* i386.h (TARGET_MISALIGNED_MOVE_STRING_PROLOGUES_EPILOGUES): New tuning flag.
[official-gcc.git] / gcc / config / i386 / i386.h
blob5267042260633ee13705a088b7964626db260106
1 /* Definitions of target machine for GCC for IA-32.
2 Copyright (C) 1988-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 Under Section 7 of GPL version 3, you are granted additional
17 permissions described in the GCC Runtime Library Exception, version
18 3.1, as published by the Free Software Foundation.
20 You should have received a copy of the GNU General Public License and
21 a copy of the GCC Runtime Library Exception along with this program;
22 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 <http://www.gnu.org/licenses/>. */
25 /* The purpose of this file is to define the characteristics of the i386,
26 independent of assembler syntax or operating system.
28 Three other files build on this one to describe a specific assembler syntax:
29 bsd386.h, att386.h, and sun386.h.
31 The actual tm.h file for a particular system should include
32 this file, and then the file for the appropriate assembler syntax.
34 Many macros that specify assembler syntax are omitted entirely from
35 this file because they really belong in the files for particular
36 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
37 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
38 that start with ASM_ or end in ASM_OP. */
40 /* Redefines for option macros. */
42 #define TARGET_64BIT TARGET_ISA_64BIT
43 #define TARGET_64BIT_P(x) TARGET_ISA_64BIT_P(x)
44 #define TARGET_MMX TARGET_ISA_MMX
45 #define TARGET_MMX_P(x) TARGET_ISA_MMX_P(x)
46 #define TARGET_3DNOW TARGET_ISA_3DNOW
47 #define TARGET_3DNOW_P(x) TARGET_ISA_3DNOW_P(x)
48 #define TARGET_3DNOW_A TARGET_ISA_3DNOW_A
49 #define TARGET_3DNOW_A_P(x) TARGET_ISA_3DNOW_A_P(x)
50 #define TARGET_SSE TARGET_ISA_SSE
51 #define TARGET_SSE_P(x) TARGET_ISA_SSE_P(x)
52 #define TARGET_SSE2 TARGET_ISA_SSE2
53 #define TARGET_SSE2_P(x) TARGET_ISA_SSE2_P(x)
54 #define TARGET_SSE3 TARGET_ISA_SSE3
55 #define TARGET_SSE3_P(x) TARGET_ISA_SSE3_P(x)
56 #define TARGET_SSSE3 TARGET_ISA_SSSE3
57 #define TARGET_SSSE3_P(x) TARGET_ISA_SSSE3_P(x)
58 #define TARGET_SSE4_1 TARGET_ISA_SSE4_1
59 #define TARGET_SSE4_1_P(x) TARGET_ISA_SSE4_1_P(x)
60 #define TARGET_SSE4_2 TARGET_ISA_SSE4_2
61 #define TARGET_SSE4_2_P(x) TARGET_ISA_SSE4_2_P(x)
62 #define TARGET_AVX TARGET_ISA_AVX
63 #define TARGET_AVX_P(x) TARGET_ISA_AVX_P(x)
64 #define TARGET_AVX2 TARGET_ISA_AVX2
65 #define TARGET_AVX2_P(x) TARGET_ISA_AVX2_P(x)
66 #define TARGET_AVX512F TARGET_ISA_AVX512F
67 #define TARGET_AVX512F_P(x) TARGET_ISA_AVX512F_P(x)
68 #define TARGET_AVX512PF TARGET_ISA_AVX512PF
69 #define TARGET_AVX512PF_P(x) TARGET_ISA_AVX512PF_P(x)
70 #define TARGET_AVX512ER TARGET_ISA_AVX512ER
71 #define TARGET_AVX512ER_P(x) TARGET_ISA_AVX512ER_P(x)
72 #define TARGET_AVX512CD TARGET_ISA_AVX512CD
73 #define TARGET_AVX512CD_P(x) TARGET_ISA_AVX512CD_P(x)
74 #define TARGET_FMA TARGET_ISA_FMA
75 #define TARGET_FMA_P(x) TARGET_ISA_FMA_P(x)
76 #define TARGET_SSE4A TARGET_ISA_SSE4A
77 #define TARGET_SSE4A_P(x) TARGET_ISA_SSE4A_P(x)
78 #define TARGET_FMA4 TARGET_ISA_FMA4
79 #define TARGET_FMA4_P(x) TARGET_ISA_FMA4_P(x)
80 #define TARGET_XOP TARGET_ISA_XOP
81 #define TARGET_XOP_P(x) TARGET_ISA_XOP_P(x)
82 #define TARGET_LWP TARGET_ISA_LWP
83 #define TARGET_LWP_P(x) TARGET_ISA_LWP_P(x)
84 #define TARGET_ROUND TARGET_ISA_ROUND
85 #define TARGET_ABM TARGET_ISA_ABM
86 #define TARGET_ABM_P(x) TARGET_ISA_ABM_P(x)
87 #define TARGET_BMI TARGET_ISA_BMI
88 #define TARGET_BMI_P(x) TARGET_ISA_BMI_P(x)
89 #define TARGET_BMI2 TARGET_ISA_BMI2
90 #define TARGET_BMI2_P(x) TARGET_ISA_BMI2_P(x)
91 #define TARGET_LZCNT TARGET_ISA_LZCNT
92 #define TARGET_LZCNT_P(x) TARGET_ISA_LZCNT_P(x)
93 #define TARGET_TBM TARGET_ISA_TBM
94 #define TARGET_TBM_P(x) TARGET_ISA_TBM_P(x)
95 #define TARGET_POPCNT TARGET_ISA_POPCNT
96 #define TARGET_POPCNT_P(x) TARGET_ISA_POPCNT_P(x)
97 #define TARGET_SAHF TARGET_ISA_SAHF
98 #define TARGET_SAHF_P(x) TARGET_ISA_SAHF_P(x)
99 #define TARGET_MOVBE TARGET_ISA_MOVBE
100 #define TARGET_MOVBE_P(x) TARGET_ISA_MOVBE_P(x)
101 #define TARGET_CRC32 TARGET_ISA_CRC32
102 #define TARGET_CRC32_P(x) TARGET_ISA_CRC32_P(x)
103 #define TARGET_AES TARGET_ISA_AES
104 #define TARGET_AES_P(x) TARGET_ISA_AES_P(x)
105 #define TARGET_PCLMUL TARGET_ISA_PCLMUL
106 #define TARGET_PCLMUL_P(x) TARGET_ISA_PCLMUL_P(x)
107 #define TARGET_CMPXCHG16B TARGET_ISA_CX16
108 #define TARGET_CMPXCHG16B_P(x) TARGET_ISA_CX16_P(x)
109 #define TARGET_FSGSBASE TARGET_ISA_FSGSBASE
110 #define TARGET_FSGSBASE_P(x) TARGET_ISA_FSGSBASE_P(x)
111 #define TARGET_RDRND TARGET_ISA_RDRND
112 #define TARGET_RDRND_P(x) TARGET_ISA_RDRND_P(x)
113 #define TARGET_F16C TARGET_ISA_F16C
114 #define TARGET_F16C_P(x) TARGET_ISA_F16C_P(x)
115 #define TARGET_RTM TARGET_ISA_RTM
116 #define TARGET_RTM_P(x) TARGET_ISA_RTM_P(x)
117 #define TARGET_HLE TARGET_ISA_HLE
118 #define TARGET_HLE_P(x) TARGET_ISA_HLE_P(x)
119 #define TARGET_RDSEED TARGET_ISA_RDSEED
120 #define TARGET_RDSEED_P(x) TARGET_ISA_RDSEED_P(x)
121 #define TARGET_PRFCHW TARGET_ISA_PRFCHW
122 #define TARGET_PRFCHW_P(x) TARGET_ISA_PRFCHW_P(x)
123 #define TARGET_ADX TARGET_ISA_ADX
124 #define TARGET_ADX_P(x) TARGET_ISA_ADX_P(x)
125 #define TARGET_FXSR TARGET_ISA_FXSR
126 #define TARGET_FXSR_P(x) TARGET_ISA_FXSR_P(x)
127 #define TARGET_XSAVE TARGET_ISA_XSAVE
128 #define TARGET_XSAVE_P(x) TARGET_ISA_XSAVE_P(x)
129 #define TARGET_XSAVEOPT TARGET_ISA_XSAVEOPT
130 #define TARGET_XSAVEOPT_P(x) TARGET_ISA_XSAVEOPT_P(x)
132 #define TARGET_LP64 TARGET_ABI_64
133 #define TARGET_LP64_P(x) TARGET_ABI_64_P(x)
134 #define TARGET_X32 TARGET_ABI_X32
135 #define TARGET_X32_P(x) TARGET_ABI_X32_P(x)
137 /* SSE4.1 defines round instructions */
138 #define OPTION_MASK_ISA_ROUND OPTION_MASK_ISA_SSE4_1
139 #define TARGET_ISA_ROUND ((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0)
141 #include "config/vxworks-dummy.h"
143 #include "config/i386/i386-opts.h"
145 #define MAX_STRINGOP_ALGS 4
147 /* Specify what algorithm to use for stringops on known size.
148 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
149 known at compile time or estimated via feedback, the SIZE array
150 is walked in order until MAX is greater then the estimate (or -1
151 means infinity). Corresponding ALG is used then.
152 When NOALIGN is true the code guaranting the alignment of the memory
153 block is skipped.
155 For example initializer:
156 {{256, loop}, {-1, rep_prefix_4_byte}}
157 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
158 be used otherwise. */
159 struct stringop_algs
161 const enum stringop_alg unknown_size;
162 const struct stringop_strategy {
163 const int max;
164 const enum stringop_alg alg;
165 int noalign;
166 } size [MAX_STRINGOP_ALGS];
169 /* Define the specific costs for a given cpu */
171 struct processor_costs {
172 const int add; /* cost of an add instruction */
173 const int lea; /* cost of a lea instruction */
174 const int shift_var; /* variable shift costs */
175 const int shift_const; /* constant shift costs */
176 const int mult_init[5]; /* cost of starting a multiply
177 in QImode, HImode, SImode, DImode, TImode*/
178 const int mult_bit; /* cost of multiply per each bit set */
179 const int divide[5]; /* cost of a divide/mod
180 in QImode, HImode, SImode, DImode, TImode*/
181 int movsx; /* The cost of movsx operation. */
182 int movzx; /* The cost of movzx operation. */
183 const int large_insn; /* insns larger than this cost more */
184 const int move_ratio; /* The threshold of number of scalar
185 memory-to-memory move insns. */
186 const int movzbl_load; /* cost of loading using movzbl */
187 const int int_load[3]; /* cost of loading integer registers
188 in QImode, HImode and SImode relative
189 to reg-reg move (2). */
190 const int int_store[3]; /* cost of storing integer register
191 in QImode, HImode and SImode */
192 const int fp_move; /* cost of reg,reg fld/fst */
193 const int fp_load[3]; /* cost of loading FP register
194 in SFmode, DFmode and XFmode */
195 const int fp_store[3]; /* cost of storing FP register
196 in SFmode, DFmode and XFmode */
197 const int mmx_move; /* cost of moving MMX register. */
198 const int mmx_load[2]; /* cost of loading MMX register
199 in SImode and DImode */
200 const int mmx_store[2]; /* cost of storing MMX register
201 in SImode and DImode */
202 const int sse_move; /* cost of moving SSE register. */
203 const int sse_load[3]; /* cost of loading SSE register
204 in SImode, DImode and TImode*/
205 const int sse_store[3]; /* cost of storing SSE register
206 in SImode, DImode and TImode*/
207 const int mmxsse_to_integer; /* cost of moving mmxsse register to
208 integer and vice versa. */
209 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
210 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
211 const int prefetch_block; /* bytes moved to cache for prefetch. */
212 const int simultaneous_prefetches; /* number of parallel prefetch
213 operations. */
214 const int branch_cost; /* Default value for BRANCH_COST. */
215 const int fadd; /* cost of FADD and FSUB instructions. */
216 const int fmul; /* cost of FMUL instruction. */
217 const int fdiv; /* cost of FDIV instruction. */
218 const int fabs; /* cost of FABS instruction. */
219 const int fchs; /* cost of FCHS instruction. */
220 const int fsqrt; /* cost of FSQRT instruction. */
221 /* Specify what algorithm
222 to use for stringops on unknown size. */
223 struct stringop_algs *memcpy, *memset;
224 const int scalar_stmt_cost; /* Cost of any scalar operation, excluding
225 load and store. */
226 const int scalar_load_cost; /* Cost of scalar load. */
227 const int scalar_store_cost; /* Cost of scalar store. */
228 const int vec_stmt_cost; /* Cost of any vector operation, excluding
229 load, store, vector-to-scalar and
230 scalar-to-vector operation. */
231 const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */
232 const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */
233 const int vec_align_load_cost; /* Cost of aligned vector load. */
234 const int vec_unalign_load_cost; /* Cost of unaligned vector load. */
235 const int vec_store_cost; /* Cost of vector store. */
236 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
237 cost model. */
238 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
239 vectorizer cost model. */
242 extern const struct processor_costs *ix86_cost;
243 extern const struct processor_costs ix86_size_cost;
245 #define ix86_cur_cost() \
246 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
248 /* Macros used in the machine description to test the flags. */
250 /* configure can arrange to make this 2, to force a 486. */
252 #ifndef TARGET_CPU_DEFAULT
253 #define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_generic
254 #endif
256 #ifndef TARGET_FPMATH_DEFAULT
257 #define TARGET_FPMATH_DEFAULT \
258 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
259 #endif
261 #ifndef TARGET_FPMATH_DEFAULT_P
262 #define TARGET_FPMATH_DEFAULT_P(x) \
263 (TARGET_64BIT_P(x) && TARGET_SSE_P(x) ? FPMATH_SSE : FPMATH_387)
264 #endif
266 #define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
267 #define TARGET_FLOAT_RETURNS_IN_80387_P(x) TARGET_FLOAT_RETURNS_P(x)
269 /* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
270 compile-time constant. */
271 #ifdef IN_LIBGCC2
272 #undef TARGET_64BIT
273 #ifdef __x86_64__
274 #define TARGET_64BIT 1
275 #else
276 #define TARGET_64BIT 0
277 #endif
278 #else
279 #ifndef TARGET_BI_ARCH
280 #undef TARGET_64BIT
281 #if TARGET_64BIT_DEFAULT
282 #define TARGET_64BIT 1
283 #else
284 #define TARGET_64BIT 0
285 #endif
286 #endif
287 #endif
289 #define HAS_LONG_COND_BRANCH 1
290 #define HAS_LONG_UNCOND_BRANCH 1
292 #define TARGET_386 (ix86_tune == PROCESSOR_I386)
293 #define TARGET_486 (ix86_tune == PROCESSOR_I486)
294 #define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
295 #define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
296 #define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
297 #define TARGET_K6 (ix86_tune == PROCESSOR_K6)
298 #define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
299 #define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
300 #define TARGET_K8 (ix86_tune == PROCESSOR_K8)
301 #define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
302 #define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
303 #define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
304 #define TARGET_COREI7 (ix86_tune == PROCESSOR_COREI7)
305 #define TARGET_HASWELL (ix86_tune == PROCESSOR_HASWELL)
306 #define TARGET_GENERIC (ix86_tune == PROCESSOR_GENERIC)
307 #define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
308 #define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
309 #define TARGET_BDVER2 (ix86_tune == PROCESSOR_BDVER2)
310 #define TARGET_BDVER3 (ix86_tune == PROCESSOR_BDVER3)
311 #define TARGET_BTVER1 (ix86_tune == PROCESSOR_BTVER1)
312 #define TARGET_BTVER2 (ix86_tune == PROCESSOR_BTVER2)
313 #define TARGET_ATOM (ix86_tune == PROCESSOR_ATOM)
314 #define TARGET_SLM (ix86_tune == PROCESSOR_SLM)
316 /* Feature tests against the various tunings. */
317 enum ix86_tune_indices {
318 #undef DEF_TUNE
319 #define DEF_TUNE(tune, name, selector) tune,
320 #include "x86-tune.def"
321 #undef DEF_TUNE
322 X86_TUNE_LAST
325 extern unsigned char ix86_tune_features[X86_TUNE_LAST];
327 #define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
328 #define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
329 #define TARGET_ZERO_EXTEND_WITH_AND \
330 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
331 #define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
332 #define TARGET_BRANCH_PREDICTION_HINTS \
333 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
334 #define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
335 #define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
336 #define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
337 #define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
338 #define TARGET_PARTIAL_FLAG_REG_STALL \
339 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
340 #define TARGET_LCP_STALL \
341 ix86_tune_features[X86_TUNE_LCP_STALL]
342 #define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
343 #define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
344 #define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
345 #define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
346 #define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
347 #define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
348 #define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
349 #define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
350 #define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
351 #define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
352 #define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
353 #define TARGET_MISALIGNED_MOVE_STRING_PROLOGUES_EPILOGUES \
354 ix86_tune_features[TARGET_MISALIGNED_MOVE_STRING_PROLOGUES]
355 #define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
356 #define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
357 #define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
358 #define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
359 #define TARGET_SINGLE_POP ix86_tune_features[X86_TUNE_SINGLE_POP]
360 #define TARGET_DOUBLE_POP ix86_tune_features[X86_TUNE_DOUBLE_POP]
361 #define TARGET_SINGLE_PUSH ix86_tune_features[X86_TUNE_SINGLE_PUSH]
362 #define TARGET_DOUBLE_PUSH ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
363 #define TARGET_INTEGER_DFMODE_MOVES \
364 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
365 #define TARGET_PARTIAL_REG_DEPENDENCY \
366 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
367 #define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
368 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
369 #define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
370 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
371 #define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
372 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
373 #define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
374 ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
375 #define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
376 #define TARGET_SSE_TYPELESS_STORES \
377 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
378 #define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
379 #define TARGET_MEMORY_MISMATCH_STALL \
380 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
381 #define TARGET_PROLOGUE_USING_MOVE \
382 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
383 #define TARGET_EPILOGUE_USING_MOVE \
384 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
385 #define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
386 #define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
387 #define TARGET_INTER_UNIT_MOVES_TO_VEC \
388 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_TO_VEC]
389 #define TARGET_INTER_UNIT_MOVES_FROM_VEC \
390 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_FROM_VEC]
391 #define TARGET_INTER_UNIT_CONVERSIONS \
392 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
393 #define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
394 #define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
395 #define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
396 #define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
397 #define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
398 #define TARGET_PAD_SHORT_FUNCTION \
399 ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
400 #define TARGET_EXT_80387_CONSTANTS \
401 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
402 #define TARGET_AVOID_VECTOR_DECODE \
403 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
404 #define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
405 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
406 #define TARGET_SLOW_IMUL_IMM32_MEM \
407 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
408 #define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
409 #define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
410 #define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
411 #define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
412 #define TARGET_USE_VECTOR_FP_CONVERTS \
413 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
414 #define TARGET_USE_VECTOR_CONVERTS \
415 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
416 #define TARGET_FUSE_CMP_AND_BRANCH \
417 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH]
418 #define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
419 #define TARGET_VECTORIZE_DOUBLE \
420 ix86_tune_features[X86_TUNE_VECTORIZE_DOUBLE]
421 #define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \
422 ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL]
423 #define TARGET_AVX128_OPTIMAL \
424 ix86_tune_features[X86_TUNE_AVX128_OPTIMAL]
425 #define TARGET_REASSOC_INT_TO_PARALLEL \
426 ix86_tune_features[X86_TUNE_REASSOC_INT_TO_PARALLEL]
427 #define TARGET_REASSOC_FP_TO_PARALLEL \
428 ix86_tune_features[X86_TUNE_REASSOC_FP_TO_PARALLEL]
429 #define TARGET_GENERAL_REGS_SSE_SPILL \
430 ix86_tune_features[X86_TUNE_GENERAL_REGS_SSE_SPILL]
431 #define TARGET_AVOID_MEM_OPND_FOR_CMOVE \
432 ix86_tune_features[X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE]
433 #define TARGET_SPLIT_MEM_OPND_FOR_FP_CONVERTS \
434 ix86_tune_features[X86_TUNE_SPLIT_MEM_OPND_FOR_FP_CONVERTS]
436 /* Feature tests against the various architecture variations. */
437 enum ix86_arch_indices {
438 X86_ARCH_CMOV,
439 X86_ARCH_CMPXCHG,
440 X86_ARCH_CMPXCHG8B,
441 X86_ARCH_XADD,
442 X86_ARCH_BSWAP,
444 X86_ARCH_LAST
447 extern unsigned char ix86_arch_features[X86_ARCH_LAST];
449 #define TARGET_CMOV ix86_arch_features[X86_ARCH_CMOV]
450 #define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
451 #define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
452 #define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
453 #define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
455 /* For sane SSE instruction set generation we need fcomi instruction.
456 It is safe to enable all CMOVE instructions. Also, RDRAND intrinsic
457 expands to a sequence that includes conditional move. */
458 #define TARGET_CMOVE (TARGET_CMOV || TARGET_SSE || TARGET_RDRND)
460 #define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
462 extern unsigned char x86_prefetch_sse;
463 #define TARGET_PREFETCH_SSE x86_prefetch_sse
465 #define ASSEMBLER_DIALECT (ix86_asm_dialect)
467 #define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
468 #define TARGET_MIX_SSE_I387 \
469 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
471 #define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
472 #define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
473 #define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
474 #define TARGET_SUN_TLS 0
476 #ifndef TARGET_64BIT_DEFAULT
477 #define TARGET_64BIT_DEFAULT 0
478 #endif
479 #ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
480 #define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
481 #endif
483 #define TARGET_SSP_GLOBAL_GUARD (ix86_stack_protector_guard == SSP_GLOBAL)
484 #define TARGET_SSP_TLS_GUARD (ix86_stack_protector_guard == SSP_TLS)
486 /* Fence to use after loop using storent. */
488 extern tree x86_mfence;
489 #define FENCE_FOLLOWING_MOVNT x86_mfence
491 /* Once GDB has been enhanced to deal with functions without frame
492 pointers, we can change this to allow for elimination of
493 the frame pointer in leaf functions. */
494 #define TARGET_DEFAULT 0
496 /* Extra bits to force. */
497 #define TARGET_SUBTARGET_DEFAULT 0
498 #define TARGET_SUBTARGET_ISA_DEFAULT 0
500 /* Extra bits to force on w/ 32-bit mode. */
501 #define TARGET_SUBTARGET32_DEFAULT 0
502 #define TARGET_SUBTARGET32_ISA_DEFAULT 0
504 /* Extra bits to force on w/ 64-bit mode. */
505 #define TARGET_SUBTARGET64_DEFAULT 0
506 #define TARGET_SUBTARGET64_ISA_DEFAULT 0
508 /* Replace MACH-O, ifdefs by in-line tests, where possible.
509 (a) Macros defined in config/i386/darwin.h */
510 #define TARGET_MACHO 0
511 #define TARGET_MACHO_BRANCH_ISLANDS 0
512 #define MACHOPIC_ATT_STUB 0
513 /* (b) Macros defined in config/darwin.h */
514 #define MACHO_DYNAMIC_NO_PIC_P 0
515 #define MACHOPIC_INDIRECT 0
516 #define MACHOPIC_PURE 0
518 /* For the RDOS */
519 #define TARGET_RDOS 0
521 /* For the Windows 64-bit ABI. */
522 #define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
524 /* For the Windows 32-bit ABI. */
525 #define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
527 /* This is re-defined by cygming.h. */
528 #define TARGET_SEH 0
530 /* This is re-defined by cygming.h. */
531 #define TARGET_PECOFF 0
533 /* The default abi used by target. */
534 #define DEFAULT_ABI SYSV_ABI
536 /* The default TLS segment register used by target. */
537 #define DEFAULT_TLS_SEG_REG (TARGET_64BIT ? SEG_FS : SEG_GS)
539 /* Subtargets may reset this to 1 in order to enable 96-bit long double
540 with the rounding mode forced to 53 bits. */
541 #define TARGET_96_ROUND_53_LONG_DOUBLE 0
543 /* -march=native handling only makes sense with compiler running on
544 an x86 or x86_64 chip. If changing this condition, also change
545 the condition in driver-i386.c. */
546 #if defined(__i386__) || defined(__x86_64__)
547 /* In driver-i386.c. */
548 extern const char *host_detect_local_cpu (int argc, const char **argv);
549 #define EXTRA_SPEC_FUNCTIONS \
550 { "local_cpu_detect", host_detect_local_cpu },
551 #define HAVE_LOCAL_CPU_DETECT
552 #endif
554 #if TARGET_64BIT_DEFAULT
555 #define OPT_ARCH64 "!m32"
556 #define OPT_ARCH32 "m32"
557 #else
558 #define OPT_ARCH64 "m64|mx32"
559 #define OPT_ARCH32 "m64|mx32:;"
560 #endif
562 /* Support for configure-time defaults of some command line options.
563 The order here is important so that -march doesn't squash the
564 tune or cpu values. */
565 #define OPTION_DEFAULT_SPECS \
566 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
567 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
568 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
569 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
570 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
571 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
572 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
573 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
574 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
576 /* Specs for the compiler proper */
578 #ifndef CC1_CPU_SPEC
579 #define CC1_CPU_SPEC_1 ""
581 #ifndef HAVE_LOCAL_CPU_DETECT
582 #define CC1_CPU_SPEC CC1_CPU_SPEC_1
583 #else
584 #define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
585 "%{march=native:%>march=native %:local_cpu_detect(arch) \
586 %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} \
587 %{mtune=native:%>mtune=native %:local_cpu_detect(tune)}"
588 #endif
589 #endif
591 /* Target CPU builtins. */
592 #define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
594 /* Target Pragmas. */
595 #define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
597 enum target_cpu_default
599 TARGET_CPU_DEFAULT_generic = 0,
601 TARGET_CPU_DEFAULT_i386,
602 TARGET_CPU_DEFAULT_i486,
603 TARGET_CPU_DEFAULT_pentium,
604 TARGET_CPU_DEFAULT_pentium_mmx,
605 TARGET_CPU_DEFAULT_pentiumpro,
606 TARGET_CPU_DEFAULT_pentium2,
607 TARGET_CPU_DEFAULT_pentium3,
608 TARGET_CPU_DEFAULT_pentium4,
609 TARGET_CPU_DEFAULT_pentium_m,
610 TARGET_CPU_DEFAULT_prescott,
611 TARGET_CPU_DEFAULT_nocona,
612 TARGET_CPU_DEFAULT_core2,
613 TARGET_CPU_DEFAULT_corei7,
614 TARGET_CPU_DEFAULT_haswell,
615 TARGET_CPU_DEFAULT_atom,
616 TARGET_CPU_DEFAULT_slm,
618 TARGET_CPU_DEFAULT_geode,
619 TARGET_CPU_DEFAULT_k6,
620 TARGET_CPU_DEFAULT_k6_2,
621 TARGET_CPU_DEFAULT_k6_3,
622 TARGET_CPU_DEFAULT_athlon,
623 TARGET_CPU_DEFAULT_athlon_sse,
624 TARGET_CPU_DEFAULT_k8,
625 TARGET_CPU_DEFAULT_amdfam10,
626 TARGET_CPU_DEFAULT_bdver1,
627 TARGET_CPU_DEFAULT_bdver2,
628 TARGET_CPU_DEFAULT_bdver3,
629 TARGET_CPU_DEFAULT_btver1,
630 TARGET_CPU_DEFAULT_btver2,
632 TARGET_CPU_DEFAULT_max
635 #ifndef CC1_SPEC
636 #define CC1_SPEC "%(cc1_cpu) "
637 #endif
639 /* This macro defines names of additional specifications to put in the
640 specs that can be used in various specifications like CC1_SPEC. Its
641 definition is an initializer with a subgrouping for each command option.
643 Each subgrouping contains a string constant, that defines the
644 specification name, and a string constant that used by the GCC driver
645 program.
647 Do not define this macro if it does not need to do anything. */
649 #ifndef SUBTARGET_EXTRA_SPECS
650 #define SUBTARGET_EXTRA_SPECS
651 #endif
653 #define EXTRA_SPECS \
654 { "cc1_cpu", CC1_CPU_SPEC }, \
655 SUBTARGET_EXTRA_SPECS
658 /* Set the value of FLT_EVAL_METHOD in float.h. When using only the
659 FPU, assume that the fpcw is set to extended precision; when using
660 only SSE, rounding is correct; when using both SSE and the FPU,
661 the rounding precision is indeterminate, since either may be chosen
662 apparently at random. */
663 #define TARGET_FLT_EVAL_METHOD \
664 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
666 /* Whether to allow x87 floating-point arithmetic on MODE (one of
667 SFmode, DFmode and XFmode) in the current excess precision
668 configuration. */
669 #define X87_ENABLE_ARITH(MODE) \
670 (flag_excess_precision == EXCESS_PRECISION_FAST || (MODE) == XFmode)
672 /* Likewise, whether to allow direct conversions from integer mode
673 IMODE (HImode, SImode or DImode) to MODE. */
674 #define X87_ENABLE_FLOAT(MODE, IMODE) \
675 (flag_excess_precision == EXCESS_PRECISION_FAST \
676 || (MODE) == XFmode \
677 || ((MODE) == DFmode && (IMODE) == SImode) \
678 || (IMODE) == HImode)
680 /* target machine storage layout */
682 #define SHORT_TYPE_SIZE 16
683 #define INT_TYPE_SIZE 32
684 #define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
685 #define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
686 #define LONG_LONG_TYPE_SIZE 64
687 #define FLOAT_TYPE_SIZE 32
688 #define DOUBLE_TYPE_SIZE 64
689 #define LONG_DOUBLE_TYPE_SIZE (TARGET_LONG_DOUBLE_64 ? 64 : 80)
691 /* Define this to set long double type size to use in libgcc2.c, which can
692 not depend on target_flags. */
693 #ifdef __LONG_DOUBLE_64__
694 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
695 #else
696 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 80
697 #endif
699 #define WIDEST_HARDWARE_FP_SIZE 80
701 #if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
702 #define MAX_BITS_PER_WORD 64
703 #else
704 #define MAX_BITS_PER_WORD 32
705 #endif
707 /* Define this if most significant byte of a word is the lowest numbered. */
708 /* That is true on the 80386. */
710 #define BITS_BIG_ENDIAN 0
712 /* Define this if most significant byte of a word is the lowest numbered. */
713 /* That is not true on the 80386. */
714 #define BYTES_BIG_ENDIAN 0
716 /* Define this if most significant word of a multiword number is the lowest
717 numbered. */
718 /* Not true for 80386 */
719 #define WORDS_BIG_ENDIAN 0
721 /* Width of a word, in units (bytes). */
722 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
724 #ifndef IN_LIBGCC2
725 #define MIN_UNITS_PER_WORD 4
726 #endif
728 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
729 #define PARM_BOUNDARY BITS_PER_WORD
731 /* Boundary (in *bits*) on which stack pointer should be aligned. */
732 #define STACK_BOUNDARY \
733 (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD)
735 /* Stack boundary of the main function guaranteed by OS. */
736 #define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
738 /* Minimum stack boundary. */
739 #define MIN_STACK_BOUNDARY (TARGET_64BIT ? (TARGET_SSE ? 128 : 64) : 32)
741 /* Boundary (in *bits*) on which the stack pointer prefers to be
742 aligned; the compiler cannot rely on having this alignment. */
743 #define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
745 /* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
746 both 32bit and 64bit, to support codes that need 128 bit stack
747 alignment for SSE instructions, but can't realign the stack. */
748 #define PREFERRED_STACK_BOUNDARY_DEFAULT 128
750 /* 1 if -mstackrealign should be turned on by default. It will
751 generate an alternate prologue and epilogue that realigns the
752 runtime stack if nessary. This supports mixing codes that keep a
753 4-byte aligned stack, as specified by i386 psABI, with codes that
754 need a 16-byte aligned stack, as required by SSE instructions. */
755 #define STACK_REALIGN_DEFAULT 0
757 /* Boundary (in *bits*) on which the incoming stack is aligned. */
758 #define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
760 /* According to Windows x64 software convention, the maximum stack allocatable
761 in the prologue is 4G - 8 bytes. Furthermore, there is a limited set of
762 instructions allowed to adjust the stack pointer in the epilog, forcing the
763 use of frame pointer for frames larger than 2 GB. This theorical limit
764 is reduced by 256, an over-estimated upper bound for the stack use by the
765 prologue.
766 We define only one threshold for both the prolog and the epilog. When the
767 frame size is larger than this threshold, we allocate the area to save SSE
768 regs, then save them, and then allocate the remaining. There is no SEH
769 unwind info for this later allocation. */
770 #define SEH_MAX_FRAME_SIZE ((2U << 30) - 256)
772 /* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
773 mandatory for the 64-bit ABI, and may or may not be true for other
774 operating systems. */
775 #define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
777 /* Minimum allocation boundary for the code of a function. */
778 #define FUNCTION_BOUNDARY 8
780 /* C++ stores the virtual bit in the lowest bit of function pointers. */
781 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
783 /* Minimum size in bits of the largest boundary to which any
784 and all fundamental data types supported by the hardware
785 might need to be aligned. No data type wants to be aligned
786 rounder than this.
788 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
789 and Pentium Pro XFmode values at 128 bit boundaries. */
791 #define BIGGEST_ALIGNMENT \
792 (TARGET_AVX512F ? 512 : (TARGET_AVX ? 256 : 128))
794 /* Maximum stack alignment. */
795 #define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
797 /* Alignment value for attribute ((aligned)). It is a constant since
798 it is the part of the ABI. We shouldn't change it with -mavx. */
799 #define ATTRIBUTE_ALIGNED_VALUE 128
801 /* Decide whether a variable of mode MODE should be 128 bit aligned. */
802 #define ALIGN_MODE_128(MODE) \
803 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
805 /* The published ABIs say that doubles should be aligned on word
806 boundaries, so lower the alignment for structure fields unless
807 -malign-double is set. */
809 /* ??? Blah -- this macro is used directly by libobjc. Since it
810 supports no vector modes, cut out the complexity and fall back
811 on BIGGEST_FIELD_ALIGNMENT. */
812 #ifdef IN_TARGET_LIBS
813 #ifdef __x86_64__
814 #define BIGGEST_FIELD_ALIGNMENT 128
815 #else
816 #define BIGGEST_FIELD_ALIGNMENT 32
817 #endif
818 #else
819 #define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
820 x86_field_alignment (FIELD, COMPUTED)
821 #endif
823 /* If defined, a C expression to compute the alignment given to a
824 constant that is being placed in memory. EXP is the constant
825 and ALIGN is the alignment that the object would ordinarily have.
826 The value of this macro is used instead of that alignment to align
827 the object.
829 If this macro is not defined, then ALIGN is used.
831 The typical use of this macro is to increase alignment for string
832 constants to be word aligned so that `strcpy' calls that copy
833 constants can be done inline. */
835 #define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
837 /* If defined, a C expression to compute the alignment for a static
838 variable. TYPE is the data type, and ALIGN is the alignment that
839 the object would ordinarily have. The value of this macro is used
840 instead of that alignment to align the object.
842 If this macro is not defined, then ALIGN is used.
844 One use of this macro is to increase alignment of medium-size
845 data to make it all fit in fewer cache lines. Another is to
846 cause character arrays to be word-aligned so that `strcpy' calls
847 that copy constants to character arrays can be done inline. */
849 #define DATA_ALIGNMENT(TYPE, ALIGN) \
850 ix86_data_alignment ((TYPE), (ALIGN), true)
852 /* Similar to DATA_ALIGNMENT, but for the cases where the ABI mandates
853 some alignment increase, instead of optimization only purposes. E.g.
854 AMD x86-64 psABI says that variables with array type larger than 15 bytes
855 must be aligned to 16 byte boundaries.
857 If this macro is not defined, then ALIGN is used. */
859 #define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
860 ix86_data_alignment ((TYPE), (ALIGN), false)
862 /* If defined, a C expression to compute the alignment for a local
863 variable. TYPE is the data type, and ALIGN is the alignment that
864 the object would ordinarily have. The value of this macro is used
865 instead of that alignment to align the object.
867 If this macro is not defined, then ALIGN is used.
869 One use of this macro is to increase alignment of medium-size
870 data to make it all fit in fewer cache lines. */
872 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
873 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
875 /* If defined, a C expression to compute the alignment for stack slot.
876 TYPE is the data type, MODE is the widest mode available, and ALIGN
877 is the alignment that the slot would ordinarily have. The value of
878 this macro is used instead of that alignment to align the slot.
880 If this macro is not defined, then ALIGN is used when TYPE is NULL,
881 Otherwise, LOCAL_ALIGNMENT will be used.
883 One use of this macro is to set alignment of stack slot to the
884 maximum alignment of all possible modes which the slot may have. */
886 #define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
887 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
889 /* If defined, a C expression to compute the alignment for a local
890 variable DECL.
892 If this macro is not defined, then
893 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
895 One use of this macro is to increase alignment of medium-size
896 data to make it all fit in fewer cache lines. */
898 #define LOCAL_DECL_ALIGNMENT(DECL) \
899 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
901 /* If defined, a C expression to compute the minimum required alignment
902 for dynamic stack realignment purposes for EXP (a TYPE or DECL),
903 MODE, assuming normal alignment ALIGN.
905 If this macro is not defined, then (ALIGN) will be used. */
907 #define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
908 ix86_minimum_alignment (EXP, MODE, ALIGN)
911 /* Set this nonzero if move instructions will actually fail to work
912 when given unaligned data. */
913 #define STRICT_ALIGNMENT 0
915 /* If bit field type is int, don't let it cross an int,
916 and give entire struct the alignment of an int. */
917 /* Required on the 386 since it doesn't have bit-field insns. */
918 #define PCC_BITFIELD_TYPE_MATTERS 1
920 /* Standard register usage. */
922 /* This processor has special stack-like registers. See reg-stack.c
923 for details. */
925 #define STACK_REGS
927 #define IS_STACK_MODE(MODE) \
928 (((MODE) == SFmode && !(TARGET_SSE && TARGET_SSE_MATH)) \
929 || ((MODE) == DFmode && !(TARGET_SSE2 && TARGET_SSE_MATH)) \
930 || (MODE) == XFmode)
932 /* Number of actual hardware registers.
933 The hardware registers are assigned numbers for the compiler
934 from 0 to just below FIRST_PSEUDO_REGISTER.
935 All registers that the compiler knows about must be given numbers,
936 even those that are not normally considered general registers.
938 In the 80386 we give the 8 general purpose registers the numbers 0-7.
939 We number the floating point registers 8-15.
940 Note that registers 0-7 can be accessed as a short or int,
941 while only 0-3 may be used with byte `mov' instructions.
943 Reg 16 does not correspond to any hardware register, but instead
944 appears in the RTL as an argument pointer prior to reload, and is
945 eliminated during reloading in favor of either the stack or frame
946 pointer. */
948 #define FIRST_PSEUDO_REGISTER 77
950 /* Number of hardware registers that go into the DWARF-2 unwind info.
951 If not defined, equals FIRST_PSEUDO_REGISTER. */
953 #define DWARF_FRAME_REGISTERS 17
955 /* 1 for registers that have pervasive standard uses
956 and are not available for the register allocator.
957 On the 80386, the stack pointer is such, as is the arg pointer.
959 REX registers are disabled for 32bit targets in
960 TARGET_CONDITIONAL_REGISTER_USAGE. */
962 #define FIXED_REGISTERS \
963 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
964 { 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
965 /*arg,flags,fpsr,fpcr,frame*/ \
966 1, 1, 1, 1, 1, \
967 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
968 0, 0, 0, 0, 0, 0, 0, 0, \
969 /* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
970 0, 0, 0, 0, 0, 0, 0, 0, \
971 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
972 0, 0, 0, 0, 0, 0, 0, 0, \
973 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
974 0, 0, 0, 0, 0, 0, 0, 0, \
975 /*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
976 0, 0, 0, 0, 0, 0, 0, 0, \
977 /*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
978 0, 0, 0, 0, 0, 0, 0, 0, \
979 /* k0, k1, k2, k3, k4, k5, k6, k7*/ \
980 0, 0, 0, 0, 0, 0, 0, 0 }
982 /* 1 for registers not available across function calls.
983 These must include the FIXED_REGISTERS and also any
984 registers that can be used without being saved.
985 The latter must include the registers where values are returned
986 and the register where structure-value addresses are passed.
987 Aside from that, you can include as many other registers as you like.
989 Value is set to 1 if the register is call used unconditionally.
990 Bit one is set if the register is call used on TARGET_32BIT ABI.
991 Bit two is set if the register is call used on TARGET_64BIT ABI.
992 Bit three is set if the register is call used on TARGET_64BIT_MS_ABI.
994 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE. */
996 #define CALL_USED_REGISTERS \
997 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
998 { 1, 1, 1, 0, 4, 4, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
999 /*arg,flags,fpsr,fpcr,frame*/ \
1000 1, 1, 1, 1, 1, \
1001 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
1002 1, 1, 1, 1, 1, 1, 6, 6, \
1003 /* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
1004 1, 1, 1, 1, 1, 1, 1, 1, \
1005 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
1006 1, 1, 1, 1, 2, 2, 2, 2, \
1007 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
1008 6, 6, 6, 6, 6, 6, 6, 6, \
1009 /*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
1010 6, 6, 6, 6, 6, 6, 6, 6, \
1011 /*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
1012 6, 6, 6, 6, 6, 6, 6, 6, \
1013 /* k0, k1, k2, k3, k4, k5, k6, k7*/ \
1014 1, 1, 1, 1, 1, 1, 1, 1 }
1016 /* Order in which to allocate registers. Each register must be
1017 listed once, even those in FIXED_REGISTERS. List frame pointer
1018 late and fixed registers last. Note that, in general, we prefer
1019 registers listed in CALL_USED_REGISTERS, keeping the others
1020 available for storage of persistent values.
1022 The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
1023 so this is just empty initializer for array. */
1025 #define REG_ALLOC_ORDER \
1026 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
1027 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
1028 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
1029 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, \
1030 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76 }
1032 /* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
1033 to be rearranged based on a particular function. When using sse math,
1034 we want to allocate SSE before x87 registers and vice versa. */
1036 #define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
1039 #define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
1041 /* Return number of consecutive hard regs needed starting at reg REGNO
1042 to hold something of mode MODE.
1043 This is ordinarily the length in words of a value of mode MODE
1044 but can be less for certain modes in special long registers.
1046 Actually there are no two word move instructions for consecutive
1047 registers. And only registers 0-3 may have mov byte instructions
1048 applied to them. */
1050 #define HARD_REGNO_NREGS(REGNO, MODE) \
1051 (STACK_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1052 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
1053 : ((MODE) == XFmode \
1054 ? (TARGET_64BIT ? 2 : 3) \
1055 : (MODE) == XCmode \
1056 ? (TARGET_64BIT ? 4 : 6) \
1057 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1059 #define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
1060 ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT) \
1061 ? (STACK_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1062 ? 0 \
1063 : ((MODE) == XFmode || (MODE) == XCmode)) \
1064 : 0)
1066 #define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1068 #define VALID_AVX256_REG_MODE(MODE) \
1069 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
1070 || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode \
1071 || (MODE) == V4DFmode)
1073 #define VALID_AVX256_REG_OR_OI_MODE(MODE) \
1074 (VALID_AVX256_REG_MODE (MODE) || (MODE) == OImode)
1076 #define VALID_AVX512F_SCALAR_MODE(MODE) \
1077 ((MODE) == DImode || (MODE) == DFmode || (MODE) == SImode \
1078 || (MODE) == SFmode)
1080 #define VALID_AVX512F_REG_MODE(MODE) \
1081 ((MODE) == V8DImode || (MODE) == V8DFmode || (MODE) == V64QImode \
1082 || (MODE) == V16SImode || (MODE) == V16SFmode || (MODE) == V32HImode)
1084 #define VALID_SSE2_REG_MODE(MODE) \
1085 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1086 || (MODE) == V2DImode || (MODE) == DFmode)
1088 #define VALID_SSE_REG_MODE(MODE) \
1089 ((MODE) == V1TImode || (MODE) == TImode \
1090 || (MODE) == V4SFmode || (MODE) == V4SImode \
1091 || (MODE) == SFmode || (MODE) == TFmode)
1093 #define VALID_MMX_REG_MODE_3DNOW(MODE) \
1094 ((MODE) == V2SFmode || (MODE) == SFmode)
1096 #define VALID_MMX_REG_MODE(MODE) \
1097 ((MODE == V1DImode) || (MODE) == DImode \
1098 || (MODE) == V2SImode || (MODE) == SImode \
1099 || (MODE) == V4HImode || (MODE) == V8QImode)
1101 #define VALID_DFP_MODE_P(MODE) \
1102 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
1104 #define VALID_FP_MODE_P(MODE) \
1105 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1106 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
1108 #define VALID_INT_MODE_P(MODE) \
1109 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1110 || (MODE) == DImode \
1111 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1112 || (MODE) == CDImode \
1113 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1114 || (MODE) == TFmode || (MODE) == TCmode)))
1116 /* Return true for modes passed in SSE registers. */
1117 #define SSE_REG_MODE_P(MODE) \
1118 ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \
1119 || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \
1120 || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1121 || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
1122 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode \
1123 || (MODE) == V2TImode || (MODE) == V8DImode || (MODE) == V64QImode \
1124 || (MODE) == V16SImode || (MODE) == V32HImode || (MODE) == V8DFmode \
1125 || (MODE) == V16SFmode)
1127 #define VALID_MASK_REG_MODE(MODE) ((MODE) == HImode || (MODE) == QImode)
1129 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
1131 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1132 ix86_hard_regno_mode_ok ((REGNO), (MODE))
1134 /* Value is 1 if it is a good idea to tie two pseudo registers
1135 when one has mode MODE1 and one has mode MODE2.
1136 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1137 for any hard reg, then this must be 0 for correct output. */
1139 #define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2)
1141 /* It is possible to write patterns to move flags; but until someone
1142 does it, */
1143 #define AVOID_CCMODE_COPIES
1145 /* Specify the modes required to caller save a given hard regno.
1146 We do this on i386 to prevent flags from being saved at all.
1148 Kill any attempts to combine saving of modes. */
1150 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1151 (CC_REGNO_P (REGNO) ? VOIDmode \
1152 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
1153 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
1154 : (MODE) == HImode && !(TARGET_PARTIAL_REG_STALL \
1155 || MASK_REGNO_P (REGNO)) ? SImode \
1156 : (MODE) == QImode && !(TARGET_64BIT || QI_REGNO_P (REGNO) \
1157 || MASK_REGNO_P (REGNO)) ? SImode \
1158 : (MODE))
1160 /* The only ABI that saves SSE registers across calls is Win64 (thus no
1161 need to check the current ABI here), and with AVX enabled Win64 only
1162 guarantees that the low 16 bytes are saved. */
1163 #define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
1164 (SSE_REGNO_P (REGNO) && GET_MODE_SIZE (MODE) > 16)
1166 /* Specify the registers used for certain standard purposes.
1167 The values of these macros are register numbers. */
1169 /* on the 386 the pc register is %eip, and is not usable as a general
1170 register. The ordinary mov instructions won't work */
1171 /* #define PC_REGNUM */
1173 /* Register to use for pushing function arguments. */
1174 #define STACK_POINTER_REGNUM 7
1176 /* Base register for access to local variables of the function. */
1177 #define HARD_FRAME_POINTER_REGNUM 6
1179 /* Base register for access to local variables of the function. */
1180 #define FRAME_POINTER_REGNUM 20
1182 /* First floating point reg */
1183 #define FIRST_FLOAT_REG 8
1185 /* First & last stack-like regs */
1186 #define FIRST_STACK_REG FIRST_FLOAT_REG
1187 #define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1189 #define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1190 #define LAST_SSE_REG (FIRST_SSE_REG + 7)
1192 #define FIRST_MMX_REG (LAST_SSE_REG + 1) /*29*/
1193 #define LAST_MMX_REG (FIRST_MMX_REG + 7)
1195 #define FIRST_REX_INT_REG (LAST_MMX_REG + 1) /*37*/
1196 #define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1198 #define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1) /*45*/
1199 #define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1201 #define FIRST_EXT_REX_SSE_REG (LAST_REX_SSE_REG + 1) /*53*/
1202 #define LAST_EXT_REX_SSE_REG (FIRST_EXT_REX_SSE_REG + 15) /*68*/
1204 #define FIRST_MASK_REG (LAST_EXT_REX_SSE_REG + 1) /*69*/
1205 #define LAST_MASK_REG (FIRST_MASK_REG + 7) /*76*/
1207 /* Override this in other tm.h files to cope with various OS lossage
1208 requiring a frame pointer. */
1209 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1210 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
1211 #endif
1213 /* Make sure we can access arbitrary call frames. */
1214 #define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
1216 /* Base register for access to arguments of the function. */
1217 #define ARG_POINTER_REGNUM 16
1219 /* Register to hold the addressing base for position independent
1220 code access to data items. We don't use PIC pointer for 64bit
1221 mode. Define the regnum to dummy value to prevent gcc from
1222 pessimizing code dealing with EBX.
1224 To avoid clobbering a call-saved register unnecessarily, we renumber
1225 the pic register when possible. The change is visible after the
1226 prologue has been emitted. */
1228 #define REAL_PIC_OFFSET_TABLE_REGNUM BX_REG
1230 #define PIC_OFFSET_TABLE_REGNUM \
1231 ((TARGET_64BIT && (ix86_cmodel == CM_SMALL_PIC \
1232 || TARGET_PECOFF)) \
1233 || !flag_pic ? INVALID_REGNUM \
1234 : reload_completed ? REGNO (pic_offset_table_rtx) \
1235 : REAL_PIC_OFFSET_TABLE_REGNUM)
1237 #define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1239 /* This is overridden by <cygwin.h>. */
1240 #define MS_AGGREGATE_RETURN 0
1242 #define KEEP_AGGREGATE_RETURN_POINTER 0
1244 /* Define the classes of registers for register constraints in the
1245 machine description. Also define ranges of constants.
1247 One of the classes must always be named ALL_REGS and include all hard regs.
1248 If there is more than one class, another class must be named NO_REGS
1249 and contain no registers.
1251 The name GENERAL_REGS must be the name of a class (or an alias for
1252 another name such as ALL_REGS). This is the class of registers
1253 that is allowed by "g" or "r" in a register constraint.
1254 Also, registers outside this class are allocated only when
1255 instructions express preferences for them.
1257 The classes must be numbered in nondecreasing order; that is,
1258 a larger-numbered class must never be contained completely
1259 in a smaller-numbered class.
1261 For any two classes, it is very desirable that there be another
1262 class that represents their union.
1264 It might seem that class BREG is unnecessary, since no useful 386
1265 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
1266 and the "b" register constraint is useful in asms for syscalls.
1268 The flags, fpsr and fpcr registers are in no class. */
1270 enum reg_class
1272 NO_REGS,
1273 AREG, DREG, CREG, BREG, SIREG, DIREG,
1274 AD_REGS, /* %eax/%edx for DImode */
1275 Q_REGS, /* %eax %ebx %ecx %edx */
1276 NON_Q_REGS, /* %esi %edi %ebp %esp */
1277 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
1278 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1279 CLOBBERED_REGS, /* call-clobbered integer registers */
1280 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp
1281 %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
1282 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1283 FLOAT_REGS,
1284 SSE_FIRST_REG,
1285 SSE_REGS,
1286 EVEX_SSE_REGS,
1287 ALL_SSE_REGS,
1288 MMX_REGS,
1289 FP_TOP_SSE_REGS,
1290 FP_SECOND_SSE_REGS,
1291 FLOAT_SSE_REGS,
1292 FLOAT_INT_REGS,
1293 INT_SSE_REGS,
1294 FLOAT_INT_SSE_REGS,
1295 MASK_EVEX_REGS,
1296 MASK_REGS,
1297 ALL_REGS, LIM_REG_CLASSES
1300 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1302 #define INTEGER_CLASS_P(CLASS) \
1303 reg_class_subset_p ((CLASS), GENERAL_REGS)
1304 #define FLOAT_CLASS_P(CLASS) \
1305 reg_class_subset_p ((CLASS), FLOAT_REGS)
1306 #define SSE_CLASS_P(CLASS) \
1307 reg_class_subset_p ((CLASS), ALL_SSE_REGS)
1308 #define MMX_CLASS_P(CLASS) \
1309 ((CLASS) == MMX_REGS)
1310 #define MAYBE_INTEGER_CLASS_P(CLASS) \
1311 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1312 #define MAYBE_FLOAT_CLASS_P(CLASS) \
1313 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1314 #define MAYBE_SSE_CLASS_P(CLASS) \
1315 reg_classes_intersect_p ((CLASS), ALL_SSE_REGS)
1316 #define MAYBE_MMX_CLASS_P(CLASS) \
1317 reg_classes_intersect_p ((CLASS), MMX_REGS)
1318 #define MAYBE_MASK_CLASS_P(CLASS) \
1319 reg_classes_intersect_p ((CLASS), MASK_REGS)
1321 #define Q_CLASS_P(CLASS) \
1322 reg_class_subset_p ((CLASS), Q_REGS)
1324 #define MAYBE_NON_Q_CLASS_P(CLASS) \
1325 reg_classes_intersect_p ((CLASS), NON_Q_REGS)
1327 /* Give names of register classes as strings for dump file. */
1329 #define REG_CLASS_NAMES \
1330 { "NO_REGS", \
1331 "AREG", "DREG", "CREG", "BREG", \
1332 "SIREG", "DIREG", \
1333 "AD_REGS", \
1334 "Q_REGS", "NON_Q_REGS", \
1335 "INDEX_REGS", \
1336 "LEGACY_REGS", \
1337 "CLOBBERED_REGS", \
1338 "GENERAL_REGS", \
1339 "FP_TOP_REG", "FP_SECOND_REG", \
1340 "FLOAT_REGS", \
1341 "SSE_FIRST_REG", \
1342 "SSE_REGS", \
1343 "EVEX_SSE_REGS", \
1344 "ALL_SSE_REGS", \
1345 "MMX_REGS", \
1346 "FP_TOP_SSE_REGS", \
1347 "FP_SECOND_SSE_REGS", \
1348 "FLOAT_SSE_REGS", \
1349 "FLOAT_INT_REGS", \
1350 "INT_SSE_REGS", \
1351 "FLOAT_INT_SSE_REGS", \
1352 "MASK_EVEX_REGS", \
1353 "MASK_REGS", \
1354 "ALL_REGS" }
1356 /* Define which registers fit in which classes. This is an initializer
1357 for a vector of HARD_REG_SET of length N_REG_CLASSES.
1359 Note that CLOBBERED_REGS are calculated by
1360 TARGET_CONDITIONAL_REGISTER_USAGE. */
1362 #define REG_CLASS_CONTENTS \
1363 { { 0x00, 0x0, 0x0 }, \
1364 { 0x01, 0x0, 0x0 }, /* AREG */ \
1365 { 0x02, 0x0, 0x0 }, /* DREG */ \
1366 { 0x04, 0x0, 0x0 }, /* CREG */ \
1367 { 0x08, 0x0, 0x0 }, /* BREG */ \
1368 { 0x10, 0x0, 0x0 }, /* SIREG */ \
1369 { 0x20, 0x0, 0x0 }, /* DIREG */ \
1370 { 0x03, 0x0, 0x0 }, /* AD_REGS */ \
1371 { 0x0f, 0x0, 0x0 }, /* Q_REGS */ \
1372 { 0x1100f0, 0x1fe0, 0x0 }, /* NON_Q_REGS */ \
1373 { 0x7f, 0x1fe0, 0x0 }, /* INDEX_REGS */ \
1374 { 0x1100ff, 0x0, 0x0 }, /* LEGACY_REGS */ \
1375 { 0x07, 0x0, 0x0 }, /* CLOBBERED_REGS */ \
1376 { 0x1100ff, 0x1fe0, 0x0 }, /* GENERAL_REGS */ \
1377 { 0x100, 0x0, 0x0 }, /* FP_TOP_REG */ \
1378 { 0x0200, 0x0, 0x0 }, /* FP_SECOND_REG */ \
1379 { 0xff00, 0x0, 0x0 }, /* FLOAT_REGS */ \
1380 { 0x200000, 0x0, 0x0 }, /* SSE_FIRST_REG */ \
1381 { 0x1fe00000, 0x1fe000, 0x0 }, /* SSE_REGS */ \
1382 { 0x0,0xffe00000, 0x1f }, /* EVEX_SSE_REGS */ \
1383 { 0x1fe00000,0xffffe000, 0x1f }, /* ALL_SSE_REGS */ \
1384 { 0xe0000000, 0x1f, 0x0 }, /* MMX_REGS */ \
1385 { 0x1fe00100,0xffffe000, 0x1f }, /* FP_TOP_SSE_REG */ \
1386 { 0x1fe00200,0xffffe000, 0x1f }, /* FP_SECOND_SSE_REG */ \
1387 { 0x1fe0ff00,0xffffe000, 0x1f }, /* FLOAT_SSE_REGS */ \
1388 { 0x11ffff, 0x1fe0, 0x0 }, /* FLOAT_INT_REGS */ \
1389 { 0x1ff100ff,0xffffffe0, 0x1f }, /* INT_SSE_REGS */ \
1390 { 0x1ff1ffff,0xffffffe0, 0x1f }, /* FLOAT_INT_SSE_REGS */ \
1391 { 0x0, 0x0,0x1fc0 }, /* MASK_EVEX_REGS */ \
1392 { 0x0, 0x0,0x1fe0 }, /* MASK_REGS */ \
1393 { 0xffffffff,0xffffffff,0x1fff } \
1396 /* The same information, inverted:
1397 Return the class number of the smallest class containing
1398 reg number REGNO. This could be a conditional expression
1399 or could index an array. */
1401 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1403 /* When this hook returns true for MODE, the compiler allows
1404 registers explicitly used in the rtl to be used as spill registers
1405 but prevents the compiler from extending the lifetime of these
1406 registers. */
1407 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
1409 #define QI_REG_P(X) (REG_P (X) && QI_REGNO_P (REGNO (X)))
1410 #define QI_REGNO_P(N) IN_RANGE ((N), AX_REG, BX_REG)
1412 #define GENERAL_REG_P(X) \
1413 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1414 #define GENERAL_REGNO_P(N) \
1415 (IN_RANGE ((N), AX_REG, SP_REG) || REX_INT_REGNO_P (N))
1417 #define ANY_QI_REG_P(X) (REG_P (X) && ANY_QI_REGNO_P (REGNO (X)))
1418 #define ANY_QI_REGNO_P(N) \
1419 (TARGET_64BIT ? GENERAL_REGNO_P (N) : QI_REGNO_P (N))
1421 #define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1422 #define REX_INT_REGNO_P(N) \
1423 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
1425 #define STACK_REG_P(X) (REG_P (X) && STACK_REGNO_P (REGNO (X)))
1426 #define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
1428 #define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1429 #define ANY_FP_REGNO_P(N) (STACK_REGNO_P (N) || SSE_REGNO_P (N))
1431 #define X87_FLOAT_MODE_P(MODE) \
1432 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
1434 #define SSE_REG_P(X) (REG_P (X) && SSE_REGNO_P (REGNO (X)))
1435 #define SSE_REGNO_P(N) \
1436 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
1437 || REX_SSE_REGNO_P (N) \
1438 || EXT_REX_SSE_REGNO_P (N))
1440 #define REX_SSE_REGNO_P(N) \
1441 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
1443 #define EXT_REX_SSE_REGNO_P(N) \
1444 IN_RANGE ((N), FIRST_EXT_REX_SSE_REG, LAST_EXT_REX_SSE_REG)
1446 #define SSE_REGNO(N) \
1447 ((N) < 8 ? FIRST_SSE_REG + (N) \
1448 : (N) <= LAST_REX_SSE_REG ? (FIRST_REX_SSE_REG + (N) - 8) \
1449 : (FIRST_EXT_REX_SSE_REG + (N) - 16))
1451 #define MASK_REGNO_P(N) IN_RANGE ((N), FIRST_MASK_REG, LAST_MASK_REG)
1452 #define ANY_MASK_REG_P(X) (REG_P (X) && MASK_REGNO_P (REGNO (X)))
1454 #define SSE_FLOAT_MODE_P(MODE) \
1455 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1457 #define FMA4_VEC_FLOAT_MODE_P(MODE) \
1458 (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1459 || (MODE) == V8SFmode || (MODE) == V4DFmode))
1461 #define MMX_REG_P(X) (REG_P (X) && MMX_REGNO_P (REGNO (X)))
1462 #define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
1464 #define STACK_TOP_P(X) (REG_P (X) && REGNO (X) == FIRST_STACK_REG)
1466 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1467 #define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1469 /* The class value for index registers, and the one for base regs. */
1471 #define INDEX_REG_CLASS INDEX_REGS
1472 #define BASE_REG_CLASS GENERAL_REGS
1474 /* Place additional restrictions on the register class to use when it
1475 is necessary to be able to hold a value of mode MODE in a reload
1476 register for which class CLASS would ordinarily be used.
1478 We avoid classes containing registers from multiple units due to
1479 the limitation in ix86_secondary_memory_needed. We limit these
1480 classes to their "natural mode" single unit register class, depending
1481 on the unit availability.
1483 Please note that reg_class_subset_p is not commutative, so these
1484 conditions mean "... if (CLASS) includes ALL registers from the
1485 register set." */
1487 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1488 (((MODE) == QImode && !TARGET_64BIT \
1489 && reg_class_subset_p (Q_REGS, (CLASS))) ? Q_REGS \
1490 : (((MODE) == SImode || (MODE) == DImode) \
1491 && reg_class_subset_p (GENERAL_REGS, (CLASS))) ? GENERAL_REGS \
1492 : (SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH \
1493 && reg_class_subset_p (SSE_REGS, (CLASS))) ? SSE_REGS \
1494 : (X87_FLOAT_MODE_P (MODE) \
1495 && reg_class_subset_p (FLOAT_REGS, (CLASS))) ? FLOAT_REGS \
1496 : (CLASS))
1498 /* If we are copying between general and FP registers, we need a memory
1499 location. The same is true for SSE and MMX registers. */
1500 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1501 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
1503 /* Get_secondary_mem widens integral modes to BITS_PER_WORD.
1504 There is no need to emit full 64 bit move on 64 bit targets
1505 for integral modes that can be moved using 32 bit move. */
1506 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1507 (GET_MODE_BITSIZE (MODE) < 32 && INTEGRAL_MODE_P (MODE) \
1508 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1509 : MODE)
1511 /* Return a class of registers that cannot change FROM mode to TO mode. */
1513 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1514 ix86_cannot_change_mode_class (FROM, TO, CLASS)
1516 /* Stack layout; function entry, exit and calling. */
1518 /* Define this if pushing a word on the stack
1519 makes the stack pointer a smaller address. */
1520 #define STACK_GROWS_DOWNWARD
1522 /* Define this to nonzero if the nominal address of the stack frame
1523 is at the high-address end of the local variables;
1524 that is, each additional local variable allocated
1525 goes at a more negative offset in the frame. */
1526 #define FRAME_GROWS_DOWNWARD 1
1528 /* Offset within stack frame to start allocating local variables at.
1529 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1530 first local allocated. Otherwise, it is the offset to the BEGINNING
1531 of the first local allocated. */
1532 #define STARTING_FRAME_OFFSET 0
1534 /* If we generate an insn to push BYTES bytes, this says how many the stack
1535 pointer really advances by. On 386, we have pushw instruction that
1536 decrements by exactly 2 no matter what the position was, there is no pushb.
1538 But as CIE data alignment factor on this arch is -4 for 32bit targets
1539 and -8 for 64bit targets, we need to make sure all stack pointer adjustments
1540 are in multiple of 4 for 32bit targets and 8 for 64bit targets. */
1542 #define PUSH_ROUNDING(BYTES) \
1543 (((BYTES) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD)
1545 /* If defined, the maximum amount of space required for outgoing arguments
1546 will be computed and placed into the variable `crtl->outgoing_args_size'.
1547 No space will be pushed onto the stack for each call; instead, the
1548 function prologue should increase the stack frame size by this amount.
1550 In 32bit mode enabling argument accumulation results in about 5% code size
1551 growth becuase move instructions are less compact than push. In 64bit
1552 mode the difference is less drastic but visible.
1554 FIXME: Unlike earlier implementations, the size of unwind info seems to
1555 actually grouw with accumulation. Is that because accumulated args
1556 unwind info became unnecesarily bloated?
1558 64-bit MS ABI seem to require 16 byte alignment everywhere except for
1559 function prologue and epilogue. This is not possible without
1560 ACCUMULATE_OUTGOING_ARGS.
1562 If stack probes are required, the space used for large function
1563 arguments on the stack must also be probed, so enable
1564 -maccumulate-outgoing-args so this happens in the prologue. */
1566 #define ACCUMULATE_OUTGOING_ARGS \
1567 ((TARGET_ACCUMULATE_OUTGOING_ARGS && optimize_function_for_speed_p (cfun)) \
1568 || TARGET_STACK_PROBE || TARGET_64BIT_MS_ABI)
1570 /* If defined, a C expression whose value is nonzero when we want to use PUSH
1571 instructions to pass outgoing arguments. */
1573 #define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1575 /* We want the stack and args grow in opposite directions, even if
1576 PUSH_ARGS is 0. */
1577 #define PUSH_ARGS_REVERSED 1
1579 /* Offset of first parameter from the argument pointer register value. */
1580 #define FIRST_PARM_OFFSET(FNDECL) 0
1582 /* Define this macro if functions should assume that stack space has been
1583 allocated for arguments even when their values are passed in registers.
1585 The value of this macro is the size, in bytes, of the area reserved for
1586 arguments passed in registers for the function represented by FNDECL.
1588 This space can be allocated by the caller, or be a part of the
1589 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1590 which. */
1591 #define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1593 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
1594 (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
1596 /* Define how to find the value returned by a library function
1597 assuming the value has mode MODE. */
1599 #define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
1601 /* Define the size of the result block used for communication between
1602 untyped_call and untyped_return. The block contains a DImode value
1603 followed by the block used by fnsave and frstor. */
1605 #define APPLY_RESULT_SIZE (8+108)
1607 /* 1 if N is a possible register number for function argument passing. */
1608 #define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1610 /* Define a data type for recording info about an argument list
1611 during the scan of that argument list. This data type should
1612 hold all necessary information about the function itself
1613 and about the args processed so far, enough to enable macros
1614 such as FUNCTION_ARG to determine where the next arg should go. */
1616 typedef struct ix86_args {
1617 int words; /* # words passed so far */
1618 int nregs; /* # registers available for passing */
1619 int regno; /* next available register number */
1620 int fastcall; /* fastcall or thiscall calling convention
1621 is used */
1622 int sse_words; /* # sse words passed so far */
1623 int sse_nregs; /* # sse registers available for passing */
1624 int warn_avx; /* True when we want to warn about AVX ABI. */
1625 int warn_sse; /* True when we want to warn about SSE ABI. */
1626 int warn_mmx; /* True when we want to warn about MMX ABI. */
1627 int sse_regno; /* next available sse register number */
1628 int mmx_words; /* # mmx words passed so far */
1629 int mmx_nregs; /* # mmx registers available for passing */
1630 int mmx_regno; /* next available mmx register number */
1631 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
1632 int caller; /* true if it is caller. */
1633 int float_in_sse; /* Set to 1 or 2 for 32bit targets if
1634 SFmode/DFmode arguments should be passed
1635 in SSE registers. Otherwise 0. */
1636 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
1637 MS_ABI for ms abi. */
1638 } CUMULATIVE_ARGS;
1640 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1641 for a call to a function whose data type is FNTYPE.
1642 For a library call, FNTYPE is 0. */
1644 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1645 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
1646 (N_NAMED_ARGS) != -1)
1648 /* Output assembler code to FILE to increment profiler label # LABELNO
1649 for profiling a function entry. */
1651 #define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1653 #define MCOUNT_NAME "_mcount"
1655 #define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1657 #define PROFILE_COUNT_REGISTER "edx"
1659 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1660 the stack pointer does not matter. The value is tested only in
1661 functions that have frame pointers.
1662 No definition is equivalent to always zero. */
1663 /* Note on the 386 it might be more efficient not to define this since
1664 we have to restore it ourselves from the frame pointer, in order to
1665 use pop */
1667 #define EXIT_IGNORE_STACK 1
1669 /* Output assembler code for a block containing the constant parts
1670 of a trampoline, leaving space for the variable parts. */
1672 /* On the 386, the trampoline contains two instructions:
1673 mov #STATIC,ecx
1674 jmp FUNCTION
1675 The trampoline is generated entirely at runtime. The operand of JMP
1676 is the address of FUNCTION relative to the instruction following the
1677 JMP (which is 5 bytes long). */
1679 /* Length in units of the trampoline for entering a nested function. */
1681 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 24 : 10)
1683 /* Definitions for register eliminations.
1685 This is an array of structures. Each structure initializes one pair
1686 of eliminable registers. The "from" register number is given first,
1687 followed by "to". Eliminations of the same "from" register are listed
1688 in order of preference.
1690 There are two registers that can always be eliminated on the i386.
1691 The frame pointer and the arg pointer can be replaced by either the
1692 hard frame pointer or to the stack pointer, depending upon the
1693 circumstances. The hard frame pointer is not used before reload and
1694 so it is not eligible for elimination. */
1696 #define ELIMINABLE_REGS \
1697 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1698 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1699 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1700 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
1702 /* Define the offset between two registers, one to be eliminated, and the other
1703 its replacement, at the start of a routine. */
1705 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1706 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1708 /* Addressing modes, and classification of registers for them. */
1710 /* Macros to check register numbers against specific register classes. */
1712 /* These assume that REGNO is a hard or pseudo reg number.
1713 They give nonzero only if REGNO is a hard reg of the suitable class
1714 or a pseudo reg currently allocated to a suitable hard reg.
1715 Since they use reg_renumber, they are safe only once reg_renumber
1716 has been allocated, which happens in reginfo.c during register
1717 allocation. */
1719 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1720 ((REGNO) < STACK_POINTER_REGNUM \
1721 || REX_INT_REGNO_P (REGNO) \
1722 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1723 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
1725 #define REGNO_OK_FOR_BASE_P(REGNO) \
1726 (GENERAL_REGNO_P (REGNO) \
1727 || (REGNO) == ARG_POINTER_REGNUM \
1728 || (REGNO) == FRAME_POINTER_REGNUM \
1729 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
1731 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1732 and check its validity for a certain class.
1733 We have two alternate definitions for each of them.
1734 The usual definition accepts all pseudo regs; the other rejects
1735 them unless they have been allocated suitable hard regs.
1736 The symbol REG_OK_STRICT causes the latter definition to be used.
1738 Most source files want to accept pseudo regs in the hope that
1739 they will get allocated to the class that the insn wants them to be in.
1740 Source files for reload pass need to be strict.
1741 After reload, it makes no difference, since pseudo regs have
1742 been eliminated by then. */
1745 /* Non strict versions, pseudos are ok. */
1746 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1747 (REGNO (X) < STACK_POINTER_REGNUM \
1748 || REX_INT_REGNO_P (REGNO (X)) \
1749 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1751 #define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1752 (GENERAL_REGNO_P (REGNO (X)) \
1753 || REGNO (X) == ARG_POINTER_REGNUM \
1754 || REGNO (X) == FRAME_POINTER_REGNUM \
1755 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1757 /* Strict versions, hard registers only */
1758 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1759 #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1761 #ifndef REG_OK_STRICT
1762 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1763 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
1765 #else
1766 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1767 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
1768 #endif
1770 /* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
1771 that is a valid memory address for an instruction.
1772 The MODE argument is the machine mode for the MEM expression
1773 that wants to use this address.
1775 The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
1776 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1778 See legitimize_pic_address in i386.c for details as to what
1779 constitutes a legitimate address when -fpic is used. */
1781 #define MAX_REGS_PER_ADDRESS 2
1783 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1785 /* Try a machine-dependent way of reloading an illegitimate address
1786 operand. If we find one, push the reload and jump to WIN. This
1787 macro is used in only one place: `find_reloads_address' in reload.c. */
1789 #define LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, INDL, WIN) \
1790 do { \
1791 if (ix86_legitimize_reload_address ((X), (MODE), (OPNUM), \
1792 (int)(TYPE), (INDL))) \
1793 goto WIN; \
1794 } while (0)
1796 /* If defined, a C expression to determine the base term of address X.
1797 This macro is used in only one place: `find_base_term' in alias.c.
1799 It is always safe for this macro to not be defined. It exists so
1800 that alias analysis can understand machine-dependent addresses.
1802 The typical use of this macro is to handle addresses containing
1803 a label_ref or symbol_ref within an UNSPEC. */
1805 #define FIND_BASE_TERM(X) ix86_find_base_term (X)
1807 /* Nonzero if the constant value X is a legitimate general operand
1808 when generating PIC code. It is given that flag_pic is on and
1809 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1811 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1813 #define SYMBOLIC_CONST(X) \
1814 (GET_CODE (X) == SYMBOL_REF \
1815 || GET_CODE (X) == LABEL_REF \
1816 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
1818 /* Max number of args passed in registers. If this is more than 3, we will
1819 have problems with ebx (register #4), since it is a caller save register and
1820 is also used as the pic register in ELF. So for now, don't allow more than
1821 3 registers to be passed in registers. */
1823 /* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1824 #define X86_64_REGPARM_MAX 6
1825 #define X86_64_MS_REGPARM_MAX 4
1827 #define X86_32_REGPARM_MAX 3
1829 #define REGPARM_MAX \
1830 (TARGET_64BIT \
1831 ? (TARGET_64BIT_MS_ABI \
1832 ? X86_64_MS_REGPARM_MAX \
1833 : X86_64_REGPARM_MAX) \
1834 : X86_32_REGPARM_MAX)
1836 #define X86_64_SSE_REGPARM_MAX 8
1837 #define X86_64_MS_SSE_REGPARM_MAX 4
1839 #define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
1841 #define SSE_REGPARM_MAX \
1842 (TARGET_64BIT \
1843 ? (TARGET_64BIT_MS_ABI \
1844 ? X86_64_MS_SSE_REGPARM_MAX \
1845 : X86_64_SSE_REGPARM_MAX) \
1846 : X86_32_SSE_REGPARM_MAX)
1848 #define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
1850 /* Specify the machine mode that this machine uses
1851 for the index in the tablejump instruction. */
1852 #define CASE_VECTOR_MODE \
1853 (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
1855 /* Define this as 1 if `char' should by default be signed; else as 0. */
1856 #define DEFAULT_SIGNED_CHAR 1
1858 /* Max number of bytes we can move from memory to memory
1859 in one reasonably fast instruction. */
1860 #define MOVE_MAX 16
1862 /* MOVE_MAX_PIECES is the number of bytes at a time which we can
1863 move efficiently, as opposed to MOVE_MAX which is the maximum
1864 number of bytes we can move with a single instruction. */
1865 #define MOVE_MAX_PIECES UNITS_PER_WORD
1867 /* If a memory-to-memory move would take MOVE_RATIO or more simple
1868 move-instruction pairs, we will do a movmem or libcall instead.
1869 Increasing the value will always make code faster, but eventually
1870 incurs high cost in increased code size.
1872 If you don't define this, a reasonable default is used. */
1874 #define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
1876 /* If a clear memory operation would take CLEAR_RATIO or more simple
1877 move-instruction sequences, we will do a clrmem or libcall instead. */
1879 #define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
1881 /* Define if shifts truncate the shift count which implies one can
1882 omit a sign-extension or zero-extension of a shift count.
1884 On i386, shifts do truncate the count. But bit test instructions
1885 take the modulo of the bit offset operand. */
1887 /* #define SHIFT_COUNT_TRUNCATED */
1889 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1890 is done just by pretending it is already truncated. */
1891 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1893 /* A macro to update M and UNSIGNEDP when an object whose type is
1894 TYPE and which has the specified mode and signedness is to be
1895 stored in a register. This macro is only called when TYPE is a
1896 scalar type.
1898 On i386 it is sometimes useful to promote HImode and QImode
1899 quantities to SImode. The choice depends on target type. */
1901 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1902 do { \
1903 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1904 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
1905 (MODE) = SImode; \
1906 } while (0)
1908 /* Specify the machine mode that pointers have.
1909 After generation of rtl, the compiler makes no further distinction
1910 between pointers and any other objects of this machine mode. */
1911 #define Pmode (ix86_pmode == PMODE_DI ? DImode : SImode)
1913 /* A C expression whose value is zero if pointers that need to be extended
1914 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
1915 greater then zero if they are zero-extended and less then zero if the
1916 ptr_extend instruction should be used. */
1918 #define POINTERS_EXTEND_UNSIGNED 1
1920 /* A function address in a call instruction
1921 is a byte address (for indexing purposes)
1922 so give the MEM rtx a byte's mode. */
1923 #define FUNCTION_MODE QImode
1926 /* A C expression for the cost of a branch instruction. A value of 1
1927 is the default; other values are interpreted relative to that. */
1929 #define BRANCH_COST(speed_p, predictable_p) \
1930 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
1932 /* An integer expression for the size in bits of the largest integer machine
1933 mode that should actually be used. We allow pairs of registers. */
1934 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
1936 /* Define this macro as a C expression which is nonzero if accessing
1937 less than a word of memory (i.e. a `char' or a `short') is no
1938 faster than accessing a word of memory, i.e., if such access
1939 require more than one instruction or if there is no difference in
1940 cost between byte and (aligned) word loads.
1942 When this macro is not defined, the compiler will access a field by
1943 finding the smallest containing object; when it is defined, a
1944 fullword load will be used if alignment permits. Unless bytes
1945 accesses are faster than word accesses, using word accesses is
1946 preferable since it may eliminate subsequent memory access if
1947 subsequent accesses occur to other fields in the same word of the
1948 structure, but to different bytes. */
1950 #define SLOW_BYTE_ACCESS 0
1952 /* Nonzero if access to memory by shorts is slow and undesirable. */
1953 #define SLOW_SHORT_ACCESS 0
1955 /* Define this macro to be the value 1 if unaligned accesses have a
1956 cost many times greater than aligned accesses, for example if they
1957 are emulated in a trap handler.
1959 When this macro is nonzero, the compiler will act as if
1960 `STRICT_ALIGNMENT' were nonzero when generating code for block
1961 moves. This can cause significantly more instructions to be
1962 produced. Therefore, do not set this macro nonzero if unaligned
1963 accesses only add a cycle or two to the time for a memory access.
1965 If the value of this macro is always zero, it need not be defined. */
1967 /* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
1969 /* Define this macro if it is as good or better to call a constant
1970 function address than to call an address kept in a register.
1972 Desirable on the 386 because a CALL with a constant address is
1973 faster than one with a register address. */
1975 #define NO_FUNCTION_CSE
1977 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1978 return the mode to be used for the comparison.
1980 For floating-point equality comparisons, CCFPEQmode should be used.
1981 VOIDmode should be used in all other cases.
1983 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
1984 possible, to allow for more combinations. */
1986 #define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
1988 /* Return nonzero if MODE implies a floating point inequality can be
1989 reversed. */
1991 #define REVERSIBLE_CC_MODE(MODE) 1
1993 /* A C expression whose value is reversed condition code of the CODE for
1994 comparison done in CC_MODE mode. */
1995 #define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
1998 /* Control the assembler format that we output, to the extent
1999 this does not vary between assemblers. */
2001 /* How to refer to registers in assembler output.
2002 This sequence is indexed by compiler's hard-register-number (see above). */
2004 /* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
2005 For non floating point regs, the following are the HImode names.
2007 For float regs, the stack top is sometimes referred to as "%st(0)"
2008 instead of just "%st". TARGET_PRINT_OPERAND handles this with the
2009 "y" code. */
2011 #define HI_REGISTER_NAMES \
2012 {"ax","dx","cx","bx","si","di","bp","sp", \
2013 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
2014 "argp", "flags", "fpsr", "fpcr", "frame", \
2015 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
2016 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
2017 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2018 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", \
2019 "xmm16", "xmm17", "xmm18", "xmm19", \
2020 "xmm20", "xmm21", "xmm22", "xmm23", \
2021 "xmm24", "xmm25", "xmm26", "xmm27", \
2022 "xmm28", "xmm29", "xmm30", "xmm31", \
2023 "k0", "k1", "k2", "k3", "k4", "k5", "k6", "k7" }
2025 #define REGISTER_NAMES HI_REGISTER_NAMES
2027 /* Table of additional register names to use in user input. */
2029 #define ADDITIONAL_REGISTER_NAMES \
2030 { { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2031 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
2032 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2033 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
2034 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
2035 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
2037 /* Note we are omitting these since currently I don't know how
2038 to get gcc to use these, since they want the same but different
2039 number as al, and ax.
2042 #define QI_REGISTER_NAMES \
2043 {"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
2045 /* These parallel the array above, and can be used to access bits 8:15
2046 of regs 0 through 3. */
2048 #define QI_HIGH_REGISTER_NAMES \
2049 {"ah", "dh", "ch", "bh", }
2051 /* How to renumber registers for dbx and gdb. */
2053 #define DBX_REGISTER_NUMBER(N) \
2054 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
2056 extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2057 extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2058 extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
2060 extern int const x86_64_ms_sysv_extra_clobbered_registers[12];
2062 /* Before the prologue, RA is at 0(%esp). */
2063 #define INCOMING_RETURN_ADDR_RTX \
2064 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
2066 /* After the prologue, RA is at -4(AP) in the current frame. */
2067 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2068 ((COUNT) == 0 \
2069 ? gen_rtx_MEM (Pmode, plus_constant (Pmode, arg_pointer_rtx, \
2070 -UNITS_PER_WORD)) \
2071 : gen_rtx_MEM (Pmode, plus_constant (Pmode, FRAME, UNITS_PER_WORD)))
2073 /* PC is dbx register 8; let's use that column for RA. */
2074 #define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
2076 /* Before the prologue, the top of the frame is at 4(%esp). */
2077 #define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
2079 /* Describe how we implement __builtin_eh_return. */
2080 #define EH_RETURN_DATA_REGNO(N) ((N) <= DX_REG ? (N) : INVALID_REGNUM)
2081 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, CX_REG)
2084 /* Select a format to encode pointers in exception handling data. CODE
2085 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2086 true if the symbol may be affected by dynamic relocations.
2088 ??? All x86 object file formats are capable of representing this.
2089 After all, the relocation needed is the same as for the call insn.
2090 Whether or not a particular assembler allows us to enter such, I
2091 guess we'll have to see. */
2092 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
2093 asm_preferred_eh_data_format ((CODE), (GLOBAL))
2095 /* This is how to output an insn to push a register on the stack.
2096 It need not be very fast code. */
2098 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
2099 do { \
2100 if (TARGET_64BIT) \
2101 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2102 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2103 else \
2104 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2105 } while (0)
2107 /* This is how to output an insn to pop a register from the stack.
2108 It need not be very fast code. */
2110 #define ASM_OUTPUT_REG_POP(FILE, REGNO) \
2111 do { \
2112 if (TARGET_64BIT) \
2113 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2114 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2115 else \
2116 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2117 } while (0)
2119 /* This is how to output an element of a case-vector that is absolute. */
2121 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2122 ix86_output_addr_vec_elt ((FILE), (VALUE))
2124 /* This is how to output an element of a case-vector that is relative. */
2126 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2127 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
2129 /* When we see %v, we will print the 'v' prefix if TARGET_AVX is true. */
2131 #define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
2133 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
2134 (PTR) += TARGET_AVX ? 1 : 2; \
2137 /* A C statement or statements which output an assembler instruction
2138 opcode to the stdio stream STREAM. The macro-operand PTR is a
2139 variable of type `char *' which points to the opcode name in
2140 its "internal" form--the form that is written in the machine
2141 description. */
2143 #define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2144 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
2146 /* A C statement to output to the stdio stream FILE an assembler
2147 command to pad the location counter to a multiple of 1<<LOG
2148 bytes if it is within MAX_SKIP bytes. */
2150 #ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2151 #undef ASM_OUTPUT_MAX_SKIP_PAD
2152 #define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP) \
2153 if ((LOG) != 0) \
2155 if ((MAX_SKIP) == 0) \
2156 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
2157 else \
2158 fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \
2160 #endif
2162 /* Write the extra assembler code needed to declare a function
2163 properly. */
2165 #undef ASM_OUTPUT_FUNCTION_LABEL
2166 #define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
2167 ix86_asm_output_function_label (FILE, NAME, DECL)
2169 /* Under some conditions we need jump tables in the text section,
2170 because the assembler cannot handle label differences between
2171 sections. This is the case for x86_64 on Mach-O for example. */
2173 #define JUMP_TABLES_IN_TEXT_SECTION \
2174 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2175 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
2177 /* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2178 and switch back. For x86 we do this only to save a few bytes that
2179 would otherwise be unused in the text section. */
2180 #define CRT_MKSTR2(VAL) #VAL
2181 #define CRT_MKSTR(x) CRT_MKSTR2(x)
2183 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2184 asm (SECTION_OP "\n\t" \
2185 "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n" \
2186 TEXT_SECTION_ASM_OP);
2188 /* Default threshold for putting data in large sections
2189 with x86-64 medium memory model */
2190 #define DEFAULT_LARGE_SECTION_THRESHOLD 65536
2192 /* Which processor to tune code generation for. */
2194 enum processor_type
2196 PROCESSOR_I386 = 0, /* 80386 */
2197 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2198 PROCESSOR_PENTIUM,
2199 PROCESSOR_PENTIUMPRO,
2200 PROCESSOR_GEODE,
2201 PROCESSOR_K6,
2202 PROCESSOR_ATHLON,
2203 PROCESSOR_PENTIUM4,
2204 PROCESSOR_K8,
2205 PROCESSOR_NOCONA,
2206 PROCESSOR_CORE2,
2207 PROCESSOR_COREI7,
2208 PROCESSOR_HASWELL,
2209 PROCESSOR_GENERIC,
2210 PROCESSOR_AMDFAM10,
2211 PROCESSOR_BDVER1,
2212 PROCESSOR_BDVER2,
2213 PROCESSOR_BDVER3,
2214 PROCESSOR_BTVER1,
2215 PROCESSOR_BTVER2,
2216 PROCESSOR_ATOM,
2217 PROCESSOR_SLM,
2218 PROCESSOR_max
2221 extern enum processor_type ix86_tune;
2222 extern enum processor_type ix86_arch;
2224 /* Size of the RED_ZONE area. */
2225 #define RED_ZONE_SIZE 128
2226 /* Reserved area of the red zone for temporaries. */
2227 #define RED_ZONE_RESERVE 8
2229 extern unsigned int ix86_preferred_stack_boundary;
2230 extern unsigned int ix86_incoming_stack_boundary;
2232 /* Smallest class containing REGNO. */
2233 extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2235 enum ix86_fpcmp_strategy {
2236 IX86_FPCMP_SAHF,
2237 IX86_FPCMP_COMI,
2238 IX86_FPCMP_ARITH
2241 /* To properly truncate FP values into integers, we need to set i387 control
2242 word. We can't emit proper mode switching code before reload, as spills
2243 generated by reload may truncate values incorrectly, but we still can avoid
2244 redundant computation of new control word by the mode switching pass.
2245 The fldcw instructions are still emitted redundantly, but this is probably
2246 not going to be noticeable problem, as most CPUs do have fast path for
2247 the sequence.
2249 The machinery is to emit simple truncation instructions and split them
2250 before reload to instructions having USEs of two memory locations that
2251 are filled by this code to old and new control word.
2253 Post-reload pass may be later used to eliminate the redundant fildcw if
2254 needed. */
2256 enum ix86_entity
2258 AVX_U128 = 0,
2259 I387_TRUNC,
2260 I387_FLOOR,
2261 I387_CEIL,
2262 I387_MASK_PM,
2263 MAX_386_ENTITIES
2266 enum ix86_stack_slot
2268 SLOT_TEMP = 0,
2269 SLOT_CW_STORED,
2270 SLOT_CW_TRUNC,
2271 SLOT_CW_FLOOR,
2272 SLOT_CW_CEIL,
2273 SLOT_CW_MASK_PM,
2274 MAX_386_STACK_LOCALS
2277 enum avx_u128_state
2279 AVX_U128_CLEAN,
2280 AVX_U128_DIRTY,
2281 AVX_U128_ANY
2284 /* Define this macro if the port needs extra instructions inserted
2285 for mode switching in an optimizing compilation. */
2287 #define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2288 ix86_optimize_mode_switching[(ENTITY)]
2290 /* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2291 initializer for an array of integers. Each initializer element N
2292 refers to an entity that needs mode switching, and specifies the
2293 number of different modes that might need to be set for this
2294 entity. The position of the initializer in the initializer -
2295 starting counting at zero - determines the integer that is used to
2296 refer to the mode-switched entity in question. */
2298 #define NUM_MODES_FOR_MODE_SWITCHING \
2299 { AVX_U128_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
2301 /* ENTITY is an integer specifying a mode-switched entity. If
2302 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
2303 return an integer value not larger than the corresponding element
2304 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
2305 must be switched into prior to the execution of INSN. */
2307 #define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I))
2309 /* If this macro is defined, it is evaluated for every INSN during
2310 mode switching. It determines the mode that an insn results in (if
2311 different from the incoming mode). */
2313 #define MODE_AFTER(ENTITY, MODE, I) ix86_mode_after ((ENTITY), (MODE), (I))
2315 /* If this macro is defined, it is evaluated for every ENTITY that
2316 needs mode switching. It should evaluate to an integer, which is
2317 a mode that ENTITY is assumed to be switched to at function entry. */
2319 #define MODE_ENTRY(ENTITY) ix86_mode_entry (ENTITY)
2321 /* If this macro is defined, it is evaluated for every ENTITY that
2322 needs mode switching. It should evaluate to an integer, which is
2323 a mode that ENTITY is assumed to be switched to at function exit. */
2325 #define MODE_EXIT(ENTITY) ix86_mode_exit (ENTITY)
2327 /* This macro specifies the order in which modes for ENTITY are
2328 processed. 0 is the highest priority. */
2330 #define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
2332 /* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
2333 is the set of hard registers live at the point where the insn(s)
2334 are to be inserted. */
2336 #define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
2337 ix86_emit_mode_set ((ENTITY), (MODE), (HARD_REGS_LIVE))
2339 /* Avoid renaming of stack registers, as doing so in combination with
2340 scheduling just increases amount of live registers at time and in
2341 the turn amount of fxch instructions needed.
2343 ??? Maybe Pentium chips benefits from renaming, someone can try....
2345 Don't rename evex to non-evex sse registers. */
2347 #define HARD_REGNO_RENAME_OK(SRC, TARGET) (!STACK_REGNO_P (SRC) && \
2348 (EXT_REX_SSE_REGNO_P (SRC) == \
2349 EXT_REX_SSE_REGNO_P (TARGET)))
2352 #define FASTCALL_PREFIX '@'
2354 /* Machine specific frame tracking during prologue/epilogue generation. */
2356 #ifndef USED_FOR_TARGET
2357 struct GTY(()) machine_frame_state
2359 /* This pair tracks the currently active CFA as reg+offset. When reg
2360 is drap_reg, we don't bother trying to record here the real CFA when
2361 it might really be a DW_CFA_def_cfa_expression. */
2362 rtx cfa_reg;
2363 HOST_WIDE_INT cfa_offset;
2365 /* The current offset (canonically from the CFA) of ESP and EBP.
2366 When stack frame re-alignment is active, these may not be relative
2367 to the CFA. However, in all cases they are relative to the offsets
2368 of the saved registers stored in ix86_frame. */
2369 HOST_WIDE_INT sp_offset;
2370 HOST_WIDE_INT fp_offset;
2372 /* The size of the red-zone that may be assumed for the purposes of
2373 eliding register restore notes in the epilogue. This may be zero
2374 if no red-zone is in effect, or may be reduced from the real
2375 red-zone value by a maximum runtime stack re-alignment value. */
2376 int red_zone_offset;
2378 /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2379 value within the frame. If false then the offset above should be
2380 ignored. Note that DRAP, if valid, *always* points to the CFA and
2381 thus has an offset of zero. */
2382 BOOL_BITFIELD sp_valid : 1;
2383 BOOL_BITFIELD fp_valid : 1;
2384 BOOL_BITFIELD drap_valid : 1;
2386 /* Indicate whether the local stack frame has been re-aligned. When
2387 set, the SP/FP offsets above are relative to the aligned frame
2388 and not the CFA. */
2389 BOOL_BITFIELD realigned : 1;
2392 /* Private to winnt.c. */
2393 struct seh_frame_state;
2395 struct GTY(()) machine_function {
2396 struct stack_local_entry *stack_locals;
2397 const char *some_ld_name;
2398 int varargs_gpr_size;
2399 int varargs_fpr_size;
2400 int optimize_mode_switching[MAX_386_ENTITIES];
2402 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE
2403 has been computed for. */
2404 int use_fast_prologue_epilogue_nregs;
2406 /* For -fsplit-stack support: A stack local which holds a pointer to
2407 the stack arguments for a function with a variable number of
2408 arguments. This is set at the start of the function and is used
2409 to initialize the overflow_arg_area field of the va_list
2410 structure. */
2411 rtx split_stack_varargs_pointer;
2413 /* This value is used for amd64 targets and specifies the current abi
2414 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
2415 ENUM_BITFIELD(calling_abi) call_abi : 8;
2417 /* Nonzero if the function accesses a previous frame. */
2418 BOOL_BITFIELD accesses_prev_frame : 1;
2420 /* Nonzero if the function requires a CLD in the prologue. */
2421 BOOL_BITFIELD needs_cld : 1;
2423 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2424 expander to determine the style used. */
2425 BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2427 /* If true, the current function needs the default PIC register, not
2428 an alternate register (on x86) and must not use the red zone (on
2429 x86_64), even if it's a leaf function. We don't want the
2430 function to be regarded as non-leaf because TLS calls need not
2431 affect register allocation. This flag is set when a TLS call
2432 instruction is expanded within a function, and never reset, even
2433 if all such instructions are optimized away. Use the
2434 ix86_current_function_calls_tls_descriptor macro for a better
2435 approximation. */
2436 BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2438 /* If true, the current function has a STATIC_CHAIN is placed on the
2439 stack below the return address. */
2440 BOOL_BITFIELD static_chain_on_stack : 1;
2442 /* During prologue/epilogue generation, the current frame state.
2443 Otherwise, the frame state at the end of the prologue. */
2444 struct machine_frame_state fs;
2446 /* During SEH output, this is non-null. */
2447 struct seh_frame_state * GTY((skip(""))) seh;
2449 #endif
2451 #define ix86_stack_locals (cfun->machine->stack_locals)
2452 #define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2453 #define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
2454 #define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
2455 #define ix86_current_function_needs_cld (cfun->machine->needs_cld)
2456 #define ix86_tls_descriptor_calls_expanded_in_cfun \
2457 (cfun->machine->tls_descriptor_call_expanded_p)
2458 /* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2459 calls are optimized away, we try to detect cases in which it was
2460 optimized away. Since such instructions (use (reg REG_SP)), we can
2461 verify whether there's any such instruction live by testing that
2462 REG_SP is live. */
2463 #define ix86_current_function_calls_tls_descriptor \
2464 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
2465 #define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
2467 /* Control behavior of x86_file_start. */
2468 #define X86_FILE_START_VERSION_DIRECTIVE false
2469 #define X86_FILE_START_FLTUSED false
2471 /* Flag to mark data that is in the large address area. */
2472 #define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2473 #define SYMBOL_REF_FAR_ADDR_P(X) \
2474 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
2476 /* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2477 have defined always, to avoid ifdefing. */
2478 #define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2479 #define SYMBOL_REF_DLLIMPORT_P(X) \
2480 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2482 #define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2483 #define SYMBOL_REF_DLLEXPORT_P(X) \
2484 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2486 #define SYMBOL_FLAG_STUBVAR (SYMBOL_FLAG_MACH_DEP << 4)
2487 #define SYMBOL_REF_STUBVAR_P(X) \
2488 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_STUBVAR) != 0)
2490 extern void debug_ready_dispatch (void);
2491 extern void debug_dispatch_window (int);
2493 /* The value at zero is only defined for the BMI instructions
2494 LZCNT and TZCNT, not the BSR/BSF insns in the original isa. */
2495 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2496 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI)
2497 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2498 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT)
2501 /* Flags returned by ix86_get_callcvt (). */
2502 #define IX86_CALLCVT_CDECL 0x1
2503 #define IX86_CALLCVT_STDCALL 0x2
2504 #define IX86_CALLCVT_FASTCALL 0x4
2505 #define IX86_CALLCVT_THISCALL 0x8
2506 #define IX86_CALLCVT_REGPARM 0x10
2507 #define IX86_CALLCVT_SSEREGPARM 0x20
2509 #define IX86_BASE_CALLCVT(FLAGS) \
2510 ((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
2511 | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
2513 #define RECIP_MASK_NONE 0x00
2514 #define RECIP_MASK_DIV 0x01
2515 #define RECIP_MASK_SQRT 0x02
2516 #define RECIP_MASK_VEC_DIV 0x04
2517 #define RECIP_MASK_VEC_SQRT 0x08
2518 #define RECIP_MASK_ALL (RECIP_MASK_DIV | RECIP_MASK_SQRT \
2519 | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
2520 #define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
2522 #define TARGET_RECIP_DIV ((recip_mask & RECIP_MASK_DIV) != 0)
2523 #define TARGET_RECIP_SQRT ((recip_mask & RECIP_MASK_SQRT) != 0)
2524 #define TARGET_RECIP_VEC_DIV ((recip_mask & RECIP_MASK_VEC_DIV) != 0)
2525 #define TARGET_RECIP_VEC_SQRT ((recip_mask & RECIP_MASK_VEC_SQRT) != 0)
2527 #define IX86_HLE_ACQUIRE (1 << 16)
2528 #define IX86_HLE_RELEASE (1 << 17)
2531 Local variables:
2532 version-control: t
2533 End: