5808 > reg_class_size[class])
5810 x = find_reloads_subreg_address (x, 0, opnum,
5811 ADDR_TYPE (type),
5812 ind_levels, insn);
5813 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5814 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5815 return 1;
5819 break;
5821 default:
5822 break;
5826 const char *fmt = GET_RTX_FORMAT (code);
5827 int i;
5829 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5831 if (fmt[i] == 'e')
5832 /* Pass SCRATCH for INDEX_CODE, since CODE can never be a PLUS once
5833 we get here. */
5834 find_reloads_address_1 (mode, XEXP (x, i), context, code, SCRATCH,
5835 &XEXP (x, i), opnum, type, ind_levels, insn);
5839 #undef REG_OK_FOR_CONTEXT
5840 return 0;
5843 /* X, which is found at *LOC, is a part of an address that needs to be
5844 reloaded into a register of class CLASS. If X is a constant, or if
5845 X is a PLUS that contains a constant, check that the constant is a
5846 legitimate operand and that we are supposed to be able to load
5847 it into the register.
5849 If not, force the constant into memory and reload the MEM instead.
5851 MODE is the mode to use, in case X is an integer constant.
5853 OPNUM and TYPE describe the purpose of any reloads made.
5855 IND_LEVELS says how many levels of indirect addressing this machine
5856 supports. */
5858 static void
5859 find_reloads_address_part (rtx x, rtx *loc, enum reg_class class,
5860 enum machine_mode mode, int opnum,
5861 enum reload_type type, int ind_levels)
5863 if (CONSTANT_P (x)
5864 && (! LEGITIMATE_CONSTANT_P (x)
5865 || PREFERRED_RELOAD_CLASS (x, class) == NO_REGS))
5867 rtx tem;
5869 tem = x = force_const_mem (mode, x);
5870 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5871 opnum, type, ind_levels, 0);
5874 else if (GET_CODE (x) == PLUS
5875 && CONSTANT_P (XEXP (x, 1))
5876 && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
5877 || PREFERRED_RELOAD_CLASS (XEXP (x, 1), class) == NO_REGS))
5879 rtx tem;
5881 tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
5882 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
5883 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5884 opnum, type, ind_levels, 0);
5887 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5888 mode, VOIDmode, 0, 0, opnum, type);
5891 /* X, a subreg of a pseudo, is a part of an address that needs to be
5892 reloaded.
5894 If the pseudo is equivalent to a memory location that cannot be directly
5895 addressed, make the necessary address reloads.
5897 If address reloads have been necessary, or if the address is changed
5898 by register elimination, return the rtx of the memory location;
5899 otherwise, return X.
5901 If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
5902 memory location.
5904 OPNUM and TYPE identify the purpose of the reload.
5906 IND_LEVELS says how many levels of indirect addressing are
5907 supported at this point in the address.
5909 INSN, if nonzero, is the insn in which we do the reload. It is used
5910 to determine where to put USEs for pseudos that we have to replace with
5911 stack slots. */
5913 static rtx
5914 find_reloads_subreg_address (rtx x, int force_replace, int opnum,
5915 enum reload_type type, int ind_levels, rtx insn)
5917 int regno = REGNO (SUBREG_REG (x));
5919 if (reg_equiv_memory_loc[regno])
5921 /* If the address is not directly addressable, or if the address is not
5922 offsettable, then it must be replaced. */
5923 if (! force_replace
5924 && (reg_equiv_address[regno]
5925 || ! offsettable_memref_p (reg_equiv_mem[regno])))
5926 force_replace = 1;
5928 if (force_replace || num_not_at_initial_offset)
5930 rtx tem = make_memloc (SUBREG_REG (x), regno);
5932 /* If the address changes because of register elimination, then
5933 it must be replaced. */
5934 if (force_replace
5935 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5937 unsigned outer_size = GET_MODE_SIZE (GET_MODE (x));
5938 unsigned inner_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
5939 int offset;
5941 /* For big-endian paradoxical subregs, SUBREG_BYTE does not
5942 hold the correct (negative) byte offset. */
5943 if (BYTES_BIG_ENDIAN && outer_size > inner_size)
5944 offset = inner_size - outer_size;
5945 else
5946 offset = SUBREG_BYTE (x);
5948 XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
5949 PUT_MODE (tem, GET_MODE (x));
5951 /* If this was a paradoxical subreg that we replaced, the
5952 resulting memory must be sufficiently aligned to allow
5953 us to widen the mode of the memory. */
5954 if (outer_size > inner_size)
5956 rtx base;
5958 base = XEXP (tem, 0);
5959 if (GET_CODE (base) == PLUS)
5961 if (GET_CODE (XEXP (base, 1)) == CONST_INT
5962 && INTVAL (XEXP (base, 1)) % outer_size != 0)
5963 return x;
5964 base = XEXP (base, 0);
5966 if (!REG_P (base)
5967 || (REGNO_POINTER_ALIGN (REGNO (base))
5968 < outer_size * BITS_PER_UNIT))
5969 return x;
5972 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5973 &XEXP (tem, 0), opnum, type,
5974 ind_levels, insn);
5976 /* If this is not a toplevel operand, find_reloads doesn't see
5977 this substitution. We have to emit a USE of the pseudo so
5978 that delete_output_reload can see it. */
5979 if (replace_reloads && recog_data.operand[opnum] != x)
5980 /* We mark the USE with QImode so that we recognize it
5981 as one that can be safely deleted at the end of
5982 reload. */
5983 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode,
5984 SUBREG_REG (x)),
5985 insn), QImode);
5986 x = tem;
5990 return x;
5993 /* Substitute into the current INSN the registers into which we have reloaded
5994 the things that need reloading. The array `replacements'
5995 contains the locations of all pointers that must be changed
5996 and says what to replace them with.
5998 Return the rtx that X translates into; usually X, but modified. */
6000 void
6001 subst_reloads (rtx insn)
6003 int i;
6005 for (i = 0; i < n_replacements; i++)
6007 struct replacement *r = &replacements[i];
6008 rtx reloadreg = rld[r->what].reg_rtx;
6009 if (reloadreg)
6011 #ifdef ENABLE_CHECKING
6012 /* Internal consistency test. Check that we don't modify
6013 anything in the equivalence arrays. Whenever something from
6014 those arrays needs to be reloaded, it must be unshared before
6015 being substituted into; the equivalence must not be modified.
6016 Otherwise, if the equivalence is used after that, it will
6017 have been modified, and the thing substituted (probably a
6018 register) is likely overwritten and not a usable equivalence. */
6019 int check_regno;
6021 for (check_regno = 0; check_regno < max_regno; check_regno++)
6023 #define CHECK_MODF(ARRAY) \
6024 gcc_assert (!ARRAY[check_regno] \
6025 || !loc_mentioned_in_p (r->where, \
6026 ARRAY[check_regno]))
6028 CHECK_MODF (reg_equiv_constant);
6029 CHECK_MODF (reg_equiv_memory_loc);
6030 CHECK_MODF (reg_equiv_address);
6031 CHECK_MODF (reg_equiv_mem);
6032 #undef CHECK_MODF
6034 #endif /* ENABLE_CHECKING */
6036 /* If we're replacing a LABEL_REF with a register, add a
6037 REG_LABEL note to indicate to flow which label this
6038 register refers to. */
6039 if (GET_CODE (*r->where) == LABEL_REF
6040 && JUMP_P (insn))
6042 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
6043 XEXP (*r->where, 0),
6044 REG_NOTES (insn));
6045 JUMP_LABEL (insn) = XEXP (*r->where, 0);
6048 /* Encapsulate RELOADREG so its machine mode matches what
6049 used to be there. Note that gen_lowpart_common will
6050 do the wrong thing if RELOADREG is multi-word. RELOADREG
6051 will always be a REG here. */
6052 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
6053 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6055 /* If we are putting this into a SUBREG and RELOADREG is a
6056 SUBREG, we would be making nested SUBREGs, so we have to fix
6057 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
6059 if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
6061 if (GET_MODE (*r->subreg_loc)
6062 == GET_MODE (SUBREG_REG (reloadreg)))
6063 *r->subreg_loc = SUBREG_REG (reloadreg);
6064 else
6066 int final_offset =
6067 SUBREG_BYTE (*r->subreg_loc) + SUBREG_BYTE (reloadreg);
6069 /* When working with SUBREGs the rule is that the byte
6070 offset must be a multiple of the SUBREG's mode. */
6071 final_offset = (final_offset /
6072 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
6073 final_offset = (final_offset *
6074 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
6076 *r->where = SUBREG_REG (reloadreg);
6077 SUBREG_BYTE (*r->subreg_loc) = final_offset;
6080 else
6081 *r->where = reloadreg;
6083 /* If reload got no reg and isn't optional, something's wrong. */
6084 else
6085 gcc_assert (rld[r->what].optional);
6089 /* Make a copy of any replacements being done into X and move those
6090 copies to locations in Y, a copy of X. */
6092 void
6093 copy_replacements (rtx x, rtx y)
6095 /* We can't support X being a SUBREG because we might then need to know its
6096 location if something inside it was replaced. */
6097 gcc_assert (GET_CODE (x) != SUBREG);
6099 copy_replacements_1 (&x, &y, n_replacements);
6102 static void
6103 copy_replacements_1 (rtx *px, rtx *py, int orig_replacements)
6105 int i, j;
6106 rtx x, y;
6107 struct replacement *r;
6108 enum rtx_code code;
6109 const char *fmt;
6111 for (j = 0; j < orig_replacements; j++)
6113 if (replacements[j].subreg_loc == px)
6115 r = &replacements[n_replacements++];
6116 r->where = replacements[j].where;
6117 r->subreg_loc = py;
6118 r->what = replacements[j].what;
6119 r->mode = replacements[j].mode;
6121 else if (replacements[j].where == px)
6123 r = &replacements[n_replacements++];
6124 r->where = py;
6125 r->subreg_loc = 0;
6126 r->what = replacements[j].what;
6127 r->mode = replacements[j].mode;
6131 x = *px;
6132 y = *py;
6133 code = GET_CODE (x);
6134 fmt = GET_RTX_FORMAT (code);
6136 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6138 if (fmt[i] == 'e')
6139 copy_replacements_1 (&XEXP (x, i), &XEXP (y, i), orig_replacements);
6140 else if (fmt[i] == 'E')
6141 for (j = XVECLEN (x, i); --j >= 0; )
6142 copy_replacements_1 (&XVECEXP (x, i, j), &XVECEXP (y, i, j),
6143 orig_replacements);
6147 /* Change any replacements being done to *X to be done to *Y. */
6149 void
6150 move_replacements (rtx *x, rtx *y)
6152 int i;
6154 for (i = 0; i < n_replacements; i++)
6155 if (replacements[i].subreg_loc == x)
6156 replacements[i].subreg_loc = y;
6157 else if (replacements[i].where == x)
6159 replacements[i].where = y;
6160 replacements[i].subreg_loc = 0;
6164 /* If LOC was scheduled to be replaced by something, return the replacement.
6165 Otherwise, return *LOC. */
6168 find_replacement (rtx *loc)
6170 struct replacement *r;
6172 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
6174 rtx reloadreg = rld[r->what].reg_rtx;
6176 if (reloadreg && r->where == loc)
6178 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6179 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
6181 return reloadreg;
6183 else if (reloadreg && r->subreg_loc == loc)
6185 /* RELOADREG must be either a REG or a SUBREG.
6187 ??? Is it actually still ever a SUBREG? If so, why? */
6189 if (REG_P (reloadreg))
6190 return gen_rtx_REG (GET_MODE (*loc),
6191 (REGNO (reloadreg) +
6192 subreg_regno_offset (REGNO (SUBREG_REG (*loc)),
6193 GET_MODE (SUBREG_REG (*loc)),
6194 SUBREG_BYTE (*loc),
6195 GET_MODE (*loc))));
6196 else if (GET_MODE (reloadreg) == GET_MODE (*loc))
6197 return reloadreg;
6198 else
6200 int final_offset = SUBREG_BYTE (reloadreg) + SUBREG_BYTE (*loc);
6202 /* When working with SUBREGs the rule is that the byte
6203 offset must be a multiple of the SUBREG's mode. */
6204 final_offset = (final_offset / GET_MODE_SIZE (GET_MODE (*loc)));
6205 final_offset = (final_offset * GET_MODE_SIZE (GET_MODE (*loc)));
6206 return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
6207 final_offset);
6212 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
6213 what's inside and make a new rtl if so. */
6214 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
6215 || GET_CODE (*loc) == MULT)
6217 rtx x = find_replacement (&XEXP (*loc, 0));
6218 rtx y = find_replacement (&XEXP (*loc, 1));
6220 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
6221 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
6224 return *loc;
6227 /* Return nonzero if register in range [REGNO, ENDREGNO)
6228 appears either explicitly or implicitly in X
6229 other than being stored into (except for earlyclobber operands).
6231 References contained within the substructure at LOC do not count.
6232 LOC may be zero, meaning don't ignore anything.
6234 This is similar to refers_to_regno_p in rtlanal.c except that we
6235 look at equivalences for pseudos that didn't get hard registers. */
6237 static int
6238 refers_to_regno_for_reload_p (unsigned int regno, unsigned int endregno,
6239 rtx x, rtx *loc)
6241 int i;
6242 unsigned int r;
6243 RTX_CODE code;
6244 const char *fmt;
6246 if (x == 0)
6247 return 0;
6249 repeat:
6250 code = GET_CODE (x);
6252 switch (code)
6254 case REG:
6255 r = REGNO (x);
6257 /* If this is a pseudo, a hard register must not have been allocated.
6258 X must therefore either be a constant or be in memory. */
6259 if (r >= FIRST_PSEUDO_REGISTER)
6261 if (reg_equiv_memory_loc[r])
6262 return refers_to_regno_for_reload_p (regno, endregno,
6263 reg_equiv_memory_loc[r],
6264 (rtx*) 0);
6266 gcc_assert (reg_equiv_constant[r] || reg_equiv_invariant[r]);
6267 return 0;
6270 return (endregno > r
6271 && regno < r + (r < FIRST_PSEUDO_REGISTER
6272 ? hard_regno_nregs[r][GET_MODE (x)]
6273 : 1));
6275 case SUBREG:
6276 /* If this is a SUBREG of a hard reg, we can see exactly which
6277 registers are being modified. Otherwise, handle normally. */
6278 if (REG_P (SUBREG_REG (x))
6279 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6281 unsigned int inner_regno = subreg_regno (x);
6282 unsigned int inner_endregno
6283 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6284 ? hard_regno_nregs[inner_regno][GET_MODE (x)] : 1);
6286 return endregno > inner_regno && regno < inner_endregno;
6288 break;
6290 case CLOBBER:
6291 case SET:
6292 if (&SET_DEST (x) != loc
6293 /* Note setting a SUBREG counts as referring to the REG it is in for
6294 a pseudo but not for hard registers since we can
6295 treat each word individually. */
6296 && ((GET_CODE (SET_DEST (x)) == SUBREG
6297 && loc != &SUBREG_REG (SET_DEST (x))
6298 && REG_P (SUBREG_REG (SET_DEST (x)))
6299 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6300 && refers_to_regno_for_reload_p (regno, endregno,
6301 SUBREG_REG (SET_DEST (x)),
6302 loc))
6303 /* If the output is an earlyclobber operand, this is
6304 a conflict. */
6305 || ((!REG_P (SET_DEST (x))
6306 || earlyclobber_operand_p (SET_DEST (x)))
6307 && refers_to_regno_for_reload_p (regno, endregno,
6308 SET_DEST (x), loc))))
6309 return 1;
6311 if (code == CLOBBER || loc == &SET_SRC (x))
6312 return 0;
6313 x = SET_SRC (x);
6314 goto repeat;
6316 default:
6317 break;
6320 /* X does not match, so try its subexpressions. */
6322 fmt = GET_RTX_FORMAT (code);
6323 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6325 if (fmt[i] == 'e' && loc != &XEXP (x, i))
6327 if (i == 0)
6329 x = XEXP (x, 0);
6330 goto repeat;
6332 else
6333 if (refers_to_regno_for_reload_p (regno, endregno,
6334 XEXP (x, i), loc))
6335 return 1;
6337 else if (fmt[i] == 'E')
6339 int j;
6340 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6341 if (loc != &XVECEXP (x, i, j)
6342 && refers_to_regno_for_reload_p (regno, endregno,
6343 XVECEXP (x, i, j), loc))
6344 return 1;
6347 return 0;
6350 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
6351 we check if any register number in X conflicts with the relevant register
6352 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
6353 contains a MEM (we don't bother checking for memory addresses that can't
6354 conflict because we expect this to be a rare case.
6356 This function is similar to reg_overlap_mentioned_p in rtlanal.c except
6357 that we look at equivalences for pseudos that didn't get hard registers. */
6360 reg_overlap_mentioned_for_reload_p (rtx x, rtx in)
6362 int regno, endregno;
6364 /* Overly conservative. */
6365 if (GET_CODE (x) == STRICT_LOW_PART
6366 || GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
6367 x = XEXP (x, 0);
6369 /* If either argument is a constant, then modifying X can not affect IN. */
6370 if (CONSTANT_P (x) || CONSTANT_P (in))
6371 return 0;
6372 else if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
6373 return refers_to_mem_for_reload_p (in);
6374 else if (GET_CODE (x) == SUBREG)
6376 regno = REGNO (SUBREG_REG (x));
6377 if (regno < FIRST_PSEUDO_REGISTER)
6378 regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6379 GET_MODE (SUBREG_REG (x)),
6380 SUBREG_BYTE (x),
6381 GET_MODE (x));
6383 else if (REG_P (x))
6385 regno = REGNO (x);
6387 /* If this is a pseudo, it must not have been assigned a hard register.
6388 Therefore, it must either be in memory or be a constant. */
6390 if (regno >= FIRST_PSEUDO_REGISTER)
6392 if (reg_equiv_memory_loc[regno])
6393 return refers_to_mem_for_reload_p (in);
6394 gcc_assert (reg_equiv_constant[regno]);
6395 return 0;
6398 else if (MEM_P (x))
6399 return refers_to_mem_for_reload_p (in);
6400 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6401 || GET_CODE (x) == CC0)
6402 return reg_mentioned_p (x, in);
6403 else
6405 gcc_assert (GET_CODE (x) == PLUS);
6407 /* We actually want to know if X is mentioned somewhere inside IN.
6408 We must not say that (plus (sp) (const_int 124)) is in
6409 (plus (sp) (const_int 64)), since that can lead to incorrect reload
6410 allocation when spuriously changing a RELOAD_FOR_OUTPUT_ADDRESS
6411 into a RELOAD_OTHER on behalf of another RELOAD_OTHER. */
6412 while (MEM_P (in))
6413 in = XEXP (in, 0);
6414 if (REG_P (in))
6415 return 0;
6416 else if (GET_CODE (in) == PLUS)
6417 return (reg_overlap_mentioned_for_reload_p (x, XEXP (in, 0))
6418 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 1)));
6419 else return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
6420 || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
6423 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6424 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
6426 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6429 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
6430 registers. */
6432 static int
6433 refers_to_mem_for_reload_p (rtx x)
6435 const char *fmt;
6436 int i;
6438 if (MEM_P (x))
6439 return 1;
6441 if (REG_P (x))
6442 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6443 && reg_equiv_memory_loc[REGNO (x)]);
6445 fmt = GET_RTX_FORMAT (GET_CODE (x));
6446 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6447 if (fmt[i] == 'e'
6448 && (MEM_P (XEXP (x, i))
6449 || refers_to_mem_for_reload_p (XEXP (x, i))))
6450 return 1;
6452 return 0;
6455 /* Check the insns before INSN to see if there is a suitable register
6456 containing the same value as GOAL.
6457 If OTHER is -1, look for a register in class CLASS.
6458 Otherwise, just see if register number OTHER shares GOAL's value.
6460 Return an rtx for the register found, or zero if none is found.
6462 If RELOAD_REG_P is (short *)1,
6463 we reject any hard reg that appears in reload_reg_rtx
6464 because such a hard reg is also needed coming into this insn.
6466 If RELOAD_REG_P is any other nonzero value,
6467 it is a vector indexed by hard reg number
6468 and we reject any hard reg whose element in the vector is nonnegative
6469 as well as any that appears in reload_reg_rtx.
6471 If GOAL is zero, then GOALREG is a register number; we look
6472 for an equivalent for that register.
6474 MODE is the machine mode of the value we want an equivalence for.
6475 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6477 This function is used by jump.c as well as in the reload pass.
6479 If GOAL is the sum of the stack pointer and a constant, we treat it
6480 as if it were a constant except that sp is required to be unchanging. */
6483 find_equiv_reg (rtx goal, rtx insn, enum reg_class class, int other,
6484 short *reload_reg_p, int goalreg, enum machine_mode mode)
6486 rtx p = insn;
6487 rtx goaltry, valtry, value, where;
6488 rtx pat;
6489 int regno = -1;
6490 int valueno;
6491 int goal_mem = 0;
6492 int goal_const = 0;
6493 int goal_mem_addr_varies = 0;
6494 int need_stable_sp = 0;
6495 int nregs;
6496 int valuenregs;
6497 int num = 0;
6499 if (goal == 0)
6500 regno = goalreg;
6501 else if (REG_P (goal))
6502 regno = REGNO (goal);
6503 else if (MEM_P (goal))
6505 enum rtx_code code = GET_CODE (XEXP (goal, 0));
6506 if (MEM_VOLATILE_P (goal))
6507 return 0;
6508 if (flag_float_store && SCALAR_FLOAT_MODE_P (GET_MODE (goal)))
6509 return 0;
6510 /* An address with side effects must be reexecuted. */
6511 switch (code)
6513 case POST_INC:
6514 case PRE_INC:
6515 case POST_DEC:
6516 case PRE_DEC:
6517 case POST_MODIFY:
6518 case PRE_MODIFY:
6519 return 0;
6520 default:
6521 break;
6523 goal_mem = 1;
6525 else if (CONSTANT_P (goal))
6526 goal_const = 1;
6527 else if (GET_CODE (goal) == PLUS
6528 && XEXP (goal, 0) == stack_pointer_rtx
6529 && CONSTANT_P (XEXP (goal, 1)))
6530 goal_const = need_stable_sp = 1;
6531 else if (GET_CODE (goal) == PLUS
6532 && XEXP (goal, 0) == frame_pointer_rtx
6533 && CONSTANT_P (XEXP (goal, 1)))
6534 goal_const = 1;
6535 else
6536 return 0;
6538 num = 0;
6539 /* Scan insns back from INSN, looking for one that copies
6540 a value into or out of GOAL.
6541 Stop and give up if we reach a label. */
6543 while (1)
6545 p = PREV_INSN (p);
6546 num++;
6547 if (p == 0 || LABEL_P (p)
6548 || num > PARAM_VALUE (PARAM_MAX_RELOAD_SEARCH_INSNS))
6549 return 0;
6551 if (NONJUMP_INSN_P (p)
6552 /* If we don't want spill regs ... */
6553 && (! (reload_reg_p != 0
6554 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6555 /* ... then ignore insns introduced by reload; they aren't
6556 useful and can cause results in reload_as_needed to be
6557 different from what they were when calculating the need for
6558 spills. If we notice an input-reload insn here, we will
6559 reject it below, but it might hide a usable equivalent.
6560 That makes bad code. It may even fail: perhaps no reg was
6561 spilled for this insn because it was assumed we would find
6562 that equivalent. */
6563 || INSN_UID (p) < reload_first_uid))
6565 rtx tem;
6566 pat = single_set (p);
6568 /* First check for something that sets some reg equal to GOAL. */
6569 if (pat != 0
6570 && ((regno >= 0
6571 && true_regnum (SET_SRC (pat)) == regno
6572 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6574 (regno >= 0
6575 && true_regnum (SET_DEST (pat)) == regno
6576 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6578 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6579 /* When looking for stack pointer + const,
6580 make sure we don't use a stack adjust. */
6581 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6582 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6583 || (goal_mem
6584 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6585 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6586 || (goal_mem
6587 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6588 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6589 /* If we are looking for a constant,
6590 and something equivalent to that constant was copied
6591 into a reg, we can use that reg. */
6592 || (goal_const && REG_NOTES (p) != 0
6593 && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6594 && ((rtx_equal_p (XEXP (tem, 0), goal)
6595 && (valueno
6596 = true_regnum (valtry = SET_DEST (pat))) >= 0)
6597 || (REG_P (SET_DEST (pat))
6598 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6599 && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6600 && GET_CODE (goal) == CONST_INT
6601 && 0 != (goaltry
6602 = operand_subword (XEXP (tem, 0), 0, 0,
6603 VOIDmode))
6604 && rtx_equal_p (goal, goaltry)
6605 && (valtry
6606 = operand_subword (SET_DEST (pat), 0, 0,
6607 VOIDmode))
6608 && (valueno = true_regnum (valtry)) >= 0)))
6609 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6610 NULL_RTX))
6611 && REG_P (SET_DEST (pat))
6612 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6613 && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6614 && GET_CODE (goal) == CONST_INT
6615 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6616 VOIDmode))
6617 && rtx_equal_p (goal, goaltry)
6618 && (valtry
6619 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6620 && (valueno = true_regnum (valtry)) >= 0)))
6622 if (other >= 0)
6624 if (valueno != other)
6625 continue;
6627 else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6628 continue;
6629 else
6631 int i;
6633 for (i = hard_regno_nregs[valueno][mode] - 1; i >= 0; i--)
6634 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
6635 valueno + i))
6636 break;
6637 if (i >= 0)
6638 continue;
6640 value = valtry;
6641 where = p;
6642 break;
6647 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6648 (or copying VALUE into GOAL, if GOAL is also a register).
6649 Now verify that VALUE is really valid. */
6651 /* VALUENO is the register number of VALUE; a hard register. */
6653 /* Don't try to re-use something that is killed in this insn. We want
6654 to be able to trust REG_UNUSED notes. */
6655 if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6656 return 0;
6658 /* If we propose to get the value from the stack pointer or if GOAL is
6659 a MEM based on the stack pointer, we need a stable SP. */
6660 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6661 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6662 goal)))
6663 need_stable_sp = 1;
6665 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6666 if (GET_MODE (value) != mode)
6667 return 0;
6669 /* Reject VALUE if it was loaded from GOAL
6670 and is also a register that appears in the address of GOAL. */
6672 if (goal_mem && value == SET_DEST (single_set (where))
6673 && refers_to_regno_for_reload_p (valueno,
6674 (valueno
6675 + hard_regno_nregs[valueno][mode]),
6676 goal, (rtx*) 0))
6677 return 0;
6679 /* Reject registers that overlap GOAL. */
6681 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6682 nregs = hard_regno_nregs[regno][mode];
6683 else
6684 nregs = 1;
6685 valuenregs = hard_regno_nregs[valueno][mode];
6687 if (!goal_mem && !goal_const
6688 && regno + nregs > valueno && regno < valueno + valuenregs)
6689 return 0;
6691 /* Reject VALUE if it is one of the regs reserved for reloads.
6692 Reload1 knows how to reuse them anyway, and it would get
6693 confused if we allocated one without its knowledge.
6694 (Now that insns introduced by reload are ignored above,
6695 this case shouldn't happen, but I'm not positive.) */
6697 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6699 int i;
6700 for (i = 0; i < valuenregs; ++i)
6701 if (reload_reg_p[valueno + i] >= 0)
6702 return 0;
6705 /* Reject VALUE if it is a register being used for an input reload
6706 even if it is not one of those reserved. */
6708 if (reload_reg_p != 0)
6710 int i;
6711 for (i = 0; i < n_reloads; i++)
6712 if (rld[i].reg_rtx != 0 && rld[i].in)
6714 int regno1 = REGNO (rld[i].reg_rtx);
6715 int nregs1 = hard_regno_nregs[regno1]
6716 [GET_MODE (rld[i].reg_rtx)];
6717 if (regno1 < valueno + valuenregs
6718 && regno1 + nregs1 > valueno)
6719 return 0;
6723 if (goal_mem)
6724 /* We must treat frame pointer as varying here,
6725 since it can vary--in a nonlocal goto as generated by expand_goto. */
6726 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6728 /* Now verify that the values of GOAL and VALUE remain unaltered
6729 until INSN is reached. */
6731 p = insn;
6732 while (1)
6734 p = PREV_INSN (p);
6735 if (p == where)
6736 return value;
6738 /* Don't trust the conversion past a function call
6739 if either of the two is in a call-clobbered register, or memory. */
6740 if (CALL_P (p))
6742 int i;
6744 if (goal_mem || need_stable_sp)
6745 return 0;
6747 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6748 for (i = 0; i < nregs; ++i)
6749 if (call_used_regs[regno + i]
6750 || HARD_REGNO_CALL_PART_CLOBBERED (regno + i, mode))
6751 return 0;
6753 if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
6754 for (i = 0; i < valuenregs; ++i)
6755 if (call_used_regs[valueno + i]
6756 || HARD_REGNO_CALL_PART_CLOBBERED (valueno + i, mode))
6757 return 0;
6760 if (INSN_P (p))
6762 pat = PATTERN (p);
6764 /* Watch out for unspec_volatile, and volatile asms. */
6765 if (volatile_insn_p (pat))
6766 return 0;
6768 /* If this insn P stores in either GOAL or VALUE, return 0.
6769 If GOAL is a memory ref and this insn writes memory, return 0.
6770 If GOAL is a memory ref and its address is not constant,
6771 and this insn P changes a register used in GOAL, return 0. */
6773 if (GET_CODE (pat) == COND_EXEC)
6774 pat = COND_EXEC_CODE (pat);
6775 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6777 rtx dest = SET_DEST (pat);
6778 while (GET_CODE (dest) == SUBREG
6779 || GET_CODE (dest) == ZERO_EXTRACT
6780 || GET_CODE (dest) == STRICT_LOW_PART)
6781 dest = XEXP (dest, 0);
6782 if (REG_P (dest))
6784 int xregno = REGNO (dest);
6785 int xnregs;
6786 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6787 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
6788 else
6789 xnregs = 1;
6790 if (xregno < regno + nregs && xregno + xnregs > regno)
6791 return 0;
6792 if (xregno < valueno + valuenregs
6793 && xregno + xnregs > valueno)
6794 return 0;
6795 if (goal_mem_addr_varies
6796 && reg_overlap_mentioned_for_reload_p (dest, goal))
6797 return 0;
6798 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6799 return 0;
6801 else if (goal_mem && MEM_P (dest)
6802 && ! push_operand (dest, GET_MODE (dest)))
6803 return 0;
6804 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
6805 && reg_equiv_memory_loc[regno] != 0)
6806 return 0;
6807 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
6808 return 0;
6810 else if (GET_CODE (pat) == PARALLEL)
6812 int i;
6813 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
6815 rtx v1 = XVECEXP (pat, 0, i);
6816 if (GET_CODE (v1) == COND_EXEC)
6817 v1 = COND_EXEC_CODE (v1);
6818 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
6820 rtx dest = SET_DEST (v1);
6821 while (GET_CODE (dest) == SUBREG
6822 || GET_CODE (dest) == ZERO_EXTRACT
6823 || GET_CODE (dest) == STRICT_LOW_PART)
6824 dest = XEXP (dest, 0);
6825 if (REG_P (dest))
6827 int xregno = REGNO (dest);
6828 int xnregs;
6829 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6830 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
6831 else
6832 xnregs = 1;
6833 if (xregno < regno + nregs
6834 && xregno + xnregs > regno)
6835 return 0;
6836 if (xregno < valueno + valuenregs
6837 && xregno + xnregs > valueno)
6838 return 0;
6839 if (goal_mem_addr_varies
6840 && reg_overlap_mentioned_for_reload_p (dest,
6841 goal))
6842 return 0;
6843 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6844 return 0;
6846 else if (goal_mem && MEM_P (dest)
6847 && ! push_operand (dest, GET_MODE (dest)))
6848 return 0;
6849 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
6850 && reg_equiv_memory_loc[regno] != 0)
6851 return 0;
6852 else if (need_stable_sp
6853 && push_operand (dest, GET_MODE (dest)))
6854 return 0;
6859 if (CALL_P (p) && CALL_INSN_FUNCTION_USAGE (p))
6861 rtx link;
6863 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
6864 link = XEXP (link, 1))
6866 pat = XEXP (link, 0);
6867 if (GET_CODE (pat) == CLOBBER)
6869 rtx dest = SET_DEST (pat);
6871 if (REG_P (dest))
6873 int xregno = REGNO (dest);
6874 int xnregs
6875 = hard_regno_nregs[xregno][GET_MODE (dest)];
6877 if (xregno < regno + nregs
6878 && xregno + xnregs > regno)
6879 return 0;
6880 else if (xregno < valueno + valuenregs
6881 && xregno + xnregs > valueno)
6882 return 0;
6883 else if (goal_mem_addr_varies
6884 && reg_overlap_mentioned_for_reload_p (dest,
6885 goal))
6886 return 0;
6889 else if (goal_mem && MEM_P (dest)
6890 && ! push_operand (dest, GET_MODE (dest)))
6891 return 0;
6892 else if (need_stable_sp
6893 && push_operand (dest, GET_MODE (dest)))
6894 return 0;
6899 #ifdef AUTO_INC_DEC
6900 /* If this insn auto-increments or auto-decrements
6901 either regno or valueno, return 0 now.
6902 If GOAL is a memory ref and its address is not constant,
6903 and this insn P increments a register used in GOAL, return 0. */
6905 rtx link;
6907 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
6908 if (REG_NOTE_KIND (link) == REG_INC
6909 && REG_P (XEXP (link, 0)))
6911 int incno = REGNO (XEXP (link, 0));
6912 if (incno < regno + nregs && incno >= regno)
6913 return 0;
6914 if (incno < valueno + valuenregs && incno >= valueno)
6915 return 0;
6916 if (goal_mem_addr_varies
6917 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
6918 goal))
6919 return 0;
6922 #endif
6927 /* Find a place where INCED appears in an increment or decrement operator
6928 within X, and return the amount INCED is incremented or decremented by.
6929 The value is always positive. */
6931 static int
6932 find_inc_amount (rtx x, rtx inced)
6934 enum rtx_code code = GET_CODE (x);
6935 const char *fmt;
6936 int i;
6938 if (code == MEM)
6940 rtx addr = XEXP (x, 0);
6941 if ((GET_CODE (addr) == PRE_DEC
6942 || GET_CODE (addr) == POST_DEC
6943 || GET_CODE (addr) == PRE_INC
6944 || GET_CODE (addr) == POST_INC)
6945 && XEXP (addr, 0) == inced)
6946 return GET_MODE_SIZE (GET_MODE (x));
6947 else if ((GET_CODE (addr) == PRE_MODIFY
6948 || GET_CODE (addr) == POST_MODIFY)
6949 && GET_CODE (XEXP (addr, 1)) == PLUS
6950 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
6951 && XEXP (addr, 0) == inced
6952 && GET_CODE (XEXP (XEXP (addr, 1), 1)) == CONST_INT)
6954 i = INTVAL (XEXP (XEXP (addr, 1), 1));
6955 return i < 0 ? -i : i;
6959 fmt = GET_RTX_FORMAT (code);
6960 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6962 if (fmt[i] == 'e')
6964 int tem = find_inc_amount (XEXP (x, i), inced);
6965 if (tem != 0)
6966 return tem;
6968 if (fmt[i] == 'E')
6970 int j;
6971 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6973 int tem = find_inc_amount (XVECEXP (x, i, j), inced);
6974 if (tem != 0)
6975 return tem;
6980 return 0;
6983 /* Return 1 if registers from REGNO to ENDREGNO are the subjects of a
6984 REG_INC note in insn INSN. REGNO must refer to a hard register. */
6986 #ifdef AUTO_INC_DEC
6987 static int
6988 reg_inc_found_and_valid_p (unsigned int regno, unsigned int endregno,
6989 rtx insn)
6991 rtx link;
6993 gcc_assert (insn);
6995 if (! INSN_P (insn))
6996 return 0;
6998 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
6999 if (REG_NOTE_KIND (link) == REG_INC)
7001 unsigned int test = (int) REGNO (XEXP (link, 0));
7002 if (test >= regno && test < endregno)
7003 return 1;
7005 return 0;
7007 #else
7009 #define reg_inc_found_and_valid_p(regno,endregno,insn) 0
7011 #endif
7013 /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
7014 If SETS is 1, also consider SETs. If SETS is 2, enable checking
7015 REG_INC. REGNO must refer to a hard register. */
7018 regno_clobbered_p (unsigned int regno, rtx insn, enum machine_mode mode,
7019 int sets)
7021 unsigned int nregs, endregno;
7023 /* regno must be a hard register. */
7024 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
7026 nregs = hard_regno_nregs[regno][mode];
7027 endregno = regno + nregs;
7029 if ((GET_CODE (PATTERN (insn)) == CLOBBER
7030 || (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
7031 && REG_P (XEXP (PATTERN (insn), 0)))
7033 unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
7035 return test >= regno && test < endregno;
7038 if (sets == 2 && reg_inc_found_and_valid_p (regno, endregno, insn))
7039 return 1;
7041 if (GET_CODE (PATTERN (insn)) == PARALLEL)
7043 int i = XVECLEN (PATTERN (insn), 0) - 1;
7045 for (; i >= 0; i--)
7047 rtx elt = XVECEXP (PATTERN (insn), 0, i);
7048 if ((GET_CODE (elt) == CLOBBER
7049 || (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
7050 && REG_P (XEXP (elt, 0)))
7052 unsigned int test = REGNO (XEXP (elt, 0));
7054 if (test >= regno && test < endregno)
7055 return 1;
7057 if (sets == 2
7058 && reg_inc_found_and_valid_p (regno, endregno, elt))
7059 return 1;
7063 return 0;
7066 /* Find the low part, with mode MODE, of a hard regno RELOADREG. */
7068 reload_adjust_reg_for_mode (rtx reloadreg, enum machine_mode mode)
7070 int regno;
7072 if (GET_MODE (reloadreg) == mode)
7073 return reloadreg;
7075 regno = REGNO (reloadreg);
7077 if (WORDS_BIG_ENDIAN)
7078 regno += (int) hard_regno_nregs[regno][GET_MODE (reloadreg)]
7079 - (int) hard_regno_nregs[regno][mode];
7081 return gen_rtx_REG (mode, regno);
7084 static const char *const reload_when_needed_name[] =
7086 "RELOAD_FOR_INPUT",
7087 "RELOAD_FOR_OUTPUT",
7088 "RELOAD_FOR_INSN",
7089 "RELOAD_FOR_INPUT_ADDRESS",
7090 "RELOAD_FOR_INPADDR_ADDRESS",
7091 "RELOAD_FOR_OUTPUT_ADDRESS",
7092 "RELOAD_FOR_OUTADDR_ADDRESS",
7093 "RELOAD_FOR_OPERAND_ADDRESS",
7094 "RELOAD_FOR_OPADDR_ADDR",
7095 "RELOAD_OTHER",
7096 "RELOAD_FOR_OTHER_ADDRESS"
7099 /* These functions are used to print the variables set by 'find_reloads' */
7101 void
7102 debug_reload_to_stream (FILE *f)
7104 int r;
7105 const char *prefix;
7107 if (! f)
7108 f = stderr;
7109 for (r = 0; r < n_reloads; r++)
7111 fprintf (f, "Reload %d: ", r);
7113 if (rld[r].in != 0)
7115 fprintf (f, "reload_in (%s) = ",
7116 GET_MODE_NAME (rld[r].inmode));
7117 print_inline_rtx (f, rld[r].in, 24);
7118 fprintf (f, "\n\t");
7121 if (rld[r].out != 0)
7123 fprintf (f, "reload_out (%s) = ",
7124 GET_MODE_NAME (rld[r].outmode));
7125 print_inline_rtx (f, rld[r].out, 24);
7126 fprintf (f, "\n\t");
7129 fprintf (f, "%s, ", reg_class_names[(int) rld[r].class]);
7131 fprintf (f, "%s (opnum = %d)",
7132 reload_when_needed_name[(int) rld[r].when_needed],
7133 rld[r].opnum);
7135 if (rld[r].optional)
7136 fprintf (f, ", optional");
7138 if (rld[r].nongroup)
7139 fprintf (f, ", nongroup");
7141 if (rld[r].inc != 0)
7142 fprintf (f, ", inc by %d", rld[r].inc);
7144 if (rld[r].nocombine)
7145 fprintf (f, ", can't combine");
7147 if (rld[r].secondary_p)
7148 fprintf (f, ", secondary_reload_p");
7150 if (rld[r].in_reg != 0)
7152 fprintf (f, "\n\treload_in_reg: ");
7153 print_inline_rtx (f, rld[r].in_reg, 24);
7156 if (rld[r].out_reg != 0)
7158 fprintf (f, "\n\treload_out_reg: ");
7159 print_inline_rtx (f, rld[r].out_reg, 24);
7162 if (rld[r].reg_rtx != 0)
7164 fprintf (f, "\n\treload_reg_rtx: ");
7165 print_inline_rtx (f, rld[r].reg_rtx, 24);
7168 prefix = "\n\t";
7169 if (rld[r].secondary_in_reload != -1)
7171 fprintf (f, "%ssecondary_in_reload = %d",
7172 prefix, rld[r].secondary_in_reload);
7173 prefix = ", ";
7176 if (rld[r].secondary_out_reload != -1)
7177 fprintf (f, "%ssecondary_out_reload = %d\n",
7178 prefix, rld[r].secondary_out_reload);
7180 prefix = "\n\t";
7181 if (rld[r].secondary_in_icode != CODE_FOR_nothing)
7183 fprintf (f, "%ssecondary_in_icode = %s", prefix,
7184 insn_data[rld[r].secondary_in_icode].name);
7185 prefix = ", ";
7188 if (rld[r].secondary_out_icode != CODE_FOR_nothing)
7189 fprintf (f, "%ssecondary_out_icode = %s", prefix,
7190 insn_data[rld[r].secondary_out_icode].name);
7192 fprintf (f, "\n");
7196 void
7197 debug_reload (void)
7199 debug_reload_to_stream (stderr);