acinclude.m4: Restore the situation that we don't build modules on darwin.
[official-gcc.git] / gcc / expr.c
blobf579e27c865dc03f4760821603752d3c53049a25
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation,
4 Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "machmode.h"
28 #include "real.h"
29 #include "rtl.h"
30 #include "tree.h"
31 #include "flags.h"
32 #include "regs.h"
33 #include "hard-reg-set.h"
34 #include "except.h"
35 #include "function.h"
36 #include "insn-config.h"
37 #include "insn-attr.h"
38 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
39 #include "expr.h"
40 #include "optabs.h"
41 #include "libfuncs.h"
42 #include "recog.h"
43 #include "reload.h"
44 #include "output.h"
45 #include "typeclass.h"
46 #include "toplev.h"
47 #include "ggc.h"
48 #include "langhooks.h"
49 #include "intl.h"
50 #include "tm_p.h"
51 #include "tree-iterator.h"
52 #include "tree-pass.h"
53 #include "tree-flow.h"
54 #include "target.h"
55 #include "timevar.h"
57 /* Decide whether a function's arguments should be processed
58 from first to last or from last to first.
60 They should if the stack and args grow in opposite directions, but
61 only if we have push insns. */
63 #ifdef PUSH_ROUNDING
65 #ifndef PUSH_ARGS_REVERSED
66 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
67 #define PUSH_ARGS_REVERSED /* If it's last to first. */
68 #endif
69 #endif
71 #endif
73 #ifndef STACK_PUSH_CODE
74 #ifdef STACK_GROWS_DOWNWARD
75 #define STACK_PUSH_CODE PRE_DEC
76 #else
77 #define STACK_PUSH_CODE PRE_INC
78 #endif
79 #endif
82 /* If this is nonzero, we do not bother generating VOLATILE
83 around volatile memory references, and we are willing to
84 output indirect addresses. If cse is to follow, we reject
85 indirect addresses so a useful potential cse is generated;
86 if it is used only once, instruction combination will produce
87 the same indirect address eventually. */
88 int cse_not_expected;
90 /* This structure is used by move_by_pieces to describe the move to
91 be performed. */
92 struct move_by_pieces
94 rtx to;
95 rtx to_addr;
96 int autinc_to;
97 int explicit_inc_to;
98 rtx from;
99 rtx from_addr;
100 int autinc_from;
101 int explicit_inc_from;
102 unsigned HOST_WIDE_INT len;
103 HOST_WIDE_INT offset;
104 int reverse;
107 /* This structure is used by store_by_pieces to describe the clear to
108 be performed. */
110 struct store_by_pieces
112 rtx to;
113 rtx to_addr;
114 int autinc_to;
115 int explicit_inc_to;
116 unsigned HOST_WIDE_INT len;
117 HOST_WIDE_INT offset;
118 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode);
119 void *constfundata;
120 int reverse;
123 static unsigned HOST_WIDE_INT move_by_pieces_ninsns (unsigned HOST_WIDE_INT,
124 unsigned int,
125 unsigned int);
126 static void move_by_pieces_1 (rtx (*) (rtx, ...), enum machine_mode,
127 struct move_by_pieces *);
128 static bool block_move_libcall_safe_for_call_parm (void);
129 static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned);
130 static rtx emit_block_move_via_libcall (rtx, rtx, rtx, bool);
131 static tree emit_block_move_libcall_fn (int);
132 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
133 static rtx clear_by_pieces_1 (void *, HOST_WIDE_INT, enum machine_mode);
134 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
135 static void store_by_pieces_1 (struct store_by_pieces *, unsigned int);
136 static void store_by_pieces_2 (rtx (*) (rtx, ...), enum machine_mode,
137 struct store_by_pieces *);
138 static rtx clear_storage_via_libcall (rtx, rtx, bool);
139 static tree clear_storage_libcall_fn (int);
140 static rtx compress_float_constant (rtx, rtx);
141 static rtx get_subtarget (rtx);
142 static void store_constructor_field (rtx, unsigned HOST_WIDE_INT,
143 HOST_WIDE_INT, enum machine_mode,
144 tree, tree, int, int);
145 static void store_constructor (tree, rtx, int, HOST_WIDE_INT);
146 static rtx store_field (rtx, HOST_WIDE_INT, HOST_WIDE_INT, enum machine_mode,
147 tree, tree, int);
149 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (tree, tree);
151 static int is_aligning_offset (tree, tree);
152 static void expand_operands (tree, tree, rtx, rtx*, rtx*,
153 enum expand_modifier);
154 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
155 static rtx do_store_flag (tree, rtx, enum machine_mode, int);
156 #ifdef PUSH_ROUNDING
157 static void emit_single_push_insn (enum machine_mode, rtx, tree);
158 #endif
159 static void do_tablejump (rtx, enum machine_mode, rtx, rtx, rtx);
160 static rtx const_vector_from_tree (tree);
161 static void write_complex_part (rtx, rtx, bool);
163 /* Record for each mode whether we can move a register directly to or
164 from an object of that mode in memory. If we can't, we won't try
165 to use that mode directly when accessing a field of that mode. */
167 static char direct_load[NUM_MACHINE_MODES];
168 static char direct_store[NUM_MACHINE_MODES];
170 /* Record for each mode whether we can float-extend from memory. */
172 static bool float_extend_from_mem[NUM_MACHINE_MODES][NUM_MACHINE_MODES];
174 /* This macro is used to determine whether move_by_pieces should be called
175 to perform a structure copy. */
176 #ifndef MOVE_BY_PIECES_P
177 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
178 (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
179 < (unsigned int) MOVE_RATIO)
180 #endif
182 /* This macro is used to determine whether clear_by_pieces should be
183 called to clear storage. */
184 #ifndef CLEAR_BY_PIECES_P
185 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
186 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
187 < (unsigned int) CLEAR_RATIO)
188 #endif
190 /* This macro is used to determine whether store_by_pieces should be
191 called to "memset" storage with byte values other than zero, or
192 to "memcpy" storage when the source is a constant string. */
193 #ifndef STORE_BY_PIECES_P
194 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
195 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
196 < (unsigned int) MOVE_RATIO)
197 #endif
199 /* This array records the insn_code of insns to perform block moves. */
200 enum insn_code movmem_optab[NUM_MACHINE_MODES];
202 /* This array records the insn_code of insns to perform block sets. */
203 enum insn_code setmem_optab[NUM_MACHINE_MODES];
205 /* These arrays record the insn_code of three different kinds of insns
206 to perform block compares. */
207 enum insn_code cmpstr_optab[NUM_MACHINE_MODES];
208 enum insn_code cmpstrn_optab[NUM_MACHINE_MODES];
209 enum insn_code cmpmem_optab[NUM_MACHINE_MODES];
211 /* Synchronization primitives. */
212 enum insn_code sync_add_optab[NUM_MACHINE_MODES];
213 enum insn_code sync_sub_optab[NUM_MACHINE_MODES];
214 enum insn_code sync_ior_optab[NUM_MACHINE_MODES];
215 enum insn_code sync_and_optab[NUM_MACHINE_MODES];
216 enum insn_code sync_xor_optab[NUM_MACHINE_MODES];
217 enum insn_code sync_nand_optab[NUM_MACHINE_MODES];
218 enum insn_code sync_old_add_optab[NUM_MACHINE_MODES];
219 enum insn_code sync_old_sub_optab[NUM_MACHINE_MODES];
220 enum insn_code sync_old_ior_optab[NUM_MACHINE_MODES];
221 enum insn_code sync_old_and_optab[NUM_MACHINE_MODES];
222 enum insn_code sync_old_xor_optab[NUM_MACHINE_MODES];
223 enum insn_code sync_old_nand_optab[NUM_MACHINE_MODES];
224 enum insn_code sync_new_add_optab[NUM_MACHINE_MODES];
225 enum insn_code sync_new_sub_optab[NUM_MACHINE_MODES];
226 enum insn_code sync_new_ior_optab[NUM_MACHINE_MODES];
227 enum insn_code sync_new_and_optab[NUM_MACHINE_MODES];
228 enum insn_code sync_new_xor_optab[NUM_MACHINE_MODES];
229 enum insn_code sync_new_nand_optab[NUM_MACHINE_MODES];
230 enum insn_code sync_compare_and_swap[NUM_MACHINE_MODES];
231 enum insn_code sync_compare_and_swap_cc[NUM_MACHINE_MODES];
232 enum insn_code sync_lock_test_and_set[NUM_MACHINE_MODES];
233 enum insn_code sync_lock_release[NUM_MACHINE_MODES];
235 /* SLOW_UNALIGNED_ACCESS is nonzero if unaligned accesses are very slow. */
237 #ifndef SLOW_UNALIGNED_ACCESS
238 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
239 #endif
241 /* This is run once per compilation to set up which modes can be used
242 directly in memory and to initialize the block move optab. */
244 void
245 init_expr_once (void)
247 rtx insn, pat;
248 enum machine_mode mode;
249 int num_clobbers;
250 rtx mem, mem1;
251 rtx reg;
253 /* Try indexing by frame ptr and try by stack ptr.
254 It is known that on the Convex the stack ptr isn't a valid index.
255 With luck, one or the other is valid on any machine. */
256 mem = gen_rtx_MEM (VOIDmode, stack_pointer_rtx);
257 mem1 = gen_rtx_MEM (VOIDmode, frame_pointer_rtx);
259 /* A scratch register we can modify in-place below to avoid
260 useless RTL allocations. */
261 reg = gen_rtx_REG (VOIDmode, -1);
263 insn = rtx_alloc (INSN);
264 pat = gen_rtx_SET (0, NULL_RTX, NULL_RTX);
265 PATTERN (insn) = pat;
267 for (mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
268 mode = (enum machine_mode) ((int) mode + 1))
270 int regno;
272 direct_load[(int) mode] = direct_store[(int) mode] = 0;
273 PUT_MODE (mem, mode);
274 PUT_MODE (mem1, mode);
275 PUT_MODE (reg, mode);
277 /* See if there is some register that can be used in this mode and
278 directly loaded or stored from memory. */
280 if (mode != VOIDmode && mode != BLKmode)
281 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
282 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
283 regno++)
285 if (! HARD_REGNO_MODE_OK (regno, mode))
286 continue;
288 REGNO (reg) = regno;
290 SET_SRC (pat) = mem;
291 SET_DEST (pat) = reg;
292 if (recog (pat, insn, &num_clobbers) >= 0)
293 direct_load[(int) mode] = 1;
295 SET_SRC (pat) = mem1;
296 SET_DEST (pat) = reg;
297 if (recog (pat, insn, &num_clobbers) >= 0)
298 direct_load[(int) mode] = 1;
300 SET_SRC (pat) = reg;
301 SET_DEST (pat) = mem;
302 if (recog (pat, insn, &num_clobbers) >= 0)
303 direct_store[(int) mode] = 1;
305 SET_SRC (pat) = reg;
306 SET_DEST (pat) = mem1;
307 if (recog (pat, insn, &num_clobbers) >= 0)
308 direct_store[(int) mode] = 1;
312 mem = gen_rtx_MEM (VOIDmode, gen_rtx_raw_REG (Pmode, 10000));
314 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
315 mode = GET_MODE_WIDER_MODE (mode))
317 enum machine_mode srcmode;
318 for (srcmode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); srcmode != mode;
319 srcmode = GET_MODE_WIDER_MODE (srcmode))
321 enum insn_code ic;
323 ic = can_extend_p (mode, srcmode, 0);
324 if (ic == CODE_FOR_nothing)
325 continue;
327 PUT_MODE (mem, srcmode);
329 if ((*insn_data[ic].operand[1].predicate) (mem, srcmode))
330 float_extend_from_mem[mode][srcmode] = true;
335 /* This is run at the start of compiling a function. */
337 void
338 init_expr (void)
340 cfun->expr = ggc_alloc_cleared (sizeof (struct expr_status));
343 /* Copy data from FROM to TO, where the machine modes are not the same.
344 Both modes may be integer, or both may be floating.
345 UNSIGNEDP should be nonzero if FROM is an unsigned type.
346 This causes zero-extension instead of sign-extension. */
348 void
349 convert_move (rtx to, rtx from, int unsignedp)
351 enum machine_mode to_mode = GET_MODE (to);
352 enum machine_mode from_mode = GET_MODE (from);
353 int to_real = SCALAR_FLOAT_MODE_P (to_mode);
354 int from_real = SCALAR_FLOAT_MODE_P (from_mode);
355 enum insn_code code;
356 rtx libcall;
358 /* rtx code for making an equivalent value. */
359 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
360 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
363 gcc_assert (to_real == from_real);
365 /* If the source and destination are already the same, then there's
366 nothing to do. */
367 if (to == from)
368 return;
370 /* If FROM is a SUBREG that indicates that we have already done at least
371 the required extension, strip it. We don't handle such SUBREGs as
372 TO here. */
374 if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from)
375 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (from)))
376 >= GET_MODE_SIZE (to_mode))
377 && SUBREG_PROMOTED_UNSIGNED_P (from) == unsignedp)
378 from = gen_lowpart (to_mode, from), from_mode = to_mode;
380 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
382 if (to_mode == from_mode
383 || (from_mode == VOIDmode && CONSTANT_P (from)))
385 emit_move_insn (to, from);
386 return;
389 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
391 gcc_assert (GET_MODE_BITSIZE (from_mode) == GET_MODE_BITSIZE (to_mode));
393 if (VECTOR_MODE_P (to_mode))
394 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
395 else
396 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
398 emit_move_insn (to, from);
399 return;
402 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
404 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
405 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
406 return;
409 if (to_real)
411 rtx value, insns;
412 convert_optab tab;
414 gcc_assert ((GET_MODE_PRECISION (from_mode)
415 != GET_MODE_PRECISION (to_mode))
416 || (DECIMAL_FLOAT_MODE_P (from_mode)
417 != DECIMAL_FLOAT_MODE_P (to_mode)));
419 if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
420 /* Conversion between decimal float and binary float, same size. */
421 tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
422 else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
423 tab = sext_optab;
424 else
425 tab = trunc_optab;
427 /* Try converting directly if the insn is supported. */
429 code = tab->handlers[to_mode][from_mode].insn_code;
430 if (code != CODE_FOR_nothing)
432 emit_unop_insn (code, to, from,
433 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
434 return;
437 /* Otherwise use a libcall. */
438 libcall = tab->handlers[to_mode][from_mode].libfunc;
440 /* Is this conversion implemented yet? */
441 gcc_assert (libcall);
443 start_sequence ();
444 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
445 1, from, from_mode);
446 insns = get_insns ();
447 end_sequence ();
448 emit_libcall_block (insns, to, value,
449 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
450 from)
451 : gen_rtx_FLOAT_EXTEND (to_mode, from));
452 return;
455 /* Handle pointer conversion. */ /* SPEE 900220. */
456 /* Targets are expected to provide conversion insns between PxImode and
457 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
458 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
460 enum machine_mode full_mode
461 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode), MODE_INT);
463 gcc_assert (trunc_optab->handlers[to_mode][full_mode].insn_code
464 != CODE_FOR_nothing);
466 if (full_mode != from_mode)
467 from = convert_to_mode (full_mode, from, unsignedp);
468 emit_unop_insn (trunc_optab->handlers[to_mode][full_mode].insn_code,
469 to, from, UNKNOWN);
470 return;
472 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
474 rtx new_from;
475 enum machine_mode full_mode
476 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode), MODE_INT);
478 gcc_assert (sext_optab->handlers[full_mode][from_mode].insn_code
479 != CODE_FOR_nothing);
481 if (to_mode == full_mode)
483 emit_unop_insn (sext_optab->handlers[full_mode][from_mode].insn_code,
484 to, from, UNKNOWN);
485 return;
488 new_from = gen_reg_rtx (full_mode);
489 emit_unop_insn (sext_optab->handlers[full_mode][from_mode].insn_code,
490 new_from, from, UNKNOWN);
492 /* else proceed to integer conversions below. */
493 from_mode = full_mode;
494 from = new_from;
497 /* Now both modes are integers. */
499 /* Handle expanding beyond a word. */
500 if (GET_MODE_BITSIZE (from_mode) < GET_MODE_BITSIZE (to_mode)
501 && GET_MODE_BITSIZE (to_mode) > BITS_PER_WORD)
503 rtx insns;
504 rtx lowpart;
505 rtx fill_value;
506 rtx lowfrom;
507 int i;
508 enum machine_mode lowpart_mode;
509 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
511 /* Try converting directly if the insn is supported. */
512 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
513 != CODE_FOR_nothing)
515 /* If FROM is a SUBREG, put it into a register. Do this
516 so that we always generate the same set of insns for
517 better cse'ing; if an intermediate assignment occurred,
518 we won't be doing the operation directly on the SUBREG. */
519 if (optimize > 0 && GET_CODE (from) == SUBREG)
520 from = force_reg (from_mode, from);
521 emit_unop_insn (code, to, from, equiv_code);
522 return;
524 /* Next, try converting via full word. */
525 else if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD
526 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
527 != CODE_FOR_nothing))
529 if (REG_P (to))
531 if (reg_overlap_mentioned_p (to, from))
532 from = force_reg (from_mode, from);
533 emit_insn (gen_rtx_CLOBBER (VOIDmode, to));
535 convert_move (gen_lowpart (word_mode, to), from, unsignedp);
536 emit_unop_insn (code, to,
537 gen_lowpart (word_mode, to), equiv_code);
538 return;
541 /* No special multiword conversion insn; do it by hand. */
542 start_sequence ();
544 /* Since we will turn this into a no conflict block, we must ensure
545 that the source does not overlap the target. */
547 if (reg_overlap_mentioned_p (to, from))
548 from = force_reg (from_mode, from);
550 /* Get a copy of FROM widened to a word, if necessary. */
551 if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD)
552 lowpart_mode = word_mode;
553 else
554 lowpart_mode = from_mode;
556 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
558 lowpart = gen_lowpart (lowpart_mode, to);
559 emit_move_insn (lowpart, lowfrom);
561 /* Compute the value to put in each remaining word. */
562 if (unsignedp)
563 fill_value = const0_rtx;
564 else
566 #ifdef HAVE_slt
567 if (HAVE_slt
568 && insn_data[(int) CODE_FOR_slt].operand[0].mode == word_mode
569 && STORE_FLAG_VALUE == -1)
571 emit_cmp_insn (lowfrom, const0_rtx, NE, NULL_RTX,
572 lowpart_mode, 0);
573 fill_value = gen_reg_rtx (word_mode);
574 emit_insn (gen_slt (fill_value));
576 else
577 #endif
579 fill_value
580 = expand_shift (RSHIFT_EXPR, lowpart_mode, lowfrom,
581 size_int (GET_MODE_BITSIZE (lowpart_mode) - 1),
582 NULL_RTX, 0);
583 fill_value = convert_to_mode (word_mode, fill_value, 1);
587 /* Fill the remaining words. */
588 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
590 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
591 rtx subword = operand_subword (to, index, 1, to_mode);
593 gcc_assert (subword);
595 if (fill_value != subword)
596 emit_move_insn (subword, fill_value);
599 insns = get_insns ();
600 end_sequence ();
602 emit_no_conflict_block (insns, to, from, NULL_RTX,
603 gen_rtx_fmt_e (equiv_code, to_mode, copy_rtx (from)));
604 return;
607 /* Truncating multi-word to a word or less. */
608 if (GET_MODE_BITSIZE (from_mode) > BITS_PER_WORD
609 && GET_MODE_BITSIZE (to_mode) <= BITS_PER_WORD)
611 if (!((MEM_P (from)
612 && ! MEM_VOLATILE_P (from)
613 && direct_load[(int) to_mode]
614 && ! mode_dependent_address_p (XEXP (from, 0)))
615 || REG_P (from)
616 || GET_CODE (from) == SUBREG))
617 from = force_reg (from_mode, from);
618 convert_move (to, gen_lowpart (word_mode, from), 0);
619 return;
622 /* Now follow all the conversions between integers
623 no more than a word long. */
625 /* For truncation, usually we can just refer to FROM in a narrower mode. */
626 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
627 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
628 GET_MODE_BITSIZE (from_mode)))
630 if (!((MEM_P (from)
631 && ! MEM_VOLATILE_P (from)
632 && direct_load[(int) to_mode]
633 && ! mode_dependent_address_p (XEXP (from, 0)))
634 || REG_P (from)
635 || GET_CODE (from) == SUBREG))
636 from = force_reg (from_mode, from);
637 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
638 && ! HARD_REGNO_MODE_OK (REGNO (from), to_mode))
639 from = copy_to_reg (from);
640 emit_move_insn (to, gen_lowpart (to_mode, from));
641 return;
644 /* Handle extension. */
645 if (GET_MODE_BITSIZE (to_mode) > GET_MODE_BITSIZE (from_mode))
647 /* Convert directly if that works. */
648 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
649 != CODE_FOR_nothing)
651 emit_unop_insn (code, to, from, equiv_code);
652 return;
654 else
656 enum machine_mode intermediate;
657 rtx tmp;
658 tree shift_amount;
660 /* Search for a mode to convert via. */
661 for (intermediate = from_mode; intermediate != VOIDmode;
662 intermediate = GET_MODE_WIDER_MODE (intermediate))
663 if (((can_extend_p (to_mode, intermediate, unsignedp)
664 != CODE_FOR_nothing)
665 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
666 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
667 GET_MODE_BITSIZE (intermediate))))
668 && (can_extend_p (intermediate, from_mode, unsignedp)
669 != CODE_FOR_nothing))
671 convert_move (to, convert_to_mode (intermediate, from,
672 unsignedp), unsignedp);
673 return;
676 /* No suitable intermediate mode.
677 Generate what we need with shifts. */
678 shift_amount = build_int_cst (NULL_TREE,
679 GET_MODE_BITSIZE (to_mode)
680 - GET_MODE_BITSIZE (from_mode));
681 from = gen_lowpart (to_mode, force_reg (from_mode, from));
682 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
683 to, unsignedp);
684 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
685 to, unsignedp);
686 if (tmp != to)
687 emit_move_insn (to, tmp);
688 return;
692 /* Support special truncate insns for certain modes. */
693 if (trunc_optab->handlers[to_mode][from_mode].insn_code != CODE_FOR_nothing)
695 emit_unop_insn (trunc_optab->handlers[to_mode][from_mode].insn_code,
696 to, from, UNKNOWN);
697 return;
700 /* Handle truncation of volatile memrefs, and so on;
701 the things that couldn't be truncated directly,
702 and for which there was no special instruction.
704 ??? Code above formerly short-circuited this, for most integer
705 mode pairs, with a force_reg in from_mode followed by a recursive
706 call to this routine. Appears always to have been wrong. */
707 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode))
709 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
710 emit_move_insn (to, temp);
711 return;
714 /* Mode combination is not recognized. */
715 gcc_unreachable ();
718 /* Return an rtx for a value that would result
719 from converting X to mode MODE.
720 Both X and MODE may be floating, or both integer.
721 UNSIGNEDP is nonzero if X is an unsigned value.
722 This can be done by referring to a part of X in place
723 or by copying to a new temporary with conversion. */
726 convert_to_mode (enum machine_mode mode, rtx x, int unsignedp)
728 return convert_modes (mode, VOIDmode, x, unsignedp);
731 /* Return an rtx for a value that would result
732 from converting X from mode OLDMODE to mode MODE.
733 Both modes may be floating, or both integer.
734 UNSIGNEDP is nonzero if X is an unsigned value.
736 This can be done by referring to a part of X in place
737 or by copying to a new temporary with conversion.
739 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
742 convert_modes (enum machine_mode mode, enum machine_mode oldmode, rtx x, int unsignedp)
744 rtx temp;
746 /* If FROM is a SUBREG that indicates that we have already done at least
747 the required extension, strip it. */
749 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
750 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) >= GET_MODE_SIZE (mode)
751 && SUBREG_PROMOTED_UNSIGNED_P (x) == unsignedp)
752 x = gen_lowpart (mode, x);
754 if (GET_MODE (x) != VOIDmode)
755 oldmode = GET_MODE (x);
757 if (mode == oldmode)
758 return x;
760 /* There is one case that we must handle specially: If we are converting
761 a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
762 we are to interpret the constant as unsigned, gen_lowpart will do
763 the wrong if the constant appears negative. What we want to do is
764 make the high-order word of the constant zero, not all ones. */
766 if (unsignedp && GET_MODE_CLASS (mode) == MODE_INT
767 && GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT
768 && GET_CODE (x) == CONST_INT && INTVAL (x) < 0)
770 HOST_WIDE_INT val = INTVAL (x);
772 if (oldmode != VOIDmode
773 && HOST_BITS_PER_WIDE_INT > GET_MODE_BITSIZE (oldmode))
775 int width = GET_MODE_BITSIZE (oldmode);
777 /* We need to zero extend VAL. */
778 val &= ((HOST_WIDE_INT) 1 << width) - 1;
781 return immed_double_const (val, (HOST_WIDE_INT) 0, mode);
784 /* We can do this with a gen_lowpart if both desired and current modes
785 are integer, and this is either a constant integer, a register, or a
786 non-volatile MEM. Except for the constant case where MODE is no
787 wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
789 if ((GET_CODE (x) == CONST_INT
790 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
791 || (GET_MODE_CLASS (mode) == MODE_INT
792 && GET_MODE_CLASS (oldmode) == MODE_INT
793 && (GET_CODE (x) == CONST_DOUBLE
794 || (GET_MODE_SIZE (mode) <= GET_MODE_SIZE (oldmode)
795 && ((MEM_P (x) && ! MEM_VOLATILE_P (x)
796 && direct_load[(int) mode])
797 || (REG_P (x)
798 && (! HARD_REGISTER_P (x)
799 || HARD_REGNO_MODE_OK (REGNO (x), mode))
800 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
801 GET_MODE_BITSIZE (GET_MODE (x)))))))))
803 /* ?? If we don't know OLDMODE, we have to assume here that
804 X does not need sign- or zero-extension. This may not be
805 the case, but it's the best we can do. */
806 if (GET_CODE (x) == CONST_INT && oldmode != VOIDmode
807 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (oldmode))
809 HOST_WIDE_INT val = INTVAL (x);
810 int width = GET_MODE_BITSIZE (oldmode);
812 /* We must sign or zero-extend in this case. Start by
813 zero-extending, then sign extend if we need to. */
814 val &= ((HOST_WIDE_INT) 1 << width) - 1;
815 if (! unsignedp
816 && (val & ((HOST_WIDE_INT) 1 << (width - 1))))
817 val |= (HOST_WIDE_INT) (-1) << width;
819 return gen_int_mode (val, mode);
822 return gen_lowpart (mode, x);
825 /* Converting from integer constant into mode is always equivalent to an
826 subreg operation. */
827 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
829 gcc_assert (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (oldmode));
830 return simplify_gen_subreg (mode, x, oldmode, 0);
833 temp = gen_reg_rtx (mode);
834 convert_move (temp, x, unsignedp);
835 return temp;
838 /* STORE_MAX_PIECES is the number of bytes at a time that we can
839 store efficiently. Due to internal GCC limitations, this is
840 MOVE_MAX_PIECES limited by the number of bytes GCC can represent
841 for an immediate constant. */
843 #define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
845 /* Determine whether the LEN bytes can be moved by using several move
846 instructions. Return nonzero if a call to move_by_pieces should
847 succeed. */
850 can_move_by_pieces (unsigned HOST_WIDE_INT len,
851 unsigned int align ATTRIBUTE_UNUSED)
853 return MOVE_BY_PIECES_P (len, align);
856 /* Generate several move instructions to copy LEN bytes from block FROM to
857 block TO. (These are MEM rtx's with BLKmode).
859 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
860 used to push FROM to the stack.
862 ALIGN is maximum stack alignment we can assume.
864 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
865 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
866 stpcpy. */
869 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
870 unsigned int align, int endp)
872 struct move_by_pieces data;
873 rtx to_addr, from_addr = XEXP (from, 0);
874 unsigned int max_size = MOVE_MAX_PIECES + 1;
875 enum machine_mode mode = VOIDmode, tmode;
876 enum insn_code icode;
878 align = MIN (to ? MEM_ALIGN (to) : align, MEM_ALIGN (from));
880 data.offset = 0;
881 data.from_addr = from_addr;
882 if (to)
884 to_addr = XEXP (to, 0);
885 data.to = to;
886 data.autinc_to
887 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
888 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
889 data.reverse
890 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
892 else
894 to_addr = NULL_RTX;
895 data.to = NULL_RTX;
896 data.autinc_to = 1;
897 #ifdef STACK_GROWS_DOWNWARD
898 data.reverse = 1;
899 #else
900 data.reverse = 0;
901 #endif
903 data.to_addr = to_addr;
904 data.from = from;
905 data.autinc_from
906 = (GET_CODE (from_addr) == PRE_INC || GET_CODE (from_addr) == PRE_DEC
907 || GET_CODE (from_addr) == POST_INC
908 || GET_CODE (from_addr) == POST_DEC);
910 data.explicit_inc_from = 0;
911 data.explicit_inc_to = 0;
912 if (data.reverse) data.offset = len;
913 data.len = len;
915 /* If copying requires more than two move insns,
916 copy addresses to registers (to make displacements shorter)
917 and use post-increment if available. */
918 if (!(data.autinc_from && data.autinc_to)
919 && move_by_pieces_ninsns (len, align, max_size) > 2)
921 /* Find the mode of the largest move... */
922 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
923 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
924 if (GET_MODE_SIZE (tmode) < max_size)
925 mode = tmode;
927 if (USE_LOAD_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_from)
929 data.from_addr = copy_addr_to_reg (plus_constant (from_addr, len));
930 data.autinc_from = 1;
931 data.explicit_inc_from = -1;
933 if (USE_LOAD_POST_INCREMENT (mode) && ! data.autinc_from)
935 data.from_addr = copy_addr_to_reg (from_addr);
936 data.autinc_from = 1;
937 data.explicit_inc_from = 1;
939 if (!data.autinc_from && CONSTANT_P (from_addr))
940 data.from_addr = copy_addr_to_reg (from_addr);
941 if (USE_STORE_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_to)
943 data.to_addr = copy_addr_to_reg (plus_constant (to_addr, len));
944 data.autinc_to = 1;
945 data.explicit_inc_to = -1;
947 if (USE_STORE_POST_INCREMENT (mode) && ! data.reverse && ! data.autinc_to)
949 data.to_addr = copy_addr_to_reg (to_addr);
950 data.autinc_to = 1;
951 data.explicit_inc_to = 1;
953 if (!data.autinc_to && CONSTANT_P (to_addr))
954 data.to_addr = copy_addr_to_reg (to_addr);
957 tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
958 if (align >= GET_MODE_ALIGNMENT (tmode))
959 align = GET_MODE_ALIGNMENT (tmode);
960 else
962 enum machine_mode xmode;
964 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
965 tmode != VOIDmode;
966 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
967 if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
968 || SLOW_UNALIGNED_ACCESS (tmode, align))
969 break;
971 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
974 /* First move what we can in the largest integer mode, then go to
975 successively smaller modes. */
977 while (max_size > 1)
979 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
980 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
981 if (GET_MODE_SIZE (tmode) < max_size)
982 mode = tmode;
984 if (mode == VOIDmode)
985 break;
987 icode = mov_optab->handlers[(int) mode].insn_code;
988 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
989 move_by_pieces_1 (GEN_FCN (icode), mode, &data);
991 max_size = GET_MODE_SIZE (mode);
994 /* The code above should have handled everything. */
995 gcc_assert (!data.len);
997 if (endp)
999 rtx to1;
1001 gcc_assert (!data.reverse);
1002 if (data.autinc_to)
1004 if (endp == 2)
1006 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
1007 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
1008 else
1009 data.to_addr = copy_addr_to_reg (plus_constant (data.to_addr,
1010 -1));
1012 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
1013 data.offset);
1015 else
1017 if (endp == 2)
1018 --data.offset;
1019 to1 = adjust_address (data.to, QImode, data.offset);
1021 return to1;
1023 else
1024 return data.to;
1027 /* Return number of insns required to move L bytes by pieces.
1028 ALIGN (in bits) is maximum alignment we can assume. */
1030 static unsigned HOST_WIDE_INT
1031 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
1032 unsigned int max_size)
1034 unsigned HOST_WIDE_INT n_insns = 0;
1035 enum machine_mode tmode;
1037 tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
1038 if (align >= GET_MODE_ALIGNMENT (tmode))
1039 align = GET_MODE_ALIGNMENT (tmode);
1040 else
1042 enum machine_mode tmode, xmode;
1044 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
1045 tmode != VOIDmode;
1046 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
1047 if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
1048 || SLOW_UNALIGNED_ACCESS (tmode, align))
1049 break;
1051 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
1054 while (max_size > 1)
1056 enum machine_mode mode = VOIDmode;
1057 enum insn_code icode;
1059 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1060 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
1061 if (GET_MODE_SIZE (tmode) < max_size)
1062 mode = tmode;
1064 if (mode == VOIDmode)
1065 break;
1067 icode = mov_optab->handlers[(int) mode].insn_code;
1068 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
1069 n_insns += l / GET_MODE_SIZE (mode), l %= GET_MODE_SIZE (mode);
1071 max_size = GET_MODE_SIZE (mode);
1074 gcc_assert (!l);
1075 return n_insns;
1078 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1079 with move instructions for mode MODE. GENFUN is the gen_... function
1080 to make a move insn for that mode. DATA has all the other info. */
1082 static void
1083 move_by_pieces_1 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
1084 struct move_by_pieces *data)
1086 unsigned int size = GET_MODE_SIZE (mode);
1087 rtx to1 = NULL_RTX, from1;
1089 while (data->len >= size)
1091 if (data->reverse)
1092 data->offset -= size;
1094 if (data->to)
1096 if (data->autinc_to)
1097 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
1098 data->offset);
1099 else
1100 to1 = adjust_address (data->to, mode, data->offset);
1103 if (data->autinc_from)
1104 from1 = adjust_automodify_address (data->from, mode, data->from_addr,
1105 data->offset);
1106 else
1107 from1 = adjust_address (data->from, mode, data->offset);
1109 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
1110 emit_insn (gen_add2_insn (data->to_addr,
1111 GEN_INT (-(HOST_WIDE_INT)size)));
1112 if (HAVE_PRE_DECREMENT && data->explicit_inc_from < 0)
1113 emit_insn (gen_add2_insn (data->from_addr,
1114 GEN_INT (-(HOST_WIDE_INT)size)));
1116 if (data->to)
1117 emit_insn ((*genfun) (to1, from1));
1118 else
1120 #ifdef PUSH_ROUNDING
1121 emit_single_push_insn (mode, from1, NULL);
1122 #else
1123 gcc_unreachable ();
1124 #endif
1127 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
1128 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
1129 if (HAVE_POST_INCREMENT && data->explicit_inc_from > 0)
1130 emit_insn (gen_add2_insn (data->from_addr, GEN_INT (size)));
1132 if (! data->reverse)
1133 data->offset += size;
1135 data->len -= size;
1139 /* Emit code to move a block Y to a block X. This may be done with
1140 string-move instructions, with multiple scalar move instructions,
1141 or with a library call.
1143 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1144 SIZE is an rtx that says how long they are.
1145 ALIGN is the maximum alignment we can assume they have.
1146 METHOD describes what kind of copy this is, and what mechanisms may be used.
1148 Return the address of the new block, if memcpy is called and returns it,
1149 0 otherwise. */
1152 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
1154 bool may_use_call;
1155 rtx retval = 0;
1156 unsigned int align;
1158 switch (method)
1160 case BLOCK_OP_NORMAL:
1161 case BLOCK_OP_TAILCALL:
1162 may_use_call = true;
1163 break;
1165 case BLOCK_OP_CALL_PARM:
1166 may_use_call = block_move_libcall_safe_for_call_parm ();
1168 /* Make inhibit_defer_pop nonzero around the library call
1169 to force it to pop the arguments right away. */
1170 NO_DEFER_POP;
1171 break;
1173 case BLOCK_OP_NO_LIBCALL:
1174 may_use_call = false;
1175 break;
1177 default:
1178 gcc_unreachable ();
1181 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1183 gcc_assert (MEM_P (x));
1184 gcc_assert (MEM_P (y));
1185 gcc_assert (size);
1187 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1188 block copy is more efficient for other large modes, e.g. DCmode. */
1189 x = adjust_address (x, BLKmode, 0);
1190 y = adjust_address (y, BLKmode, 0);
1192 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1193 can be incorrect is coming from __builtin_memcpy. */
1194 if (GET_CODE (size) == CONST_INT)
1196 if (INTVAL (size) == 0)
1197 return 0;
1199 x = shallow_copy_rtx (x);
1200 y = shallow_copy_rtx (y);
1201 set_mem_size (x, size);
1202 set_mem_size (y, size);
1205 if (GET_CODE (size) == CONST_INT && MOVE_BY_PIECES_P (INTVAL (size), align))
1206 move_by_pieces (x, y, INTVAL (size), align, 0);
1207 else if (emit_block_move_via_movmem (x, y, size, align))
1209 else if (may_use_call)
1210 retval = emit_block_move_via_libcall (x, y, size,
1211 method == BLOCK_OP_TAILCALL);
1212 else
1213 emit_block_move_via_loop (x, y, size, align);
1215 if (method == BLOCK_OP_CALL_PARM)
1216 OK_DEFER_POP;
1218 return retval;
1221 /* A subroutine of emit_block_move. Returns true if calling the
1222 block move libcall will not clobber any parameters which may have
1223 already been placed on the stack. */
1225 static bool
1226 block_move_libcall_safe_for_call_parm (void)
1228 /* If arguments are pushed on the stack, then they're safe. */
1229 if (PUSH_ARGS)
1230 return true;
1232 /* If registers go on the stack anyway, any argument is sure to clobber
1233 an outgoing argument. */
1234 #if defined (REG_PARM_STACK_SPACE) && defined (OUTGOING_REG_PARM_STACK_SPACE)
1236 tree fn = emit_block_move_libcall_fn (false);
1237 (void) fn;
1238 if (REG_PARM_STACK_SPACE (fn) != 0)
1239 return false;
1241 #endif
1243 /* If any argument goes in memory, then it might clobber an outgoing
1244 argument. */
1246 CUMULATIVE_ARGS args_so_far;
1247 tree fn, arg;
1249 fn = emit_block_move_libcall_fn (false);
1250 INIT_CUMULATIVE_ARGS (args_so_far, TREE_TYPE (fn), NULL_RTX, 0, 3);
1252 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
1253 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
1255 enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
1256 rtx tmp = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1);
1257 if (!tmp || !REG_P (tmp))
1258 return false;
1259 if (targetm.calls.arg_partial_bytes (&args_so_far, mode, NULL, 1))
1260 return false;
1261 FUNCTION_ARG_ADVANCE (args_so_far, mode, NULL_TREE, 1);
1264 return true;
1267 /* A subroutine of emit_block_move. Expand a movmem pattern;
1268 return true if successful. */
1270 static bool
1271 emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align)
1273 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
1274 int save_volatile_ok = volatile_ok;
1275 enum machine_mode mode;
1277 /* Since this is a move insn, we don't care about volatility. */
1278 volatile_ok = 1;
1280 /* Try the most limited insn first, because there's no point
1281 including more than one in the machine description unless
1282 the more limited one has some advantage. */
1284 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1285 mode = GET_MODE_WIDER_MODE (mode))
1287 enum insn_code code = movmem_optab[(int) mode];
1288 insn_operand_predicate_fn pred;
1290 if (code != CODE_FOR_nothing
1291 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1292 here because if SIZE is less than the mode mask, as it is
1293 returned by the macro, it will definitely be less than the
1294 actual mode mask. */
1295 && ((GET_CODE (size) == CONST_INT
1296 && ((unsigned HOST_WIDE_INT) INTVAL (size)
1297 <= (GET_MODE_MASK (mode) >> 1)))
1298 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
1299 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
1300 || (*pred) (x, BLKmode))
1301 && ((pred = insn_data[(int) code].operand[1].predicate) == 0
1302 || (*pred) (y, BLKmode))
1303 && ((pred = insn_data[(int) code].operand[3].predicate) == 0
1304 || (*pred) (opalign, VOIDmode)))
1306 rtx op2;
1307 rtx last = get_last_insn ();
1308 rtx pat;
1310 op2 = convert_to_mode (mode, size, 1);
1311 pred = insn_data[(int) code].operand[2].predicate;
1312 if (pred != 0 && ! (*pred) (op2, mode))
1313 op2 = copy_to_mode_reg (mode, op2);
1315 /* ??? When called via emit_block_move_for_call, it'd be
1316 nice if there were some way to inform the backend, so
1317 that it doesn't fail the expansion because it thinks
1318 emitting the libcall would be more efficient. */
1320 pat = GEN_FCN ((int) code) (x, y, op2, opalign);
1321 if (pat)
1323 emit_insn (pat);
1324 volatile_ok = save_volatile_ok;
1325 return true;
1327 else
1328 delete_insns_since (last);
1332 volatile_ok = save_volatile_ok;
1333 return false;
1336 /* A subroutine of emit_block_move. Expand a call to memcpy.
1337 Return the return value from memcpy, 0 otherwise. */
1339 static rtx
1340 emit_block_move_via_libcall (rtx dst, rtx src, rtx size, bool tailcall)
1342 rtx dst_addr, src_addr;
1343 tree call_expr, arg_list, fn, src_tree, dst_tree, size_tree;
1344 enum machine_mode size_mode;
1345 rtx retval;
1347 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1348 pseudos. We can then place those new pseudos into a VAR_DECL and
1349 use them later. */
1351 dst_addr = copy_to_mode_reg (Pmode, XEXP (dst, 0));
1352 src_addr = copy_to_mode_reg (Pmode, XEXP (src, 0));
1354 dst_addr = convert_memory_address (ptr_mode, dst_addr);
1355 src_addr = convert_memory_address (ptr_mode, src_addr);
1357 dst_tree = make_tree (ptr_type_node, dst_addr);
1358 src_tree = make_tree (ptr_type_node, src_addr);
1360 size_mode = TYPE_MODE (sizetype);
1362 size = convert_to_mode (size_mode, size, 1);
1363 size = copy_to_mode_reg (size_mode, size);
1365 /* It is incorrect to use the libcall calling conventions to call
1366 memcpy in this context. This could be a user call to memcpy and
1367 the user may wish to examine the return value from memcpy. For
1368 targets where libcalls and normal calls have different conventions
1369 for returning pointers, we could end up generating incorrect code. */
1371 size_tree = make_tree (sizetype, size);
1373 fn = emit_block_move_libcall_fn (true);
1374 arg_list = tree_cons (NULL_TREE, size_tree, NULL_TREE);
1375 arg_list = tree_cons (NULL_TREE, src_tree, arg_list);
1376 arg_list = tree_cons (NULL_TREE, dst_tree, arg_list);
1378 /* Now we have to build up the CALL_EXPR itself. */
1379 call_expr = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn);
1380 call_expr = build3 (CALL_EXPR, TREE_TYPE (TREE_TYPE (fn)),
1381 call_expr, arg_list, NULL_TREE);
1382 CALL_EXPR_TAILCALL (call_expr) = tailcall;
1384 retval = expand_normal (call_expr);
1386 return retval;
1389 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1390 for the function we use for block copies. The first time FOR_CALL
1391 is true, we call assemble_external. */
1393 static GTY(()) tree block_move_fn;
1395 void
1396 init_block_move_fn (const char *asmspec)
1398 if (!block_move_fn)
1400 tree args, fn;
1402 fn = get_identifier ("memcpy");
1403 args = build_function_type_list (ptr_type_node, ptr_type_node,
1404 const_ptr_type_node, sizetype,
1405 NULL_TREE);
1407 fn = build_decl (FUNCTION_DECL, fn, args);
1408 DECL_EXTERNAL (fn) = 1;
1409 TREE_PUBLIC (fn) = 1;
1410 DECL_ARTIFICIAL (fn) = 1;
1411 TREE_NOTHROW (fn) = 1;
1412 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
1413 DECL_VISIBILITY_SPECIFIED (fn) = 1;
1415 block_move_fn = fn;
1418 if (asmspec)
1419 set_user_assembler_name (block_move_fn, asmspec);
1422 static tree
1423 emit_block_move_libcall_fn (int for_call)
1425 static bool emitted_extern;
1427 if (!block_move_fn)
1428 init_block_move_fn (NULL);
1430 if (for_call && !emitted_extern)
1432 emitted_extern = true;
1433 make_decl_rtl (block_move_fn);
1434 assemble_external (block_move_fn);
1437 return block_move_fn;
1440 /* A subroutine of emit_block_move. Copy the data via an explicit
1441 loop. This is used only when libcalls are forbidden. */
1442 /* ??? It'd be nice to copy in hunks larger than QImode. */
1444 static void
1445 emit_block_move_via_loop (rtx x, rtx y, rtx size,
1446 unsigned int align ATTRIBUTE_UNUSED)
1448 rtx cmp_label, top_label, iter, x_addr, y_addr, tmp;
1449 enum machine_mode iter_mode;
1451 iter_mode = GET_MODE (size);
1452 if (iter_mode == VOIDmode)
1453 iter_mode = word_mode;
1455 top_label = gen_label_rtx ();
1456 cmp_label = gen_label_rtx ();
1457 iter = gen_reg_rtx (iter_mode);
1459 emit_move_insn (iter, const0_rtx);
1461 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
1462 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
1463 do_pending_stack_adjust ();
1465 emit_jump (cmp_label);
1466 emit_label (top_label);
1468 tmp = convert_modes (Pmode, iter_mode, iter, true);
1469 x_addr = gen_rtx_PLUS (Pmode, x_addr, tmp);
1470 y_addr = gen_rtx_PLUS (Pmode, y_addr, tmp);
1471 x = change_address (x, QImode, x_addr);
1472 y = change_address (y, QImode, y_addr);
1474 emit_move_insn (x, y);
1476 tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
1477 true, OPTAB_LIB_WIDEN);
1478 if (tmp != iter)
1479 emit_move_insn (iter, tmp);
1481 emit_label (cmp_label);
1483 emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
1484 true, top_label);
1487 /* Copy all or part of a value X into registers starting at REGNO.
1488 The number of registers to be filled is NREGS. */
1490 void
1491 move_block_to_reg (int regno, rtx x, int nregs, enum machine_mode mode)
1493 int i;
1494 #ifdef HAVE_load_multiple
1495 rtx pat;
1496 rtx last;
1497 #endif
1499 if (nregs == 0)
1500 return;
1502 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
1503 x = validize_mem (force_const_mem (mode, x));
1505 /* See if the machine can do this with a load multiple insn. */
1506 #ifdef HAVE_load_multiple
1507 if (HAVE_load_multiple)
1509 last = get_last_insn ();
1510 pat = gen_load_multiple (gen_rtx_REG (word_mode, regno), x,
1511 GEN_INT (nregs));
1512 if (pat)
1514 emit_insn (pat);
1515 return;
1517 else
1518 delete_insns_since (last);
1520 #endif
1522 for (i = 0; i < nregs; i++)
1523 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
1524 operand_subword_force (x, i, mode));
1527 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1528 The number of registers to be filled is NREGS. */
1530 void
1531 move_block_from_reg (int regno, rtx x, int nregs)
1533 int i;
1535 if (nregs == 0)
1536 return;
1538 /* See if the machine can do this with a store multiple insn. */
1539 #ifdef HAVE_store_multiple
1540 if (HAVE_store_multiple)
1542 rtx last = get_last_insn ();
1543 rtx pat = gen_store_multiple (x, gen_rtx_REG (word_mode, regno),
1544 GEN_INT (nregs));
1545 if (pat)
1547 emit_insn (pat);
1548 return;
1550 else
1551 delete_insns_since (last);
1553 #endif
1555 for (i = 0; i < nregs; i++)
1557 rtx tem = operand_subword (x, i, 1, BLKmode);
1559 gcc_assert (tem);
1561 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
1565 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1566 ORIG, where ORIG is a non-consecutive group of registers represented by
1567 a PARALLEL. The clone is identical to the original except in that the
1568 original set of registers is replaced by a new set of pseudo registers.
1569 The new set has the same modes as the original set. */
1572 gen_group_rtx (rtx orig)
1574 int i, length;
1575 rtx *tmps;
1577 gcc_assert (GET_CODE (orig) == PARALLEL);
1579 length = XVECLEN (orig, 0);
1580 tmps = alloca (sizeof (rtx) * length);
1582 /* Skip a NULL entry in first slot. */
1583 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
1585 if (i)
1586 tmps[0] = 0;
1588 for (; i < length; i++)
1590 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
1591 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
1593 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
1596 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
1599 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1600 except that values are placed in TMPS[i], and must later be moved
1601 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1603 static void
1604 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type, int ssize)
1606 rtx src;
1607 int start, i;
1608 enum machine_mode m = GET_MODE (orig_src);
1610 gcc_assert (GET_CODE (dst) == PARALLEL);
1612 if (m != VOIDmode
1613 && !SCALAR_INT_MODE_P (m)
1614 && !MEM_P (orig_src)
1615 && GET_CODE (orig_src) != CONCAT)
1617 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_src));
1618 if (imode == BLKmode)
1619 src = assign_stack_temp (GET_MODE (orig_src), ssize, 0);
1620 else
1621 src = gen_reg_rtx (imode);
1622 if (imode != BLKmode)
1623 src = gen_lowpart (GET_MODE (orig_src), src);
1624 emit_move_insn (src, orig_src);
1625 /* ...and back again. */
1626 if (imode != BLKmode)
1627 src = gen_lowpart (imode, src);
1628 emit_group_load_1 (tmps, dst, src, type, ssize);
1629 return;
1632 /* Check for a NULL entry, used to indicate that the parameter goes
1633 both on the stack and in registers. */
1634 if (XEXP (XVECEXP (dst, 0, 0), 0))
1635 start = 0;
1636 else
1637 start = 1;
1639 /* Process the pieces. */
1640 for (i = start; i < XVECLEN (dst, 0); i++)
1642 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
1643 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
1644 unsigned int bytelen = GET_MODE_SIZE (mode);
1645 int shift = 0;
1647 /* Handle trailing fragments that run over the size of the struct. */
1648 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
1650 /* Arrange to shift the fragment to where it belongs.
1651 extract_bit_field loads to the lsb of the reg. */
1652 if (
1653 #ifdef BLOCK_REG_PADDING
1654 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
1655 == (BYTES_BIG_ENDIAN ? upward : downward)
1656 #else
1657 BYTES_BIG_ENDIAN
1658 #endif
1660 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
1661 bytelen = ssize - bytepos;
1662 gcc_assert (bytelen > 0);
1665 /* If we won't be loading directly from memory, protect the real source
1666 from strange tricks we might play; but make sure that the source can
1667 be loaded directly into the destination. */
1668 src = orig_src;
1669 if (!MEM_P (orig_src)
1670 && (!CONSTANT_P (orig_src)
1671 || (GET_MODE (orig_src) != mode
1672 && GET_MODE (orig_src) != VOIDmode)))
1674 if (GET_MODE (orig_src) == VOIDmode)
1675 src = gen_reg_rtx (mode);
1676 else
1677 src = gen_reg_rtx (GET_MODE (orig_src));
1679 emit_move_insn (src, orig_src);
1682 /* Optimize the access just a bit. */
1683 if (MEM_P (src)
1684 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (src))
1685 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
1686 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
1687 && bytelen == GET_MODE_SIZE (mode))
1689 tmps[i] = gen_reg_rtx (mode);
1690 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
1692 else if (COMPLEX_MODE_P (mode)
1693 && GET_MODE (src) == mode
1694 && bytelen == GET_MODE_SIZE (mode))
1695 /* Let emit_move_complex do the bulk of the work. */
1696 tmps[i] = src;
1697 else if (GET_CODE (src) == CONCAT)
1699 unsigned int slen = GET_MODE_SIZE (GET_MODE (src));
1700 unsigned int slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
1702 if ((bytepos == 0 && bytelen == slen0)
1703 || (bytepos != 0 && bytepos + bytelen <= slen))
1705 /* The following assumes that the concatenated objects all
1706 have the same size. In this case, a simple calculation
1707 can be used to determine the object and the bit field
1708 to be extracted. */
1709 tmps[i] = XEXP (src, bytepos / slen0);
1710 if (! CONSTANT_P (tmps[i])
1711 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode))
1712 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
1713 (bytepos % slen0) * BITS_PER_UNIT,
1714 1, NULL_RTX, mode, mode);
1716 else
1718 rtx mem;
1720 gcc_assert (!bytepos);
1721 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1722 emit_move_insn (mem, src);
1723 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
1724 0, 1, NULL_RTX, mode, mode);
1727 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1728 SIMD register, which is currently broken. While we get GCC
1729 to emit proper RTL for these cases, let's dump to memory. */
1730 else if (VECTOR_MODE_P (GET_MODE (dst))
1731 && REG_P (src))
1733 int slen = GET_MODE_SIZE (GET_MODE (src));
1734 rtx mem;
1736 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1737 emit_move_insn (mem, src);
1738 tmps[i] = adjust_address (mem, mode, (int) bytepos);
1740 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
1741 && XVECLEN (dst, 0) > 1)
1742 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE(dst), bytepos);
1743 else if (CONSTANT_P (src)
1744 || (REG_P (src) && GET_MODE (src) == mode))
1745 tmps[i] = src;
1746 else
1747 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
1748 bytepos * BITS_PER_UNIT, 1, NULL_RTX,
1749 mode, mode);
1751 if (shift)
1752 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
1753 build_int_cst (NULL_TREE, shift), tmps[i], 0);
1757 /* Emit code to move a block SRC of type TYPE to a block DST,
1758 where DST is non-consecutive registers represented by a PARALLEL.
1759 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1760 if not known. */
1762 void
1763 emit_group_load (rtx dst, rtx src, tree type, int ssize)
1765 rtx *tmps;
1766 int i;
1768 tmps = alloca (sizeof (rtx) * XVECLEN (dst, 0));
1769 emit_group_load_1 (tmps, dst, src, type, ssize);
1771 /* Copy the extracted pieces into the proper (probable) hard regs. */
1772 for (i = 0; i < XVECLEN (dst, 0); i++)
1774 rtx d = XEXP (XVECEXP (dst, 0, i), 0);
1775 if (d == NULL)
1776 continue;
1777 emit_move_insn (d, tmps[i]);
1781 /* Similar, but load SRC into new pseudos in a format that looks like
1782 PARALLEL. This can later be fed to emit_group_move to get things
1783 in the right place. */
1786 emit_group_load_into_temps (rtx parallel, rtx src, tree type, int ssize)
1788 rtvec vec;
1789 int i;
1791 vec = rtvec_alloc (XVECLEN (parallel, 0));
1792 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
1794 /* Convert the vector to look just like the original PARALLEL, except
1795 with the computed values. */
1796 for (i = 0; i < XVECLEN (parallel, 0); i++)
1798 rtx e = XVECEXP (parallel, 0, i);
1799 rtx d = XEXP (e, 0);
1801 if (d)
1803 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
1804 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
1806 RTVEC_ELT (vec, i) = e;
1809 return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
1812 /* Emit code to move a block SRC to block DST, where SRC and DST are
1813 non-consecutive groups of registers, each represented by a PARALLEL. */
1815 void
1816 emit_group_move (rtx dst, rtx src)
1818 int i;
1820 gcc_assert (GET_CODE (src) == PARALLEL
1821 && GET_CODE (dst) == PARALLEL
1822 && XVECLEN (src, 0) == XVECLEN (dst, 0));
1824 /* Skip first entry if NULL. */
1825 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
1826 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
1827 XEXP (XVECEXP (src, 0, i), 0));
1830 /* Move a group of registers represented by a PARALLEL into pseudos. */
1833 emit_group_move_into_temps (rtx src)
1835 rtvec vec = rtvec_alloc (XVECLEN (src, 0));
1836 int i;
1838 for (i = 0; i < XVECLEN (src, 0); i++)
1840 rtx e = XVECEXP (src, 0, i);
1841 rtx d = XEXP (e, 0);
1843 if (d)
1844 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
1845 RTVEC_ELT (vec, i) = e;
1848 return gen_rtx_PARALLEL (GET_MODE (src), vec);
1851 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1852 where SRC is non-consecutive registers represented by a PARALLEL.
1853 SSIZE represents the total size of block ORIG_DST, or -1 if not
1854 known. */
1856 void
1857 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED, int ssize)
1859 rtx *tmps, dst;
1860 int start, i;
1861 enum machine_mode m = GET_MODE (orig_dst);
1863 gcc_assert (GET_CODE (src) == PARALLEL);
1865 if (!SCALAR_INT_MODE_P (m)
1866 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
1868 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_dst));
1869 if (imode == BLKmode)
1870 dst = assign_stack_temp (GET_MODE (orig_dst), ssize, 0);
1871 else
1872 dst = gen_reg_rtx (imode);
1873 emit_group_store (dst, src, type, ssize);
1874 if (imode != BLKmode)
1875 dst = gen_lowpart (GET_MODE (orig_dst), dst);
1876 emit_move_insn (orig_dst, dst);
1877 return;
1880 /* Check for a NULL entry, used to indicate that the parameter goes
1881 both on the stack and in registers. */
1882 if (XEXP (XVECEXP (src, 0, 0), 0))
1883 start = 0;
1884 else
1885 start = 1;
1887 tmps = alloca (sizeof (rtx) * XVECLEN (src, 0));
1889 /* Copy the (probable) hard regs into pseudos. */
1890 for (i = start; i < XVECLEN (src, 0); i++)
1892 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
1893 if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
1895 tmps[i] = gen_reg_rtx (GET_MODE (reg));
1896 emit_move_insn (tmps[i], reg);
1898 else
1899 tmps[i] = reg;
1902 /* If we won't be storing directly into memory, protect the real destination
1903 from strange tricks we might play. */
1904 dst = orig_dst;
1905 if (GET_CODE (dst) == PARALLEL)
1907 rtx temp;
1909 /* We can get a PARALLEL dst if there is a conditional expression in
1910 a return statement. In that case, the dst and src are the same,
1911 so no action is necessary. */
1912 if (rtx_equal_p (dst, src))
1913 return;
1915 /* It is unclear if we can ever reach here, but we may as well handle
1916 it. Allocate a temporary, and split this into a store/load to/from
1917 the temporary. */
1919 temp = assign_stack_temp (GET_MODE (dst), ssize, 0);
1920 emit_group_store (temp, src, type, ssize);
1921 emit_group_load (dst, temp, type, ssize);
1922 return;
1924 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
1926 if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
1927 dst = gen_reg_rtx (GET_MODE (orig_dst));
1928 /* Make life a bit easier for combine. */
1929 emit_move_insn (dst, CONST0_RTX (GET_MODE (orig_dst)));
1932 /* Process the pieces. */
1933 for (i = start; i < XVECLEN (src, 0); i++)
1935 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
1936 enum machine_mode mode = GET_MODE (tmps[i]);
1937 unsigned int bytelen = GET_MODE_SIZE (mode);
1938 rtx dest = dst;
1940 /* Handle trailing fragments that run over the size of the struct. */
1941 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
1943 /* store_bit_field always takes its value from the lsb.
1944 Move the fragment to the lsb if it's not already there. */
1945 if (
1946 #ifdef BLOCK_REG_PADDING
1947 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
1948 == (BYTES_BIG_ENDIAN ? upward : downward)
1949 #else
1950 BYTES_BIG_ENDIAN
1951 #endif
1954 int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
1955 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
1956 build_int_cst (NULL_TREE, shift),
1957 tmps[i], 0);
1959 bytelen = ssize - bytepos;
1962 if (GET_CODE (dst) == CONCAT)
1964 if (bytepos + bytelen <= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
1965 dest = XEXP (dst, 0);
1966 else if (bytepos >= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
1968 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
1969 dest = XEXP (dst, 1);
1971 else
1973 gcc_assert (bytepos == 0 && XVECLEN (src, 0));
1974 dest = assign_stack_temp (GET_MODE (dest),
1975 GET_MODE_SIZE (GET_MODE (dest)), 0);
1976 emit_move_insn (adjust_address (dest, GET_MODE (tmps[i]), bytepos),
1977 tmps[i]);
1978 dst = dest;
1979 break;
1983 /* Optimize the access just a bit. */
1984 if (MEM_P (dest)
1985 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (dest))
1986 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
1987 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
1988 && bytelen == GET_MODE_SIZE (mode))
1989 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
1990 else
1991 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
1992 mode, tmps[i]);
1995 /* Copy from the pseudo into the (probable) hard reg. */
1996 if (orig_dst != dst)
1997 emit_move_insn (orig_dst, dst);
2000 /* Generate code to copy a BLKmode object of TYPE out of a
2001 set of registers starting with SRCREG into TGTBLK. If TGTBLK
2002 is null, a stack temporary is created. TGTBLK is returned.
2004 The purpose of this routine is to handle functions that return
2005 BLKmode structures in registers. Some machines (the PA for example)
2006 want to return all small structures in registers regardless of the
2007 structure's alignment. */
2010 copy_blkmode_from_reg (rtx tgtblk, rtx srcreg, tree type)
2012 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
2013 rtx src = NULL, dst = NULL;
2014 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
2015 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
2017 if (tgtblk == 0)
2019 tgtblk = assign_temp (build_qualified_type (type,
2020 (TYPE_QUALS (type)
2021 | TYPE_QUAL_CONST)),
2022 0, 1, 1);
2023 preserve_temp_slots (tgtblk);
2026 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2027 into a new pseudo which is a full word. */
2029 if (GET_MODE (srcreg) != BLKmode
2030 && GET_MODE_SIZE (GET_MODE (srcreg)) < UNITS_PER_WORD)
2031 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
2033 /* If the structure doesn't take up a whole number of words, see whether
2034 SRCREG is padded on the left or on the right. If it's on the left,
2035 set PADDING_CORRECTION to the number of bits to skip.
2037 In most ABIs, the structure will be returned at the least end of
2038 the register, which translates to right padding on little-endian
2039 targets and left padding on big-endian targets. The opposite
2040 holds if the structure is returned at the most significant
2041 end of the register. */
2042 if (bytes % UNITS_PER_WORD != 0
2043 && (targetm.calls.return_in_msb (type)
2044 ? !BYTES_BIG_ENDIAN
2045 : BYTES_BIG_ENDIAN))
2046 padding_correction
2047 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
2049 /* Copy the structure BITSIZE bites at a time.
2051 We could probably emit more efficient code for machines which do not use
2052 strict alignment, but it doesn't seem worth the effort at the current
2053 time. */
2054 for (bitpos = 0, xbitpos = padding_correction;
2055 bitpos < bytes * BITS_PER_UNIT;
2056 bitpos += bitsize, xbitpos += bitsize)
2058 /* We need a new source operand each time xbitpos is on a
2059 word boundary and when xbitpos == padding_correction
2060 (the first time through). */
2061 if (xbitpos % BITS_PER_WORD == 0
2062 || xbitpos == padding_correction)
2063 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD,
2064 GET_MODE (srcreg));
2066 /* We need a new destination operand each time bitpos is on
2067 a word boundary. */
2068 if (bitpos % BITS_PER_WORD == 0)
2069 dst = operand_subword (tgtblk, bitpos / BITS_PER_WORD, 1, BLKmode);
2071 /* Use xbitpos for the source extraction (right justified) and
2072 xbitpos for the destination store (left justified). */
2073 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, word_mode,
2074 extract_bit_field (src, bitsize,
2075 xbitpos % BITS_PER_WORD, 1,
2076 NULL_RTX, word_mode, word_mode));
2079 return tgtblk;
2082 /* Add a USE expression for REG to the (possibly empty) list pointed
2083 to by CALL_FUSAGE. REG must denote a hard register. */
2085 void
2086 use_reg (rtx *call_fusage, rtx reg)
2088 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
2090 *call_fusage
2091 = gen_rtx_EXPR_LIST (VOIDmode,
2092 gen_rtx_USE (VOIDmode, reg), *call_fusage);
2095 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2096 starting at REGNO. All of these registers must be hard registers. */
2098 void
2099 use_regs (rtx *call_fusage, int regno, int nregs)
2101 int i;
2103 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
2105 for (i = 0; i < nregs; i++)
2106 use_reg (call_fusage, regno_reg_rtx[regno + i]);
2109 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2110 PARALLEL REGS. This is for calls that pass values in multiple
2111 non-contiguous locations. The Irix 6 ABI has examples of this. */
2113 void
2114 use_group_regs (rtx *call_fusage, rtx regs)
2116 int i;
2118 for (i = 0; i < XVECLEN (regs, 0); i++)
2120 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
2122 /* A NULL entry means the parameter goes both on the stack and in
2123 registers. This can also be a MEM for targets that pass values
2124 partially on the stack and partially in registers. */
2125 if (reg != 0 && REG_P (reg))
2126 use_reg (call_fusage, reg);
2131 /* Determine whether the LEN bytes generated by CONSTFUN can be
2132 stored to memory using several move instructions. CONSTFUNDATA is
2133 a pointer which will be passed as argument in every CONSTFUN call.
2134 ALIGN is maximum alignment we can assume. Return nonzero if a
2135 call to store_by_pieces should succeed. */
2138 can_store_by_pieces (unsigned HOST_WIDE_INT len,
2139 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2140 void *constfundata, unsigned int align)
2142 unsigned HOST_WIDE_INT l;
2143 unsigned int max_size;
2144 HOST_WIDE_INT offset = 0;
2145 enum machine_mode mode, tmode;
2146 enum insn_code icode;
2147 int reverse;
2148 rtx cst;
2150 if (len == 0)
2151 return 1;
2153 if (! STORE_BY_PIECES_P (len, align))
2154 return 0;
2156 tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
2157 if (align >= GET_MODE_ALIGNMENT (tmode))
2158 align = GET_MODE_ALIGNMENT (tmode);
2159 else
2161 enum machine_mode xmode;
2163 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
2164 tmode != VOIDmode;
2165 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
2166 if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
2167 || SLOW_UNALIGNED_ACCESS (tmode, align))
2168 break;
2170 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
2173 /* We would first store what we can in the largest integer mode, then go to
2174 successively smaller modes. */
2176 for (reverse = 0;
2177 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
2178 reverse++)
2180 l = len;
2181 mode = VOIDmode;
2182 max_size = STORE_MAX_PIECES + 1;
2183 while (max_size > 1)
2185 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2186 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2187 if (GET_MODE_SIZE (tmode) < max_size)
2188 mode = tmode;
2190 if (mode == VOIDmode)
2191 break;
2193 icode = mov_optab->handlers[(int) mode].insn_code;
2194 if (icode != CODE_FOR_nothing
2195 && align >= GET_MODE_ALIGNMENT (mode))
2197 unsigned int size = GET_MODE_SIZE (mode);
2199 while (l >= size)
2201 if (reverse)
2202 offset -= size;
2204 cst = (*constfun) (constfundata, offset, mode);
2205 if (!LEGITIMATE_CONSTANT_P (cst))
2206 return 0;
2208 if (!reverse)
2209 offset += size;
2211 l -= size;
2215 max_size = GET_MODE_SIZE (mode);
2218 /* The code above should have handled everything. */
2219 gcc_assert (!l);
2222 return 1;
2225 /* Generate several move instructions to store LEN bytes generated by
2226 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2227 pointer which will be passed as argument in every CONSTFUN call.
2228 ALIGN is maximum alignment we can assume.
2229 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2230 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2231 stpcpy. */
2234 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
2235 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2236 void *constfundata, unsigned int align, int endp)
2238 struct store_by_pieces data;
2240 if (len == 0)
2242 gcc_assert (endp != 2);
2243 return to;
2246 gcc_assert (STORE_BY_PIECES_P (len, align));
2247 data.constfun = constfun;
2248 data.constfundata = constfundata;
2249 data.len = len;
2250 data.to = to;
2251 store_by_pieces_1 (&data, align);
2252 if (endp)
2254 rtx to1;
2256 gcc_assert (!data.reverse);
2257 if (data.autinc_to)
2259 if (endp == 2)
2261 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
2262 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
2263 else
2264 data.to_addr = copy_addr_to_reg (plus_constant (data.to_addr,
2265 -1));
2267 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
2268 data.offset);
2270 else
2272 if (endp == 2)
2273 --data.offset;
2274 to1 = adjust_address (data.to, QImode, data.offset);
2276 return to1;
2278 else
2279 return data.to;
2282 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2283 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2285 static void
2286 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
2288 struct store_by_pieces data;
2290 if (len == 0)
2291 return;
2293 data.constfun = clear_by_pieces_1;
2294 data.constfundata = NULL;
2295 data.len = len;
2296 data.to = to;
2297 store_by_pieces_1 (&data, align);
2300 /* Callback routine for clear_by_pieces.
2301 Return const0_rtx unconditionally. */
2303 static rtx
2304 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED,
2305 HOST_WIDE_INT offset ATTRIBUTE_UNUSED,
2306 enum machine_mode mode ATTRIBUTE_UNUSED)
2308 return const0_rtx;
2311 /* Subroutine of clear_by_pieces and store_by_pieces.
2312 Generate several move instructions to store LEN bytes of block TO. (A MEM
2313 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2315 static void
2316 store_by_pieces_1 (struct store_by_pieces *data ATTRIBUTE_UNUSED,
2317 unsigned int align ATTRIBUTE_UNUSED)
2319 rtx to_addr = XEXP (data->to, 0);
2320 unsigned int max_size = STORE_MAX_PIECES + 1;
2321 enum machine_mode mode = VOIDmode, tmode;
2322 enum insn_code icode;
2324 data->offset = 0;
2325 data->to_addr = to_addr;
2326 data->autinc_to
2327 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
2328 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
2330 data->explicit_inc_to = 0;
2331 data->reverse
2332 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
2333 if (data->reverse)
2334 data->offset = data->len;
2336 /* If storing requires more than two move insns,
2337 copy addresses to registers (to make displacements shorter)
2338 and use post-increment if available. */
2339 if (!data->autinc_to
2340 && move_by_pieces_ninsns (data->len, align, max_size) > 2)
2342 /* Determine the main mode we'll be using. */
2343 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2344 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2345 if (GET_MODE_SIZE (tmode) < max_size)
2346 mode = tmode;
2348 if (USE_STORE_PRE_DECREMENT (mode) && data->reverse && ! data->autinc_to)
2350 data->to_addr = copy_addr_to_reg (plus_constant (to_addr, data->len));
2351 data->autinc_to = 1;
2352 data->explicit_inc_to = -1;
2355 if (USE_STORE_POST_INCREMENT (mode) && ! data->reverse
2356 && ! data->autinc_to)
2358 data->to_addr = copy_addr_to_reg (to_addr);
2359 data->autinc_to = 1;
2360 data->explicit_inc_to = 1;
2363 if ( !data->autinc_to && CONSTANT_P (to_addr))
2364 data->to_addr = copy_addr_to_reg (to_addr);
2367 tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
2368 if (align >= GET_MODE_ALIGNMENT (tmode))
2369 align = GET_MODE_ALIGNMENT (tmode);
2370 else
2372 enum machine_mode xmode;
2374 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
2375 tmode != VOIDmode;
2376 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
2377 if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
2378 || SLOW_UNALIGNED_ACCESS (tmode, align))
2379 break;
2381 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
2384 /* First store what we can in the largest integer mode, then go to
2385 successively smaller modes. */
2387 while (max_size > 1)
2389 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2390 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2391 if (GET_MODE_SIZE (tmode) < max_size)
2392 mode = tmode;
2394 if (mode == VOIDmode)
2395 break;
2397 icode = mov_optab->handlers[(int) mode].insn_code;
2398 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
2399 store_by_pieces_2 (GEN_FCN (icode), mode, data);
2401 max_size = GET_MODE_SIZE (mode);
2404 /* The code above should have handled everything. */
2405 gcc_assert (!data->len);
2408 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2409 with move instructions for mode MODE. GENFUN is the gen_... function
2410 to make a move insn for that mode. DATA has all the other info. */
2412 static void
2413 store_by_pieces_2 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
2414 struct store_by_pieces *data)
2416 unsigned int size = GET_MODE_SIZE (mode);
2417 rtx to1, cst;
2419 while (data->len >= size)
2421 if (data->reverse)
2422 data->offset -= size;
2424 if (data->autinc_to)
2425 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
2426 data->offset);
2427 else
2428 to1 = adjust_address (data->to, mode, data->offset);
2430 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
2431 emit_insn (gen_add2_insn (data->to_addr,
2432 GEN_INT (-(HOST_WIDE_INT) size)));
2434 cst = (*data->constfun) (data->constfundata, data->offset, mode);
2435 emit_insn ((*genfun) (to1, cst));
2437 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
2438 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
2440 if (! data->reverse)
2441 data->offset += size;
2443 data->len -= size;
2447 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2448 its length in bytes. */
2451 clear_storage (rtx object, rtx size, enum block_op_methods method)
2453 enum machine_mode mode = GET_MODE (object);
2454 unsigned int align;
2456 gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
2458 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2459 just move a zero. Otherwise, do this a piece at a time. */
2460 if (mode != BLKmode
2461 && GET_CODE (size) == CONST_INT
2462 && INTVAL (size) == (HOST_WIDE_INT) GET_MODE_SIZE (mode))
2464 rtx zero = CONST0_RTX (mode);
2465 if (zero != NULL)
2467 emit_move_insn (object, zero);
2468 return NULL;
2471 if (COMPLEX_MODE_P (mode))
2473 zero = CONST0_RTX (GET_MODE_INNER (mode));
2474 if (zero != NULL)
2476 write_complex_part (object, zero, 0);
2477 write_complex_part (object, zero, 1);
2478 return NULL;
2483 if (size == const0_rtx)
2484 return NULL;
2486 align = MEM_ALIGN (object);
2488 if (GET_CODE (size) == CONST_INT
2489 && CLEAR_BY_PIECES_P (INTVAL (size), align))
2490 clear_by_pieces (object, INTVAL (size), align);
2491 else if (set_storage_via_setmem (object, size, const0_rtx, align))
2493 else
2494 return clear_storage_via_libcall (object, size,
2495 method == BLOCK_OP_TAILCALL);
2497 return NULL;
2500 /* A subroutine of clear_storage. Expand a call to memset.
2501 Return the return value of memset, 0 otherwise. */
2503 static rtx
2504 clear_storage_via_libcall (rtx object, rtx size, bool tailcall)
2506 tree call_expr, arg_list, fn, object_tree, size_tree;
2507 enum machine_mode size_mode;
2508 rtx retval;
2510 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2511 place those into new pseudos into a VAR_DECL and use them later. */
2513 object = copy_to_mode_reg (Pmode, XEXP (object, 0));
2515 size_mode = TYPE_MODE (sizetype);
2516 size = convert_to_mode (size_mode, size, 1);
2517 size = copy_to_mode_reg (size_mode, size);
2519 /* It is incorrect to use the libcall calling conventions to call
2520 memset in this context. This could be a user call to memset and
2521 the user may wish to examine the return value from memset. For
2522 targets where libcalls and normal calls have different conventions
2523 for returning pointers, we could end up generating incorrect code. */
2525 object_tree = make_tree (ptr_type_node, object);
2526 size_tree = make_tree (sizetype, size);
2528 fn = clear_storage_libcall_fn (true);
2529 arg_list = tree_cons (NULL_TREE, size_tree, NULL_TREE);
2530 arg_list = tree_cons (NULL_TREE, integer_zero_node, arg_list);
2531 arg_list = tree_cons (NULL_TREE, object_tree, arg_list);
2533 /* Now we have to build up the CALL_EXPR itself. */
2534 call_expr = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn);
2535 call_expr = build3 (CALL_EXPR, TREE_TYPE (TREE_TYPE (fn)),
2536 call_expr, arg_list, NULL_TREE);
2537 CALL_EXPR_TAILCALL (call_expr) = tailcall;
2539 retval = expand_normal (call_expr);
2541 return retval;
2544 /* A subroutine of clear_storage_via_libcall. Create the tree node
2545 for the function we use for block clears. The first time FOR_CALL
2546 is true, we call assemble_external. */
2548 static GTY(()) tree block_clear_fn;
2550 void
2551 init_block_clear_fn (const char *asmspec)
2553 if (!block_clear_fn)
2555 tree fn, args;
2557 fn = get_identifier ("memset");
2558 args = build_function_type_list (ptr_type_node, ptr_type_node,
2559 integer_type_node, sizetype,
2560 NULL_TREE);
2562 fn = build_decl (FUNCTION_DECL, fn, args);
2563 DECL_EXTERNAL (fn) = 1;
2564 TREE_PUBLIC (fn) = 1;
2565 DECL_ARTIFICIAL (fn) = 1;
2566 TREE_NOTHROW (fn) = 1;
2567 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
2568 DECL_VISIBILITY_SPECIFIED (fn) = 1;
2570 block_clear_fn = fn;
2573 if (asmspec)
2574 set_user_assembler_name (block_clear_fn, asmspec);
2577 static tree
2578 clear_storage_libcall_fn (int for_call)
2580 static bool emitted_extern;
2582 if (!block_clear_fn)
2583 init_block_clear_fn (NULL);
2585 if (for_call && !emitted_extern)
2587 emitted_extern = true;
2588 make_decl_rtl (block_clear_fn);
2589 assemble_external (block_clear_fn);
2592 return block_clear_fn;
2595 /* Expand a setmem pattern; return true if successful. */
2597 bool
2598 set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align)
2600 /* Try the most limited insn first, because there's no point
2601 including more than one in the machine description unless
2602 the more limited one has some advantage. */
2604 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
2605 enum machine_mode mode;
2607 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2608 mode = GET_MODE_WIDER_MODE (mode))
2610 enum insn_code code = setmem_optab[(int) mode];
2611 insn_operand_predicate_fn pred;
2613 if (code != CODE_FOR_nothing
2614 /* We don't need MODE to be narrower than
2615 BITS_PER_HOST_WIDE_INT here because if SIZE is less than
2616 the mode mask, as it is returned by the macro, it will
2617 definitely be less than the actual mode mask. */
2618 && ((GET_CODE (size) == CONST_INT
2619 && ((unsigned HOST_WIDE_INT) INTVAL (size)
2620 <= (GET_MODE_MASK (mode) >> 1)))
2621 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
2622 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
2623 || (*pred) (object, BLKmode))
2624 && ((pred = insn_data[(int) code].operand[3].predicate) == 0
2625 || (*pred) (opalign, VOIDmode)))
2627 rtx opsize, opchar;
2628 enum machine_mode char_mode;
2629 rtx last = get_last_insn ();
2630 rtx pat;
2632 opsize = convert_to_mode (mode, size, 1);
2633 pred = insn_data[(int) code].operand[1].predicate;
2634 if (pred != 0 && ! (*pred) (opsize, mode))
2635 opsize = copy_to_mode_reg (mode, opsize);
2637 opchar = val;
2638 char_mode = insn_data[(int) code].operand[2].mode;
2639 if (char_mode != VOIDmode)
2641 opchar = convert_to_mode (char_mode, opchar, 1);
2642 pred = insn_data[(int) code].operand[2].predicate;
2643 if (pred != 0 && ! (*pred) (opchar, char_mode))
2644 opchar = copy_to_mode_reg (char_mode, opchar);
2647 pat = GEN_FCN ((int) code) (object, opsize, opchar, opalign);
2648 if (pat)
2650 emit_insn (pat);
2651 return true;
2653 else
2654 delete_insns_since (last);
2658 return false;
2662 /* Write to one of the components of the complex value CPLX. Write VAL to
2663 the real part if IMAG_P is false, and the imaginary part if its true. */
2665 static void
2666 write_complex_part (rtx cplx, rtx val, bool imag_p)
2668 enum machine_mode cmode;
2669 enum machine_mode imode;
2670 unsigned ibitsize;
2672 if (GET_CODE (cplx) == CONCAT)
2674 emit_move_insn (XEXP (cplx, imag_p), val);
2675 return;
2678 cmode = GET_MODE (cplx);
2679 imode = GET_MODE_INNER (cmode);
2680 ibitsize = GET_MODE_BITSIZE (imode);
2682 /* For MEMs simplify_gen_subreg may generate an invalid new address
2683 because, e.g., the original address is considered mode-dependent
2684 by the target, which restricts simplify_subreg from invoking
2685 adjust_address_nv. Instead of preparing fallback support for an
2686 invalid address, we call adjust_address_nv directly. */
2687 if (MEM_P (cplx))
2689 emit_move_insn (adjust_address_nv (cplx, imode,
2690 imag_p ? GET_MODE_SIZE (imode) : 0),
2691 val);
2692 return;
2695 /* If the sub-object is at least word sized, then we know that subregging
2696 will work. This special case is important, since store_bit_field
2697 wants to operate on integer modes, and there's rarely an OImode to
2698 correspond to TCmode. */
2699 if (ibitsize >= BITS_PER_WORD
2700 /* For hard regs we have exact predicates. Assume we can split
2701 the original object if it spans an even number of hard regs.
2702 This special case is important for SCmode on 64-bit platforms
2703 where the natural size of floating-point regs is 32-bit. */
2704 || (REG_P (cplx)
2705 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2706 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2708 rtx part = simplify_gen_subreg (imode, cplx, cmode,
2709 imag_p ? GET_MODE_SIZE (imode) : 0);
2710 if (part)
2712 emit_move_insn (part, val);
2713 return;
2715 else
2716 /* simplify_gen_subreg may fail for sub-word MEMs. */
2717 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2720 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, imode, val);
2723 /* Extract one of the components of the complex value CPLX. Extract the
2724 real part if IMAG_P is false, and the imaginary part if it's true. */
2726 static rtx
2727 read_complex_part (rtx cplx, bool imag_p)
2729 enum machine_mode cmode, imode;
2730 unsigned ibitsize;
2732 if (GET_CODE (cplx) == CONCAT)
2733 return XEXP (cplx, imag_p);
2735 cmode = GET_MODE (cplx);
2736 imode = GET_MODE_INNER (cmode);
2737 ibitsize = GET_MODE_BITSIZE (imode);
2739 /* Special case reads from complex constants that got spilled to memory. */
2740 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
2742 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
2743 if (decl && TREE_CODE (decl) == COMPLEX_CST)
2745 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
2746 if (CONSTANT_CLASS_P (part))
2747 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
2751 /* For MEMs simplify_gen_subreg may generate an invalid new address
2752 because, e.g., the original address is considered mode-dependent
2753 by the target, which restricts simplify_subreg from invoking
2754 adjust_address_nv. Instead of preparing fallback support for an
2755 invalid address, we call adjust_address_nv directly. */
2756 if (MEM_P (cplx))
2757 return adjust_address_nv (cplx, imode,
2758 imag_p ? GET_MODE_SIZE (imode) : 0);
2760 /* If the sub-object is at least word sized, then we know that subregging
2761 will work. This special case is important, since extract_bit_field
2762 wants to operate on integer modes, and there's rarely an OImode to
2763 correspond to TCmode. */
2764 if (ibitsize >= BITS_PER_WORD
2765 /* For hard regs we have exact predicates. Assume we can split
2766 the original object if it spans an even number of hard regs.
2767 This special case is important for SCmode on 64-bit platforms
2768 where the natural size of floating-point regs is 32-bit. */
2769 || (REG_P (cplx)
2770 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2771 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2773 rtx ret = simplify_gen_subreg (imode, cplx, cmode,
2774 imag_p ? GET_MODE_SIZE (imode) : 0);
2775 if (ret)
2776 return ret;
2777 else
2778 /* simplify_gen_subreg may fail for sub-word MEMs. */
2779 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2782 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
2783 true, NULL_RTX, imode, imode);
2786 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
2787 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
2788 represented in NEW_MODE. If FORCE is true, this will never happen, as
2789 we'll force-create a SUBREG if needed. */
2791 static rtx
2792 emit_move_change_mode (enum machine_mode new_mode,
2793 enum machine_mode old_mode, rtx x, bool force)
2795 rtx ret;
2797 if (MEM_P (x))
2799 /* We don't have to worry about changing the address since the
2800 size in bytes is supposed to be the same. */
2801 if (reload_in_progress)
2803 /* Copy the MEM to change the mode and move any
2804 substitutions from the old MEM to the new one. */
2805 ret = adjust_address_nv (x, new_mode, 0);
2806 copy_replacements (x, ret);
2808 else
2809 ret = adjust_address (x, new_mode, 0);
2811 else
2813 /* Note that we do want simplify_subreg's behavior of validating
2814 that the new mode is ok for a hard register. If we were to use
2815 simplify_gen_subreg, we would create the subreg, but would
2816 probably run into the target not being able to implement it. */
2817 /* Except, of course, when FORCE is true, when this is exactly what
2818 we want. Which is needed for CCmodes on some targets. */
2819 if (force)
2820 ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
2821 else
2822 ret = simplify_subreg (new_mode, x, old_mode, 0);
2825 return ret;
2828 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
2829 an integer mode of the same size as MODE. Returns the instruction
2830 emitted, or NULL if such a move could not be generated. */
2832 static rtx
2833 emit_move_via_integer (enum machine_mode mode, rtx x, rtx y, bool force)
2835 enum machine_mode imode;
2836 enum insn_code code;
2838 /* There must exist a mode of the exact size we require. */
2839 imode = int_mode_for_mode (mode);
2840 if (imode == BLKmode)
2841 return NULL_RTX;
2843 /* The target must support moves in this mode. */
2844 code = mov_optab->handlers[imode].insn_code;
2845 if (code == CODE_FOR_nothing)
2846 return NULL_RTX;
2848 x = emit_move_change_mode (imode, mode, x, force);
2849 if (x == NULL_RTX)
2850 return NULL_RTX;
2851 y = emit_move_change_mode (imode, mode, y, force);
2852 if (y == NULL_RTX)
2853 return NULL_RTX;
2854 return emit_insn (GEN_FCN (code) (x, y));
2857 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
2858 Return an equivalent MEM that does not use an auto-increment. */
2860 static rtx
2861 emit_move_resolve_push (enum machine_mode mode, rtx x)
2863 enum rtx_code code = GET_CODE (XEXP (x, 0));
2864 HOST_WIDE_INT adjust;
2865 rtx temp;
2867 adjust = GET_MODE_SIZE (mode);
2868 #ifdef PUSH_ROUNDING
2869 adjust = PUSH_ROUNDING (adjust);
2870 #endif
2871 if (code == PRE_DEC || code == POST_DEC)
2872 adjust = -adjust;
2873 else if (code == PRE_MODIFY || code == POST_MODIFY)
2875 rtx expr = XEXP (XEXP (x, 0), 1);
2876 HOST_WIDE_INT val;
2878 gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
2879 gcc_assert (GET_CODE (XEXP (expr, 1)) == CONST_INT);
2880 val = INTVAL (XEXP (expr, 1));
2881 if (GET_CODE (expr) == MINUS)
2882 val = -val;
2883 gcc_assert (adjust == val || adjust == -val);
2884 adjust = val;
2887 /* Do not use anti_adjust_stack, since we don't want to update
2888 stack_pointer_delta. */
2889 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
2890 GEN_INT (adjust), stack_pointer_rtx,
2891 0, OPTAB_LIB_WIDEN);
2892 if (temp != stack_pointer_rtx)
2893 emit_move_insn (stack_pointer_rtx, temp);
2895 switch (code)
2897 case PRE_INC:
2898 case PRE_DEC:
2899 case PRE_MODIFY:
2900 temp = stack_pointer_rtx;
2901 break;
2902 case POST_INC:
2903 case POST_DEC:
2904 case POST_MODIFY:
2905 temp = plus_constant (stack_pointer_rtx, -adjust);
2906 break;
2907 default:
2908 gcc_unreachable ();
2911 return replace_equiv_address (x, temp);
2914 /* A subroutine of emit_move_complex. Generate a move from Y into X.
2915 X is known to satisfy push_operand, and MODE is known to be complex.
2916 Returns the last instruction emitted. */
2918 static rtx
2919 emit_move_complex_push (enum machine_mode mode, rtx x, rtx y)
2921 enum machine_mode submode = GET_MODE_INNER (mode);
2922 bool imag_first;
2924 #ifdef PUSH_ROUNDING
2925 unsigned int submodesize = GET_MODE_SIZE (submode);
2927 /* In case we output to the stack, but the size is smaller than the
2928 machine can push exactly, we need to use move instructions. */
2929 if (PUSH_ROUNDING (submodesize) != submodesize)
2931 x = emit_move_resolve_push (mode, x);
2932 return emit_move_insn (x, y);
2934 #endif
2936 /* Note that the real part always precedes the imag part in memory
2937 regardless of machine's endianness. */
2938 switch (GET_CODE (XEXP (x, 0)))
2940 case PRE_DEC:
2941 case POST_DEC:
2942 imag_first = true;
2943 break;
2944 case PRE_INC:
2945 case POST_INC:
2946 imag_first = false;
2947 break;
2948 default:
2949 gcc_unreachable ();
2952 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
2953 read_complex_part (y, imag_first));
2954 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
2955 read_complex_part (y, !imag_first));
2958 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
2959 MODE is known to be complex. Returns the last instruction emitted. */
2961 static rtx
2962 emit_move_complex (enum machine_mode mode, rtx x, rtx y)
2964 bool try_int;
2966 /* Need to take special care for pushes, to maintain proper ordering
2967 of the data, and possibly extra padding. */
2968 if (push_operand (x, mode))
2969 return emit_move_complex_push (mode, x, y);
2971 /* See if we can coerce the target into moving both values at once. */
2973 /* Move floating point as parts. */
2974 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
2975 && mov_optab->handlers[GET_MODE_INNER (mode)].insn_code != CODE_FOR_nothing)
2976 try_int = false;
2977 /* Not possible if the values are inherently not adjacent. */
2978 else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
2979 try_int = false;
2980 /* Is possible if both are registers (or subregs of registers). */
2981 else if (register_operand (x, mode) && register_operand (y, mode))
2982 try_int = true;
2983 /* If one of the operands is a memory, and alignment constraints
2984 are friendly enough, we may be able to do combined memory operations.
2985 We do not attempt this if Y is a constant because that combination is
2986 usually better with the by-parts thing below. */
2987 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
2988 && (!STRICT_ALIGNMENT
2989 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
2990 try_int = true;
2991 else
2992 try_int = false;
2994 if (try_int)
2996 rtx ret;
2998 /* For memory to memory moves, optimal behavior can be had with the
2999 existing block move logic. */
3000 if (MEM_P (x) && MEM_P (y))
3002 emit_block_move (x, y, GEN_INT (GET_MODE_SIZE (mode)),
3003 BLOCK_OP_NO_LIBCALL);
3004 return get_last_insn ();
3007 ret = emit_move_via_integer (mode, x, y, true);
3008 if (ret)
3009 return ret;
3012 /* Show the output dies here. This is necessary for SUBREGs
3013 of pseudos since we cannot track their lifetimes correctly;
3014 hard regs shouldn't appear here except as return values. */
3015 if (!reload_completed && !reload_in_progress
3016 && REG_P (x) && !reg_overlap_mentioned_p (x, y))
3017 emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
3019 write_complex_part (x, read_complex_part (y, false), false);
3020 write_complex_part (x, read_complex_part (y, true), true);
3021 return get_last_insn ();
3024 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3025 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3027 static rtx
3028 emit_move_ccmode (enum machine_mode mode, rtx x, rtx y)
3030 rtx ret;
3032 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3033 if (mode != CCmode)
3035 enum insn_code code = mov_optab->handlers[CCmode].insn_code;
3036 if (code != CODE_FOR_nothing)
3038 x = emit_move_change_mode (CCmode, mode, x, true);
3039 y = emit_move_change_mode (CCmode, mode, y, true);
3040 return emit_insn (GEN_FCN (code) (x, y));
3044 /* Otherwise, find the MODE_INT mode of the same width. */
3045 ret = emit_move_via_integer (mode, x, y, false);
3046 gcc_assert (ret != NULL);
3047 return ret;
3050 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3051 MODE is any multi-word or full-word mode that lacks a move_insn
3052 pattern. Note that you will get better code if you define such
3053 patterns, even if they must turn into multiple assembler instructions. */
3055 static rtx
3056 emit_move_multi_word (enum machine_mode mode, rtx x, rtx y)
3058 rtx last_insn = 0;
3059 rtx seq, inner;
3060 bool need_clobber;
3061 int i;
3063 gcc_assert (GET_MODE_SIZE (mode) >= UNITS_PER_WORD);
3065 /* If X is a push on the stack, do the push now and replace
3066 X with a reference to the stack pointer. */
3067 if (push_operand (x, mode))
3068 x = emit_move_resolve_push (mode, x);
3070 /* If we are in reload, see if either operand is a MEM whose address
3071 is scheduled for replacement. */
3072 if (reload_in_progress && MEM_P (x)
3073 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
3074 x = replace_equiv_address_nv (x, inner);
3075 if (reload_in_progress && MEM_P (y)
3076 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
3077 y = replace_equiv_address_nv (y, inner);
3079 start_sequence ();
3081 need_clobber = false;
3082 for (i = 0;
3083 i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
3084 i++)
3086 rtx xpart = operand_subword (x, i, 1, mode);
3087 rtx ypart = operand_subword (y, i, 1, mode);
3089 /* If we can't get a part of Y, put Y into memory if it is a
3090 constant. Otherwise, force it into a register. Then we must
3091 be able to get a part of Y. */
3092 if (ypart == 0 && CONSTANT_P (y))
3094 y = use_anchored_address (force_const_mem (mode, y));
3095 ypart = operand_subword (y, i, 1, mode);
3097 else if (ypart == 0)
3098 ypart = operand_subword_force (y, i, mode);
3100 gcc_assert (xpart && ypart);
3102 need_clobber |= (GET_CODE (xpart) == SUBREG);
3104 last_insn = emit_move_insn (xpart, ypart);
3107 seq = get_insns ();
3108 end_sequence ();
3110 /* Show the output dies here. This is necessary for SUBREGs
3111 of pseudos since we cannot track their lifetimes correctly;
3112 hard regs shouldn't appear here except as return values.
3113 We never want to emit such a clobber after reload. */
3114 if (x != y
3115 && ! (reload_in_progress || reload_completed)
3116 && need_clobber != 0)
3117 emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
3119 emit_insn (seq);
3121 return last_insn;
3124 /* Low level part of emit_move_insn.
3125 Called just like emit_move_insn, but assumes X and Y
3126 are basically valid. */
3129 emit_move_insn_1 (rtx x, rtx y)
3131 enum machine_mode mode = GET_MODE (x);
3132 enum insn_code code;
3134 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
3136 code = mov_optab->handlers[mode].insn_code;
3137 if (code != CODE_FOR_nothing)
3138 return emit_insn (GEN_FCN (code) (x, y));
3140 /* Expand complex moves by moving real part and imag part. */
3141 if (COMPLEX_MODE_P (mode))
3142 return emit_move_complex (mode, x, y);
3144 if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT)
3146 rtx result = emit_move_via_integer (mode, x, y, true);
3148 /* If we can't find an integer mode, use multi words. */
3149 if (result)
3150 return result;
3151 else
3152 return emit_move_multi_word (mode, x, y);
3155 if (GET_MODE_CLASS (mode) == MODE_CC)
3156 return emit_move_ccmode (mode, x, y);
3158 /* Try using a move pattern for the corresponding integer mode. This is
3159 only safe when simplify_subreg can convert MODE constants into integer
3160 constants. At present, it can only do this reliably if the value
3161 fits within a HOST_WIDE_INT. */
3162 if (!CONSTANT_P (y) || GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3164 rtx ret = emit_move_via_integer (mode, x, y, false);
3165 if (ret)
3166 return ret;
3169 return emit_move_multi_word (mode, x, y);
3172 /* Generate code to copy Y into X.
3173 Both Y and X must have the same mode, except that
3174 Y can be a constant with VOIDmode.
3175 This mode cannot be BLKmode; use emit_block_move for that.
3177 Return the last instruction emitted. */
3180 emit_move_insn (rtx x, rtx y)
3182 enum machine_mode mode = GET_MODE (x);
3183 rtx y_cst = NULL_RTX;
3184 rtx last_insn, set;
3186 gcc_assert (mode != BLKmode
3187 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
3189 if (CONSTANT_P (y))
3191 if (optimize
3192 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
3193 && (last_insn = compress_float_constant (x, y)))
3194 return last_insn;
3196 y_cst = y;
3198 if (!LEGITIMATE_CONSTANT_P (y))
3200 y = force_const_mem (mode, y);
3202 /* If the target's cannot_force_const_mem prevented the spill,
3203 assume that the target's move expanders will also take care
3204 of the non-legitimate constant. */
3205 if (!y)
3206 y = y_cst;
3207 else
3208 y = use_anchored_address (y);
3212 /* If X or Y are memory references, verify that their addresses are valid
3213 for the machine. */
3214 if (MEM_P (x)
3215 && ((! memory_address_p (GET_MODE (x), XEXP (x, 0))
3216 && ! push_operand (x, GET_MODE (x)))
3217 || (flag_force_addr
3218 && CONSTANT_ADDRESS_P (XEXP (x, 0)))))
3219 x = validize_mem (x);
3221 if (MEM_P (y)
3222 && (! memory_address_p (GET_MODE (y), XEXP (y, 0))
3223 || (flag_force_addr
3224 && CONSTANT_ADDRESS_P (XEXP (y, 0)))))
3225 y = validize_mem (y);
3227 gcc_assert (mode != BLKmode);
3229 last_insn = emit_move_insn_1 (x, y);
3231 if (y_cst && REG_P (x)
3232 && (set = single_set (last_insn)) != NULL_RTX
3233 && SET_DEST (set) == x
3234 && ! rtx_equal_p (y_cst, SET_SRC (set)))
3235 set_unique_reg_note (last_insn, REG_EQUAL, y_cst);
3237 return last_insn;
3240 /* If Y is representable exactly in a narrower mode, and the target can
3241 perform the extension directly from constant or memory, then emit the
3242 move as an extension. */
3244 static rtx
3245 compress_float_constant (rtx x, rtx y)
3247 enum machine_mode dstmode = GET_MODE (x);
3248 enum machine_mode orig_srcmode = GET_MODE (y);
3249 enum machine_mode srcmode;
3250 REAL_VALUE_TYPE r;
3251 int oldcost, newcost;
3253 REAL_VALUE_FROM_CONST_DOUBLE (r, y);
3255 if (LEGITIMATE_CONSTANT_P (y))
3256 oldcost = rtx_cost (y, SET);
3257 else
3258 oldcost = rtx_cost (force_const_mem (dstmode, y), SET);
3260 for (srcmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode));
3261 srcmode != orig_srcmode;
3262 srcmode = GET_MODE_WIDER_MODE (srcmode))
3264 enum insn_code ic;
3265 rtx trunc_y, last_insn;
3267 /* Skip if the target can't extend this way. */
3268 ic = can_extend_p (dstmode, srcmode, 0);
3269 if (ic == CODE_FOR_nothing)
3270 continue;
3272 /* Skip if the narrowed value isn't exact. */
3273 if (! exact_real_truncate (srcmode, &r))
3274 continue;
3276 trunc_y = CONST_DOUBLE_FROM_REAL_VALUE (r, srcmode);
3278 if (LEGITIMATE_CONSTANT_P (trunc_y))
3280 /* Skip if the target needs extra instructions to perform
3281 the extension. */
3282 if (! (*insn_data[ic].operand[1].predicate) (trunc_y, srcmode))
3283 continue;
3284 /* This is valid, but may not be cheaper than the original. */
3285 newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET);
3286 if (oldcost < newcost)
3287 continue;
3289 else if (float_extend_from_mem[dstmode][srcmode])
3291 trunc_y = force_const_mem (srcmode, trunc_y);
3292 /* This is valid, but may not be cheaper than the original. */
3293 newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET);
3294 if (oldcost < newcost)
3295 continue;
3296 trunc_y = validize_mem (trunc_y);
3298 else
3299 continue;
3301 emit_unop_insn (ic, x, trunc_y, UNKNOWN);
3302 last_insn = get_last_insn ();
3304 if (REG_P (x))
3305 set_unique_reg_note (last_insn, REG_EQUAL, y);
3307 return last_insn;
3310 return NULL_RTX;
3313 /* Pushing data onto the stack. */
3315 /* Push a block of length SIZE (perhaps variable)
3316 and return an rtx to address the beginning of the block.
3317 The value may be virtual_outgoing_args_rtx.
3319 EXTRA is the number of bytes of padding to push in addition to SIZE.
3320 BELOW nonzero means this padding comes at low addresses;
3321 otherwise, the padding comes at high addresses. */
3324 push_block (rtx size, int extra, int below)
3326 rtx temp;
3328 size = convert_modes (Pmode, ptr_mode, size, 1);
3329 if (CONSTANT_P (size))
3330 anti_adjust_stack (plus_constant (size, extra));
3331 else if (REG_P (size) && extra == 0)
3332 anti_adjust_stack (size);
3333 else
3335 temp = copy_to_mode_reg (Pmode, size);
3336 if (extra != 0)
3337 temp = expand_binop (Pmode, add_optab, temp, GEN_INT (extra),
3338 temp, 0, OPTAB_LIB_WIDEN);
3339 anti_adjust_stack (temp);
3342 #ifndef STACK_GROWS_DOWNWARD
3343 if (0)
3344 #else
3345 if (1)
3346 #endif
3348 temp = virtual_outgoing_args_rtx;
3349 if (extra != 0 && below)
3350 temp = plus_constant (temp, extra);
3352 else
3354 if (GET_CODE (size) == CONST_INT)
3355 temp = plus_constant (virtual_outgoing_args_rtx,
3356 -INTVAL (size) - (below ? 0 : extra));
3357 else if (extra != 0 && !below)
3358 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3359 negate_rtx (Pmode, plus_constant (size, extra)));
3360 else
3361 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3362 negate_rtx (Pmode, size));
3365 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT), temp);
3368 #ifdef PUSH_ROUNDING
3370 /* Emit single push insn. */
3372 static void
3373 emit_single_push_insn (enum machine_mode mode, rtx x, tree type)
3375 rtx dest_addr;
3376 unsigned rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
3377 rtx dest;
3378 enum insn_code icode;
3379 insn_operand_predicate_fn pred;
3381 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
3382 /* If there is push pattern, use it. Otherwise try old way of throwing
3383 MEM representing push operation to move expander. */
3384 icode = push_optab->handlers[(int) mode].insn_code;
3385 if (icode != CODE_FOR_nothing)
3387 if (((pred = insn_data[(int) icode].operand[0].predicate)
3388 && !((*pred) (x, mode))))
3389 x = force_reg (mode, x);
3390 emit_insn (GEN_FCN (icode) (x));
3391 return;
3393 if (GET_MODE_SIZE (mode) == rounded_size)
3394 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
3395 /* If we are to pad downward, adjust the stack pointer first and
3396 then store X into the stack location using an offset. This is
3397 because emit_move_insn does not know how to pad; it does not have
3398 access to type. */
3399 else if (FUNCTION_ARG_PADDING (mode, type) == downward)
3401 unsigned padding_size = rounded_size - GET_MODE_SIZE (mode);
3402 HOST_WIDE_INT offset;
3404 emit_move_insn (stack_pointer_rtx,
3405 expand_binop (Pmode,
3406 #ifdef STACK_GROWS_DOWNWARD
3407 sub_optab,
3408 #else
3409 add_optab,
3410 #endif
3411 stack_pointer_rtx,
3412 GEN_INT (rounded_size),
3413 NULL_RTX, 0, OPTAB_LIB_WIDEN));
3415 offset = (HOST_WIDE_INT) padding_size;
3416 #ifdef STACK_GROWS_DOWNWARD
3417 if (STACK_PUSH_CODE == POST_DEC)
3418 /* We have already decremented the stack pointer, so get the
3419 previous value. */
3420 offset += (HOST_WIDE_INT) rounded_size;
3421 #else
3422 if (STACK_PUSH_CODE == POST_INC)
3423 /* We have already incremented the stack pointer, so get the
3424 previous value. */
3425 offset -= (HOST_WIDE_INT) rounded_size;
3426 #endif
3427 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (offset));
3429 else
3431 #ifdef STACK_GROWS_DOWNWARD
3432 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
3433 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3434 GEN_INT (-(HOST_WIDE_INT) rounded_size));
3435 #else
3436 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
3437 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3438 GEN_INT (rounded_size));
3439 #endif
3440 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
3443 dest = gen_rtx_MEM (mode, dest_addr);
3445 if (type != 0)
3447 set_mem_attributes (dest, type, 1);
3449 if (flag_optimize_sibling_calls)
3450 /* Function incoming arguments may overlap with sibling call
3451 outgoing arguments and we cannot allow reordering of reads
3452 from function arguments with stores to outgoing arguments
3453 of sibling calls. */
3454 set_mem_alias_set (dest, 0);
3456 emit_move_insn (dest, x);
3458 #endif
3460 /* Generate code to push X onto the stack, assuming it has mode MODE and
3461 type TYPE.
3462 MODE is redundant except when X is a CONST_INT (since they don't
3463 carry mode info).
3464 SIZE is an rtx for the size of data to be copied (in bytes),
3465 needed only if X is BLKmode.
3467 ALIGN (in bits) is maximum alignment we can assume.
3469 If PARTIAL and REG are both nonzero, then copy that many of the first
3470 bytes of X into registers starting with REG, and push the rest of X.
3471 The amount of space pushed is decreased by PARTIAL bytes.
3472 REG must be a hard register in this case.
3473 If REG is zero but PARTIAL is not, take any all others actions for an
3474 argument partially in registers, but do not actually load any
3475 registers.
3477 EXTRA is the amount in bytes of extra space to leave next to this arg.
3478 This is ignored if an argument block has already been allocated.
3480 On a machine that lacks real push insns, ARGS_ADDR is the address of
3481 the bottom of the argument block for this call. We use indexing off there
3482 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
3483 argument block has not been preallocated.
3485 ARGS_SO_FAR is the size of args previously pushed for this call.
3487 REG_PARM_STACK_SPACE is nonzero if functions require stack space
3488 for arguments passed in registers. If nonzero, it will be the number
3489 of bytes required. */
3491 void
3492 emit_push_insn (rtx x, enum machine_mode mode, tree type, rtx size,
3493 unsigned int align, int partial, rtx reg, int extra,
3494 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
3495 rtx alignment_pad)
3497 rtx xinner;
3498 enum direction stack_direction
3499 #ifdef STACK_GROWS_DOWNWARD
3500 = downward;
3501 #else
3502 = upward;
3503 #endif
3505 /* Decide where to pad the argument: `downward' for below,
3506 `upward' for above, or `none' for don't pad it.
3507 Default is below for small data on big-endian machines; else above. */
3508 enum direction where_pad = FUNCTION_ARG_PADDING (mode, type);
3510 /* Invert direction if stack is post-decrement.
3511 FIXME: why? */
3512 if (STACK_PUSH_CODE == POST_DEC)
3513 if (where_pad != none)
3514 where_pad = (where_pad == downward ? upward : downward);
3516 xinner = x;
3518 if (mode == BLKmode)
3520 /* Copy a block into the stack, entirely or partially. */
3522 rtx temp;
3523 int used;
3524 int offset;
3525 int skip;
3527 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3528 used = partial - offset;
3530 gcc_assert (size);
3532 /* USED is now the # of bytes we need not copy to the stack
3533 because registers will take care of them. */
3535 if (partial != 0)
3536 xinner = adjust_address (xinner, BLKmode, used);
3538 /* If the partial register-part of the arg counts in its stack size,
3539 skip the part of stack space corresponding to the registers.
3540 Otherwise, start copying to the beginning of the stack space,
3541 by setting SKIP to 0. */
3542 skip = (reg_parm_stack_space == 0) ? 0 : used;
3544 #ifdef PUSH_ROUNDING
3545 /* Do it with several push insns if that doesn't take lots of insns
3546 and if there is no difficulty with push insns that skip bytes
3547 on the stack for alignment purposes. */
3548 if (args_addr == 0
3549 && PUSH_ARGS
3550 && GET_CODE (size) == CONST_INT
3551 && skip == 0
3552 && MEM_ALIGN (xinner) >= align
3553 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size) - used, align))
3554 /* Here we avoid the case of a structure whose weak alignment
3555 forces many pushes of a small amount of data,
3556 and such small pushes do rounding that causes trouble. */
3557 && ((! SLOW_UNALIGNED_ACCESS (word_mode, align))
3558 || align >= BIGGEST_ALIGNMENT
3559 || (PUSH_ROUNDING (align / BITS_PER_UNIT)
3560 == (align / BITS_PER_UNIT)))
3561 && PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
3563 /* Push padding now if padding above and stack grows down,
3564 or if padding below and stack grows up.
3565 But if space already allocated, this has already been done. */
3566 if (extra && args_addr == 0
3567 && where_pad != none && where_pad != stack_direction)
3568 anti_adjust_stack (GEN_INT (extra));
3570 move_by_pieces (NULL, xinner, INTVAL (size) - used, align, 0);
3572 else
3573 #endif /* PUSH_ROUNDING */
3575 rtx target;
3577 /* Otherwise make space on the stack and copy the data
3578 to the address of that space. */
3580 /* Deduct words put into registers from the size we must copy. */
3581 if (partial != 0)
3583 if (GET_CODE (size) == CONST_INT)
3584 size = GEN_INT (INTVAL (size) - used);
3585 else
3586 size = expand_binop (GET_MODE (size), sub_optab, size,
3587 GEN_INT (used), NULL_RTX, 0,
3588 OPTAB_LIB_WIDEN);
3591 /* Get the address of the stack space.
3592 In this case, we do not deal with EXTRA separately.
3593 A single stack adjust will do. */
3594 if (! args_addr)
3596 temp = push_block (size, extra, where_pad == downward);
3597 extra = 0;
3599 else if (GET_CODE (args_so_far) == CONST_INT)
3600 temp = memory_address (BLKmode,
3601 plus_constant (args_addr,
3602 skip + INTVAL (args_so_far)));
3603 else
3604 temp = memory_address (BLKmode,
3605 plus_constant (gen_rtx_PLUS (Pmode,
3606 args_addr,
3607 args_so_far),
3608 skip));
3610 if (!ACCUMULATE_OUTGOING_ARGS)
3612 /* If the source is referenced relative to the stack pointer,
3613 copy it to another register to stabilize it. We do not need
3614 to do this if we know that we won't be changing sp. */
3616 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
3617 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
3618 temp = copy_to_reg (temp);
3621 target = gen_rtx_MEM (BLKmode, temp);
3623 /* We do *not* set_mem_attributes here, because incoming arguments
3624 may overlap with sibling call outgoing arguments and we cannot
3625 allow reordering of reads from function arguments with stores
3626 to outgoing arguments of sibling calls. We do, however, want
3627 to record the alignment of the stack slot. */
3628 /* ALIGN may well be better aligned than TYPE, e.g. due to
3629 PARM_BOUNDARY. Assume the caller isn't lying. */
3630 set_mem_align (target, align);
3632 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
3635 else if (partial > 0)
3637 /* Scalar partly in registers. */
3639 int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
3640 int i;
3641 int not_stack;
3642 /* # bytes of start of argument
3643 that we must make space for but need not store. */
3644 int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3645 int args_offset = INTVAL (args_so_far);
3646 int skip;
3648 /* Push padding now if padding above and stack grows down,
3649 or if padding below and stack grows up.
3650 But if space already allocated, this has already been done. */
3651 if (extra && args_addr == 0
3652 && where_pad != none && where_pad != stack_direction)
3653 anti_adjust_stack (GEN_INT (extra));
3655 /* If we make space by pushing it, we might as well push
3656 the real data. Otherwise, we can leave OFFSET nonzero
3657 and leave the space uninitialized. */
3658 if (args_addr == 0)
3659 offset = 0;
3661 /* Now NOT_STACK gets the number of words that we don't need to
3662 allocate on the stack. Convert OFFSET to words too. */
3663 not_stack = (partial - offset) / UNITS_PER_WORD;
3664 offset /= UNITS_PER_WORD;
3666 /* If the partial register-part of the arg counts in its stack size,
3667 skip the part of stack space corresponding to the registers.
3668 Otherwise, start copying to the beginning of the stack space,
3669 by setting SKIP to 0. */
3670 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
3672 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
3673 x = validize_mem (force_const_mem (mode, x));
3675 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
3676 SUBREGs of such registers are not allowed. */
3677 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3678 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
3679 x = copy_to_reg (x);
3681 /* Loop over all the words allocated on the stack for this arg. */
3682 /* We can do it by words, because any scalar bigger than a word
3683 has a size a multiple of a word. */
3684 #ifndef PUSH_ARGS_REVERSED
3685 for (i = not_stack; i < size; i++)
3686 #else
3687 for (i = size - 1; i >= not_stack; i--)
3688 #endif
3689 if (i >= not_stack + offset)
3690 emit_push_insn (operand_subword_force (x, i, mode),
3691 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
3692 0, args_addr,
3693 GEN_INT (args_offset + ((i - not_stack + skip)
3694 * UNITS_PER_WORD)),
3695 reg_parm_stack_space, alignment_pad);
3697 else
3699 rtx addr;
3700 rtx dest;
3702 /* Push padding now if padding above and stack grows down,
3703 or if padding below and stack grows up.
3704 But if space already allocated, this has already been done. */
3705 if (extra && args_addr == 0
3706 && where_pad != none && where_pad != stack_direction)
3707 anti_adjust_stack (GEN_INT (extra));
3709 #ifdef PUSH_ROUNDING
3710 if (args_addr == 0 && PUSH_ARGS)
3711 emit_single_push_insn (mode, x, type);
3712 else
3713 #endif
3715 if (GET_CODE (args_so_far) == CONST_INT)
3716 addr
3717 = memory_address (mode,
3718 plus_constant (args_addr,
3719 INTVAL (args_so_far)));
3720 else
3721 addr = memory_address (mode, gen_rtx_PLUS (Pmode, args_addr,
3722 args_so_far));
3723 dest = gen_rtx_MEM (mode, addr);
3725 /* We do *not* set_mem_attributes here, because incoming arguments
3726 may overlap with sibling call outgoing arguments and we cannot
3727 allow reordering of reads from function arguments with stores
3728 to outgoing arguments of sibling calls. We do, however, want
3729 to record the alignment of the stack slot. */
3730 /* ALIGN may well be better aligned than TYPE, e.g. due to
3731 PARM_BOUNDARY. Assume the caller isn't lying. */
3732 set_mem_align (dest, align);
3734 emit_move_insn (dest, x);
3738 /* If part should go in registers, copy that part
3739 into the appropriate registers. Do this now, at the end,
3740 since mem-to-mem copies above may do function calls. */
3741 if (partial > 0 && reg != 0)
3743 /* Handle calls that pass values in multiple non-contiguous locations.
3744 The Irix 6 ABI has examples of this. */
3745 if (GET_CODE (reg) == PARALLEL)
3746 emit_group_load (reg, x, type, -1);
3747 else
3749 gcc_assert (partial % UNITS_PER_WORD == 0);
3750 move_block_to_reg (REGNO (reg), x, partial / UNITS_PER_WORD, mode);
3754 if (extra && args_addr == 0 && where_pad == stack_direction)
3755 anti_adjust_stack (GEN_INT (extra));
3757 if (alignment_pad && args_addr == 0)
3758 anti_adjust_stack (alignment_pad);
3761 /* Return X if X can be used as a subtarget in a sequence of arithmetic
3762 operations. */
3764 static rtx
3765 get_subtarget (rtx x)
3767 return (optimize
3768 || x == 0
3769 /* Only registers can be subtargets. */
3770 || !REG_P (x)
3771 /* Don't use hard regs to avoid extending their life. */
3772 || REGNO (x) < FIRST_PSEUDO_REGISTER
3773 ? 0 : x);
3776 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
3777 FIELD is a bitfield. Returns true if the optimization was successful,
3778 and there's nothing else to do. */
3780 static bool
3781 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize,
3782 unsigned HOST_WIDE_INT bitpos,
3783 enum machine_mode mode1, rtx str_rtx,
3784 tree to, tree src)
3786 enum machine_mode str_mode = GET_MODE (str_rtx);
3787 unsigned int str_bitsize = GET_MODE_BITSIZE (str_mode);
3788 tree op0, op1;
3789 rtx value, result;
3790 optab binop;
3792 if (mode1 != VOIDmode
3793 || bitsize >= BITS_PER_WORD
3794 || str_bitsize > BITS_PER_WORD
3795 || TREE_SIDE_EFFECTS (to)
3796 || TREE_THIS_VOLATILE (to))
3797 return false;
3799 STRIP_NOPS (src);
3800 if (!BINARY_CLASS_P (src)
3801 || TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
3802 return false;
3804 op0 = TREE_OPERAND (src, 0);
3805 op1 = TREE_OPERAND (src, 1);
3806 STRIP_NOPS (op0);
3808 if (!operand_equal_p (to, op0, 0))
3809 return false;
3811 if (MEM_P (str_rtx))
3813 unsigned HOST_WIDE_INT offset1;
3815 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
3816 str_mode = word_mode;
3817 str_mode = get_best_mode (bitsize, bitpos,
3818 MEM_ALIGN (str_rtx), str_mode, 0);
3819 if (str_mode == VOIDmode)
3820 return false;
3821 str_bitsize = GET_MODE_BITSIZE (str_mode);
3823 offset1 = bitpos;
3824 bitpos %= str_bitsize;
3825 offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
3826 str_rtx = adjust_address (str_rtx, str_mode, offset1);
3828 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
3829 return false;
3831 /* If the bit field covers the whole REG/MEM, store_field
3832 will likely generate better code. */
3833 if (bitsize >= str_bitsize)
3834 return false;
3836 /* We can't handle fields split across multiple entities. */
3837 if (bitpos + bitsize > str_bitsize)
3838 return false;
3840 if (BYTES_BIG_ENDIAN)
3841 bitpos = str_bitsize - bitpos - bitsize;
3843 switch (TREE_CODE (src))
3845 case PLUS_EXPR:
3846 case MINUS_EXPR:
3847 /* For now, just optimize the case of the topmost bitfield
3848 where we don't need to do any masking and also
3849 1 bit bitfields where xor can be used.
3850 We might win by one instruction for the other bitfields
3851 too if insv/extv instructions aren't used, so that
3852 can be added later. */
3853 if (bitpos + bitsize != str_bitsize
3854 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
3855 break;
3857 value = expand_expr (op1, NULL_RTX, str_mode, 0);
3858 value = convert_modes (str_mode,
3859 TYPE_MODE (TREE_TYPE (op1)), value,
3860 TYPE_UNSIGNED (TREE_TYPE (op1)));
3862 /* We may be accessing data outside the field, which means
3863 we can alias adjacent data. */
3864 if (MEM_P (str_rtx))
3866 str_rtx = shallow_copy_rtx (str_rtx);
3867 set_mem_alias_set (str_rtx, 0);
3868 set_mem_expr (str_rtx, 0);
3871 binop = TREE_CODE (src) == PLUS_EXPR ? add_optab : sub_optab;
3872 if (bitsize == 1 && bitpos + bitsize != str_bitsize)
3874 value = expand_and (str_mode, value, const1_rtx, NULL);
3875 binop = xor_optab;
3877 value = expand_shift (LSHIFT_EXPR, str_mode, value,
3878 build_int_cst (NULL_TREE, bitpos),
3879 NULL_RTX, 1);
3880 result = expand_binop (str_mode, binop, str_rtx,
3881 value, str_rtx, 1, OPTAB_WIDEN);
3882 if (result != str_rtx)
3883 emit_move_insn (str_rtx, result);
3884 return true;
3886 case BIT_IOR_EXPR:
3887 case BIT_XOR_EXPR:
3888 if (TREE_CODE (op1) != INTEGER_CST)
3889 break;
3890 value = expand_expr (op1, NULL_RTX, GET_MODE (str_rtx), 0);
3891 value = convert_modes (GET_MODE (str_rtx),
3892 TYPE_MODE (TREE_TYPE (op1)), value,
3893 TYPE_UNSIGNED (TREE_TYPE (op1)));
3895 /* We may be accessing data outside the field, which means
3896 we can alias adjacent data. */
3897 if (MEM_P (str_rtx))
3899 str_rtx = shallow_copy_rtx (str_rtx);
3900 set_mem_alias_set (str_rtx, 0);
3901 set_mem_expr (str_rtx, 0);
3904 binop = TREE_CODE (src) == BIT_IOR_EXPR ? ior_optab : xor_optab;
3905 if (bitpos + bitsize != GET_MODE_BITSIZE (GET_MODE (str_rtx)))
3907 rtx mask = GEN_INT (((unsigned HOST_WIDE_INT) 1 << bitsize)
3908 - 1);
3909 value = expand_and (GET_MODE (str_rtx), value, mask,
3910 NULL_RTX);
3912 value = expand_shift (LSHIFT_EXPR, GET_MODE (str_rtx), value,
3913 build_int_cst (NULL_TREE, bitpos),
3914 NULL_RTX, 1);
3915 result = expand_binop (GET_MODE (str_rtx), binop, str_rtx,
3916 value, str_rtx, 1, OPTAB_WIDEN);
3917 if (result != str_rtx)
3918 emit_move_insn (str_rtx, result);
3919 return true;
3921 default:
3922 break;
3925 return false;
3929 /* Expand an assignment that stores the value of FROM into TO. */
3931 void
3932 expand_assignment (tree to, tree from)
3934 rtx to_rtx = 0;
3935 rtx result;
3937 /* Don't crash if the lhs of the assignment was erroneous. */
3939 if (TREE_CODE (to) == ERROR_MARK)
3941 result = expand_normal (from);
3942 return;
3945 /* Assignment of a structure component needs special treatment
3946 if the structure component's rtx is not simply a MEM.
3947 Assignment of an array element at a constant index, and assignment of
3948 an array element in an unaligned packed structure field, has the same
3949 problem. */
3950 if (handled_component_p (to)
3951 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
3953 enum machine_mode mode1;
3954 HOST_WIDE_INT bitsize, bitpos;
3955 tree offset;
3956 int unsignedp;
3957 int volatilep = 0;
3958 tree tem;
3960 push_temp_slots ();
3961 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
3962 &unsignedp, &volatilep, true);
3964 /* If we are going to use store_bit_field and extract_bit_field,
3965 make sure to_rtx will be safe for multiple use. */
3967 to_rtx = expand_normal (tem);
3969 if (offset != 0)
3971 rtx offset_rtx;
3973 if (!MEM_P (to_rtx))
3975 /* We can get constant negative offsets into arrays with broken
3976 user code. Translate this to a trap instead of ICEing. */
3977 gcc_assert (TREE_CODE (offset) == INTEGER_CST);
3978 expand_builtin_trap ();
3979 to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
3982 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
3983 #ifdef POINTERS_EXTEND_UNSIGNED
3984 if (GET_MODE (offset_rtx) != Pmode)
3985 offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
3986 #else
3987 if (GET_MODE (offset_rtx) != ptr_mode)
3988 offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
3989 #endif
3991 /* A constant address in TO_RTX can have VOIDmode, we must not try
3992 to call force_reg for that case. Avoid that case. */
3993 if (MEM_P (to_rtx)
3994 && GET_MODE (to_rtx) == BLKmode
3995 && GET_MODE (XEXP (to_rtx, 0)) != VOIDmode
3996 && bitsize > 0
3997 && (bitpos % bitsize) == 0
3998 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
3999 && MEM_ALIGN (to_rtx) == GET_MODE_ALIGNMENT (mode1))
4001 to_rtx = adjust_address (to_rtx, mode1, bitpos / BITS_PER_UNIT);
4002 bitpos = 0;
4005 to_rtx = offset_address (to_rtx, offset_rtx,
4006 highest_pow2_factor_for_target (to,
4007 offset));
4010 /* Handle expand_expr of a complex value returning a CONCAT. */
4011 if (GET_CODE (to_rtx) == CONCAT)
4013 if (TREE_CODE (TREE_TYPE (from)) == COMPLEX_TYPE)
4015 gcc_assert (bitpos == 0);
4016 result = store_expr (from, to_rtx, false);
4018 else
4020 gcc_assert (bitpos == 0 || bitpos == GET_MODE_BITSIZE (mode1));
4021 result = store_expr (from, XEXP (to_rtx, bitpos != 0), false);
4024 else
4026 if (MEM_P (to_rtx))
4028 /* If the field is at offset zero, we could have been given the
4029 DECL_RTX of the parent struct. Don't munge it. */
4030 to_rtx = shallow_copy_rtx (to_rtx);
4032 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
4034 /* Deal with volatile and readonly fields. The former is only
4035 done for MEM. Also set MEM_KEEP_ALIAS_SET_P if needed. */
4036 if (volatilep)
4037 MEM_VOLATILE_P (to_rtx) = 1;
4038 if (component_uses_parent_alias_set (to))
4039 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
4042 if (optimize_bitfield_assignment_op (bitsize, bitpos, mode1,
4043 to_rtx, to, from))
4044 result = NULL;
4045 else
4046 result = store_field (to_rtx, bitsize, bitpos, mode1, from,
4047 TREE_TYPE (tem), get_alias_set (to));
4050 if (result)
4051 preserve_temp_slots (result);
4052 free_temp_slots ();
4053 pop_temp_slots ();
4054 return;
4057 /* If the rhs is a function call and its value is not an aggregate,
4058 call the function before we start to compute the lhs.
4059 This is needed for correct code for cases such as
4060 val = setjmp (buf) on machines where reference to val
4061 requires loading up part of an address in a separate insn.
4063 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
4064 since it might be a promoted variable where the zero- or sign- extension
4065 needs to be done. Handling this in the normal way is safe because no
4066 computation is done before the call. */
4067 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
4068 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
4069 && ! ((TREE_CODE (to) == VAR_DECL || TREE_CODE (to) == PARM_DECL)
4070 && REG_P (DECL_RTL (to))))
4072 rtx value;
4074 push_temp_slots ();
4075 value = expand_normal (from);
4076 if (to_rtx == 0)
4077 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4079 /* Handle calls that return values in multiple non-contiguous locations.
4080 The Irix 6 ABI has examples of this. */
4081 if (GET_CODE (to_rtx) == PARALLEL)
4082 emit_group_load (to_rtx, value, TREE_TYPE (from),
4083 int_size_in_bytes (TREE_TYPE (from)));
4084 else if (GET_MODE (to_rtx) == BLKmode)
4085 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
4086 else
4088 if (POINTER_TYPE_P (TREE_TYPE (to)))
4089 value = convert_memory_address (GET_MODE (to_rtx), value);
4090 emit_move_insn (to_rtx, value);
4092 preserve_temp_slots (to_rtx);
4093 free_temp_slots ();
4094 pop_temp_slots ();
4095 return;
4098 /* Ordinary treatment. Expand TO to get a REG or MEM rtx.
4099 Don't re-expand if it was expanded already (in COMPONENT_REF case). */
4101 if (to_rtx == 0)
4102 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4104 /* Don't move directly into a return register. */
4105 if (TREE_CODE (to) == RESULT_DECL
4106 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
4108 rtx temp;
4110 push_temp_slots ();
4111 temp = expand_expr (from, 0, GET_MODE (to_rtx), 0);
4113 if (GET_CODE (to_rtx) == PARALLEL)
4114 emit_group_load (to_rtx, temp, TREE_TYPE (from),
4115 int_size_in_bytes (TREE_TYPE (from)));
4116 else
4117 emit_move_insn (to_rtx, temp);
4119 preserve_temp_slots (to_rtx);
4120 free_temp_slots ();
4121 pop_temp_slots ();
4122 return;
4125 /* In case we are returning the contents of an object which overlaps
4126 the place the value is being stored, use a safe function when copying
4127 a value through a pointer into a structure value return block. */
4128 if (TREE_CODE (to) == RESULT_DECL && TREE_CODE (from) == INDIRECT_REF
4129 && current_function_returns_struct
4130 && !current_function_returns_pcc_struct)
4132 rtx from_rtx, size;
4134 push_temp_slots ();
4135 size = expr_size (from);
4136 from_rtx = expand_normal (from);
4138 emit_library_call (memmove_libfunc, LCT_NORMAL,
4139 VOIDmode, 3, XEXP (to_rtx, 0), Pmode,
4140 XEXP (from_rtx, 0), Pmode,
4141 convert_to_mode (TYPE_MODE (sizetype),
4142 size, TYPE_UNSIGNED (sizetype)),
4143 TYPE_MODE (sizetype));
4145 preserve_temp_slots (to_rtx);
4146 free_temp_slots ();
4147 pop_temp_slots ();
4148 return;
4151 /* Compute FROM and store the value in the rtx we got. */
4153 push_temp_slots ();
4154 result = store_expr (from, to_rtx, 0);
4155 preserve_temp_slots (result);
4156 free_temp_slots ();
4157 pop_temp_slots ();
4158 return;
4161 /* Generate code for computing expression EXP,
4162 and storing the value into TARGET.
4164 If the mode is BLKmode then we may return TARGET itself.
4165 It turns out that in BLKmode it doesn't cause a problem.
4166 because C has no operators that could combine two different
4167 assignments into the same BLKmode object with different values
4168 with no sequence point. Will other languages need this to
4169 be more thorough?
4171 If CALL_PARAM_P is nonzero, this is a store into a call param on the
4172 stack, and block moves may need to be treated specially. */
4175 store_expr (tree exp, rtx target, int call_param_p)
4177 rtx temp;
4178 rtx alt_rtl = NULL_RTX;
4179 int dont_return_target = 0;
4181 if (VOID_TYPE_P (TREE_TYPE (exp)))
4183 /* C++ can generate ?: expressions with a throw expression in one
4184 branch and an rvalue in the other. Here, we resolve attempts to
4185 store the throw expression's nonexistent result. */
4186 gcc_assert (!call_param_p);
4187 expand_expr (exp, const0_rtx, VOIDmode, 0);
4188 return NULL_RTX;
4190 if (TREE_CODE (exp) == COMPOUND_EXPR)
4192 /* Perform first part of compound expression, then assign from second
4193 part. */
4194 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
4195 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4196 return store_expr (TREE_OPERAND (exp, 1), target, call_param_p);
4198 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
4200 /* For conditional expression, get safe form of the target. Then
4201 test the condition, doing the appropriate assignment on either
4202 side. This avoids the creation of unnecessary temporaries.
4203 For non-BLKmode, it is more efficient not to do this. */
4205 rtx lab1 = gen_label_rtx (), lab2 = gen_label_rtx ();
4207 do_pending_stack_adjust ();
4208 NO_DEFER_POP;
4209 jumpifnot (TREE_OPERAND (exp, 0), lab1);
4210 store_expr (TREE_OPERAND (exp, 1), target, call_param_p);
4211 emit_jump_insn (gen_jump (lab2));
4212 emit_barrier ();
4213 emit_label (lab1);
4214 store_expr (TREE_OPERAND (exp, 2), target, call_param_p);
4215 emit_label (lab2);
4216 OK_DEFER_POP;
4218 return NULL_RTX;
4220 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
4221 /* If this is a scalar in a register that is stored in a wider mode
4222 than the declared mode, compute the result into its declared mode
4223 and then convert to the wider mode. Our value is the computed
4224 expression. */
4226 rtx inner_target = 0;
4228 /* We can do the conversion inside EXP, which will often result
4229 in some optimizations. Do the conversion in two steps: first
4230 change the signedness, if needed, then the extend. But don't
4231 do this if the type of EXP is a subtype of something else
4232 since then the conversion might involve more than just
4233 converting modes. */
4234 if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
4235 && TREE_TYPE (TREE_TYPE (exp)) == 0
4236 && (!lang_hooks.reduce_bit_field_operations
4237 || (GET_MODE_PRECISION (GET_MODE (target))
4238 == TYPE_PRECISION (TREE_TYPE (exp)))))
4240 if (TYPE_UNSIGNED (TREE_TYPE (exp))
4241 != SUBREG_PROMOTED_UNSIGNED_P (target))
4242 exp = convert
4243 (lang_hooks.types.signed_or_unsigned_type
4244 (SUBREG_PROMOTED_UNSIGNED_P (target), TREE_TYPE (exp)), exp);
4246 exp = convert (lang_hooks.types.type_for_mode
4247 (GET_MODE (SUBREG_REG (target)),
4248 SUBREG_PROMOTED_UNSIGNED_P (target)),
4249 exp);
4251 inner_target = SUBREG_REG (target);
4254 temp = expand_expr (exp, inner_target, VOIDmode,
4255 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4257 /* If TEMP is a VOIDmode constant, use convert_modes to make
4258 sure that we properly convert it. */
4259 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
4261 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4262 temp, SUBREG_PROMOTED_UNSIGNED_P (target));
4263 temp = convert_modes (GET_MODE (SUBREG_REG (target)),
4264 GET_MODE (target), temp,
4265 SUBREG_PROMOTED_UNSIGNED_P (target));
4268 convert_move (SUBREG_REG (target), temp,
4269 SUBREG_PROMOTED_UNSIGNED_P (target));
4271 return NULL_RTX;
4273 else
4275 temp = expand_expr_real (exp, target, GET_MODE (target),
4276 (call_param_p
4277 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
4278 &alt_rtl);
4279 /* Return TARGET if it's a specified hardware register.
4280 If TARGET is a volatile mem ref, either return TARGET
4281 or return a reg copied *from* TARGET; ANSI requires this.
4283 Otherwise, if TEMP is not TARGET, return TEMP
4284 if it is constant (for efficiency),
4285 or if we really want the correct value. */
4286 if (!(target && REG_P (target)
4287 && REGNO (target) < FIRST_PSEUDO_REGISTER)
4288 && !(MEM_P (target) && MEM_VOLATILE_P (target))
4289 && ! rtx_equal_p (temp, target)
4290 && CONSTANT_P (temp))
4291 dont_return_target = 1;
4294 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
4295 the same as that of TARGET, adjust the constant. This is needed, for
4296 example, in case it is a CONST_DOUBLE and we want only a word-sized
4297 value. */
4298 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
4299 && TREE_CODE (exp) != ERROR_MARK
4300 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
4301 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4302 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
4304 /* If value was not generated in the target, store it there.
4305 Convert the value to TARGET's type first if necessary and emit the
4306 pending incrementations that have been queued when expanding EXP.
4307 Note that we cannot emit the whole queue blindly because this will
4308 effectively disable the POST_INC optimization later.
4310 If TEMP and TARGET compare equal according to rtx_equal_p, but
4311 one or both of them are volatile memory refs, we have to distinguish
4312 two cases:
4313 - expand_expr has used TARGET. In this case, we must not generate
4314 another copy. This can be detected by TARGET being equal according
4315 to == .
4316 - expand_expr has not used TARGET - that means that the source just
4317 happens to have the same RTX form. Since temp will have been created
4318 by expand_expr, it will compare unequal according to == .
4319 We must generate a copy in this case, to reach the correct number
4320 of volatile memory references. */
4322 if ((! rtx_equal_p (temp, target)
4323 || (temp != target && (side_effects_p (temp)
4324 || side_effects_p (target))))
4325 && TREE_CODE (exp) != ERROR_MARK
4326 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
4327 but TARGET is not valid memory reference, TEMP will differ
4328 from TARGET although it is really the same location. */
4329 && !(alt_rtl && rtx_equal_p (alt_rtl, target))
4330 /* If there's nothing to copy, don't bother. Don't call
4331 expr_size unless necessary, because some front-ends (C++)
4332 expr_size-hook must not be given objects that are not
4333 supposed to be bit-copied or bit-initialized. */
4334 && expr_size (exp) != const0_rtx)
4336 if (GET_MODE (temp) != GET_MODE (target)
4337 && GET_MODE (temp) != VOIDmode)
4339 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
4340 if (dont_return_target)
4342 /* In this case, we will return TEMP,
4343 so make sure it has the proper mode.
4344 But don't forget to store the value into TARGET. */
4345 temp = convert_to_mode (GET_MODE (target), temp, unsignedp);
4346 emit_move_insn (target, temp);
4348 else
4349 convert_move (target, temp, unsignedp);
4352 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
4354 /* Handle copying a string constant into an array. The string
4355 constant may be shorter than the array. So copy just the string's
4356 actual length, and clear the rest. First get the size of the data
4357 type of the string, which is actually the size of the target. */
4358 rtx size = expr_size (exp);
4360 if (GET_CODE (size) == CONST_INT
4361 && INTVAL (size) < TREE_STRING_LENGTH (exp))
4362 emit_block_move (target, temp, size,
4363 (call_param_p
4364 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4365 else
4367 /* Compute the size of the data to copy from the string. */
4368 tree copy_size
4369 = size_binop (MIN_EXPR,
4370 make_tree (sizetype, size),
4371 size_int (TREE_STRING_LENGTH (exp)));
4372 rtx copy_size_rtx
4373 = expand_expr (copy_size, NULL_RTX, VOIDmode,
4374 (call_param_p
4375 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
4376 rtx label = 0;
4378 /* Copy that much. */
4379 copy_size_rtx = convert_to_mode (ptr_mode, copy_size_rtx,
4380 TYPE_UNSIGNED (sizetype));
4381 emit_block_move (target, temp, copy_size_rtx,
4382 (call_param_p
4383 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4385 /* Figure out how much is left in TARGET that we have to clear.
4386 Do all calculations in ptr_mode. */
4387 if (GET_CODE (copy_size_rtx) == CONST_INT)
4389 size = plus_constant (size, -INTVAL (copy_size_rtx));
4390 target = adjust_address (target, BLKmode,
4391 INTVAL (copy_size_rtx));
4393 else
4395 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
4396 copy_size_rtx, NULL_RTX, 0,
4397 OPTAB_LIB_WIDEN);
4399 #ifdef POINTERS_EXTEND_UNSIGNED
4400 if (GET_MODE (copy_size_rtx) != Pmode)
4401 copy_size_rtx = convert_to_mode (Pmode, copy_size_rtx,
4402 TYPE_UNSIGNED (sizetype));
4403 #endif
4405 target = offset_address (target, copy_size_rtx,
4406 highest_pow2_factor (copy_size));
4407 label = gen_label_rtx ();
4408 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
4409 GET_MODE (size), 0, label);
4412 if (size != const0_rtx)
4413 clear_storage (target, size, BLOCK_OP_NORMAL);
4415 if (label)
4416 emit_label (label);
4419 /* Handle calls that return values in multiple non-contiguous locations.
4420 The Irix 6 ABI has examples of this. */
4421 else if (GET_CODE (target) == PARALLEL)
4422 emit_group_load (target, temp, TREE_TYPE (exp),
4423 int_size_in_bytes (TREE_TYPE (exp)));
4424 else if (GET_MODE (temp) == BLKmode)
4425 emit_block_move (target, temp, expr_size (exp),
4426 (call_param_p
4427 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4428 else
4430 temp = force_operand (temp, target);
4431 if (temp != target)
4432 emit_move_insn (target, temp);
4436 return NULL_RTX;
4439 /* Examine CTOR to discover:
4440 * how many scalar fields are set to nonzero values,
4441 and place it in *P_NZ_ELTS;
4442 * how many scalar fields are set to non-constant values,
4443 and place it in *P_NC_ELTS; and
4444 * how many scalar fields in total are in CTOR,
4445 and place it in *P_ELT_COUNT.
4446 * if a type is a union, and the initializer from the constructor
4447 is not the largest element in the union, then set *p_must_clear. */
4449 static void
4450 categorize_ctor_elements_1 (tree ctor, HOST_WIDE_INT *p_nz_elts,
4451 HOST_WIDE_INT *p_nc_elts,
4452 HOST_WIDE_INT *p_elt_count,
4453 bool *p_must_clear)
4455 unsigned HOST_WIDE_INT idx;
4456 HOST_WIDE_INT nz_elts, nc_elts, elt_count;
4457 tree value, purpose;
4459 nz_elts = 0;
4460 nc_elts = 0;
4461 elt_count = 0;
4463 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
4465 HOST_WIDE_INT mult;
4467 mult = 1;
4468 if (TREE_CODE (purpose) == RANGE_EXPR)
4470 tree lo_index = TREE_OPERAND (purpose, 0);
4471 tree hi_index = TREE_OPERAND (purpose, 1);
4473 if (host_integerp (lo_index, 1) && host_integerp (hi_index, 1))
4474 mult = (tree_low_cst (hi_index, 1)
4475 - tree_low_cst (lo_index, 1) + 1);
4478 switch (TREE_CODE (value))
4480 case CONSTRUCTOR:
4482 HOST_WIDE_INT nz = 0, nc = 0, ic = 0;
4483 categorize_ctor_elements_1 (value, &nz, &nc, &ic, p_must_clear);
4484 nz_elts += mult * nz;
4485 nc_elts += mult * nc;
4486 elt_count += mult * ic;
4488 break;
4490 case INTEGER_CST:
4491 case REAL_CST:
4492 if (!initializer_zerop (value))
4493 nz_elts += mult;
4494 elt_count += mult;
4495 break;
4497 case STRING_CST:
4498 nz_elts += mult * TREE_STRING_LENGTH (value);
4499 elt_count += mult * TREE_STRING_LENGTH (value);
4500 break;
4502 case COMPLEX_CST:
4503 if (!initializer_zerop (TREE_REALPART (value)))
4504 nz_elts += mult;
4505 if (!initializer_zerop (TREE_IMAGPART (value)))
4506 nz_elts += mult;
4507 elt_count += mult;
4508 break;
4510 case VECTOR_CST:
4512 tree v;
4513 for (v = TREE_VECTOR_CST_ELTS (value); v; v = TREE_CHAIN (v))
4515 if (!initializer_zerop (TREE_VALUE (v)))
4516 nz_elts += mult;
4517 elt_count += mult;
4520 break;
4522 default:
4523 nz_elts += mult;
4524 elt_count += mult;
4525 if (!initializer_constant_valid_p (value, TREE_TYPE (value)))
4526 nc_elts += mult;
4527 break;
4531 if (!*p_must_clear
4532 && (TREE_CODE (TREE_TYPE (ctor)) == UNION_TYPE
4533 || TREE_CODE (TREE_TYPE (ctor)) == QUAL_UNION_TYPE))
4535 tree init_sub_type;
4536 bool clear_this = true;
4538 if (!VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (ctor)))
4540 /* We don't expect more than one element of the union to be
4541 initialized. Not sure what we should do otherwise... */
4542 gcc_assert (VEC_length (constructor_elt, CONSTRUCTOR_ELTS (ctor))
4543 == 1);
4545 init_sub_type = TREE_TYPE (VEC_index (constructor_elt,
4546 CONSTRUCTOR_ELTS (ctor),
4547 0)->value);
4549 /* ??? We could look at each element of the union, and find the
4550 largest element. Which would avoid comparing the size of the
4551 initialized element against any tail padding in the union.
4552 Doesn't seem worth the effort... */
4553 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (ctor)),
4554 TYPE_SIZE (init_sub_type)) == 1)
4556 /* And now we have to find out if the element itself is fully
4557 constructed. E.g. for union { struct { int a, b; } s; } u
4558 = { .s = { .a = 1 } }. */
4559 if (elt_count == count_type_elements (init_sub_type, false))
4560 clear_this = false;
4564 *p_must_clear = clear_this;
4567 *p_nz_elts += nz_elts;
4568 *p_nc_elts += nc_elts;
4569 *p_elt_count += elt_count;
4572 void
4573 categorize_ctor_elements (tree ctor, HOST_WIDE_INT *p_nz_elts,
4574 HOST_WIDE_INT *p_nc_elts,
4575 HOST_WIDE_INT *p_elt_count,
4576 bool *p_must_clear)
4578 *p_nz_elts = 0;
4579 *p_nc_elts = 0;
4580 *p_elt_count = 0;
4581 *p_must_clear = false;
4582 categorize_ctor_elements_1 (ctor, p_nz_elts, p_nc_elts, p_elt_count,
4583 p_must_clear);
4586 /* Count the number of scalars in TYPE. Return -1 on overflow or
4587 variable-sized. If ALLOW_FLEXARR is true, don't count flexible
4588 array member at the end of the structure. */
4590 HOST_WIDE_INT
4591 count_type_elements (tree type, bool allow_flexarr)
4593 const HOST_WIDE_INT max = ~((HOST_WIDE_INT)1 << (HOST_BITS_PER_WIDE_INT-1));
4594 switch (TREE_CODE (type))
4596 case ARRAY_TYPE:
4598 tree telts = array_type_nelts (type);
4599 if (telts && host_integerp (telts, 1))
4601 HOST_WIDE_INT n = tree_low_cst (telts, 1) + 1;
4602 HOST_WIDE_INT m = count_type_elements (TREE_TYPE (type), false);
4603 if (n == 0)
4604 return 0;
4605 else if (max / n > m)
4606 return n * m;
4608 return -1;
4611 case RECORD_TYPE:
4613 HOST_WIDE_INT n = 0, t;
4614 tree f;
4616 for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
4617 if (TREE_CODE (f) == FIELD_DECL)
4619 t = count_type_elements (TREE_TYPE (f), false);
4620 if (t < 0)
4622 /* Check for structures with flexible array member. */
4623 tree tf = TREE_TYPE (f);
4624 if (allow_flexarr
4625 && TREE_CHAIN (f) == NULL
4626 && TREE_CODE (tf) == ARRAY_TYPE
4627 && TYPE_DOMAIN (tf)
4628 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
4629 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
4630 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
4631 && int_size_in_bytes (type) >= 0)
4632 break;
4634 return -1;
4636 n += t;
4639 return n;
4642 case UNION_TYPE:
4643 case QUAL_UNION_TYPE:
4645 /* Ho hum. How in the world do we guess here? Clearly it isn't
4646 right to count the fields. Guess based on the number of words. */
4647 HOST_WIDE_INT n = int_size_in_bytes (type);
4648 if (n < 0)
4649 return -1;
4650 return n / UNITS_PER_WORD;
4653 case COMPLEX_TYPE:
4654 return 2;
4656 case VECTOR_TYPE:
4657 return TYPE_VECTOR_SUBPARTS (type);
4659 case INTEGER_TYPE:
4660 case REAL_TYPE:
4661 case ENUMERAL_TYPE:
4662 case BOOLEAN_TYPE:
4663 case POINTER_TYPE:
4664 case OFFSET_TYPE:
4665 case REFERENCE_TYPE:
4666 return 1;
4668 case VOID_TYPE:
4669 case METHOD_TYPE:
4670 case FUNCTION_TYPE:
4671 case LANG_TYPE:
4672 default:
4673 gcc_unreachable ();
4677 /* Return 1 if EXP contains mostly (3/4) zeros. */
4679 static int
4680 mostly_zeros_p (tree exp)
4682 if (TREE_CODE (exp) == CONSTRUCTOR)
4685 HOST_WIDE_INT nz_elts, nc_elts, count, elts;
4686 bool must_clear;
4688 categorize_ctor_elements (exp, &nz_elts, &nc_elts, &count, &must_clear);
4689 if (must_clear)
4690 return 1;
4692 elts = count_type_elements (TREE_TYPE (exp), false);
4694 return nz_elts < elts / 4;
4697 return initializer_zerop (exp);
4700 /* Return 1 if EXP contains all zeros. */
4702 static int
4703 all_zeros_p (tree exp)
4705 if (TREE_CODE (exp) == CONSTRUCTOR)
4708 HOST_WIDE_INT nz_elts, nc_elts, count;
4709 bool must_clear;
4711 categorize_ctor_elements (exp, &nz_elts, &nc_elts, &count, &must_clear);
4712 return nz_elts == 0;
4715 return initializer_zerop (exp);
4718 /* Helper function for store_constructor.
4719 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
4720 TYPE is the type of the CONSTRUCTOR, not the element type.
4721 CLEARED is as for store_constructor.
4722 ALIAS_SET is the alias set to use for any stores.
4724 This provides a recursive shortcut back to store_constructor when it isn't
4725 necessary to go through store_field. This is so that we can pass through
4726 the cleared field to let store_constructor know that we may not have to
4727 clear a substructure if the outer structure has already been cleared. */
4729 static void
4730 store_constructor_field (rtx target, unsigned HOST_WIDE_INT bitsize,
4731 HOST_WIDE_INT bitpos, enum machine_mode mode,
4732 tree exp, tree type, int cleared, int alias_set)
4734 if (TREE_CODE (exp) == CONSTRUCTOR
4735 /* We can only call store_constructor recursively if the size and
4736 bit position are on a byte boundary. */
4737 && bitpos % BITS_PER_UNIT == 0
4738 && (bitsize > 0 && bitsize % BITS_PER_UNIT == 0)
4739 /* If we have a nonzero bitpos for a register target, then we just
4740 let store_field do the bitfield handling. This is unlikely to
4741 generate unnecessary clear instructions anyways. */
4742 && (bitpos == 0 || MEM_P (target)))
4744 if (MEM_P (target))
4745 target
4746 = adjust_address (target,
4747 GET_MODE (target) == BLKmode
4748 || 0 != (bitpos
4749 % GET_MODE_ALIGNMENT (GET_MODE (target)))
4750 ? BLKmode : VOIDmode, bitpos / BITS_PER_UNIT);
4753 /* Update the alias set, if required. */
4754 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
4755 && MEM_ALIAS_SET (target) != 0)
4757 target = copy_rtx (target);
4758 set_mem_alias_set (target, alias_set);
4761 store_constructor (exp, target, cleared, bitsize / BITS_PER_UNIT);
4763 else
4764 store_field (target, bitsize, bitpos, mode, exp, type, alias_set);
4767 /* Store the value of constructor EXP into the rtx TARGET.
4768 TARGET is either a REG or a MEM; we know it cannot conflict, since
4769 safe_from_p has been called.
4770 CLEARED is true if TARGET is known to have been zero'd.
4771 SIZE is the number of bytes of TARGET we are allowed to modify: this
4772 may not be the same as the size of EXP if we are assigning to a field
4773 which has been packed to exclude padding bits. */
4775 static void
4776 store_constructor (tree exp, rtx target, int cleared, HOST_WIDE_INT size)
4778 tree type = TREE_TYPE (exp);
4779 #ifdef WORD_REGISTER_OPERATIONS
4780 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
4781 #endif
4783 switch (TREE_CODE (type))
4785 case RECORD_TYPE:
4786 case UNION_TYPE:
4787 case QUAL_UNION_TYPE:
4789 unsigned HOST_WIDE_INT idx;
4790 tree field, value;
4792 /* If size is zero or the target is already cleared, do nothing. */
4793 if (size == 0 || cleared)
4794 cleared = 1;
4795 /* We either clear the aggregate or indicate the value is dead. */
4796 else if ((TREE_CODE (type) == UNION_TYPE
4797 || TREE_CODE (type) == QUAL_UNION_TYPE)
4798 && ! CONSTRUCTOR_ELTS (exp))
4799 /* If the constructor is empty, clear the union. */
4801 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
4802 cleared = 1;
4805 /* If we are building a static constructor into a register,
4806 set the initial value as zero so we can fold the value into
4807 a constant. But if more than one register is involved,
4808 this probably loses. */
4809 else if (REG_P (target) && TREE_STATIC (exp)
4810 && GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD)
4812 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
4813 cleared = 1;
4816 /* If the constructor has fewer fields than the structure or
4817 if we are initializing the structure to mostly zeros, clear
4818 the whole structure first. Don't do this if TARGET is a
4819 register whose mode size isn't equal to SIZE since
4820 clear_storage can't handle this case. */
4821 else if (size > 0
4822 && (((int)VEC_length (constructor_elt, CONSTRUCTOR_ELTS (exp))
4823 != fields_length (type))
4824 || mostly_zeros_p (exp))
4825 && (!REG_P (target)
4826 || ((HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (target))
4827 == size)))
4829 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
4830 cleared = 1;
4833 if (! cleared)
4834 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
4836 /* Store each element of the constructor into the
4837 corresponding field of TARGET. */
4838 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
4840 enum machine_mode mode;
4841 HOST_WIDE_INT bitsize;
4842 HOST_WIDE_INT bitpos = 0;
4843 tree offset;
4844 rtx to_rtx = target;
4846 /* Just ignore missing fields. We cleared the whole
4847 structure, above, if any fields are missing. */
4848 if (field == 0)
4849 continue;
4851 if (cleared && initializer_zerop (value))
4852 continue;
4854 if (host_integerp (DECL_SIZE (field), 1))
4855 bitsize = tree_low_cst (DECL_SIZE (field), 1);
4856 else
4857 bitsize = -1;
4859 mode = DECL_MODE (field);
4860 if (DECL_BIT_FIELD (field))
4861 mode = VOIDmode;
4863 offset = DECL_FIELD_OFFSET (field);
4864 if (host_integerp (offset, 0)
4865 && host_integerp (bit_position (field), 0))
4867 bitpos = int_bit_position (field);
4868 offset = 0;
4870 else
4871 bitpos = tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 0);
4873 if (offset)
4875 rtx offset_rtx;
4877 offset
4878 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset,
4879 make_tree (TREE_TYPE (exp),
4880 target));
4882 offset_rtx = expand_normal (offset);
4883 gcc_assert (MEM_P (to_rtx));
4885 #ifdef POINTERS_EXTEND_UNSIGNED
4886 if (GET_MODE (offset_rtx) != Pmode)
4887 offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
4888 #else
4889 if (GET_MODE (offset_rtx) != ptr_mode)
4890 offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
4891 #endif
4893 to_rtx = offset_address (to_rtx, offset_rtx,
4894 highest_pow2_factor (offset));
4897 #ifdef WORD_REGISTER_OPERATIONS
4898 /* If this initializes a field that is smaller than a
4899 word, at the start of a word, try to widen it to a full
4900 word. This special case allows us to output C++ member
4901 function initializations in a form that the optimizers
4902 can understand. */
4903 if (REG_P (target)
4904 && bitsize < BITS_PER_WORD
4905 && bitpos % BITS_PER_WORD == 0
4906 && GET_MODE_CLASS (mode) == MODE_INT
4907 && TREE_CODE (value) == INTEGER_CST
4908 && exp_size >= 0
4909 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
4911 tree type = TREE_TYPE (value);
4913 if (TYPE_PRECISION (type) < BITS_PER_WORD)
4915 type = lang_hooks.types.type_for_size
4916 (BITS_PER_WORD, TYPE_UNSIGNED (type));
4917 value = convert (type, value);
4920 if (BYTES_BIG_ENDIAN)
4921 value
4922 = fold_build2 (LSHIFT_EXPR, type, value,
4923 build_int_cst (NULL_TREE,
4924 BITS_PER_WORD - bitsize));
4925 bitsize = BITS_PER_WORD;
4926 mode = word_mode;
4928 #endif
4930 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
4931 && DECL_NONADDRESSABLE_P (field))
4933 to_rtx = copy_rtx (to_rtx);
4934 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
4937 store_constructor_field (to_rtx, bitsize, bitpos, mode,
4938 value, type, cleared,
4939 get_alias_set (TREE_TYPE (field)));
4941 break;
4943 case ARRAY_TYPE:
4945 tree value, index;
4946 unsigned HOST_WIDE_INT i;
4947 int need_to_clear;
4948 tree domain;
4949 tree elttype = TREE_TYPE (type);
4950 int const_bounds_p;
4951 HOST_WIDE_INT minelt = 0;
4952 HOST_WIDE_INT maxelt = 0;
4954 domain = TYPE_DOMAIN (type);
4955 const_bounds_p = (TYPE_MIN_VALUE (domain)
4956 && TYPE_MAX_VALUE (domain)
4957 && host_integerp (TYPE_MIN_VALUE (domain), 0)
4958 && host_integerp (TYPE_MAX_VALUE (domain), 0));
4960 /* If we have constant bounds for the range of the type, get them. */
4961 if (const_bounds_p)
4963 minelt = tree_low_cst (TYPE_MIN_VALUE (domain), 0);
4964 maxelt = tree_low_cst (TYPE_MAX_VALUE (domain), 0);
4967 /* If the constructor has fewer elements than the array, clear
4968 the whole array first. Similarly if this is static
4969 constructor of a non-BLKmode object. */
4970 if (cleared)
4971 need_to_clear = 0;
4972 else if (REG_P (target) && TREE_STATIC (exp))
4973 need_to_clear = 1;
4974 else
4976 unsigned HOST_WIDE_INT idx;
4977 tree index, value;
4978 HOST_WIDE_INT count = 0, zero_count = 0;
4979 need_to_clear = ! const_bounds_p;
4981 /* This loop is a more accurate version of the loop in
4982 mostly_zeros_p (it handles RANGE_EXPR in an index). It
4983 is also needed to check for missing elements. */
4984 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
4986 HOST_WIDE_INT this_node_count;
4988 if (need_to_clear)
4989 break;
4991 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
4993 tree lo_index = TREE_OPERAND (index, 0);
4994 tree hi_index = TREE_OPERAND (index, 1);
4996 if (! host_integerp (lo_index, 1)
4997 || ! host_integerp (hi_index, 1))
4999 need_to_clear = 1;
5000 break;
5003 this_node_count = (tree_low_cst (hi_index, 1)
5004 - tree_low_cst (lo_index, 1) + 1);
5006 else
5007 this_node_count = 1;
5009 count += this_node_count;
5010 if (mostly_zeros_p (value))
5011 zero_count += this_node_count;
5014 /* Clear the entire array first if there are any missing
5015 elements, or if the incidence of zero elements is >=
5016 75%. */
5017 if (! need_to_clear
5018 && (count < maxelt - minelt + 1
5019 || 4 * zero_count >= 3 * count))
5020 need_to_clear = 1;
5023 if (need_to_clear && size > 0)
5025 if (REG_P (target))
5026 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5027 else
5028 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5029 cleared = 1;
5032 if (!cleared && REG_P (target))
5033 /* Inform later passes that the old value is dead. */
5034 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
5036 /* Store each element of the constructor into the
5037 corresponding element of TARGET, determined by counting the
5038 elements. */
5039 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
5041 enum machine_mode mode;
5042 HOST_WIDE_INT bitsize;
5043 HOST_WIDE_INT bitpos;
5044 int unsignedp;
5045 rtx xtarget = target;
5047 if (cleared && initializer_zerop (value))
5048 continue;
5050 unsignedp = TYPE_UNSIGNED (elttype);
5051 mode = TYPE_MODE (elttype);
5052 if (mode == BLKmode)
5053 bitsize = (host_integerp (TYPE_SIZE (elttype), 1)
5054 ? tree_low_cst (TYPE_SIZE (elttype), 1)
5055 : -1);
5056 else
5057 bitsize = GET_MODE_BITSIZE (mode);
5059 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5061 tree lo_index = TREE_OPERAND (index, 0);
5062 tree hi_index = TREE_OPERAND (index, 1);
5063 rtx index_r, pos_rtx;
5064 HOST_WIDE_INT lo, hi, count;
5065 tree position;
5067 /* If the range is constant and "small", unroll the loop. */
5068 if (const_bounds_p
5069 && host_integerp (lo_index, 0)
5070 && host_integerp (hi_index, 0)
5071 && (lo = tree_low_cst (lo_index, 0),
5072 hi = tree_low_cst (hi_index, 0),
5073 count = hi - lo + 1,
5074 (!MEM_P (target)
5075 || count <= 2
5076 || (host_integerp (TYPE_SIZE (elttype), 1)
5077 && (tree_low_cst (TYPE_SIZE (elttype), 1) * count
5078 <= 40 * 8)))))
5080 lo -= minelt; hi -= minelt;
5081 for (; lo <= hi; lo++)
5083 bitpos = lo * tree_low_cst (TYPE_SIZE (elttype), 0);
5085 if (MEM_P (target)
5086 && !MEM_KEEP_ALIAS_SET_P (target)
5087 && TREE_CODE (type) == ARRAY_TYPE
5088 && TYPE_NONALIASED_COMPONENT (type))
5090 target = copy_rtx (target);
5091 MEM_KEEP_ALIAS_SET_P (target) = 1;
5094 store_constructor_field
5095 (target, bitsize, bitpos, mode, value, type, cleared,
5096 get_alias_set (elttype));
5099 else
5101 rtx loop_start = gen_label_rtx ();
5102 rtx loop_end = gen_label_rtx ();
5103 tree exit_cond;
5105 expand_normal (hi_index);
5106 unsignedp = TYPE_UNSIGNED (domain);
5108 index = build_decl (VAR_DECL, NULL_TREE, domain);
5110 index_r
5111 = gen_reg_rtx (promote_mode (domain, DECL_MODE (index),
5112 &unsignedp, 0));
5113 SET_DECL_RTL (index, index_r);
5114 store_expr (lo_index, index_r, 0);
5116 /* Build the head of the loop. */
5117 do_pending_stack_adjust ();
5118 emit_label (loop_start);
5120 /* Assign value to element index. */
5121 position
5122 = convert (ssizetype,
5123 fold_build2 (MINUS_EXPR, TREE_TYPE (index),
5124 index, TYPE_MIN_VALUE (domain)));
5125 position = size_binop (MULT_EXPR, position,
5126 convert (ssizetype,
5127 TYPE_SIZE_UNIT (elttype)));
5129 pos_rtx = expand_normal (position);
5130 xtarget = offset_address (target, pos_rtx,
5131 highest_pow2_factor (position));
5132 xtarget = adjust_address (xtarget, mode, 0);
5133 if (TREE_CODE (value) == CONSTRUCTOR)
5134 store_constructor (value, xtarget, cleared,
5135 bitsize / BITS_PER_UNIT);
5136 else
5137 store_expr (value, xtarget, 0);
5139 /* Generate a conditional jump to exit the loop. */
5140 exit_cond = build2 (LT_EXPR, integer_type_node,
5141 index, hi_index);
5142 jumpif (exit_cond, loop_end);
5144 /* Update the loop counter, and jump to the head of
5145 the loop. */
5146 expand_assignment (index,
5147 build2 (PLUS_EXPR, TREE_TYPE (index),
5148 index, integer_one_node));
5150 emit_jump (loop_start);
5152 /* Build the end of the loop. */
5153 emit_label (loop_end);
5156 else if ((index != 0 && ! host_integerp (index, 0))
5157 || ! host_integerp (TYPE_SIZE (elttype), 1))
5159 tree position;
5161 if (index == 0)
5162 index = ssize_int (1);
5164 if (minelt)
5165 index = fold_convert (ssizetype,
5166 fold_build2 (MINUS_EXPR,
5167 TREE_TYPE (index),
5168 index,
5169 TYPE_MIN_VALUE (domain)));
5171 position = size_binop (MULT_EXPR, index,
5172 convert (ssizetype,
5173 TYPE_SIZE_UNIT (elttype)));
5174 xtarget = offset_address (target,
5175 expand_normal (position),
5176 highest_pow2_factor (position));
5177 xtarget = adjust_address (xtarget, mode, 0);
5178 store_expr (value, xtarget, 0);
5180 else
5182 if (index != 0)
5183 bitpos = ((tree_low_cst (index, 0) - minelt)
5184 * tree_low_cst (TYPE_SIZE (elttype), 1));
5185 else
5186 bitpos = (i * tree_low_cst (TYPE_SIZE (elttype), 1));
5188 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
5189 && TREE_CODE (type) == ARRAY_TYPE
5190 && TYPE_NONALIASED_COMPONENT (type))
5192 target = copy_rtx (target);
5193 MEM_KEEP_ALIAS_SET_P (target) = 1;
5195 store_constructor_field (target, bitsize, bitpos, mode, value,
5196 type, cleared, get_alias_set (elttype));
5199 break;
5202 case VECTOR_TYPE:
5204 unsigned HOST_WIDE_INT idx;
5205 constructor_elt *ce;
5206 int i;
5207 int need_to_clear;
5208 int icode = 0;
5209 tree elttype = TREE_TYPE (type);
5210 int elt_size = tree_low_cst (TYPE_SIZE (elttype), 1);
5211 enum machine_mode eltmode = TYPE_MODE (elttype);
5212 HOST_WIDE_INT bitsize;
5213 HOST_WIDE_INT bitpos;
5214 rtvec vector = NULL;
5215 unsigned n_elts;
5217 gcc_assert (eltmode != BLKmode);
5219 n_elts = TYPE_VECTOR_SUBPARTS (type);
5220 if (REG_P (target) && VECTOR_MODE_P (GET_MODE (target)))
5222 enum machine_mode mode = GET_MODE (target);
5224 icode = (int) vec_init_optab->handlers[mode].insn_code;
5225 if (icode != CODE_FOR_nothing)
5227 unsigned int i;
5229 vector = rtvec_alloc (n_elts);
5230 for (i = 0; i < n_elts; i++)
5231 RTVEC_ELT (vector, i) = CONST0_RTX (GET_MODE_INNER (mode));
5235 /* If the constructor has fewer elements than the vector,
5236 clear the whole array first. Similarly if this is static
5237 constructor of a non-BLKmode object. */
5238 if (cleared)
5239 need_to_clear = 0;
5240 else if (REG_P (target) && TREE_STATIC (exp))
5241 need_to_clear = 1;
5242 else
5244 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
5245 tree value;
5247 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
5249 int n_elts_here = tree_low_cst
5250 (int_const_binop (TRUNC_DIV_EXPR,
5251 TYPE_SIZE (TREE_TYPE (value)),
5252 TYPE_SIZE (elttype), 0), 1);
5254 count += n_elts_here;
5255 if (mostly_zeros_p (value))
5256 zero_count += n_elts_here;
5259 /* Clear the entire vector first if there are any missing elements,
5260 or if the incidence of zero elements is >= 75%. */
5261 need_to_clear = (count < n_elts || 4 * zero_count >= 3 * count);
5264 if (need_to_clear && size > 0 && !vector)
5266 if (REG_P (target))
5267 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5268 else
5269 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5270 cleared = 1;
5273 /* Inform later passes that the old value is dead. */
5274 if (!cleared && REG_P (target))
5275 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5277 /* Store each element of the constructor into the corresponding
5278 element of TARGET, determined by counting the elements. */
5279 for (idx = 0, i = 0;
5280 VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
5281 idx++, i += bitsize / elt_size)
5283 HOST_WIDE_INT eltpos;
5284 tree value = ce->value;
5286 bitsize = tree_low_cst (TYPE_SIZE (TREE_TYPE (value)), 1);
5287 if (cleared && initializer_zerop (value))
5288 continue;
5290 if (ce->index)
5291 eltpos = tree_low_cst (ce->index, 1);
5292 else
5293 eltpos = i;
5295 if (vector)
5297 /* Vector CONSTRUCTORs should only be built from smaller
5298 vectors in the case of BLKmode vectors. */
5299 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
5300 RTVEC_ELT (vector, eltpos)
5301 = expand_normal (value);
5303 else
5305 enum machine_mode value_mode =
5306 TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
5307 ? TYPE_MODE (TREE_TYPE (value))
5308 : eltmode;
5309 bitpos = eltpos * elt_size;
5310 store_constructor_field (target, bitsize, bitpos,
5311 value_mode, value, type,
5312 cleared, get_alias_set (elttype));
5316 if (vector)
5317 emit_insn (GEN_FCN (icode)
5318 (target,
5319 gen_rtx_PARALLEL (GET_MODE (target), vector)));
5320 break;
5323 default:
5324 gcc_unreachable ();
5328 /* Store the value of EXP (an expression tree)
5329 into a subfield of TARGET which has mode MODE and occupies
5330 BITSIZE bits, starting BITPOS bits from the start of TARGET.
5331 If MODE is VOIDmode, it means that we are storing into a bit-field.
5333 Always return const0_rtx unless we have something particular to
5334 return.
5336 TYPE is the type of the underlying object,
5338 ALIAS_SET is the alias set for the destination. This value will
5339 (in general) be different from that for TARGET, since TARGET is a
5340 reference to the containing structure. */
5342 static rtx
5343 store_field (rtx target, HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
5344 enum machine_mode mode, tree exp, tree type, int alias_set)
5346 HOST_WIDE_INT width_mask = 0;
5348 if (TREE_CODE (exp) == ERROR_MARK)
5349 return const0_rtx;
5351 /* If we have nothing to store, do nothing unless the expression has
5352 side-effects. */
5353 if (bitsize == 0)
5354 return expand_expr (exp, const0_rtx, VOIDmode, 0);
5355 else if (bitsize >= 0 && bitsize < HOST_BITS_PER_WIDE_INT)
5356 width_mask = ((HOST_WIDE_INT) 1 << bitsize) - 1;
5358 /* If we are storing into an unaligned field of an aligned union that is
5359 in a register, we may have the mode of TARGET being an integer mode but
5360 MODE == BLKmode. In that case, get an aligned object whose size and
5361 alignment are the same as TARGET and store TARGET into it (we can avoid
5362 the store if the field being stored is the entire width of TARGET). Then
5363 call ourselves recursively to store the field into a BLKmode version of
5364 that object. Finally, load from the object into TARGET. This is not
5365 very efficient in general, but should only be slightly more expensive
5366 than the otherwise-required unaligned accesses. Perhaps this can be
5367 cleaned up later. It's tempting to make OBJECT readonly, but it's set
5368 twice, once with emit_move_insn and once via store_field. */
5370 if (mode == BLKmode
5371 && (REG_P (target) || GET_CODE (target) == SUBREG))
5373 rtx object = assign_temp (type, 0, 1, 1);
5374 rtx blk_object = adjust_address (object, BLKmode, 0);
5376 if (bitsize != (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (target)))
5377 emit_move_insn (object, target);
5379 store_field (blk_object, bitsize, bitpos, mode, exp, type, alias_set);
5381 emit_move_insn (target, object);
5383 /* We want to return the BLKmode version of the data. */
5384 return blk_object;
5387 if (GET_CODE (target) == CONCAT)
5389 /* We're storing into a struct containing a single __complex. */
5391 gcc_assert (!bitpos);
5392 return store_expr (exp, target, 0);
5395 /* If the structure is in a register or if the component
5396 is a bit field, we cannot use addressing to access it.
5397 Use bit-field techniques or SUBREG to store in it. */
5399 if (mode == VOIDmode
5400 || (mode != BLKmode && ! direct_store[(int) mode]
5401 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
5402 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
5403 || REG_P (target)
5404 || GET_CODE (target) == SUBREG
5405 /* If the field isn't aligned enough to store as an ordinary memref,
5406 store it as a bit field. */
5407 || (mode != BLKmode
5408 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
5409 || bitpos % GET_MODE_ALIGNMENT (mode))
5410 && SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target)))
5411 || (bitpos % BITS_PER_UNIT != 0)))
5412 /* If the RHS and field are a constant size and the size of the
5413 RHS isn't the same size as the bitfield, we must use bitfield
5414 operations. */
5415 || (bitsize >= 0
5416 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
5417 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0))
5419 rtx temp;
5421 /* If EXP is a NOP_EXPR of precision less than its mode, then that
5422 implies a mask operation. If the precision is the same size as
5423 the field we're storing into, that mask is redundant. This is
5424 particularly common with bit field assignments generated by the
5425 C front end. */
5426 if (TREE_CODE (exp) == NOP_EXPR)
5428 tree type = TREE_TYPE (exp);
5429 if (INTEGRAL_TYPE_P (type)
5430 && TYPE_PRECISION (type) < GET_MODE_BITSIZE (TYPE_MODE (type))
5431 && bitsize == TYPE_PRECISION (type))
5433 type = TREE_TYPE (TREE_OPERAND (exp, 0));
5434 if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) >= bitsize)
5435 exp = TREE_OPERAND (exp, 0);
5439 temp = expand_normal (exp);
5441 /* If BITSIZE is narrower than the size of the type of EXP
5442 we will be narrowing TEMP. Normally, what's wanted are the
5443 low-order bits. However, if EXP's type is a record and this is
5444 big-endian machine, we want the upper BITSIZE bits. */
5445 if (BYTES_BIG_ENDIAN && GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT
5446 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (temp))
5447 && TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE)
5448 temp = expand_shift (RSHIFT_EXPR, GET_MODE (temp), temp,
5449 size_int (GET_MODE_BITSIZE (GET_MODE (temp))
5450 - bitsize),
5451 NULL_RTX, 1);
5453 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to
5454 MODE. */
5455 if (mode != VOIDmode && mode != BLKmode
5456 && mode != TYPE_MODE (TREE_TYPE (exp)))
5457 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
5459 /* If the modes of TARGET and TEMP are both BLKmode, both
5460 must be in memory and BITPOS must be aligned on a byte
5461 boundary. If so, we simply do a block copy. */
5462 if (GET_MODE (target) == BLKmode && GET_MODE (temp) == BLKmode)
5464 gcc_assert (MEM_P (target) && MEM_P (temp)
5465 && !(bitpos % BITS_PER_UNIT));
5467 target = adjust_address (target, VOIDmode, bitpos / BITS_PER_UNIT);
5468 emit_block_move (target, temp,
5469 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
5470 / BITS_PER_UNIT),
5471 BLOCK_OP_NORMAL);
5473 return const0_rtx;
5476 /* Store the value in the bitfield. */
5477 store_bit_field (target, bitsize, bitpos, mode, temp);
5479 return const0_rtx;
5481 else
5483 /* Now build a reference to just the desired component. */
5484 rtx to_rtx = adjust_address (target, mode, bitpos / BITS_PER_UNIT);
5486 if (to_rtx == target)
5487 to_rtx = copy_rtx (to_rtx);
5489 MEM_SET_IN_STRUCT_P (to_rtx, 1);
5490 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
5491 set_mem_alias_set (to_rtx, alias_set);
5493 return store_expr (exp, to_rtx, 0);
5497 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
5498 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
5499 codes and find the ultimate containing object, which we return.
5501 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
5502 bit position, and *PUNSIGNEDP to the signedness of the field.
5503 If the position of the field is variable, we store a tree
5504 giving the variable offset (in units) in *POFFSET.
5505 This offset is in addition to the bit position.
5506 If the position is not variable, we store 0 in *POFFSET.
5508 If any of the extraction expressions is volatile,
5509 we store 1 in *PVOLATILEP. Otherwise we don't change that.
5511 If the field is a bit-field, *PMODE is set to VOIDmode. Otherwise, it
5512 is a mode that can be used to access the field. In that case, *PBITSIZE
5513 is redundant.
5515 If the field describes a variable-sized object, *PMODE is set to
5516 VOIDmode and *PBITSIZE is set to -1. An access cannot be made in
5517 this case, but the address of the object can be found.
5519 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
5520 look through nodes that serve as markers of a greater alignment than
5521 the one that can be deduced from the expression. These nodes make it
5522 possible for front-ends to prevent temporaries from being created by
5523 the middle-end on alignment considerations. For that purpose, the
5524 normal operating mode at high-level is to always pass FALSE so that
5525 the ultimate containing object is really returned; moreover, the
5526 associated predicate handled_component_p will always return TRUE
5527 on these nodes, thus indicating that they are essentially handled
5528 by get_inner_reference. TRUE should only be passed when the caller
5529 is scanning the expression in order to build another representation
5530 and specifically knows how to handle these nodes; as such, this is
5531 the normal operating mode in the RTL expanders. */
5533 tree
5534 get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
5535 HOST_WIDE_INT *pbitpos, tree *poffset,
5536 enum machine_mode *pmode, int *punsignedp,
5537 int *pvolatilep, bool keep_aligning)
5539 tree size_tree = 0;
5540 enum machine_mode mode = VOIDmode;
5541 tree offset = size_zero_node;
5542 tree bit_offset = bitsize_zero_node;
5543 tree tem;
5545 /* First get the mode, signedness, and size. We do this from just the
5546 outermost expression. */
5547 if (TREE_CODE (exp) == COMPONENT_REF)
5549 size_tree = DECL_SIZE (TREE_OPERAND (exp, 1));
5550 if (! DECL_BIT_FIELD (TREE_OPERAND (exp, 1)))
5551 mode = DECL_MODE (TREE_OPERAND (exp, 1));
5553 *punsignedp = DECL_UNSIGNED (TREE_OPERAND (exp, 1));
5555 else if (TREE_CODE (exp) == BIT_FIELD_REF)
5557 size_tree = TREE_OPERAND (exp, 1);
5558 *punsignedp = BIT_FIELD_REF_UNSIGNED (exp);
5560 else
5562 mode = TYPE_MODE (TREE_TYPE (exp));
5563 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
5565 if (mode == BLKmode)
5566 size_tree = TYPE_SIZE (TREE_TYPE (exp));
5567 else
5568 *pbitsize = GET_MODE_BITSIZE (mode);
5571 if (size_tree != 0)
5573 if (! host_integerp (size_tree, 1))
5574 mode = BLKmode, *pbitsize = -1;
5575 else
5576 *pbitsize = tree_low_cst (size_tree, 1);
5579 /* Compute cumulative bit-offset for nested component-refs and array-refs,
5580 and find the ultimate containing object. */
5581 while (1)
5583 switch (TREE_CODE (exp))
5585 case BIT_FIELD_REF:
5586 bit_offset = size_binop (PLUS_EXPR, bit_offset,
5587 TREE_OPERAND (exp, 2));
5588 break;
5590 case COMPONENT_REF:
5592 tree field = TREE_OPERAND (exp, 1);
5593 tree this_offset = component_ref_field_offset (exp);
5595 /* If this field hasn't been filled in yet, don't go past it.
5596 This should only happen when folding expressions made during
5597 type construction. */
5598 if (this_offset == 0)
5599 break;
5601 offset = size_binop (PLUS_EXPR, offset, this_offset);
5602 bit_offset = size_binop (PLUS_EXPR, bit_offset,
5603 DECL_FIELD_BIT_OFFSET (field));
5605 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
5607 break;
5609 case ARRAY_REF:
5610 case ARRAY_RANGE_REF:
5612 tree index = TREE_OPERAND (exp, 1);
5613 tree low_bound = array_ref_low_bound (exp);
5614 tree unit_size = array_ref_element_size (exp);
5616 /* We assume all arrays have sizes that are a multiple of a byte.
5617 First subtract the lower bound, if any, in the type of the
5618 index, then convert to sizetype and multiply by the size of
5619 the array element. */
5620 if (! integer_zerop (low_bound))
5621 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
5622 index, low_bound);
5624 offset = size_binop (PLUS_EXPR, offset,
5625 size_binop (MULT_EXPR,
5626 convert (sizetype, index),
5627 unit_size));
5629 break;
5631 case REALPART_EXPR:
5632 break;
5634 case IMAGPART_EXPR:
5635 bit_offset = size_binop (PLUS_EXPR, bit_offset,
5636 bitsize_int (*pbitsize));
5637 break;
5639 case VIEW_CONVERT_EXPR:
5640 if (keep_aligning && STRICT_ALIGNMENT
5641 && (TYPE_ALIGN (TREE_TYPE (exp))
5642 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0))))
5643 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0)))
5644 < BIGGEST_ALIGNMENT)
5645 && (TYPE_ALIGN_OK (TREE_TYPE (exp))
5646 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp, 0)))))
5647 goto done;
5648 break;
5650 default:
5651 goto done;
5654 /* If any reference in the chain is volatile, the effect is volatile. */
5655 if (TREE_THIS_VOLATILE (exp))
5656 *pvolatilep = 1;
5658 exp = TREE_OPERAND (exp, 0);
5660 done:
5662 /* If OFFSET is constant, see if we can return the whole thing as a
5663 constant bit position. Otherwise, split it up. */
5664 if (host_integerp (offset, 0)
5665 && 0 != (tem = size_binop (MULT_EXPR, convert (bitsizetype, offset),
5666 bitsize_unit_node))
5667 && 0 != (tem = size_binop (PLUS_EXPR, tem, bit_offset))
5668 && host_integerp (tem, 0))
5669 *pbitpos = tree_low_cst (tem, 0), *poffset = 0;
5670 else
5671 *pbitpos = tree_low_cst (bit_offset, 0), *poffset = offset;
5673 *pmode = mode;
5674 return exp;
5677 /* Return a tree of sizetype representing the size, in bytes, of the element
5678 of EXP, an ARRAY_REF. */
5680 tree
5681 array_ref_element_size (tree exp)
5683 tree aligned_size = TREE_OPERAND (exp, 3);
5684 tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
5686 /* If a size was specified in the ARRAY_REF, it's the size measured
5687 in alignment units of the element type. So multiply by that value. */
5688 if (aligned_size)
5690 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
5691 sizetype from another type of the same width and signedness. */
5692 if (TREE_TYPE (aligned_size) != sizetype)
5693 aligned_size = fold_convert (sizetype, aligned_size);
5694 return size_binop (MULT_EXPR, aligned_size,
5695 size_int (TYPE_ALIGN_UNIT (elmt_type)));
5698 /* Otherwise, take the size from that of the element type. Substitute
5699 any PLACEHOLDER_EXPR that we have. */
5700 else
5701 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
5704 /* Return a tree representing the lower bound of the array mentioned in
5705 EXP, an ARRAY_REF. */
5707 tree
5708 array_ref_low_bound (tree exp)
5710 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
5712 /* If a lower bound is specified in EXP, use it. */
5713 if (TREE_OPERAND (exp, 2))
5714 return TREE_OPERAND (exp, 2);
5716 /* Otherwise, if there is a domain type and it has a lower bound, use it,
5717 substituting for a PLACEHOLDER_EXPR as needed. */
5718 if (domain_type && TYPE_MIN_VALUE (domain_type))
5719 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
5721 /* Otherwise, return a zero of the appropriate type. */
5722 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
5725 /* Return a tree representing the upper bound of the array mentioned in
5726 EXP, an ARRAY_REF. */
5728 tree
5729 array_ref_up_bound (tree exp)
5731 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
5733 /* If there is a domain type and it has an upper bound, use it, substituting
5734 for a PLACEHOLDER_EXPR as needed. */
5735 if (domain_type && TYPE_MAX_VALUE (domain_type))
5736 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
5738 /* Otherwise fail. */
5739 return NULL_TREE;
5742 /* Return a tree representing the offset, in bytes, of the field referenced
5743 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
5745 tree
5746 component_ref_field_offset (tree exp)
5748 tree aligned_offset = TREE_OPERAND (exp, 2);
5749 tree field = TREE_OPERAND (exp, 1);
5751 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
5752 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
5753 value. */
5754 if (aligned_offset)
5756 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
5757 sizetype from another type of the same width and signedness. */
5758 if (TREE_TYPE (aligned_offset) != sizetype)
5759 aligned_offset = fold_convert (sizetype, aligned_offset);
5760 return size_binop (MULT_EXPR, aligned_offset,
5761 size_int (DECL_OFFSET_ALIGN (field) / BITS_PER_UNIT));
5764 /* Otherwise, take the offset from that of the field. Substitute
5765 any PLACEHOLDER_EXPR that we have. */
5766 else
5767 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
5770 /* Return 1 if T is an expression that get_inner_reference handles. */
5773 handled_component_p (tree t)
5775 switch (TREE_CODE (t))
5777 case BIT_FIELD_REF:
5778 case COMPONENT_REF:
5779 case ARRAY_REF:
5780 case ARRAY_RANGE_REF:
5781 case VIEW_CONVERT_EXPR:
5782 case REALPART_EXPR:
5783 case IMAGPART_EXPR:
5784 return 1;
5786 default:
5787 return 0;
5791 /* Given an rtx VALUE that may contain additions and multiplications, return
5792 an equivalent value that just refers to a register, memory, or constant.
5793 This is done by generating instructions to perform the arithmetic and
5794 returning a pseudo-register containing the value.
5796 The returned value may be a REG, SUBREG, MEM or constant. */
5799 force_operand (rtx value, rtx target)
5801 rtx op1, op2;
5802 /* Use subtarget as the target for operand 0 of a binary operation. */
5803 rtx subtarget = get_subtarget (target);
5804 enum rtx_code code = GET_CODE (value);
5806 /* Check for subreg applied to an expression produced by loop optimizer. */
5807 if (code == SUBREG
5808 && !REG_P (SUBREG_REG (value))
5809 && !MEM_P (SUBREG_REG (value)))
5811 value = simplify_gen_subreg (GET_MODE (value),
5812 force_reg (GET_MODE (SUBREG_REG (value)),
5813 force_operand (SUBREG_REG (value),
5814 NULL_RTX)),
5815 GET_MODE (SUBREG_REG (value)),
5816 SUBREG_BYTE (value));
5817 code = GET_CODE (value);
5820 /* Check for a PIC address load. */
5821 if ((code == PLUS || code == MINUS)
5822 && XEXP (value, 0) == pic_offset_table_rtx
5823 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
5824 || GET_CODE (XEXP (value, 1)) == LABEL_REF
5825 || GET_CODE (XEXP (value, 1)) == CONST))
5827 if (!subtarget)
5828 subtarget = gen_reg_rtx (GET_MODE (value));
5829 emit_move_insn (subtarget, value);
5830 return subtarget;
5833 if (ARITHMETIC_P (value))
5835 op2 = XEXP (value, 1);
5836 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
5837 subtarget = 0;
5838 if (code == MINUS && GET_CODE (op2) == CONST_INT)
5840 code = PLUS;
5841 op2 = negate_rtx (GET_MODE (value), op2);
5844 /* Check for an addition with OP2 a constant integer and our first
5845 operand a PLUS of a virtual register and something else. In that
5846 case, we want to emit the sum of the virtual register and the
5847 constant first and then add the other value. This allows virtual
5848 register instantiation to simply modify the constant rather than
5849 creating another one around this addition. */
5850 if (code == PLUS && GET_CODE (op2) == CONST_INT
5851 && GET_CODE (XEXP (value, 0)) == PLUS
5852 && REG_P (XEXP (XEXP (value, 0), 0))
5853 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
5854 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
5856 rtx temp = expand_simple_binop (GET_MODE (value), code,
5857 XEXP (XEXP (value, 0), 0), op2,
5858 subtarget, 0, OPTAB_LIB_WIDEN);
5859 return expand_simple_binop (GET_MODE (value), code, temp,
5860 force_operand (XEXP (XEXP (value,
5861 0), 1), 0),
5862 target, 0, OPTAB_LIB_WIDEN);
5865 op1 = force_operand (XEXP (value, 0), subtarget);
5866 op2 = force_operand (op2, NULL_RTX);
5867 switch (code)
5869 case MULT:
5870 return expand_mult (GET_MODE (value), op1, op2, target, 1);
5871 case DIV:
5872 if (!INTEGRAL_MODE_P (GET_MODE (value)))
5873 return expand_simple_binop (GET_MODE (value), code, op1, op2,
5874 target, 1, OPTAB_LIB_WIDEN);
5875 else
5876 return expand_divmod (0,
5877 FLOAT_MODE_P (GET_MODE (value))
5878 ? RDIV_EXPR : TRUNC_DIV_EXPR,
5879 GET_MODE (value), op1, op2, target, 0);
5880 break;
5881 case MOD:
5882 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
5883 target, 0);
5884 break;
5885 case UDIV:
5886 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
5887 target, 1);
5888 break;
5889 case UMOD:
5890 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
5891 target, 1);
5892 break;
5893 case ASHIFTRT:
5894 return expand_simple_binop (GET_MODE (value), code, op1, op2,
5895 target, 0, OPTAB_LIB_WIDEN);
5896 break;
5897 default:
5898 return expand_simple_binop (GET_MODE (value), code, op1, op2,
5899 target, 1, OPTAB_LIB_WIDEN);
5902 if (UNARY_P (value))
5904 if (!target)
5905 target = gen_reg_rtx (GET_MODE (value));
5906 op1 = force_operand (XEXP (value, 0), NULL_RTX);
5907 switch (code)
5909 case ZERO_EXTEND:
5910 case SIGN_EXTEND:
5911 case TRUNCATE:
5912 convert_move (target, op1, code == ZERO_EXTEND);
5913 return target;
5915 case FIX:
5916 case UNSIGNED_FIX:
5917 expand_fix (target, op1, code == UNSIGNED_FIX);
5918 return target;
5920 case FLOAT:
5921 case UNSIGNED_FLOAT:
5922 expand_float (target, op1, code == UNSIGNED_FLOAT);
5923 return target;
5925 default:
5926 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
5930 #ifdef INSN_SCHEDULING
5931 /* On machines that have insn scheduling, we want all memory reference to be
5932 explicit, so we need to deal with such paradoxical SUBREGs. */
5933 if (GET_CODE (value) == SUBREG && MEM_P (SUBREG_REG (value))
5934 && (GET_MODE_SIZE (GET_MODE (value))
5935 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (value)))))
5936 value
5937 = simplify_gen_subreg (GET_MODE (value),
5938 force_reg (GET_MODE (SUBREG_REG (value)),
5939 force_operand (SUBREG_REG (value),
5940 NULL_RTX)),
5941 GET_MODE (SUBREG_REG (value)),
5942 SUBREG_BYTE (value));
5943 #endif
5945 return value;
5948 /* Subroutine of expand_expr: return nonzero iff there is no way that
5949 EXP can reference X, which is being modified. TOP_P is nonzero if this
5950 call is going to be used to determine whether we need a temporary
5951 for EXP, as opposed to a recursive call to this function.
5953 It is always safe for this routine to return zero since it merely
5954 searches for optimization opportunities. */
5957 safe_from_p (rtx x, tree exp, int top_p)
5959 rtx exp_rtl = 0;
5960 int i, nops;
5962 if (x == 0
5963 /* If EXP has varying size, we MUST use a target since we currently
5964 have no way of allocating temporaries of variable size
5965 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
5966 So we assume here that something at a higher level has prevented a
5967 clash. This is somewhat bogus, but the best we can do. Only
5968 do this when X is BLKmode and when we are at the top level. */
5969 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
5970 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
5971 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
5972 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
5973 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
5974 != INTEGER_CST)
5975 && GET_MODE (x) == BLKmode)
5976 /* If X is in the outgoing argument area, it is always safe. */
5977 || (MEM_P (x)
5978 && (XEXP (x, 0) == virtual_outgoing_args_rtx
5979 || (GET_CODE (XEXP (x, 0)) == PLUS
5980 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
5981 return 1;
5983 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
5984 find the underlying pseudo. */
5985 if (GET_CODE (x) == SUBREG)
5987 x = SUBREG_REG (x);
5988 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
5989 return 0;
5992 /* Now look at our tree code and possibly recurse. */
5993 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
5995 case tcc_declaration:
5996 exp_rtl = DECL_RTL_IF_SET (exp);
5997 break;
5999 case tcc_constant:
6000 return 1;
6002 case tcc_exceptional:
6003 if (TREE_CODE (exp) == TREE_LIST)
6005 while (1)
6007 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
6008 return 0;
6009 exp = TREE_CHAIN (exp);
6010 if (!exp)
6011 return 1;
6012 if (TREE_CODE (exp) != TREE_LIST)
6013 return safe_from_p (x, exp, 0);
6016 else if (TREE_CODE (exp) == ERROR_MARK)
6017 return 1; /* An already-visited SAVE_EXPR? */
6018 else
6019 return 0;
6021 case tcc_statement:
6022 /* The only case we look at here is the DECL_INITIAL inside a
6023 DECL_EXPR. */
6024 return (TREE_CODE (exp) != DECL_EXPR
6025 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
6026 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
6027 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
6029 case tcc_binary:
6030 case tcc_comparison:
6031 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
6032 return 0;
6033 /* Fall through. */
6035 case tcc_unary:
6036 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6038 case tcc_expression:
6039 case tcc_reference:
6040 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
6041 the expression. If it is set, we conflict iff we are that rtx or
6042 both are in memory. Otherwise, we check all operands of the
6043 expression recursively. */
6045 switch (TREE_CODE (exp))
6047 case ADDR_EXPR:
6048 /* If the operand is static or we are static, we can't conflict.
6049 Likewise if we don't conflict with the operand at all. */
6050 if (staticp (TREE_OPERAND (exp, 0))
6051 || TREE_STATIC (exp)
6052 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
6053 return 1;
6055 /* Otherwise, the only way this can conflict is if we are taking
6056 the address of a DECL a that address if part of X, which is
6057 very rare. */
6058 exp = TREE_OPERAND (exp, 0);
6059 if (DECL_P (exp))
6061 if (!DECL_RTL_SET_P (exp)
6062 || !MEM_P (DECL_RTL (exp)))
6063 return 0;
6064 else
6065 exp_rtl = XEXP (DECL_RTL (exp), 0);
6067 break;
6069 case MISALIGNED_INDIRECT_REF:
6070 case ALIGN_INDIRECT_REF:
6071 case INDIRECT_REF:
6072 if (MEM_P (x)
6073 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
6074 get_alias_set (exp)))
6075 return 0;
6076 break;
6078 case CALL_EXPR:
6079 /* Assume that the call will clobber all hard registers and
6080 all of memory. */
6081 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
6082 || MEM_P (x))
6083 return 0;
6084 break;
6086 case WITH_CLEANUP_EXPR:
6087 case CLEANUP_POINT_EXPR:
6088 /* Lowered by gimplify.c. */
6089 gcc_unreachable ();
6091 case SAVE_EXPR:
6092 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6094 default:
6095 break;
6098 /* If we have an rtx, we do not need to scan our operands. */
6099 if (exp_rtl)
6100 break;
6102 nops = TREE_CODE_LENGTH (TREE_CODE (exp));
6103 for (i = 0; i < nops; i++)
6104 if (TREE_OPERAND (exp, i) != 0
6105 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
6106 return 0;
6108 /* If this is a language-specific tree code, it may require
6109 special handling. */
6110 if ((unsigned int) TREE_CODE (exp)
6111 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE
6112 && !lang_hooks.safe_from_p (x, exp))
6113 return 0;
6114 break;
6116 case tcc_type:
6117 /* Should never get a type here. */
6118 gcc_unreachable ();
6121 /* If we have an rtl, find any enclosed object. Then see if we conflict
6122 with it. */
6123 if (exp_rtl)
6125 if (GET_CODE (exp_rtl) == SUBREG)
6127 exp_rtl = SUBREG_REG (exp_rtl);
6128 if (REG_P (exp_rtl)
6129 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
6130 return 0;
6133 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
6134 are memory and they conflict. */
6135 return ! (rtx_equal_p (x, exp_rtl)
6136 || (MEM_P (x) && MEM_P (exp_rtl)
6137 && true_dependence (exp_rtl, VOIDmode, x,
6138 rtx_addr_varies_p)));
6141 /* If we reach here, it is safe. */
6142 return 1;
6146 /* Return the highest power of two that EXP is known to be a multiple of.
6147 This is used in updating alignment of MEMs in array references. */
6149 unsigned HOST_WIDE_INT
6150 highest_pow2_factor (tree exp)
6152 unsigned HOST_WIDE_INT c0, c1;
6154 switch (TREE_CODE (exp))
6156 case INTEGER_CST:
6157 /* We can find the lowest bit that's a one. If the low
6158 HOST_BITS_PER_WIDE_INT bits are zero, return BIGGEST_ALIGNMENT.
6159 We need to handle this case since we can find it in a COND_EXPR,
6160 a MIN_EXPR, or a MAX_EXPR. If the constant overflows, we have an
6161 erroneous program, so return BIGGEST_ALIGNMENT to avoid any
6162 later ICE. */
6163 if (TREE_CONSTANT_OVERFLOW (exp))
6164 return BIGGEST_ALIGNMENT;
6165 else
6167 /* Note: tree_low_cst is intentionally not used here,
6168 we don't care about the upper bits. */
6169 c0 = TREE_INT_CST_LOW (exp);
6170 c0 &= -c0;
6171 return c0 ? c0 : BIGGEST_ALIGNMENT;
6173 break;
6175 case PLUS_EXPR: case MINUS_EXPR: case MIN_EXPR: case MAX_EXPR:
6176 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6177 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6178 return MIN (c0, c1);
6180 case MULT_EXPR:
6181 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6182 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6183 return c0 * c1;
6185 case ROUND_DIV_EXPR: case TRUNC_DIV_EXPR: case FLOOR_DIV_EXPR:
6186 case CEIL_DIV_EXPR:
6187 if (integer_pow2p (TREE_OPERAND (exp, 1))
6188 && host_integerp (TREE_OPERAND (exp, 1), 1))
6190 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6191 c1 = tree_low_cst (TREE_OPERAND (exp, 1), 1);
6192 return MAX (1, c0 / c1);
6194 break;
6196 case NON_LVALUE_EXPR: case NOP_EXPR: case CONVERT_EXPR:
6197 case SAVE_EXPR:
6198 return highest_pow2_factor (TREE_OPERAND (exp, 0));
6200 case COMPOUND_EXPR:
6201 return highest_pow2_factor (TREE_OPERAND (exp, 1));
6203 case COND_EXPR:
6204 c0 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6205 c1 = highest_pow2_factor (TREE_OPERAND (exp, 2));
6206 return MIN (c0, c1);
6208 default:
6209 break;
6212 return 1;
6215 /* Similar, except that the alignment requirements of TARGET are
6216 taken into account. Assume it is at least as aligned as its
6217 type, unless it is a COMPONENT_REF in which case the layout of
6218 the structure gives the alignment. */
6220 static unsigned HOST_WIDE_INT
6221 highest_pow2_factor_for_target (tree target, tree exp)
6223 unsigned HOST_WIDE_INT target_align, factor;
6225 factor = highest_pow2_factor (exp);
6226 if (TREE_CODE (target) == COMPONENT_REF)
6227 target_align = DECL_ALIGN_UNIT (TREE_OPERAND (target, 1));
6228 else
6229 target_align = TYPE_ALIGN_UNIT (TREE_TYPE (target));
6230 return MAX (factor, target_align);
6233 /* Expands variable VAR. */
6235 void
6236 expand_var (tree var)
6238 if (DECL_EXTERNAL (var))
6239 return;
6241 if (TREE_STATIC (var))
6242 /* If this is an inlined copy of a static local variable,
6243 look up the original decl. */
6244 var = DECL_ORIGIN (var);
6246 if (TREE_STATIC (var)
6247 ? !TREE_ASM_WRITTEN (var)
6248 : !DECL_RTL_SET_P (var))
6250 if (TREE_CODE (var) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (var))
6251 /* Should be ignored. */;
6252 else if (lang_hooks.expand_decl (var))
6253 /* OK. */;
6254 else if (TREE_CODE (var) == VAR_DECL && !TREE_STATIC (var))
6255 expand_decl (var);
6256 else if (TREE_CODE (var) == VAR_DECL && TREE_STATIC (var))
6257 rest_of_decl_compilation (var, 0, 0);
6258 else
6259 /* No expansion needed. */
6260 gcc_assert (TREE_CODE (var) == TYPE_DECL
6261 || TREE_CODE (var) == CONST_DECL
6262 || TREE_CODE (var) == FUNCTION_DECL
6263 || TREE_CODE (var) == LABEL_DECL);
6267 /* Subroutine of expand_expr. Expand the two operands of a binary
6268 expression EXP0 and EXP1 placing the results in OP0 and OP1.
6269 The value may be stored in TARGET if TARGET is nonzero. The
6270 MODIFIER argument is as documented by expand_expr. */
6272 static void
6273 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
6274 enum expand_modifier modifier)
6276 if (! safe_from_p (target, exp1, 1))
6277 target = 0;
6278 if (operand_equal_p (exp0, exp1, 0))
6280 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6281 *op1 = copy_rtx (*op0);
6283 else
6285 /* If we need to preserve evaluation order, copy exp0 into its own
6286 temporary variable so that it can't be clobbered by exp1. */
6287 if (flag_evaluation_order && TREE_SIDE_EFFECTS (exp1))
6288 exp0 = save_expr (exp0);
6289 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6290 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
6295 /* Return a MEM that contains constant EXP. DEFER is as for
6296 output_constant_def and MODIFIER is as for expand_expr. */
6298 static rtx
6299 expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
6301 rtx mem;
6303 mem = output_constant_def (exp, defer);
6304 if (modifier != EXPAND_INITIALIZER)
6305 mem = use_anchored_address (mem);
6306 return mem;
6309 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
6310 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6312 static rtx
6313 expand_expr_addr_expr_1 (tree exp, rtx target, enum machine_mode tmode,
6314 enum expand_modifier modifier)
6316 rtx result, subtarget;
6317 tree inner, offset;
6318 HOST_WIDE_INT bitsize, bitpos;
6319 int volatilep, unsignedp;
6320 enum machine_mode mode1;
6322 /* If we are taking the address of a constant and are at the top level,
6323 we have to use output_constant_def since we can't call force_const_mem
6324 at top level. */
6325 /* ??? This should be considered a front-end bug. We should not be
6326 generating ADDR_EXPR of something that isn't an LVALUE. The only
6327 exception here is STRING_CST. */
6328 if (TREE_CODE (exp) == CONSTRUCTOR
6329 || CONSTANT_CLASS_P (exp))
6330 return XEXP (expand_expr_constant (exp, 0, modifier), 0);
6332 /* Everything must be something allowed by is_gimple_addressable. */
6333 switch (TREE_CODE (exp))
6335 case INDIRECT_REF:
6336 /* This case will happen via recursion for &a->b. */
6337 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
6339 case CONST_DECL:
6340 /* Recurse and make the output_constant_def clause above handle this. */
6341 return expand_expr_addr_expr_1 (DECL_INITIAL (exp), target,
6342 tmode, modifier);
6344 case REALPART_EXPR:
6345 /* The real part of the complex number is always first, therefore
6346 the address is the same as the address of the parent object. */
6347 offset = 0;
6348 bitpos = 0;
6349 inner = TREE_OPERAND (exp, 0);
6350 break;
6352 case IMAGPART_EXPR:
6353 /* The imaginary part of the complex number is always second.
6354 The expression is therefore always offset by the size of the
6355 scalar type. */
6356 offset = 0;
6357 bitpos = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)));
6358 inner = TREE_OPERAND (exp, 0);
6359 break;
6361 default:
6362 /* If the object is a DECL, then expand it for its rtl. Don't bypass
6363 expand_expr, as that can have various side effects; LABEL_DECLs for
6364 example, may not have their DECL_RTL set yet. Assume language
6365 specific tree nodes can be expanded in some interesting way. */
6366 if (DECL_P (exp)
6367 || TREE_CODE (exp) >= LAST_AND_UNUSED_TREE_CODE)
6369 result = expand_expr (exp, target, tmode,
6370 modifier == EXPAND_INITIALIZER
6371 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
6373 /* If the DECL isn't in memory, then the DECL wasn't properly
6374 marked TREE_ADDRESSABLE, which will be either a front-end
6375 or a tree optimizer bug. */
6376 gcc_assert (MEM_P (result));
6377 result = XEXP (result, 0);
6379 /* ??? Is this needed anymore? */
6380 if (DECL_P (exp) && !TREE_USED (exp) == 0)
6382 assemble_external (exp);
6383 TREE_USED (exp) = 1;
6386 if (modifier != EXPAND_INITIALIZER
6387 && modifier != EXPAND_CONST_ADDRESS)
6388 result = force_operand (result, target);
6389 return result;
6392 /* Pass FALSE as the last argument to get_inner_reference although
6393 we are expanding to RTL. The rationale is that we know how to
6394 handle "aligning nodes" here: we can just bypass them because
6395 they won't change the final object whose address will be returned
6396 (they actually exist only for that purpose). */
6397 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset,
6398 &mode1, &unsignedp, &volatilep, false);
6399 break;
6402 /* We must have made progress. */
6403 gcc_assert (inner != exp);
6405 subtarget = offset || bitpos ? NULL_RTX : target;
6406 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier);
6408 if (offset)
6410 rtx tmp;
6412 if (modifier != EXPAND_NORMAL)
6413 result = force_operand (result, NULL);
6414 tmp = expand_expr (offset, NULL, tmode, EXPAND_NORMAL);
6416 result = convert_memory_address (tmode, result);
6417 tmp = convert_memory_address (tmode, tmp);
6419 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
6420 result = gen_rtx_PLUS (tmode, result, tmp);
6421 else
6423 subtarget = bitpos ? NULL_RTX : target;
6424 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
6425 1, OPTAB_LIB_WIDEN);
6429 if (bitpos)
6431 /* Someone beforehand should have rejected taking the address
6432 of such an object. */
6433 gcc_assert ((bitpos % BITS_PER_UNIT) == 0);
6435 result = plus_constant (result, bitpos / BITS_PER_UNIT);
6436 if (modifier < EXPAND_SUM)
6437 result = force_operand (result, target);
6440 return result;
6443 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
6444 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6446 static rtx
6447 expand_expr_addr_expr (tree exp, rtx target, enum machine_mode tmode,
6448 enum expand_modifier modifier)
6450 enum machine_mode rmode;
6451 rtx result;
6453 /* Target mode of VOIDmode says "whatever's natural". */
6454 if (tmode == VOIDmode)
6455 tmode = TYPE_MODE (TREE_TYPE (exp));
6457 /* We can get called with some Weird Things if the user does silliness
6458 like "(short) &a". In that case, convert_memory_address won't do
6459 the right thing, so ignore the given target mode. */
6460 if (tmode != Pmode && tmode != ptr_mode)
6461 tmode = Pmode;
6463 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
6464 tmode, modifier);
6466 /* Despite expand_expr claims concerning ignoring TMODE when not
6467 strictly convenient, stuff breaks if we don't honor it. Note
6468 that combined with the above, we only do this for pointer modes. */
6469 rmode = GET_MODE (result);
6470 if (rmode == VOIDmode)
6471 rmode = tmode;
6472 if (rmode != tmode)
6473 result = convert_memory_address (tmode, result);
6475 return result;
6479 /* expand_expr: generate code for computing expression EXP.
6480 An rtx for the computed value is returned. The value is never null.
6481 In the case of a void EXP, const0_rtx is returned.
6483 The value may be stored in TARGET if TARGET is nonzero.
6484 TARGET is just a suggestion; callers must assume that
6485 the rtx returned may not be the same as TARGET.
6487 If TARGET is CONST0_RTX, it means that the value will be ignored.
6489 If TMODE is not VOIDmode, it suggests generating the
6490 result in mode TMODE. But this is done only when convenient.
6491 Otherwise, TMODE is ignored and the value generated in its natural mode.
6492 TMODE is just a suggestion; callers must assume that
6493 the rtx returned may not have mode TMODE.
6495 Note that TARGET may have neither TMODE nor MODE. In that case, it
6496 probably will not be used.
6498 If MODIFIER is EXPAND_SUM then when EXP is an addition
6499 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
6500 or a nest of (PLUS ...) and (MINUS ...) where the terms are
6501 products as above, or REG or MEM, or constant.
6502 Ordinarily in such cases we would output mul or add instructions
6503 and then return a pseudo reg containing the sum.
6505 EXPAND_INITIALIZER is much like EXPAND_SUM except that
6506 it also marks a label as absolutely required (it can't be dead).
6507 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
6508 This is used for outputting expressions used in initializers.
6510 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
6511 with a constant address even if that address is not normally legitimate.
6512 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
6514 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
6515 a call parameter. Such targets require special care as we haven't yet
6516 marked TARGET so that it's safe from being trashed by libcalls. We
6517 don't want to use TARGET for anything but the final result;
6518 Intermediate values must go elsewhere. Additionally, calls to
6519 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
6521 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
6522 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
6523 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
6524 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
6525 recursively. */
6527 static rtx expand_expr_real_1 (tree, rtx, enum machine_mode,
6528 enum expand_modifier, rtx *);
6531 expand_expr_real (tree exp, rtx target, enum machine_mode tmode,
6532 enum expand_modifier modifier, rtx *alt_rtl)
6534 int rn = -1;
6535 rtx ret, last = NULL;
6537 /* Handle ERROR_MARK before anybody tries to access its type. */
6538 if (TREE_CODE (exp) == ERROR_MARK
6539 || TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK)
6541 ret = CONST0_RTX (tmode);
6542 return ret ? ret : const0_rtx;
6545 if (flag_non_call_exceptions)
6547 rn = lookup_stmt_eh_region (exp);
6548 /* If rn < 0, then either (1) tree-ssa not used or (2) doesn't throw. */
6549 if (rn >= 0)
6550 last = get_last_insn ();
6553 /* If this is an expression of some kind and it has an associated line
6554 number, then emit the line number before expanding the expression.
6556 We need to save and restore the file and line information so that
6557 errors discovered during expansion are emitted with the right
6558 information. It would be better of the diagnostic routines
6559 used the file/line information embedded in the tree nodes rather
6560 than globals. */
6561 if (cfun && cfun->ib_boundaries_block && EXPR_HAS_LOCATION (exp))
6563 location_t saved_location = input_location;
6564 input_location = EXPR_LOCATION (exp);
6565 emit_line_note (input_location);
6567 /* Record where the insns produced belong. */
6568 record_block_change (TREE_BLOCK (exp));
6570 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
6572 input_location = saved_location;
6574 else
6576 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
6579 /* If using non-call exceptions, mark all insns that may trap.
6580 expand_call() will mark CALL_INSNs before we get to this code,
6581 but it doesn't handle libcalls, and these may trap. */
6582 if (rn >= 0)
6584 rtx insn;
6585 for (insn = next_real_insn (last); insn;
6586 insn = next_real_insn (insn))
6588 if (! find_reg_note (insn, REG_EH_REGION, NULL_RTX)
6589 /* If we want exceptions for non-call insns, any
6590 may_trap_p instruction may throw. */
6591 && GET_CODE (PATTERN (insn)) != CLOBBER
6592 && GET_CODE (PATTERN (insn)) != USE
6593 && (CALL_P (insn) || may_trap_p (PATTERN (insn))))
6595 REG_NOTES (insn) = alloc_EXPR_LIST (REG_EH_REGION, GEN_INT (rn),
6596 REG_NOTES (insn));
6601 return ret;
6604 static rtx
6605 expand_expr_real_1 (tree exp, rtx target, enum machine_mode tmode,
6606 enum expand_modifier modifier, rtx *alt_rtl)
6608 rtx op0, op1, temp, decl_rtl;
6609 tree type = TREE_TYPE (exp);
6610 int unsignedp;
6611 enum machine_mode mode;
6612 enum tree_code code = TREE_CODE (exp);
6613 optab this_optab;
6614 rtx subtarget, original_target;
6615 int ignore;
6616 tree context, subexp0, subexp1;
6617 bool reduce_bit_field = false;
6618 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field && !ignore \
6619 ? reduce_to_bit_field_precision ((expr), \
6620 target, \
6621 type) \
6622 : (expr))
6624 mode = TYPE_MODE (type);
6625 unsignedp = TYPE_UNSIGNED (type);
6626 if (lang_hooks.reduce_bit_field_operations
6627 && TREE_CODE (type) == INTEGER_TYPE
6628 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type))
6630 /* An operation in what may be a bit-field type needs the
6631 result to be reduced to the precision of the bit-field type,
6632 which is narrower than that of the type's mode. */
6633 reduce_bit_field = true;
6634 if (modifier == EXPAND_STACK_PARM)
6635 target = 0;
6638 /* Use subtarget as the target for operand 0 of a binary operation. */
6639 subtarget = get_subtarget (target);
6640 original_target = target;
6641 ignore = (target == const0_rtx
6642 || ((code == NON_LVALUE_EXPR || code == NOP_EXPR
6643 || code == CONVERT_EXPR || code == COND_EXPR
6644 || code == VIEW_CONVERT_EXPR)
6645 && TREE_CODE (type) == VOID_TYPE));
6647 /* If we are going to ignore this result, we need only do something
6648 if there is a side-effect somewhere in the expression. If there
6649 is, short-circuit the most common cases here. Note that we must
6650 not call expand_expr with anything but const0_rtx in case this
6651 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
6653 if (ignore)
6655 if (! TREE_SIDE_EFFECTS (exp))
6656 return const0_rtx;
6658 /* Ensure we reference a volatile object even if value is ignored, but
6659 don't do this if all we are doing is taking its address. */
6660 if (TREE_THIS_VOLATILE (exp)
6661 && TREE_CODE (exp) != FUNCTION_DECL
6662 && mode != VOIDmode && mode != BLKmode
6663 && modifier != EXPAND_CONST_ADDRESS)
6665 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
6666 if (MEM_P (temp))
6667 temp = copy_to_reg (temp);
6668 return const0_rtx;
6671 if (TREE_CODE_CLASS (code) == tcc_unary
6672 || code == COMPONENT_REF || code == INDIRECT_REF)
6673 return expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
6674 modifier);
6676 else if (TREE_CODE_CLASS (code) == tcc_binary
6677 || TREE_CODE_CLASS (code) == tcc_comparison
6678 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
6680 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, modifier);
6681 expand_expr (TREE_OPERAND (exp, 1), const0_rtx, VOIDmode, modifier);
6682 return const0_rtx;
6684 else if (code == BIT_FIELD_REF)
6686 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, modifier);
6687 expand_expr (TREE_OPERAND (exp, 1), const0_rtx, VOIDmode, modifier);
6688 expand_expr (TREE_OPERAND (exp, 2), const0_rtx, VOIDmode, modifier);
6689 return const0_rtx;
6692 target = 0;
6696 switch (code)
6698 case LABEL_DECL:
6700 tree function = decl_function_context (exp);
6702 temp = label_rtx (exp);
6703 temp = gen_rtx_LABEL_REF (Pmode, temp);
6705 if (function != current_function_decl
6706 && function != 0)
6707 LABEL_REF_NONLOCAL_P (temp) = 1;
6709 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
6710 return temp;
6713 case SSA_NAME:
6714 return expand_expr_real_1 (SSA_NAME_VAR (exp), target, tmode, modifier,
6715 NULL);
6717 case PARM_DECL:
6718 case VAR_DECL:
6719 /* If a static var's type was incomplete when the decl was written,
6720 but the type is complete now, lay out the decl now. */
6721 if (DECL_SIZE (exp) == 0
6722 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
6723 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
6724 layout_decl (exp, 0);
6726 /* ... fall through ... */
6728 case FUNCTION_DECL:
6729 case RESULT_DECL:
6730 decl_rtl = DECL_RTL (exp);
6731 gcc_assert (decl_rtl);
6733 /* Ensure variable marked as used even if it doesn't go through
6734 a parser. If it hasn't be used yet, write out an external
6735 definition. */
6736 if (! TREE_USED (exp))
6738 assemble_external (exp);
6739 TREE_USED (exp) = 1;
6742 /* Show we haven't gotten RTL for this yet. */
6743 temp = 0;
6745 /* Variables inherited from containing functions should have
6746 been lowered by this point. */
6747 context = decl_function_context (exp);
6748 gcc_assert (!context
6749 || context == current_function_decl
6750 || TREE_STATIC (exp)
6751 /* ??? C++ creates functions that are not TREE_STATIC. */
6752 || TREE_CODE (exp) == FUNCTION_DECL);
6754 /* This is the case of an array whose size is to be determined
6755 from its initializer, while the initializer is still being parsed.
6756 See expand_decl. */
6758 if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
6759 temp = validize_mem (decl_rtl);
6761 /* If DECL_RTL is memory, we are in the normal case and either
6762 the address is not valid or it is not a register and -fforce-addr
6763 is specified, get the address into a register. */
6765 else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
6767 if (alt_rtl)
6768 *alt_rtl = decl_rtl;
6769 decl_rtl = use_anchored_address (decl_rtl);
6770 if (modifier != EXPAND_CONST_ADDRESS
6771 && modifier != EXPAND_SUM
6772 && (!memory_address_p (DECL_MODE (exp), XEXP (decl_rtl, 0))
6773 || (flag_force_addr && !REG_P (XEXP (decl_rtl, 0)))))
6774 temp = replace_equiv_address (decl_rtl,
6775 copy_rtx (XEXP (decl_rtl, 0)));
6778 /* If we got something, return it. But first, set the alignment
6779 if the address is a register. */
6780 if (temp != 0)
6782 if (MEM_P (temp) && REG_P (XEXP (temp, 0)))
6783 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
6785 return temp;
6788 /* If the mode of DECL_RTL does not match that of the decl, it
6789 must be a promoted value. We return a SUBREG of the wanted mode,
6790 but mark it so that we know that it was already extended. */
6792 if (REG_P (decl_rtl)
6793 && GET_MODE (decl_rtl) != DECL_MODE (exp))
6795 enum machine_mode pmode;
6797 /* Get the signedness used for this variable. Ensure we get the
6798 same mode we got when the variable was declared. */
6799 pmode = promote_mode (type, DECL_MODE (exp), &unsignedp,
6800 (TREE_CODE (exp) == RESULT_DECL
6801 || TREE_CODE (exp) == PARM_DECL) ? 1 : 0);
6802 gcc_assert (GET_MODE (decl_rtl) == pmode);
6804 temp = gen_lowpart_SUBREG (mode, decl_rtl);
6805 SUBREG_PROMOTED_VAR_P (temp) = 1;
6806 SUBREG_PROMOTED_UNSIGNED_SET (temp, unsignedp);
6807 return temp;
6810 return decl_rtl;
6812 case INTEGER_CST:
6813 temp = immed_double_const (TREE_INT_CST_LOW (exp),
6814 TREE_INT_CST_HIGH (exp), mode);
6816 /* ??? If overflow is set, fold will have done an incomplete job,
6817 which can result in (plus xx (const_int 0)), which can get
6818 simplified by validate_replace_rtx during virtual register
6819 instantiation, which can result in unrecognizable insns.
6820 Avoid this by forcing all overflows into registers. */
6821 if (TREE_CONSTANT_OVERFLOW (exp)
6822 && modifier != EXPAND_INITIALIZER)
6823 temp = force_reg (mode, temp);
6825 return temp;
6827 case VECTOR_CST:
6828 if (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (exp))) == MODE_VECTOR_INT
6829 || GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (exp))) == MODE_VECTOR_FLOAT)
6830 return const_vector_from_tree (exp);
6831 else
6832 return expand_expr (build_constructor_from_list
6833 (TREE_TYPE (exp),
6834 TREE_VECTOR_CST_ELTS (exp)),
6835 ignore ? const0_rtx : target, tmode, modifier);
6837 case CONST_DECL:
6838 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
6840 case REAL_CST:
6841 /* If optimized, generate immediate CONST_DOUBLE
6842 which will be turned into memory by reload if necessary.
6844 We used to force a register so that loop.c could see it. But
6845 this does not allow gen_* patterns to perform optimizations with
6846 the constants. It also produces two insns in cases like "x = 1.0;".
6847 On most machines, floating-point constants are not permitted in
6848 many insns, so we'd end up copying it to a register in any case.
6850 Now, we do the copying in expand_binop, if appropriate. */
6851 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp),
6852 TYPE_MODE (TREE_TYPE (exp)));
6854 case COMPLEX_CST:
6855 /* Handle evaluating a complex constant in a CONCAT target. */
6856 if (original_target && GET_CODE (original_target) == CONCAT)
6858 enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
6859 rtx rtarg, itarg;
6861 rtarg = XEXP (original_target, 0);
6862 itarg = XEXP (original_target, 1);
6864 /* Move the real and imaginary parts separately. */
6865 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, 0);
6866 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, 0);
6868 if (op0 != rtarg)
6869 emit_move_insn (rtarg, op0);
6870 if (op1 != itarg)
6871 emit_move_insn (itarg, op1);
6873 return original_target;
6876 /* ... fall through ... */
6878 case STRING_CST:
6879 temp = expand_expr_constant (exp, 1, modifier);
6881 /* temp contains a constant address.
6882 On RISC machines where a constant address isn't valid,
6883 make some insns to get that address into a register. */
6884 if (modifier != EXPAND_CONST_ADDRESS
6885 && modifier != EXPAND_INITIALIZER
6886 && modifier != EXPAND_SUM
6887 && (! memory_address_p (mode, XEXP (temp, 0))
6888 || flag_force_addr))
6889 return replace_equiv_address (temp,
6890 copy_rtx (XEXP (temp, 0)));
6891 return temp;
6893 case SAVE_EXPR:
6895 tree val = TREE_OPERAND (exp, 0);
6896 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl);
6898 if (!SAVE_EXPR_RESOLVED_P (exp))
6900 /* We can indeed still hit this case, typically via builtin
6901 expanders calling save_expr immediately before expanding
6902 something. Assume this means that we only have to deal
6903 with non-BLKmode values. */
6904 gcc_assert (GET_MODE (ret) != BLKmode);
6906 val = build_decl (VAR_DECL, NULL, TREE_TYPE (exp));
6907 DECL_ARTIFICIAL (val) = 1;
6908 DECL_IGNORED_P (val) = 1;
6909 TREE_OPERAND (exp, 0) = val;
6910 SAVE_EXPR_RESOLVED_P (exp) = 1;
6912 if (!CONSTANT_P (ret))
6913 ret = copy_to_reg (ret);
6914 SET_DECL_RTL (val, ret);
6917 return ret;
6920 case GOTO_EXPR:
6921 if (TREE_CODE (TREE_OPERAND (exp, 0)) == LABEL_DECL)
6922 expand_goto (TREE_OPERAND (exp, 0));
6923 else
6924 expand_computed_goto (TREE_OPERAND (exp, 0));
6925 return const0_rtx;
6927 case CONSTRUCTOR:
6928 /* If we don't need the result, just ensure we evaluate any
6929 subexpressions. */
6930 if (ignore)
6932 unsigned HOST_WIDE_INT idx;
6933 tree value;
6935 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
6936 expand_expr (value, const0_rtx, VOIDmode, 0);
6938 return const0_rtx;
6941 /* Try to avoid creating a temporary at all. This is possible
6942 if all of the initializer is zero.
6943 FIXME: try to handle all [0..255] initializers we can handle
6944 with memset. */
6945 else if (TREE_STATIC (exp)
6946 && !TREE_ADDRESSABLE (exp)
6947 && target != 0 && mode == BLKmode
6948 && all_zeros_p (exp))
6950 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
6951 return target;
6954 /* All elts simple constants => refer to a constant in memory. But
6955 if this is a non-BLKmode mode, let it store a field at a time
6956 since that should make a CONST_INT or CONST_DOUBLE when we
6957 fold. Likewise, if we have a target we can use, it is best to
6958 store directly into the target unless the type is large enough
6959 that memcpy will be used. If we are making an initializer and
6960 all operands are constant, put it in memory as well.
6962 FIXME: Avoid trying to fill vector constructors piece-meal.
6963 Output them with output_constant_def below unless we're sure
6964 they're zeros. This should go away when vector initializers
6965 are treated like VECTOR_CST instead of arrays.
6967 else if ((TREE_STATIC (exp)
6968 && ((mode == BLKmode
6969 && ! (target != 0 && safe_from_p (target, exp, 1)))
6970 || TREE_ADDRESSABLE (exp)
6971 || (host_integerp (TYPE_SIZE_UNIT (type), 1)
6972 && (! MOVE_BY_PIECES_P
6973 (tree_low_cst (TYPE_SIZE_UNIT (type), 1),
6974 TYPE_ALIGN (type)))
6975 && ! mostly_zeros_p (exp))))
6976 || ((modifier == EXPAND_INITIALIZER
6977 || modifier == EXPAND_CONST_ADDRESS)
6978 && TREE_CONSTANT (exp)))
6980 rtx constructor = expand_expr_constant (exp, 1, modifier);
6982 if (modifier != EXPAND_CONST_ADDRESS
6983 && modifier != EXPAND_INITIALIZER
6984 && modifier != EXPAND_SUM)
6985 constructor = validize_mem (constructor);
6987 return constructor;
6989 else
6991 /* Handle calls that pass values in multiple non-contiguous
6992 locations. The Irix 6 ABI has examples of this. */
6993 if (target == 0 || ! safe_from_p (target, exp, 1)
6994 || GET_CODE (target) == PARALLEL
6995 || modifier == EXPAND_STACK_PARM)
6996 target
6997 = assign_temp (build_qualified_type (type,
6998 (TYPE_QUALS (type)
6999 | (TREE_READONLY (exp)
7000 * TYPE_QUAL_CONST))),
7001 0, TREE_ADDRESSABLE (exp), 1);
7003 store_constructor (exp, target, 0, int_expr_size (exp));
7004 return target;
7007 case MISALIGNED_INDIRECT_REF:
7008 case ALIGN_INDIRECT_REF:
7009 case INDIRECT_REF:
7011 tree exp1 = TREE_OPERAND (exp, 0);
7013 if (modifier != EXPAND_WRITE)
7015 tree t;
7017 t = fold_read_from_constant_string (exp);
7018 if (t)
7019 return expand_expr (t, target, tmode, modifier);
7022 op0 = expand_expr (exp1, NULL_RTX, VOIDmode, EXPAND_SUM);
7023 op0 = memory_address (mode, op0);
7025 if (code == ALIGN_INDIRECT_REF)
7027 int align = TYPE_ALIGN_UNIT (type);
7028 op0 = gen_rtx_AND (Pmode, op0, GEN_INT (-align));
7029 op0 = memory_address (mode, op0);
7032 temp = gen_rtx_MEM (mode, op0);
7034 set_mem_attributes (temp, exp, 0);
7036 /* Resolve the misalignment now, so that we don't have to remember
7037 to resolve it later. Of course, this only works for reads. */
7038 /* ??? When we get around to supporting writes, we'll have to handle
7039 this in store_expr directly. The vectorizer isn't generating
7040 those yet, however. */
7041 if (code == MISALIGNED_INDIRECT_REF)
7043 int icode;
7044 rtx reg, insn;
7046 gcc_assert (modifier == EXPAND_NORMAL
7047 || modifier == EXPAND_STACK_PARM);
7049 /* The vectorizer should have already checked the mode. */
7050 icode = movmisalign_optab->handlers[mode].insn_code;
7051 gcc_assert (icode != CODE_FOR_nothing);
7053 /* We've already validated the memory, and we're creating a
7054 new pseudo destination. The predicates really can't fail. */
7055 reg = gen_reg_rtx (mode);
7057 /* Nor can the insn generator. */
7058 insn = GEN_FCN (icode) (reg, temp);
7059 emit_insn (insn);
7061 return reg;
7064 return temp;
7067 case TARGET_MEM_REF:
7069 struct mem_address addr;
7071 get_address_description (exp, &addr);
7072 op0 = addr_for_mem_ref (&addr, true);
7073 op0 = memory_address (mode, op0);
7074 temp = gen_rtx_MEM (mode, op0);
7075 set_mem_attributes (temp, TMR_ORIGINAL (exp), 0);
7077 return temp;
7079 case ARRAY_REF:
7082 tree array = TREE_OPERAND (exp, 0);
7083 tree index = TREE_OPERAND (exp, 1);
7085 /* Fold an expression like: "foo"[2].
7086 This is not done in fold so it won't happen inside &.
7087 Don't fold if this is for wide characters since it's too
7088 difficult to do correctly and this is a very rare case. */
7090 if (modifier != EXPAND_CONST_ADDRESS
7091 && modifier != EXPAND_INITIALIZER
7092 && modifier != EXPAND_MEMORY)
7094 tree t = fold_read_from_constant_string (exp);
7096 if (t)
7097 return expand_expr (t, target, tmode, modifier);
7100 /* If this is a constant index into a constant array,
7101 just get the value from the array. Handle both the cases when
7102 we have an explicit constructor and when our operand is a variable
7103 that was declared const. */
7105 if (modifier != EXPAND_CONST_ADDRESS
7106 && modifier != EXPAND_INITIALIZER
7107 && modifier != EXPAND_MEMORY
7108 && TREE_CODE (array) == CONSTRUCTOR
7109 && ! TREE_SIDE_EFFECTS (array)
7110 && TREE_CODE (index) == INTEGER_CST)
7112 unsigned HOST_WIDE_INT ix;
7113 tree field, value;
7115 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
7116 field, value)
7117 if (tree_int_cst_equal (field, index))
7119 if (!TREE_SIDE_EFFECTS (value))
7120 return expand_expr (fold (value), target, tmode, modifier);
7121 break;
7125 else if (optimize >= 1
7126 && modifier != EXPAND_CONST_ADDRESS
7127 && modifier != EXPAND_INITIALIZER
7128 && modifier != EXPAND_MEMORY
7129 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
7130 && TREE_CODE (array) == VAR_DECL && DECL_INITIAL (array)
7131 && TREE_CODE (DECL_INITIAL (array)) != ERROR_MARK
7132 && targetm.binds_local_p (array))
7134 if (TREE_CODE (index) == INTEGER_CST)
7136 tree init = DECL_INITIAL (array);
7138 if (TREE_CODE (init) == CONSTRUCTOR)
7140 unsigned HOST_WIDE_INT ix;
7141 tree field, value;
7143 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
7144 field, value)
7145 if (tree_int_cst_equal (field, index))
7147 if (!TREE_SIDE_EFFECTS (value))
7148 return expand_expr (fold (value), target, tmode,
7149 modifier);
7150 break;
7153 else if(TREE_CODE (init) == STRING_CST)
7155 tree index1 = index;
7156 tree low_bound = array_ref_low_bound (exp);
7157 index1 = fold_convert (sizetype, TREE_OPERAND (exp, 1));
7159 /* Optimize the special-case of a zero lower bound.
7161 We convert the low_bound to sizetype to avoid some problems
7162 with constant folding. (E.g. suppose the lower bound is 1,
7163 and its mode is QI. Without the conversion,l (ARRAY
7164 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
7165 +INDEX), which becomes (ARRAY+255+INDEX). Opps!) */
7167 if (! integer_zerop (low_bound))
7168 index1 = size_diffop (index1, fold_convert (sizetype,
7169 low_bound));
7171 if (0 > compare_tree_int (index1,
7172 TREE_STRING_LENGTH (init)))
7174 tree type = TREE_TYPE (TREE_TYPE (init));
7175 enum machine_mode mode = TYPE_MODE (type);
7177 if (GET_MODE_CLASS (mode) == MODE_INT
7178 && GET_MODE_SIZE (mode) == 1)
7179 return gen_int_mode (TREE_STRING_POINTER (init)
7180 [TREE_INT_CST_LOW (index1)],
7181 mode);
7187 goto normal_inner_ref;
7189 case COMPONENT_REF:
7190 /* If the operand is a CONSTRUCTOR, we can just extract the
7191 appropriate field if it is present. */
7192 if (TREE_CODE (TREE_OPERAND (exp, 0)) == CONSTRUCTOR)
7194 unsigned HOST_WIDE_INT idx;
7195 tree field, value;
7197 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (TREE_OPERAND (exp, 0)),
7198 idx, field, value)
7199 if (field == TREE_OPERAND (exp, 1)
7200 /* We can normally use the value of the field in the
7201 CONSTRUCTOR. However, if this is a bitfield in
7202 an integral mode that we can fit in a HOST_WIDE_INT,
7203 we must mask only the number of bits in the bitfield,
7204 since this is done implicitly by the constructor. If
7205 the bitfield does not meet either of those conditions,
7206 we can't do this optimization. */
7207 && (! DECL_BIT_FIELD (field)
7208 || ((GET_MODE_CLASS (DECL_MODE (field)) == MODE_INT)
7209 && (GET_MODE_BITSIZE (DECL_MODE (field))
7210 <= HOST_BITS_PER_WIDE_INT))))
7212 if (DECL_BIT_FIELD (field)
7213 && modifier == EXPAND_STACK_PARM)
7214 target = 0;
7215 op0 = expand_expr (value, target, tmode, modifier);
7216 if (DECL_BIT_FIELD (field))
7218 HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
7219 enum machine_mode imode = TYPE_MODE (TREE_TYPE (field));
7221 if (TYPE_UNSIGNED (TREE_TYPE (field)))
7223 op1 = GEN_INT (((HOST_WIDE_INT) 1 << bitsize) - 1);
7224 op0 = expand_and (imode, op0, op1, target);
7226 else
7228 tree count
7229 = build_int_cst (NULL_TREE,
7230 GET_MODE_BITSIZE (imode) - bitsize);
7232 op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
7233 target, 0);
7234 op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
7235 target, 0);
7239 return op0;
7242 goto normal_inner_ref;
7244 case BIT_FIELD_REF:
7245 case ARRAY_RANGE_REF:
7246 normal_inner_ref:
7248 enum machine_mode mode1;
7249 HOST_WIDE_INT bitsize, bitpos;
7250 tree offset;
7251 int volatilep = 0;
7252 tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
7253 &mode1, &unsignedp, &volatilep, true);
7254 rtx orig_op0;
7256 /* If we got back the original object, something is wrong. Perhaps
7257 we are evaluating an expression too early. In any event, don't
7258 infinitely recurse. */
7259 gcc_assert (tem != exp);
7261 /* If TEM's type is a union of variable size, pass TARGET to the inner
7262 computation, since it will need a temporary and TARGET is known
7263 to have to do. This occurs in unchecked conversion in Ada. */
7265 orig_op0 = op0
7266 = expand_expr (tem,
7267 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
7268 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
7269 != INTEGER_CST)
7270 && modifier != EXPAND_STACK_PARM
7271 ? target : NULL_RTX),
7272 VOIDmode,
7273 (modifier == EXPAND_INITIALIZER
7274 || modifier == EXPAND_CONST_ADDRESS
7275 || modifier == EXPAND_STACK_PARM)
7276 ? modifier : EXPAND_NORMAL);
7278 /* If this is a constant, put it into a register if it is a legitimate
7279 constant, OFFSET is 0, and we won't try to extract outside the
7280 register (in case we were passed a partially uninitialized object
7281 or a view_conversion to a larger size). Force the constant to
7282 memory otherwise. */
7283 if (CONSTANT_P (op0))
7285 enum machine_mode mode = TYPE_MODE (TREE_TYPE (tem));
7286 if (mode != BLKmode && LEGITIMATE_CONSTANT_P (op0)
7287 && offset == 0
7288 && bitpos + bitsize <= GET_MODE_BITSIZE (mode))
7289 op0 = force_reg (mode, op0);
7290 else
7291 op0 = validize_mem (force_const_mem (mode, op0));
7294 /* Otherwise, if this object not in memory and we either have an
7295 offset, a BLKmode result, or a reference outside the object, put it
7296 there. Such cases can occur in Ada if we have unchecked conversion
7297 of an expression from a scalar type to an array or record type or
7298 for an ARRAY_RANGE_REF whose type is BLKmode. */
7299 else if (!MEM_P (op0)
7300 && (offset != 0
7301 || (bitpos + bitsize > GET_MODE_BITSIZE (GET_MODE (op0)))
7302 || (code == ARRAY_RANGE_REF && mode == BLKmode)))
7304 tree nt = build_qualified_type (TREE_TYPE (tem),
7305 (TYPE_QUALS (TREE_TYPE (tem))
7306 | TYPE_QUAL_CONST));
7307 rtx memloc = assign_temp (nt, 1, 1, 1);
7309 emit_move_insn (memloc, op0);
7310 op0 = memloc;
7313 if (offset != 0)
7315 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
7316 EXPAND_SUM);
7318 gcc_assert (MEM_P (op0));
7320 #ifdef POINTERS_EXTEND_UNSIGNED
7321 if (GET_MODE (offset_rtx) != Pmode)
7322 offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
7323 #else
7324 if (GET_MODE (offset_rtx) != ptr_mode)
7325 offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
7326 #endif
7328 if (GET_MODE (op0) == BLKmode
7329 /* A constant address in OP0 can have VOIDmode, we must
7330 not try to call force_reg in that case. */
7331 && GET_MODE (XEXP (op0, 0)) != VOIDmode
7332 && bitsize != 0
7333 && (bitpos % bitsize) == 0
7334 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
7335 && MEM_ALIGN (op0) == GET_MODE_ALIGNMENT (mode1))
7337 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
7338 bitpos = 0;
7341 op0 = offset_address (op0, offset_rtx,
7342 highest_pow2_factor (offset));
7345 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
7346 record its alignment as BIGGEST_ALIGNMENT. */
7347 if (MEM_P (op0) && bitpos == 0 && offset != 0
7348 && is_aligning_offset (offset, tem))
7349 set_mem_align (op0, BIGGEST_ALIGNMENT);
7351 /* Don't forget about volatility even if this is a bitfield. */
7352 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
7354 if (op0 == orig_op0)
7355 op0 = copy_rtx (op0);
7357 MEM_VOLATILE_P (op0) = 1;
7360 /* The following code doesn't handle CONCAT.
7361 Assume only bitpos == 0 can be used for CONCAT, due to
7362 one element arrays having the same mode as its element. */
7363 if (GET_CODE (op0) == CONCAT)
7365 gcc_assert (bitpos == 0
7366 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)));
7367 return op0;
7370 /* In cases where an aligned union has an unaligned object
7371 as a field, we might be extracting a BLKmode value from
7372 an integer-mode (e.g., SImode) object. Handle this case
7373 by doing the extract into an object as wide as the field
7374 (which we know to be the width of a basic mode), then
7375 storing into memory, and changing the mode to BLKmode. */
7376 if (mode1 == VOIDmode
7377 || REG_P (op0) || GET_CODE (op0) == SUBREG
7378 || (mode1 != BLKmode && ! direct_load[(int) mode1]
7379 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
7380 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
7381 && modifier != EXPAND_CONST_ADDRESS
7382 && modifier != EXPAND_INITIALIZER)
7383 /* If the field isn't aligned enough to fetch as a memref,
7384 fetch it as a bit field. */
7385 || (mode1 != BLKmode
7386 && (((TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
7387 || (bitpos % GET_MODE_ALIGNMENT (mode) != 0)
7388 || (MEM_P (op0)
7389 && (MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
7390 || (bitpos % GET_MODE_ALIGNMENT (mode1) != 0))))
7391 && ((modifier == EXPAND_CONST_ADDRESS
7392 || modifier == EXPAND_INITIALIZER)
7393 ? STRICT_ALIGNMENT
7394 : SLOW_UNALIGNED_ACCESS (mode1, MEM_ALIGN (op0))))
7395 || (bitpos % BITS_PER_UNIT != 0)))
7396 /* If the type and the field are a constant size and the
7397 size of the type isn't the same size as the bitfield,
7398 we must use bitfield operations. */
7399 || (bitsize >= 0
7400 && TYPE_SIZE (TREE_TYPE (exp))
7401 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
7402 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)),
7403 bitsize)))
7405 enum machine_mode ext_mode = mode;
7407 if (ext_mode == BLKmode
7408 && ! (target != 0 && MEM_P (op0)
7409 && MEM_P (target)
7410 && bitpos % BITS_PER_UNIT == 0))
7411 ext_mode = mode_for_size (bitsize, MODE_INT, 1);
7413 if (ext_mode == BLKmode)
7415 if (target == 0)
7416 target = assign_temp (type, 0, 1, 1);
7418 if (bitsize == 0)
7419 return target;
7421 /* In this case, BITPOS must start at a byte boundary and
7422 TARGET, if specified, must be a MEM. */
7423 gcc_assert (MEM_P (op0)
7424 && (!target || MEM_P (target))
7425 && !(bitpos % BITS_PER_UNIT));
7427 emit_block_move (target,
7428 adjust_address (op0, VOIDmode,
7429 bitpos / BITS_PER_UNIT),
7430 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
7431 / BITS_PER_UNIT),
7432 (modifier == EXPAND_STACK_PARM
7433 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
7435 return target;
7438 op0 = validize_mem (op0);
7440 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
7441 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
7443 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp,
7444 (modifier == EXPAND_STACK_PARM
7445 ? NULL_RTX : target),
7446 ext_mode, ext_mode);
7448 /* If the result is a record type and BITSIZE is narrower than
7449 the mode of OP0, an integral mode, and this is a big endian
7450 machine, we must put the field into the high-order bits. */
7451 if (TREE_CODE (type) == RECORD_TYPE && BYTES_BIG_ENDIAN
7452 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
7453 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (op0)))
7454 op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0,
7455 size_int (GET_MODE_BITSIZE (GET_MODE (op0))
7456 - bitsize),
7457 op0, 1);
7459 /* If the result type is BLKmode, store the data into a temporary
7460 of the appropriate type, but with the mode corresponding to the
7461 mode for the data we have (op0's mode). It's tempting to make
7462 this a constant type, since we know it's only being stored once,
7463 but that can cause problems if we are taking the address of this
7464 COMPONENT_REF because the MEM of any reference via that address
7465 will have flags corresponding to the type, which will not
7466 necessarily be constant. */
7467 if (mode == BLKmode)
7469 rtx new
7470 = assign_stack_temp_for_type
7471 (ext_mode, GET_MODE_BITSIZE (ext_mode), 0, type);
7473 emit_move_insn (new, op0);
7474 op0 = copy_rtx (new);
7475 PUT_MODE (op0, BLKmode);
7476 set_mem_attributes (op0, exp, 1);
7479 return op0;
7482 /* If the result is BLKmode, use that to access the object
7483 now as well. */
7484 if (mode == BLKmode)
7485 mode1 = BLKmode;
7487 /* Get a reference to just this component. */
7488 if (modifier == EXPAND_CONST_ADDRESS
7489 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7490 op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
7491 else
7492 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
7494 if (op0 == orig_op0)
7495 op0 = copy_rtx (op0);
7497 set_mem_attributes (op0, exp, 0);
7498 if (REG_P (XEXP (op0, 0)))
7499 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
7501 MEM_VOLATILE_P (op0) |= volatilep;
7502 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
7503 || modifier == EXPAND_CONST_ADDRESS
7504 || modifier == EXPAND_INITIALIZER)
7505 return op0;
7506 else if (target == 0)
7507 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
7509 convert_move (target, op0, unsignedp);
7510 return target;
7513 case OBJ_TYPE_REF:
7514 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
7516 case CALL_EXPR:
7517 /* Check for a built-in function. */
7518 if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
7519 && (TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
7520 == FUNCTION_DECL)
7521 && DECL_BUILT_IN (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
7523 if (DECL_BUILT_IN_CLASS (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
7524 == BUILT_IN_FRONTEND)
7525 return lang_hooks.expand_expr (exp, original_target,
7526 tmode, modifier,
7527 alt_rtl);
7528 else
7529 return expand_builtin (exp, target, subtarget, tmode, ignore);
7532 return expand_call (exp, target, ignore);
7534 case NON_LVALUE_EXPR:
7535 case NOP_EXPR:
7536 case CONVERT_EXPR:
7537 if (TREE_OPERAND (exp, 0) == error_mark_node)
7538 return const0_rtx;
7540 if (TREE_CODE (type) == UNION_TYPE)
7542 tree valtype = TREE_TYPE (TREE_OPERAND (exp, 0));
7544 /* If both input and output are BLKmode, this conversion isn't doing
7545 anything except possibly changing memory attribute. */
7546 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
7548 rtx result = expand_expr (TREE_OPERAND (exp, 0), target, tmode,
7549 modifier);
7551 result = copy_rtx (result);
7552 set_mem_attributes (result, exp, 0);
7553 return result;
7556 if (target == 0)
7558 if (TYPE_MODE (type) != BLKmode)
7559 target = gen_reg_rtx (TYPE_MODE (type));
7560 else
7561 target = assign_temp (type, 0, 1, 1);
7564 if (MEM_P (target))
7565 /* Store data into beginning of memory target. */
7566 store_expr (TREE_OPERAND (exp, 0),
7567 adjust_address (target, TYPE_MODE (valtype), 0),
7568 modifier == EXPAND_STACK_PARM);
7570 else
7572 gcc_assert (REG_P (target));
7574 /* Store this field into a union of the proper type. */
7575 store_field (target,
7576 MIN ((int_size_in_bytes (TREE_TYPE
7577 (TREE_OPERAND (exp, 0)))
7578 * BITS_PER_UNIT),
7579 (HOST_WIDE_INT) GET_MODE_BITSIZE (mode)),
7580 0, TYPE_MODE (valtype), TREE_OPERAND (exp, 0),
7581 type, 0);
7584 /* Return the entire union. */
7585 return target;
7588 if (mode == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))))
7590 op0 = expand_expr (TREE_OPERAND (exp, 0), target, VOIDmode,
7591 modifier);
7593 /* If the signedness of the conversion differs and OP0 is
7594 a promoted SUBREG, clear that indication since we now
7595 have to do the proper extension. */
7596 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))) != unsignedp
7597 && GET_CODE (op0) == SUBREG)
7598 SUBREG_PROMOTED_VAR_P (op0) = 0;
7600 return REDUCE_BIT_FIELD (op0);
7603 op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, mode, modifier);
7604 if (GET_MODE (op0) == mode)
7607 /* If OP0 is a constant, just convert it into the proper mode. */
7608 else if (CONSTANT_P (op0))
7610 tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
7611 enum machine_mode inner_mode = TYPE_MODE (inner_type);
7613 if (modifier == EXPAND_INITIALIZER)
7614 op0 = simplify_gen_subreg (mode, op0, inner_mode,
7615 subreg_lowpart_offset (mode,
7616 inner_mode));
7617 else
7618 op0= convert_modes (mode, inner_mode, op0,
7619 TYPE_UNSIGNED (inner_type));
7622 else if (modifier == EXPAND_INITIALIZER)
7623 op0 = gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
7625 else if (target == 0)
7626 op0 = convert_to_mode (mode, op0,
7627 TYPE_UNSIGNED (TREE_TYPE
7628 (TREE_OPERAND (exp, 0))));
7629 else
7631 convert_move (target, op0,
7632 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
7633 op0 = target;
7636 return REDUCE_BIT_FIELD (op0);
7638 case VIEW_CONVERT_EXPR:
7639 op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, mode, modifier);
7641 /* If the input and output modes are both the same, we are done. */
7642 if (TYPE_MODE (type) == GET_MODE (op0))
7644 /* If neither mode is BLKmode, and both modes are the same size
7645 then we can use gen_lowpart. */
7646 else if (TYPE_MODE (type) != BLKmode && GET_MODE (op0) != BLKmode
7647 && GET_MODE_SIZE (TYPE_MODE (type))
7648 == GET_MODE_SIZE (GET_MODE (op0)))
7650 if (GET_CODE (op0) == SUBREG)
7651 op0 = force_reg (GET_MODE (op0), op0);
7652 op0 = gen_lowpart (TYPE_MODE (type), op0);
7654 /* If both modes are integral, then we can convert from one to the
7655 other. */
7656 else if (SCALAR_INT_MODE_P (GET_MODE (op0))
7657 && SCALAR_INT_MODE_P (TYPE_MODE (type)))
7658 op0 = convert_modes (TYPE_MODE (type), GET_MODE (op0), op0,
7659 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
7660 /* As a last resort, spill op0 to memory, and reload it in a
7661 different mode. */
7662 else if (!MEM_P (op0))
7664 /* If the operand is not a MEM, force it into memory. Since we
7665 are going to be be changing the mode of the MEM, don't call
7666 force_const_mem for constants because we don't allow pool
7667 constants to change mode. */
7668 tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
7670 gcc_assert (!TREE_ADDRESSABLE (exp));
7672 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
7673 target
7674 = assign_stack_temp_for_type
7675 (TYPE_MODE (inner_type),
7676 GET_MODE_SIZE (TYPE_MODE (inner_type)), 0, inner_type);
7678 emit_move_insn (target, op0);
7679 op0 = target;
7682 /* At this point, OP0 is in the correct mode. If the output type is such
7683 that the operand is known to be aligned, indicate that it is.
7684 Otherwise, we need only be concerned about alignment for non-BLKmode
7685 results. */
7686 if (MEM_P (op0))
7688 op0 = copy_rtx (op0);
7690 if (TYPE_ALIGN_OK (type))
7691 set_mem_align (op0, MAX (MEM_ALIGN (op0), TYPE_ALIGN (type)));
7692 else if (TYPE_MODE (type) != BLKmode && STRICT_ALIGNMENT
7693 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
7695 tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
7696 HOST_WIDE_INT temp_size
7697 = MAX (int_size_in_bytes (inner_type),
7698 (HOST_WIDE_INT) GET_MODE_SIZE (TYPE_MODE (type)));
7699 rtx new = assign_stack_temp_for_type (TYPE_MODE (type),
7700 temp_size, 0, type);
7701 rtx new_with_op0_mode = adjust_address (new, GET_MODE (op0), 0);
7703 gcc_assert (!TREE_ADDRESSABLE (exp));
7705 if (GET_MODE (op0) == BLKmode)
7706 emit_block_move (new_with_op0_mode, op0,
7707 GEN_INT (GET_MODE_SIZE (TYPE_MODE (type))),
7708 (modifier == EXPAND_STACK_PARM
7709 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
7710 else
7711 emit_move_insn (new_with_op0_mode, op0);
7713 op0 = new;
7716 op0 = adjust_address (op0, TYPE_MODE (type), 0);
7719 return op0;
7721 case PLUS_EXPR:
7722 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
7723 something else, make sure we add the register to the constant and
7724 then to the other thing. This case can occur during strength
7725 reduction and doing it this way will produce better code if the
7726 frame pointer or argument pointer is eliminated.
7728 fold-const.c will ensure that the constant is always in the inner
7729 PLUS_EXPR, so the only case we need to do anything about is if
7730 sp, ap, or fp is our second argument, in which case we must swap
7731 the innermost first argument and our second argument. */
7733 if (TREE_CODE (TREE_OPERAND (exp, 0)) == PLUS_EXPR
7734 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 1)) == INTEGER_CST
7735 && TREE_CODE (TREE_OPERAND (exp, 1)) == VAR_DECL
7736 && (DECL_RTL (TREE_OPERAND (exp, 1)) == frame_pointer_rtx
7737 || DECL_RTL (TREE_OPERAND (exp, 1)) == stack_pointer_rtx
7738 || DECL_RTL (TREE_OPERAND (exp, 1)) == arg_pointer_rtx))
7740 tree t = TREE_OPERAND (exp, 1);
7742 TREE_OPERAND (exp, 1) = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
7743 TREE_OPERAND (TREE_OPERAND (exp, 0), 0) = t;
7746 /* If the result is to be ptr_mode and we are adding an integer to
7747 something, we might be forming a constant. So try to use
7748 plus_constant. If it produces a sum and we can't accept it,
7749 use force_operand. This allows P = &ARR[const] to generate
7750 efficient code on machines where a SYMBOL_REF is not a valid
7751 address.
7753 If this is an EXPAND_SUM call, always return the sum. */
7754 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
7755 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
7757 if (modifier == EXPAND_STACK_PARM)
7758 target = 0;
7759 if (TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST
7760 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7761 && TREE_CONSTANT (TREE_OPERAND (exp, 1)))
7763 rtx constant_part;
7765 op1 = expand_expr (TREE_OPERAND (exp, 1), subtarget, VOIDmode,
7766 EXPAND_SUM);
7767 /* Use immed_double_const to ensure that the constant is
7768 truncated according to the mode of OP1, then sign extended
7769 to a HOST_WIDE_INT. Using the constant directly can result
7770 in non-canonical RTL in a 64x32 cross compile. */
7771 constant_part
7772 = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp, 0)),
7773 (HOST_WIDE_INT) 0,
7774 TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 1))));
7775 op1 = plus_constant (op1, INTVAL (constant_part));
7776 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7777 op1 = force_operand (op1, target);
7778 return REDUCE_BIT_FIELD (op1);
7781 else if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
7782 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7783 && TREE_CONSTANT (TREE_OPERAND (exp, 0)))
7785 rtx constant_part;
7787 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode,
7788 (modifier == EXPAND_INITIALIZER
7789 ? EXPAND_INITIALIZER : EXPAND_SUM));
7790 if (! CONSTANT_P (op0))
7792 op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX,
7793 VOIDmode, modifier);
7794 /* Return a PLUS if modifier says it's OK. */
7795 if (modifier == EXPAND_SUM
7796 || modifier == EXPAND_INITIALIZER)
7797 return simplify_gen_binary (PLUS, mode, op0, op1);
7798 goto binop2;
7800 /* Use immed_double_const to ensure that the constant is
7801 truncated according to the mode of OP1, then sign extended
7802 to a HOST_WIDE_INT. Using the constant directly can result
7803 in non-canonical RTL in a 64x32 cross compile. */
7804 constant_part
7805 = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1)),
7806 (HOST_WIDE_INT) 0,
7807 TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))));
7808 op0 = plus_constant (op0, INTVAL (constant_part));
7809 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7810 op0 = force_operand (op0, target);
7811 return REDUCE_BIT_FIELD (op0);
7815 /* No sense saving up arithmetic to be done
7816 if it's all in the wrong mode to form part of an address.
7817 And force_operand won't know whether to sign-extend or
7818 zero-extend. */
7819 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7820 || mode != ptr_mode)
7822 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
7823 subtarget, &op0, &op1, 0);
7824 if (op0 == const0_rtx)
7825 return op1;
7826 if (op1 == const0_rtx)
7827 return op0;
7828 goto binop2;
7831 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
7832 subtarget, &op0, &op1, modifier);
7833 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
7835 case MINUS_EXPR:
7836 /* For initializers, we are allowed to return a MINUS of two
7837 symbolic constants. Here we handle all cases when both operands
7838 are constant. */
7839 /* Handle difference of two symbolic constants,
7840 for the sake of an initializer. */
7841 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7842 && really_constant_p (TREE_OPERAND (exp, 0))
7843 && really_constant_p (TREE_OPERAND (exp, 1)))
7845 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
7846 NULL_RTX, &op0, &op1, modifier);
7848 /* If the last operand is a CONST_INT, use plus_constant of
7849 the negated constant. Else make the MINUS. */
7850 if (GET_CODE (op1) == CONST_INT)
7851 return REDUCE_BIT_FIELD (plus_constant (op0, - INTVAL (op1)));
7852 else
7853 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode, op0, op1));
7856 /* No sense saving up arithmetic to be done
7857 if it's all in the wrong mode to form part of an address.
7858 And force_operand won't know whether to sign-extend or
7859 zero-extend. */
7860 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7861 || mode != ptr_mode)
7862 goto binop;
7864 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
7865 subtarget, &op0, &op1, modifier);
7867 /* Convert A - const to A + (-const). */
7868 if (GET_CODE (op1) == CONST_INT)
7870 op1 = negate_rtx (mode, op1);
7871 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
7874 goto binop2;
7876 case MULT_EXPR:
7877 /* If first operand is constant, swap them.
7878 Thus the following special case checks need only
7879 check the second operand. */
7880 if (TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST)
7882 tree t1 = TREE_OPERAND (exp, 0);
7883 TREE_OPERAND (exp, 0) = TREE_OPERAND (exp, 1);
7884 TREE_OPERAND (exp, 1) = t1;
7887 /* Attempt to return something suitable for generating an
7888 indexed address, for machines that support that. */
7890 if (modifier == EXPAND_SUM && mode == ptr_mode
7891 && host_integerp (TREE_OPERAND (exp, 1), 0))
7893 tree exp1 = TREE_OPERAND (exp, 1);
7895 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode,
7896 EXPAND_SUM);
7898 if (!REG_P (op0))
7899 op0 = force_operand (op0, NULL_RTX);
7900 if (!REG_P (op0))
7901 op0 = copy_to_mode_reg (mode, op0);
7903 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
7904 gen_int_mode (tree_low_cst (exp1, 0),
7905 TYPE_MODE (TREE_TYPE (exp1)))));
7908 if (modifier == EXPAND_STACK_PARM)
7909 target = 0;
7911 /* Check for multiplying things that have been extended
7912 from a narrower type. If this machine supports multiplying
7913 in that narrower type with a result in the desired type,
7914 do it that way, and avoid the explicit type-conversion. */
7916 subexp0 = TREE_OPERAND (exp, 0);
7917 subexp1 = TREE_OPERAND (exp, 1);
7918 /* First, check if we have a multiplication of one signed and one
7919 unsigned operand. */
7920 if (TREE_CODE (subexp0) == NOP_EXPR
7921 && TREE_CODE (subexp1) == NOP_EXPR
7922 && TREE_CODE (type) == INTEGER_TYPE
7923 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp0, 0)))
7924 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))))
7925 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp0, 0)))
7926 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp1, 0))))
7927 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp0, 0)))
7928 != TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp1, 0)))))
7930 enum machine_mode innermode
7931 = TYPE_MODE (TREE_TYPE (TREE_OPERAND (subexp0, 0)));
7932 this_optab = usmul_widen_optab;
7933 if (mode == GET_MODE_WIDER_MODE (innermode))
7935 if (this_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
7937 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp0, 0))))
7938 expand_operands (TREE_OPERAND (subexp0, 0),
7939 TREE_OPERAND (subexp1, 0),
7940 NULL_RTX, &op0, &op1, 0);
7941 else
7942 expand_operands (TREE_OPERAND (subexp0, 0),
7943 TREE_OPERAND (subexp1, 0),
7944 NULL_RTX, &op1, &op0, 0);
7946 goto binop3;
7950 /* Check for a multiplication with matching signedness. */
7951 else if (TREE_CODE (TREE_OPERAND (exp, 0)) == NOP_EXPR
7952 && TREE_CODE (type) == INTEGER_TYPE
7953 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
7954 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))))
7955 && ((TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
7956 && int_fits_type_p (TREE_OPERAND (exp, 1),
7957 TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
7958 /* Don't use a widening multiply if a shift will do. */
7959 && ((GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 1))))
7960 > HOST_BITS_PER_WIDE_INT)
7961 || exact_log2 (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1))) < 0))
7963 (TREE_CODE (TREE_OPERAND (exp, 1)) == NOP_EXPR
7964 && (TYPE_PRECISION (TREE_TYPE
7965 (TREE_OPERAND (TREE_OPERAND (exp, 1), 0)))
7966 == TYPE_PRECISION (TREE_TYPE
7967 (TREE_OPERAND
7968 (TREE_OPERAND (exp, 0), 0))))
7969 /* If both operands are extended, they must either both
7970 be zero-extended or both be sign-extended. */
7971 && (TYPE_UNSIGNED (TREE_TYPE
7972 (TREE_OPERAND (TREE_OPERAND (exp, 1), 0)))
7973 == TYPE_UNSIGNED (TREE_TYPE
7974 (TREE_OPERAND
7975 (TREE_OPERAND (exp, 0), 0)))))))
7977 tree op0type = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0));
7978 enum machine_mode innermode = TYPE_MODE (op0type);
7979 bool zextend_p = TYPE_UNSIGNED (op0type);
7980 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
7981 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
7983 if (mode == GET_MODE_2XWIDER_MODE (innermode))
7985 if (this_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
7987 if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
7988 expand_operands (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
7989 TREE_OPERAND (exp, 1),
7990 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
7991 else
7992 expand_operands (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
7993 TREE_OPERAND (TREE_OPERAND (exp, 1), 0),
7994 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
7995 goto binop3;
7997 else if (other_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
7998 && innermode == word_mode)
8000 rtx htem, hipart;
8001 op0 = expand_normal (TREE_OPERAND (TREE_OPERAND (exp, 0), 0));
8002 if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
8003 op1 = convert_modes (innermode, mode,
8004 expand_normal (TREE_OPERAND (exp, 1)),
8005 unsignedp);
8006 else
8007 op1 = expand_normal (TREE_OPERAND (TREE_OPERAND (exp, 1), 0));
8008 temp = expand_binop (mode, other_optab, op0, op1, target,
8009 unsignedp, OPTAB_LIB_WIDEN);
8010 hipart = gen_highpart (innermode, temp);
8011 htem = expand_mult_highpart_adjust (innermode, hipart,
8012 op0, op1, hipart,
8013 zextend_p);
8014 if (htem != hipart)
8015 emit_move_insn (hipart, htem);
8016 return REDUCE_BIT_FIELD (temp);
8020 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8021 subtarget, &op0, &op1, 0);
8022 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
8024 case TRUNC_DIV_EXPR:
8025 case FLOOR_DIV_EXPR:
8026 case CEIL_DIV_EXPR:
8027 case ROUND_DIV_EXPR:
8028 case EXACT_DIV_EXPR:
8029 if (modifier == EXPAND_STACK_PARM)
8030 target = 0;
8031 /* Possible optimization: compute the dividend with EXPAND_SUM
8032 then if the divisor is constant can optimize the case
8033 where some terms of the dividend have coeffs divisible by it. */
8034 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8035 subtarget, &op0, &op1, 0);
8036 return expand_divmod (0, code, mode, op0, op1, target, unsignedp);
8038 case RDIV_EXPR:
8039 goto binop;
8041 case TRUNC_MOD_EXPR:
8042 case FLOOR_MOD_EXPR:
8043 case CEIL_MOD_EXPR:
8044 case ROUND_MOD_EXPR:
8045 if (modifier == EXPAND_STACK_PARM)
8046 target = 0;
8047 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8048 subtarget, &op0, &op1, 0);
8049 return expand_divmod (1, code, mode, op0, op1, target, unsignedp);
8051 case FIX_ROUND_EXPR:
8052 case FIX_FLOOR_EXPR:
8053 case FIX_CEIL_EXPR:
8054 gcc_unreachable (); /* Not used for C. */
8056 case FIX_TRUNC_EXPR:
8057 op0 = expand_normal (TREE_OPERAND (exp, 0));
8058 if (target == 0 || modifier == EXPAND_STACK_PARM)
8059 target = gen_reg_rtx (mode);
8060 expand_fix (target, op0, unsignedp);
8061 return target;
8063 case FLOAT_EXPR:
8064 op0 = expand_normal (TREE_OPERAND (exp, 0));
8065 if (target == 0 || modifier == EXPAND_STACK_PARM)
8066 target = gen_reg_rtx (mode);
8067 /* expand_float can't figure out what to do if FROM has VOIDmode.
8068 So give it the correct mode. With -O, cse will optimize this. */
8069 if (GET_MODE (op0) == VOIDmode)
8070 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))),
8071 op0);
8072 expand_float (target, op0,
8073 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
8074 return target;
8076 case NEGATE_EXPR:
8077 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
8078 if (modifier == EXPAND_STACK_PARM)
8079 target = 0;
8080 temp = expand_unop (mode,
8081 optab_for_tree_code (NEGATE_EXPR, type),
8082 op0, target, 0);
8083 gcc_assert (temp);
8084 return REDUCE_BIT_FIELD (temp);
8086 case ABS_EXPR:
8087 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
8088 if (modifier == EXPAND_STACK_PARM)
8089 target = 0;
8091 /* ABS_EXPR is not valid for complex arguments. */
8092 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
8093 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
8095 /* Unsigned abs is simply the operand. Testing here means we don't
8096 risk generating incorrect code below. */
8097 if (TYPE_UNSIGNED (type))
8098 return op0;
8100 return expand_abs (mode, op0, target, unsignedp,
8101 safe_from_p (target, TREE_OPERAND (exp, 0), 1));
8103 case MAX_EXPR:
8104 case MIN_EXPR:
8105 target = original_target;
8106 if (target == 0
8107 || modifier == EXPAND_STACK_PARM
8108 || (MEM_P (target) && MEM_VOLATILE_P (target))
8109 || GET_MODE (target) != mode
8110 || (REG_P (target)
8111 && REGNO (target) < FIRST_PSEUDO_REGISTER))
8112 target = gen_reg_rtx (mode);
8113 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8114 target, &op0, &op1, 0);
8116 /* First try to do it with a special MIN or MAX instruction.
8117 If that does not win, use a conditional jump to select the proper
8118 value. */
8119 this_optab = optab_for_tree_code (code, type);
8120 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8121 OPTAB_WIDEN);
8122 if (temp != 0)
8123 return temp;
8125 /* At this point, a MEM target is no longer useful; we will get better
8126 code without it. */
8128 if (! REG_P (target))
8129 target = gen_reg_rtx (mode);
8131 /* If op1 was placed in target, swap op0 and op1. */
8132 if (target != op0 && target == op1)
8134 temp = op0;
8135 op0 = op1;
8136 op1 = temp;
8139 /* We generate better code and avoid problems with op1 mentioning
8140 target by forcing op1 into a pseudo if it isn't a constant. */
8141 if (! CONSTANT_P (op1))
8142 op1 = force_reg (mode, op1);
8145 enum rtx_code comparison_code;
8146 rtx cmpop1 = op1;
8148 if (code == MAX_EXPR)
8149 comparison_code = unsignedp ? GEU : GE;
8150 else
8151 comparison_code = unsignedp ? LEU : LE;
8153 /* Canonicalize to comparisons against 0. */
8154 if (op1 == const1_rtx)
8156 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
8157 or (a != 0 ? a : 1) for unsigned.
8158 For MIN we are safe converting (a <= 1 ? a : 1)
8159 into (a <= 0 ? a : 1) */
8160 cmpop1 = const0_rtx;
8161 if (code == MAX_EXPR)
8162 comparison_code = unsignedp ? NE : GT;
8164 if (op1 == constm1_rtx && !unsignedp)
8166 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
8167 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
8168 cmpop1 = const0_rtx;
8169 if (code == MIN_EXPR)
8170 comparison_code = LT;
8172 #ifdef HAVE_conditional_move
8173 /* Use a conditional move if possible. */
8174 if (can_conditionally_move_p (mode))
8176 rtx insn;
8178 /* ??? Same problem as in expmed.c: emit_conditional_move
8179 forces a stack adjustment via compare_from_rtx, and we
8180 lose the stack adjustment if the sequence we are about
8181 to create is discarded. */
8182 do_pending_stack_adjust ();
8184 start_sequence ();
8186 /* Try to emit the conditional move. */
8187 insn = emit_conditional_move (target, comparison_code,
8188 op0, cmpop1, mode,
8189 op0, op1, mode,
8190 unsignedp);
8192 /* If we could do the conditional move, emit the sequence,
8193 and return. */
8194 if (insn)
8196 rtx seq = get_insns ();
8197 end_sequence ();
8198 emit_insn (seq);
8199 return target;
8202 /* Otherwise discard the sequence and fall back to code with
8203 branches. */
8204 end_sequence ();
8206 #endif
8207 if (target != op0)
8208 emit_move_insn (target, op0);
8210 temp = gen_label_rtx ();
8211 do_compare_rtx_and_jump (target, cmpop1, comparison_code,
8212 unsignedp, mode, NULL_RTX, NULL_RTX, temp);
8214 emit_move_insn (target, op1);
8215 emit_label (temp);
8216 return target;
8218 case BIT_NOT_EXPR:
8219 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
8220 if (modifier == EXPAND_STACK_PARM)
8221 target = 0;
8222 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
8223 gcc_assert (temp);
8224 return temp;
8226 /* ??? Can optimize bitwise operations with one arg constant.
8227 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
8228 and (a bitwise1 b) bitwise2 b (etc)
8229 but that is probably not worth while. */
8231 /* BIT_AND_EXPR is for bitwise anding. TRUTH_AND_EXPR is for anding two
8232 boolean values when we want in all cases to compute both of them. In
8233 general it is fastest to do TRUTH_AND_EXPR by computing both operands
8234 as actual zero-or-1 values and then bitwise anding. In cases where
8235 there cannot be any side effects, better code would be made by
8236 treating TRUTH_AND_EXPR like TRUTH_ANDIF_EXPR; but the question is
8237 how to recognize those cases. */
8239 case TRUTH_AND_EXPR:
8240 code = BIT_AND_EXPR;
8241 case BIT_AND_EXPR:
8242 goto binop;
8244 case TRUTH_OR_EXPR:
8245 code = BIT_IOR_EXPR;
8246 case BIT_IOR_EXPR:
8247 goto binop;
8249 case TRUTH_XOR_EXPR:
8250 code = BIT_XOR_EXPR;
8251 case BIT_XOR_EXPR:
8252 goto binop;
8254 case LSHIFT_EXPR:
8255 case RSHIFT_EXPR:
8256 case LROTATE_EXPR:
8257 case RROTATE_EXPR:
8258 if (! safe_from_p (subtarget, TREE_OPERAND (exp, 1), 1))
8259 subtarget = 0;
8260 if (modifier == EXPAND_STACK_PARM)
8261 target = 0;
8262 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
8263 return expand_shift (code, mode, op0, TREE_OPERAND (exp, 1), target,
8264 unsignedp);
8266 /* Could determine the answer when only additive constants differ. Also,
8267 the addition of one can be handled by changing the condition. */
8268 case LT_EXPR:
8269 case LE_EXPR:
8270 case GT_EXPR:
8271 case GE_EXPR:
8272 case EQ_EXPR:
8273 case NE_EXPR:
8274 case UNORDERED_EXPR:
8275 case ORDERED_EXPR:
8276 case UNLT_EXPR:
8277 case UNLE_EXPR:
8278 case UNGT_EXPR:
8279 case UNGE_EXPR:
8280 case UNEQ_EXPR:
8281 case LTGT_EXPR:
8282 temp = do_store_flag (exp,
8283 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
8284 tmode != VOIDmode ? tmode : mode, 0);
8285 if (temp != 0)
8286 return temp;
8288 /* For foo != 0, load foo, and if it is nonzero load 1 instead. */
8289 if (code == NE_EXPR && integer_zerop (TREE_OPERAND (exp, 1))
8290 && original_target
8291 && REG_P (original_target)
8292 && (GET_MODE (original_target)
8293 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)))))
8295 temp = expand_expr (TREE_OPERAND (exp, 0), original_target,
8296 VOIDmode, 0);
8298 /* If temp is constant, we can just compute the result. */
8299 if (GET_CODE (temp) == CONST_INT)
8301 if (INTVAL (temp) != 0)
8302 emit_move_insn (target, const1_rtx);
8303 else
8304 emit_move_insn (target, const0_rtx);
8306 return target;
8309 if (temp != original_target)
8311 enum machine_mode mode1 = GET_MODE (temp);
8312 if (mode1 == VOIDmode)
8313 mode1 = tmode != VOIDmode ? tmode : mode;
8315 temp = copy_to_mode_reg (mode1, temp);
8318 op1 = gen_label_rtx ();
8319 emit_cmp_and_jump_insns (temp, const0_rtx, EQ, NULL_RTX,
8320 GET_MODE (temp), unsignedp, op1);
8321 emit_move_insn (temp, const1_rtx);
8322 emit_label (op1);
8323 return temp;
8326 /* If no set-flag instruction, must generate a conditional store
8327 into a temporary variable. Drop through and handle this
8328 like && and ||. */
8330 if (! ignore
8331 && (target == 0
8332 || modifier == EXPAND_STACK_PARM
8333 || ! safe_from_p (target, exp, 1)
8334 /* Make sure we don't have a hard reg (such as function's return
8335 value) live across basic blocks, if not optimizing. */
8336 || (!optimize && REG_P (target)
8337 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
8338 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
8340 if (target)
8341 emit_move_insn (target, const0_rtx);
8343 op1 = gen_label_rtx ();
8344 jumpifnot (exp, op1);
8346 if (target)
8347 emit_move_insn (target, const1_rtx);
8349 emit_label (op1);
8350 return ignore ? const0_rtx : target;
8352 case TRUTH_NOT_EXPR:
8353 if (modifier == EXPAND_STACK_PARM)
8354 target = 0;
8355 op0 = expand_expr (TREE_OPERAND (exp, 0), target, VOIDmode, 0);
8356 /* The parser is careful to generate TRUTH_NOT_EXPR
8357 only with operands that are always zero or one. */
8358 temp = expand_binop (mode, xor_optab, op0, const1_rtx,
8359 target, 1, OPTAB_LIB_WIDEN);
8360 gcc_assert (temp);
8361 return temp;
8363 case STATEMENT_LIST:
8365 tree_stmt_iterator iter;
8367 gcc_assert (ignore);
8369 for (iter = tsi_start (exp); !tsi_end_p (iter); tsi_next (&iter))
8370 expand_expr (tsi_stmt (iter), const0_rtx, VOIDmode, modifier);
8372 return const0_rtx;
8374 case COND_EXPR:
8375 /* A COND_EXPR with its type being VOID_TYPE represents a
8376 conditional jump and is handled in
8377 expand_gimple_cond_expr. */
8378 gcc_assert (!VOID_TYPE_P (TREE_TYPE (exp)));
8380 /* Note that COND_EXPRs whose type is a structure or union
8381 are required to be constructed to contain assignments of
8382 a temporary variable, so that we can evaluate them here
8383 for side effect only. If type is void, we must do likewise. */
8385 gcc_assert (!TREE_ADDRESSABLE (type)
8386 && !ignore
8387 && TREE_TYPE (TREE_OPERAND (exp, 1)) != void_type_node
8388 && TREE_TYPE (TREE_OPERAND (exp, 2)) != void_type_node);
8390 /* If we are not to produce a result, we have no target. Otherwise,
8391 if a target was specified use it; it will not be used as an
8392 intermediate target unless it is safe. If no target, use a
8393 temporary. */
8395 if (modifier != EXPAND_STACK_PARM
8396 && original_target
8397 && safe_from_p (original_target, TREE_OPERAND (exp, 0), 1)
8398 && GET_MODE (original_target) == mode
8399 #ifdef HAVE_conditional_move
8400 && (! can_conditionally_move_p (mode)
8401 || REG_P (original_target))
8402 #endif
8403 && !MEM_P (original_target))
8404 temp = original_target;
8405 else
8406 temp = assign_temp (type, 0, 0, 1);
8408 do_pending_stack_adjust ();
8409 NO_DEFER_POP;
8410 op0 = gen_label_rtx ();
8411 op1 = gen_label_rtx ();
8412 jumpifnot (TREE_OPERAND (exp, 0), op0);
8413 store_expr (TREE_OPERAND (exp, 1), temp,
8414 modifier == EXPAND_STACK_PARM);
8416 emit_jump_insn (gen_jump (op1));
8417 emit_barrier ();
8418 emit_label (op0);
8419 store_expr (TREE_OPERAND (exp, 2), temp,
8420 modifier == EXPAND_STACK_PARM);
8422 emit_label (op1);
8423 OK_DEFER_POP;
8424 return temp;
8426 case VEC_COND_EXPR:
8427 target = expand_vec_cond_expr (exp, target);
8428 return target;
8430 case MODIFY_EXPR:
8432 tree lhs = TREE_OPERAND (exp, 0);
8433 tree rhs = TREE_OPERAND (exp, 1);
8435 gcc_assert (ignore);
8437 /* Check for |= or &= of a bitfield of size one into another bitfield
8438 of size 1. In this case, (unless we need the result of the
8439 assignment) we can do this more efficiently with a
8440 test followed by an assignment, if necessary.
8442 ??? At this point, we can't get a BIT_FIELD_REF here. But if
8443 things change so we do, this code should be enhanced to
8444 support it. */
8445 if (TREE_CODE (lhs) == COMPONENT_REF
8446 && (TREE_CODE (rhs) == BIT_IOR_EXPR
8447 || TREE_CODE (rhs) == BIT_AND_EXPR)
8448 && TREE_OPERAND (rhs, 0) == lhs
8449 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
8450 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
8451 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
8453 rtx label = gen_label_rtx ();
8455 do_jump (TREE_OPERAND (rhs, 1),
8456 TREE_CODE (rhs) == BIT_IOR_EXPR ? label : 0,
8457 TREE_CODE (rhs) == BIT_AND_EXPR ? label : 0);
8458 expand_assignment (lhs, convert (TREE_TYPE (rhs),
8459 (TREE_CODE (rhs) == BIT_IOR_EXPR
8460 ? integer_one_node
8461 : integer_zero_node)));
8462 do_pending_stack_adjust ();
8463 emit_label (label);
8464 return const0_rtx;
8467 expand_assignment (lhs, rhs);
8469 return const0_rtx;
8472 case RETURN_EXPR:
8473 if (!TREE_OPERAND (exp, 0))
8474 expand_null_return ();
8475 else
8476 expand_return (TREE_OPERAND (exp, 0));
8477 return const0_rtx;
8479 case ADDR_EXPR:
8480 return expand_expr_addr_expr (exp, target, tmode, modifier);
8482 case COMPLEX_EXPR:
8483 /* Get the rtx code of the operands. */
8484 op0 = expand_normal (TREE_OPERAND (exp, 0));
8485 op1 = expand_normal (TREE_OPERAND (exp, 1));
8487 if (!target)
8488 target = gen_reg_rtx (TYPE_MODE (TREE_TYPE (exp)));
8490 /* Move the real (op0) and imaginary (op1) parts to their location. */
8491 write_complex_part (target, op0, false);
8492 write_complex_part (target, op1, true);
8494 return target;
8496 case REALPART_EXPR:
8497 op0 = expand_normal (TREE_OPERAND (exp, 0));
8498 return read_complex_part (op0, false);
8500 case IMAGPART_EXPR:
8501 op0 = expand_normal (TREE_OPERAND (exp, 0));
8502 return read_complex_part (op0, true);
8504 case RESX_EXPR:
8505 expand_resx_expr (exp);
8506 return const0_rtx;
8508 case TRY_CATCH_EXPR:
8509 case CATCH_EXPR:
8510 case EH_FILTER_EXPR:
8511 case TRY_FINALLY_EXPR:
8512 /* Lowered by tree-eh.c. */
8513 gcc_unreachable ();
8515 case WITH_CLEANUP_EXPR:
8516 case CLEANUP_POINT_EXPR:
8517 case TARGET_EXPR:
8518 case CASE_LABEL_EXPR:
8519 case VA_ARG_EXPR:
8520 case BIND_EXPR:
8521 case INIT_EXPR:
8522 case CONJ_EXPR:
8523 case COMPOUND_EXPR:
8524 case PREINCREMENT_EXPR:
8525 case PREDECREMENT_EXPR:
8526 case POSTINCREMENT_EXPR:
8527 case POSTDECREMENT_EXPR:
8528 case LOOP_EXPR:
8529 case EXIT_EXPR:
8530 case TRUTH_ANDIF_EXPR:
8531 case TRUTH_ORIF_EXPR:
8532 /* Lowered by gimplify.c. */
8533 gcc_unreachable ();
8535 case EXC_PTR_EXPR:
8536 return get_exception_pointer (cfun);
8538 case FILTER_EXPR:
8539 return get_exception_filter (cfun);
8541 case FDESC_EXPR:
8542 /* Function descriptors are not valid except for as
8543 initialization constants, and should not be expanded. */
8544 gcc_unreachable ();
8546 case SWITCH_EXPR:
8547 expand_case (exp);
8548 return const0_rtx;
8550 case LABEL_EXPR:
8551 expand_label (TREE_OPERAND (exp, 0));
8552 return const0_rtx;
8554 case ASM_EXPR:
8555 expand_asm_expr (exp);
8556 return const0_rtx;
8558 case WITH_SIZE_EXPR:
8559 /* WITH_SIZE_EXPR expands to its first argument. The caller should
8560 have pulled out the size to use in whatever context it needed. */
8561 return expand_expr_real (TREE_OPERAND (exp, 0), original_target, tmode,
8562 modifier, alt_rtl);
8564 case REALIGN_LOAD_EXPR:
8566 tree oprnd0 = TREE_OPERAND (exp, 0);
8567 tree oprnd1 = TREE_OPERAND (exp, 1);
8568 tree oprnd2 = TREE_OPERAND (exp, 2);
8569 rtx op2;
8571 this_optab = optab_for_tree_code (code, type);
8572 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8573 op2 = expand_normal (oprnd2);
8574 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
8575 target, unsignedp);
8576 gcc_assert (temp);
8577 return temp;
8580 case DOT_PROD_EXPR:
8582 tree oprnd0 = TREE_OPERAND (exp, 0);
8583 tree oprnd1 = TREE_OPERAND (exp, 1);
8584 tree oprnd2 = TREE_OPERAND (exp, 2);
8585 rtx op2;
8587 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8588 op2 = expand_normal (oprnd2);
8589 target = expand_widen_pattern_expr (exp, op0, op1, op2,
8590 target, unsignedp);
8591 return target;
8594 case WIDEN_SUM_EXPR:
8596 tree oprnd0 = TREE_OPERAND (exp, 0);
8597 tree oprnd1 = TREE_OPERAND (exp, 1);
8599 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, 0);
8600 target = expand_widen_pattern_expr (exp, op0, NULL_RTX, op1,
8601 target, unsignedp);
8602 return target;
8605 case REDUC_MAX_EXPR:
8606 case REDUC_MIN_EXPR:
8607 case REDUC_PLUS_EXPR:
8609 op0 = expand_normal (TREE_OPERAND (exp, 0));
8610 this_optab = optab_for_tree_code (code, type);
8611 temp = expand_unop (mode, this_optab, op0, target, unsignedp);
8612 gcc_assert (temp);
8613 return temp;
8616 case VEC_LSHIFT_EXPR:
8617 case VEC_RSHIFT_EXPR:
8619 target = expand_vec_shift_expr (exp, target);
8620 return target;
8623 default:
8624 return lang_hooks.expand_expr (exp, original_target, tmode,
8625 modifier, alt_rtl);
8628 /* Here to do an ordinary binary operator. */
8629 binop:
8630 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8631 subtarget, &op0, &op1, 0);
8632 binop2:
8633 this_optab = optab_for_tree_code (code, type);
8634 binop3:
8635 if (modifier == EXPAND_STACK_PARM)
8636 target = 0;
8637 temp = expand_binop (mode, this_optab, op0, op1, target,
8638 unsignedp, OPTAB_LIB_WIDEN);
8639 gcc_assert (temp);
8640 return REDUCE_BIT_FIELD (temp);
8642 #undef REDUCE_BIT_FIELD
8644 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
8645 signedness of TYPE), possibly returning the result in TARGET. */
8646 static rtx
8647 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
8649 HOST_WIDE_INT prec = TYPE_PRECISION (type);
8650 if (target && GET_MODE (target) != GET_MODE (exp))
8651 target = 0;
8652 if (TYPE_UNSIGNED (type))
8654 rtx mask;
8655 if (prec < HOST_BITS_PER_WIDE_INT)
8656 mask = immed_double_const (((unsigned HOST_WIDE_INT) 1 << prec) - 1, 0,
8657 GET_MODE (exp));
8658 else
8659 mask = immed_double_const ((unsigned HOST_WIDE_INT) -1,
8660 ((unsigned HOST_WIDE_INT) 1
8661 << (prec - HOST_BITS_PER_WIDE_INT)) - 1,
8662 GET_MODE (exp));
8663 return expand_and (GET_MODE (exp), exp, mask, target);
8665 else
8667 tree count = build_int_cst (NULL_TREE,
8668 GET_MODE_BITSIZE (GET_MODE (exp)) - prec);
8669 exp = expand_shift (LSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
8670 return expand_shift (RSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
8674 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
8675 when applied to the address of EXP produces an address known to be
8676 aligned more than BIGGEST_ALIGNMENT. */
8678 static int
8679 is_aligning_offset (tree offset, tree exp)
8681 /* Strip off any conversions. */
8682 while (TREE_CODE (offset) == NON_LVALUE_EXPR
8683 || TREE_CODE (offset) == NOP_EXPR
8684 || TREE_CODE (offset) == CONVERT_EXPR)
8685 offset = TREE_OPERAND (offset, 0);
8687 /* We must now have a BIT_AND_EXPR with a constant that is one less than
8688 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
8689 if (TREE_CODE (offset) != BIT_AND_EXPR
8690 || !host_integerp (TREE_OPERAND (offset, 1), 1)
8691 || compare_tree_int (TREE_OPERAND (offset, 1),
8692 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
8693 || !exact_log2 (tree_low_cst (TREE_OPERAND (offset, 1), 1) + 1) < 0)
8694 return 0;
8696 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
8697 It must be NEGATE_EXPR. Then strip any more conversions. */
8698 offset = TREE_OPERAND (offset, 0);
8699 while (TREE_CODE (offset) == NON_LVALUE_EXPR
8700 || TREE_CODE (offset) == NOP_EXPR
8701 || TREE_CODE (offset) == CONVERT_EXPR)
8702 offset = TREE_OPERAND (offset, 0);
8704 if (TREE_CODE (offset) != NEGATE_EXPR)
8705 return 0;
8707 offset = TREE_OPERAND (offset, 0);
8708 while (TREE_CODE (offset) == NON_LVALUE_EXPR
8709 || TREE_CODE (offset) == NOP_EXPR
8710 || TREE_CODE (offset) == CONVERT_EXPR)
8711 offset = TREE_OPERAND (offset, 0);
8713 /* This must now be the address of EXP. */
8714 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
8717 /* Return the tree node if an ARG corresponds to a string constant or zero
8718 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
8719 in bytes within the string that ARG is accessing. The type of the
8720 offset will be `sizetype'. */
8722 tree
8723 string_constant (tree arg, tree *ptr_offset)
8725 tree array, offset;
8726 STRIP_NOPS (arg);
8728 if (TREE_CODE (arg) == ADDR_EXPR)
8730 if (TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
8732 *ptr_offset = size_zero_node;
8733 return TREE_OPERAND (arg, 0);
8735 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == VAR_DECL)
8737 array = TREE_OPERAND (arg, 0);
8738 offset = size_zero_node;
8740 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF)
8742 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
8743 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
8744 if (TREE_CODE (array) != STRING_CST
8745 && TREE_CODE (array) != VAR_DECL)
8746 return 0;
8748 else
8749 return 0;
8751 else if (TREE_CODE (arg) == PLUS_EXPR)
8753 tree arg0 = TREE_OPERAND (arg, 0);
8754 tree arg1 = TREE_OPERAND (arg, 1);
8756 STRIP_NOPS (arg0);
8757 STRIP_NOPS (arg1);
8759 if (TREE_CODE (arg0) == ADDR_EXPR
8760 && (TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST
8761 || TREE_CODE (TREE_OPERAND (arg0, 0)) == VAR_DECL))
8763 array = TREE_OPERAND (arg0, 0);
8764 offset = arg1;
8766 else if (TREE_CODE (arg1) == ADDR_EXPR
8767 && (TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST
8768 || TREE_CODE (TREE_OPERAND (arg1, 0)) == VAR_DECL))
8770 array = TREE_OPERAND (arg1, 0);
8771 offset = arg0;
8773 else
8774 return 0;
8776 else
8777 return 0;
8779 if (TREE_CODE (array) == STRING_CST)
8781 *ptr_offset = convert (sizetype, offset);
8782 return array;
8784 else if (TREE_CODE (array) == VAR_DECL)
8786 int length;
8788 /* Variables initialized to string literals can be handled too. */
8789 if (DECL_INITIAL (array) == NULL_TREE
8790 || TREE_CODE (DECL_INITIAL (array)) != STRING_CST)
8791 return 0;
8793 /* If they are read-only, non-volatile and bind locally. */
8794 if (! TREE_READONLY (array)
8795 || TREE_SIDE_EFFECTS (array)
8796 || ! targetm.binds_local_p (array))
8797 return 0;
8799 /* Avoid const char foo[4] = "abcde"; */
8800 if (DECL_SIZE_UNIT (array) == NULL_TREE
8801 || TREE_CODE (DECL_SIZE_UNIT (array)) != INTEGER_CST
8802 || (length = TREE_STRING_LENGTH (DECL_INITIAL (array))) <= 0
8803 || compare_tree_int (DECL_SIZE_UNIT (array), length) < 0)
8804 return 0;
8806 /* If variable is bigger than the string literal, OFFSET must be constant
8807 and inside of the bounds of the string literal. */
8808 offset = convert (sizetype, offset);
8809 if (compare_tree_int (DECL_SIZE_UNIT (array), length) > 0
8810 && (! host_integerp (offset, 1)
8811 || compare_tree_int (offset, length) >= 0))
8812 return 0;
8814 *ptr_offset = offset;
8815 return DECL_INITIAL (array);
8818 return 0;
8821 /* Generate code to calculate EXP using a store-flag instruction
8822 and return an rtx for the result. EXP is either a comparison
8823 or a TRUTH_NOT_EXPR whose operand is a comparison.
8825 If TARGET is nonzero, store the result there if convenient.
8827 If ONLY_CHEAP is nonzero, only do this if it is likely to be very
8828 cheap.
8830 Return zero if there is no suitable set-flag instruction
8831 available on this machine.
8833 Once expand_expr has been called on the arguments of the comparison,
8834 we are committed to doing the store flag, since it is not safe to
8835 re-evaluate the expression. We emit the store-flag insn by calling
8836 emit_store_flag, but only expand the arguments if we have a reason
8837 to believe that emit_store_flag will be successful. If we think that
8838 it will, but it isn't, we have to simulate the store-flag with a
8839 set/jump/set sequence. */
8841 static rtx
8842 do_store_flag (tree exp, rtx target, enum machine_mode mode, int only_cheap)
8844 enum rtx_code code;
8845 tree arg0, arg1, type;
8846 tree tem;
8847 enum machine_mode operand_mode;
8848 int invert = 0;
8849 int unsignedp;
8850 rtx op0, op1;
8851 enum insn_code icode;
8852 rtx subtarget = target;
8853 rtx result, label;
8855 /* If this is a TRUTH_NOT_EXPR, set a flag indicating we must invert the
8856 result at the end. We can't simply invert the test since it would
8857 have already been inverted if it were valid. This case occurs for
8858 some floating-point comparisons. */
8860 if (TREE_CODE (exp) == TRUTH_NOT_EXPR)
8861 invert = 1, exp = TREE_OPERAND (exp, 0);
8863 arg0 = TREE_OPERAND (exp, 0);
8864 arg1 = TREE_OPERAND (exp, 1);
8866 /* Don't crash if the comparison was erroneous. */
8867 if (arg0 == error_mark_node || arg1 == error_mark_node)
8868 return const0_rtx;
8870 type = TREE_TYPE (arg0);
8871 operand_mode = TYPE_MODE (type);
8872 unsignedp = TYPE_UNSIGNED (type);
8874 /* We won't bother with BLKmode store-flag operations because it would mean
8875 passing a lot of information to emit_store_flag. */
8876 if (operand_mode == BLKmode)
8877 return 0;
8879 /* We won't bother with store-flag operations involving function pointers
8880 when function pointers must be canonicalized before comparisons. */
8881 #ifdef HAVE_canonicalize_funcptr_for_compare
8882 if (HAVE_canonicalize_funcptr_for_compare
8883 && ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == POINTER_TYPE
8884 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))))
8885 == FUNCTION_TYPE))
8886 || (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 1))) == POINTER_TYPE
8887 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 1))))
8888 == FUNCTION_TYPE))))
8889 return 0;
8890 #endif
8892 STRIP_NOPS (arg0);
8893 STRIP_NOPS (arg1);
8895 /* Get the rtx comparison code to use. We know that EXP is a comparison
8896 operation of some type. Some comparisons against 1 and -1 can be
8897 converted to comparisons with zero. Do so here so that the tests
8898 below will be aware that we have a comparison with zero. These
8899 tests will not catch constants in the first operand, but constants
8900 are rarely passed as the first operand. */
8902 switch (TREE_CODE (exp))
8904 case EQ_EXPR:
8905 code = EQ;
8906 break;
8907 case NE_EXPR:
8908 code = NE;
8909 break;
8910 case LT_EXPR:
8911 if (integer_onep (arg1))
8912 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
8913 else
8914 code = unsignedp ? LTU : LT;
8915 break;
8916 case LE_EXPR:
8917 if (! unsignedp && integer_all_onesp (arg1))
8918 arg1 = integer_zero_node, code = LT;
8919 else
8920 code = unsignedp ? LEU : LE;
8921 break;
8922 case GT_EXPR:
8923 if (! unsignedp && integer_all_onesp (arg1))
8924 arg1 = integer_zero_node, code = GE;
8925 else
8926 code = unsignedp ? GTU : GT;
8927 break;
8928 case GE_EXPR:
8929 if (integer_onep (arg1))
8930 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
8931 else
8932 code = unsignedp ? GEU : GE;
8933 break;
8935 case UNORDERED_EXPR:
8936 code = UNORDERED;
8937 break;
8938 case ORDERED_EXPR:
8939 code = ORDERED;
8940 break;
8941 case UNLT_EXPR:
8942 code = UNLT;
8943 break;
8944 case UNLE_EXPR:
8945 code = UNLE;
8946 break;
8947 case UNGT_EXPR:
8948 code = UNGT;
8949 break;
8950 case UNGE_EXPR:
8951 code = UNGE;
8952 break;
8953 case UNEQ_EXPR:
8954 code = UNEQ;
8955 break;
8956 case LTGT_EXPR:
8957 code = LTGT;
8958 break;
8960 default:
8961 gcc_unreachable ();
8964 /* Put a constant second. */
8965 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST)
8967 tem = arg0; arg0 = arg1; arg1 = tem;
8968 code = swap_condition (code);
8971 /* If this is an equality or inequality test of a single bit, we can
8972 do this by shifting the bit being tested to the low-order bit and
8973 masking the result with the constant 1. If the condition was EQ,
8974 we xor it with 1. This does not require an scc insn and is faster
8975 than an scc insn even if we have it.
8977 The code to make this transformation was moved into fold_single_bit_test,
8978 so we just call into the folder and expand its result. */
8980 if ((code == NE || code == EQ)
8981 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
8982 && integer_pow2p (TREE_OPERAND (arg0, 1)))
8984 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
8985 return expand_expr (fold_single_bit_test (code == NE ? NE_EXPR : EQ_EXPR,
8986 arg0, arg1, type),
8987 target, VOIDmode, EXPAND_NORMAL);
8990 /* Now see if we are likely to be able to do this. Return if not. */
8991 if (! can_compare_p (code, operand_mode, ccp_store_flag))
8992 return 0;
8994 icode = setcc_gen_code[(int) code];
8995 if (icode == CODE_FOR_nothing
8996 || (only_cheap && insn_data[(int) icode].operand[0].mode != mode))
8998 /* We can only do this if it is one of the special cases that
8999 can be handled without an scc insn. */
9000 if ((code == LT && integer_zerop (arg1))
9001 || (! only_cheap && code == GE && integer_zerop (arg1)))
9003 else if (! only_cheap && (code == NE || code == EQ)
9004 && TREE_CODE (type) != REAL_TYPE
9005 && ((abs_optab->handlers[(int) operand_mode].insn_code
9006 != CODE_FOR_nothing)
9007 || (ffs_optab->handlers[(int) operand_mode].insn_code
9008 != CODE_FOR_nothing)))
9010 else
9011 return 0;
9014 if (! get_subtarget (target)
9015 || GET_MODE (subtarget) != operand_mode)
9016 subtarget = 0;
9018 expand_operands (arg0, arg1, subtarget, &op0, &op1, 0);
9020 if (target == 0)
9021 target = gen_reg_rtx (mode);
9023 result = emit_store_flag (target, code, op0, op1,
9024 operand_mode, unsignedp, 1);
9026 if (result)
9028 if (invert)
9029 result = expand_binop (mode, xor_optab, result, const1_rtx,
9030 result, 0, OPTAB_LIB_WIDEN);
9031 return result;
9034 /* If this failed, we have to do this with set/compare/jump/set code. */
9035 if (!REG_P (target)
9036 || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
9037 target = gen_reg_rtx (GET_MODE (target));
9039 emit_move_insn (target, invert ? const0_rtx : const1_rtx);
9040 result = compare_from_rtx (op0, op1, code, unsignedp,
9041 operand_mode, NULL_RTX);
9042 if (GET_CODE (result) == CONST_INT)
9043 return (((result == const0_rtx && ! invert)
9044 || (result != const0_rtx && invert))
9045 ? const0_rtx : const1_rtx);
9047 /* The code of RESULT may not match CODE if compare_from_rtx
9048 decided to swap its operands and reverse the original code.
9050 We know that compare_from_rtx returns either a CONST_INT or
9051 a new comparison code, so it is safe to just extract the
9052 code from RESULT. */
9053 code = GET_CODE (result);
9055 label = gen_label_rtx ();
9056 gcc_assert (bcc_gen_fctn[(int) code]);
9058 emit_jump_insn ((*bcc_gen_fctn[(int) code]) (label));
9059 emit_move_insn (target, invert ? const1_rtx : const0_rtx);
9060 emit_label (label);
9062 return target;
9066 /* Stubs in case we haven't got a casesi insn. */
9067 #ifndef HAVE_casesi
9068 # define HAVE_casesi 0
9069 # define gen_casesi(a, b, c, d, e) (0)
9070 # define CODE_FOR_casesi CODE_FOR_nothing
9071 #endif
9073 /* If the machine does not have a case insn that compares the bounds,
9074 this means extra overhead for dispatch tables, which raises the
9075 threshold for using them. */
9076 #ifndef CASE_VALUES_THRESHOLD
9077 #define CASE_VALUES_THRESHOLD (HAVE_casesi ? 4 : 5)
9078 #endif /* CASE_VALUES_THRESHOLD */
9080 unsigned int
9081 case_values_threshold (void)
9083 return CASE_VALUES_THRESHOLD;
9086 /* Attempt to generate a casesi instruction. Returns 1 if successful,
9087 0 otherwise (i.e. if there is no casesi instruction). */
9089 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
9090 rtx table_label ATTRIBUTE_UNUSED, rtx default_label)
9092 enum machine_mode index_mode = SImode;
9093 int index_bits = GET_MODE_BITSIZE (index_mode);
9094 rtx op1, op2, index;
9095 enum machine_mode op_mode;
9097 if (! HAVE_casesi)
9098 return 0;
9100 /* Convert the index to SImode. */
9101 if (GET_MODE_BITSIZE (TYPE_MODE (index_type)) > GET_MODE_BITSIZE (index_mode))
9103 enum machine_mode omode = TYPE_MODE (index_type);
9104 rtx rangertx = expand_normal (range);
9106 /* We must handle the endpoints in the original mode. */
9107 index_expr = build2 (MINUS_EXPR, index_type,
9108 index_expr, minval);
9109 minval = integer_zero_node;
9110 index = expand_normal (index_expr);
9111 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
9112 omode, 1, default_label);
9113 /* Now we can safely truncate. */
9114 index = convert_to_mode (index_mode, index, 0);
9116 else
9118 if (TYPE_MODE (index_type) != index_mode)
9120 index_expr = convert (lang_hooks.types.type_for_size
9121 (index_bits, 0), index_expr);
9122 index_type = TREE_TYPE (index_expr);
9125 index = expand_normal (index_expr);
9128 do_pending_stack_adjust ();
9130 op_mode = insn_data[(int) CODE_FOR_casesi].operand[0].mode;
9131 if (! (*insn_data[(int) CODE_FOR_casesi].operand[0].predicate)
9132 (index, op_mode))
9133 index = copy_to_mode_reg (op_mode, index);
9135 op1 = expand_normal (minval);
9137 op_mode = insn_data[(int) CODE_FOR_casesi].operand[1].mode;
9138 op1 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (minval)),
9139 op1, TYPE_UNSIGNED (TREE_TYPE (minval)));
9140 if (! (*insn_data[(int) CODE_FOR_casesi].operand[1].predicate)
9141 (op1, op_mode))
9142 op1 = copy_to_mode_reg (op_mode, op1);
9144 op2 = expand_normal (range);
9146 op_mode = insn_data[(int) CODE_FOR_casesi].operand[2].mode;
9147 op2 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (range)),
9148 op2, TYPE_UNSIGNED (TREE_TYPE (range)));
9149 if (! (*insn_data[(int) CODE_FOR_casesi].operand[2].predicate)
9150 (op2, op_mode))
9151 op2 = copy_to_mode_reg (op_mode, op2);
9153 emit_jump_insn (gen_casesi (index, op1, op2,
9154 table_label, default_label));
9155 return 1;
9158 /* Attempt to generate a tablejump instruction; same concept. */
9159 #ifndef HAVE_tablejump
9160 #define HAVE_tablejump 0
9161 #define gen_tablejump(x, y) (0)
9162 #endif
9164 /* Subroutine of the next function.
9166 INDEX is the value being switched on, with the lowest value
9167 in the table already subtracted.
9168 MODE is its expected mode (needed if INDEX is constant).
9169 RANGE is the length of the jump table.
9170 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
9172 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
9173 index value is out of range. */
9175 static void
9176 do_tablejump (rtx index, enum machine_mode mode, rtx range, rtx table_label,
9177 rtx default_label)
9179 rtx temp, vector;
9181 if (INTVAL (range) > cfun->max_jumptable_ents)
9182 cfun->max_jumptable_ents = INTVAL (range);
9184 /* Do an unsigned comparison (in the proper mode) between the index
9185 expression and the value which represents the length of the range.
9186 Since we just finished subtracting the lower bound of the range
9187 from the index expression, this comparison allows us to simultaneously
9188 check that the original index expression value is both greater than
9189 or equal to the minimum value of the range and less than or equal to
9190 the maximum value of the range. */
9192 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
9193 default_label);
9195 /* If index is in range, it must fit in Pmode.
9196 Convert to Pmode so we can index with it. */
9197 if (mode != Pmode)
9198 index = convert_to_mode (Pmode, index, 1);
9200 /* Don't let a MEM slip through, because then INDEX that comes
9201 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
9202 and break_out_memory_refs will go to work on it and mess it up. */
9203 #ifdef PIC_CASE_VECTOR_ADDRESS
9204 if (flag_pic && !REG_P (index))
9205 index = copy_to_mode_reg (Pmode, index);
9206 #endif
9208 /* If flag_force_addr were to affect this address
9209 it could interfere with the tricky assumptions made
9210 about addresses that contain label-refs,
9211 which may be valid only very near the tablejump itself. */
9212 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
9213 GET_MODE_SIZE, because this indicates how large insns are. The other
9214 uses should all be Pmode, because they are addresses. This code
9215 could fail if addresses and insns are not the same size. */
9216 index = gen_rtx_PLUS (Pmode,
9217 gen_rtx_MULT (Pmode, index,
9218 GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE))),
9219 gen_rtx_LABEL_REF (Pmode, table_label));
9220 #ifdef PIC_CASE_VECTOR_ADDRESS
9221 if (flag_pic)
9222 index = PIC_CASE_VECTOR_ADDRESS (index);
9223 else
9224 #endif
9225 index = memory_address_noforce (CASE_VECTOR_MODE, index);
9226 temp = gen_reg_rtx (CASE_VECTOR_MODE);
9227 vector = gen_const_mem (CASE_VECTOR_MODE, index);
9228 convert_move (temp, vector, 0);
9230 emit_jump_insn (gen_tablejump (temp, table_label));
9232 /* If we are generating PIC code or if the table is PC-relative, the
9233 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
9234 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
9235 emit_barrier ();
9239 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
9240 rtx table_label, rtx default_label)
9242 rtx index;
9244 if (! HAVE_tablejump)
9245 return 0;
9247 index_expr = fold_build2 (MINUS_EXPR, index_type,
9248 convert (index_type, index_expr),
9249 convert (index_type, minval));
9250 index = expand_normal (index_expr);
9251 do_pending_stack_adjust ();
9253 do_tablejump (index, TYPE_MODE (index_type),
9254 convert_modes (TYPE_MODE (index_type),
9255 TYPE_MODE (TREE_TYPE (range)),
9256 expand_normal (range),
9257 TYPE_UNSIGNED (TREE_TYPE (range))),
9258 table_label, default_label);
9259 return 1;
9262 /* Nonzero if the mode is a valid vector mode for this architecture.
9263 This returns nonzero even if there is no hardware support for the
9264 vector mode, but we can emulate with narrower modes. */
9267 vector_mode_valid_p (enum machine_mode mode)
9269 enum mode_class class = GET_MODE_CLASS (mode);
9270 enum machine_mode innermode;
9272 /* Doh! What's going on? */
9273 if (class != MODE_VECTOR_INT
9274 && class != MODE_VECTOR_FLOAT)
9275 return 0;
9277 /* Hardware support. Woo hoo! */
9278 if (targetm.vector_mode_supported_p (mode))
9279 return 1;
9281 innermode = GET_MODE_INNER (mode);
9283 /* We should probably return 1 if requesting V4DI and we have no DI,
9284 but we have V2DI, but this is probably very unlikely. */
9286 /* If we have support for the inner mode, we can safely emulate it.
9287 We may not have V2DI, but me can emulate with a pair of DIs. */
9288 return targetm.scalar_mode_supported_p (innermode);
9291 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
9292 static rtx
9293 const_vector_from_tree (tree exp)
9295 rtvec v;
9296 int units, i;
9297 tree link, elt;
9298 enum machine_mode inner, mode;
9300 mode = TYPE_MODE (TREE_TYPE (exp));
9302 if (initializer_zerop (exp))
9303 return CONST0_RTX (mode);
9305 units = GET_MODE_NUNITS (mode);
9306 inner = GET_MODE_INNER (mode);
9308 v = rtvec_alloc (units);
9310 link = TREE_VECTOR_CST_ELTS (exp);
9311 for (i = 0; link; link = TREE_CHAIN (link), ++i)
9313 elt = TREE_VALUE (link);
9315 if (TREE_CODE (elt) == REAL_CST)
9316 RTVEC_ELT (v, i) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt),
9317 inner);
9318 else
9319 RTVEC_ELT (v, i) = immed_double_const (TREE_INT_CST_LOW (elt),
9320 TREE_INT_CST_HIGH (elt),
9321 inner);
9324 /* Initialize remaining elements to 0. */
9325 for (; i < units; ++i)
9326 RTVEC_ELT (v, i) = CONST0_RTX (inner);
9328 return gen_rtx_CONST_VECTOR (mode, v);
9330 #include "gt-expr.h"