2013-11-21 Edward Smith-Rowland <3dw4rd@verizon.net>
[official-gcc.git] / gcc / tree-switch-conversion.c
blob494d48e5c46e7ddd79377bb9f6ae5bb8a69291be
1 /* Lower GIMPLE_SWITCH expressions to something more efficient than
2 a jump table.
3 Copyright (C) 2006-2013 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 /* This file handles the lowering of GIMPLE_SWITCH to an indexed
23 load, or a series of bit-test-and-branch expressions. */
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "tm.h"
29 #include "line-map.h"
30 #include "params.h"
31 #include "flags.h"
32 #include "tree.h"
33 #include "varasm.h"
34 #include "stor-layout.h"
35 #include "basic-block.h"
36 #include "gimple.h"
37 #include "gimplify.h"
38 #include "gimple-iterator.h"
39 #include "gimplify-me.h"
40 #include "gimple-ssa.h"
41 #include "cgraph.h"
42 #include "tree-cfg.h"
43 #include "tree-phinodes.h"
44 #include "stringpool.h"
45 #include "tree-ssanames.h"
46 #include "tree-pass.h"
47 #include "gimple-pretty-print.h"
48 #include "cfgloop.h"
50 /* ??? For lang_hooks.types.type_for_mode, but is there a word_mode
51 type in the GIMPLE type system that is language-independent? */
52 #include "langhooks.h"
54 /* Need to include expr.h and optabs.h for lshift_cheap_p. */
55 #include "expr.h"
56 #include "optabs.h"
58 /* Maximum number of case bit tests.
59 FIXME: This should be derived from PARAM_CASE_VALUES_THRESHOLD and
60 targetm.case_values_threshold(), or be its own param. */
61 #define MAX_CASE_BIT_TESTS 3
63 /* Split the basic block at the statement pointed to by GSIP, and insert
64 a branch to the target basic block of E_TRUE conditional on tree
65 expression COND.
67 It is assumed that there is already an edge from the to-be-split
68 basic block to E_TRUE->dest block. This edge is removed, and the
69 profile information on the edge is re-used for the new conditional
70 jump.
72 The CFG is updated. The dominator tree will not be valid after
73 this transformation, but the immediate dominators are updated if
74 UPDATE_DOMINATORS is true.
76 Returns the newly created basic block. */
78 static basic_block
79 hoist_edge_and_branch_if_true (gimple_stmt_iterator *gsip,
80 tree cond, edge e_true,
81 bool update_dominators)
83 tree tmp;
84 gimple cond_stmt;
85 edge e_false;
86 basic_block new_bb, split_bb = gsi_bb (*gsip);
87 bool dominated_e_true = false;
89 gcc_assert (e_true->src == split_bb);
91 if (update_dominators
92 && get_immediate_dominator (CDI_DOMINATORS, e_true->dest) == split_bb)
93 dominated_e_true = true;
95 tmp = force_gimple_operand_gsi (gsip, cond, /*simple=*/true, NULL,
96 /*before=*/true, GSI_SAME_STMT);
97 cond_stmt = gimple_build_cond_from_tree (tmp, NULL_TREE, NULL_TREE);
98 gsi_insert_before (gsip, cond_stmt, GSI_SAME_STMT);
100 e_false = split_block (split_bb, cond_stmt);
101 new_bb = e_false->dest;
102 redirect_edge_pred (e_true, split_bb);
104 e_true->flags &= ~EDGE_FALLTHRU;
105 e_true->flags |= EDGE_TRUE_VALUE;
107 e_false->flags &= ~EDGE_FALLTHRU;
108 e_false->flags |= EDGE_FALSE_VALUE;
109 e_false->probability = REG_BR_PROB_BASE - e_true->probability;
110 e_false->count = split_bb->count - e_true->count;
111 new_bb->count = e_false->count;
113 if (update_dominators)
115 if (dominated_e_true)
116 set_immediate_dominator (CDI_DOMINATORS, e_true->dest, split_bb);
117 set_immediate_dominator (CDI_DOMINATORS, e_false->dest, split_bb);
120 return new_bb;
124 /* Determine whether "1 << x" is relatively cheap in word_mode. */
125 /* FIXME: This is the function that we need rtl.h and optabs.h for.
126 This function (and similar RTL-related cost code in e.g. IVOPTS) should
127 be moved to some kind of interface file for GIMPLE/RTL interactions. */
128 static bool
129 lshift_cheap_p (void)
131 /* FIXME: This should be made target dependent via this "this_target"
132 mechanism, similar to e.g. can_copy_init_p in gcse.c. */
133 static bool init[2] = {false, false};
134 static bool cheap[2] = {true, true};
135 bool speed_p;
137 /* If the targer has no lshift in word_mode, the operation will most
138 probably not be cheap. ??? Does GCC even work for such targets? */
139 if (optab_handler (ashl_optab, word_mode) == CODE_FOR_nothing)
140 return false;
142 speed_p = optimize_insn_for_speed_p ();
144 if (!init[speed_p])
146 rtx reg = gen_raw_REG (word_mode, 10000);
147 int cost = set_src_cost (gen_rtx_ASHIFT (word_mode, const1_rtx, reg),
148 speed_p);
149 cheap[speed_p] = cost < COSTS_N_INSNS (MAX_CASE_BIT_TESTS);
150 init[speed_p] = true;
153 return cheap[speed_p];
156 /* Return true if a switch should be expanded as a bit test.
157 RANGE is the difference between highest and lowest case.
158 UNIQ is number of unique case node targets, not counting the default case.
159 COUNT is the number of comparisons needed, not counting the default case. */
161 static bool
162 expand_switch_using_bit_tests_p (tree range,
163 unsigned int uniq,
164 unsigned int count)
166 return (((uniq == 1 && count >= 3)
167 || (uniq == 2 && count >= 5)
168 || (uniq == 3 && count >= 6))
169 && lshift_cheap_p ()
170 && compare_tree_int (range, GET_MODE_BITSIZE (word_mode)) < 0
171 && compare_tree_int (range, 0) > 0);
174 /* Implement switch statements with bit tests
176 A GIMPLE switch statement can be expanded to a short sequence of bit-wise
177 comparisons. "switch(x)" is converted into "if ((1 << (x-MINVAL)) & CST)"
178 where CST and MINVAL are integer constants. This is better than a series
179 of compare-and-banch insns in some cases, e.g. we can implement:
181 if ((x==4) || (x==6) || (x==9) || (x==11))
183 as a single bit test:
185 if ((1<<x) & ((1<<4)|(1<<6)|(1<<9)|(1<<11)))
187 This transformation is only applied if the number of case targets is small,
188 if CST constains at least 3 bits, and "1 << x" is cheap. The bit tests are
189 performed in "word_mode".
191 The following example shows the code the transformation generates:
193 int bar(int x)
195 switch (x)
197 case '0': case '1': case '2': case '3': case '4':
198 case '5': case '6': case '7': case '8': case '9':
199 case 'A': case 'B': case 'C': case 'D': case 'E':
200 case 'F':
201 return 1;
203 return 0;
208 bar (int x)
210 tmp1 = x - 48;
211 if (tmp1 > (70 - 48)) goto L2;
212 tmp2 = 1 << tmp1;
213 tmp3 = 0b11111100000001111111111;
214 if ((tmp2 & tmp3) != 0) goto L1 ; else goto L2;
216 return 1;
218 return 0;
221 TODO: There are still some improvements to this transformation that could
222 be implemented:
224 * A narrower mode than word_mode could be used if that is cheaper, e.g.
225 for x86_64 where a narrower-mode shift may result in smaller code.
227 * The compounded constant could be shifted rather than the one. The
228 test would be either on the sign bit or on the least significant bit,
229 depending on the direction of the shift. On some machines, the test
230 for the branch would be free if the bit to test is already set by the
231 shift operation.
233 This transformation was contributed by Roger Sayle, see this e-mail:
234 http://gcc.gnu.org/ml/gcc-patches/2003-01/msg01950.html
237 /* A case_bit_test represents a set of case nodes that may be
238 selected from using a bit-wise comparison. HI and LO hold
239 the integer to be tested against, TARGET_EDGE contains the
240 edge to the basic block to jump to upon success and BITS
241 counts the number of case nodes handled by this test,
242 typically the number of bits set in HI:LO. The LABEL field
243 is used to quickly identify all cases in this set without
244 looking at label_to_block for every case label. */
246 struct case_bit_test
248 HOST_WIDE_INT hi;
249 HOST_WIDE_INT lo;
250 edge target_edge;
251 tree label;
252 int bits;
255 /* Comparison function for qsort to order bit tests by decreasing
256 probability of execution. Our best guess comes from a measured
257 profile. If the profile counts are equal, break even on the
258 number of case nodes, i.e. the node with the most cases gets
259 tested first.
261 TODO: Actually this currently runs before a profile is available.
262 Therefore the case-as-bit-tests transformation should be done
263 later in the pass pipeline, or something along the lines of
264 "Efficient and effective branch reordering using profile data"
265 (Yang et. al., 2002) should be implemented (although, how good
266 is a paper is called "Efficient and effective ..." when the
267 latter is implied by the former, but oh well...). */
269 static int
270 case_bit_test_cmp (const void *p1, const void *p2)
272 const struct case_bit_test *const d1 = (const struct case_bit_test *) p1;
273 const struct case_bit_test *const d2 = (const struct case_bit_test *) p2;
275 if (d2->target_edge->count != d1->target_edge->count)
276 return d2->target_edge->count - d1->target_edge->count;
277 if (d2->bits != d1->bits)
278 return d2->bits - d1->bits;
280 /* Stabilize the sort. */
281 return LABEL_DECL_UID (d2->label) - LABEL_DECL_UID (d1->label);
284 /* Expand a switch statement by a short sequence of bit-wise
285 comparisons. "switch(x)" is effectively converted into
286 "if ((1 << (x-MINVAL)) & CST)" where CST and MINVAL are
287 integer constants.
289 INDEX_EXPR is the value being switched on.
291 MINVAL is the lowest case value of in the case nodes,
292 and RANGE is highest value minus MINVAL. MINVAL and RANGE
293 are not guaranteed to be of the same type as INDEX_EXPR
294 (the gimplifier doesn't change the type of case label values,
295 and MINVAL and RANGE are derived from those values).
297 There *MUST* be MAX_CASE_BIT_TESTS or less unique case
298 node targets. */
300 static void
301 emit_case_bit_tests (gimple swtch, tree index_expr,
302 tree minval, tree range)
304 struct case_bit_test test[MAX_CASE_BIT_TESTS];
305 unsigned int i, j, k;
306 unsigned int count;
308 basic_block switch_bb = gimple_bb (swtch);
309 basic_block default_bb, new_default_bb, new_bb;
310 edge default_edge;
311 bool update_dom = dom_info_available_p (CDI_DOMINATORS);
313 vec<basic_block> bbs_to_fix_dom = vNULL;
315 tree index_type = TREE_TYPE (index_expr);
316 tree unsigned_index_type = unsigned_type_for (index_type);
317 unsigned int branch_num = gimple_switch_num_labels (swtch);
319 gimple_stmt_iterator gsi;
320 gimple shift_stmt;
322 tree idx, tmp, csui;
323 tree word_type_node = lang_hooks.types.type_for_mode (word_mode, 1);
324 tree word_mode_zero = fold_convert (word_type_node, integer_zero_node);
325 tree word_mode_one = fold_convert (word_type_node, integer_one_node);
327 memset (&test, 0, sizeof (test));
329 /* Get the edge for the default case. */
330 tmp = gimple_switch_default_label (swtch);
331 default_bb = label_to_block (CASE_LABEL (tmp));
332 default_edge = find_edge (switch_bb, default_bb);
334 /* Go through all case labels, and collect the case labels, profile
335 counts, and other information we need to build the branch tests. */
336 count = 0;
337 for (i = 1; i < branch_num; i++)
339 unsigned int lo, hi;
340 tree cs = gimple_switch_label (swtch, i);
341 tree label = CASE_LABEL (cs);
342 edge e = find_edge (switch_bb, label_to_block (label));
343 for (k = 0; k < count; k++)
344 if (e == test[k].target_edge)
345 break;
347 if (k == count)
349 gcc_checking_assert (count < MAX_CASE_BIT_TESTS);
350 test[k].hi = 0;
351 test[k].lo = 0;
352 test[k].target_edge = e;
353 test[k].label = label;
354 test[k].bits = 1;
355 count++;
357 else
358 test[k].bits++;
360 lo = tree_to_uhwi (int_const_binop (MINUS_EXPR,
361 CASE_LOW (cs), minval));
362 if (CASE_HIGH (cs) == NULL_TREE)
363 hi = lo;
364 else
365 hi = tree_to_uhwi (int_const_binop (MINUS_EXPR,
366 CASE_HIGH (cs), minval));
368 for (j = lo; j <= hi; j++)
369 if (j >= HOST_BITS_PER_WIDE_INT)
370 test[k].hi |= (HOST_WIDE_INT) 1 << (j - HOST_BITS_PER_INT);
371 else
372 test[k].lo |= (HOST_WIDE_INT) 1 << j;
375 qsort (test, count, sizeof (*test), case_bit_test_cmp);
377 /* We generate two jumps to the default case label.
378 Split the default edge, so that we don't have to do any PHI node
379 updating. */
380 new_default_bb = split_edge (default_edge);
382 if (update_dom)
384 bbs_to_fix_dom.create (10);
385 bbs_to_fix_dom.quick_push (switch_bb);
386 bbs_to_fix_dom.quick_push (default_bb);
387 bbs_to_fix_dom.quick_push (new_default_bb);
390 /* Now build the test-and-branch code. */
392 gsi = gsi_last_bb (switch_bb);
394 /* idx = (unsigned)x - minval. */
395 idx = fold_convert (unsigned_index_type, index_expr);
396 idx = fold_build2 (MINUS_EXPR, unsigned_index_type, idx,
397 fold_convert (unsigned_index_type, minval));
398 idx = force_gimple_operand_gsi (&gsi, idx,
399 /*simple=*/true, NULL_TREE,
400 /*before=*/true, GSI_SAME_STMT);
402 /* if (idx > range) goto default */
403 range = force_gimple_operand_gsi (&gsi,
404 fold_convert (unsigned_index_type, range),
405 /*simple=*/true, NULL_TREE,
406 /*before=*/true, GSI_SAME_STMT);
407 tmp = fold_build2 (GT_EXPR, boolean_type_node, idx, range);
408 new_bb = hoist_edge_and_branch_if_true (&gsi, tmp, default_edge, update_dom);
409 if (update_dom)
410 bbs_to_fix_dom.quick_push (new_bb);
411 gcc_assert (gimple_bb (swtch) == new_bb);
412 gsi = gsi_last_bb (new_bb);
414 /* Any blocks dominated by the GIMPLE_SWITCH, but that are not successors
415 of NEW_BB, are still immediately dominated by SWITCH_BB. Make it so. */
416 if (update_dom)
418 vec<basic_block> dom_bbs;
419 basic_block dom_son;
421 dom_bbs = get_dominated_by (CDI_DOMINATORS, new_bb);
422 FOR_EACH_VEC_ELT (dom_bbs, i, dom_son)
424 edge e = find_edge (new_bb, dom_son);
425 if (e && single_pred_p (e->dest))
426 continue;
427 set_immediate_dominator (CDI_DOMINATORS, dom_son, switch_bb);
428 bbs_to_fix_dom.safe_push (dom_son);
430 dom_bbs.release ();
433 /* csui = (1 << (word_mode) idx) */
434 csui = make_ssa_name (word_type_node, NULL);
435 tmp = fold_build2 (LSHIFT_EXPR, word_type_node, word_mode_one,
436 fold_convert (word_type_node, idx));
437 tmp = force_gimple_operand_gsi (&gsi, tmp,
438 /*simple=*/false, NULL_TREE,
439 /*before=*/true, GSI_SAME_STMT);
440 shift_stmt = gimple_build_assign (csui, tmp);
441 gsi_insert_before (&gsi, shift_stmt, GSI_SAME_STMT);
442 update_stmt (shift_stmt);
444 /* for each unique set of cases:
445 if (const & csui) goto target */
446 for (k = 0; k < count; k++)
448 tmp = build_int_cst_wide (word_type_node, test[k].lo, test[k].hi);
449 tmp = fold_build2 (BIT_AND_EXPR, word_type_node, csui, tmp);
450 tmp = force_gimple_operand_gsi (&gsi, tmp,
451 /*simple=*/true, NULL_TREE,
452 /*before=*/true, GSI_SAME_STMT);
453 tmp = fold_build2 (NE_EXPR, boolean_type_node, tmp, word_mode_zero);
454 new_bb = hoist_edge_and_branch_if_true (&gsi, tmp, test[k].target_edge,
455 update_dom);
456 if (update_dom)
457 bbs_to_fix_dom.safe_push (new_bb);
458 gcc_assert (gimple_bb (swtch) == new_bb);
459 gsi = gsi_last_bb (new_bb);
462 /* We should have removed all edges now. */
463 gcc_assert (EDGE_COUNT (gsi_bb (gsi)->succs) == 0);
465 /* If nothing matched, go to the default label. */
466 make_edge (gsi_bb (gsi), new_default_bb, EDGE_FALLTHRU);
468 /* The GIMPLE_SWITCH is now redundant. */
469 gsi_remove (&gsi, true);
471 if (update_dom)
473 /* Fix up the dominator tree. */
474 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
475 bbs_to_fix_dom.release ();
480 Switch initialization conversion
482 The following pass changes simple initializations of scalars in a switch
483 statement into initializations from a static array. Obviously, the values
484 must be constant and known at compile time and a default branch must be
485 provided. For example, the following code:
487 int a,b;
489 switch (argc)
491 case 1:
492 case 2:
493 a_1 = 8;
494 b_1 = 6;
495 break;
496 case 3:
497 a_2 = 9;
498 b_2 = 5;
499 break;
500 case 12:
501 a_3 = 10;
502 b_3 = 4;
503 break;
504 default:
505 a_4 = 16;
506 b_4 = 1;
507 break;
509 a_5 = PHI <a_1, a_2, a_3, a_4>
510 b_5 = PHI <b_1, b_2, b_3, b_4>
513 is changed into:
515 static const int = CSWTCH01[] = {6, 6, 5, 1, 1, 1, 1, 1, 1, 1, 1, 4};
516 static const int = CSWTCH02[] = {8, 8, 9, 16, 16, 16, 16, 16, 16, 16,
517 16, 16, 10};
519 if (((unsigned) argc) - 1 < 11)
521 a_6 = CSWTCH02[argc - 1];
522 b_6 = CSWTCH01[argc - 1];
524 else
526 a_7 = 16;
527 b_7 = 1;
529 a_5 = PHI <a_6, a_7>
530 b_b = PHI <b_6, b_7>
532 There are further constraints. Specifically, the range of values across all
533 case labels must not be bigger than SWITCH_CONVERSION_BRANCH_RATIO (default
534 eight) times the number of the actual switch branches.
536 This transformation was contributed by Martin Jambor, see this e-mail:
537 http://gcc.gnu.org/ml/gcc-patches/2008-07/msg00011.html */
539 /* The main structure of the pass. */
540 struct switch_conv_info
542 /* The expression used to decide the switch branch. */
543 tree index_expr;
545 /* The following integer constants store the minimum and maximum value
546 covered by the case labels. */
547 tree range_min;
548 tree range_max;
550 /* The difference between the above two numbers. Stored here because it
551 is used in all the conversion heuristics, as well as for some of the
552 transformation, and it is expensive to re-compute it all the time. */
553 tree range_size;
555 /* Basic block that contains the actual GIMPLE_SWITCH. */
556 basic_block switch_bb;
558 /* Basic block that is the target of the default case. */
559 basic_block default_bb;
561 /* The single successor block of all branches out of the GIMPLE_SWITCH,
562 if such a block exists. Otherwise NULL. */
563 basic_block final_bb;
565 /* The probability of the default edge in the replaced switch. */
566 int default_prob;
568 /* The count of the default edge in the replaced switch. */
569 gcov_type default_count;
571 /* Combined count of all other (non-default) edges in the replaced switch. */
572 gcov_type other_count;
574 /* Number of phi nodes in the final bb (that we'll be replacing). */
575 int phi_count;
577 /* Array of default values, in the same order as phi nodes. */
578 tree *default_values;
580 /* Constructors of new static arrays. */
581 vec<constructor_elt, va_gc> **constructors;
583 /* Array of ssa names that are initialized with a value from a new static
584 array. */
585 tree *target_inbound_names;
587 /* Array of ssa names that are initialized with the default value if the
588 switch expression is out of range. */
589 tree *target_outbound_names;
591 /* The first load statement that loads a temporary from a new static array.
593 gimple arr_ref_first;
595 /* The last load statement that loads a temporary from a new static array. */
596 gimple arr_ref_last;
598 /* String reason why the case wasn't a good candidate that is written to the
599 dump file, if there is one. */
600 const char *reason;
602 /* Parameters for expand_switch_using_bit_tests. Should be computed
603 the same way as in expand_case. */
604 unsigned int uniq;
605 unsigned int count;
608 /* Collect information about GIMPLE_SWITCH statement SWTCH into INFO. */
610 static void
611 collect_switch_conv_info (gimple swtch, struct switch_conv_info *info)
613 unsigned int branch_num = gimple_switch_num_labels (swtch);
614 tree min_case, max_case;
615 unsigned int count, i;
616 edge e, e_default;
617 edge_iterator ei;
619 memset (info, 0, sizeof (*info));
621 /* The gimplifier has already sorted the cases by CASE_LOW and ensured there
622 is a default label which is the first in the vector.
623 Collect the bits we can deduce from the CFG. */
624 info->index_expr = gimple_switch_index (swtch);
625 info->switch_bb = gimple_bb (swtch);
626 info->default_bb =
627 label_to_block (CASE_LABEL (gimple_switch_default_label (swtch)));
628 e_default = find_edge (info->switch_bb, info->default_bb);
629 info->default_prob = e_default->probability;
630 info->default_count = e_default->count;
631 FOR_EACH_EDGE (e, ei, info->switch_bb->succs)
632 if (e != e_default)
633 info->other_count += e->count;
635 /* See if there is one common successor block for all branch
636 targets. If it exists, record it in FINAL_BB. */
637 FOR_EACH_EDGE (e, ei, info->switch_bb->succs)
639 if (! single_pred_p (e->dest))
641 info->final_bb = e->dest;
642 break;
645 if (info->final_bb)
646 FOR_EACH_EDGE (e, ei, info->switch_bb->succs)
648 if (e->dest == info->final_bb)
649 continue;
651 if (single_pred_p (e->dest)
652 && single_succ_p (e->dest)
653 && single_succ (e->dest) == info->final_bb)
654 continue;
656 info->final_bb = NULL;
657 break;
660 /* Get upper and lower bounds of case values, and the covered range. */
661 min_case = gimple_switch_label (swtch, 1);
662 max_case = gimple_switch_label (swtch, branch_num - 1);
664 info->range_min = CASE_LOW (min_case);
665 if (CASE_HIGH (max_case) != NULL_TREE)
666 info->range_max = CASE_HIGH (max_case);
667 else
668 info->range_max = CASE_LOW (max_case);
670 info->range_size =
671 int_const_binop (MINUS_EXPR, info->range_max, info->range_min);
673 /* Get a count of the number of case labels. Single-valued case labels
674 simply count as one, but a case range counts double, since it may
675 require two compares if it gets lowered as a branching tree. */
676 count = 0;
677 for (i = 1; i < branch_num; i++)
679 tree elt = gimple_switch_label (swtch, i);
680 count++;
681 if (CASE_HIGH (elt)
682 && ! tree_int_cst_equal (CASE_LOW (elt), CASE_HIGH (elt)))
683 count++;
685 info->count = count;
687 /* Get the number of unique non-default targets out of the GIMPLE_SWITCH
688 block. Assume a CFG cleanup would have already removed degenerate
689 switch statements, this allows us to just use EDGE_COUNT. */
690 info->uniq = EDGE_COUNT (gimple_bb (swtch)->succs) - 1;
693 /* Checks whether the range given by individual case statements of the SWTCH
694 switch statement isn't too big and whether the number of branches actually
695 satisfies the size of the new array. */
697 static bool
698 check_range (struct switch_conv_info *info)
700 gcc_assert (info->range_size);
701 if (!tree_fits_uhwi_p (info->range_size))
703 info->reason = "index range way too large or otherwise unusable";
704 return false;
707 if (tree_to_uhwi (info->range_size)
708 > ((unsigned) info->count * SWITCH_CONVERSION_BRANCH_RATIO))
710 info->reason = "the maximum range-branch ratio exceeded";
711 return false;
714 return true;
717 /* Checks whether all but the FINAL_BB basic blocks are empty. */
719 static bool
720 check_all_empty_except_final (struct switch_conv_info *info)
722 edge e;
723 edge_iterator ei;
725 FOR_EACH_EDGE (e, ei, info->switch_bb->succs)
727 if (e->dest == info->final_bb)
728 continue;
730 if (!empty_block_p (e->dest))
732 info->reason = "bad case - a non-final BB not empty";
733 return false;
737 return true;
740 /* This function checks whether all required values in phi nodes in final_bb
741 are constants. Required values are those that correspond to a basic block
742 which is a part of the examined switch statement. It returns true if the
743 phi nodes are OK, otherwise false. */
745 static bool
746 check_final_bb (struct switch_conv_info *info)
748 gimple_stmt_iterator gsi;
750 info->phi_count = 0;
751 for (gsi = gsi_start_phis (info->final_bb); !gsi_end_p (gsi); gsi_next (&gsi))
753 gimple phi = gsi_stmt (gsi);
754 unsigned int i;
756 info->phi_count++;
758 for (i = 0; i < gimple_phi_num_args (phi); i++)
760 basic_block bb = gimple_phi_arg_edge (phi, i)->src;
762 if (bb == info->switch_bb
763 || (single_pred_p (bb) && single_pred (bb) == info->switch_bb))
765 tree reloc, val;
767 val = gimple_phi_arg_def (phi, i);
768 if (!is_gimple_ip_invariant (val))
770 info->reason = "non-invariant value from a case";
771 return false; /* Non-invariant argument. */
773 reloc = initializer_constant_valid_p (val, TREE_TYPE (val));
774 if ((flag_pic && reloc != null_pointer_node)
775 || (!flag_pic && reloc == NULL_TREE))
777 if (reloc)
778 info->reason
779 = "value from a case would need runtime relocations";
780 else
781 info->reason
782 = "value from a case is not a valid initializer";
783 return false;
789 return true;
792 /* The following function allocates default_values, target_{in,out}_names and
793 constructors arrays. The last one is also populated with pointers to
794 vectors that will become constructors of new arrays. */
796 static void
797 create_temp_arrays (struct switch_conv_info *info)
799 int i;
801 info->default_values = XCNEWVEC (tree, info->phi_count * 3);
802 /* ??? Macros do not support multi argument templates in their
803 argument list. We create a typedef to work around that problem. */
804 typedef vec<constructor_elt, va_gc> *vec_constructor_elt_gc;
805 info->constructors = XCNEWVEC (vec_constructor_elt_gc, info->phi_count);
806 info->target_inbound_names = info->default_values + info->phi_count;
807 info->target_outbound_names = info->target_inbound_names + info->phi_count;
808 for (i = 0; i < info->phi_count; i++)
809 vec_alloc (info->constructors[i], tree_to_uhwi (info->range_size) + 1);
812 /* Free the arrays created by create_temp_arrays(). The vectors that are
813 created by that function are not freed here, however, because they have
814 already become constructors and must be preserved. */
816 static void
817 free_temp_arrays (struct switch_conv_info *info)
819 XDELETEVEC (info->constructors);
820 XDELETEVEC (info->default_values);
823 /* Populate the array of default values in the order of phi nodes.
824 DEFAULT_CASE is the CASE_LABEL_EXPR for the default switch branch. */
826 static void
827 gather_default_values (tree default_case, struct switch_conv_info *info)
829 gimple_stmt_iterator gsi;
830 basic_block bb = label_to_block (CASE_LABEL (default_case));
831 edge e;
832 int i = 0;
834 gcc_assert (CASE_LOW (default_case) == NULL_TREE);
836 if (bb == info->final_bb)
837 e = find_edge (info->switch_bb, bb);
838 else
839 e = single_succ_edge (bb);
841 for (gsi = gsi_start_phis (info->final_bb); !gsi_end_p (gsi); gsi_next (&gsi))
843 gimple phi = gsi_stmt (gsi);
844 tree val = PHI_ARG_DEF_FROM_EDGE (phi, e);
845 gcc_assert (val);
846 info->default_values[i++] = val;
850 /* The following function populates the vectors in the constructors array with
851 future contents of the static arrays. The vectors are populated in the
852 order of phi nodes. SWTCH is the switch statement being converted. */
854 static void
855 build_constructors (gimple swtch, struct switch_conv_info *info)
857 unsigned i, branch_num = gimple_switch_num_labels (swtch);
858 tree pos = info->range_min;
860 for (i = 1; i < branch_num; i++)
862 tree cs = gimple_switch_label (swtch, i);
863 basic_block bb = label_to_block (CASE_LABEL (cs));
864 edge e;
865 tree high;
866 gimple_stmt_iterator gsi;
867 int j;
869 if (bb == info->final_bb)
870 e = find_edge (info->switch_bb, bb);
871 else
872 e = single_succ_edge (bb);
873 gcc_assert (e);
875 while (tree_int_cst_lt (pos, CASE_LOW (cs)))
877 int k;
878 for (k = 0; k < info->phi_count; k++)
880 constructor_elt elt;
882 elt.index = int_const_binop (MINUS_EXPR, pos, info->range_min);
883 elt.value
884 = unshare_expr_without_location (info->default_values[k]);
885 info->constructors[k]->quick_push (elt);
888 pos = int_const_binop (PLUS_EXPR, pos, integer_one_node);
890 gcc_assert (tree_int_cst_equal (pos, CASE_LOW (cs)));
892 j = 0;
893 if (CASE_HIGH (cs))
894 high = CASE_HIGH (cs);
895 else
896 high = CASE_LOW (cs);
897 for (gsi = gsi_start_phis (info->final_bb);
898 !gsi_end_p (gsi); gsi_next (&gsi))
900 gimple phi = gsi_stmt (gsi);
901 tree val = PHI_ARG_DEF_FROM_EDGE (phi, e);
902 tree low = CASE_LOW (cs);
903 pos = CASE_LOW (cs);
907 constructor_elt elt;
909 elt.index = int_const_binop (MINUS_EXPR, pos, info->range_min);
910 elt.value = unshare_expr_without_location (val);
911 info->constructors[j]->quick_push (elt);
913 pos = int_const_binop (PLUS_EXPR, pos, integer_one_node);
914 } while (!tree_int_cst_lt (high, pos)
915 && tree_int_cst_lt (low, pos));
916 j++;
921 /* If all values in the constructor vector are the same, return the value.
922 Otherwise return NULL_TREE. Not supposed to be called for empty
923 vectors. */
925 static tree
926 constructor_contains_same_values_p (vec<constructor_elt, va_gc> *vec)
928 unsigned int i;
929 tree prev = NULL_TREE;
930 constructor_elt *elt;
932 FOR_EACH_VEC_SAFE_ELT (vec, i, elt)
934 if (!prev)
935 prev = elt->value;
936 else if (!operand_equal_p (elt->value, prev, OEP_ONLY_CONST))
937 return NULL_TREE;
939 return prev;
942 /* Return type which should be used for array elements, either TYPE,
943 or for integral type some smaller integral type that can still hold
944 all the constants. */
946 static tree
947 array_value_type (gimple swtch, tree type, int num,
948 struct switch_conv_info *info)
950 unsigned int i, len = vec_safe_length (info->constructors[num]);
951 constructor_elt *elt;
952 enum machine_mode mode;
953 int sign = 0;
954 tree smaller_type;
956 if (!INTEGRAL_TYPE_P (type))
957 return type;
959 mode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (TYPE_MODE (type)));
960 if (GET_MODE_SIZE (TYPE_MODE (type)) <= GET_MODE_SIZE (mode))
961 return type;
963 if (len < (optimize_bb_for_size_p (gimple_bb (swtch)) ? 2 : 32))
964 return type;
966 FOR_EACH_VEC_SAFE_ELT (info->constructors[num], i, elt)
968 double_int cst;
970 if (TREE_CODE (elt->value) != INTEGER_CST)
971 return type;
973 cst = TREE_INT_CST (elt->value);
974 while (1)
976 unsigned int prec = GET_MODE_BITSIZE (mode);
977 if (prec > HOST_BITS_PER_WIDE_INT)
978 return type;
980 if (sign >= 0 && cst == cst.zext (prec))
982 if (sign == 0 && cst == cst.sext (prec))
983 break;
984 sign = 1;
985 break;
987 if (sign <= 0 && cst == cst.sext (prec))
989 sign = -1;
990 break;
993 if (sign == 1)
994 sign = 0;
996 mode = GET_MODE_WIDER_MODE (mode);
997 if (mode == VOIDmode
998 || GET_MODE_SIZE (mode) >= GET_MODE_SIZE (TYPE_MODE (type)))
999 return type;
1003 if (sign == 0)
1004 sign = TYPE_UNSIGNED (type) ? 1 : -1;
1005 smaller_type = lang_hooks.types.type_for_mode (mode, sign >= 0);
1006 if (GET_MODE_SIZE (TYPE_MODE (type))
1007 <= GET_MODE_SIZE (TYPE_MODE (smaller_type)))
1008 return type;
1010 return smaller_type;
1013 /* Create an appropriate array type and declaration and assemble a static array
1014 variable. Also create a load statement that initializes the variable in
1015 question with a value from the static array. SWTCH is the switch statement
1016 being converted, NUM is the index to arrays of constructors, default values
1017 and target SSA names for this particular array. ARR_INDEX_TYPE is the type
1018 of the index of the new array, PHI is the phi node of the final BB that
1019 corresponds to the value that will be loaded from the created array. TIDX
1020 is an ssa name of a temporary variable holding the index for loads from the
1021 new array. */
1023 static void
1024 build_one_array (gimple swtch, int num, tree arr_index_type, gimple phi,
1025 tree tidx, struct switch_conv_info *info)
1027 tree name, cst;
1028 gimple load;
1029 gimple_stmt_iterator gsi = gsi_for_stmt (swtch);
1030 location_t loc = gimple_location (swtch);
1032 gcc_assert (info->default_values[num]);
1034 name = copy_ssa_name (PHI_RESULT (phi), NULL);
1035 info->target_inbound_names[num] = name;
1037 cst = constructor_contains_same_values_p (info->constructors[num]);
1038 if (cst)
1039 load = gimple_build_assign (name, cst);
1040 else
1042 tree array_type, ctor, decl, value_type, fetch, default_type;
1044 default_type = TREE_TYPE (info->default_values[num]);
1045 value_type = array_value_type (swtch, default_type, num, info);
1046 array_type = build_array_type (value_type, arr_index_type);
1047 if (default_type != value_type)
1049 unsigned int i;
1050 constructor_elt *elt;
1052 FOR_EACH_VEC_SAFE_ELT (info->constructors[num], i, elt)
1053 elt->value = fold_convert (value_type, elt->value);
1055 ctor = build_constructor (array_type, info->constructors[num]);
1056 TREE_CONSTANT (ctor) = true;
1057 TREE_STATIC (ctor) = true;
1059 decl = build_decl (loc, VAR_DECL, NULL_TREE, array_type);
1060 TREE_STATIC (decl) = 1;
1061 DECL_INITIAL (decl) = ctor;
1063 DECL_NAME (decl) = create_tmp_var_name ("CSWTCH");
1064 DECL_ARTIFICIAL (decl) = 1;
1065 TREE_CONSTANT (decl) = 1;
1066 TREE_READONLY (decl) = 1;
1067 varpool_finalize_decl (decl);
1069 fetch = build4 (ARRAY_REF, value_type, decl, tidx, NULL_TREE,
1070 NULL_TREE);
1071 if (default_type != value_type)
1073 fetch = fold_convert (default_type, fetch);
1074 fetch = force_gimple_operand_gsi (&gsi, fetch, true, NULL_TREE,
1075 true, GSI_SAME_STMT);
1077 load = gimple_build_assign (name, fetch);
1080 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
1081 update_stmt (load);
1082 info->arr_ref_last = load;
1085 /* Builds and initializes static arrays initialized with values gathered from
1086 the SWTCH switch statement. Also creates statements that load values from
1087 them. */
1089 static void
1090 build_arrays (gimple swtch, struct switch_conv_info *info)
1092 tree arr_index_type;
1093 tree tidx, sub, utype;
1094 gimple stmt;
1095 gimple_stmt_iterator gsi;
1096 int i;
1097 location_t loc = gimple_location (swtch);
1099 gsi = gsi_for_stmt (swtch);
1101 /* Make sure we do not generate arithmetics in a subrange. */
1102 utype = TREE_TYPE (info->index_expr);
1103 if (TREE_TYPE (utype))
1104 utype = lang_hooks.types.type_for_mode (TYPE_MODE (TREE_TYPE (utype)), 1);
1105 else
1106 utype = lang_hooks.types.type_for_mode (TYPE_MODE (utype), 1);
1108 arr_index_type = build_index_type (info->range_size);
1109 tidx = make_ssa_name (utype, NULL);
1110 sub = fold_build2_loc (loc, MINUS_EXPR, utype,
1111 fold_convert_loc (loc, utype, info->index_expr),
1112 fold_convert_loc (loc, utype, info->range_min));
1113 sub = force_gimple_operand_gsi (&gsi, sub,
1114 false, NULL, true, GSI_SAME_STMT);
1115 stmt = gimple_build_assign (tidx, sub);
1117 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1118 update_stmt (stmt);
1119 info->arr_ref_first = stmt;
1121 for (gsi = gsi_start_phis (info->final_bb), i = 0;
1122 !gsi_end_p (gsi); gsi_next (&gsi), i++)
1123 build_one_array (swtch, i, arr_index_type, gsi_stmt (gsi), tidx, info);
1126 /* Generates and appropriately inserts loads of default values at the position
1127 given by BSI. Returns the last inserted statement. */
1129 static gimple
1130 gen_def_assigns (gimple_stmt_iterator *gsi, struct switch_conv_info *info)
1132 int i;
1133 gimple assign = NULL;
1135 for (i = 0; i < info->phi_count; i++)
1137 tree name = copy_ssa_name (info->target_inbound_names[i], NULL);
1138 info->target_outbound_names[i] = name;
1139 assign = gimple_build_assign (name, info->default_values[i]);
1140 gsi_insert_before (gsi, assign, GSI_SAME_STMT);
1141 update_stmt (assign);
1143 return assign;
1146 /* Deletes the unused bbs and edges that now contain the switch statement and
1147 its empty branch bbs. BBD is the now dead BB containing the original switch
1148 statement, FINAL is the last BB of the converted switch statement (in terms
1149 of succession). */
1151 static void
1152 prune_bbs (basic_block bbd, basic_block final)
1154 edge_iterator ei;
1155 edge e;
1157 for (ei = ei_start (bbd->succs); (e = ei_safe_edge (ei)); )
1159 basic_block bb;
1160 bb = e->dest;
1161 remove_edge (e);
1162 if (bb != final)
1163 delete_basic_block (bb);
1165 delete_basic_block (bbd);
1168 /* Add values to phi nodes in final_bb for the two new edges. E1F is the edge
1169 from the basic block loading values from an array and E2F from the basic
1170 block loading default values. BBF is the last switch basic block (see the
1171 bbf description in the comment below). */
1173 static void
1174 fix_phi_nodes (edge e1f, edge e2f, basic_block bbf,
1175 struct switch_conv_info *info)
1177 gimple_stmt_iterator gsi;
1178 int i;
1180 for (gsi = gsi_start_phis (bbf), i = 0;
1181 !gsi_end_p (gsi); gsi_next (&gsi), i++)
1183 gimple phi = gsi_stmt (gsi);
1184 add_phi_arg (phi, info->target_inbound_names[i], e1f, UNKNOWN_LOCATION);
1185 add_phi_arg (phi, info->target_outbound_names[i], e2f, UNKNOWN_LOCATION);
1189 /* Creates a check whether the switch expression value actually falls into the
1190 range given by all the cases. If it does not, the temporaries are loaded
1191 with default values instead. SWTCH is the switch statement being converted.
1193 bb0 is the bb with the switch statement, however, we'll end it with a
1194 condition instead.
1196 bb1 is the bb to be used when the range check went ok. It is derived from
1197 the switch BB
1199 bb2 is the bb taken when the expression evaluated outside of the range
1200 covered by the created arrays. It is populated by loads of default
1201 values.
1203 bbF is a fall through for both bb1 and bb2 and contains exactly what
1204 originally followed the switch statement.
1206 bbD contains the switch statement (in the end). It is unreachable but we
1207 still need to strip off its edges.
1210 static void
1211 gen_inbound_check (gimple swtch, struct switch_conv_info *info)
1213 tree label_decl1 = create_artificial_label (UNKNOWN_LOCATION);
1214 tree label_decl2 = create_artificial_label (UNKNOWN_LOCATION);
1215 tree label_decl3 = create_artificial_label (UNKNOWN_LOCATION);
1216 gimple label1, label2, label3;
1217 tree utype, tidx;
1218 tree bound;
1220 gimple cond_stmt;
1222 gimple last_assign;
1223 gimple_stmt_iterator gsi;
1224 basic_block bb0, bb1, bb2, bbf, bbd;
1225 edge e01, e02, e21, e1d, e1f, e2f;
1226 location_t loc = gimple_location (swtch);
1228 gcc_assert (info->default_values);
1230 bb0 = gimple_bb (swtch);
1232 tidx = gimple_assign_lhs (info->arr_ref_first);
1233 utype = TREE_TYPE (tidx);
1235 /* (end of) block 0 */
1236 gsi = gsi_for_stmt (info->arr_ref_first);
1237 gsi_next (&gsi);
1239 bound = fold_convert_loc (loc, utype, info->range_size);
1240 cond_stmt = gimple_build_cond (LE_EXPR, tidx, bound, NULL_TREE, NULL_TREE);
1241 gsi_insert_before (&gsi, cond_stmt, GSI_SAME_STMT);
1242 update_stmt (cond_stmt);
1244 /* block 2 */
1245 label2 = gimple_build_label (label_decl2);
1246 gsi_insert_before (&gsi, label2, GSI_SAME_STMT);
1247 last_assign = gen_def_assigns (&gsi, info);
1249 /* block 1 */
1250 label1 = gimple_build_label (label_decl1);
1251 gsi_insert_before (&gsi, label1, GSI_SAME_STMT);
1253 /* block F */
1254 gsi = gsi_start_bb (info->final_bb);
1255 label3 = gimple_build_label (label_decl3);
1256 gsi_insert_before (&gsi, label3, GSI_SAME_STMT);
1258 /* cfg fix */
1259 e02 = split_block (bb0, cond_stmt);
1260 bb2 = e02->dest;
1262 e21 = split_block (bb2, last_assign);
1263 bb1 = e21->dest;
1264 remove_edge (e21);
1266 e1d = split_block (bb1, info->arr_ref_last);
1267 bbd = e1d->dest;
1268 remove_edge (e1d);
1270 /* flags and profiles of the edge for in-range values */
1271 e01 = make_edge (bb0, bb1, EDGE_TRUE_VALUE);
1272 e01->probability = REG_BR_PROB_BASE - info->default_prob;
1273 e01->count = info->other_count;
1275 /* flags and profiles of the edge taking care of out-of-range values */
1276 e02->flags &= ~EDGE_FALLTHRU;
1277 e02->flags |= EDGE_FALSE_VALUE;
1278 e02->probability = info->default_prob;
1279 e02->count = info->default_count;
1281 bbf = info->final_bb;
1283 e1f = make_edge (bb1, bbf, EDGE_FALLTHRU);
1284 e1f->probability = REG_BR_PROB_BASE;
1285 e1f->count = info->other_count;
1287 e2f = make_edge (bb2, bbf, EDGE_FALLTHRU);
1288 e2f->probability = REG_BR_PROB_BASE;
1289 e2f->count = info->default_count;
1291 /* frequencies of the new BBs */
1292 bb1->frequency = EDGE_FREQUENCY (e01);
1293 bb2->frequency = EDGE_FREQUENCY (e02);
1294 bbf->frequency = EDGE_FREQUENCY (e1f) + EDGE_FREQUENCY (e2f);
1296 /* Tidy blocks that have become unreachable. */
1297 prune_bbs (bbd, info->final_bb);
1299 /* Fixup the PHI nodes in bbF. */
1300 fix_phi_nodes (e1f, e2f, bbf, info);
1302 /* Fix the dominator tree, if it is available. */
1303 if (dom_info_available_p (CDI_DOMINATORS))
1305 vec<basic_block> bbs_to_fix_dom;
1307 set_immediate_dominator (CDI_DOMINATORS, bb1, bb0);
1308 set_immediate_dominator (CDI_DOMINATORS, bb2, bb0);
1309 if (! get_immediate_dominator (CDI_DOMINATORS, bbf))
1310 /* If bbD was the immediate dominator ... */
1311 set_immediate_dominator (CDI_DOMINATORS, bbf, bb0);
1313 bbs_to_fix_dom.create (4);
1314 bbs_to_fix_dom.quick_push (bb0);
1315 bbs_to_fix_dom.quick_push (bb1);
1316 bbs_to_fix_dom.quick_push (bb2);
1317 bbs_to_fix_dom.quick_push (bbf);
1319 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
1320 bbs_to_fix_dom.release ();
1324 /* The following function is invoked on every switch statement (the current one
1325 is given in SWTCH) and runs the individual phases of switch conversion on it
1326 one after another until one fails or the conversion is completed.
1327 Returns NULL on success, or a pointer to a string with the reason why the
1328 conversion failed. */
1330 static const char *
1331 process_switch (gimple swtch)
1333 struct switch_conv_info info;
1335 /* Group case labels so that we get the right results from the heuristics
1336 that decide on the code generation approach for this switch. */
1337 group_case_labels_stmt (swtch);
1339 /* If this switch is now a degenerate case with only a default label,
1340 there is nothing left for us to do. */
1341 if (gimple_switch_num_labels (swtch) < 2)
1342 return "switch is a degenerate case";
1344 collect_switch_conv_info (swtch, &info);
1346 /* No error markers should reach here (they should be filtered out
1347 during gimplification). */
1348 gcc_checking_assert (TREE_TYPE (info.index_expr) != error_mark_node);
1350 /* A switch on a constant should have been optimized in tree-cfg-cleanup. */
1351 gcc_checking_assert (! TREE_CONSTANT (info.index_expr));
1353 if (info.uniq <= MAX_CASE_BIT_TESTS)
1355 if (expand_switch_using_bit_tests_p (info.range_size,
1356 info.uniq, info.count))
1358 if (dump_file)
1359 fputs (" expanding as bit test is preferable\n", dump_file);
1360 emit_case_bit_tests (swtch, info.index_expr,
1361 info.range_min, info.range_size);
1362 if (current_loops)
1363 loops_state_set (LOOPS_NEED_FIXUP);
1364 return NULL;
1367 if (info.uniq <= 2)
1368 /* This will be expanded as a decision tree in stmt.c:expand_case. */
1369 return " expanding as jumps is preferable";
1372 /* If there is no common successor, we cannot do the transformation. */
1373 if (! info.final_bb)
1374 return "no common successor to all case label target blocks found";
1376 /* Check the case label values are within reasonable range: */
1377 if (!check_range (&info))
1379 gcc_assert (info.reason);
1380 return info.reason;
1383 /* For all the cases, see whether they are empty, the assignments they
1384 represent constant and so on... */
1385 if (! check_all_empty_except_final (&info))
1387 gcc_assert (info.reason);
1388 return info.reason;
1390 if (!check_final_bb (&info))
1392 gcc_assert (info.reason);
1393 return info.reason;
1396 /* At this point all checks have passed and we can proceed with the
1397 transformation. */
1399 create_temp_arrays (&info);
1400 gather_default_values (gimple_switch_default_label (swtch), &info);
1401 build_constructors (swtch, &info);
1403 build_arrays (swtch, &info); /* Build the static arrays and assignments. */
1404 gen_inbound_check (swtch, &info); /* Build the bounds check. */
1406 /* Cleanup: */
1407 free_temp_arrays (&info);
1408 return NULL;
1411 /* The main function of the pass scans statements for switches and invokes
1412 process_switch on them. */
1414 static unsigned int
1415 do_switchconv (void)
1417 basic_block bb;
1419 FOR_EACH_BB (bb)
1421 const char *failure_reason;
1422 gimple stmt = last_stmt (bb);
1423 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1425 if (dump_file)
1427 expanded_location loc = expand_location (gimple_location (stmt));
1429 fprintf (dump_file, "beginning to process the following "
1430 "SWITCH statement (%s:%d) : ------- \n",
1431 loc.file, loc.line);
1432 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1433 putc ('\n', dump_file);
1436 failure_reason = process_switch (stmt);
1437 if (! failure_reason)
1439 if (dump_file)
1441 fputs ("Switch converted\n", dump_file);
1442 fputs ("--------------------------------\n", dump_file);
1445 /* Make no effort to update the post-dominator tree. It is actually not
1446 that hard for the transformations we have performed, but it is not
1447 supported by iterate_fix_dominators. */
1448 free_dominance_info (CDI_POST_DOMINATORS);
1450 else
1452 if (dump_file)
1454 fputs ("Bailing out - ", dump_file);
1455 fputs (failure_reason, dump_file);
1456 fputs ("\n--------------------------------\n", dump_file);
1462 return 0;
1465 /* The pass gate. */
1467 static bool
1468 switchconv_gate (void)
1470 return flag_tree_switch_conversion != 0;
1473 namespace {
1475 const pass_data pass_data_convert_switch =
1477 GIMPLE_PASS, /* type */
1478 "switchconv", /* name */
1479 OPTGROUP_NONE, /* optinfo_flags */
1480 true, /* has_gate */
1481 true, /* has_execute */
1482 TV_TREE_SWITCH_CONVERSION, /* tv_id */
1483 ( PROP_cfg | PROP_ssa ), /* properties_required */
1484 0, /* properties_provided */
1485 0, /* properties_destroyed */
1486 0, /* todo_flags_start */
1487 ( TODO_update_ssa | TODO_verify_ssa
1488 | TODO_verify_stmts
1489 | TODO_verify_flow ), /* todo_flags_finish */
1492 class pass_convert_switch : public gimple_opt_pass
1494 public:
1495 pass_convert_switch (gcc::context *ctxt)
1496 : gimple_opt_pass (pass_data_convert_switch, ctxt)
1499 /* opt_pass methods: */
1500 bool gate () { return switchconv_gate (); }
1501 unsigned int execute () { return do_switchconv (); }
1503 }; // class pass_convert_switch
1505 } // anon namespace
1507 gimple_opt_pass *
1508 make_pass_convert_switch (gcc::context *ctxt)
1510 return new pass_convert_switch (ctxt);